
Development of Tool Support
within the Domain of Risk-Driven

Security Testing

Vetle Volden-Freberg

Thesis submitted for the degree of
Master in Informatics: programming and networks

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2017

Development of Tool Support
within the Domain of

Risk-Driven Security Testing

Vetle Volden-Freberg

1st August 2017

© 2017 Vetle Volden-Freberg

Development of Tool Support within the Domain of Risk-Driven Security
Testing

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Today, there exists a wide range of services and applications across several
platforms that are prone to attacks. Attackers find new ways to exploit
malfunctions and vulnerabilities within these systems every day. There is
an increase in cyber security risks and targeted attacks towards the public,
industry and governments by the use of the web, social media, mobile
devices, cloud services and so on. Therefore, security must be considered
thoroughly in the software development life cycle, to minimise the risks
represented by either an attacker, the intended user of the system, or other
non-human causes that might lead to catastrophic damage to a system.

The security testing community has met these challenges by proposing
an approach to security testing that is supported by security risk assess-
ment. This approach is commonly referred to as risk-driven security test-
ing and aims to focus testing on the most severe risk a system is exposed
to. The field of risk-driven security testing is relatively new and imma-
ture. Thus, lacks formality, preciseness and dedicated tool support. As a
response to this, the CORAL approach has been proposed. The CORAL
approach is an approach that provides a domain-specific risk analysis lan-
guage and a method to conduct risk-driven security testing, consequently,
providing more formality and preciseness.

However, the approach needs to be supported by dedicated tool
support in order to aid security testers further. This thesis investigates
how the CORAL approach can be supported by a tool, in order to fulfil the
overall aim of introducing proper tool support for the domain of risk-driven
security testing. We propose a tool developed as a plug-in for the Eclipse
Papyrus tool, which supports the CORAL approach. The risk analysis
language in our tool adopts a textual notation as opposed to the graphical
notation defined for the CORAL risk analysis language. Consequently, as
part of the development and evaluation process of the tool, we conducted
an empirical study to investigate whether the textual notation adopted by
the tool had any impact on comprehensibility in comparison to graphical
notation. The results of our empirical study indicate that there is no
significant difference with respect to comprehensibility.

Moreover, our results show that the tool is appropriate for security
testers in terms of carrying out risk-driven security testing following the
CORAL approach, including defining security test cases.

i

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 3

1.2.1 Adaptation of CORAL as a UML Profile 3
1.2.2 CORAL Plug-in – Tool Support for Risk-Driven

Security Testing . 4
1.2.3 Empirical Study – Comparison of Textual and Graph-

ical Notation . 4
1.3 Thesis Overview . 4

2 Problem Characterisation 7
2.1 Background and Conceptual Clarifications 7

2.1.1 Modelling . 7
2.1.2 Modelling Languages and Tools 8
2.1.3 UML Sequence Diagrams 8
2.1.4 The UML Testing Profile 9
2.1.5 The CORAL Approach 9
2.1.6 State of the Art Risk-Driven Security Testing 13

2.2 Problem Specification . 14
2.2.1 Success Criteria . 15

3 Research Method 17
3.1 Technology Research . 18
3.2 Evaluation Strategies . 20
3.3 Selection of Appropriate Evaluation Strategies 22
3.4 Prototyping . 23
3.5 Empirical Study . 23

4 Research-Based Design 25
4.1 Artefact Design . 25
4.2 Eclipse, Tools and Frameworks 26

4.2.1 Eclipse Modelling Framework 28
4.2.2 Graphical Editing Framework 28
4.2.3 Graphical Modeling Framework 28
4.2.4 Eclipse Papyrus . 28

4.3 Options for Tool Design . 29
4.3.1 Plug-in or RCP application? 30

iii

4.4 Adaptation of CORAL as a UML Profile 30
4.4.1 Data Types . 31
4.4.2 Lifelines . 34
4.4.3 Messages . 35
4.4.4 Risk-Measure Annotations 38
4.4.5 CORAL Constraints 38
4.4.6 Object Constraint Language 39
4.4.7 CORAL Constraints in OCL 40

4.5 Customisation . 41
4.5.1 Graphical Notation . 41
4.5.2 Palette . 42

4.6 Deploying the Profile as a Plug-in 43
4.7 Researched-Based Design Summary 44

5 Evaluation - Empirical Study 45
5.1 Characterisation of the Study 46

5.1.1 Current State Analysis 46
5.1.2 Topic of our Empirical Study 47

5.2 Set Goals . 48
5.2.1 Formulate the Goal . 48
5.2.2 Formulate Research Questions 49

5.3 Choose Process . 49
5.3.1 Formulate Hypothesis 49
5.3.2 Determine Variables 50
5.3.3 Identifying the Subjects of the Study 51
5.3.4 Study Design . 51
5.3.5 Preparation of Experiment Material 54

5.4 Execution . 61
5.4.1 Study Preparation . 61
5.4.2 Study Execution . 61
5.4.3 Data Validation . 63

5.5 Analysis of Results . 63
5.5.1 Data Visualisation . 64
5.5.2 Applying Descriptive Statistics 67
5.5.3 Hypothesis Testing . 72
5.5.4 Findings Related to Efficiency 73
5.5.5 Findings from the Post-Experiment Questionnaire . . 74
5.5.6 Threats to Validity . 75
5.5.7 Analysis Summary . 78

6 Discussion 81
6.1 Success Criterion 1. 81
6.2 Success Criterion 2. 83
6.3 Success Criterion 3. 83

7 Conclusion 85
7.1 Directions for Future Work . 86

iv

Acronyms 89

Bibliography 91

Appendices 101

A Main Task Questionnaire – Group A 103

B Main Task Questionnaire – Group B 119

C Presentation – Group A 135

D Presentation – Group B 143

E Letter of Consent 151

F Task Scores from the Experiment 155

G SPSS – Statistics Calculations 159
G.1 Total Score . 159
G.2 Total Score – Without Outlier 165
G.3 Part 1 Score . 171
G.4 Part 1 Score – Without Outlier 177
G.5 Part 2 Score . 183
G.6 Part 2 Score – Without Outlier 189

H Example of a CORAL Threat Model Developed using the CORAL
Tool 195

v

vi

List of Figures

2.1 The relationship between the CORAL risk analysis language
and method depicting the language at the core of the
approach. Illustration borrowed from Erdogan [33]. 10

2.2 The icons for the modelling constructs in the CORAL risk
analysis language. Illustration borrowed from Erdogan [33]. 11

2.3 The seven steps of the CORAL method, illustration bor-
rowed from Erdogan [33]. 13

3.1 Method for technology research – main steps [109, p. 8] . . . 19
3.2 Evaluation strategies, adapted from McGrath [78, p. 32]. . . 21

4.1 The Eclipse project [121] consisting of five sub-projects:
Platform [27], JDT [120], PDE [95], E4 [22] and Orion [26]. . . 27

4.2 CORAL adaptation in a UML profile. 31
4.3 The frequency data types. 33
4.4 The conditional ratio data types. 33
4.5 The enumerations for TimeUnits, Consequences and Likeli-

hoods. 34
4.6 The CORAL lifelines, extending the UML Lifeline meta class. 35
4.7 The CoralMessages profile. 37
4.8 The CoralRiskMeasureAnnotations profile. 38
4.9 An example of a violated constraint with respect to the

UnwantedIncident message. 41
4.10 Examples of violated constraints. 41
4.11 The lifeline compartment in Papyrus displayed on the left.

On the right, examples of sub-compartments that would
make CSS customisation for lifelines easier. 42

4.12 The CORAL palette. 43

5.1 The six steps in the "A Single Empirical Study" framework
[99]. 45

5.2 The first step in the empirical study framework "A Single
Empirical Study" [99]. 46

5.3 The second step in the empirical study framework "A Single
Empirical Study" [99]. 48

5.4 The third step in the empirical study framework "A Single
Empirical Study" [99]. 49

vii

5.5 Independent variables, confounding factors and dependent
variables. Figure adapted from [129, p. 14] 50

5.6 The experiment process. Group A is given material with
graphical notation, whilst Group B is given material with
textual notation . 53

5.7 The fourth step in the empirical study framework "A Single
Empirical Study" [99]. 61

5.8 The fifth step in the empirical study framework "A Single
Empirical Study" [99]. 64

5.9 Box plot for the total score for Group A and B. 65
5.10 Box plot for the total score of Part 1 for Group A and B. . . . 66
5.11 Box plot for the total score of Part 2 for Group A and B. . . . 67
5.12 Experiment principles adapted from [122, 130]. 76

H.1 Example of CORAL threat model in the CORAL tool,
depicting an XSS attack toward the feedback feature of a web
application for shopping. 195

viii

List of Tables

4.1 The CORAL plug-in extension points. 43

5.1 Hypothesis for the empirical study 50
5.2 Questions for demographic survey 55
5.3 Questions for the main questionnaire 58
5.4 Post-experiment questionnaire 59
5.5 Table with all the task score categories. 60
5.6 Knowledge profiles . 62
5.7 The participants for Group A. WE = years of working

experience, D = degree, B = bachelor’s degree, M =
master’s degree. Knowledge in terms of Likert values: UML
modelling, SD = sequence diagrams, R = risk assessment or
analysis, UI-US = UI Design and usability. 62

5.8 The participants for Group B. WE = years of working
experience, D = degree, B = bachelor’s degree, M =
master’s degree. Knowledge in terms of Likert values: UML
modelling, SD = sequence diagrams, R = risk assessment or
analysis, UI-US = UI Design and usability. 63

5.9 Ranges for the accepted values for kurtosis that is approxim-
ately normally distributed, table adapted from [75]. 69

5.10 Descriptive statistics applied to the total score for Group A
and Group B. The max score for the whole task set is 27. . . . 70

5.11 Descriptive statistics applied to the Part 1 score for Group A
and Group B. The max score for Part 1 is 12. 71

5.12 Descriptive statistics applied to the Part 2 score for Group A
and Group B. The max score for Part 2 is 15. 71

5.13 Average time for the task set. x̄(t) is the average time
for either Group A or Group B in seconds, ∆t = tB − tA.
Furthermore, positive/negative values for ∆t and % indicate
that Group B spent more/less time than Group A. 74

5.14 Post-experiment questionnaire answers 75

F.1 Task scores for Group A. 156
F.2 Task scores for Group B. 157

ix

x

Acknowledgements

I would like to extend my utmost gratitude to my supervisors Ketil Stølen
from the University of Oslo and Sintef, and Gencer Erdogan from Sintef,
for giving me the opportunity to undertake this project, providing support,
advice, encouragement and guidance to finish my thesis work.

I am indebted to my co-supervisor, Gencer Erdogan, for his guidance and
encouragement during the last months of my thesis, who provided me
with critical and constructive feedback on my thesis writing which in turn
helped shape this master’s thesis.

I would also like to thank Mwiza Kumwenda and Øystein Lytskjold
Olavsen for reading and commenting on the thesis. Further, I would like to
thank Magnus Åsrud and Olav Wegner Eide for companionship when we
were all working towards the same goal of finishing our theses.

Thanks are also due to the people who participated in the empirical study
that was carried out as part of this thesis. Their participation was crucial,
and I am grateful that the process was executed so swiftly, providing me
with valuable data and feedback.

I would like to thank my dear family, especially my parents, Lill Kristin
Volden and Øivind Freberg, whose love, support, hard work and sacrifices
to provide a safe environment for me and my siblings to learn and prosper,
have helped me become the person I am today and pushed me toward
academic endeavours.

Last but not least, I would like to thank my lovely wife, Rizkika Widya
Tarandeli who is always there for me, for bringing encouragement, love
and support in my life, in addition to providing advice and comments
throughout the thesis process with regard to the writing.

xi

xii

Chapter 1

Introduction

In this chapter, we present the motivation for our work and the problem
addressed in this thesis. Further, we present the main contributions and
provide an overview of the thesis.

1.1 Motivation

Every year the World Economic Forum releases an annual global risks
report. The latest report shows that among the most likely risks to occur
within the next 10 years, massive-incident of data fraud/theft, and large-
scale cyber attacks come in on fifth and sixth place respectively [39]. At
the same time, rising cyber dependency is identified as the fourth top
trend that determines global developments over the next 10 years [39].
Meanwhile, there is an increase in cyber security risks and targeted attacks
towards the public, industry and governments by the use of the web,
social media, mobile devices, cloud services and so on. Furthermore,
targeted attacks toward states as exemplified by the recent US elections
shows a new trend where adversaries intended to influence public opinion
and create an atmosphere of distrust [118]. Not to mention the emerging
range of IoT services which further expands the attack surface of our
technological infrastructure. With all of this mentioned, we clearly see
the need for software security [12, 33, 96, 118]. Software security is
the ability of software to resist, tolerate and recover from events that
threaten dependability while maintaining confidentiality, accessibility and
integrity of information [33, 70]. As the growth of new applications and
information systems being developed is increasing, the need for software
security grows accordingly. Today, there exists a wide range of services and
applications across several platforms that are prone to attacks. Attackers
find new ways to exploit malfunctions and vulnerabilities within these
systems every day. Therefore, security must be considered thoroughly in
the software development life cycle, to minimise the risks represented by
either an attacker, the intended user of the system, or other non-human
causes that might lead to catastrophic damage to a system.

Software security is achieved by use of a variety of software security
practices in the software development life cycle. These are the result

1

of systematic research for the purpose to create secure software [33, 46].
One of the most important practices in order to ensure software security
in the software development cycle is security testing [33]. According to
the ISO/IEC/IEEE 29119 software testing standard, security testing is a
"type of testing conducted to evaluate the degree to which a test item,
and associated data and information, are protected so that unauthorized
persons or systems cannot use, read, or modify them, and authorized
persons or systems are not denied access to them" [62]. In this context, a test
item is the object of testing, e.g. a system or parts/components of a system.
Recently, the field of software testing has gone towards a model-based
testing approach, and software security testing has followed [33]. Model-
based testing focuses on deriving test cases based on explicit behavioural
models of a system under test (SUT) and/or its environment [126].

In terms of testing in general, we note the following challenges. First,
due to the fact that systems and software tend to be complex and divided
into different components that require different inputs, it is impossible to
exhaustively test every single aspect of a given system under test [62].
Kaner [65] argues that we cannot test every single aspect due to the fact
that we cannot test every single input to a program. Nor can we test all
combinations of inputs, we cannot determine every execution path of a
given program, and we cannot test for all potential failures that come with
the faulty design of a graphical user interface or requirements analysis.
Second, when carrying out a test with respect to security- safety- and
reliability-critical software, testers face the issue of determining the tests
that can reveal faults, errors or failures that cause the most severe risks [33].
Third, the testing phase of development is usually limited by a strict budget
and time constraints [40], thus underlining the importance of defining a
scope when carrying out tests, and provide "good enough testing" [65]. To
address these challenges, approaches that combine security risk assessment
to aid security testing have been proposed. These approaches aim to
determine which aspects of systems that are most exposed to risk, and use
this information to guide the security testing [33]. This approach is often
referred to as risk-based security testing. However, we will use the term risk-
driven security testing (RST), as this term better reflects the fact that risks
are the main driving factor to guide all phases of the test process [33, p. 4].

Security risk assessment is a process that involves identifying risks,
estimating risks and evaluating risks [74]. In this context, a risk is the
likelihood for an unwanted incident to occur and its consequence on a
specific asset. An asset is something that has value to a party, and which
requires protection [74]. Erdogan et al. point out that the field of risk-driven
security testing is still immature and points out that the field requires
more formality and preciseness, along with dedicated tool support [34].
Further, Erdogan introduces the CORAL approach, which is a stepwise
method to combine security risk assessment and security testing. In turn,
providing more formality and preciseness for risk-driven security testing.
The CORAL approach consists of a risk analysis language and a method to
conduct risk-driven security testing. This leads to the problem addressed
in this thesis, which involves investigating the possibility of developing

2

tool support for the CORAL approach, in order to fulfil the overall goal
of introducing proper tool support for the domain of risk-driven security
testing.

The main objective of this thesis is to provide a tool that adopts
the CORAL risk analysis language to support the CORAL method. To
summarise, there is a need for proper tool support within risk-driven
security testing due to the following:

• Security testing is a necessity in a world where software is exposed
to new threats and attacks every day, which may impact our
technological infrastructure.

• Security testing assisted by security risk assessment aids security
testers to carry out risk-driven security testing in selecting and
designing security tests that address the most severe risks.

• The testing phase of development is usually limited by strict budget
and time constraints. Thus, being able to carry out risk-driven
security testing with a tool may reduce costs in terms of money and
time.

1.2 Contribution

This thesis presents three kinds of contributions. First, it presents an
adaptation of the CORAL risk modelling language as a UML profile.
The profile introduces a way to include the CORAL constructs that
are extensions of UML constructs. In addition, the profile accounts
for the constraints derived from the abstract syntax that describes the
risk analysis language. Second, it provides a plug-in for the CORAL
UML profile for the Eclipse Papyrus modelling tool. With the CORAL
constructs being represented by a textual notation. Third, it provides
an empirical study in terms of an experiment. In the experiment, we
investigate how the difference between textual and graphical notation may
affect the comprehensibility and efficiency in the interpretation of threat
models represented in CORAL. In the following, we explain each of these
contributions in more detail.

1.2.1 Adaptation of CORAL as a UML Profile

The CORAL UML profile defines a total of 6 nested profiles which describes
specific categories of constructs within CORAL. These are: CoralData-
Types, CoralLifelines, CoralRiskMeasureAnnotations and CoralMessages.
CoralMessages has, in turn, two nested profiles, namely CoralInter-
valMessages and CoralExactMessages. Whilst the CoralLifelines and Cor-
alMessages profiles define stereotypes for the CORAL constructs that ex-
tend UML constructs, CoralDatatypes and CoralRiskMeasureAnnotations
define stereotypes for terms that are undefined in the abstract syntax.
Among these are frequencies and conditional ratios which can be specified

3

as either an interval or an exact value, consequence, likelihood and time
unit.

In addition to the CORAL constructs, the UML profile defines the
constraints according to the CORAL abstract syntax specified in the object
constraint language (OCL).

1.2.2 CORAL Plug-in – Tool Support for Risk-Driven Security
Testing

The CORAL plug-in is a plug-in of the Eclipse Papyrus modelling tool,
which supports the creation of threat scenarios, or what we refer to as threat
models. The plug-in adopts a textual notation for the CORAL constructs
in terms of UML stereotype annotations. Moreover, by extending Papyrus,
we have the advantage of having the UTP already defined, as it is provided
by Papyrus. As a result, the plug-in supports the possibility of conducting
steps of the CORAL approach which involves the design of test cases based
on threat models.

1.2.3 Empirical Study – Comparison of Textual and Graphical
Notation

As a result of designing the CORAL plug-in with a textual notation for the
CORAL constructs, an empirical study was conducted to compare textual
and graphical notation. The overall goal of the study was to investigate
whether there is a significant difference with respect to comprehensibility
and efficiency when interpreting threat models with either a textual
or graphical notation. The study was conducted by the means of an
experiment in June 2017.

The findings indicate that there is no significant difference in compre-
hensibility by using either textual or graphical notation. However, they
indicate that there is a difference with regard to efficiency. This is due to
the participants subjected to graphical notation spent consistently less time
in solving the tasks than those subjected to the textual notation.

1.3 Thesis Overview

This thesis is organised in the seven chapters as follows.

Chapter 1 – Introduction is divided into the following sections: Section
1.1 provides the motivation for conducting the thesis. Section 1.2
gives an overview of the main contributions of this thesis. While
Section 1.3 gives an overview of all the chapters that constitute the
thesis.

Chapter 2 – Problem Characterisation is divided into the following sec-
tions: Section 2.1 introduces relevant background knowledge regard-
ing this thesis. This includes: modelling in general, modelling- lan-
guages and tools, UML sequence diagrams, the UML testing profile

4

(UTP), the CORAL approach and presents state of the art risk-driven
security testing. Further, Section 2.2 specifies the problem addressed
in this thesis along with success criteria in Section 2.2.1.

Chapter 3 – Research Method describes how the research in this thesis
was conducted and is divided into the following sections: Section 3.1
presents the technology research aimed at improving or producing
new artefacts. Moreover, Section 3.2 presents categories of evaluation
strategies, what they are and what they ’measure’. Section 3.3
consists of a discussion of appropriate evaluation strategies for this
thesis. Finally, Sections 3.5 and 3.4 describes the evaluation strategies
applied in this thesis, empirical study and prototyping respectively.

Chapter 4 – Research-Based Design is divided into the following sec-
tions: Section 4.1 goes more into detail about the components needed
to develop the tool and argues why one should base new applications
on the Eclipse rich client platform. Then, in Section 4.2 we present the
Eclipse Foundation and relevant Eclipse projects, before discussing
our options of tools/frameworks in Eclipse. These being EMF, GEF,
GMF and Eclipse Papyrus, presented in Sections 4.2.1, 4.2.2, 4.2.3 and
4.2.4 respectively. In Section 4.3 we discuss our options for tool design
with respect to the aforementioned tools/frameworks, further spe-
cifying whether we should create an RCP application or a plug-in
in Section 4.3.1. Next, Section 4.4 describes the process of adapting
the CORAL risk analysis language as a UML profile. This includes
a description of all the CORAL constructs along with the CORAL
constraints expressed in OCL. Then, Section 4.6 describes how the
CORAL profile is deployed as a Papyrus plug-in. Finally, Section 4.7
summarises Chapter 4.

Chapter 5 – Evaluation - Empirical Study provides the empirical study
conducted by the means of an experiment. This empirical study
aims to uncover whether there is a difference with respect to
comprehensibility and efficiency between using either textual or
graphical notation. In Section 5.1 we characterise our empirical
study, this involves a current state analysis and a mapping study of
similar studies, along with a description of the topic of our empirical
study. Section 5.2 sets the goal for our empirical study along with
research questions and what to measure. In Section 5.3 we choose
the process for our empirical study, this includes formulating a
hypothesis, determining variables, identifying the subjects for our
empirical study and empirical study design. In Section 5.4 we
describe the empirical study execution, herein preparation, execution
and data validation of our empirical study. Finally, in Section 5.5
we analyse our experiment results by visualising the data, applying
descriptive statistics and conducting a hypothesis test.

Chapter 6 – Discussion provides a discussion of our thesis by discussing
our achievements with respect to our success criteria.

5

Chapter 7 – Conclusion concludes the thesis and provides directions for
future work.

6

Chapter 2

Problem Characterisation

In this chapter, we first provide some background information relevant to
our research topic, before specifying a baseline for our thesis accompanied
by success criteria. To start, Section 2.1.1 goes through what the notion
of modelling in computer science is, and present some history as well
as the categories of modelling paradigms. Then, Section 2.1.2 introduces
relevant languages and tools for modelling. Next, Section 2.1.3 presents
UML sequence diagrams. Further, Section 2.1.4 presents the UML testing
profile. We then go through the CORAL approach in Section 2.1.5 and state
of the art risk-driven security testing in Section 2.1.6. Finally, in Section
2.2 we specify the baseline for our research topic with success criteria in
Section 2.2.1.

2.1 Background and Conceptual Clarifications

2.1.1 Modelling

Modelling within computer science is a way of conceptualising and
describing a computerised system or parts of a system at a high level
of abstraction, either as a textual or graphical representation. One of
the first approaches to modelling computer systems with a graphical
representation dates back to 1958 when Young and Kent created an
abstraction to describe a data processing problem [133]. In 1962 the
CODASYL development committee proposed an information algebra as
a framework for describing data processing problems [8]. The motivation
behind both of these approaches was to achieve a machine-independent
way of describing systems. These efforts may have helped pave the
way for the development of the relational data model described by
Edgar F. Codd in 1969 [13], and further, the entity-relationship model
as proposed by Chen in 1976. In an effort to provide a "basis for a
unified view of data" [11]. This model combined the advantages of
the network model [102], relational model [13] and the entity set model
[2]. The aforementioned publications and proposed approaches were just
the beginning of a new way of thinking about computerised systems
and the challenge of creating good ways of describing and representing

7

them. Today there exists many modelling paradigms. As cited by
Erdogan et al. [33, p. 38], according to Lamsweerde [68] and Utting et al.
[127], we can group modelling notations into seven modelling paradigms:
state-based notations, transition-based notations, history-based notations,
functional notations, operational notations, stochastic notations, and data-
flow notations.

