
1

Service Discovery in Hybrid Environments

Sabrina Alam Chowdhury

Department of Informatics

Faculty of mathematics and natural sciences

UNIVERSITETET OF OSLO

01/08/2017

2

3

Service Discovery in Hybrid Environments

4

© 2017 Sabrina Alam Chowdhury

Service Discovery in Hybrid Environments

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

5

Abstract

The thesis topic is based on Service discovery of heterogeneous Web services across hybrid

environments. Here it also describes a clear definition of SOA and Web service with different

standards to implement those services in different environments. Furthermore an analysis and

survey of Web services standards also given in this thesis. An overview also discussed here

that how different Web service discovery mechanism solution is currently available to

discover services in different environments which include from cloud to non-cloud , non-

cloud to cloud and other platforms with some research challenges on service discovery for

SOAP and RESTful Web services.

A prototype has been implemented as a proof of concept for enabling common service

discovery for hybrid environments for different Web services.

6

7

Preface

The thesis represents the final product of my master degree in Informatics at the University of

Oslo. The work described herein is conducted under the supervision of Dr. Frank Trethan

Johnsen and Cand. Scient. Trude Hafsøe Bloebaum.

The thesis has been a long journey, and I would not have been able to complete it without the

precious help and support given by various people. The learning curve of my career becomes

so high, and I got to understand lots of interesting things while working on this thesis. I

believe the knowledge will help me a lot in my future professional life.

First and foremost I would like to express my gratitude to my supervisors Frank and Trude for

their continuous support, feedback, dedication and proofreading.

I would also like to thank my family and friends for their support which gives me the

motivation to do this master’s program. Specially my mother who always keep her trust on

my ability. Finally, special thanks to my husband Nazrul Islam Sujan and my son Izaan for

their cooperation during the whole journey and for supporting me to keep a balance between

my study and family life.

Sabrina Alam Chowdhury

Kjeller, August 2017

8

9

Contents

Service Discovery in Hybrid Environments ... 3

Abstract .. 5

Preface .. 7

Contents .. 9

1 Introduction .. 11

1.1 Central Terminology.. 12

1.2 Scope and Problem Statement ... 14

1.3 Research Questions.. 15

1.4 Research Methodology .. 16

1.5 Outline of this thesis .. 17

2 Technical Background .. 18

2.1 Service Oriented Architecture ... 18

2.2 Web service Definition .. 20

2.3 Cloud Environment.. 24

2.4 Service Discovery Definition .. 29

2.5 Related Work ... 37

2.6 Requirement Specification .. 49

3 Design ... 53

3.1 General Design .. 54

3.2 Workflow model .. 57

4 Implementation & Evaluation .. 62

4.1 Implementation .. 62

4.2 Evaluation .. 68

5 Conclusion .. 77

Bibliography ... 79

List of Tables .. 87

List of Figures .. 88

Glossary .. 89

Appendix A .. 91

Appendix B .. 97

Appendix C .. 103

10

11

1 Introduction

Today, millions of users from all over the world are connected through the Internet. On the

World Wide Web, information sharing is easy due to availability. Web services are one of the

ways to make information available. A Web service is a framework for a conversation

between two computers; these computers are communicating over the network. Service refers

to any kind of service, like hardware or software, which can give support e.g. the printing of

papers or the booking of air tickets. Web services are bound with the software concept. Web

services are popular for some specific features like interoperability, reusability, loose

coupling and easy deploy ability and integration, just like web applications. In software

engineering, SOA, which means Service Oriented Architecture, is an architectural concept

and refers to a combination of services.

Web services are the preferred standard to achieve SOA. The concept of SOA is modeled

with a Service Provider, a Service Consumer and a Registry along with some operations like

register, find and bind. Service Discovery means finding services when required according to

service functionality. Because of increasing use of services over the Web, Service Discovery

has recently become a relevant research topic. Service Discovery is the mechanism which

enables devices and services to properly discover, configure and communicate with each other

over the web. Web services need to be able to be deployed in some environments where they

can be functional and discoverable as well. Platforms on which Web services operate can

either be servers with local configurations or any cloud environment.

The focus of this thesis is the concept of SOA and Web services, as well as the discoveries of

Web services on various platforms.

12

1.1 Central Terminology

This section defines some central concepts and terms, like “SOA” (Service Oriented

Architecture), “Web service,” “Service Discovery,” Hybrid Environments,” which is

necessary for understanding the rest of this thesis. Details of the technological concepts will

be described in chapter 2.

SOA can define the architecture which uses services. There are many different definitions of

SOA, but all agree that SOA is a paradigm for improved flexibility.

According to OASIS [1], Service Oriented Architecture (SOA) is a paradigm for organizing

and utilizing distributed capabilities that may be under the control of different ownership

domains.

Visibility, Interaction, and Affects, three primary key concepts in SOA, are described as able

to see the possibilities or capabilities and able to use those capabilities to get the result as real

world effect.

According to OASIS [1], the noun Service is defined in dictionaries as “The performance of

work or function by one for another.”

However, service, as the term is understood, also combines the following related ideas: The

capability to work together, the specification of the work offered to another and the offer to

perform work for another. In SOA, services are the mechanism by which needs and

capabilities are brought together.

Technically, a service is an interface for multiple messages that are exchanged between

providers and consumers.

Web services are the standard mechanism to implement an SOA concept. There are two

technologies which define a set of rules while designing a Web service

 SOAP (Simple Object Access Protocol) [2]

 REST (Representational State Transfer) [3]

13

SOAP is XML-based; data is formatted in XML so performance issues could arise if the

number of messages is high, but it provides a more secure information exchange due to its

signing and encrypting of messages by Web service.

REST is a lightweight alternative that uses HTTP but can handle several data formats like

XML and JSON.

SOAP and REST are almost the same, but in the current micro-services era, REST is

becoming the more commonly used approach due to its lightweight behavior. The micro-

service architecture is an approach to developing an application as a set of small independent

services. According to [4], A Micro-service is a cohesive, independent process interacting via

messages. Micro service architecture is a distributed application where all its modules are

micro-services.

According to James Philips [5], Service discovery is a system whose aim it is to find the

answer to the question “where is the service located.” chapter 2 has a more detailed definition

of Service discovery by SOA.

Service Discovery is an important aspect of the Web service lifecycle. Web services need to

be discovered and utilized according to functionality. As the growth of Web services

increases rapidly, a problem arises when identifying and selecting appropriate Web services,

because of the massive number of Web services available over the Internet. Another obstacle

that obstructs finding the proper Web service is a lack of suitable search mechanisms, as most

of the search tools are based on syntax rather than semantics. Additionally, existing search

tools may fail to involve non-functional parameters such as Quality of Service and Cost of

Service.

Service Discovery protocols are designed to help programmers and designers to simplify their

design work, as it is not necessary to know all possible interactions between devices and

Services at design time. They are also designed to minimize administrative overhead.

Web services need to talk to each other and be invoked from a hosted environment. Services

can be located in a Local Area Network (LAN), in a single data center, across servers or as

federations of the server in different geographical locations. Sometimes the platform can be a

cloud environment with another geographic location.

14

In distributed computing, the word Cloud is exploited as an allegory for “the Internet,” so that

means “distributed computing” signifies “a sort of Internet-based computing.”

This work is motivated both by the need to know the frameworks and tools designed for Web

service Discovery and the opportunity to exploit the research done in the past on this vast

growing area of Web service Discovery, as Service Discovery is the most important part of a

Web service’s lifecycle.

The increasing significance of SOA and the popularity of Web services have attracted the

attention of researchers and practitioners. There are some open source solutions currently

being developed in the domain of Web service discovery. Some of these solutions are

designed for a particular project purpose, while others are drawn up with a general purpose in

mind.

This work will focus on analyzing the current state of the topic of SOA and the discovery of

Web services in the research. This work also aims to achieve a common platform for multiple

open source discovery tools for various Web services. Finally, this thesis discusses

contemporary and new concepts that have grabbed the attention of most practitioners,

developers and the research community within the field of Service Discovery. It is an

opportunity to get acquainted with the past developed and currently available market solutions

for Web service Discovery for both local and cloud platforms, in addition to helping to

develop a vast knowledge of this field.

1.2 Scope and Problem Statement

During the past decade, researchers, practitioners, and academic communities have been

proposing different systems, methods, and approaches for the fast-evolving research area of

Web service discovery systems.

This thesis focuses on SOA and the Service Discovery of different Web services across

hybrid environments. Both SOAP and REST Web service technologies are considered and

analyzed. The analysis and survey of Web service Discovery open source standards will be

brought into focus by examining several case studies and innovative solutions. Services are

implemented and deployed on different platforms which include both cloud and non-cloud

environments.

15

The aim of the thesis is to enable Service Discovery in hybrid environments platforms, using

standards where possible.

1.3 Research Questions

Research questions are a description of methods for developing software, analyzing software,

the design, evaluation or implementation of specific systems, sheer feasibility of a task [6].

Research questions make the goal of the thesis clear, precise and structured. The research

questions for this study are selected based on the conducted preliminary research. Taking into

account the background and the popularity of Web services and their rapid technological

growth, SOA and Service Discovery were selected as a focus of this research.

The research questions for this study are as follows:

Question 1: What are the Services and types of Services?

Question 2: How do Service Discovery standards for different kinds of Web services work?

Question 3: How do Service Discovery methods work for different environments?

Question 4: Is it possible to create a common platform to provide support for Service

Discovery in hybrid environments?

These research questions can be categorized [6] as Descriptive, Method for Analysis and

Feasibility, as illustrated in table 1.

RQ Type of RQ

Ques 1 Descriptive

Ques 2 Method for Analysis

Ques 3 Method for Analysis

Ques 4 Feasibility

Table 1: Type of Research questions

16

1.4 Research Methodology

Research Questions guide a study’s design and data collection methods. According to Stephen

Denning’s design approach [7], the process is divided into following steps:

Phase 1: Preparing the requirement analysis

Phase 2: Drive a specification based on requirements

Phase 3: Develop and implement the system

Phase 4: Validate and test the system

Analyzing the needs is the first phase of the process. Focusing on the research questions, 1 to

3, case studies have been chosen to examine the artifacts related to this research.

According to [8], case study research is defined as an empirical inquiry that investigates a

contemporary phenomenon within its real-life context, especially when the boundaries

between phenomenon and context are not evident.

The second chapter of this thesis derives all the connected background components and

ground technologies. Case study research can be divided into single and multiple case studies

[9]. The former involves research that examines a single case, while the later analyzes several

cases. Case study research can also be categorized as analysis-holistic (a single unit of

analysis) or embedded (multiple units of analysis). According to the definition, the case study

is incorporated with Service Discovery where several factors would be analyzed in this thesis

for getting better insights into the technology. Also in chapter 2, comparative overviews of

several open standards of Web service Discovery are analyzed to get a better overview of the

technology.

The second step is covered in the third chapter, which presents the specifications, describes

the plan of the design and draws its components detail.

The third phase involves the design and development of the system to answer research

question 4, as stated in Section 1.3 above. Chapter 4, the implementation chapter, includes the

development of the scheme which has been followed in an agile way. Implementation work

has been done in short sprint. The fourth phase is covered by chapter 4 in the evaluation

17

section. The evaluation was also done between sprints to track progress which helps to meet

the time restriction while avoiding being led away from the goal. Also, it describes the testing

of the system, including both unit testing and composing testing, which was done to

determine whether the system meets the requirements or not.

1.5 Outline of this thesis

The thesis consists of five chapters; each chapter addresses different parts of the process from

the very beginning to the finished project. The first chapter provides the background and

motivation of the thesis, including the research questions and methodology followed in the

development of this project.

The second chapter is the analysis of the technological background. It presents the detailed

work summary and requirement specification list for this thesis.

The third chapter represents the overall design of the thesis. Each component and module

with work flow will be discussed in the design chapter.

The fourth chapter addresses the implementation and evaluation of the application. A more in-

depth design is presented through the introduction of use cases. The chapter also derives the

testing of the project with several use cases and presents an evaluation reached by analyzing

and comparing the outcome of the testing.

The final chapter is the conclusion of this thesis, which summarizes the overall thesis and

implementation and shortcomings and findings of this thesis.

18

2 Technical Background

This chapter will describe the technical details which are the background for this thesis topic.

The research questions provide the outcomes for some technical concepts in this chapter. The

main umbrella terms are SOA, Web services and the environments used to deploy the Web

services.

2.1 Service Oriented Architecture

SOA has recently become the most popular concept of business integration in the IT industry.

SOA is an architecture approach for characterizing, connecting, and coordinating reusable

business benefits that have clear limits and which have independent functionalities. Inside this

sort of design, one can coordinate the business benefits in business forms. Embracing the idea

of administrations (a larger amount reflection that is autonomous of utilization or framework,

IT stage, setting or different departments), SOA takes IT to another level, one that is more

suited for interoperability and various situations. SOA abstracts services from their realization

using the concept of interface, which describes how the interaction between parties will occur.

Web services are a fundamental and common way to implement SOA. The architecture for

service-based applications shown in figure 1 has three main parts: a Service Provider, a

Service Consumer, and a Service Registry.

Figure 1: SOA Architecture

Service

Registry

Service

Provider Service

Consumer

Publish Find

Bind

Service

Contract

19

Service Provider creates Web service and provides its information to the Service Registry,

which is called publishing the service.

Service Registry: responsible for making the information available regarding the Web

service to any potential requester.

Service Consumer finds services registered in the registry according to needs and then binds

with the Service Provider to invoke one of its Web services.

The Service Contract is the description of the Web service which is the main component of

interconnection and binding between the Service Provider and the Service Consumer.

According to [10], SOA implementation usually depends on several facilities including

service registries where the services are advertised, service repositories, service definition

languages which developers use to define service contracts and service platforms which

provide design time and run time support for service creation, deployment, and execution.

High interoperability describes the goal as being able to connect heterogeneous systems

easily. Interoperability is not a new concept within enterprise application integration (EAI);

EAI had the idea before SOA.

SOA is becoming essential for solving the IT/Business gap. It is an approach that helps

systems remains scalable and flexible while growing, which contributes to bridging gaps.

SOA acknowledges that the best way to keep up adaptability in massive disseminated

frameworks is to help heterogeneity, decentralization, and adaptation to non-critical failure.

The key to fulfilling those goals is loose coupling, which means minimizing dependencies.

When dependencies reduce, modifications have decreased effects, and the systems will still

run when parts of it are broken or down.

According to [11], to establish SOA successfully, it has to introduce concepts appropriately.

Key success factors are understanding, governance, management support and homework.

Also important are the ingredients of SOA infrastructure, architecture, and processes

including meta processes and management.

