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Abstract

The standard public-key cryptosystems used today relies mathematical
problems that require a lot of computing force to solve, so much that, with
the right parameters, they are computationally unsolvable. But there are
quantum algorithms that are able to solve these problems in much shorter
time. These quantum algorithms have been known for many years, but have
only been a problem in theory because of the lack of quantum computers.
But with recent development in the building of quantum computers, the
cryptographic world is looking for quantum-resistant replacements for today’s
standard public-key cryptosystems.

Public-key cryptosystems based on lattices are possible replacements.
This thesis presents several possible candidates for new standard public-key
cryptosystems, mainly NTRU and ring-LWE-based systems. The lattice-
based cryptosystems are shown to be very fast and have strong, provable
security against quantum computers, but are a lot more complicated than
RSA and Diffie-Hellman.
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Chapter 1

Introduction

Keeping information hidden and secret has been a part of human history for a
long time. A lot of different techniques have been devised and used, from sim-
ple substitution ciphers through the Enigma machine to today’s standarised
digital algorithms. And along with the development of cryptographic sys-
tems, comes the development of attacks against these systems. This is one of
the main driving forces for the development of new cryptographic systems,
and the main reason NSA, in 2015, announced that their Suite B will be
transitioning to new cryptographic algorithms in the near future [2]. The
reason for this announcement is that there exists quantum algorithms (algo-
rithms running on a quantum computer) that can break some of the most
used cryptographic systems. These algorithms have been known since the
1990’s, but have not been a true threat because of the lack of quantum com-
puters. Not until now, it seems. The NSA states that it is likely a quantum
computer capable of breaking public key cryptography will be constructed
within a few decades [26].

Even though the announcement from the NSA came in 2015, work on
alternative, quantum safe cryptographic systems have been ongoing since
the quantum algorithms were discovered. Today, there are several schemes
that are possible replacements of the current standard schemes. These new
schemes can be divided into different categories such as hash-based, lattice-
based, and code-based schemes. This thesis will focus on lattice-based cryp-
tographic schemes.
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1.1 Methodology and structure
The intention with this theses is to describe lattice-based cryptographic sys-
tems and do a comparative description and analysis of some of the proposed
systems. The comparisons will be based on aspects of the cryptographic
schemes such as key sizes and run times. The proposed schemes will also be
compared to the standard systems used today, such as Diffie-Hellman and
RSA. Also, by describing and comparing lattice-based cryptosystems, the
thesis aims to make lattice-based cryptography a bit more accessible, as a lot
of the information on it is "hidden" in technical papers with quite advanced
mathematics.

The thesis will first, in chapter 2, describe some of the standard cryp-
tographic systems used today, and describe how quantum computers are a
threat to these systems. Chapter 3 will then present mathematical back-
ground of lattices and computational problems in lattice theory. Chapter
4 describes the NTRU cryptosystem by first presenting the protocol of the
system, then describes the security of the system, and lastly describes the
performance. Chapter 5 describes Chris Peikert’s cryptosystem based on the
ring-LWE problem. Chapter 6 describes two implementations of the cryp-
tosystem presented by Peikert. First Post-Quantum Key Exchange for TLS,
then NewHope. Chapter 7 describes two other implementations of ring-LWE
cryptosystems, namely Singh’s Practical Key Exchange for the Internet and
Even More Practical Key Exchange for the Internet. Chapter 8 compares
the presented cryptosystems, and also some standard systems used today.
Chapter 9 is a small summary of the thesis, and also presents possible fur-
ther work.

8



Chapter 2

Cryptographic Background

To be able to hide information from other people have been a part of human
history for a long time. Using codes and ciphers began thousands of years ago.
As most other technologies, cryptography have changed quite a lot the last
hundred years. This chapter will describe some of the standard cryptographic
systems we use today and why quantum computers are a threat to them.

2.1 Asymmetric key algorithms
Up until the 1970’s, encryption and decryption had required that all parties
needed to know a secret key. This secret key was used for both encryption
and decryption. But in 1976, Whitfield Diffie and Martin Hellman released
a paper [7] that would change the world of cryptography forever. The paper
described what is known as public-key cryptography. The idea is that two
parties can encrypt and decrypt data without sharing a secret key. The pa-
per also described a cryptographic system allowing two parties to agree on
a secret key without sharing the actual key with each other. This crypto-
graphic system became know as Diffie-Hellman key exchange, and started the
research and development of a new type of cryptography, the asymmetric key
algorithms. These algorithms can be grouped in three different categories:

1. asymmetric cryptosystems,

2. digital signatures, and

3. key agreement systems.
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One property that asymmetric key algorithms have in common is that
they base their security on mathematical properties that are computation-
ally hard to reverse, also called "hard problems". Integer factorization and
discrete logarithm are examples on such problems. We will take a closer look
on these problems when describing the three categories of asymmetric key
algorithms.

2.1.1 Asymmetric cryptosystems

Encrypting and decrypting are two essential operations in cryptography. As
mentioned earlier, this used to require a secret shared between the parties.
After the public discovery of the Diffie-Hellman key exchange, the hunt for an
asymmetric cryptosystem for encrypting and decrypting data started. And
in 1977, Ron Rivest, Adi Shamir, and Leonard Adleman released a paper
decribing such a system [24]. The cryptosystem is known as RSA, after the
initials of their surnames.

So how is an asymmetric cryptosystem constructed? Instead of a shared
secret key used for both encryption and decryption, you have a key-pair:
one key for encryption and one key for decryption. The encryption key E
is usually in the public domain (public key), while the decryption key D
is kept private (private key). Asymmetric cryptosystems are therefore also
called Public-key cryptosystems. The keys are created such that any data
encrypted with E can only be decrypted with the corresponding D.

Using the keys is very simple. If Alice wants to send an encrypted message
M to Bob, she gets Bob’s public key EB, encrypts the message, and sends
the ciphertext C. Bob then use his private key DB to decrypt C, and gets
M as a result. Because of how the keys are constructed, Bob is the only
one who can decrypt C, given he has kept his decryption key private. So an
asymmetric cryptosystems consists of the following operations:

• Key generation

• Encryption

• Decryption

As mentioned earlier, asymmetric cryptosystems are based on "hard prob-
lems". In RSA, the security is based on two such problems: the problem of
factoring large numbers and the RSA problem. The problem of factoring
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large number is simply that there are no known efficient algorithms for fac-
toring large numbers, so it is not possible to factorize large numbers in a
reasonable time. The RSA problem refers to how the RSA system is con-
structed and is defined as follows: recovering a value m such that c ≡ me

(mod n), where (n, e) is an RSA public key and c is an RSA ciphertext. It
is believed that factoring n is the best approach to solve the RSA problem,
so as long as integer factorization remains a hard problem, the RSA problem
will also be a hard problem.

2.1.2 Digital signatures

While encryption of data typically ensures that the data cannot be accessed
by unauthorized entities, it does not necessarily provide other security as-
pects such as integrity and non-repudiation. This is especially true with
asymmetric cryptosystems. Since encryption is done with a public key, you
don’t get any information about the sender, unless they provide it. And this
is where digital signatures come into the picture. Asymmetric cryptography
can be used to create a digital signature scheme. You need three different
algorithms:

• A key generation algorithm, creating a private and public key pair.

• A signing algorithm.

• A verification algorithm.

A digital signature scheme is very similar to a asymmetric cryptosystem.
Rivest, Shamir, and Adleman describes in [24] how their cryptosystem also
can be used for digital signatures. If Bob wants to send a signed message
M to Alice, he uses his private (decryption) key DB on M and computes
his signature S. He then uses Alice’s public (encryption) key EA on S and
sends the resulting ciphertext C to Alice. Alice can then use her private key
DA on C to retrieve S, and then use Bob’s public key EB on S to get the
message M . By using the keys like this, ensures that Alice can be sure that
it was Bob that sent the message.

The security of digital signature schemes are based on the same problems
as asymmetric cryptosystems.
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2.1.3 Key agreement systems

In some cases, it is preferable to use symmetric cryptosystems for encrypting
data. Symmetric cryptosystems are usually faster than asymmetric cryp-
tosystems, so they are better if you are encrypting a lot of data. However,
they are using the same key for both encryption and decryption, both parties
of the transmission must know the secret key. You can’t just send the key
to each other, so you need a system to agreeing on a key. One method is for
one person to generate a key and then use an asymmetric cryptosystem to
encrypt it and send to the recipient. This is not really a key agreement sys-
tem, as key agreement systems require that all parties influence the creation
of the key, but rather what is called key transport. Here, only one person has
any influence on the key creation, so this is actually called a key transport.

The Diffie-Hellman key exchange is a key agreement system. It is con-
structed similarily to asymmetric cryptosystems, and works as follows:

1. Alice and Bob agrees on a modulus p and base g.

2. Alice chooses a secret integer a, and sends Bob A = ga (mod p).

3. Bob chooses a secret integer b, and sends Alice B = gb (mod p).

4. Alice computes s = Ba (mod p).

5. Bob computes s = Ab (mod p).

6. Alice and Bob now shares the secret s.

This works because Ab mod p = gab mod p = gba mod p = Ba mod p.
Alice and Bob have now created a shared secret key, and all parties in-

fluenced the creation. This key agreement system base its security on the
discrete logarithm problem, which state that it is computationally hard to
compute the integer k exponent solving the equation bk = g, where b and g
are elements of a finite group.

2.1.4 Cryptographic definitions

In chapter 5, some definitions of cryptosystems from Chris Peikert’s paper
on ring-LWE [22] will be used. The definitions are presented here.
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Public-key cryptosystem

A public-key cryptosystem (PKC) consists of a ciphertext space C and a
message space M and is given by four efficient algorithms:

• Setup() outputs a public parameter pp.

• Gen(pp) outputs a public encryption key pk and a secret decryption
key sk.

• Enc(pp, pk, µ) takes a public key pk and a message µ ∈M , and outputs
a ciphertext c ∈ C.

• Dec(sk, c) takes a decryption key sk and a ciphertext c, and outputs
some µ ∈ M ∪ {⊥}, where ⊥ is some distinguished symbol denoting
decryption failure.

Key encapsulation mechanism

A key encapsulation mechanism (KEM) is a one-message protocol for trans-
mitting a secret key to a receiver, using the receiver’s public key. A KEM
consists of ciphertext space C and key space K and is given by four efficient
algorithms:

• Setup() outputs a public parameter pp.

• Gen(pp) takes the public parameter and outputs a public encapsulation
key pk and a secret decapsulation key sk.

• Encaps(pp, pk) takes the public parameter and an encapsulation key
pk, and outputs a ciphertext c ∈ C and a key k ∈ K.

• Decaps(sk, c) takes a decapsulation key sk and a ciphertext c, and
outputs some k ∈ K ∪ {⊥}, where ⊥ is some distinguished symbol
denoting decapsulation failure.

A KEM is passively secure if the key k outputted from Encaps(pp, pk) is
computationally indistinguishable from a random key k∗ ∈ K. This is more
formally described as satisfying IND-CPA security, where the outputs of the
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following games are indistinguishable:

pp← Setup()
(pk, sk)← Gen(pp)

(c, k)← Encaps(pp, pk)

Output (pp, pk, c, k)

and

pp← Setup()
(pk, sk)← Gen(pp)

(c, k)← Encaps(pp, pk)

k∗ ← K

Output (pp, pk, c, k∗)

The first game is called the "real" game and the second is called the "ideal"
game. This form of security is also called indistinguishability under chosen-
plaintext attack, and requires that the attacker is not able to decrypt any
encrypted messages.

If the attacker is able to decrypt chosen messages, it is called indistin-
guishability under chosen ciphertext attack (IND-CCA). If the two games
still are indistinguishable, the KEM is actively secure.