2.1.2 Modelling Languages and Tools

Today, there exists a number of standardised modelling languages. The
most accepted standard however, is the unified modelling language (UML)
standard developed by the object management group (OMG) in the early
1990s. The motivation behind the creation of UML was to create a
more complete modelling language. By combining the advantages of the
Booch method, OOSE and OMT, the first version of UML was published
in 1997 [7], and has been an ongoing project since then. The latest
UML version as of May 2016 is UML 2.5 [88]. UML has encouraged
the creation of a large variety of specifications and extensions, suited
for specific purposes. Examples of extensions are [89]: SysML used for
modelling a wide range of systems engineering problems [87], SoaML
used for modelling service oriented architectures [103], and IFML used
to model interaction flow models to describe the principal dimensions of
an application front-end [60]. For a full list of formally published UML
specifications and extensions, refer to [89]. In this thesis, we will benefit
from UML sequence diagrams (see Section 2.1.3) and the UML testing
profile (see Section 2.1.4). There exists a wide range of tools that adopt
UML or UML specifications/extensions. Examples of open-source tools
are Eclipse Papyrus [91] and ArgoUML [1] that are published under the
Eclipse public licence (EPL) [32], and UMLet [125] which is published
under the GNU general public licence (GPL) [47] to name a few. Examples
of proprietary UML modelling tools are IBM Rational [57] and MagicDraw
[76].

2.1.3 UML Sequence Diagrams

In UML, a sequence diagram is a kind of interaction diagram, which
focuses on interchanging messages between lifelines (objects/components)
[88, p. 593]. Sequence diagrams can be used as a systematic way of
representing interactions/events between components within a system.
This allows a software developer to specify a computer system as a set
of sequence diagrams. Since sequence diagrams are part of the UML 2.5
specification, it supports several operators such as: alt, opt, par, loop,
neg, assert, strict, ignore, consider and critical [4]. An interaction operator
specifies the semantics of a combined fragment and determines the usage
of the interaction operands in the combined fragment [58]. A combined
fragment is a logical grouping, which contains conditional structures
(operands) that affect the flow of messages [14]. Sequence diagrams are

8

most widely used in the model-based testing (MBT) community [18, 35], for
this reason, the CORAL method benefits from using sequence diagrams.

For a more elaborate explanation of the usage of UML 2.5 sequence
diagrams and the semantics, refer to the UML 2.5 manual [88, p. 564-596].

2.1.4 The UML Testing Profile

The UML testing profile (UTP) is a profile that extends and restricts the
original (UML) language [4, p. 29] for testing. As the UTP 1.2 manual
states, UTP is used for: "Designing, visualising, specifying, analysing,
constructing, and documenting the artefacts commonly used in and
required for various testing approaches, in particular, MBT approaches.
Model-based test specifications expressed with the UML Testing Profile are
independent to any methodology, domain, or type of system" [123]. UTP
gives the tester the ability to specify abstract test models with respect to
the system under test (SUT), that simplifies validation and the readability
of test models [4]. UTP also provides the possibility to define default
systems behaviour, making it easier to catch unwanted exceptions during
test execution [4, 123]. As summarised by Baker et al. [4, p. 32], the UTP
provides the following concepts to describe test behaviour:

• Test objective allowing the designer to express the inten-
tion of the test.

• Test case is an operation of a test context specifying how
a set of cooperating components interact with the SUT to
realise a test objective.

• Default is a concept for making the behaviour descrip-
tion more complete by specifying situations where the de-
scribed sequence does not happen.

• Verdict is a predefined enumeration specifying possible
test results, for example, pass, inconclusive, fail and error.

• Validation action is performed by the test component to
indicate that the arbiter is informed of the test component’s
test result.

• Timers are used to manipulate and control test behaviour
as well as to ensure the termination of test cases.

• Time zones are used to group components within a
distributed system, thereby allowing the comparison of
time events within the same time zone [4, p. 32].

UTP defines several stereotypes used to specify certain model elements, for
a tabular summary see [123, p. 116].

2.1.5 The CORAL Approach

The CORAL approach is an approach that combines a risk analysis
language with a method for risk-driven security testing and was proposed

9

by Erdogan [33]. The description of the risk analysis language and method,
i.e. the approach is documented by Erdogan, and this section introduces
the approach based on the documentation.

The CORAL approach aims specifically at helping security testers,
by providing an approach to systematically conduct risk-driven security
testing. The risk analysis language resides in the core of the approach.
This is illustrated in Figure 2.1, which shows the relationship between the
language and method. We first present the CORAL risk analysis language,
before describing the steps of the method.

Figure 2.1: The relationship between the CORAL risk analysis language
and method depicting the language at the core of the approach. Illustration
borrowed from Erdogan [33].

The CORAL Risk Analysis Language

The risk analysis language is based on UML interactions and consists
of constructs that extend common UML constructs, such as the UML
(asynchronous) message and lifeline. The interactions are expressed in
UML sequence diagrams. The language provides a graphical notation to
represent risk-related information directly in the diagram. This way, the
security tester can apply risk analysis directly in the diagram, and based on
that design security tests. Consequently, the security tester does not have
to conduct risk analysis separately using another language. In summary,
the CORAL risk analysis language consists of:

A Graphical notation that provides the necessary constructs for identify-
ing, estimating and evaluating security risks [33]. The icons used to
represent risk information is based on the corresponding graphical
icons from the CORAS risk analysis language [74]. CORAS is an ap-
proach to risk analysis, supported by a language, method and a tool
[74]. The use of CORAS icons is due to empirical studies have proven
to be cognitively effective [108]. The graphical icons are grouped into
five categories: diagram frame, lifelines, messages, risk-measure an-
notations and interaction operators [33]. Figure 2.2 shows all the dif-
ferent icons for the language.

10

message name

Messages

General
message

Message type Notation

message name

message name

message name

message name

New
message

Altered
message

Deleted
message

Unwanted incident
message

Risk-measure annotations

Frequency

Annotation type Notation

Conditional ratio

Consequence

frequency :
time unit

conditional ratio

consequence

Diagram frame

Frame

Notation

Interaction operators

Potential
alternatives

Operator Notation

Referred
interaction

Parallel
execution

Loop

ref Name

alt

sd Name

Lifelines

Lifeline
type

Notati
on

General
lifeline

Deliberate
threat lifeline

Accidental
threat lifeline

Non-human
threat lifeline

Asset
lifeline

Name

Name Name Name Name

par

loop

Figure 2.2: The icons for the modelling constructs in the CORAL risk
analysis language. Illustration borrowed from Erdogan [33].

As can be seen from the figure, there are five lifeline types: general
lifeline, deliberate threat lifeline, accidental threat lifeline, non-
human threat lifeline and asset lifeline. Moreover, there are five
types of messages: general message, new message, altered message,
deleted message and unwanted incident message. Finally, CORAL
introduces three risk-measure annotations: frequency, conditional
ratio and consequence.

An abstract syntax defined in extended Backus–Naur form [61]. The rules
defined by the syntax specify what combinations of constructs that
can be used to model syntactically correct interactions. Further,
the grammar makes use of eight undefined terms: identi f ier, asset
li f eline, int, minint, maxint, exact, interval and time unit. Refer
to Erdogan [33, p. 63-65] for further reading regarding the abstract
syntax.

A Natural-language semantics that provides security testers with a struc-
tured approach to generate the semantics of interactions produced
by the CORAL language, in terms of English prose. This is to help se-
curity testers "clearly and consistently document, communicate and
analyse risks" [33]. Refer to Erdogan [33, p. 65-68] for further reading.

The CORAL Method

The CORAL method is a stepwise method with a total of seven steps as
seen from Figure 2.3 to conduct risk-driven security testing [33, p. 68]. The
method expects as input for Step 1, a description of the system under test.
This may be in the form of "system diagrams, use case documentation,
system manuals, source code, executable versions of the system and so on"

11

[33]. As indicated by the arrows, each step takes as input the output from
the preceding step. The steps are conducted as follows [33]:

Step 1: Based on the description of the system under test, planning for
the risk-driven security testing process can begin. This includes:
preparation of a model from the system under test as a set of sequence
diagrams, identification of security assets, and definitions of the
frequency and consequence scales. Finally, a risk evaluation matrix
is constructed from the frequency and consequence scales.

Step 2: From the models of the system under test and the identified
security assets, security risks are identified, represented as unwanted
incident messages. Then, for each risk, threat scenarios that may
cause these are identified.

Step 3: For the messages in the threat scenarios identified in Step 2
that cause risk, frequencies and conditional ratios are estimated.
From this, the frequencies for each unwanted incident (risk) is
calculated, and consequence in terms of impact on assets defined.
The frequencies, conditional ratios and consequences are modelled
by using the CORAL risk-measure annotations.

Step 4: In this step, based on the annotated threat scenarios, we evaluate
the risks according to the risk evaluation matrix. In addition, we
specify a suspension criteria e.g. a threshold for risk values. Next,
the risks that are of a similar nature are aggregated to figure out if
their risk values should be increased. If they have, we assess whether
they should be included in the testing. Finally, we select which risks
to test based on the suspension criteria. The risks that are not covered
by the suspension criteria are excluded from the testing.

Step 5: We now proceed to specify test cases for each risk selected for
testing. First, a reference is made to the threat scenario for which
the risk occurs. Second, a test objective is specified for each threat
scenario. Third, we annotate the threat scenarios with stereotypes
from the UML testing profile [123], thus, selecting the interactions
that fulfil the test objective.

Step 6: We now carry out security testing with respect to the security tests
designed in Step 5. The test cases may be "executed manually, semi
automatically, or automatically" depending on whether the test has
to be carried out manually, or is implementable in a tool e.g. as an
executable model.

Step 7: A test incident report is written, based on the test results, we
document each test incident. This results in a test case incident report.

For simplicity, we will refer to the CORAL risk analysis language as
CORAL or the CORAL modelling language. The method will be referred
to as the CORAL method, and the combined use of the language and
method will be referred to as the CORAL approach, for the duration of

12

Figure 2.3: The seven steps of the CORAL method, illustration borrowed
from Erdogan [33].

this thesis. Also, the diagrams that are developed using the CORAL tool
will be referred to as threat models.

2.1.6 State of the Art Risk-Driven Security Testing

Security testing approaches that are supported by security risk assessment
is commonly referred to as risk-based security testing. However, we will
use the term risk-driven security testing, as this term better reflects the fact
that risks are the main driving factor to guide all phases of the test process
[33, p. 4]. This survey of existing approaches on the topic is heavily based
on the work carried out in the systematic literature review by Erdogan et
al. [34]. The literature review was systematically carried out in an effort
to find relevant sources with regard to the topics test-based risk analysis
(TR) and risk-based testing (RT) [34]. The search was conducted twice, and
after sorting the findings based on author, they identified a total of 28
approaches. Three approaches were concerned with TR, whilst 25 were
concerned with RT. However, the 25 approaches that are concerned with
RT can be further divided into nine different categories [33, p. 47]. The

13

category that is most relevant to our proposed thesis is "Approaches with
main focus on security; that is risk-driven security testing" [33, p. 47]. From
this category, six approaches were found. Risk-driven security testing is a
fairly new concept, as all the identified approaches were published within
the last seven years, and more frequently as of late. Xu et al. proposed
an approach that generates security tests based on formal threat models in
the form of predicate/transition nets [132]. The approach has been applied
in two realistic case studies and proved to be able to kill security mutants
that were deliberately injected into the system. It is not supported by a
tool. Murthy et al. proposed an approach that combines the advantages
of NIST and OWASP to model threat scenarios and test cases [81]. The
approach was applied to a gaming application and proved to save time,
cost, and resource usage. Zech et al. use a model-based approach to risk-
driven testing targeting cloud computing environments [134, 135]. The
approach is mainly focused on finding systems deficiency, rather than the
traditional focus on systems validity. The work shows no reference to any
empirical evaluation. The approach has, however, dedicated tool support
in the form of an Eclipse plug-in. The approaches suggested by Botella et
al. [9], Großman et al. [48, 49] and Seehusen [101] makes use of the CORAS
risk analysis language [74]. By the use of CORAS they identify security
risks and create risk models. These models contain threat scenarios that
are used to determine test procedures, which in turn are used to specify test
cases. The guidelines of how to accomplish this was proposed by Seehusen
[101]. Similar procedures have been applied by Botella et al. and Großman
et al. Botella make use of UML class diagrams, object diagrams and state
machines to instantiate the test pattern [9]. Großman uses a test design
strategy [48, 49]. Botella makes use of Seehusen’s CORAS tool for risk
modelling and Certifylt for test case design and execution. Großman et
al. have incorporated CORAS in their own tool for risk modelling as well
as test case models for test execution.

2.2 Problem Specification

The problem addressed in this thesis is concerned with creating dedicated
tool support for the CORAL risk analysis language, which is the core of the
CORAL approach. Consequently, providing tool support within the field of
risk-driven security testing in general. The purpose is to provide sufficient
tool support within the domain of testing, risk-driven testing, and security
testing [33, p. 33]. As Erdogan states in Section 8.4 Directions for future
work [33, p. 104-105]:

One obvious direction of future research is to develop a
modelling tool for the CORAL approach. As pointed out in
our literature review in Paper 1, the field of risk-driven testing
needs more formality and proper tool support. The CORAL
language is already formalised, and this opens for appropriate
tool support for the CORAL approach. A supporting tool

14

would obviously increase the efficiency of risk modelling.
Moreover, it could also support automatic test execution since
the CORAL approach makes direct use of the risk models for
test identification and test execution purposes [33, p. 104-105].

We gather that the tool has to support the CORAL risk analysis language.
This includes the graphical notation, syntax and semantics (constraints).
Furthermore, it should extend existing UML constructs for the CORAL
constructs that are UML-extensible. In addition to this, we need to figure
out how to include the constructs that are not supported by UML, e.g. risk-
measure annotations. To cover the steps in the CORAL approach that is
involved with testing, the tool should have support for UTP. This way,
security testers can make use of UTP to specify test cases directly in the
threat models.

To guide the development of the CORAL tool, we generalise two
high-level components that will make up a baseline for the tool. These
components are a diagram editor and a test case design suite:

• The diagram editor will provide the security tester with utilities to
create an explicit behavioural description of a system under test. In
order to sufficiently capture the system behaviour, CORAL makes
use of UML sequence diagrams, as mentioned in Section 2.1.5.
Consequently, the diagram editor is an editor for sequence diagrams.
Moreover, the diagram editor should provide CORAL constructs to
apply risk information directly in the model representing the system
under test. For this purpose, the editor must implement common
features found in diagram editors. Examples of common features
are: a canvas, palette of modelling elements, a draw engine to
draw model elements on the canvas, state information to provide
undo/redo, key-bindings, and so on. Additionally, the diagram
editor should support the CORAL graphical notation in order to
represent risk information relevant to the system under test. The
CORAL notation will be applied to stereotypes within the UML
notation. Frequencies, conditional probabilities and consequences do
not have corresponding UML constructs for sequence diagrams [33],
so this will have to be implemented.

• The test case design suite will provide security testers with the
possibility of using the UTP to specify test cases directly in the threat
models. In this suite, the tester will be able to create and modify test
cases by making direct use of threat models.

2.2.1 Success Criteria

To be able to fulfil the requirements as mentioned in the previous section,
and reach the overall aim of the thesis, we need to identify and define a set
of success criteria. We define the following success criteria:
Success Criterion 1. The tool should support the creation of security tests based
on the available risk picture

15

It should be possible to accurately model the aspects of the risk
assessment with the tool. Moreover, it should be possible to specify test
cases with respect to the available risk picture.

Success Criterion 2. The tool must sufficiently aid security testers in selecting
and designing security tests with the help of security risk assessment.

By this, we mean that the tool must provide the security testers with
useful information based on the risk assessment. Such that this information
will ensure that the selected and designed test cases are the ones that
cause the most risk with respect to the suspension criteria. The suspension
criteria serve as a threshold for the risk values we want to include in the
security testing. Consequently, used in the method used to reflect the
investable testing effort [35].

Success Criterion 3. The tool must be appropriate and comprehensible for
security testers.

The main stakeholders that will benefit from the creation of this
tool are security testers. Therefore, the tool must be appropriate and
comprehensible to them. Hence, it is important that the features are
properly expressed.

16

Chapter 3

Research Method

In Section 2.2, we described the main topic of this thesis and the chal-
lenges security testers face within the domain of risk-driven security test-
ing. Based on this, we defined a set of success criteria that this thesis in-
tends to fulfil in order to accomplish our objective. In this section, we dis-
cuss the steps required in order to conduct our research, namely the re-
search method to be applied in the proposed thesis.

The word research comes from the middle French word "reserche" which
translated to English means "to go about seeking" [20]. In the context of clas-
sical research, the term research has been defined in several ways [109, p. 3].
Borrowing the definition from Merriam-Webster, research is:

Investigation or experimentation aimed at the discovery and
interpretation of facts, revision of accepted theories or laws in
the light of new facts, or practical application of such new or
revised theories or laws [20].

In short, what we seek is data that will either add knowledge or modify
existing knowledge. When conducting research, a researcher must first
formulate a question as a basis for the research and form a tentative
explanation to answer this question, a hypothesis [109, p. 5]. Through
observations and investigations, the researcher has to check whether the
hypothesis is true in reality, in a process known as hypothesis testing.
Hypothesis testing is also referred to as evaluation [109, p. 3]. It is
common to make predictions regarding the outcome of the observations
and investigations. Predictions are statements that are only proven true if
the hypothesis is true [109, p. 5]. Thus, if an evaluation of a hypothesis
confirms the predictions, the hypothesis is strengthened. However, if the
predictions are proven false, it can cause a rejection of the hypothesis [109,
p. 5]. This approach is commonly referred to as the "scientific method", or as
Solheim and Stølen define it, classical research [109, p. 3]. A hypothesis can
be strengthened through evaluation, although it can never be ultimately
proven. However, there might arise new questions worth examining, thus
the classical research is an iterative process [109, p. 6]. The essence of
classical research as pointed out by Solheim and Stølen:

17

Classical research is focusing on the world around us, seeking
new knowledge about nature, space, the human body, the
society, etc. The researcher asks: What is the real world like?

This research method is heavily rooted within what Solheim and Stølen
refer to as basic research defined as follows "Research for the purpose of
obtaining new knowledge", with the main steps defined as problem analysis,
innovation and evaluation [109, p. 4, 6]. We will refer to the innovation
step as research-based design, as this better reflects the meaning of the
step nowadays. This thesis, however, is more concerned about asking
questions regarding technology. It is about finding better ways of solving
practical problems, and specifically how to aid the domain of risk-driven
security testing. To this end, we will benefit from a research method called
technology research [109, p. 3].

Technology research adopts the method established within the classical
sciences with a more practical approach in order to create new and better
artefacts. Technology research is similar to design science. An artefact in
design science is defined as something created by people for some practical
purpose, examples are algorithms, methods, notations, techniques, and
even conceptual frameworks [128, p. 29]. This is similar to the definition
of an artefact in technology research. According to Solheim and Stølen, an
artefact is referred to as an object manufactured by a human being [109,
p. 3], an object intended to be useful for human beings. In design science,
the objective is to design artefacts to interact with a problem context in
order to improve something in that context [128, p. 3]. Unlike classical
research, which aims to understand reality, design science aims to develop
artefacts that serve human purposes. The technology research method is an
iterative method that consists of three main steps, problem analysis, research-
based design and evaluation. These steps correspond to the three steps of the
design cycle, problem investigation, treatment design and treatment validation
[128, p. 27]. The design cycle, however, is part of a broader cycle, known
as the engineering cycle, in which a designed and validated treatment is
implemented in the problem context, and the implementation is evaluated
[128, p. 33]. Technology research falls mainly within the category of applied
research, which is "Research seeking solutions to practical problems" [109, p. 4].
Hence, the main difference between basic research and applied research
is the former being aimed at discovery of new, general information about
the real world that might not be directly applicable. Whilst the latter is
specifically aimed at being directly applicable and solving practical issues.
In the following sections, we will further explain the technology research
method (Section 3.1), give an overview of evaluation strategies (Section 3.2)
and an overview of the selected evaluation strategies for this thesis (Section
3.3).

3.1 Technology Research

The technology research method is a research method that is aimed at
improving or creating new artefacts, e.g materials, automates, medicines,

18

oil production methods and computer programs [109]. In our case, we
will create a computer program, that will assist security testers in testing
software with a focus on security. The first thing a researcher has to do
when conducting technology research is to collect requirements concerning
the artefact (problem analysis). As opposed to the classical research
method, instead of asking the question about What is the real world like?,
we ask the question How can we produce better or new artefacts that can
benefit humanity in solving practical issues we face in the real world? After the
researcher has established the context of the task at hand, the second step
is the research-based design step. The research-based design step is the
process of making the new or better artefact under the assumption that it
is feasible. When the artefact or a prototype of the artefact is ready, the
researcher has to figure out whether the artefact satisfies the requirements
established during the problem analysis. This process is referred to as
the evaluation, see Section 3.2 for an overview of evaluation strategies.
There are many evaluation strategies one can use to obtain the information
needed to determine whether the artefact satisfies the requirements or not,
and decide whether it needs further development. The technology research
method follows the same basic steps as the classical research method;
problem analysis, research-based design and evaluation. Also, the technology
research method is an iterative method as illustrated in Figure 3.1. After
one iteration of the method, it is likely that the researcher has to adjust
the requirements and go through the research-based design step again
to produce a new artefact that reflects the modified requirements. With
regards to our thesis, this would involve modifying the thesis success
criteria. This is very natural since there are usually elements one tend not
to consider when carrying out the problem analysis. These elements can
later be revealed once you start creating the artefact in the research-based
design step, or during the evaluation step.

Problem-
analysis

Research-
based design

Evaluation

What is the
potential need?

How to make an
artefact that
satisfies the need?

How to show that
the artefact satisfies
the need?

Need

Argumentation

Figure 3.1: Method for technology research – main steps [109, p. 8]

19

3.2 Evaluation Strategies

As mentioned in Section 3.1, an evaluation strategy is a process aimed
at providing information that can contribute to a decision regarding the
artefact’s fulfilment of requirements. There is a wide range of evaluation
strategies available. The strategy one is to choose depends on several
factors. With resource restrictions in mind there are, according to McGrath
primarily three factors one would want to maximise [78, p. 31]:

(A) Generality
A measure of the validity of results across populations.

(B) Precision
The precision of measurement of the acquired results, and control of
external variables that are not part of the study.

(C) Realism
To what degree the evaluation reflects realism (if it was performed in
a realistic context).

Although one would want to maximise all these factors to achieve the best
result possible, McGrath argues that this is not possible and that every
research strategy is flawed – although different strategies have different
flaws [78, p. 32]. It is therefore important that one chooses evaluation
strategies that complement each other to attain acceptable values for each
factor. Figure 3.2 illustrates that the spatial relationship between the
common evaluation strategies emphasise the dilemma: "The very things
that help increase one of the desired features –A, B and C –also reduce the
other two" [78, p. 32].

20

Precision

Generality

Realism

Experimental
simulation

Field
Experiment

Field study

Computer
simulation

Non-empirical
evidence

Survey

Qualitative
interview

Laboratory
experiment

I

I
IVIV

III

III
IIII

Figure 3.2: Evaluation strategies, adapted from McGrath [78, p. 32].

To cover all the common evaluation strategies in depth is beyond the scope
of this problem analysis, however, we will give a brief description of each
of the strategies depicted in Figure 3.2.

• Field studies are direct observations of "natural" systems with little
or no interference by the researcher. Field studies are high on realism,
but lack precision and generality, as they are hard to replicate.

• Field experiments like field studies are observations carried out in a
natural environment, however with certain factors being deliberately
manipulated for study.

• Laboratory experiments are attempts to recreate systems with a
large degree of control and the possibility to isolate variables to be
examined, Gains high precision at the cost of low generality and
realism.

• An experimental simulation is a laboratory study in which we try to
simulate relevant processes that occur in the real world.

• A survey is concerned with gathering information from a broad
group of carefully selected informants. The information is usually
gathered through a set of questions, either as questionnaires or
interviews. Surveys gain generality at the loss of precision and
realism.