Infrastructure is the technical piece of SOA which empowers high interoperability in

addition to being in charge of keeping up information change, smart directing, managing

security and consistent quality, benefits administration, checking and logging. In this thesis,

20

the infrastructure will also address hybrid environments, which is a Cloud Environment and a

Non-Cloud Environment.

Architecture is also necessary to restrict all the possibilities of SOA in such a way that it

leads to a working, maintainable system.

Larger systems’ complexity is that many different peoples and teams are involved in

maintaining these. To control everything, appropriate processes need to be implemented to

achieve SOA such as:

Business Process Modelling (BPM) which is the process of breaking processes into smaller

units, which are services.

Service Life Cycles involve defining different steps a service takes to become a reality.

Model-driven Software Development (MDSD) is the process of generating code for dealing

with services.

Governance is the Meta process of all processes and SOA strategy, whose aim it is to set up

the right process to establish SOA in the organization.

2.2 Web service Definition

Web service

Web services are server and client applications that can talk over the World Wide Web [12].

They can be used to implement the SOA principles, and are in widespread use in various

sectors. Web services present the answer and realization of the SOA question of seeking the

need for interoperability between systems and platforms which helped SOA get up and

running quickly. A Web service is a framework for conversation between two computers;

these computers are communicating over the internet. Clients send a request to the internet

and server receives the request and process it and return the response. When a browser makes

a request for a web page, it receives HTML or other related content in the response. But when

it just ask for data and use JavaScript or other client side code to process the response then the

Web service is used.

21

It is clear that Web services represent the cornerstone of SOA and its recommended

technology for interoperability.

Web services are the foundation of SOA because of them:

 implement gauges and, accordingly, advance similarity and movability

 are cross-stage and cross-dialect supported

 are widely supported, making SOA moderately simple to embrace

 are message-oriented

 give quicker tooling help, which speeds the usage of SOA

Microsoft coined the term Web services in 2000 as “A set of standards which allow the

machine to machine communication by a network which supplies a particular set of

operations [11]”. More precisely, Web services can exchange information via many internet

protocols but mostly with Hypertext Transfer Protocol (HTTP) – the key communication

protocol of the World Wide Web. According to [13], Web services evolved from web

applications, which only serve data instead of serving the user-interface along with the data.

How to present the information depends on the client application. Key benefits of Web

services along with SOA services is that they can be invoked by several consumers, which

can also result in the building of more flexible applications.

To exchange information when we design Web services, we need to follow some set of rules.

The primary tools for doing that these days are SOAP-based Web services and RESTful Web

services [14].

SOAP Version 1.2 is a lightweight version proposed for trading organized data in a

decentralized, circulated location. It utilizes XML to characterize an extensible messaging

system giving a message format that can be exchanged over a diversity of core protocol. The

structure has been intended to be autonomous of a specific programming model and other

implementation particular semantics [2].

22

The protocol specification defines an XML based envelope for exchanging messages, a set of

rules specified by the protocol for converting platform specific data types into XML

representation.

A SOAP message has three building blocks: an envelope, a header, and a body. The envelope

wraps the entire message and contains the header and the body elements. The Header

elements include the Security and Routing information, which is optional. The data which are

application specific and need to be communicated belong to the body of the SOAP message.

The application specific data is SOAP marked-up as XML and adheres to a particular format,

which is defined by the XML schemas, and this formatting enables the recipient to process the

data correctly. SOAP messages are received and interpreted by SOAP servers which in turn

trigger Web services to perform their tasks [15].

REST is defined by Fielding in [3] as an architectural style that consists of some set of

design criteria or set of design principles known as REST constraints that represent the easy

way of web standards such as HTTP and URIs. REST was initially identified in the context of

the Web; it is becoming a mostly used implementing technology for developing Web services.

REST principles include addressability, uniformity, connectivity, and statelessness [10]. The

resource is the central artifact in RESTful services. This kind of service implements with web

standards and REST principles. RESTful Web services should have appropriate resources

naming how servers dispatch requests to resource implementations. A specific URI represents

every resource. Resources are by nature self-descriptive messages.

RESTful HTTP uses the four primary HTTP methods: GET POST, PUT and DELETE. These

methods are used to read, write or create/perform and delete resources identified by URLs.

Because this native usage of the HTTP protocol is straightforward and fast, this can be a good

way to provide access to data or resources provided by web servers. RESTful Web services

provide scalability which comes from natural support caching and partitioning on URIs.

Restful Web services are also accessible as URIs are shared and passed for common purpose

application reuse to any dedicated servers. Compared to the ad-hoc partitioning of

functionalities behind the SOAP interfaces, URI based partitioning is more generic, flexible

and could be easier to realize [16].

23

Web services are implemented by both SOAP and RESTful Web services. The selection from

those two depends on several factors; each has different distinct features and shortcomings.

Table 2 presents the comparison between SOAP and REST based Web services according to

[17].

Criteria SOAP based WS RESTful based WS

Server/Client Tightly coupled Loosely coupled

URI One URI representing the service

end points

URI for each Resource

Transport Layer Support All Only HTTP

Caching Not Supported Supported

Interface Non uniform Interface Uniform Interface

Contact aware Client Context aware of WS

behavior

Implicit Web service behavior

Method information Body Entity of HTTP HTTP method

Data Information Body Entity of HTTP HTTP URI

Describing Web services WSDL WADL

Expandability Not Expandable Scalable without creating WS

(usage xlink)

Standards used SOAP specific standards (WSDL,

UDDI, WS security)

Web Standards (URL,HTTP

methods, XML, MIME types)

Security /Confidentiality WS-Security standard specification HTTP Security

Table 2: Comparison of SOAP and RESTful Web services

From table 2, there are some issues with the specification provided by SOAP and REST in

[17]. In [2], SOAP version 1.2 is a lightweight protocol intended for exchanging information

in decentralized, distributed environments. WSDL is currently the only one used for

describing SOAP Web services. Also, as WADL is outdated, there are more options for

RESTful Web services to describe, like the Swagger framework [18]. In the context of the

security of RESTful Web services, there are also OAuth, SAML, and OpenID Connect, which

provide better API security.

24

2.3 Cloud Environment

"Cloud Computing," by definition, refers to the on-demand delivery of IT resources and

applications via the Internet with pay-as-you-go pricing. A standard definition according to

NIST [19] is:

Cloud Computing is a pay-per-use model for enabling available, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction.

Through cloud computing services, it becomes simple to access to servers, storage, databases

and a broad set of applications across the web. Cloud computing providers own the

infrastructure and the related environment needed for application services.

The concepts of Grid and Cluster Computing, Virtualization, Web service and SOA are

brought about by Cloud Technology. Cloud Technology also makes concepts such Utility

Computing meaningful and proposes to establish IT free from the complexity and costs of its

common physical infrastructure.

Most well-known cloud provider companies are IBM, HP, Google, Microsoft, Amazon Web

services, Salesforce.com, NetSuite, and VMware.

Cloud computing has the following benefits:

 Predictable anytime, anywhere access to IT resources

 Flexible scaling of resources (resource optimization)

 Rapid, request-driven provisioning

 Lower total cost of operations

25

According to NIST [19], a cloud computing model has five key characteristics, three delivery

models, and five deployment models.

The five main features are defined as:

On-demand self-service: a client can provision computing environments as needed without

any human interaction with the provider.

Ubiquitous network access: Any device like laptop or mobile can access services with

standard mechanisms which are available over the network.

Location independent resource pooling: Geographical areas need not be considered while

accessing resources. Examples of resources include a virtual machine, storage, memory,

processing.

Rapid elasticity: For quick upscaling and downscaling capabilities, can be rapidly and

elastically provisioned and released when needed.

Pay per use: Charging depends on how much service is utilized by the consumer.

Advertising-based billing model to promote optimization of resource use.

26

Cloud Computing Model

As cloud computing arises, there is much discussion about defining a cloud computing model.

A better way of defining Cloud computing [20] is to create a stack which represents each

component of cloud computing and interaction between them. As seen in figure 2 [20], which

illustrates the cloud computing model, the elements of the cloud computing model provide a

vast range of services which can be consumed over the Web through a pay-per use model.

Most services which were previously accessed through a conventional data center can now be

used from the cloud.

Figure 2: Cloud Computing Components

According to [20], there are eleven categories or patterns of cloud computing technology:

1. Storage as a Service (SAAS): Usually defined as on-demand space. Any application can

use a local storage resource which physically exists at the remote site. SAAS is a very core

component type of model which can also invoke other cloud computing models.

2. Database as a Service: Delivers the ability to use a remotely hosted database which can be

shared by another user, functioning as a locally hosted database. This cloud computing

service model provides user access to the database without installing software or hardware set

up for performance.

27

3. Information as a Service: Provides users the ability to consume any remotely hosted

information via a well-defined interface such as an application programming interface (API).

For example, weather information, stock price information, and phone number validation.

4. A Process as a Service: A cloud computing model which outsources the business process

to consumers.

 5. Application as a Service: Any application which is offered over the Web to the end user

which can be consumed by the browser application. Some examples include Google Docs,

Google Calendar, and Gmail.

6. Platform as a Service: Any complete platform remotely hosted which includes application

development, interface development, database development, storage, and testing, delivered to

subscribers. Modern PAAS providers offer the creation of enterprise class applications for use

on demand with a small subscription or free.

7. Integration as a Service: This cloud computing model delivers a complete integration

stack including interfacing with applications and semantic mediation, flow control, and

integration design. Most of the features and functionality of these types of model are also

found in traditional enterprise application integration (technology) but is now provided as a

service.

8. Security as a Service: Provides core security services remotely over the Internet, for

example, identity management.

9. Management/Governance as a Service: Provides the ability to manage one or more

cloud services, including topology, resource utilization, virtualization, and uptime

management. Management systems, such as the capacity to enforce defined policies on data

and services, are also available.

10. Testing as a Service: Refers to the ability to use testing software and services that are

remotely hosted to test local or cloud-delivered systems. In these types of cloud computing,

the model provides the service to test enterprise applications, websites, or any other cloud

components without knowing anything about the hardware and software within the company.

11. Infrastructure as a Service: In this cloud computing model, the consumer can have

access to the entire machine with software on that machine hosted remotely. Provides the

28

ability to lease a physical server which for all practical purposes acts similar to a local data

center or a part of a data center which is the capacity to access computing resources remotely,

or Datacenter as a Service (DaaS).

Cloud Computing Deployment Models

Public: A model of cloud computing resources such as storage or applications which are fully

offered over the Internet to the general public. In this example, services may be used either for

free or through a pay-per-usage model.

Private: A private cloud is a particular model of cloud computing in which a specified client

can operate a distinct and secure cloud based environment. Similarly to other cloud patterns, a

private cloud also offers computing power as a service within a virtualized platform using an

underlying pool of physical computing resources. In this type of model, resource pooling is

dedicated to a single organization, providing that organization greater control and privacy.

Community: The infrastructure is a platform which allows several groups have similar needs

and concerns to work on the same platform. The community cloud can be either on premises

or off premises and can be managed by a third party service provider and governed by

dedicated groups or organizations.

Hybrid: A hybrid deployment model refers to interconnected infrastructure and applications

that are hosted both outside the cloud and inside the cloud. The most common occurrence of

this model is when the organization’s cloud services interact with their internal system. This

model also uses a mix of public and on premise private clouds with orchestration between

platforms.

29

Table 3 shows the cloud computing deployment model according to [19]

Private Community Hybrid Public

The Cloud Infrastructure

is operated solely for an

organization.

It may be managed by

the organization or a

third party and may exist

on premise or off

premise.

The Cloud Infrastructure

is shared by several

organizations and

supports a specific

community that has

shared concerns.

(e.g., mission, security

requirements, policy and

compliance

considerations).

The Cloud Infrastructure

is a composition of two

or more clouds (private,

community or public)

that remain unique

entities but are bound

together by standardized

or proprietary technology

that enables data and

application portability.

The Cloud Infrastructure

is made available to the

general public or a large

industry group and is

owned by an

organization selling

cloud services.

Table 3: According to NIST definition Cloud deployment models

2.4 Service Discovery Definition

The mechanism which drives the finding of Web services is called Service Discovery. In

SOA, it is a key component and important aspect which leads Web services to utilize their

functions. In SOA implementation, the primary factor is a higher degree of reusing roles in

the form of readily implemented services, and the aim is to minimize development time and

costs.

Recalling the SOA and Web services definition as shown in figure 1, three primary roles are

interacting with each other within SOA architecture. These three main roles are the Service

Provider, Service Requester and Service Registry. The roles interact using publish, find and

bind operations. The service providers are the business process that provides access to the

Web service and publishes the service description for consumption. The service description

usually uses to bind with the information. The Service Requester also uses the Meta

information in a description to attach and consume a service. According to [5], there are four

typical components of Service Discovery: where is the service? What are the IP and port?

How do I connect? And a health monitoring piece to detect the functional server. The Service

Registry is an optional logical concept where the Service Discovery method is to locate

information about the Service Provider and obtain the service details.

30

Service Discovery provides the functionality to discover capabilities of services

automatically. Usually, a Service Discovery system can help services to register their

obtainability, locate a single instance of a particular service and also notify when an instance

of a service changes.

Components of Web services Discovery

Service Registry

In Service Discovery, the Service Registry is a key component which functions as a kind of

storage of information about the network location or service instances. That can work as a

database of services and needs to be highly available and up to date. A Service Registry can

be within a cluster of servers that use a replication protocol to obtain consistency.

Service Discovery Mechanism

The objective of the proposal is to analyze the Service Discovery mechanisms for different

Web service standards by various platforms. There exist numerous different kinds of Web

service Discovery protocols; they are responsible for connecting machine to machine to

achieve the purpose of a Web service from the service providers to the service requester. With

the rising number of Web services and also to fulfill the requirements of scalability, high

availability and maintainability of services, Service Discovery techniques and pattern are also

changing rapidly. There are several standards which are involved in Service Discovery,

namely UDDI, WS-Discovery, and ebXML. Much more are also available for micro-service

architectures. The most common protocols are:

UDDI – Universal Description Discovery and Integration – A standard for Web service

registry

WS- Discovery –A standard for mainly local Web services discovery

ebXML – Electronic Business Using Extensible Markup Language, which is also registry

based.

31

Universal Description, Discovery, and Integration (UDDI) [21]

UDDI is a protocol which provides the mechanism to register and locate Web services. This

protocol is an approved OASIS Standard and a key member of Web Service Protocol Stack

[22], which is a platform-independent XML-based registry. With this feature, businesses

worldwide can list themselves on the Internet.