2.2 Quantum computers
Quantum computers are computers using quantum mechanics to operate.
This allows a quantum computer to behave different than a classical com-
puter, and solve problems that were thought to be computationally unsolv-
able. Problems that Diffie-Hellman and RSA base their security on.

2.2.1 Qubits

Ordinary computers are using bits to perform computations. These bits are
either 0 or 1, nothing more nothing less. At any given point in time, the
state of a computer can be described by a single string of these bits [11]. A
quantum computer, on the other hand, incorporates quantum mechanics in
how computations are performed. Instead of operating on bits, a quantum
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computer uses qubits (quantum bits). Qubits can still be 0 or 1, but can
also hold these two values at the same time. This phenomenom is known as
a superposition of two states. It is not possible to observe the superposition,
as once you try to measure the state of a qubit it falls into either 0 or 1,
decided by some probability [20].

Since the qubits are following the laws of quantum mechanics, it makes
it possible to have quantum computers behave very different than ordinary
computers. For instance, preparing a string of qubits of the same length in
the same way, does not always result in the same bit string [16].

2.2.2 Shor’s algorithm

A lot of cryptographic systems base their security on computationally hard
problems, meaning that the current best algorithms for solving the problems
are not efficient enough to create practical attacks. One of these problems is
integer factorisation (given an integer N = p× q for some prime numbers p
and q, determine p and q). The current fastest algorithm for factoring large
numbers on a classical computer is the general number field sieve, and runs
in

O(exp(
64

9
n1/3(log n)2/3))

operations, where n is the number of bits used to represent the number [12].
But a much faster quantum algorithm was presented already in 1994 by Peter
Shor [27]. Shor’s algorithm runs in

O((log n)2 · log log n)

on a quantum computer [12], and utilizes quantum parallelism. Since qubits
can be in a superposition, quantum memory holds in theory every value until
it is measured. So instead of doing an operation on each number, you can
do the operation once. This is where the speedup lies. The algorithm does
not always find the correct factor, as it relies on some probability, but the
speedup compared to classical algorithms is still very high even if you have
to run the algorithm several times.

2.2.3 Grover’s algorithm

A very common problem in computer science is to search for an element in an
unsorted set that satisfy one or more conditions. This is called the unstruc-
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tured search problem. To solve this problem with certainty, any algorithm
must do N = 2n evaluations in worst case, where n is the number of binary
variables in the set [19]. But in 1996 [10], a quantum algorithm was presented
by Lov K. Grover which solves this problem using O(

√
N) in the worst case.

Similar to Shor’s algorithm, Grover’s algorithm utilizes the superposition of
the qubits to achieve the speedup.

One really interesting aspect of Grover’s algorithm is that it can be ap-
plied to any problem in the complexity class NP [19]. By applying Grover’s
algorithm to an efficient classical checking algorithm for certificates, and
searching over all possible certificates, we get a speedup from O(2mpoly(m))
to O(2m/2poly(m)). This is nearly a quadratic speedup, and implies that a
problem instance of approximately twice the size can be solved in the same
time on a quantum computer with the same clock speed compared to a nor-
mal computer.
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Chapter 3

Lattices

To get an understanding of lattice-based cryptography, we need to know the
underlying mathematics. The term lattice is used in both group theory and
order theory. In lattice-based cryptography, we are using lattices as defined
in group theory. In this chapter, we will describe the basic theory of lattices,
how they are defined, and what problems in lattice theory that are usable
in cryptographic systems. Most of the material in this chapter is taken from
the notes of Chi et al. [6], Peikert’s paper on lattice cryptography [21], and
Micciancio and Regev’s chapter about lattice-based cryptography [18].

3.1 Basic Definitions
Lattice

A very short definition of a lattice is that a lattice L of Rn is a discrete
subgroup of Rn. One can also say that a lattice is a set of points in n-
dimensional space with a periodic structure. We will only consider integer
lattices, i.e, L ⊂ Zn.

An n-dimensional lattice L must satisfy two additional properties:

1. L is an additive subgroup, which means that for every x, y ∈ L, we
have 0 ∈ L and −x, x+ y ∈ L.

2. L is discrete, which means that every x ∈ L has a neighbourhood in
Rn in which x is the only lattice point.

An example is, for instance, the integer lattice Zn.
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Bases

Lattices are generated from some basic vectors, which are linearly indepen-
dent and often denoted as B = (b1, b2, . . . , bn), where n is the dimension of
the lattice.

Definition 3.1.1. A basis of L is an ordered set B = (b1, b2, . . . , bn) such
that

L = L(B) = B · Zn =

{
n∑
i=1

cibi : ci ∈ Z

}
. (3.1)

Bases can be "good" or "bad", affecting how the resulting lattice ends up.
A basis is good if the vectors are pairwise reasonably orthogonal, meaning
they should pairwise make an angle of 90◦ or close to it [28].

Figure 3.1: Example of a good and a bad basis [28].
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Definition 3.1.2. The fundamental parallelepiped of basis B is

P (B) = B ·

[
− 1

2
,
1

2

)n

=

{
n∑
i=1

αibi : −1

2
≤ αi <

1

2

}
.

(3.2)

As mentioned, a good basis gives a square-like parallelepiped with angles
close to 90◦, while a bad basis gives a very thin parallelepiped. See figure 3.1
for an example. This gives us the following lemma.

Lemma 3.1.1.
Rn =

⋃
v∈L

(v + P (B)), (3.3)

that is, parallel translation by lattice vectors of parallelepiped covers Rn with-
out overlap.

Proof. For any p ∈ Rn,

p =
∑
i

xibi

=
∑
i

dxicbi +
∑

(xi − dxic)bi,
(3.4)

where dac means rounding off. Therefore,

−1

2
≤ a− dac < 1

2
. (3.5)

Hence,
∑

idxicb1 ∈ L and
∑

i(xi − dxic)bi ∈ P (R). This shows that Rn =⋃
v∈L(v + P (B)).
If (v1 + P (B)) ∩ (v2 + P (B)) 6= ∅ for some v1 6= v2 ∈ L, then v1 + α =

v2 + β for some α, β ∈ P (B), so v1 − v2 = β − α. Since v1 − v2 is a Z-
linear combination of bi while β − α is a (−1, 1)-linear combination of bi, so
v1 − v2 = 0 = β − α.

Coset and Determinant

It is possible to think of a coset element of Zn/L as a subset v + L, i.e., a
shift of the lattice L, where v ∈ Zn represents a coset of Zn/L.
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Lemma 3.1.2. Each coset of L has a unique representative in a paral-
lelepiped P (B), because

⋃
v∈L(v + P (B)) covers Rn without overlap.

Proof. Let v ∈ Zn be a representative of a coset v+L. Since
⋃
v∈L(v+P (B))

covers Rn without any overlap, there exists a unique w ∈ L such that v ∈
(W + P (B)). Then v − w ∈ P (B), and v represents the same coset, i.e.,

v + L = (v −W ) + L, (3.6)

so v − w is a representative of the coset v + L in P (B). Moreover, such a
representative is unique, since if v1, v2 ∈ P (B) and

v1 + L = v2 + L, (3.7)

where

v1 =
∑

c1jbj, −1

2
≤ c1j <

1

2
,

v2 =
∑

c2jbj, −1

2
≤ c2j <

1

2

(3.8)

then
v1 − v2 =

∑
(c1j − c2j)bj ∈ L, (3.9)

i.e., c1j − c2j ∈ Z for all j. Note that if −1
2
≤ a ≤ 1

2
and −1

2
≤ b ≤ 1

2
, then

−1 � a− b � 1. Hence, c1j − c2j = 0 for j = 1, 2, . . . , n.
Definition 3.1.3. The determinant of a lattice L is defined as

det(L) := |Zn/L| = |det(B)| = vol(P (B)) (3.10)

for any basis B of L.
Lemma 3.1.3. |Zn/L| = vol(P (B)).
Proof. Note the following:
• L+ P (B) covers Rn without overlap.

• Zn +� covers Rn wihtout overlap, where � means the half closed unit
cube

[
−1

2
, 1

2

)n.
Thus,

L+ P (B) = Rn

= Zn +�

=
⋃

c∈Zn/L

(c+ L+�).
(3.11)

It follows that |Zn/L||� | = |P (B|, so |Zn/L| = vol(P (B)).
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Successive Minima

Definition 3.1.4. Successive minima if linearly independent vectors are de-
fined by the following two properties:

• λ1(L) := min0 6=v∈L‖v‖ = minx 6=y∈L‖x− y‖

• λi(L) := min{r : L contains i linearly independent vectors of length ≤
r}.

We then have that λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L). Let v1, v2, . . . , vn be
corresponding lattice elements. {v1, v2, . . . , vn} does not need to be a basis
of L. ‖v‖ is the Euclidian norm of v.

Q-ary lattices

A special kind of lattices are usually used in lattice-based cryptographic
systems, namely q-ary lattices. Q-ary lattices have the additional property
that a lattice L satisfy qZn ⊆ L ⊆ Zn for some (possibly prime) integer q
[18]. This means that, for a vector x ∈ Zn, x is in L if and only if x mod q
also is in L.

Gram-Schmidt Orthogonalization and Lower Bounding λ1

The Gram-Schmidt orthogonalization B̃ of a basis B of L is given by

B = QR

= Q

‖b̃1‖ ∗
. . .

0 ‖b̃n‖


= B̃

1 ∗
. . .

0 1

 ,

(3.12)

where

B̃ = Q

‖b̃1‖ 0
. . .

0 ‖b̃n‖

 , (3.13)

and Q is an orthonormal basis reduced from B̃, and R is a representation of
B with respect to this basis.
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Lemma 3.1.4. P (B̃ = B̃[̇ − 1
2
, 1

2
)n is a fundamental domain of L. That is,

L+ P (B̃) covers Rn without overlap.

Proof. Since vol(P (B̃)) = vol(P (B)), it sufficies to show that there is no
overlap. Assume there is an overlap, i.e.,

Bx+ B̃α = By + B̃β (3.14)

for some x, y ∈ Zn and ~α, ~β ∈ [−1
2
, 1

2
)n. Then B(x− y) = B̃(~β − ~α). Letting

z = x− y,

B̃

1 ∗
. . .

0 1

 z = B̃(~β − ~α), (3.15)

so 1 ∗
. . .

0 1

 z = (~β − ~α). (3.16)

Note that z is an integer vector and

−1 � βi − αi � 1. (3.17)

From the equality 3.16

zn = βn − αn ∴ zn = 0→ αn = βn

zn−1 + ∗zn = βn−1 − αn−1

zn−1 = βn−1 − αn−1 ∴ zn−1 = 0→ αn−1 = βn−1

. . .

∴ z1 = 0

i.e., x = y.

(3.18)

Minkowski’s Theorem and Upper Bounding λ1

Theorem 3.1.1. Minkowski’s Theorem 1: Any convex centrally symmetric
body S of volume greater than 2n det(L) contains a nonzero lattice point.
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Proof. Let S ′ = 1
2
S, so vol(S ′) > det(L). Then there exist x 6= y ∈ S ′ such

that x− y ∈ L, since for some v1 6= v2 ∈ L,

(v1 + S ′)
⋂

(v2 + S ′) 6= φ

z = v1 + x = v2 + y, x, y ∈ S ′

x− y = v2 − v1 6= 0 ∈ L.
(3.19)

Now 2x,−2y ∈ S by the definition of S ′, so

x− y =
1

2
(2x) +

1

2
(−2y) ∈ S (3.20)

by the convexity of S.