• A qualitative interview is a collection of information from a few
selected individuals. The answers are more precise than those of a
survey, but cannot be generalised to the same degree.

21

• A computer simulation is operating on a model of a given system.
Scores higher on realism than generality due to the fact that it is
system specific.

• Non-empirical evidence is a theoretical approach based on argu-
mentation with logical reasoning. Scores high on generality as this
is the overall aim, but low on precision and realism as a result of not
being empirical.

The eight strategies are further divided into four groups [109, p. 17]:

I The evaluation is performed in a natural environment.

II The evaluation is performed in an artificial environment.

III The evaluation is independent of environment.

IV The evaluation is independent of empirical measurements.

3.3 Selection of Appropriate Evaluation Strategies

To get a starting point from which we can select appropriate evaluation
strategies, we re-examine the requirements or success criteria we estab-
lished in Section 2.2.1:

1. The tool should support the creation of security tests based on the available
risk picture.

2. The tool must sufficiently aid security testers in selecting and designing
security tests with the help of security risk assessment.

3. The tool must be appropriate and comprehensible for security testers.

With respect to success criterion one, we need to assess whether the tool
fully supports the creation of security tests by the use of the CORAL
approach. This involves verifying that the tool fully supports the CORAL
risk analysis language and UTP for designing test cases. To this end,
we can benefit from an evaluation strategy called prototyping to gain a
better understanding of the requirements of the artefact. Prototyping falls
somewhere in between experimental simulation and field experiment, as
we (the developer) would try to simulate the security testers’ activity while
controlling certain factors for study. See Section 3.4 for further explanation
of prototyping.

Success criterion two and three are mostly concerned with the security
testers’ perception of the tool. To what extent the tool can sufficiently
help the security tester in determining which tests address the most severe
risks, is largely based on the quality of the risk assessment carried out
by the security tester beforehand and his/her ability to produce inputs
that reflect reality as precisely as possible. This is obviously the security
testers’ responsibility. Furthermore, appropriateness is also measured to
what extent the CORAL tool benefits from using well-known paradigms

22

within software and security testing. To evaluate success criterion two
and three one could conduct an empirical study to gain precision and
realism. An empirical study is an evaluation strategy that is based on direct
and indirect observation or experience. This approach, however, requires
the availability of the individuals to participate in the empirical study.
Finding appropriate participants can often times be difficult. Traditionally,
students have been selected as participants for empirical studies. However,
having industry professionals are often required to gain accurate insight
and responses to research questions [105]. Empirical studies are described
further in Section 3.5.

3.4 Prototyping

A prototype is an initial version of a system [111, p. 45], that represents
the artefact created from requirements established initially in the problem
analysis. The process of prototyping is concerned with writing programs
for the purpose of learning about their optimal design and construction [5].
The method can help us figure out what are the strengths and weaknesses
of our tool early in development, and discover new requirements or success
criteria. As stated by Balzer et al. "Given a proposed solution to a problem,
prototyping is used to answer three types of question: Is this a method for achieving
the solution; does the proposed implementation have acceptable performance,
production cost, and reliability; and is it a good solution?" [5]. Prototyping is
an iterative approach and one can end up producing several prototypes to
achieve a satisfactory understanding of the requirements.

3.5 Empirical Study

An empirical study is usually carried out by one of the three major
strategies: survey, case study or experiment [130]. While surveys and
case studies are both qualitative and quantitative, an experiment is a
quantitative evaluation strategy [129]. The survey evaluation strategy was
described in Section 3.2.

A case study often referred to as ’research-in-the-typical, is a study con-
cerned with studying a real project, activities or assignments. Throughout
the study, data is collected for statistical analysis. The case study aims to
track specific attributes or relationships between attributes [130]. In our
case, a case study may, for example, be aimed at conducting a security
risk assessment to support security testing,i.e. performing the CORAL ap-
proach with the tool in a real project. Due to this, the control of a case
study is lower than for an experiment. Since a case study is an observa-
tional study, while an experiment is a controlled experiment [130].

An experiment often referred to as ’research-in-the-small’, is often con-
ducted with a limited scope and in a laboratory setting [129]. Experiments
are controlled, since one controls certain variables, and apply treatment to
them for the experiment’s control groups to observe an effect. The effect

23

is measured and data is gathered, which forms the basis of the statist-
ical analysis. There are two types of experiments: randomised and quasi-
experiments. The former being an experiment where treatment is assigned
to participants at random, while in a quasi-experiment treatment is not ran-
domly assigned [129].

The strategy used to carry out the empirical study for this thesis is
further described in Chapter 5.

24

Chapter 4

Research-Based Design

In this chapter we go through the second step in the technology research
method explained in Section 3.1, namely the research-based design step.
In Section 4.1 we present a more in detail explanation of the components
required to develop a modelling tool, and argue why it is beneficial to build
the tool from existing non-proprietary software. Section 4.2 introduces the
Eclipse environment and relevant tools and frameworks with respect to
creating the CORAL tool. Section 4.3 introduces the options with regard
to tool design, and argues why we should benefit from using the UML
profile in Papyrus. Further, the section discusses whether to create an RCP
application or a Papyrus plug-in. In Section 4.4 we present the process
of adapting the CORAL abstract syntax as a UML profile. This includes
the specification of the UML profile, customisation and deployment of
the plug-in. Finally, we summarise the research-based design step and
argue why our evaluation will focus on comparing textual and graphical
notation.

4.1 Artefact Design

In Section 2.2 we discussed the three main components the CORAL tool
should consist of. These were: diagram editor and test case design
suite. These are high-level descriptions and do not cover all the required
functionality by far. There are several components needed in order to
have a fully functional modelling tool. First, we would have to develop
a documentation scheme for how models would be represented in a file
format. Second, we would need to create a parser to accurately parse the
information from our file format. Third, you would need to build objects
from the model elements stored in the file format, and represent these to
the user. Furthermore, a user interface would be required to manage files,
projects, and models. The UI should also have a palette with the modelling
elements. The diagram editor would require a draw engine to draw the
model elements. Moreover, a debugger would be required or some kind of
model validity check to ensure that the models comply with the CORAL
constraints.

With respect to maintainability, we would have to implement a

25

mechanism suitable to manually or automatically update the application
and its components. In addition, the tool should implement the UML meta
model. This is to facilitate the integration of other models with CORAL
models, and since sequence diagrams are part of UML. Along with this,
UTP would be required to include the stereotypes used for the last stage of
the CORAL approach described in Section 2.1.5. It would also be beneficial
to include a matrix editor for the risk evaluation matrix, likelihood scale
and consequence scale.

Finally, the tool has to be optimised to the extent that it is scalable
and able to handle complex models. With this mentioned, is it feasible
to design all of these features from scratch? It is feasible to the extent that
it is possible, although unlikely given the time constraints of this thesis.

However, often times in software development one has to rely on exist-
ing functionality. This can be in the form of an application programming
interface (API), library or framework. By building on existing functional-
ity one can significantly reduce the development cost required to develop
new software. With this in mind, we identify useful resources for which
we can build the CORAL tool to satisfy the aforementioned requirements.
Moreover, to avoid having to buy a licence to extend existing software, it is
imperative to find resources that are open-source and non-proprietary. In
addition, allowing the CORAL tool to be open-source will open the pos-
sibility for other developers to provide maintenance updates or additional
functionality in the future, and at the same time make it more accessible to
end-users.

When creating new client-side applications, one can rely on what is
called a rich client platform (RCP). An RCP is a platform that provides a
minimal set of plug-ins from which new applications can be based. Serving
as a tool to make it easier to integrate independent software components.
There are several open-source platforms from which one can base an
application. Examples are the Eclipse RCP [28] and the Netbeans RCP
[82] to name a few. By extending an RCP one can reduce development
cost considerably since much functionality is provided by the platform and
only needs adjustment to the user-domain. Furthermore, this enables the
developer to focus development efforts on the required functionality (user-
domain), rather than other necessities such as e.g. appearance, resource
management, navigation menus and so on. The Eclipse Project provides
several technologies that are useful to the end of creating the CORAL
tool. In relation to this, there are several options available with respect
to creating an RCP application in the Eclipse environment. These will be
discussed in the section that follows.

4.2 Eclipse, Tools and Frameworks

The Eclipse Foundation was created in 2001 as an independent non-profit
organisation. The organisation’s purpose is to serve as a community
for individuals and organisations who want to collaborate on developing
commercially-friendly open source software [119]. The Eclipse foundation

26

consists of several independent software projects, with the Eclipse Project
serving as the core (top-level) project [121]. The Eclipse project provides
core components divided into five sub-projects as can be seen from Figure
4.1 and constitutes the Eclipse software development kit (SDK). These,
in turn, support the development of platforms, frameworks integrated
development environments (IDE) and other applications.

The Eclipse
Project

Platform JDT PDE E4

Core frameworks
and services to
support the
integration of
tools.

Java development
environment that
supports the
development of
any Java
application.

Plug-in
development
environment that
provides views and
editors for plug-in
creation.

E4 serves as an
incubator for
future technologies
for Eclipse.
Key words:
exploration,
simplification and
web-based
technologies

Orion

Browser-based
open tool
integration
platform which is
entirely focused on
developing for the
web, in the web.

Figure 4.1: The Eclipse project [121] consisting of five sub-projects:
Platform [27], JDT [120], PDE [95], E4 [22] and Orion [26].

All software produced by the Eclipse Foundation is made available under
the Eclipse public licence (EPL) [32]. According to the EPL, permissions
allow for using, modifying and redistributing the software for free. The
Eclipse software can also be integrated with proprietary components as
part of a commercial product [112].

To the end of creating a client-side application, one can rely on
the Eclipse platform, which consists of the platform UI, the standard
widget toolkit (SWT), resource management (file/folder management)
and debugger. These features are enough in order to create any basic
application. However, for our CORAL tool, we are in need of a sequence
diagram editor, the UML 2.x specification, a palette of modelling elements
and so on. All of these features are available in different plug-ins from a
range of Eclipse projects. To develop the CORAL tool one could identify
all the needed plug-ins and apply them along with modifications to end
up with a modelling tool according to our requirements. However, even if
many of the required plug-ins are available, the knowledge to assemble and
modify them all in a complete modelling tool would be required. Luckily,
to the end of creating editors for modelling languages, Eclipse provides
several frameworks to accomplish this.

27

4.2.1 Eclipse Modelling Framework

The Eclipse modelling framework (EMF) is "a modelling framework and
code generation facility for building tools based on a structured data
model" [23]. Basically, in EMF you can create a model of an application by
the means of an EMF-model or ecore-model. Ecore is a small and simplified
subset of UML consisting of four classes: EClass, EAttribute, EReference
and EDataType [112]. Based on the ecore-model of an application and a
gen-model, EMF will generate the corresponding Java interfaces, a UML
diagram and an XML schema. The genmodel is a decorator model for
the ecore-model [31]. You can also supply EMF with a specification of the
application as either Java interfaces, a UML diagram or an XML schema.
EMF will then generate the ecore-model along with the other specifications
[112]. The latest release of EMF is version 2.13.0, released on June 28th 2017
[23].

4.2.2 Graphical Editing Framework

The graphical editing framework (GEF) is a framework to build graphical
applications that can be integrated into the Eclipse UI [24]. Furthermore,
one can use GEF to create graphical editors for modelling languages [24].
The latest release build of GEF is version 5.0.0, released on June 13th 2017.
The new version of GEF uses the JavaFX [63] rendering engine [41], as
opposed to the legacy version, which used SWT [117]. See [25, 42] for
further information of the components that make up GEF.

4.2.3 Graphical Modeling Framework

The graphical modelling framework (GMF) is a framework that combines
EMF and GEF to provide a graphical modelling framework. This enables
the developer to define meta-models in EMF, and rich graphical editors
with GEF. Then, GMF puts all of this together and creates a graphical
editor, which can optionally be implemented in an RCP application [43].
The GMF project is divided into three sub-projects: GMF Runtime, GMF
Notation and GMF Tooling. The sub-projects follow their own release plan,
with their latest releases on June 28th 2017, June 22nd 2016 and June 22nd
2016 respectively.

4.2.4 Eclipse Papyrus

Papyrus [91] is an Eclipse-based (RCP) application/tool, created with the
intention of providing an "integrated, user-consumable environment for
editing any kind of EMF-model" [93]. Moreover, Papyrus has support
for UML2 which provides an EMF implementation of the UML 2.x OMG
meta model [124]. It also supports domain specific modelling languages
(DSMLs) such as SysML and MARTE, and the integration of GMF-based
editors [93]. The Eclipse Papyrus project is a sub-project of the model
development tools (MDT) project [30], which in turn is a sub-project of the

28

Eclipse modelling project [29]. The latest release of Papyrus is the 3.0.0
Oxygen release as of June 27th 2017.

Functionality

As mentioned, Papyrus implements the UML 2.x specification. In addition
to this, it provides diagram editors for all the UML diagram types [91]:

• Class diagram.

• Object diagram.

• Package diagram.

• Composite structure diagram.

• Component diagram.

• Deployment diagram.

• Profile diagram.

• Use case diagram.

• Activity diagram.

• State machine
diagram.

• Communication
diagram.

• Sequence diagram.

• Timing diagram.

• Interaction overview
diagram.

Since Papyrus supports the creation of UML profiles, one can create a
DSML specified as a UML profile for any of the UML diagram types. Also,
Papyrus has support for the definition of model constraints, in terms of
either OCL or Java. This will be discussed further in Section 4.4.6. Fur-
thermore, Papyrus is customisable as one can create customised palettes,
graphical/textual/tabular notations, customisation for a variety of views,
i.e. the different windows inside the application along with creation wiz-
ards for your DSML [91]. The supported functionality is documented in the
user’s- and developer’s guide [94]. However, the documentation is a bit
lacking and there are several new features that have come after the Oxygen
release that is not included in the documentation at the time of writing this
thesis. In addition, some documentation is prone to being obsolete since
some previously used plug-ins are deprecated. These plug-ins are usually
listed in migration guides between release versions. Migration to Papyrus
Oxygen is explained in a migration guide [90].

4.3 Options for Tool Design

Having looked at several frameworks/tools within Eclipse, we proceed to
identify what option to benefit from when creating the CORAL tool.

One option would be to create the CORAL specification in EMF as an
ecore-model. Then, generate all the classes needed to support the language
from the ecore-model and genmodel. To the end of applying a graphical editor
to the model, we could use GEF, then wrap it up in an RCP application.
This approach was more common before the introduction of GMF.

29

Another option is to use GMF which is similar to the process for the first
option, although simplified.

Finally, we can benefit from the UML profile provided by Papyrus.
This way we first figure out how to adapt the CORAL abstract syntax
in a UML profile, specify model constraints and customise according to
the customisation options. Since CORAL extends several constructs from
UML, using Papyrus to create a UML profile seems like an easier option to
implement CORAL with respect to the other options. First, well-known
DSMLs such as SysML and MARTE have been implemented as UML
profiles in Papyrus. Second, UTP which is needed for the last step in the
CORAL approach is present in Papyrus. Third, learning and applying EMF
along with GEF would take a considerable amount of time to master in
comparison to using UML profiles. Finally, Papyrus is actively updated.
For these reasons, to the end of creating the CORAL tool, we will benefit
from creating a UML profile for CORAL along with the customisation
features of Papyrus.

4.3.1 Plug-in or RCP application?

Since Papyrus is part of Eclipse, an alternative is to create an RCP
application based on Papyrus. This will allow for the creation of a stand-
alone tool, branded as the CORAL tool. This is beneficial if we want
to restrict the tool to only concern the CORAL DSML. However, if new
updates are released for Papyrus, these would have to manually applied
to our RCP application, in effect, leading to more maintenance work. The
other alternative is to create a Papyrus plug-in with our DSML. The plug-
in can use extension points and configurations to limit the Papyrus view
when creating a CORAL diagram. Such that information that is irrelevant
to CORAL is hidden from the user. Furthermore, a plug-in would allow
the user to create models with other DSMLs or UML in the same tool.
This is beneficial if one is working with different modelling languages in
a project. Also, the input to the CORAL approach is a description of the
SUT. The description can be in the form of "system diagrams, use case
documentation, system manuals, source code, executable versions of the
system, and so on" [33, p. 68]. For this purpose, the user can first use the
UML sequence diagram editor to model the system. Then, when going
through the steps of the CORAL approach, apply stereotypes with ease. For
these reasons, we will deploy our CORAL DSML as a plug-in for Papyrus.
In the section that follows, we explain how the CORAL UML profile was
created.

4.4 Adaptation of CORAL as a UML Profile

In this section, we describe the process of how CORAL was adapted as
a UML profile. As mentioned in Section 3.3 on page 22, we argued why
prototyping is an appropriate evaluation strategy to utilise during the tool
development process. In order to implement the CORAL DSML we apply

30

the following steps. First, we identify the concepts and relations with
respect to CORAL. Second, based on the identified concepts and relations,
we specify UML stereotypes and/or data types. Third, we specify the
constraints relevant to the CORAL language. Fourth, we customise our
diagram editor according to the options available within Papyrus. Finally,
we deploy our profile as a CORAL plug-in for Papyrus. We then get our
prototype which in turn is evaluated by simulating security tester activities.
The adaptation process is depicted in Figure 4.2. As can be seen from
the figure, the process is iterative, indicated by the dashed arrow from
the fifth step to the first. In the following subsections we will introduce

Identify CORAL concepts and relations

Specify UML stereotypes and/or data types

Specify CORAL constraints

Deploy as CORAL plug-in
(Prototype)

Customise

Figure 4.2: CORAL adaptation in a UML profile.

each of the CORAL constructs identified from the abstract syntax [33]
and how to specify them as stereotypes. A stereotype is the primary
extension construct in UML, that can extend existing UML-constructs and
their properties. The version of the CORAL profile that is presented is the
final version, after being refined through several iterations according to the
prototyping strategy.

4.4.1 Data Types

We review the abstract syntax for the CORAL risk-measure annotations.
Since these constructs do not have corresponding UML constructs, we
apply them as properties of messages instead of annotations. Such that
they can be easily referenced. The abstract syntax is written in EBNF [61].
While non-terminals are written in font math mode, terminals are written in
font Sans Serif. The terminals that are written in Bold Sans Serif represent
the syntactical element type [33]:

31

transmission f requency = f requency;
reception f requency = f requency;
f requency = f(exact, timeunit) | f(interval, timeunit);
conditional ratio = cr(exact) | cr(interval);
consequence = c(identi f ier);

From this we identify two data types we have to implement in our
profile, these will be implemented using the class DataType which will be
represented as an EDataType in EMF. The data types are: Frequency and
CondRatio (conditional ratio). Furthermore, according to CORAL abstract
syntax frequencies and conditional ratios can be represented either as an
exact positive real number (exact ∈ R ≥ 0) or an interval of real non-
negative numbers including 0 [33]. The time units and consequence values
will be represented as enumeration literals. The CORAL abstract syntax
does not mention likelihood values [33], however, likelihood values are
related to frequencies, as a frequency value will fall within the range of
values defined by the likelihood scale. The corresponding likelihood values
will also be represented as enumeration literals. Following are the data
types and enumerations:

Frequencies

A frequency can be represented as either an exact or an interval value. For
this reason, we create an abstract DataType named Frequency. Frequency
has two properties that are in common for both exact and interval frequen-
cies, namely time unit and likelihood. Further, we create two data types that
are generalisations of Frequency, IntFrequency and ExactFrequency. IntFre-
quency has two properties: min:Real and max:Real, while ExactFrequency
has one property: exact:Real. The data types are represented in Figure 4.3 in
a UML profile diagram.

32

Figure 4.3: The frequency data types.

Conditional Ratios

Similar to the frequency, a conditional ratio can either be an exact or an
interval value. We specify IntCondRatio with two properties: min:Real and
max:real, while ExactCondRatio has one property: exact:Real. These can be
seen from Figure 4.4.

Figure 4.4: The conditional ratio data types.

Enumerations

The undefined terms from the abstract syntax such as time units, con-
sequences and likelihoods are implemented as enumerations: TimeUnits,
Consequences and Likelihoods. The enumeration literals for TimeUnits are
second(s), minute(s), hour(s), day(s), week(s), month(s) and year(s) [33].
Enumeration literals for Consequences are: insignificant, minor, moderate,
major and catastrophic. Finally, enumeration literals for Likelihoods are:
rare, unlikely, possible, likely and certain. These are shown in Figure 4.5.

33

Data types and enumerations are defined in a nested profile named Cor-
alDataTypes.

Figure 4.5: The enumerations for TimeUnits, Consequences and Likeli-
hoods.

4.4.2 Lifelines

CORAL defines four new lifeline constructs: asset, deliberate threat,
accidental threat and non-human threat. These are semantically equivalent
to the UML lifeline. Additionally, a general lifeline is referenced in the
syntax. This is basically a UML lifeline and is used in CORAL to "model
the system under test, as well as the environment interacting with the
system under test" [33]. The identifiers defined in the CORAL syntax are
equivalent to the naming conventions of lifelines in UML interactions [33].
Since we implement the CORAL lifelines as stereotypes (extension) of the
UML lifeline, they inherit the name property. Thus, there is no need to
implement another identifier property for CORAL lifelines, as specified in
the abstract syntax. The CORAL lifelines are shown in Figure 4.6 in a UML
profile diagram. As can be seen from the figure, the CORAL lifelines are
defined in a profile named CoralLifelines. This profile is a nested profile
within the CORAL profile.

34

Figure 4.6: The CORAL lifelines, extending the UML Lifeline meta class.

4.4.3 Messages

The CORAL language defines five different kinds or categories of messages
that belong to three collective terms. These being risky message, deleted
message and unwanted incident message. The abstract syntax is written in
EBNF [61]. While non-terminals are written in font math mode, terminals
are written in font Sans Serif. The terminals that are written in Bold Sans
Serif represent the syntactical element type [33]:

message =
riskymessage | unwantedincident
message | deletedmessage;

risky message =

rm(identi f ier, transmitterli f eline,
receiverli f eline, riskymessage category,
transmission f requency, conditionalratio,
reception f requency);

unwanted incident message =
uim(identi f ier, transmitterli f eline, asset
li f eline, transmission f requency,
consequence);

deleted message =
dm(identi f ier, transmitterli f eline,
receiverli f eline);

risky message category = general | new | alter;

We see from the abstract syntax that some properties are equivalent to that
of a message in UML. Such that when we create a stereotype for each
message kind that will extend the UML meta class Message, these prop-
erties are inherited. These include transmitter li f eline, receiver li f eline
and identi f ier. The identifier property is equivalent to the name property
for a UML message. We define the profile CoralMessages nested within
the Coral profile. Further, the transmission and reception frequencies can
be of either the IntFrequency or the ExactFrequency data type. For this
reason, we create two UML profiles for CORAL messages, namely CoralIn-
tervalMessages and CoralExactMessages. These profiles are nested within
the CoralMessages profile depicted in Figure 4.7 on page 37. As can be seen

35

from the figure, the collective terms RiskyMessage, DeletedMessage and
UnwantedIncident extend the UML Message meta class. RiskyMessage
represented in both the CoralIntervalMessages and CoralExactMessages
profile as an abstract stereotype with the properties transmissionFrequency,
receptionFrequency and conditionalRatio. Furthermore, GeneralMessage,
NewMessage and AlteredMessage are generalisations of the RiskyMessage
stereotype. The UnwantedIncident stereotypes in both CoralIntervalMes-
sages and CoralExactMessages extend the UML Message meta class. We
could have added another abstraction layer to UnwantedIncident messages
on the same level as DeletedMessages, with an abstract UnwantedIncid-
entMessage stereotype. This stereotype would have had one generalisa-
tion each in the CoralIntervalMessages and CoralExactMessages profiles.
However, this was deemed to be an unnecessary abstraction layer.

36

Fi
gu

re
4.

7:
Th

e
C

or
al

M
es

sa
ge

s
pr

ofi
le

.