The functional purpose of a UDDI’s registry is the presentation of data and Meta data about

Web services. This registry can be used either on a public network or within an internal

organizational infrastructure. UDDI registry offers a standard way to manage, classify and

catalog Web services so that Web services can be discoverable and invokable by other

applications. UDDI specifies protocols for access, control, and management of the registry for

Web services. This standard offers a way to locate a Web service, invoke that service and

manage Meta data about that service.

UDDI provides a registry of Web services and programmatic interfaces to publish retrieve

and manage data about Web services. In the context of SOA, UDDI itself is a set of Web

services. UDDI is mainly building upon several other established industry standards includes

HTTP, XML, XML Schema, SOAP, and WSDL.

UDDI uses UBR, which is the UDDI business registry. UBR can be categorized as Yellow

Pages, White Pages, and Green Pages. The White Pages contains contact and general

information whereas the Yellow Pages group and divide information into categories, and the

Green Pages include the technical information like Web service details.

UDDI was proposed in August 2000, but in later years UDDI has lost some of its popularity

to other discovery mechanisms. The work was completed and closed late 2007, and there is

no longer anyone responsible for maintaining the UDDI registry. However, today the UDDI

system is preferred mostly inside companies due to support for design time discovery. One of

the drawbacks of UDDI is the centralized repository mechanism, which can affect availability

and scalability.

32

Web services Dynamic Discovery (WS-Discovery)

Web services Dynamic Discovery (WS-Discovery) is an OASIS [23] Service Discovery

specification. WS-Discovery characterizes a multicast approach to find Web services over a

local network. As a matter of course, probes are sent to a multicast group, and target services

that match return a response straightforwardly to the requestor. The protocol characterizes the

multicast suppression behavior if a discovery proxy is accessible on the system to scale to a

large number of endpoints. To limit the requirement for surveying, target services that desire

to be discovered send a declaration when they join and leave the network.

According to OASIS [23], WS-Discovery defines two modes of operation, an ad-hoc mode,

and a managed mode. Discovery proxy is an optional feature of the ad-hoc mode but a

necessary feature of the managed mode. The reason for implementing a discovery proxy is to

increase the scalability of the system and to increase the reach of the services beyond the local

or ad-hoc network.

Electronic Business Extensible Markup Language (ebXML) [24]

Electronic Business Extensible Markup Language known as ebXML or e-business XML

provides a technical framework through which companies can communicate and exchange

data via the internet. A business-to-business XML based framework mostly which has a

specific set of specifications for enabling modular frameworks. It is a registry-based solution

to store information about available Web services on a network and provide Web service

consumers in the network with information about these services. SOAP, WSDL, and UDDI

alone were not sufficient to deal with business services interaction. Because WSDL does not

address business collaboration and the UDDI repository lacks support for business objects.

ebXML can address the needs of business processes and their involved parties and roles.

ebXML also supports security, reliability, and quality of service requirements and exchanging

XML business collaboration documents.

EbXML defines its registry structure through which service consumers can access XML

documents that contain information about service providers. These standards build upon the

existing standards such as HTTP, TCP/IP, MIME, SMTP, FTP, UML, and XML.

In SOA, the set of running service instances changes dynamically within the micro services

application. In micro service application, if a client wants to make a request to a service, it

33

must use a Service Discovery mechanism as instances dynamically assign network locations.

Depending on the infrastructure and also for micro-service architectures, the mode of

operation and purpose Service Discovery can also be categorized in several ways, such as

design time and run time, static vs. dynamic, centralized vs. distributed infrastructure, and

client side vs. server side discovery patterns.

Static discovery: mostly done in the design time can be done only once by maintaining a

fully static configuration which can occasionally be updated.

Dynamic discovery: can be a system or software which can dynamically identify and select

services during the operation. To maintain consistency and avoid service interruption,

dynamic service registration and discovery become much more important.

According to James Philips [5], static Service Discovery is okay when it is a small

application, but also response time will be affected. For the medium to large and large to huge

infrastructures, it becomes hard to maintain and respond to time problems using static Service

Discovery.

When it comes to run time and design time, Service Discovery approach there is not like that

type of thinking, it is most proper phrased as machine oriented or human driven.

Run time discovery usually means that software that is running has some configuration to get

the IP address of remote services by sending out probes on the network. Use cases in need of

run time discovery such as Operator-driven Integration, Moving Target Defense for a cyber-

attack or administrative setup or recovery. Run time discovery can be made in the context of

software that has been installed on a machine. The mechanism of Runtime Service Discovery

runs the scope from sophisticated and automatic service inquiries across the network to asking

some “central repository” by poking the system administrator and asking the information

again about the IP address.

Machine Oriented

The mechanism is to get the IP address or any other configuration information and plug that

information into some running software.

Design time means where the service is already known and configured during the design time.

Usually, the developer, when searching for services or assets, includes them while developing

34

the application. During application development, design-time Service Discovery is better

described as locating and consuming professional profiles and service interface specifications.

In this method, developers go through to find technical documentation which allows them to

write the software they are working on. Discovering means something searches the internet or

intranet, finding a resource to use accordingly.

There are also two types of Service Discovery patterns: client-side discovery and server-

side discovery [25]. Centralized and distributed infrastructure is the basis for using a service

registry which can also be covered by client-side and server-side discovery pattern for Service

Discovery mechanisms.

The Client-Side Discovery Pattern

In client side discovery patterns [25], the client is responsible for obtaining the network

location of available service instances and manages load balance across them. The client

requires a service registry which is a database of available services where queries can make.

A load balancing algorithm is used to select one of the available service instances and to make

a request then.

This pattern has several benefits and drawbacks. The pattern is direct, and there are no

moving parts except for the service registry. Also, the client is aware of the available services

which can help to make intelligent, application-specific load balancing decisions such as

hashing consistently. The client is directly connected with the service registry which is one of

the drawbacks of this service discovery pattern. We must implement client-side Service

Discovery logic for each programming language and framework used by service clients. An

example of client-side discovery pattern is Netflix OSS, whereas Netflix Eureka is a service

registry. It usually provides API for managing registration and querying instances. To load

balance requests across the available service instances, Netflix Ribbon, which is an IPC client,

works with Netflix Eureka.

35

The Server-Side Discovery Pattern

In a server-side discovery pattern [25], the client requests a service through the load balancer.

The load balancer then queries the Service Registry and routes each request to an available

instance. In the client side discovery pattern, registration and deregistration of service

instances involved with the service registry are noted. One benefit of this kind of pattern is

that the client does not need to know about the details of the discovery. A simple request can

be made by the client to the load balancer. This also reduces the overhead of implementation

of discovery logic for each programming language and framework used by service clients.

The drawback of Server-side discovery patterns involves setting up and managing highly

available system components if the load balancer is not provided by the deployment

environment.

The Amazon Web services (AWS) Elastic Load Balancer (ELB) is an example of a server-

side discovery router. A client can make requests which can be HTTP or TCP via the ELB

using a DNS name. An ELB is mostly used to load balance external traffic from the Internet.

Also, it can be used to load internal balance traffic to a virtual private cloud (VPC). An ELB

can load the traffic among a set of registered Elastic Compute Cloud (EC2) instances or EC2

Container Service (ECS) containers. No separate registry is used. EC2 and ECS can be

registered to ELB.

As a server-side discovery load balancer, HTTP servers and load balancers such as NGINX

and NGINX Plus can be used. A more recent execution could progressively reconfigure

NGINX Plus utilizing HTTP API.

Some deployment environments such as Kubernetes run a proxy on each host in the cluster. A

client directs the request through the proxy to make a request to a service. The proxy uses the

hosts IP address and port information. The proxy plays the role of server-side discovery load

balancer which forwards the requests to an available instance running somewhere in the

cluster.

36

In [26], a survey of Web service Discovery mechanisms draws upon the analysis of several

approaches and methods to discover Web services. It is as follows in table 4:

Approach Proposed by Advantages Disadvantages

Context-Aware Web

service Discovery

Wenge rong and Kecheng

Liu

Optimizes request, result,

and personal profile. The

method is better than

traditional keyword-based

methods

It is hard to model context

for all the applications

Publisher Subscribe

Model

Falak Nawz et al. Minimum time for Web

service Discovery

Adding overhead to

develop and maintain new

components

Service Request

Expansion

A.Paliwal et al Combinational approach

of ontology and Latent

Semantic Matching which

makes method more

accurate

Computation cost of

Latent Semantic Index is

high

BPEL Process Ranking D. Grigori et al. If exact Web service is

not found, approximate

Web service can be

provided to the user

It is purely based on

syntactic matching and

semantics of user request

is not considered

Web service Indexing B. Zhou et al. Since index are used, it is

fast and easy to retrieve

objects

Indexing process is

expensive, and it needs

additional space

Structural Case-based

Reasoning

Georgios Meditskos and

Nick Bassiliades

Retrieval of Web services

using structural

information of OWL

ontologies

Semantic Case Based

Reasoning (SCBR)

measure makes this

method computationally

expensive

Agent-based Discovery

using QoS

T. Rajendran and P.

Balasubramanie

Separate agent is used to

ranking the Web services

which makes method fast

Business specific and

performance specific QoS

for each Web service

needs to be supplied

Collaborative Tagging

System

U. Chukmol et al. Labels associated with

each Web service is used

which results in efficient

Web service Discovery

Porter Stemming

algorithm to extract term

vector is used which is

computationally

expensive

Table 4: Provides Comparison on Web service Discovery techniques [26]

37

2.5 Related Work

To achieve success in the current project, it is crucial to have a thorough knowledge of similar

work. Researching and investigating related work can save much time by learning and reusing

knowledge and work, rather than reinventing the wheel. This section discusses related work,

attempting to draw parallels between this works to the current thesis. In this section, some

open source Service Discovery standards will also be discussed to get an overview of the

central concepts of this thesis.

There are a case study and report called “Pervasive Web services and Invocation in Military

Networks” [27]. This report presents thorough analysis and implementation of different Web

service optimization techniques as well as a review of most common Web service Discovery

standards and how they perform in military settings. In this report, several challenges related

to Service Discovery in dynamic environments, such as military tactical systems, have been

addressed. One of the issues is the use of registries in low bandwidth networks and mobile

environments. This report also presents a hybrid solution of both using registries and not

using registries in a client–service model as a fallback.

In chapter 6, a detailed overview of pervasive Service Discovery is presented, with the answer

on how to solve it. This report also proposes suggestions for using different discovery

mechanisms per level by considering the differences between the operational levels in the

military network.

The three primary approaches to achieving pervasive discovery across multiple domains are

Adaptive Service Discovery, Layered Service Discovery and Service Discovery Gateways.

Adaptive Service Discovery is using one Web service Discovery between and in all domains.

All applications must be able to interact with the same protocol. The protocol has to be

compromised for each particular network, to ensure optimal function. The capacity of data

should be minimized while using a small capacity system, and a filter is needed for this task.

Layered Service Discovery is where the network can utilize the protocol that best suits the

given network, but all networks will have to be connected using an overlapping protocol that

receives and pushes data to all attached to the connected protocols.

38

Service Discovery Gateways can be viewed as an intermediary of the previous two. Each

network will utilize the network protocol that is best suited for the network topology and

capacity. A gateway setup is responsible for maintaining data passing through based on a

network.

After evaluating all three options, comparing several factors like performance, scalability,

reliability, and ease of use and implementation, service gateway is more comprising than the

other two. A repository has to be used as storage of information when services are transferred

between different domains and discovery mechanisms.

Another work related to the thesis is Federated Service Discovery [28]. In this report, a

federation mechanism was introduced that could enable two or more different Web service

Discovery mechanisms to communicate over a WAN like the Internet. In that project, a

repository was implemented which could store information about Web services. The project

aimed to focus on SOAP Web services only. In chapter 5 of the report [28], shortcomings and

future work scope of that project discussed. In conclusion, it has been described that the

project worked as intended and tested accordingly. However, there were some scopes also

addressed which can help to make the project work as full-fledged. The scopes are described

as follows:

To achieve full Federation, a feature can be added to enable retrieving data from the

connected Web service Discovery mechanism.

In addition to the automation of service registration through Service Discovery mechanism,

services should automatically appear in the repository.

More Web service Discovery mechanisms should be addressed, not only SOAP Web services.

It used AMQP as the WAN mechanism, but multi-brokered topology setup can be considered

for redundancy.

Through the use of report [28] and future work discussion, it is easier to decide what to focus

on and address the main issues accordingly in this thesis. This will save a lot of time and

improve the project.

39

In new micro-services based architectures, applications are not deployed as a set of distributed

components. In this kind of architecture, it is important to configure and manage the various

applications across multiple instances running in multiple containers.

In SOA, SOAP has the previously mentioned UDDI, ebXML, and WS- Discovery standards

for discovering and connecting with services via service description. But In RESTFul-based

Web services, no specific industry standard for Service Discovery mechanisms exists.

Different solutions are prepared and used based on the context of the application and

platforms.

There are several open source solutions available for Web service Discovery across both

cloud and non-cloud platforms. In this section, some of them will be openly discussed to

understand about how they work. Some features considered are consistency, storage, runtime

dependencies, and client integration options.

Some strongly consistent projects used as coordination services but also used for service

registries as well include Zookeeper, Doozer, and Etcd. These will be discussed later.

Also available are some interesting solutions specifically designed for service registration and

discovery. Airbnb’s SmartStack, Netflix’s Eureka, Bitly’s NSQ, Serf, Spotify and DNS and

finally SkyDNS are examples of such kind of projects.

Any service registration and discovery solution also have some development and operational

aspects to consider:

Monitoring: The consequences of the failing of the service operation if it is unregistered

immediately, after a timeout, or by another process. Services are usually required to

implement a heartbeat to ensure availability, and efficient service failure needs to handle by

the client.

Load Balancing: Load balancing is necessary to ensure achieving scalability of systems and

to serve several thousand requests. If there are several instances and the number of requests is

too high, then load balancing is the only smart solution to handle the situation.

Integration Style: Language independence is an important aspect of any Service Discovery

mechanism. Integration must be able to support most languages.

40

Runtime Dependencies: Compatibility check of the environment of the requirement of JVM,

Ruby or something that is incompatible.

Availability Concern: Not a single point of failure should be present in a Service Discovery

mechanism, which is why nowadays most of the system is aimed towards support in a cluster

environment.

Zookeeper

Zookeeper [29] is a centralized service for maintaining configuration information, naming,

providing distributed synchronization, and providing group services [30]. It is written in Java,

is strongly consistent (CP) and uses the ZooKeeper Atomic Broadcast (Zab) algorithm

[31] protocol to coordinate changes across the ensemble (cluster). The protocol manages

small updated to the replicas and is also responsible for selecting the leader in the ensemble. It

also synchronizes the replicas and administers the updating of transactions to be broadcast

when getting better from a crashed state to a valid state.