Corollary 3.1.1.
λ1(L) ≤

√
n(det(L))

1
n . (3.21)

Proof. The corollary is proven by using the following two facts:

• A ball of radius >
√
n(det(L))

1
n is convex and centrally symmetric.

• B(0,
√
n(det(L))

1
n ) ⊃ a cube of side length 2(det(L))

1
n , since

dist((1, . . . , 1), (0, . . . , 0)) =
√
n.

It follows that
vol(B(0,

√
n(det(L))

1
n )) > 2ndet(L).

Remark 3.1.1. A more refined inequality could be obtained if the exact for-
mula for vol(B(0, R)) is used. Choose R such that vol(B(0, R)) = 2ndet(L).
Then λ1(L) ≤ R [6].

Theorem 3.1.2. Minkowski’s Theorem 2: (
∏n

i=1 λi(L))
1
n ≤
√
n(det(L))

1
n .

Proof. We may assume ‖bi‖ = λi(L) for i = 1, . . . , n, and consider a lattice
generated by b1, . . . , bn, possibly a sublattice of L.

T :=

{
y ∈ Rn :

n∑
i=1

(
〈y, b̃i〉
‖b̃i‖λi

)2

< 1

}
. (3.22)
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Claim: the ellipsoid T does not contain any nonzero lattice point. Let 0 6=
y ∈ L, and 1 ≤ k ≤ n maximal such that

λk+1(L) = ‖y‖ ≥ λk(L). (3.23)

The claim is y ∈ span{b1, . . . , bk} = span{b̃1, . . . , b̃k}. If not, b1, . . . , bk, y are
k+1 linearly independent and their norms are less than λk+1, a contradiction.
Hence,

n∑
i=1

(
〈y, b̃i〉
‖b̃i‖λi

)2

=
k∑
i=1

(
〈y, b̃i〉
‖b̃i‖λi

)2

≥
k∑
i=1

1

λ2
k

(
〈y, b̃i〉
‖b̃i‖

)2

=
‖y‖2

λ2
k

≥ 1,

(3.24)

so y /∈ T , i.e., T does not contain any nonzero lattice vector. Hence,

2ndet(L) ≥ vol(T ) =

(
n∏
i=1

λi

)
vol(B(0 : 1)) ≥

(
n∏
i=1

λi

)(
2√
n

)n
, (3.25)

so (
n∏
i=1

λi

) 1
n

≤
√
n(det(L))

1
n . (3.26)

3.2 Computational problems
In the previous chapter, it was described how asymmetric cryptographic sys-
tems base their security on computational hard problems. To be able to
construct such cryptosystems based on lattices, there have to exist similar-
ily hard problems in lattice theory. In fact, there are several potential hard
problems, but the most well known are:

• Shortest Vector Problem (SVP).

• Closest Vector Problem (CVP).
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• Shortest Independent Vectors Problem (SIVP).

The base versions of these problems are usually not used in lattice-based
cryptography, but rather the approximation versions of them are used [18].
These approximation versions are denoted by adding the subscript γ, so that
instead of SVP, you have SVPγ. We will describe some of these problems in
more detail in the following sections.

3.2.1 Shortest Vector Problem

The shortest vector problem is one of the most well studied problems in
lattice theory, and is defined as follows: Given an arbitrary basis B of some
lattice L = L(B), find the shortest non-zero lattice vector, i.e. v ∈ L for
which ‖v‖ = λ1(L). λ1(L) denotes the minimum distance of the lattice L,
which is the length of the shortest non-zero lattice vector [21]. As mentioned,
this problem is usually used in the approximation version, and is then defined
as follows: Given a basis B of an n-dimensional lattice L = L(B), find a non-
zero vector v ∈ L for which ‖v‖ ≤ γ(n) × λ1(L). The approximation factor
γ is larger or equal to 1 and is usually taken to be a function of the lattice
dimension n, i.e γ = γ(n). By setting γ = 1, SVPγ is equal to SV P .

3.2.2 Closest Vector Problem

The closest vector problem is a bit similar to SVP. It is defined as follows:
Given a lattice basis B and a target vector t (not necessarily in the lattice),
find the lattice point v ∈ L(B) closest to t [18]. So instead of finding the
shortest vector in the whole lattice, one must find the shortest vector from
a given point in the lattice. The approximation problem CVPγ require you
to find a vector whose norm is at most γ times the shortest vector, similar
to SVPγ. CVP is actually a generalisation of SVP. It is possible to reduce
SVPγ to CVPγ [9].

3.2.3 Shortest Independent Vectors Problem

The shortest independent vectors problem is another computational problem
in lattice theory. The problem is defined as follows: Given a lattice basis
B ∈ Zn×n, find n linearly independent lattice vectors S = [s1, . . . , sn] (where
si ∈ L(B) for all i) minimizing the quantity ‖S‖ = maxi‖si‖ [18].
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3.2.4 Complexity

The reason these problems in lattice theory are used in cryptographic sys-
tems, is that they are computationally hard to solve. One of the best
polynomial-time algorithms for solving these problems is the LLL-algorithm,
presented by Lenstra, Lenstra, and Lovász in 1982. The LLL-algorithm only
yields slightly subexponential approximation factors γ = 2Θ(n log logn/ logn).
Algorithms that give polynomial or better approximation factors, all require
super-exponential 2Θ(n logn) time, or exponential 2Θ(n) and space [21]. These
algorithms are therefore not possible to use to solve the problems, as they
require either too much time or space. Many lattice problems are actually
known to be NP-hard. But such hardness does not really effect cryptography,
since lattice-based cryptosystems so far rely on polynomial approximation
problems factors γ(n) ≥ n [21].
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Chapter 4

NTRU

One of the most well known lattice-based cryptographic systems, is NTRU. It
was proposed by Hoffstein, Pipher, and Silverman in 1996, and is a ring-based
public key cryptosystem [15]. The cryptosystem consists of two algorithms:
NTRUEncrypt and NTRUSign. As the names implies, they are used for
encryption and digital signatures, respectively. NTRU does not have a key
exchange protocol. The cryptosystem was patented by the developers in
1996, but in 2013 they released the intellectual property and a sample im-
plementation under the Gnu Public License, hoping for a more widespread
adoption of the system. An updated paper was released in 1999 for submis-
sion of the NTRU public key cryptosystem for consideration for inclusion
into the P1363A standard [14].

The NTRU system uses a mixing system. The encryption procedure is
based on polynomial algebra and reduction modulo two numbers p and q. The
decryption procedure uses an unmixing system which depends on elementary
probability theory. The security of the system is based on the interaction of
the polynomial mixing system with the independence of reduction modulo p
and q, as well as that it is very difficult to find extremely short vectors in
most lattices [15].

In this chapter, we will go into the details of the NTRU cryptosystem.
First, we will describe the protocol and the theory of the system. Then we
will describe the performance of the system, such as key sizes and running
times. Lastly, we will describe the security of the cryptosystem.
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4.1 Protocol
The information presented in this section is from both the original [15] and
updated [14] papers by Hoffstein et al., as well as from an NTRU Public Key
Cryptosystem tutorial released by Security Innovation, Inc [25].

4.1.1 Notations

The NTRU cryptosystem have three integer parameters (N, p, q) and four sets
Lf , Lg, Lr, Lm of polynomials of degree N−1 with integer coefficients. These
four sets will be defined in section 4.1.5. Integers p and q does not need to be
prime, but it is assumed that gcd(p, q) = 1, and that q always is considerably
larger than p. Operations are done in the ring R = Z[x]/(xN − 1). An
element f ∈ R is written as a polyniomial or a vector,

f =
N−1∑
i=0

fix
i = [f0, f1, . . . , fN−1], (4.1)

where fi ∈ Z. The symbol ~ is used to denote multiplication in R. This star
multiplication is given explicitly as a cyclic convolution product,

f ~ g = h with hk =
k∑
i=0

figk−i +
N−1∑
i=k+1

figN+k−i =
∑

i+j≡k (mod N)

figj. (4.2)

When doing a multiplication modulo q, reduce the coefficients moduluo q.

4.1.2 Key Creation

To use the NTRU cryptosystem, you need to create keys. So if Alice wants
to create her key-pair, she has to randomly choose 2 polynomials f ∈ Lf and
g ∈ Lg. The polynomial f must satisfy the additional requirement that it
have inverses modulo q and modulo p. The inverses are denoted by f−1

q and
f−1
p :

f−1
q ~ f ≡ 1 (mod q) (4.3)

and
f−1
p ~ f ≡ 1 (mod p). (4.4)

28



Next, Alice computes the polynomial

h = pf−1
q ~ g (mod q). (4.5)

The polynomial h is Alice’s public key. The private key is the polynomial f ,
but f−1

p should also be stored because it is used in decryption as well.

4.1.3 Encryption

Now that Alice got some keys, Bob wants to send her an encrypted message.
He puts his message in the form of a polynomial m. The coefficients are
chosen modulo p, for instance between −p/2 and p/2. It is common to have
p = 3, so in this case the coefficients would be chosen from the set {−1, 0, 1}.
Then he randomly chooses a polynomial r ∈ Lr and uses Alice’s public key
h to compute

e = r ~ h+m (mod q). (4.6)

The polynomial e is the encrypted message Bob sends to Alice.

4.1.4 Decryption

Alice receives the encrypted message e from Bob. She wants to decrypt it
using her private key f . This is done efficiently if she stored the polynomial
f−1
p from the key generation. If not, she have to compute it again. To decrypt
e, Alice computes

a = f ~ e (mod q), (4.7)

where the coefficients of a is chosen in the interval from −q/2 to q/2. Alice
then computes the polynomial

b = a (mod p). (4.8)

This is just reducing each of the coefficients of a modulo p. To finally recover
the message, Alice uses the inverse polynomial f−1

p to compute

c = f−1
p ~ b (mod p). (4.9)

The resulting polynomial c will be the original message m.
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The decryption works because, although Alice doesn’t know r and m, she
actually performs the following computation:

a = f ~ e (mod q)

= f ~ (r ~ h+m) (mod q)

= f ~ (r ~ pf−1
q ~ g +m) (mod q)

= pr ~ g + f ~m (mod q)

(4.10)

Since the polynomials r, g, f,m all have quite small coefficients, the coeffi-
cients of the products r ~ g and f ~m are also quite small. We also have
that the coefficients of the polynomial pr ~ g + f ~ m already lie between
−q/2 and q/2 because the prime p is small compared to q. This means that
reducing the coefficients modulo q has no effect. So when Alice computes a
by first multiplying f~e and then reducing the coefficients modulo q, a ends
up being exactly equal to pr~ g + f ~m. Reducing a modulo p is therefore
equal to reducing pr ~ g + f ~m, and we get that

b = f ~m (mod p). (4.11)

To recoverm, Alice now multiplies b with f−1
p (because f−1

p ~f = 1 (mod p)):

c = f−1
p ~ b = f−1

p ~ f ~m = m (mod p). (4.12)

Alice has now recovered the message m.
As mentioned earlier, the decryption relies on some probability. If the

parameters are chosen correctly, there is an extremely high probability that
the decryption procedure will recover the original message. It might be smart
to include a few check bits in each message block to detect decryption errors,
as they can happen. If an error happens when decrypting, it is often that the
message is improperly centered. This can be fixed by choosing the coefficients
of a = f~e (mod q) in a slightly different interval, for example from −q/2+x
to q/2 + x for some small (positive or negative) value of x. If no value of
x works, there is a gap failure. This makes it much harder to decrypt the
message, but if the parameters is chosen correctly, this occurs so rarely that
it can be ignored in practice [14].