37

4.4.4 Risk-Measure Annotations

As the CORAL risk-measure annotations do not have corresponding
UML constructs, they were implemented as properties of frequencies and
messages. Consequently, we do not have any graphical constructs to
represent them in the diagram. To solve this issue, one can use the UML
Comment meta class. A Comment is a textual annotation which can be
attached to a set of UML elements with an association end called the context
link [88, p. 40]. By creating stereotypes that extend the Comment meta class,
we get textual annotations with the «Stereotype» extension tag for each
respective risk-measure annotation. These risk-measure annotations are
not directly associated with the property values of the annotated elements,
i.e. updating the annotations’ values does not update the annotated
elements’ property values. The risk-measure annotations are implemented
for visual expressiveness. The risk-measure annotation stereotypes are
defined in the CoralRiskAnnotations profile seen from the UML profile
diagram in Figure 4.8 below.

Figure 4.8: The CoralRiskMeasureAnnotations profile.

4.4.5 CORAL Constraints

Erdogan [33, p. 64] describes a set of constraints that affect certain
modelling constructs. With respect to risk-measure annotations, according
to the abstract syntax Erdogan defines the following constraints:

1. Frequency annotations may not be attached to a deleted
message, nor may it be attached on the receiving end of an
unwanted incident message.

38

2. The conditional ratio may not be attached to a deleted
message or an unwanted incident message.

3. The consequence annotation may only be attached to
unwanted incident messages [33, p. 64].

In addition to these constraints, we identify a fourth constraint related
to the unwanted incident message. As Erdogan states: "We see from the
syntax that the lifeline receiving an unwanted incident message is an asset
lifeline. The asset lifeline is modelled in an interaction to represent the asset
that is harmed by an unwanted incident" [33, p. 64]. This yields our fourth
constraint:

4. The receiver lifeline of an unwanted incident message may only be
an asset lifeline.

Furthermore, Erdogan mentions constraints with respect to frequency
values and conditional ratios [33]:

5. Frequencies and conditional ratios may only be positive real num-
bers, including 0.

Now that we have identified our constraints, we need to figure out how
to apply them to our DSML. To this end, as mentioned in Section 4.2.4 on
page 28, constraints are supported in Papyrus by expressing them in either
Java or OCL. For our DSML we will benefit from OCL, which is described
further in the next subsection.

4.4.6 Object Constraint Language

The object constraint language [86] (OCL) is a language used to express
"all kinds of (meta) model queries, manipulations and specification
requirements" [10]. It was originally developed by IBM in 1995 and was
used to specify constraints for UML. Although in 1997 it became integrated
with UML and has become a key component in model-driven engineering
[10]. Version 2.4 is the current version of OCL [86]. OCL has several
applications, the following are examples of OCL expressions [10, 86]:

• Invariants, these are conditions that at any time must be satisfied in
any instance of a model element for which they are defined. These are
always boolean expressions, e.g. an invariant can be that the value for
a frequency must be bigger or equal to zero.

• Initialisation of class properties.

• Derivation rules that describe how derived values are to be com-
puted.

• Query operations. OCL is not a programming language, so it is
not possible to specify any program logic or flow control. For this
reason, OCL expressions are not directly executable. However, they
can indicate the result of a query operation.

39

• Pre- and post-conditions associated with an Operation or other
behavioural feature.

In the section that follows, we proceed to define constraints according to
those discussed in Section 4.4.5, expressed in OCL.

4.4.7 CORAL Constraints in OCL

We now consider how to define OCL constraints for the aforementioned
CORAL constraints. Since risk-measures have been implemented as prop-
erties for the message types, constraints 1-3 become obsolete. The reason
for this is that from the message stereotype definitions the affected mes-
sages do not have these properties. DeletedMessage does not have any of
the constrained properties from constraints 1 and 2. The unwanted incid-
ent message only has transmissionFrequency and consequence properties,
such that constraint 1 and 2 are satisfied. No other message has the con-
sequence property, therefore, constraint 3 is also satisfied. The risk-measure
annotations that are implemented for visual purposes can be attached to
elements such that they violate these constraints. Constraints can be made
for these constructs as well. However, they can become very complex and
tedious to create accurately. Due to this, constraints for the risk-measure
annotations that extend the Comment meta class are not prioritised. The
following OCL invariants are defined for constraints 4-5:

Constraint 4.

The receiver lifeline of an unwanted incident message may only be an as-
set lifeline. This constraint affects UnwantedIncident in CoralIntervalMes-
sages and CoralExactMessages.
OCL expression:

sel f .base_Message.receiveEvent.oclAsType(UML :: MessageOccurrence
Speci f ication).covered→ collect(l|l)→ collect(l|l.extension_Asset)
.ocl IsUnde f ined() = Bag{ f alse}.

This constraint became overly complex. This is due to a limitation
in the EMF Java model, as the UML2 evaluation returns an EList for
the InteractionFragment::covered. The collect(l|l) will then extract the
element from the EList. Finally, the extension_Asset is collected from
l. The ocl IsUnde f ined() will return true if the extension is not of the
Asset stereotype. Therefore, in order for the constraint to be satisfied,
l.extension_Asset has to be defined for the receiveEvent of an unwanted
incident message.

Constraint 5.

Frequencies and conditional ratios may only be positive real numbers, in-
cluding 0. This constraint affects IntFrequency, ExactFrequency, IntCon-
dRatio and ExactCondRatio.

40

OCL expression for interval:

sel f .min ≥ 0.0andsel f .max ≥ 0.0.

OCL expression for exact:

sel f .exact ≥ 0.0 for ExactFrequency,

sel f .condRatio ≥ 0.0 for ExactCondRatio.
The constraints can be validated in the Papyrus tool by right clicking
on a model→validation→validate model. Examples of output are given
in Figure 4.9 and 4.10. Having defined our UML profile according to
the CORAL abstract syntax, and also defining constraints, we proceed to
customise our diagram editor.

Figure 4.9: An example of a violated constraint with respect to the
UnwantedIncident message.

Figure 4.10: Examples of violated constraints.

4.5 Customisation

As mentioned in Section 4.2.4, Papyrus offers customisability with respect
to several features in the tool. These customisation options are described in
the tool smith guide which is part of the Papyrus guide which is available
in the Papyrus tool by clicking help.

4.5.1 Graphical Notation

The customisation for graphical notation is supported by CSS rules. The
CSS rules can be found in tool smith guide→CSS style sheets→supported
properties. These rules support adding a custom icon to any model element
with a stereotype applied. This customisation feature works well for many
UML diagrams in Papyrus. However, it is not satisfactory for sequence
diagrams. This is due to the way the Lifeline class is represented in the
GMF-based diagram. In UML a lifeline is represented by a rectangle with
a dashed line from the bottom middle of the rectangle, stretching to the
bottom of the diagram as can be seen from Figure 4.6. On the left side of

41

the figure is a representation of the compartment for lifelines in Papyrus.
Applying CSS rules enables you to position the icon in different positions
in the compartment, e.g. top, left, right centre and so on. To position
our icon according to the graphical notation we choose the top position.
Furthermore, we would like to hide the rectangle and position the name
property under the icon. To hide the rectangle, we would have to set
the compartment visible = false. As you can see from the lifeline on
the left however, this would hide the whole lifeline. In addition to this,
there is currently no way to display the lifeline name outside the rectangle.
If the compartments had been divided into two sub-compartments as in
the lifeline to the right, the desired behaviour could have been possible.
Although, it is important to note, that Papyrus is actively updated, and
this may be corrected in an upcoming release. The tasks for the Photon
release of Papyrus will be announced on the Papyrus wiki [92].

NameName NameName

Figure 4.11: The lifeline compartment in Papyrus displayed on the left.
On the right, examples of sub-compartments that would make CSS
customisation for lifelines easier.

4.5.2 Palette

The Papyrus palette customisation was previously achieved by the use of
an XML schema, however, it is now replaced by the palette configuration
file. This file can be created by the use of the palette customisation tool
within Papyrus. One can specify the drawers (folders) for the palette, and
assign them icons. Within these drawers, one can add all the UML elements
and apply stereotypes to them e.g. our message types, lifelines etc. To

42

include the palette with the CORAL diagram, one can benefit from the
customisation of the view. The CORAL palette can be seen from Figure
4.12 below.

Figure 4.12: The CORAL palette.

4.6 Deploying the Profile as a Plug-in

The last step is to deploy the CORAL profile as a plug-in. To achieve
this we have to generate a static profile, this is explained in the Papyrus
guide→user guide→tasks→using UML profiles→generating static pro-
files. First, we apply the EPackage stereotype from the Ecore profile to our
CORAL profile. Second, we create a gen-model from our UML file. In this
step, it is important to set the runtime jar property of the root to true. Third,
we generate our model code. This will generate the Java classes for our nes-
ted profiles along with classes for the model elements and their validators.
Finally, we add the following extension points:

Table 4.1: The CORAL plug-in extension points.
Extension point Description

org.eclipse.emf.ecore.
generated_package

We specify an extension point
for each nested profile.

org.eclipse.emf.ecore.
uri_mapping

A URI mapping to the
profile, both relative and
absolute paths.

org.eclipse.uml2.uml.
generated_package

Specifies the location of the
XMI-id of the profile.

org.eclipse.papyrus.
uml.extensionpoints.
UMLProfile

Registration of the static
profile name, path, description
and provider properties.

We can then proceed to export our plug-in with our relevant resources
specified in the build properties. The plug-in can be downloaded from the
Bitbucket repository: https://bitbucket.org/vetlevo/no.uio.ifi.coral.profile/.

43

https://bitbucket.org/vetlevo/no.uio.ifi.coral.profile/

4.7 Researched-Based Design Summary

In this chapter, we argued why it is beneficial to rely on existing
tools/frameworks as opposed to developing the tool from scratch. To
attain our overall goal, tool support within the domain of risk-driven
security testing. To that end, an adequate solution was to benefit from using
the UML profile in Papyrus, a technique in which a modeller can tailor the
UML meta model to represent a DSML. Moreover, Papyrus already has the
UTP defined. This provides the opportunity of using the tool to carry out
the steps of the CORAL approach related to testing as well.

After deciding to create the CORAL profile using Papyrus, we argued
why the profile should be deployed as a plug-in for Papyrus, instead of
creating an RCP application based on Papyrus. We then proceeded to
create the CORAL profile based on the abstract syntax defined by Erdogan
[33], before applying customisation and deploying it as a plug-in. During
the UML-profile development in Papyrus, several UML profiles were
created and refined through iterations. With the customisation options
provided by Papyrus, it is possible to add a graphical notation to the
domain specific modelling language constructs. Regretfully, for sequence
diagrams, this customisation was not satisfiable. Graphical notation can be
added to lifelines, however, the lifeline box will still be visible. Currently,
there is no functionality (provided by CSS rules) that supports adding
the CORAL icons and hiding the lifeline rectangles. Further, there is no
option to add a graphical notation to edges/messages. For this reason, the
CORAL tool currently supports the creation of threat models by the use
of textual notation. This is in the form of textual stereotype annotations.
Consequently, our empirical study will investigate whether this has any
effect on how threat models are interpreted, this is further discussed in the
chapter that follows.

44

Chapter 5

Evaluation - Empirical Study

In Chapter 4 we went through the process of developing the artefact,
namely the CORAL tool. In this chapter, we outline and conduct an
empirical study by the means of an experiment, intended to evaluate the
differences in notations, graphical or textual.

As Sjøberg et al. [107] point out, empirical studies are needed to de-
velop or improve processes, methods and tools for software development.
In our case, the empirical study is particularly concerned with the devel-
opment of a tool. Further, they point out that the term experiment is in-
consistently used within the software engineering community and is often
used synonymously with empirical study. However, an experiment is rather
a means of conducting an empirical study, much like a survey or a case
study. In this chapter the overlying process of evaluation will be referred
to as an empirical study, adopting the six steps of the quality improvement
paradigm (QIP framework) provided by Basili et al. [6]. QIP is a generic
improvement cycle, which is widely accepted as a recommended way to
work with the improvement of software development [99, 129]. However,
it can also be used as a framework for conducting empirical studies [129].
Furthermore, this framework was adopted during the ESERNET project
[15] to structure empirical studies. The ESERNET project was carried out
to raise the awareness within the software engineering community to sys-
tematically conduct empirical studies [129]. Figure 5.1 illustrates the six
steps of the QIP framework, referred to as "A Single Empirical Study" in
the ESERNET project [99].

Step 1:
Characterise

Step 2:
Set Goals

Step 3:
Choose
Process

Step 4:
Execute

Step 5:
Analyse

A Single Empirical Study

Step 6:
Package

Figure 5.1: The six steps in the "A Single Empirical Study" framework [99].

Each step in this framework is broken into several substeps, which are
further explained in each respective sub section of this chapter, in relation

45

to our study.
Steps one to five are described in sections 5.1-5.5. However, the sixth

step, package, is left out. This is due to the fact that this step refers to the
documentation produced as an output of the previous five steps, which is
covered by this chapter.

5.1 Characterisation of the Study

Step 1.1:
Perform Current

State Analysis

Step 1.2:
Select Empirical

Study’s Topic

Step 1: Characterise

Figure 5.2: The first step in the empirical study framework "A Single
Empirical Study" [99].

5.1.1 Current State Analysis

Due to the development issues summarised in Section 4.7, the evaluation
of the tool will focus on the differences between the proposed tool, and
the tool that has been developed. The main distinction between the
two being textual and graphical notation. To establish a baseline for
our study, we conduct a systematic mapping-study to get a high-level
overview of similar studies within model-driven engineering (MDE). A
systematic mapping study is a process that aims to gather evidence of a
topic on a high level of granularity. This is an ideal strategy if it is likely
that little evidence exists on the topic, or if the topic is very broad. A
systematic mapping study is often conducted before a systematic literature
review [66]. The focus of the mapping study involves (1) identification;
(2) selection of primary studies; (3) study quality assessment [3]. The
study was conducted using the major digital libraries like IEEE, ACM
using Oria, IEEE Xplore and Google Scholar. The search terms were:
Comparison of AND ("graphical and textual" OR "icons and textual" OR
"graphical and stereotype" OR "icons and stereotype") AND ("notation" OR
"representation") AND ("empirical study" OR "experiment" OR "controlled
experiment" OR "quasi-experiment").

Following the results from the systematic mapping study, we identify
several studies. While most of them are concerned with the comparison of

46

two different modelling approaches, some are concerned with specifically
comparing textual and graphical notation.

Comparison of Different Modelling Approaches

De Lucia et al. [17] conduct an experimental comparison of ER and UML
class diagrams for data modelling, in three controlled experiments. The
experiments were conducted in an educational setting with university
students. The results demonstrated better comprehension levels with using
UML class diagrams. Hadar et al. [51] investigate comprehensibility
between Use Case and Tropos to express requirements models, also in three
experiments. Results show that Tropos outperformed Use Case in terms
of comprehensibility, but required more effort, such that the productivity,
in the end, was similar. This study was also conducted with university
students as participants.

Labunets et al. [67] studied a slightly more relevant topic in compar-
ison with our own, as they compared a tabular versus a graphical notation.
The compared modelling notations was that of NIST [113] and CORAS [74].
They found that tabular representations were in some cases more effective
than the graphical notations in simple comprehension tasks, and likewise
for some more complex tasks.

Comparison of Textual and Graphical Notations

Hogganvik and Stølen [54] empirically investigated the differences
between using UML notation with stereotype annotation and UML nota-
tion with stereotype annotation and graphical icons. This study involved
both professionals and students. Their findings report that the participants
using graphical notations were able to conclude faster, however, not reach-
ing a higher correctness of interpreting the models.

Meliá et al. [79] compared graphical and textual notations for the
maintainability of MDE domain models in a pilot study. The study
was performed with students as participants. The study showed that
the participants using textual notation performed better with regard to
analysability coverage and modifiability efficiency.

5.1.2 Topic of our Empirical Study

The empirical study will try to uncover if a graphical representation in
comparison to a textual representation of the modelling constructs aids the
participants’ comprehension of the threat models, and efficiency to solve
the given tasks. Having described the topic of our empirical study, and also
taking note of similar experiments, we formulate the goal for our study in
the section that follows.

47

5.2 Set Goals

This section introduces the goal and research questions that constitute the
empirical study. Referring to Figure 5.1 on page 45, we now focus on the
second step. The substeps in the second step is illustrated in Figure 5.3
below. We benefit from Goal, Question and Metric GQM for establishing
our goal and research questions [99, 110]. This involves considering the
following questions:

• Object of study – what is being studied?

• Purpose – what is the intention of the study?

• Quality Focus – Which effect is being studied?

• Perspective – From which perspective the object is studied?

• Context – Where is the study conducted?

Step 2.1:
Formulate the Goal

Step 2.2:
Formulate Research

Questions

Step 2: Set Goals

Figure 5.3: The second step in the empirical study framework "A Single
Empirical Study" [99].

5.2.1 Formulate the Goal

To aid our research efforts, a goal must be established, and research
questions along with a hypothesis devised. Having said that, the overall
goal of this study is to evaluate two different ways to illustrate the
modelling constructs in the CORAL modelling language. The two being
either textual or graphical notation. When referring to textual notation we
refer to the notion of using UML stereotype annotations to represent the
CORAL modelling constructs. The graphical notation refers to the icons
used for the CORAL modelling constructs as proposed by Erdogan [33].
The evaluation will focus on understanding and interpreting threat models
with respect to comprehensibility, efficiency. Furthermore, we want to assess
the participants’ satisfaction with respect to the study.

48

5.2.2 Formulate Research Questions

The research questions addressed in this experiment are the following:

RQ1: Will the use of a DSML using either textual or graphical notation to
represent threat models affect the objective performance of compre-
hensibility? That is, is there a measurable difference with respect to
effectiveness (the degree to which something is successful in produ-
cing the desired result [19]) between the use of the two notations.

RQ2: Will the use of a DSML using either textual or graphical notation to
represent threat models affect the participants’ efficiency in solving
the provided tasks?

5.3 Choose Process

In this section we go into the details of the study process, step three in
Figure 5.1 on page 45. This step is divided into five substeps, before
proceeding to step four, the execution of our process. The five steps are
illustrated in Figure 5.4 below.

Step 3.1:
Formulate
Hypothesis

Step 3.2:
Determine
Variables

Step 3.3:
Identify the

Subjects of the
Study

Step 3.4:
Choose Study

Design

Step 3: Choose Process

Step 3.5:
Prepare

Experiment
Material

Figure 5.4: The third step in the empirical study framework "A Single
Empirical Study" [99].

5.3.1 Formulate Hypothesis

Following the goal and research questions we established in Section 5.2, we
need to devise a hypothesis. This leads to hypothesis H0 as listed in Table
5.1.

Considering that the CORAL modelling language is relatively new at
the time of writing this thesis, there exists no empirical evidence to support
that either notation is superior to the other. For this reason, alternative
hypotheses H1 and H2 are formulated. These are also listed in Table 5.1.

49

Table 5.1: Hypothesis for the empirical study

Null Hypothesis Alternative Hypothesis

H0

Threat models with
textual notation are
equally comprehensible
in comparison to
threat models with
graphical notation.

H1

Threat models with
textual notation are
more comprehensible
than threat models with
graphical notation.

H2

Threat models with
graphical notation are
more comprehensible
than threat models with
textual notation.

5.3.2 Determine Variables

In order to assess and compare the two different notations with respect
to the hypothesis established in Section 5.3.1, there is a need to identify
the variables for our study. In Section 5.3.4, we argue that a controlled
experiment is a suitable study design. Thus, we identify the independent
and dependent variables for the experiment.

Independent variables are considered to be the input to an experiment.
In effect, the motivation for an experiment is to investigate whether
variations in the independent variables have an effect on the dependent
variables (output of the experiment), see Figure 5.5. "Confounding
factors are variables that may affect the dependent variables without the
knowledge of the researcher" [129]. It is therefore important to identify
these factors to attain higher validity for our study. This is related to the
threats to validity, discussed further in Section 5.5.6.

Experiment

Independent
Variables

Confounding
Factors

Dependent
Variables

Figure 5.5: Independent variables, confounding factors and dependent
variables. Figure adapted from [129, p. 14]

50

For this experiment, the independent variables is the threat model repres-
entation whose notation can hold two different values: textual or graphical
notation. The dependent variables in the study are comprehensibility, effi-
ciency and satisfaction.

Comprehensibility is measured by effectiveness – the participant is able
to reach successful task accomplishment. In other words, the participant
is able to develop and comprehend models [19, 100]. Furthermore,
comprehensibility will be measured by taking into account the participants’
task score.

Efficiency – the participant is able to develop and comprehend a model
relatively quickly and correctly according to the syntax and semantics of
the modelling language [100]. Having in mind that there currently is no
empirical evidence to suggest what is a relatively quick comprehension of
the CORAL threat models, a comparison between the two populations with
respect to efficiency is required.

Satisfaction – the participant will state his/her subjective contentment
gained from the experience [100]. Satisfaction, in this case, is mostly
concerned with the experiment, and not with using the modelling language
or the CORAL tool directly. For this reason, the questions regarding
satisfaction will be related to the experiment.

5.3.3 Identifying the Subjects of the Study

The participants in this study consist mainly of graduate students and a
number undergraduates within the field of computer science. Some of
which are currently working or studying. A total of 16 participants of
which 9 are graduate students, and 6 are undergraduates. The recruitment
was done through the researcher’s own network and selected based on
specific characteristics such as being a student within computer science and
having knowledge of programming. This type of sampling is also called
purposive sampling [105]. For more information about the participants’
demographics, see Section 5.4.2.

5.3.4 Study Design

As discussed in Section 5.2, the study aims to uncover differences between
notations across a population. Thus, the study aims to achieve generality of
the comprehensibility of different notations across a population. Moreover,
as briefly described in Section 5.1, most of the identified articles design an
experiment for their study. Likewise, we will design what is referred to as a
controlled experiment [129]. Since we have identified a single independent
variable that we change for each population (control group), by assigning
it a value of either textual or graphical notation (referred to as a treatment
of each control group). This study design is what Wohlin et al. [129] refer
to as standard design 1. For this design, Wohlin et al. recommend using
a t-test for the hypothesis testing. The reasoning for choosing the t-test is
discussed further in Section 5.5.3 on page 72.

51

There are several factors to consider when designing the process of
the experiment. Keeping in mind that the focus for the experiment is the
difference in notations, the process obviously has to involve interpreting
threat models in some form. Ideally, the evaluation with respect to
the CORAL tool would involve the experiment being carried out by
tool interaction. However, there are disadvantages with this approach.
One disadvantage is that if the participant were to solve tasks on the
participant’s own computer. The participant would have to set up the
environment correctly in Papyrus on the participant’s own computer.
For one, this requires more effort from the participant, such that the
participant might lose interest in participating. Furthermore, it may lead
to errors while setting up the environment. Consequently, the participant
can become frustrated, and more dialogue with the researcher may be
required to set it up correctly. The other alternative would be to set up
a laboratory experiment. The environment would have to be set up on a
number of computers in a lab, depending on the number of lab-sessions.
This obviously requires more preparation and also resources as several
machines would have to be requested for this purpose. Furthermore, To set
up a laboratory experiment would require all participants to be available
to participate in the same physical location within a reasonable time frame.
Additionally, conducting the experiment using the CORAL tool would
require that the participant would be given training in both the tool and
the notation. Again, requiring more effort from the participants and more
preparation.

To summarise, conducting the experiment with the tool would be ideal
with respect to the evaluation of the tool. However, because of time
restrictions and lack of resources, this is deemed unfeasible for this study.

If the experiment process does not require interaction with the tool,
an alternative is to create a questionnaire with questions regarding threat
models. This can be implemented in a survey tool and can avoid the
situation where the participant has to set up the environment manually.
Unfortunately this lacks realism with respect to the tool, but seems
more feasible to implement in terms of time, resources and participants’
willingness to participate. Moreover, to reach out to as many participants
as possible, it is beneficial to organise the survey using an online survey
tool. This way, the participants can answer the survey whenever they
have time, wherever they may be. Among the articles identified in Section
5.1.1, two studies were conducted using online tools. Meliá et al. [79]
used Qualtrics [97] for the questions regarding subjective performance.
Labunets et al. [67] used SurveyGizmo [114] to conduct the study, however,
it was conducted in a laboratory setting.

In conclusion, no study design is faultless. However, in order to gain
insight about our study’s topic, an appropriate experiment process has
to be established with the restrictions discussed previously in mind. For
this reason, the experiment will be conducted using questionnaires, by the
use of an online survey tool. The selection of an adequate online survey
tool is discussed later in this section. The chosen experiment process is
represented by Figure 5.6.