Zookeeper typically needs to run with three, five or seven members in the cluster. Specific

language bindings need to be accessed which typically reside between services and the client

applications.

An ephemeral node under a namespace is used when registering a service. A backend service

registered with its location information when a client is connected, and ephemeral nodes only

exists that time. Any kind of failure or interruption causes the node to be disconnected from

the node hierarchy.

Services appear in the Service Discovery by the listing and namespaces. Clients are able to

see all registered and available services. Clients also get notifications of new service

integrations and unavailable services. Load balancing and failovers need to be handled by the

client application.

The Zookeeper API’s hard to use, and language bindings might have subtle differences that

could cause problems. For JVM based language, the Curator Service Discovery can be

utilized. Zookeeper is a consistent pattern system so when a partition occurs, some of the

client applications will not be able to register new services or find existing registered services,

even those that functioned properly before partitioning.

41

Doozer

Doozer [32] is a consistent, distributed data store. This is an open source implementation

written in GO. Doozer uses Paxos to maintain consensus. This project around only for few

years but staged for a while and now 160 forks only have been made. Unfortunately, this

makes it difficult to know whether it is suitable for production use.

Doozer needs to run with three, five or seven nodes in the cluster. The client needs to bind

with specific language to access the cluster and integration is embedded into client and

services.

Doozer does not have any ephemeral nodes like Zookeeper. So, service registration is not as

straightforward. Under a path, a service can register itself, but for unavailable services, it

won't help to remove automatically.

This issue can be addressed in several ways. An option might be to add a timestamp and heart

beating mechanism to the registration process to handle expired entries during the discovery

process, or implementing another cleanup process.

In service Discovery of Doozer, all the entries can list under a path like Zookeeper and

changes to the path then monitored. During registration, if a heartbeat mechanism and time

stamp use, any expired entries during discovery can ignore or delete.

Doozer also a consistent system. When a partition happens, it has same consequences like

Zookeeper.

Etcd

Etcd [33] is a highly available, key-value store for shared configuration and Service

Discovery. Etcd was inspired by Zookeeper and Doozer. It is written in Go uses Raft [34] for

consensus and has an API based on HTTP and JSON.

Etcd also typically runs with three, five or seven nodes in the cluster. Clients must have a

language dependent binding or implementation using an HTTP client.

In order to ensure that the key remains available a key TTL along with heart beating

mechanism from the service need to use in service registration of Etcd.

42

If the update of the key’s TTL failed by a service, then Etcd expire it. Clients need to handle

the connection failure during service unavailability. Clients also need to look for another

instance.

In the service discovery mechanism, a directory has the listing of all services and changes are

monitored in that directory. As the API is HTTP based, client application keeps a long-polling

connection with the cluster.

Since Etcd uses Raft, it should be a strongly consistent system. Raft protocol utilizes a leader,

and all client requests are handled by that leader. However, Etcd also supports reads from

non-leaders using an undocumented consistent parameter which will improve availability in

the read case. During partition fail writes need to handle by the leader.

Airbnb’s SmartStack

Airbnb’s SmartStack [35] specifically tailored for service registration and discovery. This is

written in Ruby and a combination of two custom tools, Nerve [36] and Synapse [37] that

influenced HAProxy [38] and Zookeeper to handle service registration and discovery.

The Nerve runs as a separate process alongside the application and is a sidekick style process.

Nerve uses for registering services in Zookeeper. A monitoring endpoint is needed to get

registration. An end point /health exposed by the application, for HTTP services that Nerve

continuously monitors the status. The sidekick model helps to remove the need for a service

to interact with Zookeeper. Zookeeper binding night does not exist whereas that makes way to

provide support for different languages

Synapse is in charge of service discovery. This is also a sidekick style process, runs as a

separate process. A query has been made to get currently registered services in Zookeeper and

reconfiguration made with a locally running HAProxy instance. A local haproxy instance

always accessed while any clients need to access another service. The local haproxy instance

helps to route the request to the available service.

Synapse design helps to not depend on client side load balancing or failover and also it

simplifies the service implementation that contributes to being independent of Zookeeper and

its language bindings.

43

Like Zookeeper some registrations and discoveries in SmartStack may fail during a partition.

By keeping the snapshot before partition and use it after partition, the system may be able to

continue operation during the partition. The feature can improve reliability and availability of

the overall system.

Netflix’s Eureka

A middle-tier load balancing and discovery service of Netflix. There are also server

components as well as a smart-client that can use within application-services. The server and

client implementation are written in Java so the use case would be for the services to be any

JVM compatible language.

The server specified as Eureka [39] which is the registry of the services. To form a cluster,

one Eureka server is recommended to each availability zone in AWS. An asynchronous model

followed while the servers replicate their state to each other. That means each instance may

have a different picture of services at any given time.

The client component handles registration of the services. Services must incorporate the client

into their application code. During runtime, the client registers the services and sends

heartbeats to renew its states.

Service discovery from the smart-client retrieves the current registrations from the server and

caches the information about services locally. The client can periodically refresh its states and

also handle failovers and load-balancing.

Eureka serves availability over strong consistency. Eureka was designed to support during

failures that can operate under some different failure modes. During the partition of the

cluster, Eureka turned itself to self-preservation state. This feature helps services to be

discovered and registered during partition, and when it heals, the members merge their state

again.

Bitly’s NSQ lookup

NSQ [40] wrote in GO and provided an HTTP based API. NSQ is distributed messaging

platform and also real time. This is not a general purpose service registration and discovery

44

tool. A novel model of service discovery has been implemented in a nsqlookupd agent to find

nsqd instances at runtime for clients.

Nsqlookupd [40] is the service registry. The need instances are essential while in an NSQ

deployment. The client can interact directly with nsqd instances, but since run, time changes

can affect possible clients can also discover available instances by querying nsqlookupd

instances.

Each nsqd instance periodically sends heartbeat of its state to each nsqlookupd for service

registration. The state contains the address information and any topics or queries those they

have. Moreover, for discovery clients can make a query to each nsqlookupd instance and

merge the results.

The fact of this model is that the nsqlookupd instances do not know about each other. Clients

have the responsibility to merge the state returned from each stand-alone nsqlookupd instance

to determine the overall state. Because of each nsqd instance heart beats its state, each

nsqlookupd eventually has the same information can contact all available nsqlookupd

instances.

NSQ design is weak in consistent but highly tolerable during partition.

Serf

Serf [41] is written in GO which is a decentralized solution for service discovery and

orchestration. Serf is designed by a gossip protocol SWIM [42] which was intended to

address the unscalability of old style heart-beating protocols. Serf uses SWIM for failover

detection, membership and custom event propagation.

A single binary is installed on all hosts and run as an agent where all the nodes are joins and

create a cluster. As a client, it can discover the members in the cluster as well. A serf agent is

run to joins an existing cluster for registration purpose. The agent also uses custom tags which

can identify the role, IP, port. After joining to the cluster, other members will able to see the

host and metadata information about that host.

The Serf is run with the member's command for discovery which returns the current members

of the cluster. Depending on the member's output, all the hosts for a service based on the tags

can be discoverable.

45

Serf is a quite new project and is changing quickly. It is the only project discussed in this

thesis that does not have a central registry architectural style, which makes it unique. Since it

uses an asynchronous, gossip-based protocol, it is inherently weakly-consistent yet more fault

tolerant and available.

Spotify and DNS

According to Spotify, instead of using a newer, less mature technology a solution was built on

top of DNS. Spotify visions DNS as a “distributed, replicated database tailored for read-heavy

loads.”

For service discovery, Spotify uses the relatively public SRV record which is more

generalized MX records. To define a service name, port, protocol, priority, weight, TTL and

target host can be registered in this mechanism. Based on the information client can load

balance and discover services if needed. Service registration is a bit complicated and static as

Serf manage all zone files under source control. Some various DNS client libraries and

custom tools are used for discovery.

They also run DNS caches on their services to minimize load on the root DNS server.

They mention at the end of their post that this model has worked well for them, but they are

starting to outgrow it and are investigating Zookeeper to support both static and dynamic

registration.

SkyDNS

SkyDNS [43] is a moderately new project that is written in Go, uses RAFT [34] for consensus

and also provides a client API over HTTP and DNS. It has some similarities to Etcd and

Spotify’s DNS model and uses the same RAFT implementation as Etcd, go-raft.

SkyDNS servers are clustered together and using the RAFT protocol, elect a leader. The

SkyDNS servers expose different endpoints for registration and discovery.

For service registration, services use an HTTP based API to create an entry with a TTL.

Services must heartbeat their state periodically. SkyDNS also uses SRV records but modify

them also to define service version, environment, and region. As service discovery, the client

procedures DNS and retrieves SRV records for the services which need to contact as service

46

discovery. Load balancing and failover need to implement by the client. Caching and

refreshing service location data periodically.

For dynamic service registration, SkyDNS do not depends on another external service but can

provide its solution.

Overall, this is an interesting mix of old (DNS) and new (Go, RAFT) technology and

expected to see a lot of project evolvement.

Argo WS

The Argo Runtime Service Discovery is a straightforward and robust protocol without the use

of the central or federated registry. Argo mainly for the discovery and location of services on

a wide-area network without the utilization of a central or federated registry [44]. The primary

use case is to communicate configuration information – such as IP Address and Port – to

service consumers. The technology and architecture behind Argo are not novel and have been

in common use for decades (such as Bonjour [45] and WS-Discovery).

 Argo WS is similar to Bonjour (mDNS), WS-Discovery and Simple Service Discovery

protocol (SSDP), but the primary use case is the same. The main alternative use case for the

Argo protocol is Network-Based Moving Target Defense against cyber-attacks.

Argo, like the rest of the protocols, is based on IP Multicast. Specifically, in the multicast to

get the matching services (i.e. client configuration information) out of network a query has

been sent. For like other existing SLP’s, the similarity of Argo ends there.

Argo's architecture and implementation are geared toward the following things (and by

implication, other SLPs do not do these things):

Open Source: It is open source and easily adaptable

Long-range (wide-area network routable): Avoid protocol-specific gateways if at all

possible.

Staged adoption: Flexible topological location of the Responder for service advertisement.

Network efficient: Argo is unreliable and slow, which is a good thing, especially for a long-

range protocol.

47

Service Query (payloads as simple as possible): Provide the ability to ask for any

application protocols

Service Description (payloads as simple as possible): Provide broad adoption potential for

the universe of application protocols

Expandable – Argo is scalable in the context of scalability.

Argo is a dedicated type service discovery tool and has a particular purpose to operate. Argo

aimed to work for military work and based on AP patterns. Argo is not in use with cloud

platforms.

Consul by Hashicorp

Consul [46] is a tool for discovering and configuring services with infrastructure and has

multiple components. Some key features of Consul followed as:

Service Discovery: A service from the clients of Consul can provide an API which can use

by other clients of Consul to discover providers of a given service. Using either HTTP or

DNS, applications can easily find the services they depend upon.

Health Checking: Consul provides health checking service which can be utilized by clients

to get status either about the application or local node. Like if the local nose is out of memory

or high usage of memory. To monitor cluster health, that information can be used by the

operator.Also for service discovery components as to know the route is not from hosts that are

unhealthy.

Key Value Store: Applications can take advantage for any number of purposes of Consul’s

hierarchical key/value store. Purposes can be dynamic configuration, coordination, leader

election and more. An HTTP API makes it easy to use.

Support for Multi data center: Consul provides the support for multiple data centers which

means not to worry about any additional layer of abstraction for growing to different regions.

Consul is designed to work for distributed application and also worked across the Cloud

environments. Consul makes handy for DevOps and developers as well.

48

Table 5 presents an overall overview of the discussed open source tools, grouping them based

on their Type, Availability, Consistency, Language, Dependency, and Integration.

Name Type AP or CP
1
 Language Dependencies Integration

Java WS

Discovery

General CP Java JVM Client Binding

Zookeeper General CP Java JVM Client Binding

Doozer General CP Go Client Binding

Etcd General Mixed Go Client Binding/HTTP

SmartStack Dedicated AP Ruby Haproxy/Zookeeper Sidekick(nerve/synapse)

Eureka Dedicated AP Java JVM Java Client

NSQ

(lookupd)

Dedicated AP Go Client Binding

Serf General AP Go Local CLI

Spotify/DNS Dedicated AP N/A Bind DNS Library

SkyDNS Dedicated Mixed Go HTTP/DNS Library

Argo-WS Dedicated AP JAVA JVM Client Binding

Consul General CP Go Client Binding

Table 5: Overview of Open source Service Discovery tools

1
 In the table 5 AP means Availablity pattern and CP means Consistency Pattern

49

2.6 Requirement Specification

Based on the previous sections and discussions about currently available and relevant

technologies, a list of system specifications will be presented in this chapter. This thesis aims

to establish a setup which can contain several platforms hosting different Web services. One

single Service Discovery mechanism is not enough to achieve the goal of this thesis because

there are several factors like availability, consistency, security, automation, and

interoperability which have to be considered when choosing the Service Discovery

mechanism which best serves the thesis purpose. The focus of the thesis to build a proof of

concept which can answer the following research question stated in section 1.3 in chapter 1.

Is it possible to create a common platform to provide support for Service Discovery in hybrid

environments?

The absolute requirements which should be fulfilled to support this research question form the

basis of this thesis. Table 6 represents the primary needs of this thesis:

Requirement Description

Req 1 A SOAP Web service which can provide and hosted on a cloud platform can register on

the service discovery mechanism and discoverable from the cloud platform.

Req 2 A SOAP Web service can register to the service discovery mechanism, and discoverable

from a Non-Cloud platform also be discoverable.

Req 3 A RESTful Web service can register and discoverable from the cloud platform.

Req 4 A RESTful Web service should register and discoverable from Non-cloud environments.

Table 6: List of primary requirements

50

According to requirements from table 6 stated above of thesis SOAP and REST Web services

need to able to discover which organized in a hybrid environment both local and Cloud

platform. By discussion on section 2.5 and mapping the requirements listed from table 6 an

overview of supported features represented following in table 7.

Name SOAP REST Native(Non-

Cloud

Environment)

 Cloud Environment

Java-WS

discovery

Yes No Yes No

Zookeeper Yes (SOAP over HTTP) Yes Yes
2
 No

Doozer Yes (SOAP over HTTP) Yes Yes
1

No

Etcd Yes (SOAP over HTTP) Yes Yes
1

No

SmartStack No Yes Yes No

Eureka No Yes No Yes

NSQ (lookupd) Yes No Yes No

Serf Yes No Yes No

Spotify/DNS Yes Yes Yes No

SkyDNS Yes Yes Yes No

Argo-WS Yes No Yes No

Consul Yes Yes No
3

Yes

Table 7: Overview of Open source discovery tools by context of thesis

To fulfill the goal of this thesis, it can be visible from table 7 that one single service discovery

mechanism is not enough for serving the requirements listed in table 6 without tailoring. In

that case, pervasive service discovery mechanism can use to achieve the goal of this thesis.