4.1.5 Parameters

For the encryption and decryption to work properly, the parameters of the
NTRU cryptosystem must be chosen correctly. This section presents how
the parameter sets are constructed.
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Notation and norm estimate

The width of an element f ∈ R is defined to be

|f |∞ = max
0≤i≤N−1

{fi} − min
0≤i≤N−1

{fi}. (4.13)

This is a sort of an L∞ norm on R. A centered L2 norm on R is defined
similarily:

|f |2 =

(
N−1∑
i=0

(fi − f̄)2

) 1
2

, where f̄ =
1

N

N−1∑
i=0

fi. (4.14)

Proposition 4.1.1. For any ε > 0 there are constants γ1, γ2 > 0, depend-
ing on ε and N , such that for randomly chosen polynomials f, g ∈ R, the
probability is greater than 1− ε that they satisfy

γ1|f |2|g|2 ≤ |f ~ g|∞ ≤ γ2|f |2|g|2. (4.15)

This proposition is useless from a practial viewpoint if the ratios γ2/γ1

are very large for small ε’s. But for moderately large values of N and very
small values of ε, the constants γ1, γ2 is not that extreme. This has been
verified experimentally for a large number of parameter values [14].

Sample spaces

The space of messages Lm consist of all polynomials modulo p. Assuming p
is odd, it is most convenient to construct it as

Lm ={
m ∈ R : m has coefficients lying between − 1

2
(p− 1) and

1

2
(p− 1)

}
.

(4.16)

The other sample spaces are described on the form

L(d1, d2) ={
f ∈ R : f has d1 coefficients equal 1, d2 coefficients equal − 1, the rest 0

}
.

(4.17)
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Choose three positive integers df , dg, dr and set

Lf = L(df , df − 1),

Lg = L(dg, dg), and
Lr = L(dr, dr).

(4.18)

Notice that f ∈ Lf , g ∈ Lg, and r ∈ Lr have L2 norms

|f |2 =
√

2df − 1−N−1,

|g|2 =
√

2dg,

|r|2 =
√

2dr.

(4.19)

Decryption Criterion

For the decryption process to work, it is necessary that

|f ~m+ pr ~ g|∞ < q. (4.20)

This is virtually always true if the parameters are chosen so that

|f ~m|∞ ≤ q/4 and
|pr ~ g|∞ ≤ q/4,

(4.21)

and in view of proposition 4.1.1, this suggests

|f |2|m|2 ≈ q/4γ2 and
|r|2|g|2 ≈ q/4pγ2

(4.22)

for a γ2 corresponding to a small value of ε.

4.1.6 Example

It often helps looking at a small example when trying to understand a cryp-
tosystem, so this section will go through key creation, encryption, and de-
cryption with some parameters that are too small to be used in practice, but
still show how NTRU works. The example is from an NTRU Public Key
Cryptosystem tutorial released by Security Innovation, Inc [25].

The parameters are:
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• N = 11

• q = 32

• p = 3

• Lf = (4, 3)

• Lg = (3, 3)

• Lr = (3, 3)

• Lm consist of all polynomials with coefficents lying between -1 and 1.

Key Generation

Alice needs to choose the polynomials f ∈ Lf and g ∈ Lg. Polynomial f is
of degree 10 with four 1’s and three -1’s. Polynomial g is of degree 10 with
four 1’s and four -1’s. Alice chooses:

f = −1 + x+ x2 − x4 + x6 + x9 − x10

g = −1 + x2 + x3 + x5 − x8 − x10

Computing the inverses yields:

f−1
p = 1 + 2x+ 2x3 + 2x4 + x5 + 2x7 + x8 + 2x9 (mod 3)

f−1
q = 5+9x+6x2+16x3+4x4+15x5+16x6+22x7+20x8+18x9+30x10 (mod 32)

Creating the public key h:

h = pf−1
q ~ g

= 8 + 25x+ 22x2 + 20x3 + 12x4 + 24x5 + 15x6 + 19x7 + 12x8 + 19x9 + 16x10 (mod 32)

Alice now have her private key (f, f−1
p ) and public key h.
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Encryption

Bob wants to send Alice an encrypted message. The message is:

m = −1 + x3 − x4 − x8 + x9 + x10

He must then choose the random polynomial r ∈ Lr. r must be of degree 10
with three 1’s and three -1’s:

r = −1 + x2 + x3 + x4 − x5 − x7

The encrypted message e is then

e = r ~ h+m

= 14 + 11x+ 26x2 + 24x3 + 14x4 + 16x5 + 30x6 + 7x7 + 25x8 + 6x9 + 19x10 (mod 32).

Decryption

Having received the encrypted message e, Alice computes

a = f~e = 3−7x−10x2−11x3+10x4+7x5+6x6+7x7+5x8−3x9−7x10 (mod 32).

The coefficients of a are chosen between -15 and 16, not 0 and 31. Reducing
the coefficients of a modulo 3 yields

b = a = −x− x2 + x3 + x4 + x5 + x7 − x8 − x10 (mod 3).

The last step is to multiply b with f−1
p :

c = f−1
p ~ b = −1 + x3 − x4 − x8 + x9 + x10 (mod 3)

We can see that c = m, so Alice has successfully recovered the original
message.

4.2 Security
As already mentioned, the security of NTRU relies on the problem of finding
short vectors in a lattice. It is therefore susceptible to attacks from algorithms
solving that problem. In this section, a few attacks against NTRU will be
described.
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4.2.1 Security levels

In the original paper where the NTRU cryptosystem was first presented, the
authors presented three sets of parameters which was updated in [14].

Moderate Security

This level of security was intented for situations in which the intrinsic value
of any individual message is small and keys are changed with reasonable
frequency. The parameters are set to the following:

(N, p, q) = (167, 3, 128)

Lf = L(61, 60)

Lg = L(20, 20)

Lr = L(18, 18)

This means that f is chosen with 61 1’s and 60 -1’s (i.e., df = 61), g is chosen
with 20 1’s and 20 -1’s (i.e., dg = 20), and r is chosen with 18 1’s and 18
-1’s (i.e., dr = 18) The security level of these parameters are based on the
meet-in-the-middle attack (which will be described later in this section) and
are as follows:

Key security = 282.9

Message security = 277.5

High Security

(N, p, q) = (263, 3, 128)

Lf = L(50, 49)

Lg = L(24, 24)

Lr = L(16, 16)

Key security = 2110.6

Message security = 282.1
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Highest Security

(N, p, q) = (503, 2, 256)

Lf = L(216, 215)

Lg = L(72, 72)

Lr = L(55, 55)

Key security = 2285

Message security = 2170

Since these parameters was presented in 1999, they are not really up to
date. On the NTRU GitHub website [1], they operate with four levels of
security: 112, 128, 192, and 256 bits.

4.2.2 Brute force attacks

The simplest attack against cryptographic systems is to do a search over all
possible keys or messages. For NTRU, there’s a few different ways to do this.
An attacker can try all possible f ∈ Lf and test if f ~ h (mod q) has small
entries, or try all g ∈ Lg and test if g ~ h−1 (mod q) has small entries. By
doing this, the attacker can recover the private key. If the attacker wants
to recover a message directly, he can try all r ∈ Lr and test if e − r ~ h
(mod q) has small entries. Since Lg will be smaller than Lf , the key security
is determined by the number of elements in Lg. The message security is
determined by the number of elements in Lr [14].

4.2.3 Meet-in-the-middle attacks

There exists meet-in-the-middle attacks against both r and f . An attacker
would split f in half, for instance f = f1 + f2, and then match f1 ~ e
against −f2 ~ e, looking for (f1, f2) so that the corresponding coefficients
have approximately the same value [14]. This attack cuts the search time of
the brute force attack by the square root, meaning that for a security level
of 256 bits, Lf , Lg, Lr must contain around 2512 elements.
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4.2.4 Lattice attacks

Finding the shortest vector, also called lattice reduction, is one way to attack
NTRU. The shortest vector could be searched for in a brute force attack, but
with large enough dimensions on the lattice, this is not possible in practice.
The LLL-algorithm, as mentioned in chapter 3, is a polynomial time algo-
rithm for reducing lattices and finding short vectors, but this algorithm will
also take too long time finding the shortest vector provided that the shortest
vector is not too much smaller than the expected length of the smallest vec-
tor [14]. Hoffstein et al. presented some estimated breaking times in their
paper. For running an improved version of the LLL-algorithm on a 400 MHz
Celeron machine, it was estimated that it would take 1.638 · 1011 seconds to
break NTRU 167, 3.634 · 1019 seconds to break NTRU 263, and 2.663 · 1040

seconds to break NTRU 503 [14]. That is almost 5200 years for the lowest
level of security.

4.3 Performance
The security levels also change the size of the keys and data.

Moderate Security

Private key = 530 bits

Public key = 1169 bits

Plaintext = 187 bits

High Security

Private key = 834 bits

Public key = 1841 bits

Plaintext = 335 bits
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Highest Security

Private key = 1595 bits

Public key = 4024 bits

Plaintext = 628 bits

For the four security levels presented on the NTRU GitHub webpage (112,
128, 192 and 256 bits), the key sizes are 5951, 6743, 9757, and 12881 bits,
respectively. This is a quite large increase from the original values, but is to
be expected with increased computing power and more optimised attacks.

When it comes to how fast NTRU is, it has been reported to be con-
siderable faster than other public key cryptosystems. For NTRU 167 (n =
167) with public key size of 1169 bits, the key creation runs in 4 millisec-
onds, encryption runs in 5941 blocks/second, and decryption runs in 2818
blocks/second. A block is a single message block. The algorithm is running
on a 300 MHz Pentium II operating under Linux. For NTRU 263 with pub-
lic key size 1841 bits, we have key creation in 7.5 milliseconds, encryption
in 3676 blocks/second, and decryption in 1619 blocks/second. For NTRU
503 with public key size 4024, we have key creation in 17.3 milliseconds,
encryption in 1471 blocks/second, and decryption in 608 blocks/second [14].

Same as with the key sizes, these numbers are outdated. More updated
statistics are presented on the GitHub site, for the same security levels as
the key sizes. These statistics use operations per second, so it is not split
up in key creation, encryption, and decryption as the ones in [14]. For a
security level of 112 bits, with key size of 5951 bits, it manages to do 2284
operations/second with the standard implementation. For 128 bits with key
size 6743 bits, it does 1896 operations/second, for 192 bits with key size 9759
bits, it does 1034 operations/second, and for 256 bits with key size 12881 bits,
it does 638 operations/second [1]. It is unclear how one operation compares
to encrypting or decrypting one single message block, so it is hard to compare

NTRU 167 NTRU 263
Public key size (bits) 1169 1841

Key creation (milliseconds) 4 7.5
Encryption (blocks/second) 5941 3676
Decryption (blocks/second) 2818 1619

Table 4.1: Performance of NTRU running on a 300 MHz Pentium II.

38



112 bits 128 bits 192 bits 256 bits
Key size (bits) 5951 6743 9759 12881

Operations/second 2284 1896 1034 638

Table 4.2: Performance of NTRU presented on [1].

Ordinary ternary
polynomials

Product-form ternary
polynomials

Encryption (opera-
tions/second) 25025 221845

Decryption (opera-
tions/second) 24331

Table 4.3: Performance of NTRU running on an Nvidia GTX280 GPU.

the numbers. It is also not mentioned what hardware the algorithm runs on,
but it is safe to assume it is running on hardware much better than the 300
MHz Pentium II.