52

First, we collect information regarding each participants’ educational

Divide Participants
into Groups

Group A:
CORAL Notation

Experiment Process

Group B:
Stereotype
Notation

Study
Presentation

Study
Presentation

Validate Data

Answer
Anonymous Online

Questionnaire

Answer
Anonymous Online

Questionnaire

Conduct
Demographic

Survey

Figure 5.6: The experiment process. Group A is given material with
graphical notation, whilst Group B is given material with textual notation

background and skill set. This way, we can divide the participants in
two groups fairly based on competence. This is to avoid having a skewed
division of the participants with respect to competence. Consequently, we
can further specify our controlled experiment as a quasi-experiment. Since
we do not randomise the participants among the groups [104]. Hadar et
al. [51] also considered dividing into groups, but went for a randomised
approach. This was due to time restrictions as a consequence of conducting
the experiment in a single lab session. The participants are divided
into Group A and Group B. Group A is given material with graphical
notation, while Group B is given material with textual notation. After
dividing the participants into groups, we provide a presentation, intended
to give an introduction to the modelling constructs with their respective
notation. The presentation is identical for both groups apart from the
notation (see Appendix C and Appendix D). Along with the presentation,
participants are given the main questionnaire with tasks to solve. Finally,
each participant response is reviewed and the data is validated to ensure
that it can be part of the statistical analysis.

Ethical Considerations

When gathering research data while conducting an empirical study that
concerns human participants, one has to consider the issue of privacy.
Depending on where you conduct the study, you have to contact the data
protection official for research in the country where the study is conducted.
In Norway (where this study is conducted), the appropriate institution is
the Norwegian centre for research data (NSD) [84]. In our experiment, to
be able to contact the participants, a list of participants is needed with their
contact information (e-mail addresses). In addition, the online survey tool
utilised to conduct the demographic survey will have to store the e-mail
address of the responses, such that the participant can be given a group for
the main questionnaire. This data is considered to be personal data [59].

As a consequence of collecting personal data [16], the research project
is subject to notification to the NSD. For this reason, a notification form
was submitted on 25th of May 2017. Following NSD’s evaluation process
of the project, reviewing the notification form, along with the experiment

53

material. The project was approved on the 14th of June 2017 with the
expected end date of 30th of June 2017. By then, the personal data has
to be anonymised. This implies that all e-mail addresses and names have
to be disassociated from the gathered data. Further, the personal data have
to be deleted.

Survey Tool Selection

There are several things to consider when choosing a survey tool. Survey
logic, time stamps per question, timer functionality, to name a few. Does
the tool provide all the needed features? Moreover, as discussed previously,
the survey tool has to store personal data about the participant for the
demographic survey. If one uses an external data processor, one would
have to make a "Data processor agreement, which regulates and ensures
the processing of personal data." [85]. To circumvent this issue, we can use
the survey tool provided by the University of Oslo (Nettskjema). However,
Nettskjema does not provide the timer functionality needed for the main
questionnaire. Therefore, there is a need to find another survey tool that
has timer functionality and can retain anonymity. Among the identified
survey tools were:

• SurveyGizmo [114].

• SurveyMonkey [115].

• Zoho Survey [136].

• Eval&Go [36].

• Google Forms [44].

• SurveyPlanet [116].

• LimeSurvey [73].

• QuestionPro [98].

In the end, the choice led to the Eval&Go tool. This tool has all but one of
the required features, time stamps. Which would be required to look at the
individual time per question. However, it was the only tool that provided
timer functionality, to enforce time limits on a question. In addition, it was
the only tool that included all the features free for students. Furthermore, it
has the ability to ensure anonymity. If the survey is set up correctly, one can
avoid storing e-mail/IP addresses, browser information or cookies. Also,
by providing all the participants with the same survey link, no response
can be traced back to a particular participant.

5.3.5 Preparation of Experiment Material

The participants were given (1) A letter of consent (see Appendix E); (2) A
demographic survey; (3) A presentation; (4) The main questionnaire with
tasks to solve.

54

Demographic Survey

The demographic survey employs a Likert scale with five values (no
knowledge, minor knowledge, some knowledge, good knowledge, expert).
The questions for the demographic survey can be seen from Table 5.2, and
are mostly related to the participants’ skill set and working background.
Most of the studies identified in Section 5.1.1 included a demographic
survey in their experiment. In our demographic survey, information such
as age, gender, and so on are left out. Such information is recognised as
indirectly identifiable personal data by the Norwegian centre for research
data (NSD) [59]. To make participation as anonymous as possible,
we intend to limit these types of questions. The questions requesting
indirectly identifiable personal data concerns educational and work-related
background, as this increases the granularity of the sorting criteria for the
next step in the experiment process.

Table 5.2: The Questions for the demographic survey. The
logic column signifies what has to be true for that particular
question to appear in the survey tool. The "-" symbol implies
that this question does not implement logic.

Q# Question Answer(s) Logic

Q1
What’s your
current occupation?

Student, working, other -

Q2
Are you studying
full-time or part-time?

Full-time OR part-time
If Q1 ==
student

Q3
Are you working
full-time or part-time?

Full-time OR part-time
If Q1 ==
working

Q4 What’s your job title? Open question
If Q1 ==
working

Q5

Do you have any
working experience
within information
technology or
engineering?

No OR yes -

Q6 How many years? Open question
If Q5 ==
yes

Q7
What’s your
education level?

Bachelor’s degree OR
master’s Degree OR

ph.d OR other
-

Q8 Please specify other Open question
If Q7 ==
other

Q9 Study Programme
Information technology

OR other
-

Q10 Please specify other Open question
If Q9 ==
other

Continued on next page

55

Table 5.2 – continued from previous page
Q# Question Answer(s) Logic

Q11
Further Specify
Programme

Design, use and
interaction OR
language and

communication OR
nanoelectronics and

robotics OR
programming and

networks OR
technical and scientific

applications OR
other

-

Q12 Please specify other Open question
If Q11 ==
other

Q13
Knowledge of
UML modelling

No knowledge OR
Minor knowledge OR
Some knowledge OR
Good knowledge OR

Expert

-

Q14
Knowledge of UML
sequence diagrams

No knowledge OR
Minor knowledge OR
Some knowledge OR
Good knowledge OR

Expert

-

Q15

Do you have any
work-related
experience with
model-driven
development?

No OR yes -

Q16 How many years? Open Question
If Q15 ==
yes

Q17
Knowledge of
risk assessment
or risk analysis

No knowledge OR
Minor knowledge OR
Some knowledge OR
Good knowledge OR

Expert

-

Q18

Do you have any
work-related
experience with
risk assessment
or risk analysis?

No OR yes
If Q17 >=

Minor
knowledge

Q19 How many years? Open question
If Q18 ==
yes

Continued on next page

56

Table 5.2 – continued from previous page
Q# Question Answer(s) Logic

Q20
Knowledge of UI design
or usability

No knowledge OR
Minor knowledge OR
Some knowledge OR
Good knowledge OR

Expert

-

Q21
Do you have any
work-related experience
with UI design?

No OR yes
If Q20 >=

Minor
knowledge

Q22 How many years? Open question
If Q21 ==
yes

Tasks

For this experiment, the tasks need to address comprehensibility. To this
end, the tasks will be concerned with model-reading, similar to one of the
task categories utilised by Hadar et al. [51]. To be able to differentiate
between the notations, it is important to have a mixture of easy and
difficult tasks. If the tasks are either all easy or all difficult, there probably
would not have been a noticeable difference between the control groups.
Over the years, there has been done much research on the human brain’s
processing capability and complexity of tasks [52, 53]. There have also been
proposed methods for calculating the complexity of tasks [52], for example,
the method proposed by Wood [131]. Generally, the more concepts and
variables a human is exposed to, the more complex the question becomes.
The tasks developed for this experiment does not implement a method for
complexity calculation. However, the difficulty of the tasks is determined
by the aforementioned characteristics in mind. For example, to ease the
learning curve for the participants, we can leave out the elements in
the CORAL modelling language that are not different between the two
notations. This includes risk-measures, such as conditional probabilities,
transmission/reception frequency and consequence values as described in
Section 2.1.5. However, it can be argued that if these elements are left out
the experiment’s realism is affected. Since the textual notation along with
risk-measures might lead to cluttering of the threat models, i.e. too much
text in the model.

When designing the tasks, it is also important to keep in mind that
the questionnaires are answered online. Thus, we do not have any
direct control of the environment where the participant answers the
questionnaire. For that reason, it may be beneficial to enforce a time limit
for each question. In an attempt to avoid the situation where the participant
overestimates the amount of time required for a given task. Furthermore, if
there had been no time restriction, there is a possibility that the easier tasks
would be correctly answered by most of the participants. For this reason,

57

each task is given a time limit such that the participant has to comprehend
the diagram within a reasonable amount of time.
The task set was created and reviewed by other researchers in short pre-
studies. This enabled the tasks to be put under test and by gaining valuable
feedback, the task descriptions and models were refined. In total there were
seven iterations and seven task sets devised. The final task set is divided
into two parts. Part 1 has less complicated tasks concerned with identifying
different modelling constructs. Part 2 contains tasks of higher complexity
compared to Part 1 and introduces some new concepts required to interpret
the threat models. The tasks are related to several threat models based on
well-known attacks towards a web application. See Table 5.3 for a list of
all the tasks. Part 1 consists of tasks 1-6, while Part 2 consists of tasks 7-13.
For the full task set along with corresponding threat models, see Appendix
A and Appendix B. At the end of the main questionnaire there are post-
experiment questions related to satisfaction with the experiment, see Table
5.4. In total there are 13 questions and a max score of 24 points. The total
allotted time for the tasks is 1440 seconds or 24 minutes.

Table 5.3: Tasks for the main questionnaire. The task scores
with an addition sign indicate that the score is determined
by the number of correctly stated items as expected for
the answer, e.g. one point per correct quantity of a given
message type.

Task # Description Score Time(s)

1
How many new messages are
explicitly modelled in the
threat model below?

1 60s

2
How many altered messages are
explicitly modelled in the
threat model below?

1 60s

3
How many deleted messages are
explicitly modelled in the
threat model below?

1 60s

4

How many messages are explicitly
modelled between lifeline L1 and L3
in the threat model below, and what
are their types?

1+1+1 60s

5

How many messages are explicitly
modelled between lifeline L1 and L4
in the threat model below, and what
are their types?

1+1 60s

6
How many messages are explicitly
modelled in the threat model below,
and what are their types?

1+1+1+1 60s

Continued on next page

58

Table 5.3 – continued from previous page
Task # Description Score Time(s)

Total - 12
360s/
6min

7
Some messages in this diagram
are supposed to be deleted messages,
can you spot which?

1+1 180s

8

In the threat model below, the asset
SourceCode can potentially be harmed.
Which statements are the most accurate
with respect to the threat model?

1
300s

9
According to the model, describe how
the hacker causes the unwanted incident
to occur.

Cat. 1-4

10

In the threat model below, the asset
UserData can potentially be harmed.
Which statements are the most accurate
with respect to the threat model?

1
300s

11
According to the model, describe how
the hacker causes the
unwanted incident to occur.

Cat. 1-4

12
According to the model, describe how
the hacker causes the
unwanted incident to occur.

Cat. 1-4
300s

13
According to the model, describe all
possibilities of where the attack
might fail.

1+1

Total - 15
1080s/
18min

Table 5.4: Table containing all the questions for the post-
experiment questionnaire. The questions that use the Likert
scale have five values from strongly disagree to strongly
agree.

Q# Question Answer
1 I had enough time to solve the given tasks. Likert scale

2
The objectives of the empirical experiment
were clear to me.

Likert scale

3
The task descriptions were clear, and I
understood what to do.

Likert scale

4
I experienced no difficulties in understanding
the threat models.

Likert scale

Continued on next page

59

Table 5.4 – continued from previous page
Q# Question Answer

5
I experienced no difficulties in answering
questions in Part 1.

Likert scale

6
I experienced no difficulties in answering
questions in Part 2.

Likert scale

7
I think the presentation given to me before
the questionnaire provided me with enough
information to solve the tasks.

Likert scale

8
Do you have any comments with respect to
the tasks given in the experiment?

Open

9
Do you have any further comments about the
experiment?

Open

Task Scores

The task scores for the task set is based on the number of correctly stated
items. That is, for questions that require more than one item, a single point
is given for each correctly stated item. For example, for questions that
involve identifying a quantity of more than one particular message type,
a point is given for each correctly identified quantity of a message type. In
addition, open-ended questions are rated by categories, see Table 5.5.

Table 5.5: Table with all the task score categories.
Score Categories

Cat.# Description Score

1
The participant is not able to describe the
attack in any meaningful or definite way.

0

2
The participant is only able to describe
the attack by category, e.g. SQL Injection
XSS and so on.

1

3
The participant is able to vaguely describe
how the hacker causes the unwanted
incident to occur in plain text.

2

4

The participant is able to describe the
sequence of events that lead up to the
unwanted incident. I.e. the sequence
of messages. Either by referencing the
message names directly, or describing
their occurrence in sequence.

3

60

5.4 Execution

So far, we have characterised our empirical study, set goals and formulated
a hypothesis. Further, we determined our variables and designed
a controlled experiment intended to provide statistical data for our
hypothesis test. In this section, we go through Step 4, the execution of
our experiment. This step can be seen from Figure 5.7 and contains three
substeps.

Step 4.1:
Prepare the

Study

Step 4.2
Execute the

Study

Step 4.3:
Validate the

Data

Step 4: Execute

Figure 5.7: The fourth step in the empirical study framework "A Single
Empirical Study" [99].

5.4.1 Study Preparation

The study preparation for this experiment consists mainly of setting up
the questionnaire in the survey tool, namely Eval&Go. After setting up
the survey, the form was tested and verified to be correct according to
the task set and the time restrictions enforced for each task. Furthermore,
options such as the save (allowing participants to finish a previously
uncompleted response) feature and back feature (to change a previous
answer) were disabled such that the tool does not store any IP addresses,
browser information or cookies. Preparation also involved setting up the
participant list along with e-mail invitations including the demographic
survey and letter of consent.

5.4.2 Study Execution

Demographic Survey

On June 14th 2017, the invitations for the demographic survey were sent to
all the participants by e-mail. By June 18th, all participants had submitted
their answers. Following the gathered data, we identify four groups of
participants based on the current occupation: five students, eight currently
working, two who are both studying and working and one specified as
other. Their knowledge profiles can be seen from Table 5.6. There was
an average of 3.5 years working experience within information technology
or engineering, with one participant having 20 years working experience.

61

There were no participants that had working experience with MDE. One
participant had two years of working experience with risk assessment or
analysis. Finally, four participants had working experience with UI design
or usability, with one, two four and eight years each.

Table 5.6: Knowledge profiles
None Minor Some Good Expert

UML modelling 0 2 11 3 0
Sequence diagrams 0 3 10 3 0
Risk assessment
or analysis

2 6 6 2 0

UI design or
usability

2 4 8 0 1

The criteria given most weight when dividing the participants into two
groups are UML modelling, sequence diagrams and risk assessment or
analysis knowledge. Moreover, the participants are equally distributed
with respect to education level. The two groups can be seen from Table
5.7 and Table 5.8. In terms of working experience within information
technology and engineering, Group B has five years on average, whilst
Group A has two years. However, Group B has a participant in this
data field with 20 years of working experience. UI design and usability
knowledge and its respective working experience were not weighted
heavily in the group assignment.

Table 5.7: The participants for Group A. WE = years of working experience,
D = degree, B = bachelor’s degree, M = master’s degree. Knowledge in
terms of Likert values: UML modelling, SD = sequence diagrams, R = risk
assessment or analysis, UI-US = UI Design and usability.

Group A

P# W D UML SD
MDE
_WE

R R_WE UI-US
UI-US
_WE

P1 0 B 2 2 0 2 0 2 0
P2 2 B 1 1 0 1 0 0 0
P3 1 B 3 3 0 2 0 0 0
P4 1 M 2 2 0 0 0 2 0
P5 0 M 2 2 0 1 0 2 0
P6 4 M 2 1 0 1 0 2 2
P7 8 M 2 2 0 2 0 4 8
P8 0 M 3 3 0 3 0 0 0
Average 2 M 2.12 2 0 1.5 0 1.5 1.25

62

Table 5.8: The participants for Group B. WE = years of working experience,
D = degree, B = bachelor’s degree, M = master’s degree. Knowledge in
terms of Likert values: UML modelling, SD = sequence diagrams, R = risk
assessment or analysis, UI-US = UI Design and usability.

Group B

P# WE D UML SD
MDE
_WE

R R_WE UI-US
UI-US
_WE

P9 1 B 2 2 0 0 0 1 1
P10 20 B 2 2 0 1 0 2 0
P11 5 B 2 2 0 1 0 1 0
P12 0 M 2 2 0 2 0 2 0
P13 5 M 1 1 0 1 0 2 0
P14 9 M 2 2 0 3 2 2 4
P15 0 M 2 2 0 2 0 1 0
P16 0 M 3 3 0 2 0 1 0
Average 5 M 2 2 0 1.5 0.25 1.5 0.62

Main Questionnaire

The main questionnaire was distributed to the participants using an
anonymous survey link on June 18th 2017 by e-mail. All answers were
submitted by June 25th. The tasks scores in full can be seen from the tables
in Appendix F.

5.4.3 Data Validation

Since the questionnaire is carried out using a survey tool, the task of data
validation simply consists of exporting the answers via the tool and storing
them in e.g. an Excel sheet. In addition, the data validation involves giving
scores based on the data according to our score system discussed in Section
5.3.5.

5.5 Analysis of Results

Having designed and executed our controlled experiment, starting from
Step 1 to Step 4, we now analyse the gathered data in Step 5. Step 5
can be seen from Figure 5.8 and involves the following substeps: Step 5.1
visualise the data, Step 5.2 use descriptive statistics, Step 5.3 accept or reject
hypothesis.

In order to do a good analysis of experimental data gathered from an
experiment, it is important to look at the data from different perspectives,
with a variety of methods [105]. In our experiment, there were no
assumptions about the differences in task scores for our main questionnaire
between Part 1 and Part 2. Keeping in mind that Part 1 and Part 2 have a
different level of difficulty, this difference in difficulty would ideally affect
task scores correspondingly. However, it is not straightforward to justify a

63

Step 5.1:
Visualise the

Data

Step 5.2:
Use Descriptive

Statistics

Step 5.3:
Accept or Reject

Hypothesis

Step 5: Analyse

Figure 5.8: The fifth step in the empirical study framework "A Single
Empirical Study" [99].

ratio between these task scores based on difficulty. For this reason, we can
analyse the results from three different perspectives among our two control
groups. First, we analyse the total score by combining the score from Part
1 and Part 2. Second, we analyse the score of Part 1. Third, we analyse
the score of Part 2. Moreover, we need to put into our considerations the
sample size for our control groups. Obviously with a sample size of eight
in each group, and a total of 16 participants, the strength of our hypothesis
testing will suffer. As larger sample sizes yield higher precision in statistical
tests. Also, larger sample sizes can disprove data points interpreted as
outliers in smaller sample sizes. For example, if the outlier was not due to
pure chance. An outlier is a value that appears to deviate significantly from
the other values in the data set. This can be due to an error in measurement,
and if identified as such, be neglected from the analysis. The outlier may
also be an extreme occurrence in the variability inherent in the data, and
thus should be considered in the statistical analysis [50]. With this in mind,
we proceed to visualise our gathered data.

5.5.1 Data Visualisation

When visualising our data, it is important to use a technique that
appropriately conveys the data in a way that represents an accurate
distribution of the data. As Madsen points out: "Graphs (charts, plots, etc.)
are suited to get a feel of patterns, structures, trends and relationships in data
and thus are an invaluable supplement to a statistical analysis." [75]. There are
several visual representations one can use to visualise data. Among those
are bar charts, histograms, scatter plots, box plots to name a few. For our
analysis, we benefit from box plots generated by IBM SPSS [56]. The box
plot shows each quartile (Q1, Q2, Q3, Q4) of the data, the median, and both
extreme values at each whisker [77]. Such that each box separated by a
line shows the distribution of 25% of the data set starting from the bottom
whisker, each line represents the start and end of a quartile. Additionally,
the box plot shows outliers given by on, where n is the record in the data
set identified as an outlier.

Figure 5.9 shows a box plot of the total score for the main questionnaire.

64

The box on the left represents the distribution of Group A, while the box on
the right represents that of Group B. The plot for Group A reports an outlier
of record 4, having a score of 5. This record has a low score due to the
participant leaving several answer boxes empty. This might be because the
participant either did not know how to answer the questions or models. It
can also be because the participant was not interested in participating. For
this reason, we can conduct an analysis for both situations. One where the
outlier is included, and one where it is disregarded. If we read the plot of
Group A with the outlier included, we can tell that the distribution is highly
skewed to the minimum score. However, if this value is disregarded, it
looks approximately normally distributed as shown in Figure 5.9. The box

Group

BA

4

20,5

18,5

T
a
s
k
 S

c
o

re

25

20

15

10

5

Figure 5.9: Box plot for the total score for Group A and B.

plot for Group B does not include any outliers. This is due to the fact that
there is more than one value that deviates from the rest of the values in the
set. These values are scores of 8 and 11. The values within Q1 and Q2 are
widely spread compared to Q3 and Q4, making the plot skewed towards
smaller values. Finally, the plot for Group A has a median of 18.5, min and
max of 5 and 22 respectively. Group B has a median of 20.5, min of 8 and
max of 24. If we compare the two, Q3 and Q4 for Group B has considerably
better scores than that of Group A. However Group A has less variation of
scores in its Q2.

From Figure 5.10 we see the box plots for the total scores of Part 1 in
the main questionnaire. As can be seen from the plot in Figure 5.9, both
Group A and Group B are highly skewed towards the left (if we include

65

the outlier for Group A). We also note that the difference between Q4 and
Q3 for Group B is small. When we compare the plots of Group A and B
in this instance, it seems that Group B has consistently higher scores than
Group A. In the plot for Group A, however, the outlier from previously has
not been identified as significant. This is due to another participant also
having a low score for Part 1, but a high score for Part 2. Group A and B
have medians of 10.5 and 11 respectively. Further, Group A has min and
max of 3 and 12. While Group B has min and max of 6 and 12.

Group

BA

11

10,5

T
a
s
k
 S

c
o

re

12

10

8

6

4

2

Figure 5.10: Box plot for the total score of Part 1 for Group A and B.

Figure 5.11 shows the last perspective of our analysis, the box plots
for the scores of Part 2. The box plot for Group A seems to have a
normal distribution, again, if we keep in min that the outlier from before
is included in Q1. Group B looks to be quite variable in Q2. Additionally,
we observe that Group A has a median of 8.5 and Group B of 10. Group
A’s min and max are 2 and 12 respectively, while Group B has 3 and 12
respectively.

To summarise, the box plots of the three different perspective does
not give any clear indication if there is any difference between the two
treatments. It may seem, however, that Group B has a slight improvement
over Group A. If we exclude the outlier from Group A, their distributions
look to be approximately normally distributed for the total score. However,
if we look at Part 1 and 2 individually, the distribution is not as normally
distributed. We proceed to apply more descriptive statistics before
deciding on which hypothesis testing method to use.

66

Group

BA

10

8,5

T
a
s
k
 S

c
o

re

12

10

8

6

4

2

Figure 5.11: Box plot for the total score of Part 2 for Group A and B.

5.5.2 Applying Descriptive Statistics

Descriptive statistics is a general term for methods to summarise and
describe data [37, 75]. This includes using tables, charts (as in Section
5.5.1), and statistical calculations such as averages, percentages, variances,
standard deviation and so on. We proceed to describe the calculations we
will use.

Arithmetic Mean

The arithmetic mean, often called the average of a data set is the summation
of all values divided by the number of entries. The calculation is most often
used to see the central tendency in the data set [37, 75], however the mean
can often be misleading if there are extreme values included in the set.
In statistics, the arithmetic mean is often referred to as either population
mean or sample mean. For our experiment, we will refer to the mean as the
sample mean. The sample mean x̄ is given by:

x̄ =
∑n

i=1 xi

n
=

x1 + x2 + ... + xn

n
(5.1)

Median

The median is the value "in the middle" of ordered numbers, i.e. the value
that splits the data set into two equally sized parts [75]. If the data set’s size

67

is an odd number, the median is the middle value. If the data set s size is
an even number, the median is the mean of the two central values [37].