For fulfillment of the goal of the thesis, a prototype needs to design and implement for proof

of concept of the pervasive service discovery mechanism.

2
 Zookeeper, Doozer and etcd needs 3 to 5 nodes set up in the environment.

3
 Consul can be used in local environment but it needed minimum 3-5 instances for fully operational.

51

The specification in table 8 forms an essential part of the task and the requirements to the

finished projects. The specification table can be seen below contain three rows, specification

name, a short description and the importance for the given specification.

 Name Description Importance No

User Interaction

Interface

Implementation of a UI that can be easily implemented

by client without having prior knowledge of application

Medium 1

Expandability The addition of new features and new frameworks should

be easy to integrate.

High 2

Scalability It should be operable for multiple instances. High 3

Automatic Servers and services integrations must be easy to handle.

After integration of new server or service should be

available to the client automatically.

High 4

Security Proper authentication must be maintained. High 5

Easy integration Integration must be simpler to client and infrastructures. High 6

Ability to meta

information

Provides functions to add extra information about

services to the system

Medium 7

Admin Settings An admin panel to handle the manual settings High 8

Documentation Proper documentation necessary according to standards

which can be understandable to other developers

High 9

Information sharing The user should have right to which services to share and

which not to, based on service type.

High 10

Discoverability Web services should be discoverable from a local

network or any cloud network.

High 11

Modularity The system should consist of several modules so that they

can be easily changed or added if needed.

High 12

Maintain SOA principles Strive to follow the SOA principles in the project, making

it easier to maintain, adapt and develop for future use.

Following SOA principles make the system robust and

increases the performance of the system.

High 13

Heterogeneity Web services mixed SOAP and REST in this project High 14

Hybrid platforms The environment set up of the project should be mixed

with a local noncloud network and a remote cloud

network

High 15

HTTP and XML

supported

Both XML and HTTP message transportation should be

supported.

High 16

Language independent Although the project is aimed to be made in java, the

services made of node.js, java, c++, .net should still be

supported

High 17

Notification Engine A notification engine should be there to notify if any

service goes down or is not available.

High 18

Monitoring Continuous monitoring should be there to health check

the connection between service and servers

High 19

Load balancing Load balancing feature must be there as it is intended to

have scalable features.

High 20

Low response time Response time should be less than 10 seconds High 21

Zero Down time System should have some fallback plan if it goes down High 22

Table 8: List of System requirement specification

From the overview of the open source discovery tools given in table 7, it is clear that none of

the discussed discovery mechanisms can support both REST and SOAP service discovery

across both cloud and non-cloud environments. It is also clear that Consul is the best

52

candidate, as it supports everything except non-cloud deployments. That leaves two options

for supporting service discovery in hybrid networks:

1. Combine multiple mechanisms and bridge between these

2. Modify an already existing mechanism to ensure that it supports all service types and

environments

Due to the fact that Consul already supports the majority of the requirements from table 8, in

this thesis, we opt to investigate how we can support service discovery using method number

2.

53

3 Design

This chapter derives the specification, represents planning for the system which meets the

specification. It serves as a blueprint for the execution of the experiment and interpretation of

its results. The design is a process where we create and shape artifacts that solve problems. In

software, for example, design means crafting software that does jobs users want to be done.

Software designers intentionally support practices, worlds, and identities of the software

users. According to Peter J. Denning [47], the latest trend for finding better solutions to

problems is the Design thinking. Computational thinking combination with design thinking

deals some real possibilities for improving software design. Design principles in computing

guide us to ways of building machines whose behaviors are useful and meaningful in their

user communities [47]. The design based on the research goal and hypotheses that support

and a matching research design is then selected. Following that, the details of the

experimental design are discussed, including its parameters, variables, planning, objects and

procedures for data collection and analysis. Finally, an evaluation is made on the validity of

the experimental design. Case studies are well suited to capture and describe how software

processes occur in real-world settings, what kinds of problems emerge, how they addressed,

and how software engineering tools, techniques, or concepts are employed.

Based on the requirements specification derived in chapter 2 a project plan has been defined,

and small goals have been set in each sprint, developed and tested functional part. This

process maintains the project goals at the end.

In chapter 2, technologies related to this thesis have been discussed which are the primary

artifacts of this research. In chapter 2, an overview of available open source standards is

provided. From Section 1.3 of chapter 1 the research question was stated as follows:

Ques 4: Is it possible to create a common platform to provide support for service discovery in

hybrid environments?

To achieve an answer to the above question a goal in this phase is to design an environment

which contains different types of Web services deployed in several different environments

and try to discover those Web services in the same manner.

54

Same Network

3.1 General Design

The thesis divides into two parts in the design phase: First is the environment set up, followed

by the Web Service Discovery Mechanism application design.

Figure 3: An overall view of the project design

A preliminary overall view with building blocks is presented in figure 3. The focus is the Web

Service Discovery Mechanism and also the setup of environments. The Web Service

Discovery mechanism can have a composition of open standards which are going to discover

Web services from any environments. To meet the requirements number 14 and 15 from the

specification list, two different cloud platforms from different vendors. There is also a setup

of two single local machines with two different Operating Systems in the same LAN. The

goal is to discover different Web services which hosted on various platforms in the same

manner. This is done by the Web Service Discovery mechanism, which is represented by the

middle box in figure 3.

Local Machine with

Windows OS

Local Machine with

Linux OS
Cloud Platform 2

Cloud Platform 1

Web Service Discovery

Mechanism

55

Figure 4 presents a graphical overview of the central components of the design, which is the

“Web Service Discovery Mechanism” in this thesis.

Figure 4: Overview of the Web Service Discovery mechanism

In the box, three separate blocks constitute the essential parts of this service discovery

mechanism: An interface, an integrator, and a server connector. The Interface is a simple

interface which has some basic functionality. The Integrator captures the client request and

validates according to request type. A Server Connector can route the request based on the

output of the integrator. All of the modules related to the design are discussed further in the

following sections.

Service discovery tools manage how services and processes in a cluster can find and talk to

each other. They involve creating a directory of services, registering services in that directory,

and then being able to look up and connect to services in that directory. From the background

analysis in chapter 2, we found that a single open source service discovery mechanism is not

able to meet all the requirements on the setup of figure 3. The pros and cons of different

service discovery mechanisms can be found in table 4 and 6. An adaptive pervasive service

discovery mechanism can be introduced by adding some features and customizing the

solution according to need. According to [5], there are four typical components of service

discovery: Where is the thing? What are the IP and port? How do services connect?

Moreover, a health monitoring piece to detect the functional server.

Interface Integrator
Server connector+

Interface

Web Service Discovery Mechanism

56

Principal facts of Web Service Discovery projects are:

 Services need to send a notification to each other about the status and can supply

connection information.

 A periodic update is necessary to the records to strip out old information.

 An easy integration with application is mandatory which mostly use standard

protocol like HTTP or DNS

 Notification mechanism on services which are starting and stopping must be

integrated.

For supporting these features as well as our requirements stated in chapter 2, Consul is chosen

as the backend, with moderation and customization with our set up as described below.

Why Consul?

Consul [46] is a newer protocol by HashiCorp [48]. A short description of Consul was given

in chapter 2. It is a general purpose distributed Web service discovery tool with a key value

store. Consul has the features of service discovery, monitoring, load balancing, and health

check and multi data center supported. This meets requirements 2, 13,18,19,20 specified in

chapter 2, section 2.6. Consul follows SOA principles which are also requirements

specification of this thesis. The key value store mechanism of Consul helps to integrate

quickly with the other application.

According to figure 3, this thesis aims to have a platform set up with a combination of cloud

and the non-cloud environment. Consul is also suitable for cloud environment like Amazon

Cloud, and non-REST endpoints are supportable via DNS. In the Consul a service can be

registered by service description or a direct call to an HTTP API.

Consul has several benefits and fits for this thesis as because of integrated DNS, ease of use

with Docker and clear documentation.

57

3.2 Workflow model

Figure 5: Basic flow model of Web service Discovery mechanism

For requirements number 6, 12, 13, 14, 15 specified in chapter 2, the application is designed

based on modular form. There are three modules that either work together or independently to

maintain the simplicity of integration with any other project. Modular based design is

preferable because components can be modified or changed without hampering the other

modules so that changes have only minimal impact. The application design works in two

parts: The first part considered as the Frontend part and the second part is the Backend.

According to figure 5, the basic workflow can describe as follows:

1. A client can make a request, and it comes to the application into the User Interface.

2. The request flows down to the Integrator module based on service requests. There can

be three types of requests available to the Integrator module:

(a) The request can have authentication to access the Interface of Web service discovery

mechanism.

58

(b) The request may be to show the available services registered in the Service discovery

mechanism.

(c) The request can be to connect with the Web service discovery mechanism for

notification to get new services.

3. Based on the type of request, the Integrator fetches the information from the Server

Connector module.

4. Reply from the Server Connector module response is sent back to the Integrator.

5. Integrator module processes the response and sent a reply to the client accordingly.

The workflow model shows the basic flow of request in the Application. To meet the

requirements 18, rather than that there also some background requests served through the

User Interface to the client. Figure 6 presents the workflow between the client request to

Integrator module. Background application can add the new service Information, update

information as needed and delete the offline Service information.

Figure 6: Client- Application request workflow

59

The Integrator part of the application is an essential feature which implements Consul API

for service discovery. To comply with requirements 1, 3, 11,14,16,20 from chapter 2,

integrator has a utility class like adapter which supports both SOAP and REST request.

The integrator can persist all Web service information with type and category. The integrator

also holds a Server Configuration file. The integrator of the application is responsible for:

 Connecting and Updating Server information in the Server Configuration file

 Maintaining the connection with Server connector

 Implementing Consul services within the application

 Notification processing and sending to the User Interface module

 Generation of Access Token and ID to the client

 Authentication and validation maintenance of Client and Server

Integrator module has a ping mechanism to check the server status, so a notification engine

has been set up for better monitoring.

Server Connector is the final module of this application. This module also represents a

simple GUI interface for management manually to comply with requirement no 4,5,7,8.

Server Connector UI interfaces are responsible for manual interaction with following jobs:

Add New Server Information

According to figure 5, the application has a setup of working with heterogeneous servers so

Servers information can be added to the admin panel through this interface. For dynamically

maintaining the application and increasing the usability. This also sends a request to update

the Server Configuration into Integrator module.

60

Delete unusable Server Information

Unused server information can be deleted by this function. In this application, platforms are

also considered so server which is not actively deleted from the configuration and update

server configuration information accordingly.

Update Server Information

Also, can update existing server information if needed. For example, if any server needs to

reconnect with the application. As all applications considered for this thesis is distributed

manner any kind of change of server information like Port, IP and other metadata information

can update through the application.

Push notification

This is the mechanism where information about servers’ status is sent to the Integrator. And

also new service information which added to the server is also sent to the Integrator module.

Servers are integrated with the application by connecting accordingly. The Load balancer

feature of has been used while capturing requests and deliver the request. The Integrator

module gets connected with a connector to monitor the server status and health check. The

Server Connector also has a notification engine for notifying about server status to the

Integrator module and updates the server configuration file. The Integrator module can query

service information from the servers and displayed them through the User Interface. Figure 7

represents the server connector interface:

Figure 7: ServerConnector is the interface between Servers and Integrator

61

Workflow of Server Connector with Integrator module as follows in figure 8:

Figure 8: Server Connector workflow diagram

The next chapter will discuss more in detail in Implementation of the design. Chapter 4 also

analyzes the evaluation and testing of this application.

62

4 Implementation & Evaluation

This chapter presents the Implementation and Evaluation of the design. The first section of

this chapter addresses the details of this project with application development. The second

part of this chapter represents the testing and evaluation of the design and implementation.

4.1 Implementation

The implementation matches the design described in chapter 3, although some minor changes

have been made during development. In this section, the detailed implementation is discussed

to get an overview of the application development.

According to figure 5 in chapter 2, the application has been set with three parts: Interface,

Integrator, and Server Connector part. All the implementation has been done in Java

language.

Consul is written in the GO language, but it has a Java library which can be used as an

integrated library with the application; this feature is very much applicable for the thesis. By

modification and by using it as a library of this thesis project it can be used to work with

small scale. In this project, Consul Interfaces and methods are implemented and use Consul-

HTTP client in development.

As Consul is recommended to use with at least 3-5 servers [46], so Docker [49] has been used

to containerized this modular application services and fit for this project and run from a single

server.

The Model view controller pattern follows to structure the code of the application. In the view

package, two User Interfaces have been created; one for the Application client interaction and

another one for Server Connection management. In the model, package service models have

been introduced, for example, the Web service class, Server class, and some helper entities.

In the controller, the package includes the Integrator part of the Consul Package. The Consul

Discovery package has been added as a library and included with the application for better

management. An authentication module also has been included in the integration module to

validate the client’s access id and token. The User interaction interface has a dashboard for

viewing the status of the services. New service integration in the server has sent an auto

63

notification to the Client from the system. Client interaction user interface can be used to

update client information and the subscription also.

In the front end part of this application, a simple Interface was implemented with some basic

functionality for the Client. The client can login with a token which has been created earlier.

If the client wants to connect, authentication gets done by access token and ID. In the user

interface, a client can get notifications of new service integration, edit profile and can see a

dashboard of all available services. The client can choose information what to share and what

not. When a client requests to connect with the integrator backend part, the integrator API

sends an access token and ID to the client. This can maintain the secure interaction between

the Client Request and Application. The client can access the UI by that token and ID to

navigate the services of the application. A simple OAuth [50] protocol and login system has

been used in that case. OAuth2.0 has several open source implementation like OpenID

connect [51] . OpenID Connect has the feature of interoperability, Security, Ease of

deployment, and flexibility. OpenID Connect is designed to support native apps, mobile

application, and Web-based applications. OpenID connect uses a simple JSON/REST based

protocol and has a system level API to interact with the machine to machine implementations.

OpenID connect defines a discovery [52]and a client registration [53] protocol. A library has

been added to support OpenID connect in this application for authentication. During

implementation, a simple user interface has been made to work with.

Client Interface mock has been shown in figure 9 below.