Because of how NTRU is constructed, it is possible to parallelize the al-
gorithm. Jens Hermans, Frederik Vercauteren, and Bart Preneel released
a paper presenting results from running a parallelized version of NTRU on
a Graphical Processing Unit (GPU) [13]. General Purpose GPUs are well
suited for running parallelized algorithms because they contain a large num-
ber of processor cores. Hermans et al. used an Nvidia GTX280 GPU with
240 cores running at 650 MHz, and ran the algorithm with a security level
of 256 bits. Using ordinary ternary polynomials, they managed to do 25025
operations/second for encryption and 24331 operations/second for decryp-
tion. When using product-form ternary polynomials, which minimize the
need to access memory, the implementation did 221845 operations/second
for encryption [13]. You will only get this performance when doing a large
number of operations. With ordinary ternary polynomials, the algorithm
did 20000 operations, while with product-form ternary polynomials the al-
gorithm did 216 operations. Doing one operation is not much faster than
running a non-parallelized implementation on a CPU.
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4.4 Summary
It is now over 20 years since the first version of NTRU was presented, and
it is one of the more well-known lattice-based cryptosystems. After the re-
lease of the open-source reference implementation, it has seen some use in
open-source applications [31]. One aspect of NTRU that is a bit negative is
that the mathematics of NTRU is more advanced than Diffie-Hellman and
RSA, so it is harder to understand, especially for people with no mathe-
matical background. This can increase the risk for bad implementations of
the cryptosystem. Therefore it is important to use the standarized version
of NTRU. NTRUEncrypt and NTRUSign have been included in the IEEE
Standard 1363.1 from 2008.

NTRU looks like a possible replacement for the standard public key cryp-
tosystems. It has been analyzed and tested in over 20 years. The development
and public adoption of the system have probably been hindered a bit by the
authors patenting it, but with the open-source reference implementation, this
is no longer a problem for open-source applications. NTRU is more advanced
than Diffie-Hellman and RSA, but the encryption and decryption operations
are not too hard to understand. As we will see in the next chapter, there
are lattice-based cryptosystems that are even more advanced mathematically
than NTRU.
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Chapter 5

Ring-LWE

One of the more common problems to base a lattice-based cryptographic sys-
tem on, is the learning with errors over rings (ring-LWE) problem. In 2014,
Chris Peikert released a paper giving efficient and practical lattice-based pro-
tocols for key transport, encryption, and authenticated key exchange [22].
These protocols are based on the ring-LWE problem, and their security is
provable.

The paper presents a new reconciliation mechanism for transforming ap-
proximate agreement to exact agreement. This reconciliation mechanism is
used to create a new passively secure key encapsulation mechanism (KEM),
which is also transformed into an active KEM. An authenticated key ex-
change (AKE) protocol is also described.

In this chapter, we will first describe the necessary cryptographic and
mathematical background and the ring-LWE problem. Then the passively
secure KEM, active KEM, and the AKE will be described. The information
in this chapter is from Peikert’s paper on lattice cryptography for the internet
[22].

5.1 Background and Ring-LWE
The ring-LWE problem has a lot of advanced mathematical background in-
formation. The most important bits will be described in this section, but
a full description of the mathematical background of the ring-LWE problem
can be found in Peikert’s paper on ring-LWE [22].
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Cyclotomic Rings

Similar to NTRU and as the name implies, we are working with polynomial
rings. The rings used in ring-LWE are cyclotomic rings. Cyclotomic rings
are obtained from cyclotomic fields, which are number fields obtained by
adjoining a complex primitive root of unity toQ, the field of rational numbers.
A number field is a finite extension of Q, and a root of unity is any complex
number that gives 1 when raised to some positive integer power m. The mth
cyclotomic field Q(ζm) (where m > 2) is obtained by adjoining a primitive
mth root of unity ζm to the rational numbers. A number ring is the algebraic
integers in a number field. An algebraic integer is a complex number that is
a root of some polynomial whose leading coefficient is 1 (monic polynomial)
with coefficients in Z. So a cyclotomic ring is the ring of algebraic integers
from the corresponding cyclotomic field.

For Peikert’s ring-LWE we then have that, for a positive integer index m,
K = Q(ζm) denotes the mth cyclotomic field and R = Z[ζm] ⊂ K denotes
the mth cyclotomic ring. For any integer modulus q ≥ 1, let Rq denote the
quotient ring R/qR. More details on cyclotomic rings and their properties
in ring-LWE is found in Peikert’s paper [22].

Error Distributions

To hide information in ring-LWE, small random values are added when en-
crypting. These values are secret, which we will see in the protocols explained
in section 5.2 and 5.3. The secret values are the errors which are referred to
in the name learning with errors. You are trying to learn information from
data that have errors, in this case small secret values that have been added
to the original value.

The error values are taken from error distributions, which are Gaussian
like distributions over the number field K. For r > 0, the Gaussian dis-
tribution Dr over R with parameter r has probability distribution function
exp(−πx2/r2)/r. This means that all possible error values are distributed
according to the distribution function. The distribution we are retrieving the
error values from is denoted with χ, and e → χ means choosing the error
value e from the distribution χ.
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Ring-LWE

Here the ring-LWE probability distribution and computational problem is
described. The problem is presented in its discretized, "normal" form, where
all quantities are from R or Rq = R/qR, and the secret is drawn from the
error distribution.

Definition 5.1.1. Ring-LWE Distribution For an s ∈ R and a distribution
χ over R, a sample from the ring-LWE distribution As,χ over Rq × Rq is
generated by choosing a ← Rq uniformly at random, choosing e ← χ, and
outputting (a, b = a · s+ e).

This definition (5.1.1) defines the ring-LWE distribution and tells us how
to choose the variables needed for using ring-LWE. We will see more of this
when the actual protocol is described in later sections.

Definition 5.1.2. Ring-LWE Decision The decision version of the ring-LWE
problem, denoted R-DLWEq,χ, is to distinguish with non-negligible advantage
between independent samples from As,χ where s← χ is chosen once and for
all, and the same number of uniformly random and independent samples from
Rq ×Rq.

This definition (5.1.2) defines the ring-LWE decision problem. This is the
problem that ring-LWE based cryptosystems base theiir security on. The
decision problem is to distinguish between samples (as chosen in definition
5.1.1) where s→ χ is chosen and samples that are random. In other words,
being able to choose between constructed samples and random samples.

Theorem 5.1.1. Let R be the mth cyclotomic ring, having dimension n =
ϕ(m). Let α = α(n) <

√
log n/n, and let q = q(n), q = 1 mod m be

a poly(n)-bounded prime such that αq ≥ ω(
√

log n). There is a poly(n)-
time quantum reduction from Õ(

√
n/α)-approximate SIVP (or SVP) in ideal

lattices in R to solving R-DLWEq,χ given only `− 1 samples, where χ− bψe
and ψ is the Gaussian distribution (m̂/g) ·Dξq for ξ = α · (n`/ log n`)1/4.

This theorem (5.1.1) connects the ring-LWE decision problem to lattices.
It states that there is a polynomial time quantum reduction from the shortest
independent vectors problem (or shortest vector problem, described in chap-
ter 3) to the ring-LWE decision problem. This means that if you are able to
solve the ring-LWE decision problem, you are also able to solve SIVP and
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SVP. Solving SIVP and SVP is believed to be hard, so solving the ring-LWE
decision problem must be at least as hard, making it ideal for a cryptosystem.
The theorem was presented in [17] by Vadim Lyubashevsky, Oded Regev, and
Peikert. They also present a proof for the theorem, but it is too technical to
present it here.

Reconciliation Mechanism

The way ring-LWE is constructed, the shared key between two parties are
only approximately equal. A mechanism is then needed for the two parties
to extract the exact shared key. This mechanism is referred to as the rec-
onciliation mechanism (reconciliation means the action of making one view
or belief compatible with another). Peikert presents a reconciliation mech-
anism used for a bandwidth-efficient method for two parties to agree on a
secret bit. The method directly produces an unbiased key. The reconcilia-
tion mechanism works by creating intervals between 0 and q, and transforms
all the coefficients of the polynomial into 0 or 1. Half of the intervals yields
0, the other half yield 1. So if a coefficient is in an interval yielding 0, the
coefficient is set to 0, and vice versa. Since all operations are done modulo
q, all coefficients are between 0 and q. All coefficients will therefore be set
to either 0 or 1. The reconciliation mechanism is unbiased as long as q is
even, because you can create intervals of the same size. This is not possible
with an odd q, and the mechanism will output a value that is biased and
unsuitable for as key material. Peikert avoids this by temporarly scaling up
to 2q in the case of odd q. A small amount of extra randomness is also added,
which ensures that the reconciliation mechanism produces an unbiased key.
The reconciliation mechanism is denoted by rec and the upscaling used in
the odd case is denoted dbl.

5.2 From passive KEM to active KEM
The main focus of Peikert’s paper is to present an authenticated key exchange
(AKE) protocol based on ring-LWE. This is done by first constructing a
passive key encapsulation mechanism (KEM), which is secure against passive
attacks. The passive KEM is then transformed to an active KEM using the
Fujisaki-Okamoto transformation, which is then used to construct the AKE.
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5.2.1 Passively Secure KEM

This system is constructed explicitly as a KEM, meaning that the encapsu-
lated key is not chosen by either party, but rather the sender and receiver
"approximately agree" on a pseudorandom value in Rq using ring-LWE and
use the reconciliation mechanism to derive the ephemeral key from it.

Construction

The KEM is parameterized by:

• A positive integer m specifying the mth cyclotomic ring R of degree
n = ϕ(m).

• A positive integer modulus q which is coprime with every odd prime
dividingm, so that g ∈ R is coprime with q. For efficiency and provable
security, typically take q to be prime and 1 modulo m.

• A discretized error distribution χ.

The algorithms for the passive KEM are:

• KEM1.Setup(): choose a← Rq and output pp = a.

• KEM1.Gen(pp = a): choose s0, s1 ← χ, let b = a · s1 + s0 ∈ Rq, and
output public key pk = b and secret key sk = s1.

• KEM1.Encaps(pp = a, pk = b): choose independent e0, e1, e2 ← χ. Let
u = e0 · a + e1 ∈ Rq and v = g · e0 · b + e2 ∈ Rq. Let v̄ ← dbl(v)
and output the encapsulation c = (u, v′ = 〈v̄〉2) ∈ Rq × R2 and key
µ = bv̄e2 ∈ R2.

• KEM1.Decaps(sk = s1, c = (u, v′)): compute w = g · u · s1 ∈ Rq and
output µ = rec(w, v′) ∈ R2.

The KEM is passively secure (IND-CPA secure), meaning it is secure
against chosen-plaintext attacks. Peikert presents a proof of this, which can
be seen in [22].
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5.2.2 Actively Secure KEM

When creating a cryptosystem you want it to not only be passively secure,
but also secure against adaptive chosen-ciphertext attacks, also called ac-
tively secure. Peikert uses the Fujisaki-Okamoto transformation to trans-
form the passively secure KEM to an actively secure encryption and KEM
scheme, which can be used as an alternative to, e.g., RSA-based actively se-
cure key encapsulation. The Fujisaki-Okamoto transformation [8] is a method
for transforming cryptosystems with "weak" security to cryptosystems with
much stronger security, i. e. from IND-CPA to IND-CCA.

Construction

The actively secure encryption scheme PKC2 is parameterized by:

• An integer N , the bit length of the messages that PKC2 will encrypt.

• An asymmetric encryption scheme PKC with message space {0, 1}n,
where PKC.Enc uses at most L uniformly random bits (i.e., PKC.Enc(pp, pk, ·; r)
is a deterministic function on {0, 1}n for any fixed pp, pk, and coins
r ∈ {0, 1}L), e.g., the encryption scheme induced by KEM1.

• A cryptographic pseudorandom generator PRG : {0, 1}` → {0, 1}L, for
some seed length `.

• Hash functions G : {0, 1}n → {0, 1}N and H : {0, 1}n+N → {0, 1}`,
modelled as independent random oracles.

PKC2 is defined as follows:

• PKC2.Setup(): let pp← PKC. Setup() and output pp.