Standard Deviation

The standard deviation is among the most commonly used measure of
spread [37, 75]. The calculated value is the mean distance from the values
in the data set to the sample mean. In other words, we get a measure of
how much the values in the data set deviates from the sample mean. The
standard deviation is calculated by taking the square root of the variance.
The standard deviation σ is given by:

σ =

√
1

n− 1

n

∑
i=1

(xi − x̄)2 (5.2)

Variance

Variance is another commonly used measure of spread, its value is the
average of the squared distances between the values in the data set and
the sample mean [75]. Variance s2 is measured in square units, given by
[37]:

σ2 =
1

n− 1

n

∑
i=1

(xi − x̄)2 (5.3)

Standard Error

The standard error, sometimes abbreviated SE, is the standard deviation of
the sampling distribution of a statistic [37, 75]. For our calculations we find
the standard deviation of the sample mean, this can be calculated by:

SEx̄ =
σ√
n

(5.4)

The size of SEx̄ depends on the data set size. For larger data sets, the SEx̄
will be smaller and vice versa.

Skewness and Kurtosis

Skewness and kurtosis are measures one can use to check whether the
data follow a normal distribution [75]. These measures are particularly
useful if your data visualisation method does not accurately represent the
distribution. The skewness value indicates how skewed the distribution is
compared to a normal distribution [75]. While a value close to zero indicate
a symmetrical distribution, positive and negative values indicate a right- or
left-skewed distribution respectively.

The kurtosis gives an indication of how big the tails (distributions
distant from the mean) of the distribution is [75]. A normal distribution
has a value of 0, while positive and negative values indicate larger and
smaller tails than a normal distribution respectively. A distribution with

68

a positive kurtosis implies a distribution that is more steep towards the
top than a normal distribution. A negative kurtosis implies a distribution
that is more flat towards the top than a normal distribution [75]. One may
accept larger deviations from 0 for kurtosis than for skewness. However,
the values for kurtosis that fall within an acceptable range to be classified
as acceptable for a normal distribution depends on the sample size [75].
The ranges can be seen from Table 5.9. Note that for our sample sizes
which are n = 8 the ranges does not cover this size. For this reason, the
kurtosis may be biased, however, it may give an indication whether the
distribution is approximately normally distributed or not. The skewness

Table 5.9: Ranges for the accepted values for kurtosis that is approximately
normally distributed, table adapted from [75].

n Min. Kurtosis Max. Kurtosis

25 -1.2 2.3
100 -0.7 1.1
400 -0.4 0.5

and kurtosis require comprehensive calculations. To this end, IBM SPSS
[56] will be utilised to carry out the calculations. We proceed to apply the
aforementioned calculations to our data set. The calculations as output
from IBM SPSS can be found in Appendix G.

Descriptive Statistics for the Total Score

Descriptive statistics for the total score of both Group A and Group B can
be seen from Table 5.10. We see that the min and max are not very different
between Group A and Group B. If the outlier in Group A is excluded, the
min for Group A is bigger than the min of Group B with a score of 15 and 8
respectively. The means are similar between the groups. However, without
considering the outlier, Group A has a mean of one point more than Group
B. Medians differ by two points, however, as discussed previously they are
similar if we exclude the outlier.

Furthermore, an interesting observation is the variance, where Group
B has bigger variance than Group A. This is due to a slightly higher
standard deviation. With the exclusion of the outlier, Group A’s standard
deviation is more than halved. Consequently having a noticeable lower
variance compared to Group B. The standard deviation for both groups
indicate that the values are spread. Moreover, the standard error of the
mean indicates that our sample mean deviates with approximately two
points for both groups. Both groups have negative skewness, indicating
that the distributions are left-skewed. This confirms our observation from
the box plots in Section 5.5.1. Group A with the exclusion of the outlier
has a skewness value of −0.373, indicating that it is reasonably normally
distributed. The kurtosis values for Group A and Group B differ from
each other by some margin. While the kurtosis value for Group B is
well within the acceptable range established earlier (n = 25), Group A is

69

outside with a difference of 1.656. Group A also falls outside the range
with the exclusion of the outlier with a difference of 0.1. To summarise, the

Table 5.10: Descriptive statistics applied to the total score for Group A and
Group B. The max score for the whole task set is 27.

Total Score
Group A Group B Group A (no outlier)

Minimum 5 8 15
Maximum 22 24 22
Mean (x̄) 17.13 17.88 18.86
Median 18.50 20.50 20.00
Variance (σ2) 29.554 34.411 6.476
Std. Deviation (σ) 5.436 5.866 2.545
Std. Error (SEx̄) 1.922 2.074 .962
Skewness -1.862 -.827 -.373
Kurtosis 3.956 -.812 -1.314

descriptive statistics tell us that the two groups are similar, with Group B
having a slightly better score than Group A, being less skewed and more
normally distributed as well. With the exclusion of the outlier however,
Group A looks to have a better mean score with a lesser median than Group
B. Further, this yields Group A with a higher precision of measurement
than Group B, with a lower σ and SEx̄. Additionally, Group A gains a
smaller skewness value, indicating an approximately normal distribution.

Descriptive Statistics for the Score of Part 1

We now turn our attention towards the descriptive statistics for Part 1, see
Table 5.11. The extreme values are similar with and without the outlier.
With both groups having participants achieving a max score. Means are
also similar, with a difference of 0.75 in favour of Group B before the
exclusion of the outlier. After, the mean is in favour of Group A with a
difference of 0.16. A high mean score suggests that most of the participants
understood the tasks for Part 1 for both groups. The variance is higher
for Group A than Group B, due to a higher standard deviation. However,
as noticed before, the exclusion of the outlier yields Group A with lesser
variance and higher precision of measurement. Skewness values indicate
left-skewed distributions for both groups. However, the exclusion of the
outlier yields Group A with a lesser left-skewed distribution. Kurtosis
values for both groups indicate approximate normal distribution, with
Group B having a kurtosis value very close to 0.

Descriptive Statistics for the Score of Part 2

Finally, we take a look at the descriptive statistics for Part 2, seen from Table
5.12. The extreme values are equal for both groups, however, exclusion
of the outlier yields Group A with a higher min. Further, the means

70

Table 5.11: Descriptive statistics applied to the Part 1 score for Group A and
Group B. The max score for Part 1 is 12.

Part 1 Score
Group A Group B Group A (no outlier)

Minimum 3 6 8
Maximum 12 12 12
Mean (x̄) 9.38 10.13 10.29
Median 10.50 11.00 11.00
Variance (σ2) 9.125 4.982 2.905
Std. Deviation (σ) 3.021 2.232 1.704
Std. Error (SEx̄) 1.068 .789 .644
Skewness -1.515 -1.029 -.618
Kurtosis 2.279 -.069 -1.396

are equal for both groups (7.75), with Group A having a lesser median
than Group B. Taking into account that the max score for Part 2 is 15,
a mean of 7.75 suggests that the participants struggled more with these
tasks compared to Part 1, as expected. Group B has a higher variance than
Group A, due to a higher standard deviation. The standard error is similar
for both groups, with Group B having a higher value. Skewness values
still indicate a left-skewed distribution for both groups. However, taking
into account both the skewness and kurtosis values, the distributions are
approximately normally distributed. Having looked at the descriptive

Table 5.12: Descriptive statistics applied to the Part 2 score for Group A and
Group B. The max score for Part 2 is 15.

Part 2 Score
Group A Group B Group A (no outlier)

Minimum 2 2 4
Maximum 12 12 12
Mean (x̄) 7.75 7.75 8.57
Median 8.50 10.00 9.00
Variance (σ2) 11.357 18.214 6.952
Std. Deviation (σ) 3.370 4.268 2.637
Std. Error (SEx̄) 1.191 1.509 .997
Skewness -.638 -.579 -.570
Kurtosis -.291 -2.097 .547

statistics for both groups from three different perspectives. We argue that
Group B has performed better than Group A. However, the exclusion of
Group A’s outlier suggests that Group A performed better than Group B. It
is important to note, however, that the differences are small, and we cannot
conclude whether there is a significant difference between the groups only
by comparing their descriptive statistics for either of the three perspectives.
For this reason, we proceed to use statistical methods to answer our null
hypothesis.

71

5.5.3 Hypothesis Testing

In our experiment, we applied two experimental conditions with different
participants being used for each condition. For this reason, an appropriate
hypothesis testing method is the independent t-test, also called an unpaired
t-test [38, 106]. We will use the independent samples t-test function
provided by IBM SPSS [56]. There are two variants of this t-test, one
assuming equal variances, and one assuming unequal variances. To
determine which variants to use, we will use Levene’s test for equality of
variances [71] provided by IBM SPSS [69]. When assessing the output of
Levene’s test and other hypothesis tests, we consider the p-value. If the
Levene’s test yields p ≤ .05, it suggests that the variances are unequal.
However if yields p > .05, we can assume that the variances are roughly
equal [38].

After determining whether the variances are equal or not, we proceed
to apply the appropriate independent t-test for each perspective given by
[38, 75]:

t =
(x̄1 − x̄2)− (µ1 − µ2)√

σ1
2

n1
+ σ22

n2

=
x̄1 − x̄2√
σ1

2

n1
+ σ22

n2

(5.5)

Where µ1 − µ2 is the difference between the population means for the two
groups. If the null hypothesis is true, the samples have been drawn from
the same population, therefore µ1 = µ2 and we discard it from our equation
[38]. When we carry out this calculation, we get what is called the t-statistic.
From this t-statistic, we can find our critical value, using a t distribution
table, along with a significance level α, also called p-value and degrees
of freedom [38, 69]. For our t-test, we will use a 95% confidence interval
(p− value = 0.05) and degrees of freedom (d f) given by:

d f = n1 + n2 − 2 (5.6)

where n1 and n2 are the sizes for each of our two control groups [38, 69].
We evaluate the null hypothesis established in Section 5.3.1:

H0 Threat models with textual notation are equally comprehensible in
comparison to threat models with graphical notation.

The results from the independent t-tests with respect to H0 are the
following:

• Total Score: The assumption of homogeneity was assessed using
Levene’s test and the assumption of equal variances was accepted
with F(14) = .613 and p = .447. The independent samples t-test
assuming equal variances yielded values t(14) = −.265, p = .795.
These values indicate that there is no statistically significant effect
between Group A and Group B. Thus from this perspective, we accept
the null hypothesis H0.

• Total Score, excluding the Group A outlier: The assumption of
homogeneity was assessed using Levene’s test and the assumption

72

of equal variances was rejected with F(14) = 6.712. and p = .022.
The independent samples t-test assuming unequal variances yielded
values t(14) = .430, p = .677. These values indicate that there
is no statistically significant effect between Group A and Group B.
Consequently, the total score without the outlier also accepts H0.

• Part 1 Score: The assumption of homogeneity was assessed using
Levene’s test and the assumption of equal variances was accepted
with F(14) = .358 and p = .559. The independent samples t-test
assuming equal variances yielded values t(14) = −.565, p = .581.
There is no statistically significant effect between Group A and Group
B, H0 is accepted.

• Part 1 Score, excluding the Group A outlier: The assumption of
homogeneity was assessed using Levene’s test and the assumption
of equal variances was accepted with F(14) = .613. and p = .447.
The independent samples t-test assuming equal variances yielded
values t(14) = −.265, p = .795. Consequently, there is no statistically
significant effect between Group A and Group B, H0 is accepted.

• Part 2 Score: The assumption of homogeneity was assessed using
Levene’s test and the assumption of equal variances was accepted
with F(14) = 2.291. and p = .152. The independent samples t-test
assuming equal variances yielded values t(14) = .000, p = 1.000.
These values are definite, there is no statistically significant effect
between Group A and Group B, H0 is accepted.

• Part 2 Score, excluding the Group A outlier: The assumption of
homogeneity was assessed using Levene’s test and the assumption
of equal variances was rejected with F(14) = 6.408. and p = .025.
The independent samples t-test assuming unequal variances yielded
values t(14) = .454, p = .658. There is no significant statistically
effect between Group A and Group B, H0 is accepted.

After performing the appropriate t-test to each perspective based on
Levene’s test for equal variances we conclude that all tests report accept-
ance of our null hypothesis. This means that, according to these results, the
comprehensibility of threat models with either graphical or textual notation
with respect to the given task set is equally comprehensible.

5.5.4 Findings Related to Efficiency

The reported time spent per task are averages, as individual time was not
an available feature in the Eval&Go survey tool. For this reason, the time
measurement is prone to outliers that cannot be identified. Moreover, we
cannot perform t-tests to compare the means, as we cannot calculate the
standard deviation. The average time spent on each task and the task set
in total can be seen from Table 5.13. We examine the average time for each
group and note that Group B spent considerably more time than Group
A for the whole task set. Furthermore, most of the reported differences

73

Table 5.13: Average time for the task set. x̄(t) is the average time for
either Group A or Group B in seconds, ∆t = tB − tA. Furthermore,
positive/negative values for ∆t and % indicate that Group B spent
more/less time than Group A.

Task # x̄(tA) x̄(tB) ∆t %
1 22 31 9 40.91%
2 22 24 2 9.09%
3 13 21 8 61.54%
4 49 46 −3 −6.12%
5 36 41 5 13.89%
6 44 51 7 15.91%
7 119 145 26 21.85%

8+9 156 233 77 49.36%
10+11 167 205 38 22.75%
12+13 232 232 0 0.00%
Total 860 1029 169

seen from the fourth column in the table are in favour of Group A. On
average, Group B spent 22.92% more time than Group A on a task. Keeping
in mind that our hypothesis tests strengthened the hypothesis that textual
and graphical notation are equally comprehensible. These results related
to time spent per task imply that using a graphical representation aids the
participant in efficient task solving. This claim is further substantiated
by Moody [80]. Moody argues that visual representations are more
effective than textual because they are processed in parallel by the visual
system, while textual representations are processed serially by the auditory
system [80]. This is because textual representations are one-dimensional
(linear), while graphical are two-dimensional (spatial) [80]. In other words,
visual representations are more cognitive effective than textual. Cognitive
effectiveness is defined as the "speed, ease and accuracy with which a
representation can be processed by the human mind" [80].

However, it is important to note, since we lack individual time, we
cannot ascertain that there were participants who contributed heavily to
the average time statistic. This statistic could, for example, be affected by
a participant either having skipped many questions or spent all/most of
the available time for a task. However, we note that there is a difference in
time and that having a more precise measurement of individual time may
be of interest in future experiments to further answer the question related
to participants’ efficiency.

5.5.5 Findings from the Post-Experiment Questionnaire

From the Likert values obtained from the post-experiment questionnaire,
we have found the overall satisfaction from the participants for each group
by using mode for all the values. The overall answers are shown in Table
5.14. We note that the majority of both groups felt they did not have

74

Table 5.14: Post-experiment questionnaire answers
Question Group A Group B

I had enough time to
solve the given tasks.

Strongly
Disagree

Disagree

The objectives of the empirical
experiment were clear to me.

Agree Not Certain

The task descriptions were clear,
and I understood what to do.

Agree Agree

I experienced no difficulties in
understanding the threat models.

Disagree Not Certain

I experienced no difficulties in
answering questions in Part 1.

Agree Agree

I experienced no difficulties in
answering questions in Part 2.

Not Certain Disagree

I think the presentation given to me
before the questionnaire provided me
with enough information to solve the tasks.

Agree Disagree

enough time to solve the tasks, with Group A strongly disagreeing with the
statement. The majority participants in Group A state that they understood
the objectives of the study, while the majority of Group B is uncertain.
Both Groups agree that the task descriptions were clear, and they knew
what to do. Moreover, Group A state they had difficulty understanding the
threat models, while Group B are not certain. This might be due to the fact
that the presentation did not focus heavily on the different applications of
the CORAL approach, but mostly the notation required to solve the tasks.
Both groups agree that they experienced no difficulties in answering the
questions in Part 1. For Part 2 however, the majority of Group A are not
certain whether they experienced difficulty. The majority of Group B, on
the other hand, perceived the tasks in Part 2 as difficult. Finally, Group
A state that the presentation provided enough information to solve the
tasks. Group B however, disagrees. This is interesting, as both groups
received the same presentation, although with different notation. This may
be related to the fact that information represented visually are more likely
to be remembered, due to the picture superiority effect [45, 72] as cited by
Moody [80].

5.5.6 Threats to Validity

In this subsection, we discuss validity concerns that may threaten our con-
trolled experiment, namely the threats to validity. In our experiment, we
drew conclusions about our hypothesis by means of observation. Fur-
thermore, these observations may strengthen or weaken our hypothesis.
When drawing conclusions there are generally four steps involved, each
for which there is a threat to the validity of the results [129, 130]. These can
be seen from Figure 5.12 which show the basic principles of an experiment.

75

The four categories of threats are:

1. Conclusion validity: concerned with the possibility to draw correct
conclusions about the relationship between the treatments and the
outcome. E.g. whether the statistical power of the hypothesis test is
sound, and questions regarding the reliability of the measurements.

2. Internal validity: ensuring that the observed outcome is a result of the
given treatment, and not caused by an uncontrolled factor without
the knowledge of the researcher. These factors were previously
referred to as confounding factors in Section 5.3.2

3. Construct validity: related to the relationship between theory and
observation. E.g. we have to make sure that concepts are defined
clearly before measurements are defined.

4. External validity: related to the ability to generalise the results.
In other words, whether the problems the participants have been
working on are representative and whether the participants are
representative of the target population.

Cause
Construct

Effect

Construct

Treatment Output

4

3 3

1 2

Theory

Observation

Experiment Objective

Cause-Effect
Construct

Treatment-Outcome
Construct

Experiment Operation

Independent Variable Dependent Variable

Figure 5.12: Experiment principles adapted from [122, 130].

Conclusion Validity

For our hypothesis test, we used the parametric independent samples t-
test, which assumes a normal distribution and independent control groups.
This choice of method was motivated by our findings during the data

76

visualisation and use of descriptive statistics. In addition, the two control
groups were completely independent, and each group were only subject to
a single treatment. If the data was not normally distributed, we could have
performed a non-parametric test such as the Mann-Whitney u-test [69].
Since Mann-Whitney does not assume a normal distribution. Although
parametric tests if applicable, generally have higher power than non-
parametric test, i.e. less data is needed to get significant results [129].
The t-tests were carried out from multiple perspectives in an attempt to
mitigate arriving at a false conclusion when rejecting or accepting our null
hypothesis. Moreover, we acknowledge that by having a bigger sample
size, our conclusions would be more robust.

With respect to the findings related to efficiency, the time measurements
were reported as averages. As mentioned in Section 5.5.4 we were unable to
perform a t-test. For that reason, we cannot argue with the same statistical
strength as we did for the hypothesis related to comprehensibility.

Internal Validity

With respect to internal validity, a threat is introduced by not having
randomised assignment of the treatment for our control groups. This
is justified by trying to divide each group such that they have similar
competence levels, in terms of knowledge, education level and working
experience. However, the measurement of knowledge based on the Likert
scale can be imprecise. Imprecision may be due to the Dunning–Kruger
effect [21] as mentioned by Labunets et al. [67]. This is an effect wherein
less competent people tend to overestimate their skills and knowledge,
while more competent people tend to underestimate their skills and
knowledge. Another threat to internal validity concerns the introductory
material since the participants have to go through it on their own. As a
consequence, we cannot control the degree to which the participant learns
the given material. This uncertainty leads to two different situations.
In which a participant either spends more or less time learning the
material than others. We face another threat to internal validity with
regard to participants’ fatigue, e.g. if a participant decides to answer the
questionnaire late in the evening or after work. Furthermore, we take
note of the possibility of information exchange between participants. This
was mitigated as the subjects were invited without knowledge of the other
participants in the experiment. Finally, since we could not control the
environment in which the participant answered the questionnaire, there
was no way to ensure that the participant did not carry out internet
searches to look for clues. In an attempt to mitigate this, the tasks had
timers enforcing time restrictions.

Construct Validity

A threat to construct validity is introduced by the theoretical constructs
comprehensibility and efficiency by the manner in which they were
measured. These constructs were measured by only one measurement type

77

each. These being task scores and average time. This threat is partially
mitigated due to using measurement types similar to other studies [55,
79, 83]. The method used to measure these constructs were based on
information-retrieval using questionnaires with closed-ended and open-
ended questions, this method has also been used in similar empirical
studies. Furthermore, all the experiment material was the same for both
groups with the only difference being the notation to prevent bias. The
introductory presentation introduced simple concepts in order to solve
the given tasks. To ensure simplicity and reduce bias, the material was
reviewed by other researchers as mentioned in Section 5.3.4. The threat
models in the tasks exemplified well-known web application attacks, and
correspond to realistic, although simplified situation. As mentioned in
Section 5.5.5, the majority of participants understood the task descriptions,
but faced difficulties understanding the threat models. Finally, another
threat is introduced by enforcing time restrictions as this can cause
time pressure. The time restrictions were evaluated through pre-studies.
However, the majority of participants stated they did not have enough time
to solve the tasks. It could have been beneficial to split the time-related
post-experiment question into Part 1 and Part 2, due to the difference in
difficulty to further pinpoint which tasks required more time.

External Validity

Our sample of students of both undergraduates and graduates are not
completely representative of our target population which are professionals
within security testing. Who ultimately are the stakeholders likely to use
the CORAL tool. The focus of the study however, was concerned with
the comprehensibility and efficiency when interpreting predefined threat
models with different notations. Thus, the study was not concerned with
testing, and our sample was not of security testing professionals. The
sample however, consists of developers at different levels, which is also
relevant. Some of which were currently working or had been working for
prolonged period. It can be argued, that developers are most familiar with
the textual notation used in programming languages. Yet, all participants
stated they had experience in using UML in some form. Furthermore, the
experiment does not reflect a working environment and that the tasks are of
a simplistic nature introduces a threat. The tasks are simplistic, but realistic
with well-known web application attacks.

5.5.7 Analysis Summary

To summarise, an empirical study was conducted by the means of a
controlled experiment. Moreover, we formulated research questions along
with null hypothesis and alternative hypotheses in case there was a
statistically significant difference between the observations of applying
different treatments. We consider the research questions:

RQ1: Will the use of a DSML using either textual or graphical notation to
represent threat models affect the objective performance of compre-

78

hensibility? That is, is there a measurable difference with respect to
effectiveness between the use of the two notations.

RQ2: Will the use of a DSML using either textual or graphical notation to
represent threat models affect the participants’ efficiency in solving
the provided tasks?

In our analysis, the data was visualised, represented by descriptive
statistics and finally tested using t-tests. All t-tests accepted our null
hypothesis and which further indicates that CORAL with textual notation
is equally comprehensible in comparison to CORAL with graphical
notation. Textual notation being the UML stereotype annotations, and
graphical being the icons introduced in the CORAL modelling language.
Furthermore, this answers RQ1. The models we used in the experiment are
documented in Appendix C (Group A – graphical notation) and Appendix
D (Group B – textual notation).

With respect to RQ2, we compared the average time spent for each
task, which indicates that there is a noticeable difference. Participants
using graphical notation spent considerably less time than those using
textual. As mentioned in Section 5.5.4, by measuring individual time we
could have benefited from a t-test to further strengthen this claim. Finally,
the post-experiment questionnaire provided useful information about the
experiment design that can be used to improve future experiments.

Having discussed the threats to validity and research questions estab-
lished for our empirical study, we proceed to discuss whether our artefact,
the CORAL tool, fulfils the success criteria in the chapter that follows.

79

80

Chapter 6

Discussion

In Chapter 3 we presented the technology research method which is
applied in this thesis. As part of the technology research method, when
an artefact has been developed, the researcher must discuss to what
end the artefact satisfies the requirements established during the problem
analysis. In the context of our thesis project, we revisit our success criteria
established in Chapter 2 on page 15. Our aim is to discuss whether our
thesis work has fulfilled the success criteria, and to what extent. We
established three success criteria for our thesis work, the development
of the CORAL tool. In the following, we discuss each success criterion
individually.