Figure 9: User interface mock

64

The Server Connector Interface can add new server information, update existing server

information and delete the server. The Server Connector adds the server with Server name,

URL, authentication ID and token. The Delete server operation can then be done by

presenting the serverID. This interface can also generate a notification and send a ping at

regular intervals to find out about the server status and push notifications on the basis of that.

This maintains some core functions defined in the server connector backend.

Web Service Class

Figure 10: WebService class

In the Web Service class in figure 10 there is a service name variable, which represents Name

of the Service Name, Host Name is host URL, port details of Web service, type represents the

Web Service type, key is the string value of storing key which is the indicator of types of Web

service, and there is also a Boolean variable which represents the status of the Web service.

The server configuration file, which is maintaining information about how to connect with

different servers, can be a JSON or XML file. It helps the Server Connector module to

connect to the servers and to fetch information from the server. When we invoke GET API to

display all the servers connected it returns a JSON string.

This is a simple application that is easy to integrate. The model of the application mainly

contains the Server Configuration and Web services information. An Object Mapper is used

to map the JSON values to the model. A Utility class also has been defined for handling some

validation and setting.

The Integrator implements the Consul Service discovery mechanism and also adds some

external features. Appendix A describes Consul and its working principles.

The Integrator module uses Consul which deployed using Docker shown in figure 11. In

appendix B, Docker is described. As Consul needs 3 to 5 instances to work consistently,

65

 Figure 11: Integrator Consul with Docker

Docker images can be created with different service IDs. One Integrator with the Consul

Server agent has been set up, which will elect the other three Docker images as client

instances and coordinate accordingly. This makes the application consistent and available

.When a client subscribes to the Integrator API, it responded with an access token and ID

which is used in future accesses to the User Interface of the application.

The Integrator module makes the new service information available via the user interface.

This happens automatically when a new Service is added to the server. The Integrator module

implements the Consul Discovery interface. The Integrator module has utilized the agent,

catalog, health check, load balance, session and status of Consul.

SOAP and REST services have some differences as discussed in chapter 2. SOAP has WSDL

description while REST has only resources to work with. In the Integrator module, Web

Service class has a parameter key which can track about the service type.

The server config JSON file, which is shown in figure 12, is maintained in Integrator module.

This JSON file is updated through the Server Connector interface with the Server information.

In the Utility function, Java socket connections are used to connect with the application to

register the services through the Integrator module and Consul to the application. With the

help of Consul Health check system service status can be monitored.

66

Figure 12: ServerConfig file.

The integrator also works as a backend service of the server connector module. A notification

engine is implemented to monitor server status, and pings are sent to the servers as a health

check.

The Integrator implements Consul Load balancing features with this application to support

requests in large scale without service interruption. Consul is intended to work with multiple

instances, so the Integrator set up has been done to operate the application in a single instance.

A Resource folder has also been added to the project. The resource folder has some

configuration file: logger.properties, config.properties, services. properties and server.

properties.

67

Slf4j [54] is a well-known logging framework enabling multiple logging levels and

customizable outputs. The use of a logging framework in the application simplifies the

development process and is a great advantage for other developers who may want to continue

to work on the application, as it makes it easier to debug and expand. Config.properties files

are used for application specific settings; this includes many options for the module based

settings.

The application is based on several external services so the service. Properties files contain

service information which needs to start with an application running.

Server.properties files contain the information by which servers can connect with the

application.

There is also some internal validation, functions and classes have been introduced which are

not in the design chapter. Those have been used to make easy with the development process

and increase reusability of code in the application. Some necessary libraries added for several

purposes. The PropertyReader class was implemented to read values from the properties file.

The XML parser class was introduced to parse any XML. JSON reader and JSONConverter

are used to read parameters. In the Utility class, some functions have been added to have re-

using facility and better code management.

The implementation is done according to the design of the application program. The entire

application can be found on GitHub

and technical guide to the application can be found in

appendix C.

68

4.2 Evaluation

This section represents the evaluation of this project. According to Peter J. Denning design

[47], testing has a great impact on the research method of this thesis. Testing is part of the

Software Development Lifecycle (SDLC) [55]. Testing helps to improve reliability,

performance and also to check that the application work as intended. In this thesis evaluation

defined to meet the requirements specified, design and implementation of the design work

expected. There are several different approaches to test an application. These approaches can

be broken into smaller pieces, which will help to understand and differentiate between them.

Software testing is mostly based on two types: Manual Testing and automated testing. Manual

testing, as the name implies, is when a tester or developer tests code component by

component. These tests are very flexible and almost every piece of code can be tested, but are

not feasible when the time is short and resources limit has been set.

An automated testing tool can be applied to test the system. Automated testing is applicable

when a large amount of code needs to be tested.

There are also two types of testing depending on the domain knowledge about the inner

working principle of the software: White Box Testing and Black Box Testing. White box

testing refers to a system where everyone can see the functionality of the system work as

intended. A Developer or Tester with some good understanding and knowledge of the system

can do white box testing with some test cases. White box testing is not possible for anyone

who does not have the prior knowledge and setup of the system.

Black Box Testing is where the user can input data and gets expected output without having

any knowledge of system internal working principles. It is good for the organization as the

testing can be done by anyone without any involvement of the Developer.

For this thesis, manual testing is used with the white box as a testing method. Some practical

use cases have been set to test the system.

69

The application has been tested through some technical and feasibility tests. Use cases for this

application in table 9 are:

Use Case 1 The system should connect with different platforms.

Use Case 2 A SOAP Web service can register to the system.

Use Case 3 A REST Web service can log into the system.

Use Case 4 The client can reach different platforms through the system.

Table 9: Primary Use cases of application

Use cases have been tested and are described through the rest of the chapter.

As stated in chapter 3, the thesis has a two part setup. One is the environmental configuration,

and the other one is the application.

The Application followed Test Driven Development (TDD) [56]. Unit testing has been

conducted during the implementation phase. A unit test is the basic form of testing. In the

low-level unit test usually, the small unit of code focuses on testing like a class or a method.

In most of the cases, unit testing is conducted as a manual test. The benefit of the Unit test is

to discover issues during development so that they can be resolved as early as possible. It

saves time and effort while the system goes into production.

In this thesis, the application is mainly driven by the Integrator, which implements the Consul

HTTP API. The integrator has been tested to see that the functions are working properly. See

figure 13 for sample test code.

Figure 13: Sample Test code

70

Functionality Test

A functional test is intended to ensure the application is functioning as desired. The design of

the application is modularized, and three main components have been introduced in figure 4.

So, test cases were designed according to module and function. A series of different kinds of

functional tests for this application have been conducted. Recall from chapter 3 that the

application has been set up with three components. The User Interface part has been tested

with respect to functionality. Through the User Interface, a Client can log in with proper

information with mock data. (S = Success; P = Partial; F = Fail)

Test Nr Test Case Description Result

T1 Log in Client Can invoke with proper

UserID and Token

S

T2 Update Profile User can update information S

T3 Validation UserID need to be validated S

T4 Available Service visibility Client Can see the available service

information

S

T5 Notification A new service Integration can be

notified to the client connected to

the application

S

Table 10: Test case for User Interface

In table 10 few use cases have been identified and test accordingly. In the T1 client should

able to login with proper Username and Token. UserID and token are persisted so the client

can login and update information T2, which is so simple client can only change the name or

token. In the T4 client can see the available service information those are registered into the

application. A mock interface is shown in figure 14. In this test, three mock Web services are

registered with the application: one SOAP Web service and two REST services deployed on

three different platforms.

Figure 14: Service Information page

71

There is another interface which is responsible for servers. According to table 11, some test

code was written to add a server, delete a server and update server information to the

configuration. This function was handled by the Integrator in the backend, so it was tested as

part of the unit tests.

Test Nr Test Case Description Result

T6 Add server A server add through that interface S

T7 Update Server Server Information Can Update

through the interface ex: URL, port

S

T8 Delete Server Server can delete from the

Application

S

T9 Update Server Config A JSON file need to update after

adding new service

S

Table 11: Test case for Server Connector Interface

Some test code was developed to check that the Integrator can create a Consul agent. This test

was done manually from command line. Figure 15 shows the Consul agent started

Figure 15: Consul Started

72

Test Environment Set Up

The test of the whole application was integrated with the environment set up. According to

figure 3 in chapter 3, both local and cloud servers have been set up to make a hybrid

environment. As a cloud platform, Amazon Web Services (AWS) was used. Two simple Web

services were deployed in Amazon Beanstalk. A script can also use to create the Amazon

BeanStalk environment and the application was deployed into that environment, as shown in

figures 16 and 17.

Figure 16: Amazon Beanstalk set up

73

Figure 17: AWS BeanStalk console

Test SOAP Web service

A simple calculator as a SOAP Web service. The Web service can take to integer values and

returns integer sum.

Name: CalculatorWs

Type: SOAP

Input Parameters: int value1, int value 2

Methods: int add (int value1, int value 2)

Test RESTful Web service

 A simple RESTful Web service for getting user information.

Name :TestServiceA

Type: REST

Class: User. Java and UserService.java

74

A test environment was also setup with Oracle Cloud server. A test SOAP service was

deployed on that server by command line. A Windows machine in a LAN was set up with a

Glassfish Server 4.1where two different Web services have been deployed. Windows machine

configuration is shown in figure 18.

Figure 18: Windows machine configuration information

A Linux machine which configuration is shown in figure 19, also set up with a Glassfish

Server 4.1 and deployed a RESTful Web service API into that.

Figure 19: Linux Machine configuration

Through deployment in these environments, all aspects of the application were tested and

evaluated against the primary requirement specified in table 6 in chapter 2. As currently

75

SOAP is not supported by AWS, only a REST Web service was deployed on the AWS

platform. The implementation of the work is kept simple so that the main goals have been

accomplished.

An Ubuntu machine in figure 20 also has been used to set application and used as server

application with Docker installed.

Figure 20: Ubuntu configuration for Application setup

76

Evaluation & Findings

The design and implementation of the application evaluate to achieve the answer to research

question 4 stated in sections 1.3 in chapter 1. A prototype is presented by the application and

tested accordingly. The application fulfills the requirements stated in table 8, functional and

works as intended.

The application is tested with simple Web services where endpoints are single, and SOAP test

Web service also has small XML payload. Consul set up is a little bit complex as also the java

client does not have any user interface to interact.

The most important findings of the evaluation by testing the application are that the common

platform is possible when the Service end points are not nested. If the Web services are too

big and Service has many endpoints, then customization is necessary to handle this kind of

scenario. Also for a very big XML of SOAP Web services, it is difficult to achieve the JSON

converter to fetch the information.

77

5 Conclusion

This chapter presents a summary of this master thesis. Findings and observations are given in

this chapter. The objective of the thesis was to analyze and create a way of Service discovery

of different Web services hosted in hybrid environments. A prototype has been implemented

and tested according to the requirements stated in chapter 2.

The research questions stated in chapter 1 were as follows:

Ques 1: What are the services and types of the services?

Ques 2: How do service discovery standards for different kinds of Web services work?

Ques 3: How do service discovery methods work for different environments?

Ques 4: Is it possible to create a common platform to provide support for service discovery in

hybrid environments?

The first part of this thesis focused on answering research questions 1 through 3. In chapter 2,

the technological background was discussed. SOAP and REST Web services were discussed

in detail. Service Discovery mechanisms for these two kinds of Web services which are

currently used were also discussed in chapter 2.

Another important focus of this thesis was the Hosted environment. A Web services hosted

environment can be local or on a Cloud platform. As the growth curve of Web Services

technology is increasing rapidly, Cloud environments become increasingly popular for

hosting Web services. Cloud environments are much cheaper and easier to get and start up

with compared to traditional hosting. Cloud services can be private, public and hybrid in

manner.

Based on research question 4 a depth analysis of currently available open standard Service

Discovery Mechanisms has been done in this thesis. The use case of this thesis was defined in

table 9 in chapter 4.

Zookeeper, Doozer, Etcd, AirBnB SmartStack, Netflix Eureka, Serf, Spotify, SkyDNS, and

Consul have been analyzed with examples and observation found that the above four

scenarios are not possible by one single discovery mechanism without tailoring. During that

78

research one more finding is that most of the Web service discovery mechanisms are not in

general purpose use. So in this thesis, a prototype has been implemented with Consul Service

discovery mechanism and Docker, thus tailoring Consul to support service discovery in

hybrid environments.

Findings & Limitations

The application works as intended. The implementation of the thesis focused only on SOAP

and REST Web services. So, the most important finding of the thesis is that the common

platform is possible when the Service end points are not nested. If the Web services are too

big and Service has many endpoints, then customization is necessary to handle this kind of

scenario.

The Consul Service discovery mechanism is suitable for hybrid environments because it has

some key feature such as a key-value store, load balancing, multi data center support, and

health check. It can be used as a common platform by modifying it with some adapters and

interfaces for many endpoints.

Contribution

The contribution of this thesis is twofold. Firstly, it presents a description of enabling service

discovery approaches. Secondly, it presents a proof-of-concept implementation of Service

discovery in hybrid environments. In Conclusion, the application fulfilled the requirement

stated, and the thesis goal was reached.

Future work

The thesis focused on a small scale proof-of-concept. The area of research is so vast, so it is

not possible to understand and discover the area during this thesis due to time shortage. If the

implementation can be done in big scale and testing can be done with more resources, it will

be more fruitful. One of the limitations of the implementation is that it is not fully automated

for maintaining platforms. The Client interface is also simple, providing only basic

functionality. More functionality can be provided with the interface.

79

Bibliography

[1] OASIS, "Reference Model for Service Oriented Architecture," 18 February 2006.

[Online]. Available: https://www.oasis-open.org/committees/download.php/16587/wd-

soa-rm-cd1ED.pdf. [Accessed 8 November 2016].

[2] W3C Recommendation, "SOAP Version 1.2 Part 1: Messaging Framework (Second

Edition)," W3C Recommendation, 27 April 2007. [Online]. Available:

https://www.w3.org/TR/soap12/. [Accessed 14 Feb 2017].

[3] Roy Thomas Fielding, "Architectural styles and the design of network-based software

architectures," UNIVERSITY OF CALIFORNIA, IRVINE, 2000.

[4] D. Nicolini, "Choosing the methodology and Methods. Making decisions about your

study," 2017.

[5] C. Anderson, Interviewee, James Philips on Service Discovery. [Interview]. 2016.

[6] M. Shaw, "What Makes Good Research in Software Engineering?," International

Journal of Software Tools for Technology Transfer, vol. 4, no. 1, pp. 1-7, 2002.

[7] S. Denning, The Spring Board, Boston, London: Butterwhort Heinmenn, 2000.

[8] R. K. Yin, "Case Study Research: Design and Methods. Applied Social Research

Methods," SAGE Publications, Inc., 2009.