• PKC2.Gen(pp): let (pk, sk) ← PKC.Gen(pp) and output public key
pk and secret key sk.

• PKC2.Enc(pp, pk, µ): choose σ ← {0, 1}n, let c = PKC.Enc(pp, pk, σ; PRG(H(σ‖µ)))
and w = G(σ)⊕ µ, and output the ciphertext c‖w.

• PKC2.Dec(sk, (c, w)): compute σ = PKC.Dec(sk, c) and µ = G(σ) ⊕
w, and check whether c ?

= PKC.Enc(pp, pk, σ; PRG(H(σ‖µ))). If so,
output µ, otherwise output ⊥.
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PKC2 is actively secure (IND-CCA secure) if PRG is a secure pseudo-
random generator and G and H are modeled as random oracles. This means
that it is secure against chosen-ciphertext attacks.

5.3 Authenticated Key Exchange
An authenticated key exchange (AKE) protocol is a bit different from a
key exchange protocol. With a key exchange protocol (e.g., Diffie-Hellman)
two parties can agree on a shared secret. But this is only secure against
a passive adversary who only reads the network traffic. An AKE, on the
other hand, authenticates the parties’ identites to each other and provides a
consistent view of the completed protocol to the peers, even in the presence
of an active adversary. Peikert presents an AKE where an abstract IND-
CPA-secure KEM (which can be instantiated by the lattice-based KEM1) is
used for key agreement. The protocol is called Σ′0 and is a slight modification
of the Σ0 protocol presented by Canetti and Krawczyk [5].

5.3.1 Protocol

Σ′0 is parameterized by a digital signature scheme SIG, a key-encapsulation
mechanism KEM with key space K, a pseudorandom function F : K ×
{0, 1} ← K ′, and a message authentication code MAC with key space K ′
and message space {0, 1}∗. A successful execution of the protocol outputs a
secret key in K ′. It is assumed that each party has a long-term signing key
for SIG and that trusted public parameters pp for KEM have been generated
by a trusted party using KEM.Setup, and are available for all parties.

1. Start message (I → R):

(sid, pkI)

The protocol is activated by the initiator IDI with a session identi-
fier sid, which must be distinct from all those of prior sessions ini-
tiated by IDI . The initiator generates a new key pair (pkI , skI) ←
KEM.Gen(pp), stores it as the state of the session (IDI , sid), and sends
the above message to the responder.

2. Response message (R→ I):

(sid, c, IDR, SIG. SignR(1, sid, pkI , c)MAC.Tagk1(1, sid, IDR))
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When a party IDR receives a start message (sid, pkI), if the session
identifier sid was never used before at IDR, the party activates ses-
sion sid as responder. It generates an encapsulation and key (c, k) ←
KEM.Encaps(pp, pkI), derives k0 = Fk(0) and k1 = Fk(1), and erases
the values pkI and k from its memory, saving (k0, k1) as the state of
the session. It generates and sends the above response message, where
SIG.SignR is computed using its long-term signing key, and MAC.Tag
is computed using key k1.

3. Finish message (I → R):

(sid, IDI , SIG. SignI(0, sid, c, pkI),MAC.Tagk1(0, sid, IDI))

When party IDI receives the response message (sid, c, IDR, σR, τR) hav-
ing session identifier sid, it looks up the state (pkI , skI) associated
with session sid and computes k = KEM.Decaps(skI , c) and k0 =
Fk(0), k1 = Fk(1). It then retrieves the signature verification key of
IDR and uses that key to verify the signature σR on the message tuple
(1, sid, pkI , c), and also verifies the MAC tag τR on the message tu-
ple (1, sid, IDR) under key k1. If either verification fails, the session is
aborted, its state is erased, and the session output is (abort, IDI , sid).
If both verifications succeed, then IDI completes the session as follows:
it generates and sends the above finish message where SIG.SignI is
computed using its long-term signing key, and MAC.Tag is computed
using key k1. It then produces public session output (IDI , sid, IDR) and
session secret output k0, and erases the session state.

4. Responder completion:

When party IDR receives the finish message (sid, IDI , σI , τI) having
session identifier sid, it looks up the sate (k0, k1) associated with session
sid. It then retrieves the signature verification key of IDI and uses that
key to verify the signature σI on the message tuple (0, sid, c, pkI), and
also verifies the MAC tag τI on the message tuple (0, sid, IDI) under
key k1. If either verification fails, the session is aborted, its state is
erased, and the session output is (abort, IDR, sid). If both verifications
succeed, then IDR completes the session with public session output
(IDR, sid, IDI) and secret session output k0, and erases the session state.
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5.3.2 Security

Theorem 5.3.1. The Σ′0 protocol is SK-secure in the post-specified peer
model of [5], assuming that SIG and MAC are existentially unforgeable under
chosen-message attack that KEM is IND-CPA secure, and that F is a secure
pseudorandom function.

The term "SK-secure" is used in [5] and will be described briefly here.
The attacker is a polynomial-time machine with full control of the communi-
cation lines between parties. All the attacker’s actions can be decided by the
attacker in a fully adaptive way. The "success" of the attacker is measured
via its ability to distinguish real session keys from random values. Such
an attacker is called an SK-attacker. A key-exchange protocol π is called
SK-secure if for all SK-attackers A running against π it holds:

1. If two uncorrupted parties complete matching sessions in a run of pro-
tocol π under attacker A then, except for a negligible probability, the
session key output in these sessions is the same.

2. A succeeds with probability not more than 1/2 plus a negligible frac-
tion.

Since Σ′0 is a slight modification of the Σ0 presented in [5], the theorem
can be proved by slightly modifying the proof given in [5].

Two properties must be fullfilled:

1. Correctness: equality of the secret outputs when two uncorrupted par-
ties IDI , IDR complete matching sessions with respective public outputs
(IDI , sid, IDR), (IDR, sid, IDI).

2. Secrecy: no efficient attacker (in the post-specified peer model) can
distinguish a real response to a test-session query from a uniformly
random response, with non-negligible advantage.

For property 1 it suffices to show that both parties compute the same
decapsulation key k. By the correctness of KEM and the security of the
signature scheme, this is guaranteed.

Property 2 requires to modify the proof from [5]. Since Σ0 uses Diffie-
Hellman and the DDH assumption, it is enough to change the proof to use
the KEM instead. In the proof, a distinguisher for the DDH problem is
constructed, i.e., it get as input a tuple (g, gx, gy, gz) where either z = xy
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or z is uniformly random modulo the order of the group generated by g.
In the modified proof, this is replaced by a distinguisher for the IND-CPA
security of KEM, i.e., it gets as input a tuple (pp, pk, c, k) where either k is
the decapsulation of ciphertext c, or is uniformly random in the key space
K. With these changes, the proof remains valid.

5.4 Summary
This ring-LWE-based cryptosystem is very new compared to other types of
cryptosystems. Peikert’s paper was released in 2014, almost 20 years after the
first version of the NTRU cryptosystem. Even so, ring-LWE provides strong,
provable security against quantum computers. Peikert does not provide any
implementation of the cryptosystem, but as we will see in the next chapters,
there are several implementations based on Peikert’s work.

It was mentioned in chapter 4 that NTRU is more advanced than Diffie-
Hellman and RSA, making it harder to understand and possibly use. Ring-
LWE, or more specific, Peikert’s description of ring-LWE is even more compli-
cated. This might make it harder for the cryptosystem to gain a widespread
adoption. A move towards an easier description of the system would probably
benefit the system in the long run.
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Chapter 6

Post-quantum key exchange

Peikert did not present any implementation of a cryptosystem based on ring-
LWE, only the theory behind one. But others have implemented such sys-
tems. In this chapter, two of them will be presented. First the Post-quantum
key exchange for the TLS protocol from the ring learning with errors problem
by Bos et al. will be discussed [4]. Then Post-quantum key exchange - a new
hope by Alkim et al. will be discussed [3]. The latter system is based on the
former.

6.1 Post-quantum Key Exchange for TLS
One implementation of a ring-LWE based cryptosystem was presented by
Bos, Costello, Naehrig, and Stebila [4]. The system is aimed at replacing the
traditional number-theoretic key exchange in the Transport Layer Security
(TLS) protocol. It is implemented in the C programming language and
targeting the 128-bit security level. The information presented in this section
is from the paper by Bos et al. [4].

6.1.1 Changes from Peikert

As described in chapter 5, Peikert presents a passively secure KEM which
is transformed to an actively secure KEM based on the Σ0 protocol. The
Post-quantum key exchange is based on Peikert’s passively secure KEM,
but is constructed more like a Diffie-Hellman cryptosystem. One can also
describe it as a reformulation of Peikert’s KEM. Phrasing the system as a
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Diffie-Hellman-like protocol makes it easier to integrate into existing network
protocols like TLS, because these protocols already are Diffie-Hellman-based.
To create a Diffie-Hellman-like protocol, Bos et al. defines the decision R-
LWE problem a bit different than Peikert:

Definition 6.1.1. Let R = Z[X]/(Φm(X)), n = 2l, l > 0, m = 2n, q an
integer modulus, and Rq = R/qR ∼= Zq[X]/(Xn + 1) with Zq = Z/qZ. Let χ
be a distribution over R and let s $←− χ. Define Oχ,s as the oracle which does
the following:

1. Sample a $←− U(Rq), e
$←− χ,

2. Return (a, as+ e) ∈ Rq ×Rq.

The decision R-LWE problem for n, q, χ is to distinguish Oχ,s from an oracle
that returns uniform random samples from Rq × Rq. In particular, if A is
and algorithm, define the advantage

Advdrlwe
n,q,χ(A) = |Pr(s

$←− χ;AOχ,s(·) = 1)− Pr(AU(Rq×Rq)(·) = 1)|.

If χ is a probability distribution over R, where R is the ring of integers
of the m-th cyclotomic number field, then x

$←− χ denotes sampling x ∈ R
according to χ.

The decision Diffie-Hellman-like problem is defined as follows:

Definition 6.1.2. Let q, n, χ be R-LWE parameters. The decision Diffie-
Hellman-like (ddh`) problem for q, n, χ is to distinguish DH-like tuples with
a real shared secret from those with a random value, given reconciliation
information. If A is an algorithm, define

Advddh`
q,n,χ(A) = |Pr(A(a, b, b′, c, k) = 1)− Pr(A(a, b, b′, c, k′) = 1)|,

where a $←− U(Rq), s, s
′, e, e′, e′′

$←− χ, b← as+e, b′ ← as′+e′, v ← bs′+e′′, v̄
$←−

dbl(v), c← 〈v̄〉2q,2, k ← bv̄e2q,2, and k′
$←− U({0, 1}n).

An overview of the unauthenticated Diffie-Hellman-like key exchange is
shown in figure 6.1.1.
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Public parameters
Decision R-LWE parameters q, n, χ
a

$←− U(Rq)
Alice Bob
s, e

$←− χ s′, e′
$←− χ

b← as+ e ∈ Rq
b−→ b′ ← as′ + e′ ∈ Rq

e′′
$←− χ

v ← bs′ + e′′ ∈ Rq

v̄
$←− dbl(v) ∈ R2q

b′,c←−− c← 〈v̄〉2q,2 ∈ {0, 1}n
kA ← rec(2b′s, c) ∈ {0, 1}n kB ← bv̄e2q,2 ∈ {0, 1}n

Figure 6.1: Unauthenticated Diffie-Hellman-like key exchange.