6.1 Success Criterion 1.

The first success criterion states: The tool should support the creation of security
tests based on the available risk picture

As described in Section 2.1.5, the CORAL approach consists of a method
that is supported by a domain specific modelling language to support risk-
driven security testing. In order to support the creation security tests based
on the available risk picture using the CORAL approach, one has to first
apply the risk analysis language to assess the risks the system is exposed
to. This activity corresponds to the first four steps of the CORAL method,
in which the security tester creates threat models as a basis for the creation
of security tests.

The CORAL tool supports the creation of threat models, by providing
all the CORAL constructs required to capture risk according to the available
risk picture. The CORAL tool has five different constructs to represent
actors in a system or its environment, each represented as a lifeline with
a rectangle annotated with corresponding stereotype names. To represent
the different components/parts of a system, one can use the general lifeline,
equivalent to a UML lifeline. The tool further has three kinds of lifelines
representing threats, deliberate threat, accidental threat and non-human
threat, represented by a rectangle annotated with «DeliberateThreat»,
«AccidentalThreat» and «NonHumanThreat» respectively. Finally, the

81

tool provides a lifeline to represent something of value to a party, e.g.
confidentiality of client information, availability of financial records and
so on. This is represented by the asset lifeline, represented by a rectangle
annotated with «Asset».

To represent interactions, the tool provides the CORAL messages,
which are stereotypes of the asynchronous UML message. All the messages
are represented by an arrow with an open arrow head, annotated with the
corresponding stereotype name. To represent expected behaviour, one can
use the general message, which is equivalent to the asynchronous UML
message. To represent behaviour that deviates from expected behaviour,
one can use the altered message, represented by a message annotated
with «AlteredMessage». To represent behaviour introduced by a threat
one can use the new message, represented by a message annotated with
«NewMessage». To represent behaviour that has been deleted due to
interaction from a threat, one can use the deleted message, represented by
a message annotated with «DeletedMessage». Finally, unwanted incidents,
i.e. events that may harm assets are represented by a message annotated
with «UnwantedIncident». In addition to specifying behaviour using
messages, one can use the interaction operators to specify logic that
describes the interactions further. These include: alt, ref, par and loop.

Further, the security tester can annotate the messages with risk
information using the risk-measure annotations. These are implemented
in the tool as properties of messages, but can also be visually represented
in the diagram by the use of UML comment stereotypes. We provide the
following stereotypes of comment: frequency, likelihood, consequence and
conditional ratio. In Figure H.1 in Appendix H one can see a CORAL threat
model annotated with these risk-measure annotations.

After creating threat models using the CORAL constructs, the security
tester can validate the model according to CORAL constraints. Since
the tool implements model validation, to ensure that the models that
security tests are based upon are syntactically and semantically valid in
both CORAL and UML. This further supports the creation of security tests,
by ensuring the validity of the threat models.

Based on the above discussion, we see that the tool is fully capable
of supporting the CORAL approach and that it supports the creation of
security tests based on the available risk picture. As pointed out in Section
4.5.1 and Section 4.7, the tool does not currently support the graphical
icons of the CORAL language due to the technical difficulties met during
the development of the tool. As already pointed out, these technical
difficulties were out of our control, and it was not possible to resolve these
issues during the time of this thesis. However, we do not see the lack
of graphical icons as a major disadvantage in the tool because, as shown
by our empirical evaluation, there is no significant difference with respect
to the comprehensibility of CORAL diagrams annotated with stereotypes
versus CORAL diagrams annotated with graphical icons.

82

6.2 Success Criterion 2.

The second success criterion states: The tool must sufficiently aid security
testers in selecting and designing security tests with the help of security risk
assessment.

In terms of selecting security tests, ideally one would like to design tests
to address the most severe risks. For this purpose, the CORAL tool
implements the risk-measure annotations of the CORAL risk analysis
language as properties of messages. This, in turn, allows for security
testers to input risk information for each message part of a threat scenario.
When the threat models of interest have been created, and their threat
scenarios annotated with risk information, one can select which risks to
test according to their risk levels. The frequency scale, consequence scale
and risk evaluation matrix are not provided by the tool. Consequently,
they need to be manually filled out and calculated on a sheet, e.g. Excel. It
is possible, however, to open an Excel sheet in a new tab inside the tool by
right clicking the excel file and selecting open with system editor.

To aid the design of test cases, one can use the UML testing profile
(UTP) provided by Papyrus to annotate threat models with stereotypes
from the UTP.

6.3 Success Criterion 3.

The third success criterion states: The tool must be appropriate and compre-
hensible for security testers.

To the end of ensuring comprehensibility, an empirical study was carried
out to assess whether the textual notation adopted by the tool was equally
comprehensible in comparison to the graphical notation in the CORAL ap-
proach, with respect to the interpretation of threat models. The study was
not conducted with security testers specifically as participants, however,
the test material was abstracted to such a level that the target group with
a background in computer science and software development could parti-
cipate. Participants were both undergrad and graduate students, some of
whom possessed work experience in software development.

The collected data were analysed from six different perspectives all
of which accepted the null hypothesis with a 95% confidence interval.
Due to this, our study concludes that the textual notation is equally
comprehensible to that of graphical notation. Further, the findings related
to efficiency report that the participants which received the graphical
notation treatment were more efficient in solving the tasks, spending
22% less time on average. These findings are similar to the findings
of Hogganvik and Stølen [54], who found that the participants using
graphical notations were able to conclude faster, however, not reaching
a higher correctness of interpreting the models, compared to those using
textual notation. Their study involved both professionals and students.

Our findings indicate that the textual notation adopted by the tool

83

is comprehensible to the target group of our empirical study, and these
findings may relate to security testers as well. However, these findings are
limited to our experiment and further empirical investigations are needed
to further test our hypothesis from Section 5.3.1.

As for the appropriateness of the tool, we can argue that it is
appropriate for security testers by including the UTP, which is often
used within the model-based testing community [4]. Since the CORAL
tool implements the UTP, security testers can define test cases and test
outcomes by defining test objectives, verdicts, the system under test, and
the test-components that constitute the test environment. To this end, the
CORAL tool is appropriate for security testers.

To evaluate the claim of appropriateness with respect to the usability
of the tool, further empirical evidence is needed, e.g. by the means of a
usability study of the CORAL tool.

84

Chapter 7

Conclusion

In our introduction, we established that security testing is a necessity in
a world where every day, software is exposed to new threats and attacks.
Further, there is a need to efficiently and accurately carry out risk-driven
security testing to reduce costs in terms of time and money. Efficiently in
the sense that risk-driven security testing approach should be carried out
in a reasonable amount of time, and accurately in the sense that the security
testing address the most severe risks.

There are a number of different risk-driven security testing approaches
that have been proposed to meet these challenges [34], however in
this thesis, our focus was specifically on the CORAL approach [33].
Moreover, we pointed out that by applying the CORAL approach, one
can systematically carry out risk-driven security testing, to more accurately
target security testing at the most severe risks, as well as reduce the time
needed to carry our security testing. However, to fully meet this, there is a
need for dedicated tool support for the CORAL approach.

Thus, in this thesis, we propose a tool to support the approach by
providing the following contributions:

• Adaptation of CORAL as a UML Profile.

• A CORAL plug-in for Eclipse Papyrus to provide tool support for
risk-driven security testing.

• An empirical study to assess the comprehensibility of the textual
notation adopted by the tool in comparison to the graphical notation
introduced in the CORAL risk analysis language.

The CORAL tool consists of a UML profile that includes all the required
CORAL constructs to capture risk according to the available risk picture
as discussed in the previous chapter. These constructs are visually
represented in CORAL threat models by a textual notation, i.e. the UML
stereotype annotations. Threat models created in the CORAL tool supports
the creation of security tests. In addition, the tool implements model
validation to ensure that security tests are based on syntactically and
semantically valid CORAL and UML models.

Furthermore, the tool includes the UML testing profile provided by
Eclipse Papyrus, thus ensuring appropriateness for security testers and

85

aids them in the selection and design of security tests based on security
risk assessment. The tool has been developed as a plug-in for the Eclipse
Papyrus tool, and can be download from the Bitbucket repository:

https://bitbucket.org/vetlevo/no.uio.ifi.coral.profile/.

We conducted an empirical study to investigate whether the use of tex-
tual notation to represent CORAL threat models would affect the compre-
hensibility in comparison to the CORAL graphical notation. The empirical
study was carried out by means of a controlled experiment with 16 parti-
cipants. The gathered data were analysed from six different perspectives,
and from all perspectives, the following hypothesis established in Section
5.3.1 was accepted:

H0 Threat models with textual notation are equally comprehensible in
comparison to threat models with graphical notation.

The acceptance of our hypothesis implies that textual notation is equally
comprehensible to graphical notation. As a result of this, we argue that
the threat models produced by the CORAL tool are comprehensible for
security testers.

The empirical study points out that the use of graphical notation is more
efficient in comparison to textual notation. With the participants receiving
graphical notation spending on average 22% less time for each question
than those receiving textual. These findings are substantiated by similar
studies of Hogganvik and Stølen [54], who also reported equal compre-
hensibility with respect to textual and graphical notation, yet, the parti-
cipants subjected to graphical notation reported as being more efficient in
solving the tasks. Further, with respect to efficiency, Moody [80] argues
that graphical notations are more cognitive effective than textual.

In the following section, we discuss directions for future work related to
the CORAL tool.

7.1 Directions for Future Work

We identify several directions for future work that may be of interest:

• Empirical investigations to determine the usability of the CORAL
tool can be carried out. A usability study might uncover features
that are not properly expressed to the intended user, or absence of
behaviour required to fulfil the tool’s potential. This can provide
valuable insight toward how the tool can be refined to suit the needs
of security testers.

• Implement a specification for the frequency and consequence scales,
accompanied by an editor to input the scale values. Furthermore, we
could provide a specification of an evaluation matrix whose values
are derived/calculated based on the values defined in the frequency
and consequence scales by the security tester.

86

https://bitbucket.org/vetlevo/no.uio.ifi.coral.profile/

• Implement a feature in which the values of the risk-measure annota-
tions that extend the UML Comment class are derived based on the
risk-measures defined as property values for their respective mes-
sages.

• Implement a path prioritisation algorithm to prioritise which paths
to test based on a suspension criteria. We refer to a sequence of threat
scenarios leading up to and including a risk as a path [35], while the
suspension criteria serve as a threshold for the risk values we want to
include in the security testing.

• Implement a feature to ease the communication of CORAL threat
models between security testers, by providing automatically gener-
ated natural-language semantics in English prose for threat models
as defined by the CORAL approach [33].

• Integrate JUnit [64] to automatically generate Java test cases based on
the test cases defined by using the UTP.

87

88

Acronyms

API application programming interface p. 26
CSS cascading style sheets pp. 41, 44
DSML domain specific modelling language pp. 28–30, 39,

43, 44, 48, 49, 81
EBNF extended Backus–Naur form pp. 11, 31, 35
EMF Eclipse modelling framework pp. 5, 27–30, 32, 40
EPL Eclipse public licence pp. 8, 27
ER entity-relationship p. 47
GEF graphical editing framework pp. 5, 28–30
GMF graphical modelling framework pp. 5, 28, 29, 41
GPL GNU general public licence p. 8
GQM goal, question, metric p. 47
IDE integrated development environment p. 26
MARTE modelling and analysis of real time and embedded

systems pp. 28, 30
MBT model-based testing pp. 1, 8, 9, 84
MDE model-driven engineering pp. 39, 46, 47
MDT model development tools p. 28
OCL object constraint language pp. 4, 5, 29, 39–41
OMG object management group pp. 8, 28
QIP quality improvement paradigm p. 45
RCP rich client platform pp. 5, 25, 26, 28–30, 44
RST risk-driven security testing pp. i, 2–4, 9–12, 43, 85
SDK software development kit p. 26
SUT system under test pp. 1, 2, 9, 11, 12, 15, 30, 84
SWT standard widget toolkit pp. 27, 28
SysML systems modelling language pp. 28, 30
UI user interface pp. 25, 27
UML unified modelling language pp. 3–5, 7–10, 15, 25, 27–

32, 34, 35, 38–44, 47, 48, 62, 78, 79, 81, 82, 85, 86
URI uniform resource identifier p. 43
UTP UML testing profile pp. 4, 7–9, 12, 15, 22, 25, 30, 43,

83–85, 87
XMI XML meta data interchange p. 43
XML extensible markup language pp. 27, 42

89

90

Bibliography

[1] ArgoUML. http://argouml.tigris.org/. Accessed May 18, 2016.

[2] C. W. Bachman. ‘Data Structure Diagrams’. In: SIGMIS Database 1.2
(1969), pp. 4–10.

[3] J. Bailey, D. Budgen, M. Turner, B. Kitchenham, P. Brereton and
S. Linkman. ‘Evidence relating to Object-Oriented software design:
A survey’. In: First International Symposium on Empirical Software
Engineering and Measurement (ESEM 2007). IEEE Computer Society,
2007, pp. 482–484.

[4] P. Baker, Z. R. Dai, J. Grabowski, Ø. Haugen, I. Schieferdecker
and C. Williams. Model-driven testing: Using the UML testing profile.
Springer, 2007.

[5] R. Balzer, F. Belz, R. Dewar, D. Fisher, R. Gabriel, J. Guttag, P. Hudak
and M. Wand. ‘Prototyping’. In: Annual Review of Computer Science
4.1 (1990), pp. 453–465.

[6] V. R. Basili, G. Caldiera and H. D. Rombach. ‘Experience Factory’.
In: Encyclopedia of Software Engineering. John Wiley & Sons, 2002.

[7] G. Booch, J. Rumbaugh and I. Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley, 1999.

[8] R. Bosak, R. F. Clippinger, C. Dobbs, R. Goldfinger, R. B. Jasper, W.
Keating, G. Kendrick and J. E. Sammet. ‘An Information Algebra:
Phase 1 Report—Language Structure Group of the CODASYL
Development Committee’. In: Communications of the ACM 5.4 (1962),
pp. 190–204.

[9] J. Botella, B. Legeard, F. Peureux and A. Vernotte. ‘Risk-Based
Vulnerability Testing Using Security Test Patterns’. In: Proc. 6th
International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA’14). Springer, 2014, pp. 337–352.

[10] J. Cabot and M. Gogolla. ‘Object constraint language (OCL): a
definitive guide’. In: Formal methods for model-driven engineering.
Springer, 2012, pp. 58–90.

[11] P. P. Chen. ‘The Entity-relationship Model—Toward a Unified View
of Data’. In: ACM Transactions on Database Systems 1.1 (1976), pp. 9–
36.

91

http://argouml.tigris.org/

[12] Cisco 2017 Annual Security Report. http ://b2me .cisco . com/en- us -
annual-cybersecurity-report-2017?keycode1=001464153. Accessed July
21, 2017.

[13] E. F. Codd. Derivability, Redundancy, and Consistency of Relations
Stored in Large Data Banks. Research Report RJ599. IBM, 1969.

[14] Combined fragments in sequence diagrams. https : / /www . ibm . com/
support/knowledgecenter/en/SS4JE2_7.5.5/com.ibm.xtools.sequence.
doc/topics/ccombfrag_v.html. Accessed July 30, 2017.

[15] R. Conradi and A. I. Wang. Empirical methods and studies in software
engineering: Experiences from ESERNET. Springer, 2003.

[16] Data Protection Official for Research. http : / /www .nsd . uib . no/nsd/
english/pvo.html. Accessed June 24, 2017.

[17] A. De Lucia, C. Gravino, R. Oliveto and G. Tortora. ‘An experi-
mental comparison of ER and UML class diagrams for data mod-
elling’. In: Empirical Software Engineering 15.5 (2010), pp. 455–492.

[18] A. C. Dias Neto, R. Subramanyan, M. Vieira and G. H. Travassos. ‘A
Survey on Model-based Testing Approaches: A Systematic Review’.
In: Proc. 1st International Workshop on Empirical Assessment of Software
Engineering Languages and Technologies. ACM, 2007, pp. 31–36.

[19] Definition of effectiveness. https://en.oxforddictionaries.com/definition/
effectiveness. Accessed June 03, 20176.

[20] Definition of research. http://www.merriam-webster.com/dictionary/
research. Accessed April 12, 2016.

[21] D. Dunning, K. Johnson, J. Ehrlinger and J. Kruger. ‘Why people
fail to recognize their own incompetence’. In: Current directions in
psychological science 12.3 (2003), pp. 83–87.

[22] Eclipse E4. http://wiki.eclipse.org/E4. Accessed July 13, 2017.

[23] Eclipse EMF. https://projects.eclipse.org/projects/modeling.emf.emf.
Accessed July 22, 2017.

[24] GEF/Developer FAQ. http ://wiki . eclipse .org/GEF/Developer_FAQ.
Accessed July 13, 2017.

[25] GEF (Graphical Editing Framework). https : / /www . eclipse . org/gef/.
Accessed July 13, 2017.

[26] Eclipse Orion. http://wiki.eclipse.org/Orion. Accessed July 13, 2017.

[27] The Eclipse Platform. http://wiki.eclipse.org/Platform. Accessed July
13, 2017.

[28] The Eclipse RCP. https : / /wiki . eclipse . org /Rich_Client_Platform.
Accessed July 11, 2017.

[29] Eclipse Modelling Project. https : / / projects . eclipse . org / projects /
modeling. Accessed July 14, 2017.

[30] Model Development Tools Project. https://projects.eclipse.org/projects/
modeling.mdt. Accessed July 14, 2017.

92

http://b2me.cisco.com/en-us-annual-cybersecurity-report-2017?keycode1=001464153
http://b2me.cisco.com/en-us-annual-cybersecurity-report-2017?keycode1=001464153
https://www.ibm.com/support/knowledgecenter/en/SS4JE2_7.5.5/com.ibm.xtools.sequence.doc/topics/ccombfrag_v.html
https://www.ibm.com/support/knowledgecenter/en/SS4JE2_7.5.5/com.ibm.xtools.sequence.doc/topics/ccombfrag_v.html
https://www.ibm.com/support/knowledgecenter/en/SS4JE2_7.5.5/com.ibm.xtools.sequence.doc/topics/ccombfrag_v.html
http://www.nsd.uib.no/nsd/english/pvo.html
http://www.nsd.uib.no/nsd/english/pvo.html
https://en.oxforddictionaries.com/definition/effectiveness
https://en.oxforddictionaries.com/definition/effectiveness
http://www.merriam-webster.com/dictionary/research
http://www.merriam-webster.com/dictionary/research
http://wiki.eclipse.org/E4
https://projects.eclipse.org/projects/modeling.emf.emf
http://wiki.eclipse.org/GEF/Developer_FAQ
https://www.eclipse.org/gef/
http://wiki.eclipse.org/Orion
http://wiki.eclipse.org/Platform
https://wiki.eclipse.org/Rich_Client_Platform
https://projects.eclipse.org/projects/modeling
https://projects.eclipse.org/projects/modeling
https://projects.eclipse.org/projects/modeling.mdt
https://projects.eclipse.org/projects/modeling.mdt

[31] EMF/FAQ. https://wiki.eclipse.org/EMF/FAQ. Accessed July 20, 2017.

[32] Eclipse Public License - Version 1.0. https://www.eclipse.org/legal/epl-
v10.html. Accessed July 12, 2016.

[33] G. Erdogan. ‘CORAL: A Model-Based Approach to Risk-Driven
Security Testing’. PhD thesis. University of Oslo, 2016.

[34] G. Erdogan, Y. Li, R.K. Runde, F. Seehusen and K. Stølen. ‘Ap-
proaches for the combined use of risk analysis and testing: a sys-
tematic literature review’. In: International Journal on Software Tools
for Technology Transfer 16.5 (2014), pp. 627–642.

[35] G. Erdogan, A. Refsdal and K. Stølen. ‘A Systematic Method for
Risk-driven Test Case Design Using Annotated Sequence Dia-
grams’. In: Proc. 1st International Workshop on Risk Assessment and
Risk-driven Testing (RISK’13). Springer, 2014, pp. 93–108.

[36] Eval&Go. http://www.evalandgo.com/. Accessed July 06, 2017.

[37] B.S. Everitt and A. Skrondal. The Cambridge Dictionary of Statistics.
Cambridge University Press, 2010.

[38] A. Field. Discovering Statistics Using IBM SPSS Statistics. SAGE
Publications, 2013.

[39] The World Economic Forum. The Global Risks Report 2017 12th
Edition. Insight Report Ref: 050117. The World Economic Forum,
2017.

[40] V. Garousi and J. Zhi. ‘A survey of software testing practices in
Canada’. In: Journal of Systems and Software 86.5 (2013), pp. 1354–
1376.

[41] Online Tutorial: Getting started with GEF 5.0. https://info.itemis.com/
en/gef/tutorials/. Accessed July 13, 2017.

[42] GEF Wiki. https ://github .com/eclipse/gef/wiki. Accessed July 13,
2017.

[43] Graphical Modeling Framework. http : / /wiki . eclipse . org /Graphical_
Modeling_Framework. Accessed July 13, 2017.

[44] Google Forms. https://www.google.com/forms/about/. Accessed July
06, 2017.

[45] P. Goolkasian. ‘Pictures, words, and sounds: From which format are
we best able to reason?’ In: Transactions on Software Engineering, IEEE
127.4 (2000), pp. 439–459.

[46] P. Goolkasian. ‘Software security’. In: IEEE Security & Privacy 2.2
(2004), pp. 80–83.

[47] The GNU General Public License v3.0 - GNU Project - Free Software
Foundation. http ://www.gnu .org/ licenses/gpl - 3 .0 .html. Accessed
May 18, 2016.

93

https://wiki.eclipse.org/EMF/FAQ
https://www.eclipse.org/legal/epl-v10.html
https://www.eclipse.org/legal/epl-v10.html
http://www.evalandgo.com/
https://info.itemis.com/en/gef/tutorials/
https://info.itemis.com/en/gef/tutorials/
https://github.com/eclipse/gef/wiki
http://wiki.eclipse.org/Graphical_Modeling_Framework
http://wiki.eclipse.org/Graphical_Modeling_Framework
https://www.google.com/forms/about/
http://www.gnu.org/licenses/gpl-3.0.html

[48] J. Großmann, M. Berger and J. Viehmann. ‘A Trace Management
Platform for Risk-Based Security Testing’. In: Proc. 1st International
Workshop on Risk Assessment and Risk-driven Testing (RISK’13).
Springer, 2014, pp. 120–135.

[49] J. Großmann, M. Schneider, J. Viehmann and M.-F. Wendland.
‘Combining Risk Analysis and Security Testing’. In: Proc. 6th
International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA’14). Springer, 2014, pp. 322–336.

[50] F. E. Grubbs. ‘Procedures for detecting outlying observations in
samples’. In: Technometrics 11.1 (1969), pp. 1–21.

[51] I. Hadar, I. Reinhartz-Berger, T. Kuflik, A. Perini, F. Ricca and A.
Susi. ‘Comparing the comprehensibility of requirements models
expressed in Use Case and Tropos: Results from a family of
experiments’. In: Information and Software Technology 55.10 (2013),
pp. 1823–1843.

[52] G. S. Halford, R. Baker, J. E McCredden and J. D. Bain. ‘How many
variables can humans process?’ In: Psychological Science 16.1 (2005),
pp. 70–76.

[53] G. S. Halford, W. H. Wilson and S. Phillips. ‘Processing capacity
defined by relational complexity: Implications for comparative,
developmental, and cognitive psychology’. In: Behavioral and Brain
Sciences 21.6 (1998), pp. 803–831.

[54] I. Hogganvik and K. Stølen. ‘A graphical approach to risk identific-
ation, motivated by empirical investigations’. In: International Con-
ference on Model Driven Engineering Languages and Systems. Springer,
2006, pp. 574–588.

[55] I. Hogganvik and K. Stølen. Empirical Investigations of the CORAS
Language for Structured Brainstorming. Technical Report A05041.
SINTEF Information and Communication Technology, 2005.

[56] IBM SPSS. https://www.ibm.com/analytics/us/en/technology/spss/.
Accessed July 06, 2017.

[57] IBM Rational Software. https : / / www - 01 . ibm . com / software / uk /
rational/. Accessed July 23, 2017.