[9] W. J, "Essential of Business Research, A Guide to Doing Your Research Project,"

England, London, Sage Publications, 2010.

[10] S. Vinoski, "REST Eye for the SOA Guy," IEEE Internet Computing, vol. 11, no. 11, pp.

82-84, January 2007.

[11] Nicolai M. Josuttis, SOA in Practice, Sebastopol: O'Reilly Media Inc, 2007.

80

[12] Oracle, "The Java EE 6 Tutorial," Oracle, 2013. [Online]. Available:

https://docs.oracle.com/javaee/6/tutorial/doc/gijvh.html. [Accessed 15 June 2017].

[13] N. Serrano, J. Hernates and G. Gallardo, "Service-Oriented Architecture and Legacy

Systems," IEEE Software, vol. 31, no. 5, pp. 15-19, September/October 2014.

[14] S. Mumbaikar and P. Padiya, "Web Services Based on SOAP and REST Principles,"

International Journal of Scientific and Research Publications, vol. 3, no. 5, pp. 1-4,

2013.

[15] Dr. Hervery M. Deitel et al., WEB SERVICES -A Technical Introduction, New Jersey:

DEITEL Developer SERIES, 2003.

[16] H. Zhao and P. Doshi, "Towards Automated Restful Web Service Composition," in

IEEE International Conference 2009, Los Angeles, CA, USA, 2009.

[17] A. Feda and K. Moessner, "Providing SOAP Web Services and RESTful Web Services

from Mobile Hosts," in 2010 fifth International Conference on the Internet and Web

Applications and Services, Barcelona, 2010.

[18] Smartbear, "SWAGGER - The Worlds Most Popular Framework for API's,"

SMARTBEAR, 2017. [Online]. Available: https://swagger.io/. [Accessed 22 July 2017].

[19] P. Mell and T. Grance, "The NIST Definition of Cloud Computing," vol. 800, no. 145,

September 2011.

[20] D. S. Linthicum, Cloud Computing and SOA Convergence in Your Enterprise: A Step-

by-Step Guide, Addison-Wesley Professional ©2009, 2009.

[21] OASIS, "UDDI XML ORG," OASIS, 04 January 2007. [Online]. Available:

http://uddi.xml.org/. [Accessed 12 December 2016].

81

[22]

CodeGear, "Web Services Protocol Stack," CodeGear, 2008. [Online]. Available:

http://docs.embarcadero.com/products/rad_studio/radstudio2007/RS2007_helpupdates/H

Update3/EN/html/devnet/webservicesprotocol_xml.html#4C6179657273206F66207468

65205765622053657276696365732050726F746F636F6C20537461636B. [Accessed 22

July 2017].

[23] OASIS, "OASIS Web Services Discovery and Web Services Devices Profile (WS-DD)

TC," OASIS, 7 May 2009. [Online]. Available: https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=ws-dd. [Accessed 24 March 2017].

[24] OASIS, "ebXML," OASIS, 2006. [Online]. Available:

http://www.ebxml.org/specs/index.htm. [Accessed 12 December 2016].

[25] C. Richardson, "Service Discovery in a Microservices Architecture," NGINX Software

Inc, 12 October 2012. [Online]. Available: https://www.nginx.com/blog/service-

discovery-in-a-microservices-architecture/. [Accessed 24 February 2017].

[26] M. Suchithra and M. Ramakrishnan, "A Survey on Different Web Service Discovery

Techniques," in Indian Journal of Science and Technology, 2015.

[27] F. T. Johnsen, "Pervasive Web Services Discovery and Invocation in Military

Networks," FFI Report Number 2011/00257, Kjeller, 2011.

[28] A. Thuen, "Federated Service Discovery -Interconnecting different Web Service

Discovery Mechanisms," University of Oslo, Oslo, 2015.

[29] Apache ZooKeeper, "Apache ZooKeeper - Home," Apache, 20 July 2016. [Online].

Available: http://zookeeper.apache.org/. [Accessed 2 April 2017].

[30] Apache Curator, "Apache Zookeeper," Apache, 10 August 2014. [Online]. Available:

http://zookeeper.apache.org/. [Accessed 8 March 2017].

[31] B. Reed, "Apache’s Wiki page of a Zab documentation," Apache, January 2012.

[Online]. Available: https://cwiki.apache.org/confluence/display/ZOOKEEPER/Zab1.0.

[Accessed 2 April 2017].

82

[32] M. B and K. Rarick, "Doozer," Doozer, 2010. [Online]. Available:

https://github.com/ha/doozerd. [Accessed 13 February 2017].

[33] etcd, "etcd," Coreos, December 2013. [Online]. Available: https://coreos.com/etcd/.

[Accessed 13 February 2017].

[34] D. Ongero and J. Ousterhout, "The Raft Consensus Algorithm," March 2015. [Online].

Available: https://raft.github.io. [Accessed 10 April 2017].

[35] S. Serebryany and I. Rhoads, "SmartStack: Service discovery in the cloud," Airbnb, 23

October 2013. [Online]. Available: https://medium.com/airbnb-engineering/smartstack-

service-discovery-in-the-cloud-4b8a080de619. [Accessed 13 February 2017].

[36] Airbnb, "Nerve," Airbnb, 2013. [Online]. Available: https://github.com/airbnb/synapse.

[Accessed 13 February 2017].

[37] Airbnb, "Synapse," Airbnb, 2013. [Online]. Available:

https://github.com/airbnb/synapse. [Accessed 2017 February 13].

[38] HAProxy, "HAProxy," HAProxy, 2002. [Online]. Available: www.haproxy.org.

[Accessed February 2017].

[39] C. Quinn, "Eureka," Netflix, 23 May 2013. [Online]. Available:

https://github.com/Netflix/eureka. [Accessed 26 January 2017].

[40] NSQ, "NSQ v1.0.0-compat," Bitly, 08 November 2012. [Online]. Available:

nsq.io/overview/design.html. [Accessed 26 January 2017].

[41] Hashicorp, "About Serf," Hashicorp, 2013. [Online]. Available:

https://www.serf.io/intro/index.html. [Accessed 12 May 2017].

[42] A. Das, A. Gupta and A. Motivala, "SWIM: Scalable Weakly-consistent Infection-style

Process Group Membership Protocol," 2005.

83

[43] B. Ketelsen, "skynetservices/skydns," SkyNet, March 2014. [Online]. Available:

https://github.com/skynetservices/skydns1. [Accessed 18 February 2017].

[44] J. Simpson, "DI2E Runtime Service Discovery," 31 March 2015. [Online]. Available:

www.argo.ws. [Accessed 8 March 2017].

[45] Apple, "About Bonjour," Apple, 23 April 2013. [Online]. Available:

https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/NetServic

es/Introduction.html. [Accessed 12 March 2017].

[46] HashiCorp, "Introduction to Consul," Hashicorp, May 2017. [Online]. Available:

https://www.consul.io/intro/index.html. [Accessed 20 April 2017].

[47] P. J. Denning, "The Profession of IT : Design Thinking," Communications of the ACM,

vol. 56, no. 12, pp. 29-31, 2013.

[48] HashiCorp, "Hashicorp," 2017. [Online]. Available: https://www.hashicorp.com/.

[Accessed 12 April 2017].

[49] Docker, "Build , Ship and Run Any App in Anywhere," Docker, 2017. [Online].

Available: https://www.docker.com/. [Accessed 14 March 2017].

[50] A. Parecki, "OAUTH," AUTH, 7 September 2007. [Online]. Available:

https://oauth.net/. [Accessed 25 June 2017].

[51] OpenID connect, "OpenID Connect," ÒpenID, 2017. [Online]. Available:

http://openid.net/connect/. [Accessed 24 June 2017].

[52] N. Sakimura, J. Bradley, M. B. Jones and E. Jay, "OpenID Connect discovery 1.0,"

OpenID Foundation, 8 November 2014. [Online]. Available:

http://openid.net/specs/openid-connect-discovery-1_0.html. [Accessed 14 June 2017].

[53] N. Sakimura, J. Bradley, M. B. Jones and E. Jay, "OpenID Connect Dynamic Client

Registration 1,0," OpenID connect Foundation, 8 November 2014. [Online]. Available:

http://openid.net/specs/openid-connect-registration-1_0.html. [Accessed 14 June 2017].

84

[54] QOS.ch, "SLF4J user manual," The Apache Software Foundation, 2004. [Online].

Available: https://www.slf4j.org/manual.html. [Accessed 18 April 2017].

[55] T. R. Devi, "Importance of Testing in Software Development," International Journal of

Scientific & Engineering Research, vol. 3, no. 5, pp. 1-5, 2002.

[56] S. W. Ambler, "Introduction to Test Driven Development," Ambysoft Inc. , 2012.

[Online]. Available: http://agiledata.org/essays/tdd.html. [Accessed 15 June 2017].

[57] Docker, "Docker Overview," Docker, 2015. [Online]. Available:

https://www.docker.com/what-docker. [Accessed 12 June 2017].

[58] C. Bettstetter and C. Renner, "A Comparison Of Service Discovery Protocols And

Implementation Of The Service Location Protocol," in In Proceedings of the 6th

EUNICE Open European Summer School: Innovative Internet Applications., Munich,

Germany, 2000.

[59] S. Graham, D. Davis, S. Simeonov, G. Daniels, P. Brittenham, Y. Nakamura, P.

Frementle, D. Konig and C. Zentner, Building Web Services with Java, Sams Publishing,

2005.

[60] D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner and P. R.young,

"Computing As A Discipline," Communication of the ACM (Jan 1989), vol. 32, no. 1,

pp. 9-23, 1989.

[61] F. Chen, X. Bai and B. Liu, "Efficient Service Discovery for Cloud Computing

Environments," in Advanced Research on Computer Science and Information

Engineering, Springer, Berlin, Heidelberg, 2011.

[62] N. Levina, "Grounded Theory : Philosophy, Myths and Beauty of it!!," 2017.

[63] "InfoQ," [Online]. Available: http://www.innoq.com/soa/ws-

standards/poster/innoQ%20WS-Standards%20Poster%202007-02.pdf.

85

[64] T. Dybå, R. Prikladnicki, J. Sillito and K. Rönkkö, "Qualitative Research in Software

Engineering," vol. 16, no. 4, pp. 425-429, August 2011.

[65] P. Wiliams, "Restful Service Discovery and Description," 22 January 2008. [Online].

Available: http://barelyenough.org/blog/2008/01/restful-service-discovery-and-

description/. [Accessed 22 January 2017].

[66] L. Richardson and S. Ruby, Restful Web Services, O'Reilly Media, 2008, p. 448.

[67] C. Pautasso, O. Zimmermann and F. Leymann, "RESTful Web Services vs. "Big" Web

Services: Making the Right Architectural Decision," in WWW 2008/ Refereed Track :

Web Engineering- Web Service Deployment, Beijing, 2008.

[68] M. R. Brenner and M. R. Unmehopa, "Service-Oriented Architecture and Web Services

Penetration in Next-Generation Networks," Bell Labs Technical Journal, vol. 12, no. 2,

pp. 147-160, Summer 2007.

[69] J. P. Lawler and H. Howell-Barber, Service-Oriented Architecture SOA Strategy,

Methodology and Technology, New York: Auerbach Publications, 2008.

[70] W.-T. Tsai, X. Sun and J. Balasooriya, "Service-Oriented Cloud Computing

Architecture," in 2010 Seventh International Conference on Information Technology,

Las Vegas, 2010.

[71] P. Runeson and M. Höst, "Springerlink.com," Empirical Software Engineering, 19

December 2008.

[72] F. T. Johnsen, J. Flathagen, T. Gagnes, R. Haakseth and T. Hafsøe, "Web Service and

Service Discovery," FFI-2008/01064, Lillestrøm, 2008.

[73] S. Pakari, E. Kheirkhah and M. Jalali, "Web Service Discovery Methods And

Techniques: A Review," International Journal of Computer Science, Engineering and

Information Technology (IJCSEIT), vol. 4, no. 2, 2014.

86

[74] S. H. Vossen and C. L. Gottfried, "Web Service Discovery -Reality Check 2.0," in Third

International Conference on Next Generation Web Services Practices, 2007.

[75] Y. Lafon, "Web Services Activity," W3C, 18 May 2011. [Online]. Available:

https://www.w3.org/2002/ws/. [Accessed 15 January 2017].

[76] F. T. Johnsen, T. Hafsøe, A. Eggen, C. Griwodz and P. Halvorsen, "Web Services

Discovery across Heterogeneous Military Networks," IEEE Communications Magazine,

vol. 48, no. 10, pp. 84-90, October 2010.

[77] "Wkipedia," [Online]. Available: www.wikipedia.com.

[78] Margunn Aanestad, "Qualitative Research Methods Applied to Information

Infrastructures," University of Oslo, Oslo, 2017.

[79] B. Bygstad, "Competing Paradigms in Qualitative Research in Information Systems,"

University of Oslo, Oslo, 2017.

[80] D. Nicolini, "What is Qualitative Research," University of Oslo, Oslo, 2017.

[81] Amazon Web Services, "AWS Deploy," AWS, March 2015. [Online]. Available:

https://d0.awsstatic.com/whitepapers/overview-of-deployment-options-on-aws.pdf.

[Accessed 8 February 2017].

[82] D. F. Birks, W. Fernandez, N. Levina and S. Nasirin, "Grounded theory method in

Information systems research: Its nature, diversity and opportunities," 2013.