6.1.2 Performance

To aquire a security level of at least 128 bit, the parameters are set to the
following:

• n = 1024

• q = 232 − 1

• σ = 8/
√

2π ≈ 3.192

Some performance testing has been done with the system. The testing
involved two computers: a "client" and a "server". The client computer
had an Intel Core i5 (4570R) processor with 4 cores running at 2.7 GHz
each. The server computer had an Intel Core 2 duo (E6550) processor with 2
cores running at 2.33 GHz each. The software was compiled for the x86_64
architecture with -03 optimizations using llvm 5.1 (clang 503.0.40) on the
client computer and gcc 4.7.2 on the server computer.

OpenSSL cryptographic primitive performance

OpenSSL cryptographic primitive performance where measured by running
openssl speed. The following numbers are average runtime in milliseconds.
For the client computer, key generation ran in 0.9 milliseconds and generating
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Client Server
Key generation 0.9 1.7
Shared secret 0.5 0.4

Total 1.4 2.1

Table 6.1: OpenSSL cryptographic primitive performance in milliseconds.

R-LWE ECDSA R-LWE RSA
Connection time (standard deviation) 45.6 ms (0.90) 54.0 ms (1.49)

Size of handshake 9469 bytes 10476 bytes

Table 6.2: OpenSSL/Apache TLS performance.

shared secret ran in 0.5 milliseconds, making the total runtime for ring-
LWE 1.4 milliseconds. For the server computer, key generation ran in 1.7
milliseconds and generating shared secret ran in 0.4 milliseconds, making the
total runtime for ring-LWE 2.1 milliseconds.

OpenSSL/Apache TLS performance

Performance within the context of HTTP connections over TLS was also
measured . The server was running Apache httpd 2.4.10 with the prefork
module for multi-threading. The client and server computers were connected
over an isolated local area network with less than 1 millisecond ping time.
The http_load tool was used to create many HTTP connections in parallel
using OpenSSL for TLS.

The connection time (from when the client opens the TCP connection to
the server’s IP address to when the client starts to receive the first packet
of application data) was measured to be 45.6 milliseconds mean value, with
0.90 as standard deviation, for ECDSA with ring-LWE. For RSA with ring-
LWE it was 54.0 milliseconds with 1.49 as standard deviation. The size
of the handshake was 9469 and 10476 bytes, respectively. The number of
simultaneous connections were also measured. It was tested for four different
payload sizes: 1 B, 1 KiB, 10 KiB, and 100 KiB. For ECDSA with ring-LWE,
the results was 507.5 (1.7 standard deviation), 505.9 (2.1), 490.9 (0.9), and
397.6 (1.4), respectively. These are average median values of 5 runs of 100
seconds for each payload size.
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6.2 A new hope
Another implementation of a ring-LWE cryptosystem is the NewHope system
[3]. It was presented by Alkim, Ducas, Pöppelmann, and Schwabe, and
builds on the scheme presented by Bos et al. The NewHope system has new
parameters and better suited error distribution. Information in this section
is from the paper of Alim et al.

6.2.1 Changes from Post-quantum Key Exchange for
TLS

As mentioned, the NewHope system are based on the scheme presented by
Bos et al., but Alkim et al. have done some changes and possibly some
improvements.

Parameters

Most of the parameters are kept the same, but some changes are made. The
dimension n = 1024 is the same to be able to achieve appropriate long-term
security. Since polynomial arithmetic is fast and scale well, the choice of n
is acceptable from a performance point of view. Polynomials is still defined
in the ring Rq = Zq[X]/(Xn + 1). The modulus is changed to q = 12289.
It is the smallest prime for which it holds that q ≡ 1 (mod 2n) so that
the number-theoretic transform (NTT) can be realized efficiently and that
polynomials can be transferred in NTT encoding.

R-LWE ECDSA
1 B 507.5 (1.7)

1 KiB 505.9 (2.1)
10 KiB 490.9 (0.9)
100 KiB 397.6 (1.4)

Table 6.3: OpenSSL/Apache TLS simultaneous connections. Average median
values (standard deviation).
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Public parameters
Parameters: q = 12289 < 214, n = 1024
Error distribution: ψ16

Alice Bob
seed

$←− {0, 1}256

a← Parse(SHAKE-128(seed))

s, e
$←− ψn16 s′, e′, e′′

$←− ψn16

b← as+ e
(b,seed)−−−−→ a← Parse(SHAKE-128(seed))

u← as′ + e′

v ← bs′ + e′′

v′ ← us
(u,r)←−− r

$←− HelpRec(v)
ν ← Rec(v′, r) ν ← Rec(v, r)
µ← SHA3-256(ν) µ← SHA3-256(ν)

Figure 6.2: The NewHope protocol.

Noise distribution

Alkim et al. found it challenging to implement a discrete Gaussian sampler
efficiently and protected against timing attacks. Therefore, they changed the
distribution of the LWE secret and error and replaced discrete Gaussians by
the centered binomial distribution ψk of parameter k = 16. Sampling from
the centered binomial distribution is easy and does not require high-precision
computations or large tables. One simply samples from ψk by computing∑k

i=0 bi − b′i, where the bi, b′i ∈ {0, 1} are uniform independent bits. The
distribution ψk is centered, has variance k/2 and for k = 16 gives standard
deviation ς =

√
16/2.

Reconciliation

The reconciliation mechanism is generalized using an analog error-correction
approach. One have n = 1024 coefficients to encode data into, but only
want to transmit a 256-bit key. Therefore, one encodes one key bit into four
coefficients. This gives increased error resilience which in turn allows for
larger noise for better security.
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Normal Optimized
Server key generation 258246 88920

Client key generation and shared key 384994 110986
Server shared key 86280 19422

Table 6.4: NewHope performance in cycles.

6.2.2 Performance

This system also aims at the 128-bit security level, but some of the parameters
are changed:

• n = 1024

• q = 12289

The NewHope system uses a new reconcilation, so error distribution is not
expressed with σ. Discrete Gaussians are replaced by the centered binomial
distribution ψk of parameter k = 16.

Test runs were done on an Intel Core i7-4770K running at 3491.953 MHz.
The implementation was written in the C programming language and com-
piled with gcc-4.9.2 and flags -03 -fomit-frame-pointer -march=corei7-avx
-msse2avx. The running times are presented as the cycle count and are the
median values over 1000 runs. The server key generation was measured to
be 258246 cycles. The clients key generation and creation of shared key was
measured to be 384994 cycles. The servers shared key creation was measured
to be 86280 cycles.

Alim et al. also made an optimized AVX implementation. Newer Intel
processors support Advanced Vector Extensions (AVX) that operate on vec-
tors of 8 single-precision or 4 double-precision floating-point values in parallel.
This makes it possible to optimize implementations targeting these proces-
sors. This optimized AVX implementation was compiled with clang-3.5 and
flags -03 -fomit-frame-pointer -march=native. The server key genera-
tion was measured to be 88920 cycles. The clients key generation and shared
key creation was measured to be 110986 cycles. The servers shared key cre-
ation was measured to be 19422 cycles. So the optimized implementation
have a substantial speed up compared to the normal implementation, but it
requires a new Intel processor.
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Chapter 7

Practical Key Exchange

Another implementation of a ring-LWE based cryptosystem is the one pre-
sented by Vikram Singh in his paper A Practical Key Exchange for the Inter-
net using Lattice Cryptography [29]. This key exchange is also based on the
protocols presented by Peikert, but focus on the simpler case of cyclotomic
rings whose degree is a power of two. Singh later relased another paper to-
gether with Arjun Chopra called Even More Practical Key Exchanges for the
Internet using Lattice Cryptography, where they focus on the case of cyclo-
tomic rings with degree p− 1 for prime p [30]. This chapter will describe the
cryptosystems presented in these two papers.

7.1 Practical Key Exchange
The first lattice-based cryptosystem presented by Singh focused on a simpler
case than what Peikert proposed in his paper, namely cyclotomic rings whose
degree is a power of two. This restriction also restrict the security levels of
the scheme, but Singh claims that this hides complexities of ring arithmetic
while still providing a reasonable diversity of practical security levels. The in-
formation in this section is from Singh’s first paper on practical key exchange
[29].

7.1.1 Protocol

Singh’s implementation of the ring-LWE based cryptosystem is very similar
to Peikert’s description. As mentioned, this version focuses on cyclotomic
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Alice Bob
pk = b = a · s1 + s0

b−→ pk = u = e0 · a+ e1

SSV = v = e0·b+e2 =
e0 · a · s1 + e0 · s0 + e2

key = bve2
w = u · s1

(u,〈v〉2)←−−−− mask = 〈v〉2
key = rec(w, 〈v〉2)

Figure 7.1: Basic key exchange algorithm for Practical Key Exchange.

rings with degree a power of two (m = 2` is a power of two). The basic key
exchange algorithm can be seen in figure 7.1.1. key and mask are just other
names of the shared key and the masking bits, which is denoted by µ and
v′ respectively by Peikert. Singh has introduced some changes from Peikert
in the masking and reconciliation functions. The changes will be described
briefly in this section.

Randomized Rounding

We recall from chapter 5 that Peikert introduced a randomized function
dbl to temporarily scale cases with odd q to cases with even q and using
the reconiliation mechanism on the even case instead. Singh has a more
efficient way of solving this. Instead of scaling up, Singh introduces a simple
randomized rounding procedure. The randomized rounding is more efficient
than Peikert’s up-scaling because it only needs to do a coin flip in a pair of
edge cases. The details of the randomized rounding procedure can be found
in Singh’s paper [29].

7.1.2 Performance

Singh provides parameter choices for two levels of security: 128-bit (regular
security) and 256-bit (high security). The parameters are as following:

128-bit

• n = 512

• q = 25601
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• public key size = 7680 bits

256-bit

• n = 1024

• q = 40961

• public key size = 16384 bits

The key encapsulation method has been implemented in the C program-
ming language and it has been tested on an Intel Core i5 4300U running at
1.9GHz with Turbo Boost increasing it to 2.9GHz. The code was compiled
using gcc 4.9.2 and flag -03. For 128-bit security, the KEM1.Generate
method used 135200 cycles on average, which is 54 microseconds. The
KEM1.Encapsulate method used 222100 cycles on average, which is 89 mi-
croseconds. KEM1.Decapsulate used 52800 cycles on average, which is 21
microseconds. This totals to 410200 cycles, 164 microseconds. For 256-bit
security, the KEM1.Generate method used 280600 cycles on average, which
is 112 microseconds. The KEM1.Encapsulate used 457600 cycles on aver-
age, which is 183 microseconds. KEM1.Decapsulate used 113900 cycles on
average, which is 340 microseconds. This totals to 852200 cycles, 340 mi-
croseconds.

7.2 Even More Practical Key Exchange
In Even More Practical Key Exchanges for the Internet using Lattice Cryp-
tography, Singh and Chopra focus on the case of cyclotomic rings with degree

128-bit 256-bit
Cycles Microseconds Cycles Microseconds

KEM1.Generate 135200 54 280600 112
KEM1.Encapsulate 222100 89 457600 183
KEM1.Decapsulate 52800 21 113900 340

Total 410200 164 852200 340

Table 7.1: Performance of Practical Key Exchange running on an Intel Core
i5 4300U 1.9 GHz (Turbo Boost to 2.9 GHz).
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m n q σ Security Public Key Size
1 337 336 32353 3.192 96 5040 bits
2 433 432 35507 3.192 128 6912 bits
3 541 540 41117 3.192 160 8640 bits
4 631 630 44171 3.192 192 10080 bits
5 739 738 47297 3.192 224 11808 bits
6 821 820 49261 3.192 256 13120 bits

Table 7.2: Parameter sets of Even More Practical Key Exchange.

p − 1 for prime p. This allows for a greater degree of flexibility in choosing
lattice dimension, which determines the security level and efficiency of the
scheme [30].

7.2.1 Performance

As mentioned, having cyclotomic rings with degree p−1 for prime p allows for
more flexibility of choosing security level and efficiency. Singh and Chopra
presents six different sets of parameters which all have different security lev-
els. Peikerts security analysis of ring-LWE gives a practical bound on the
size of the modulus of q ≈ n3/2. To maintain consistency with the proof,
Singh and Chopra also choose q ≡ 1 (mod m). For a given m, the smallest
q > n3/2 that is congruent to 1 modulo m and provides a decryption failure
rate of at most 2−80 is chosen. The pairs (m, q) with the smallest public keys
are then selected. The sets of parameters are listed in table 7.3.

Singh and Chopra also ran some performance tests of their system. The
tests was run on an 1.9 GHz Intel Core i5 4300U with Turbo Boost, in-
creasing the clock rate to 2.9 GHz. The total runtime of the passively key
exchange KEM1 was measured. The total runtime is the sum of the time for
KEM1.Generate, KEM1.Encapsulate, and KEM1.Decapsulate. Both uni-
form sampling and Gaussian sampling was tested. The total runtime for
parameter set 1 was measured to be 1401600 average cycle count for uniform
sampling and 2703400 average cycle count for Gaussian sampling. Parameter
set 2 was 1411600 for uniform sampling and 2982000 for Gaussian sampling.
Parameter set 3 was 2952700 for uniform sampling and 4920600 for Gaussian
sampling. Parameter set 4 was 3208500 for uniform sampling and 5331800 for
Gaussian sampling. Parameter set 5 was 3032600 for uniform sampling and
6146600 for Gaussian sampling. Parameter set 6 was 3065300 for uniform
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Uniform Gaussian
1 1401600 2703400
2 1411600 2982000
3 2952700 4920600
4 3208500 5331800
5 3032600 6146600
6 3065300 6071100

Table 7.3: Average cycle count of KEM1 running on Intel Core i5 4300U.

sampling and 6071100 for Gaussian sampling.
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Chapter 8

Comparisons

After presenting some lattice-based cryptosystems individually, it is a good
idea to look at comparable aspects of the schemes and put it together in
a comparison. This chapter will take parameters, performance, etc., of the
presented schemes and compare them to each other and also to the standard
systems used today.

8.1 Comparisons of the presented schemes

8.1.1 Parameters

The parameters that are natural to compare when it comes to lattice-based
cryptosystems, is the dimension of the lattice n and the prime q. The pa-
rameters of the ring-LWE based cryptosystems can be seen in table 8.1. The
NTRU system is not included because it is constructed differently than the
ring-LWE based cryptosystems.

As we can see from the table, there is not much difference on the choice of
n. Both Post-quantum KE and NewHope are targeting the 128-bit security
level and have n = 1024, while for the Practical Key Exchange, Singh claims
that having n = 512 will provide at least 128-bit security. Having n = 1024
in the Practical Key Exchange will provide over 256-bit security. The move
from cyclotomic rings with degree of power of two to cyclotomic rings with
degree p − 1 for prime p allows for more flexibility in choosing parameters,
and we can see that n in Even More Practical Key Exhcange is a bit lower
than the other systems. When it comes to the prime q, it is much bigger in
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n q
Post-quantum KE for TLS 1024 232 − 1

NewHope 1024 12289
Practical KE 128 512 25601
Practical KE 256 1024 40961

Even More Practical KE 96 336 32353
Even More Practical KE 128 432 35507
Even More Practical KE 160 540 41117
Even More Practical KE 192 630 44171
Even More Practical KE 224 738 47297
Even More Practical KE 256 820 49261

Table 8.1: Parameters of the ring-LWE-based cryptosystems.

the Post-quantum Key Exchange for TLS than the other systems. Alkim et
al. claims that the analysis of the failure probability from Bos et al. was far
from tight, resulting in a too large q [3].

8.1.2 Key sizes

Key sizes are very important for a cryptographic scheme. Having big keys
restricts the platforms the scheme can be implemented on, and also impacts
the performance. Having smaller keys was one of the reasons for moving to
elliptic curve cryptography.

Table 8.2 shows the public key sizes of NTRU [1], Practical Key Exchange
[29], and Even More Practical Key Exchange [30] in bits. These values are
the ones presented by the authors behind the schemes, and we can see that
the key sizes are not that different, but NTRU reports the smallest key
sizes. Table 8.3 shows the actual size of the communication between the
two parties A and B doing a key exchange. These values are acquired from
running the benchmark tool with the command test_kex --bench from the
Open Quantum Safe (OQS) project [23]. The values are in bytes and were
measured on an Intel Core i3-4030U running at 1.9GHz. NTRU does have
the smallest communication size, which fits with the reported key sizes. Post-
quantum Key Exchange have to transfer over double the data of NewHope,
which probably is because of the large difference in the choice of q as seen in
the previous section.
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Public key size (bits)
NTRU 112 5951
NTRU 128 6743
NTRU 192 9759
NTRU 256 12881

Practical KE 128 7680
Practical KE 256 16384

Even More Practical KE 96 5040
Even More Practical KE 128 6912
Even More Practical KE 160 8640
Even More Practical KE 192 10080
Even More Practical KE 224 11808
Even More Practical KE 256 13120

Table 8.2: Public key sizes of the lattice-based cryptosystems.

Scheme A → B B → A Total
Post-quantum KE 4096 4224 8320

NewHope 1824 2048 3872
NTRU 1027 1022 2049

Table 8.3: Communication size (bytes) of Post-quantum KE, NewHope, and
NTRU.
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128-bit 256-bit
Practical KE 410200 852200

Even More Practical KE
(uniform)

1411600 3065300

Even More Practical KE
(gaussian)

2982000 6071100

Table 8.4: Average total cycle count of KEM1 running on Intel Core i5 4300U.

Scheme Operation Time (µs): mean
(pop. stdev)

CPU cycles: mean
(pop. stdev)

Post-quantum KE
Alice 0 2154.598 (19.193) 4084122 (36275)
Bob 3450.572 (33.900) 6540887 (64258)

Alice 1 436.528 (3.010) 827377 (5807)

NewHope
Alice 0 143.069 (24.974) 271103 (47291)
Bob 218.227 (34.187) 413575 (64728)

Alice 1 37.456 (6.083) 70914 (11481)

NTRU
Alice 0 2783.828 (304.947) 5276705 (577701)
Bob 288.917 (62.924) 547523 (119212)

Alice 1 175.666 (26.846) 332891 (50827)

Table 8.5: Speed measurements of Post-quantum KE, NewHope, and NTRU.

8.1.3 Speed

Comparing the run times of the different schemes is not that easy. The
measurements presented in the earlier chapters are not measured the same
way and on the same hardware. The only measurements that are reasonable
to compare, are those of Practical Key Exchange and Even More Practical
Key Exchange. Both was measured running on an Intel Core i5 4300U, and
can be seen in table 8.4. We can see that the move from cyclotomic rings
whose degree is a power of two to cyclotomic rings with degree p−1 for prime
p, have a big impact on the performance of the scheme.

Information in table 8.5 is aquired from running the benchmark tool from
OQS. The tests were run on an Intel Core i3 4030U at 1.90 GHz, and simulate
a key exchange between Alice and Bob where Alice is the instigator. Out of
Post-quantum Key Exchange, NewHope, and NTRU, NewHope is the fastest
by far with a total of 398.752 µs and 755592 cycles. NTRU takes 3248.411 µs
and uses 6157119 cycles. A lot more than NewHope, but it is only the initial
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Security Level NTRU Key Size ECC Key Size RSA Key Size
112 5951 224 2048
128 6743 256 4096
192 9757 384 7680
256 12881 512 15360

Table 8.6: Public key sizes (bits) of NTRU, ECC, and RSA.

operation for Alice that is really slow. The other operations are almost as
fast as NewHope. For Post-quantum Key Exchange, all operations are slow.
The total time is 6041.698 µs and it uses 11452386 cycles. Having a much
bigger q seems to slow it down considerably compared to the other schemes.

8.2 Comparisons with today’s standards
If you want to replace today’s standard cryptoschemes, the new schemes
should ideally perform better than the ones replaced or atleast perform the
same. The two most common algorithms to exchange or agree on a secret
key is RSA and Diffie-Hellman, so it is natural to compare the lattice-based
schemes to those.

NTRU is the scheme of those presented in this thesis that has the smallest
key sizes. Table 8.6 compares it with RSA and Elliptic Curve Cryptography
(ECC). The values are from the NTRU GitHub-page [1]. For the lower
security levels, NTRU has the largest keys by quite a lot, but it scales better
with the security levels as RSA have the largest key at 256-bit security. ECC
have much smaller keys than both RSA and NTRU. This is also one of the
reasons why ECC is used in favor of ordinary RSA, as the small key size
allows for the cryptoscheme to run on smaller platforms and have better
performance. This can be seen in table 8.7. ECC performs much better than
RSA, which is really struggling with the large keys. NTRU does not have
that problem. Even though the keys are very large compared with ECC,
NTRU outperforms ECC by a large margin. It is almost six times faster on
the 256-bit security level.
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Security Level NTRU Ops/Sec ECC Ops/Sec RSA Ops/Sec
112 2284 951 156
128 1896 650 12
192 1034 285 8
256 638 116 1

Table 8.7: Performance of NTRU, ECC, and RSA.
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Chapter 9

Summary and further work

With quantum computers seeming like a possibility in the future, the stan-
dard public-key cryptosystems used today are vulnerable and new, quantum-
resistant systems are needed. There are several different types of cryptosys-
tems that could be possible replacements, for example hash-based, code-
based, and lattice-based cryptosystems. This thesis focused on lattice-based
cryptosystems, and presented a few of them. The lattice-based cryptosys-
tems are of two types: NTRU and ring-LWE. Both NTRU and ring-LWE
are operating on polynomial rings, and have strong, provable security against
quantum computers.

The lattice-based cryptosystems perform well. All the cryptosystems pre-
sented in this thesis outperform the standard systems used today. Key sizes
are a bit larger on the lower security levels, but scale better when increasing
the security level. All the lattice-based cryptosystems have larger keys than
elliptic curve cryptography, so they might not be suitable for small devices
with limited storage space.

When compared to RSA and Diffie-Hellman, lattice-based cryptosystems
are much more complicated. Lattices are more complicated than integers,
so encryption and decryption are in turn more complicated operations. This
makes it harder for programmers with little to no mathematical background
to understand and use the cryptosystems, which can lead to systems with
faulty security.

If it is possible to make the lattice-based cryptosystems a bit more ac-
cessible for the general public, these systems are good candidates for new
quantum-resistant standards. They are fast and have strong, provable secu-
rity against quantum algorithms.
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9.1 Further work
This section will present possible further work that this thesis did not cover.

• Implementing a lattice-based cryptosystem. Doing an implementation
requires full understanding of the theory of the systems, and can un-
cover possible errors that can occur when people with little to no math-
ematical background tries to implement such complicated cryptosys-
tems.

• More thorough performance testing. When presenting a new cryptosys-
tem, authors often include some performance numbers. A problem is
that different schemes are tested in different ways on different hard-
ware, making it hard to compare the test results. Ideally, all cryp-
tosystems should be tested in the same way on the same hardware.
The Open Quantum Safe project is working towards this, and have
gathered several different implementations of lattice-based cryptosys-
tems in a testing suite, which was used in this thesis. However, there
are systems that are yet to be added, so improvements are possible.
The Open Quantum Safe project is an open-source project, so anyone
can contribute.

• As already mentioned, lattice-based cryptosystems are much more ad-
vanced than RSA and Diffie-Hellman. Making them easier to under-
stand is a hard task, but one that is necessary for a widespread adoption
of lattice-based cryptography.
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