87

List of Tables

Table 1: Type of Research questions ... 15

Table 2: Comparison of SOAP and RESTful Web services .. 23

Table 3: According to NIST definition Cloud deployment models ... 29

Table 4: Provides Comparison on Web service Discovery techniques 36

Table 5: Overview of Open source Service Discovery tools ... 48

Table 6: List of primary requirements ... 49

Table 7: Overview of Open source discovery tools by context of thesis 50

Table 8: List of System requirement specification .. 51

Table 9: Primary Use cases of application ... 69

Table 10: Test case for User Interface ... 70

Table 11: Test case for Server Connector Interface ... 71

88

List of Figures

Figure 1: SOA Architecture ... 18

Figure 2: Cloud Computing Components .. 26

Figure 3: An overall view of the project design ... 54

Figure 4: Overview of the Web Service Discovery mechanism .. 55

Figure 5: Basic flow model of Web service Discovery mechanism .. 57

Figure 6: Client- Application request workflow .. 58

Figure 7: ServerConnector is the interface between Servers and Integrator 60

Figure 8: Server Connector workflow diagram .. 61

Figure 9: User interface mock .. 63

Figure 10: WebService class .. 64

Figure 11: Integrator Consul with Docker ... 65

Figure 12: ServerConfig file. ... 66

Figure 13: Sample Test code .. 69

Figure 14: Service Information page .. 70

Figure 15: Consul Started ... 71

Figure 16: Amazon Beanstalk set up .. 72

Figure 17: AWS BeanStalk console ... 73

Figure 18: Windows machine configuration information .. 74

Figure 19: Linux Machine configuration ... 74

Figure 20: Ubuntu configuration for Application setup ... 75

89

Glossary

AMQP Advanced Message Queue Protocol

AP Available Pattern

API – Application Program Interface

B2B Business to Business

B2C – Business to Client

CP Consistent Pattern

DNS Domain Name Server

EbXML Electronic Business using Extensible Markup Language

EC Elastic Computing

ECS Elastic Computing Service

ELB Elastic Load Balancer

FTP File Transfer Protocol

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

JVM Java Virtual Machine

JSON JavaScript Object Notation

LAN Local Area Network

MIME Multi-Purpose Internet Mail Extension

MVC Model View Controller

90

OASIS Advancing Open Standard for Information Security

QOS Quality of Service

REST Representational State Transfer

RMI Remote Method Invocation

RPC Remote Procedure Call

SMTP Simple Mail Transfer Protocol

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

TCP/IP Transport Control Protocol/ Internet Protocol

TDD Test Driven Development

UDDI Universal Data Description Integration

UML Unified Modeling Language

URL Uniform Resource Locator

WAN Wide Area Network

W3C World Wide Web Consortium

WS-D Web Service Discovery

WSDL Web Service Definition Language

XML Extensible Markup Language

91

Appendix A

The most texts and images used in this appendix have mostly written from [46] [41] [34].

Consul

Consul [46] is a distributed service discovery key value store application designed by

HashiCorp.

Consul is distributed which means it runs as a cluster of systems so that there is no single

point of failure. Consul uses Serf [41] protocol to manage cluster membership, failure

detection and general orchestration. Managing cluster state via Serf is only part of the picture,

though: the cluster must also manage consistency via a consensus protocol which called Raft

[34].

Consul is also a service discovery tool where applications can register with Consul to provide

a service, such as MySQL or HTTP. Other systems can then use Consul, wither via DNS or

via HTTP, to discover the providers of a specified service. Besides that service discovery

functionality Consul also has health checking functionality, to ensure that the provider of a

service is actually working as expected.

As a key/value store, Consul has a comparison between Consul and etcd, the distributed

key/value store bundled with CoreOS Linux. Both etcd and Consul provide HTTP APIs to

both store and retrieve key/value data in distributed key/value store.

Members and Agents

Consul members define as the list different agents and server modes using which a Consul

cluster is deployed. Consul provides with a command line feature using which can easily list

all the agents associated with Consul.

The agent is the core process of Consul which maintains information about membership,

registers services, runs health checks, responds to queries etc. Any agent can be run in one of

two modes: Servers or Client. These two modes can be used according to their role as decided

while using Consul.

The Consul agent helps by providing us information, which is listed below:

92

 Node name − which is the hostname of the machine.

 Datacenter − the data center in which the agent is configured to run. Each node must

be configured to report to its data center.

 Server − It indicates whether the agent is running in server or client mode. Server

nodes participate in the consensus quorum, storing cluster state and handling queries.

 Client Address − It is the address used for client interfaces by the agent. It includes the

ports for the HTTP, DNS, and RPC interfaces.

 Cluster Address − It is the address and the set of ports used for communication

between Consul Agents in a cluster. This address must be reachable by all other nodes.

How Consul works

The architecture diagram for Consul working in one data center can be best described as

shown in figure A1 below −

Figure A 1: Consul Architecture

As from figure A 1, there are three different servers, which are managed by Consul. The

working architecture works by the using raft algorithm, which helps us in electing a leader out

of the three different servers. These servers are then labeled according to the tags such

as Leader and Follower. As the name suggests, the follower is responsible for following the

decisions of the leader. All these three servers are further connected with each other for any

communication.

93

Each server interacts with its own client using the concept of RPC. The Communication

between the Clients is possible due to Gossip Protocol as mentioned below.

The Communication with the internet facility can be made available using TCP or gossip

method of communication. This communication is in direct contact with any of the three

servers.

Raft Algorithm

The Raft [34] is a consensus algorithm for managing a replicated log. It relies on the principle

of CAP Theorem, which states that in the presence of a network partition, one has to choose

between consistency and availability. Not all the three fundamentals of the CAP Theorem can

be achieved at any given point of time. One has to tradeoff for any two of them at best.

A Raft Cluster contains several servers, usually in the odd number count. For example, if we

have five servers, it will allow the system to tolerate two failures. At any given time, each

server is in one of the three states: Leader, Follower, or Candidate. In a normal operation,

there is exactly one leader and all of the other servers are followers. These followers are in a

passive state, i.e. they issue no requests on their own, but simply respond to requests from

leaders and the candidate. The following figure A 2 describes the workflow model using

which the Raft algorithm works −

Figure A 2: Raft Algorithm

94

Key Value Data

Since the Consul's version 0.7.1, there has been an introduction of separate key value data.

The KV command is used to interact with the Consul's key-value store via the command line.

It exposes top-level commands for Inserting, Updating, Reading and Deleting from the store.

To get the Key/Value object store, we call the KV method available for the consul client −

kv := consul.KV()

The KVPair Structure is used to represent a single key/value entry. We can view the structure

of Consul KV Pair in the following program.

type KVPair struct {

 Key string

 CreateIndex uint64

 ModifyIndex uint64

 LockIndex uint64

 Flags uint64

 Value []byte

 Session string

}

Here, the various structures mentioned in the above code can be defined as follows −

 Key − It is a slash URL name. For example – sites/1/domain.

 CreateIndex − Index number assigned when the key was first created.

 ModifyIndex − Index number assigned when the key was last updated.

 LockIndex − Index number created when a new lock acquired on the key/value entry

 Flags − It can be used by the app to set the custom value.

 Value − It is a byte array of maximum 512kb.

 Session − It can be set after creating a session object.

95

Types of Protocol

There are two types of protocol in Consul, which are called as −

Consensus Protocol and

Gossip Protocol

Consensus Protocol

Consensus protocol is used by Consul to provide Consistency as described by the CAP

Theorem. This protocol is based on the Raft Algorithm. When implementing Consensus

protocol, the Raft Algorithm is used where raft nodes are always in any one of the three

states: Follower, Candidate or Leader.

Gossip Protocol

The gossip protocol can be used to manage membership, send and receive messages across

the cluster. In Consul, the usage of gossip protocol occurs in two ways, WAN (Wireless Area

Network) and LAN (Local Area Network). There are three known libraries, which can

implement a Gossip Algorithm to discover nodes in a peer-to-peer network −

Teknik-gossip − It works with UDP and is written in Java.

Gossip-python − It utilizes the TCP stack and it is possible to share data via the constructed network as

well.

Smudge − It is written in Go and uses UDP to exchange status information.

Gossip protocols have also been used for achieving and maintaining a distributed database

consistency or with other types of data in consistent states, counting the number of nodes in a

network of unknown size, spreading news robustly, organizing nodes, etc.

96

Remote Procedure Calls

The RPC can be denoted as the short form for Remote Procedure Calls. It is a protocol that

one program uses to request a service from another program. This protocol can be located on

another computer on a network without having to acknowledge the networking details.

97

Appendix B

Docker

Docker [49] is an open platform for developing, shipping, and running applications. Docker

enables to separate applications from infrastructure so it can deliver software quickly. Docker

can manage the infrastructure in the same ways that manage applications. By taking

advantage of Docker’s methodologies for shipping, testing, and deploying code quickly, the

delay between writing code and running it in production can significantly reduce. Texts and

images used in this appendix have been taken from [57] [49].

The Docker platform

Docker provides the ability to package and run an application in a loosely isolated

environment called a container. The isolation and security allow running many containers

simultaneously on a given host. Containers are lightweight because they don’t need the extra

load of a hypervisor, but run directly within the host machine’s kernel. This means that can

run more containers on a given hardware combination than if there were using virtual

machines. Docker containers can even run within host machines that are actually virtual

machines.

Docker provides tooling and a platform to manage the lifecycle of containers:

Develop the application and its supporting components using containers.

The container becomes the unit for distributing and testing of the application.

After being ready, the application can deploy into a production environment, as a container or

an orchestrated service. This works the same whether if the production environment is a local

data center, a cloud provider, or a hybrid of the two.

98

Docker Components:

Docker is composed of following four components

 Docker Client and Daemon.

 Images

 Docker registries

 Containers

How Does Docker Work?

Docker has a client-server architecture. Docker Daemon or server is responsible for all the

actions that are related to containers. The daemon receives the commands from the Docker

client through CLI or REST API’s. Docker client can be on the same host as a daemon or it

can be present on any other host.

Images are the basic building blocks of Docker. Containers are built from images. Images can

be configured with applications and used as a template for creating containers. Images are

organized in a layered manner. Every change in an image is added as a layer on top of it.

Docker registry is a repository for Docker images. Using Docker registry, you can build and

share images with your team. A registry can be public or private. Docker Inc provides a

hosted registry service called Docker Hub. It allows you to upload and download images from

a central location. If your repository is public, all your images can be accessed by other

Docker hub users. You can also create a private registry in Docker Hub. Docker hub acts like

git, where you can build your images locally on your laptop, commit it and then can be

pushed to the Docker hub.

The container is the execution environment for Docker. Containers are created from images. It

is a writable layer of the image. You can package your applications in a container, commit it

and make it a golden image to build more containers from it. Two or more containers can be

linked together to form tiered application architecture. Containers can be started, stopped,

99

committed and terminated. If you terminate a container without committing it, all the changes

made to the container will be lost.

How to Install Docker

At first, Docker was only available on Ubuntu. Nowadays, it is possible to deploy Docker on

RHEL based systems (e.g. CentOS) and others as well.

Installation Instructions for Ubuntu

The simplest way to get Docker, other than using the pre-built application image, is to go with

a 64-bit Ubuntu 14.04 VPS

Update droplet:

sudo apt-get update

sudo apt-get -y upgrade

Make sure aufs support is available:

sudo apt-get install Linux-image-extra-`uname -r`

Add docker repository key to apt-key for package verification:

sudo apt-key adv --keyserver hkp://pgp.mit.edu:80 --recv-keys

58118E89F3A912897C070ADBF76221572C52609D

Add the docker repository to Apt sources:

echo "deb https://apt.dockerproject.org/repo ubuntu-trusty main" | sudo tee

/etc/apt/sources.list.d/docker.list

Update the repository with the new addition:

sudo apt-get update

Finally, download and install docker:

sudo apt-get install docker-engine

100

Ubuntu's default firewall (UFW: Uncomplicated Firewall) denies all forwarding traffic by

default, which is needed by Docker.

Enable forwarding with UFW:

Edit UFW configuration using the nano text editor.

sudo nano /etc/default/ufw

Replace:

DEFAULT_FORWARD_POLICY="DROP"

With:

DEFAULT_FORWARD_POLICY="ACCEPT"

Press CTRL+X and approve with Y to save and close.

Finally, reload the UFW:

sudo ufw reload

Working with Images

There are many freely available images shared across docker image index and the CLI allows

simple access to query the image repository and to download new ones.

Searching for a docker image:*

Usage: sudo docker search [image name]

sudo docker search ubuntu

101

Container:

A container image is a lightweight, stand-alone, executable package of a piece of software

that includes everything needed to run it: code, runtime, system tools, system libraries,

settings. Available for both Linux and Windows based apps, containerized software will

always run the same, regardless of the environment.

Figure B 1: Docker Container overview

Containers isolate software from its surroundings, for example differences between

development and staging environments and help reduce conflicts between teams running

different software on the same infrastructure.

Docker for Developers

Docker automates the repetitive tasks of setting up and configuring development

environments so that developers can focus on what matters: building great software.

Developers using Docker don’t have to install and configure complex databases nor worry

about switching between incompatible language toolchain versions. When an app is

dockerized, that complexity is pushed into containers that are easily built, shared and run.

Onboarding a coworker to new code bases no longer means hours spent installing software

and explaining setup procedures. Code that ships with Docker files is simpler to work on:

Dependencies are pulled as neatly packaged Docker images and anyone with Docker and an

editor installed can build and debug the app in minutes.

102

Docker for Ops

Docker streamlines software delivery. Develop and deploy bug fixes and new features

without roadblocks. Scale applications in real time. Docker is the secret weapon for

developers and IT ops teams everywhere, allowing them to build, ship, test, and deploy apps

automatically, securely, and portable with no surprises. No more wikis, READMEs, long

runbook documents and post-it notes with stale information. Teams using Docker know that

their images work the same in development, staging, and production. New features and fixes

get to customers quickly without hassle, surprises, or downtime.

For the Enterprise

Docker is at the heart of the modern app platform, bridging developer and IT, Linux and

Windows. Docker works in the cloud just as well as on-premise; and supports both traditional

and micro services architectures. Use Docker to build, network, secure and schedule

containers and manage them from development to production. Docker sets enterprises on the

path to digital transformation by enabling all apps to be agile, cloud-ready and secure at

optimal costs.

Comparing Containers and Virtual Machines

Containers and virtual machines have similar resource isolation and allocation benefits, but

function differently because containers virtualize the operating system instead of hardware,

containers are more portable and efficient. Figure B2 shows the comparison between Docker

and virtual machine set up.

Figure B 2: Docker Vs Virtual Machine

VM

App A App B App C

Bins/Libs Bins/Libs Bins/Libs

Guest OS Guest OS Guest OS

Hypervisor

Infrastructure

CONTAINER
App A App B App C
Bins/Libs Bins/Libs Bins/Libs

Docker
Host OS

Infrastructure

103

Appendix C

Technical guide

This section presents the overview of the application set up and how to install and use it.

There are some prerequisites for that application.

Prerequisites

The Web Discovery Mechanism implemented in JAVA programming language built in

Gradle and GitHub is used for version control.

 IntelliJ IDE has been used as a framework for application development.

 Understanding of Gradle build is important.

 Docker is needed to install in the system to make functional the application

 Basic understanding of GitHub is important to work with version control.

Getting Started

The steps follow as:

1. Download the code from the GitHub repository

2. Import the project into IntelliJ IDE or Eclipse

3. Configure the project properties

4. Change the code if needed

5. Push the code to the repository

Download code

Clone the repository in the workspace

 git clone https://github.com/sabrina05/INF5950.git

104

Importing the project into IntelliJ or eclipse

1. Start IntelliJ IDE or Eclipse studio

2. Click on Open projects on file system

3. Locate the application

4. Import Gradle properties

105