[58] Interaction operators in sequence diagrams. https : / /www . ibm . com/
support/knowledgecenter/en/SS8PJ7_9.6.0/com.ibm.xtools.sequence.
doc/topics/rinteracoperate.html. Accessed July 30, 2017.

[59] Indirectly Identifiable Personal Data. http : / / www . nsd . uib . no /
personvernombud/en/help/vocabulary.html. Accessed June 20, 2017.

[60] Interaction Flow Modeling Language, version 1.0. OMG Document
Number formal/2015-02-05. Object Management Group. 2015.

[61] ISO/IEC 14977:1996(E), Information technology – Syntactic metalan-
guage – Extended BNF, first edition. International Organization for
Standardization. 1996.

94

https://www.ibm.com/analytics/us/en/technology/spss/
https://www-01.ibm.com/software/uk/rational/
https://www-01.ibm.com/software/uk/rational/
https://www.ibm.com/support/knowledgecenter/en/SS8PJ7_9.6.0/com.ibm.xtools.sequence.doc/topics/rinteracoperate.html
https://www.ibm.com/support/knowledgecenter/en/SS8PJ7_9.6.0/com.ibm.xtools.sequence.doc/topics/rinteracoperate.html
https://www.ibm.com/support/knowledgecenter/en/SS8PJ7_9.6.0/com.ibm.xtools.sequence.doc/topics/rinteracoperate.html
http://www.nsd.uib.no/personvernombud/en/help/vocabulary.html
http://www.nsd.uib.no/personvernombud/en/help/vocabulary.html

[62] ISO/IEC/IEEE 29119-2:2013(E), Software and system engineering -
Software testing - Part 2: Test process. International Organization for
Standardization. 2013.

[63] JavaFX Overview. http://docs.oracle.com/javase/8/javafx/get-started-
tutorial/jfx-overview.htm{#}JFXST784. Accessed July 13, 2017.

[64] JUnit. http://junit.org/junit4/. Accessed July 31, 2017.

[65] C. Kaner. The Impossibility of Complete Testing. Tech. rep. Accessed
March 13, 2016. http://www.kaner.com/pdfs/imposs.pdf, 1997.

[66] B. Kitchenham and S. Charters. Guidelines for performing systematic
literature reviews in software engineering. Technical Report EBSE-2007-
01. Keele University, and University of Durham, 2007.

[67] K. Labunets, F. Massacci, F. Paci, S. Marczak and F. M. de Oliveira.
‘Model comprehension for security risk assessment: an empirical
comparison of tabular vs. graphical representations’. In: Empirical
Software Engineering (2017), pp. 526–540.

[68] A. Lamsweerde. ‘Formal Specification: A Roadmap’. In: Proc.
Conference on The Future of Software Engineering. ACM, 2000, pp. 147–
159.

[69] S. Landau and B.S. Everitt. A Handbook of Statistical Analyses Using
SPSS. Taylor & Francis, 2004.

[70] C.Y. Lester and F. Jamerson. ‘Incorporating Software Security into
an Undergraduate Software Engineering Course’. In: Proc. 3rd
International Conference on Emerging Security Information, Systems
and Technologies (SECURWARE’09). IEEE Computer Society, 2009,
pp. 161–166.

[71] H. Levene. ‘Robust Tests for Equality of Variances’. In: Contributions
to Probability and Statistics: Essays in Honor of Harold Hotelling.
Springer, 1960, pp. 278–292.

[72] W. Lidwell, J. Butler and K. Holden. Universal principles of design: a
cross disciplinary reference. Rockport Publishers, 2003.

[73] Lime Survey. https://www.limesurvey.org/. Accessed July 06, 2017.

[74] M.S. Lund, B. Solhaug and K. Stølen. Model-Driven Risk Analysis: The
CORAS Approach. Springer, 2011.

[75] B.S. Madsen. Statistics for Non-Statisticians. Springer, 2016.

[76] MagicDraw. https : / / www . nomagic . com / products / magicdraw.
Accessed July 23, 2017.

[77] R. McGill, J. W. Tukey and W. A. Larsen. ‘Variations of box plots’.
In: The American Statistician 32.1 (1978), pp. 12–16.

[78] J.E. McGrath. Groups: interaction and performance. Prentice-Hall, 1984.

[79] S. Meliá, C. Cachero, J. M. Hermida and E. Aparicio. ‘Comparison
of a textual versus a graphical notation for the maintainability of
MDE domain models: an empirical pilot study’. In: Software Quality
Journal 24.3 (2016), pp. 709–735.

95

http://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-overview.htm{#}JFXST784
http://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-overview.htm{#}JFXST784
http://junit.org/junit4/
http://www.kaner.com/pdfs/imposs.pdf
https://www.limesurvey.org/
https://www.nomagic.com/products/magicdraw

[80] D.L. Moody. ‘The “Physics” of Notations: Toward a Scientific Basis
for Constructing Visual Notations in Software Engineering’. In:
Transactions on Software Engineering, IEEE 35.6 (2009), pp. 756–779.

[81] K.K. Murthy, K.R. Thakkar and S. Laxminarayan. ‘Leveraging
risk based testing in enterprise systems security validation’. In:
Proc. 1st International Conference on Emerging Network Intelligence
(EMERGING’09). IEEE Computer Society, 2009, pp. 111–116.

[82] NetBeans Platform Learning Trail. https : / / netbeans . org / kb / trails /
platform.html. Accessed July 11, 2017.

[83] E. G. Nilsson and K. Stølen. The FLUIDE Framework for Specifying
Emergency Response User Interfaces Employed to a Search and Rescue
Case. Technical Report A27575. SINTEF Information and Commu-
nication Technology, 2016.

[84] Norwegian Centre for Research Data. http : //www.nsd . uib . no/nsd/
english. Accessed July 2, 2017.

[85] Online Surveys. http://www.nsd.uib.no/personvernombud/en/help/
research_methods/online_surveys.html. Accessed June 24, 2017.

[86] Object Constraint Language, version 2.4. OMG Document Number:
formal/2014-02-03. Object Management Group. 2014.

[87] OMG Systems Modeling Language, version 1.5. OMG Document
Number formal/2017-05-01. Object Management Group. 2017.

[88] OMG Unified Modeling Language, version 2.5. OMG Document
Number formal/2015-03-01. Object Management Group. 2015.

[89] OMG Formal Specifications. http : //www.omg .org/ spec/. Accessed
May 18, 2016.

[90] Papyrus/Migration Guide/Oxygen. https ://wiki .eclipse .org/Papyrus/
Migration_Guide/Oxygen. Accessed July 15, 2017.

[91] Papyrus Modeling Environment. https : / / eclipse . org / papyrus/.
Accessed May 18, 2016.

[92] Papyrus/Photon Work Description. https://wiki .eclipse.org/Papyrus/
Photon_Work_Description. Accessed July 18, 2017.

[93] Papyrus Project. https://projects.eclipse.org/projects/modeling.mdt.
papyrus. Accessed July 14, 2017.

[94] Papyrus Wiki. https://wiki.eclipse.org/Papyrus. Accessed July 14, 2017.

[95] The Eclipse Plug-in Development Environment. http://wiki.eclipse.org/
PDE. Accessed July 13, 2017.

[96] The Global State of Information Security Survey 2017. https://www.pwc.
com/gx/en/ issues/cyber - security/ information- security - survey.html.
Accessed July 21, 2017.

[97] Qualtrics. https://www.qualtrics.com/. Accessed July 06, 2017.

[98] QuestionPro. https://www.questionpro.com/. Accessed July 06, 2017.

96

https://netbeans.org/kb/trails/platform.html
https://netbeans.org/kb/trails/platform.html
http://www.nsd.uib.no/nsd/english
http://www.nsd.uib.no/nsd/english
http://www.nsd.uib.no/personvernombud/en/help/research_methods/online_surveys.html
http://www.nsd.uib.no/personvernombud/en/help/research_methods/online_surveys.html
http://www.omg.org/spec/
https://wiki.eclipse.org/Papyrus/Migration_Guide/Oxygen
https://wiki.eclipse.org/Papyrus/Migration_Guide/Oxygen
https://eclipse.org/papyrus/
https://wiki.eclipse.org/Papyrus/Photon_Work_Description
https://wiki.eclipse.org/Papyrus/Photon_Work_Description
https://projects.eclipse.org/projects/modeling.mdt.papyrus
https://projects.eclipse.org/projects/modeling.mdt.papyrus
https://wiki.eclipse.org/Papyrus
http://wiki.eclipse.org/PDE
http://wiki.eclipse.org/PDE
https://www.pwc.com/gx/en/issues/cyber-security/information-security-survey.html
https://www.pwc.com/gx/en/issues/cyber-security/information-security-survey.html
https://www.qualtrics.com/
https://www.questionpro.com/

[99] T. Sandelin and M. Vierimaa. ‘Empirical studies in esernet’. In:
Empirical Methods and Studies in Software Engineering. Springer, 2003,
pp. 39–54.

[100] C. Schalles. Usability evaluation of modeling languages. Springer, 2012.

[101] F. Seehusen. ‘A Technique for Risk-Based Test Procedure Identific-
ation, Prioritization and Selection’. In: Proc. 6th International Sym-
posium on Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA’14). Springer, 2014, pp. 277–291.

[102] M. E. Senko, E. B. Altman, M. M. Astrahan and P. L. Fehder.
‘Data structures and accessing in data-base systems, I: Evolution of
information systems’. In: IBM Systems Journal 12.1 (1973), pp. 30–44.

[103] Service oriented architecture Modeling Language (SoaML) Specification,
version 1.0.1. OMG Document Number formal/2012-05-10. Object
Management Group. 2012.

[104] W. R. Shadish, T. D. Cook and D. T. Campbell. Experimental and
quasi-experimental designs for generalized causal inference. Wadsworth
Cengage learning, 2002.

[105] F. Shull, J. Singer and D.I.K. Sjøberg. Guide to Advanced Empirical
Software Engineering. Springer, 2007.

[106] K. Singh. Quantitative Social Research Methods. SAGE Publications,
2007.

[107] D. I. K Sjøberg, J. E. Hannay, O. Hansen, V. By Kampenes, A. Kara-
hasanovic, N. K. Liborg and A. C. Rekdal. ‘A survey of controlled
experiments in software engineering’. In: IEEE transactions on soft-
ware engineering 31.9 (2005), pp. 733–753.

[108] B. Solhaug and K. Stølen. ‘The CORAS Language - Why it is
designed the way it is’. In: Proc. 11th International Conference on
Structural Safety and Reliability (ICOSSAR’13). Taylor and Francis,
2013, pp. 3155–3162.

[109] I. Solheim and K. Stølen. Technology research explained. Technical
Report A313. SINTEF Information and Communication Technology,
2007.

[110] R. van Solingen, V. Basili, G. Caldiera and H. D. Rombach. ‘Goal
Question Metric (GQM) Approach’. In: Encyclopedia of Software
Engineering. John Wiley & Sons, 2002.

[111] I. Sommerville. Software Engineering. Pearson, 2011.

[112] D. Steinberg, F. Budinsky, E. Merks and M. Paternostro. EMF: Eclipse
Modeling Framework. Pearson Education, 2008.

[113] G. Stoneburner, A. Y. Goguen and A. Feringa. SP 800-30. Risk
Management Guide for Information Technology Systems. Technical
Report. National Institute of Standards & Technology, 2002.

[114] SurveyGizmo. https://www.surveygizmo.com/. Accessed July 06, 2017.

97

https://www.surveygizmo.com/

[115] SurveyMonkey. https://www.surveymonkey.com/. Accessed July 06,
2017.

[116] Survey Planet. https://surveyplanet.com/. Accessed July 06, 2017.

[117] SWT: The Standard Widget Toolkit. https : / /www . eclipse . org / swt/.
Accessed July 13, 2017.

[118] Symantec Internet Security Threat Report, Volume 22, April 2017. https:
//www.symantec.com/security-center/threat-report. Accessed July 22,
2017.

[119] About the Eclipse Foundation. http://www.eclipse.org/org/. Accessed
July 12, 2017.

[120] The Eclipse Java Development Tools. http : / / wiki . eclipse . org / JDT.
Accessed July 13, 2017.

[121] The Eclipse Project. http://wiki.eclipse.org/Eclipse_Project. Accessed
July 13, 2017.

[122] W.M.K Trochim. The Research Methods Knowledge Base, 2nd edn.
Cornell Custom Publishing, 1999.

[123] UML Testing Profile (UTP), version 1.2. OMG Document Number:
formal/2013-04-03. Object Management Group. 2013.

[124] MDT/UML2. https://wiki.eclipse.org/MDT/UML2. Accessed July 19,
2017.

[125] UMLet. http://www.umlet.com/. Accessed May 18, 2016.

[126] M. Utting, A. Pretschner and B. Legeard. ‘A taxonomy of model-
based testing approaches’. In: Software Testing, Verification and
Reliability 22.5 (2012), pp. 297–312.

[127] M. Utting, A. Pretschner and B. Legeard. ‘A taxonomy of model-
based testing approaches’. In: Software Testing, Verification and
Reliability 22.5 (2012), pp. 297–312.

[128] R. J. Wieringa. Design Science Methodology for Information Systems and
Software Engineering. Springer, 2014.

[129] C. Wohlin, M. Höst and K. Henningsson. ‘Empirical research
methods in software engineering’. In: Empirical Methods and Studies
in Software Engineering. Springer, 2003, pp. 7–23.

[130] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell and A.
Wesslén. Experimentation in Software Engineering. Springer, 2012.

[131] R. E. Wood. ‘Task complexity: Definition of the construct’. In:
Organizational behavior and human decision processes 37.1 (1986),
pp. 60–82.

[132] D. Xu, M. Tu, M. Sandford, L. Thomas, D. Woodraska and W. Xu.
‘Automated Security Test Generation with Formal Threat Models’.
In: IEEE Transactions on Dependable and Secure Computing 9.4 (2012),
pp. 526–540.

98

https://www.surveymonkey.com/
https://surveyplanet.com/
https://www.eclipse.org/swt/
https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center/threat-report
http://www.eclipse.org/org/
http://wiki.eclipse.org/JDT
http://wiki.eclipse.org/Eclipse_Project
https://wiki.eclipse.org/MDT/UML2
http://www.umlet.com/

[133] J. W. Young and H. K. Kent. ‘An abstract formulation of data
processing problems’. In: Proc. Preprints of papers presented at the 13th
national meeting of the Association for Computing Machinery. ACM,
1958, pp. 1–4.

[134] P. Zech. ‘Risk-Based Security Testing in Cloud Computing Environ-
ments’. In: Proc. 4th International Conference on Software Testing. IEEE
Computer Society, 2011, pp. 411–414.

[135] P. Zech, M. Felderer and R. Breu. ‘Towards a Model Based Security
Testing Approach of Cloud Computing Environments’. In: Proc. 6th
International Conference on Software Security and Reliability Companion
(SERE-C’12). IEEE Computer Society, 2012, pp. 47–56.

[136] Zoho survey. https://www.zoho.eu/survey/. Accessed July 06, 2017.

99

https://www.zoho.eu/survey/

100

Appendices

101

Appendix A

Main Task Questionnaire –
Group A

103

1. How many new messages are explicitly modelled in the threat model below?

2. How many altered messages are explicitly modelled in the threat model below?

3. How many deleted messages are explicitly modelled in the threat model below?

4. How many messages are explicitly modelled between lifeline L1 and L3 in the threat model

below, and what are their types?

0 1 2 3 4 5 6 7 8 9 10

General Message

New Message

Altered Message

Deleted Message

Unwanted Incident

5. How many messages are explicitly modelled between lifeline L1 and L4 in the threat model

below, and what are their types?

0 1 2 3 4 5 6 7 8 9 10

General Message

New Message

Altered Message

Deleted Message

Unwanted Incident

6. How many messages are explicitly modelled in the threat model below, and what are their

types?

0 1 2 3 4 5 6 7 8 9 10

General Message

New Message

Altered Message

Deleted Message

Unwanted Incident

7. In the following diagram a hacker submits otherwise illegal input by downloading a local

copy of the login form and removing input restrictions.

We focus on how messages can affect their succeeding messages.

Some messages in this diagram are supposed to be deleted messages, can you spot

which?

We use the following definitions of Confidentiality, Availability and Integrity:

Confidentiality: Only authorised actors have access to information.

Availability: Authorised actors have access to information they need when they need

it.

Integrity: Only authorised actors can change, create or delete information.

Recall that an unwanted incident is a message that can potentially harm or reduce an

asset's value.

8. In the threat model below, the asset SourceCode can potentially be harmed. Which

statements are the most accurate with respect to the threat model?

The unwanted incident can potentially harm the confidentiality of the asset SourceCode.

The unwanted incident can potentially harm the availability of the asset SourceCode.

The unwanted incident can potentially harm the Integrity of the asset SourceCode.

9. According to the model, describe how the hacker causes the unwanted incident to occur.

We use the following definitions of Confidentiality, Availability and Integrity:

Confidentiality: Only authorised actors have access to information.

Availability: Authorised actors have access to information they need when they need

it.

Integrity: Only authorised actors can change, create or delete information.

Recall that an unwanted incident is a message that can potentially harm or reduce an

asset's value.

10. Now let's assume that the web app for privacy reasons hides users' real name and email

address when someone views their feedback.

Further let's assume that the hacker has stored a malicious script in the database.

In the threat model below, the asset UserData can potentially be harmed. Which statements

are the most accurate with respect to the threat model?

The unwanted incident can potentially harm the confidentiality of the asset UserData.

The unwanted incident can potentially harm the availability of the asset UserData.

The unwanted incident can potentially harm the Integrity of the asset UserData.

11. According to the model, describe how the hacker causes the unwanted incident to occur.

Do not be startled by the alt operators in the threat model for these questions.

The guards in the alt (the text in brackets []) signifies what has to be true for the messages

inside to occur.

Basically the alts are read as, either this happens, or that happens, or nothing happens (if

none of the conditions are met).

For this model for example, the input is either invalid or considered valid.

12. According to the model, describe how the hacker causes the unwanted incident to occur.

13. According to the model, describe all possibilities of where the attack might fail.

This is the last page of the questionnaire. Here we would like to get your

feedback on the experiment.

14.

Strongly

Disagree

Disagree Not

Certain

Agree Strongly

Agree

I had enough time to solve the given tasks.

The objectives of the empirical experiment were

clear to me.

The task descriptions were clear, and I understood

what to do.

I experienced no difficulties in understanding the

threat models.

I experienced no difficulties in answering questions

in Part 1.

I experienced no difficulties in answering questions

in Part 2.

I think the presentation given to me before the

questionnaire provided me with enough information

to solve the tasks.

15. Do you have any comments with respect to the tasks given in the experiment?

16. Do you have any further comments about the empirical experiment?

118

Appendix B

Main Task Questionnaire –
Group B

119

1. How many new messages are explicitly modelled in the threat model below?

2. How many altered messages are explicitly modelled in the threat model below?

3. How many deleted messages are explicitly modelled in the threat model below?

4. How many messages are explicitly modelled between lifeline L1 and L3 in the threat model

below, and what are their types?

0 1 2 3 4 5 6 7 8 9 10

General Message

New Message

Altered Message

Deleted Message

Unwanted Incident

5. How many messages are explicitly modelled between lifeline L1 and L4 in the threat model

below, and what are their types?

0 1 2 3 4 5 6 7 8 9 10

General Message

New Message

Altered Message

Deleted Message

Unwanted Incident

6. How many messages are explicitly modelled in the threat model below, and what are their

types?

0 1 2 3 4 5 6 7 8 9 10

General Message

New Message

Altered Message

Deleted Message

Unwanted Incident

7. In the following diagram a hacker submits otherwise illegal input by downloading a local

copy of the login form and removing input restrictions.

We focus on how messages can affect their succeeding messages.

Some messages in this diagram are supposed to be deleted messages, can you spot

which?

We use the following definitions of Confidentiality, Availability and Integrity:

Confidentiality: Only authorised actors have access to information.

Availability: Authorised actors have access to information they need when they need

it.

Integrity: Only authorised actors can change, create or delete information.

Recall that an unwanted incident is a message that can potentially harm or reduce an

asset's value.

8. In the threat model below, the asset SourceCode can potentially be harmed. Which

statements are the most accurate with respect to the threat model?

The unwanted incident can potentially harm the confidentiality of the asset SourceCode.

The unwanted incident can potentially harm the availability of the asset SourceCode.

The unwanted incident can potentially harm the Integrity of the asset SourceCode.

9. According to the model, describe how the hacker causes the unwanted incident to occur.

We use the following definitions of Confidentiality, Availability and Integrity:

Confidentiality: Only authorised actors have access to information.

Availability: Authorised actors have access to information they need when they need

it.

Integrity: Only authorised actors can change, create or delete information.

Recall that an unwanted incident is a message that can potentially harm or reduce an

asset's value.

10. Now let's assume that the web app for privacy reasons hides users' real name and email

address when someone views their feedback.

Further let's assume that the hacker has stored a malicious script in the database.

In the threat model below, the asset UserData can potentially be harmed. Which statements

are the most accurate with respect to the threat model?

The unwanted incident can potentially harm the confidentiality of the asset UserData.

The unwanted incident can potentially harm the availability of the asset UserData.

The unwanted incident can potentially harm the Integrity of the asset UserData.

11. According to the model, describe how the hacker causes the unwanted incident to occur.

Do not be startled by the alt operators in the threat model for these questions.

The guards in the alt (the text in brackets []) signifies what has to be true for the messages

inside to occur.

Basically the alt are read as, either this happens, or that happens.

For this model for example, the input is either invalid or considered valid.

12. According to the model, describe how the hacker causes the unwanted incident to occur.

13. According to the model, describe all possibilities of where the attack might fail.

This is the last page of the questionnaire. Here we would like to get your

feedback on the experiment.

14.

Strongly

Disagree

Disagree Not

Certain

Agree Strongly

Agree

I had enough time to solve the given tasks.

The objectives of the empirical experiment were

clear to me.

The task descriptions were clear, and I understood

what to do.

I experienced no difficulties in understanding the

threat models.

I experienced no difficulties in answering questions

in Part 1.

I experienced no difficulties in answering questions

in Part 2.

I think the presentation given to me before the

questionnaire provided me with enough information

to solve the tasks.

15. Do you have any comments with respect to the tasks given in the experiment?

16. Do you have any further comments about the empirical experiment?

Appendix C

Presentation – Group A

135

➢ In this experiment we need your help to assess a graphical notation used to model

attacks in sequence diagrams.

➢ Stage 1:

You will be given a survey to gather background information. This will be used to

further divide participants into two groups fairly based on competence.

Furthermore, the letter of consent must be signed and emailed back to

vetlevo@ifi.uio.no

➢ Stage 2:

You will be given a survey with tasks to solve.

There are a total of 13 tasks to solve, divided into two parts:

➢ Part 1: 6 tasks given a 1 minute time restriction.

➢ Part 2: 7 tasks given time restrictions > 1 minute.

➢ At the end there is a short post-experiment questionnaire that will assess

your experience with the experiment.

Experiment – Assessment of

Graphical Notation

Graphical Notation
Lifelines

Lifeline type

General lifeline

Deliberate threat

lifeline

Asset lifeline

Name

Name

Name

Notation Description

A general lifeline is a process/part

of the system or an environment

that interacts with the system.

A deliberate threat is a human

threat that has malicious intents.

An asset lifeline is a security asset

which we want to protect.

Web Browser Web Server
Database

Server

logIn(usr, pwd)

alt

[no match] false

display(incorrectUsrOrPwd)

[else]

sd User logs onto web application Simple example of a log in feature in a web application

1. The scenario begins with the message logIn(usr, pwd)

2. The web server then executes a query on the

database to verify the user credentials.

3. We then enter the alt (potential alternatives) with two

guards ([no match], [else]).

4. If the provided crendentials are incorrect, the

database will issue a message false, and the web

server will notify the user that either the username or

password is incorrect.

5. If the crendentials provide a match, the web server

redirects the web browser to the user page.

Graphical Notation

message name

Messages

General message

Message type Notation

message name

message name

message name

message name

New message

Altered message

Deleted message

Unwanted

incident message

The general message is a message that has not been

manipulated by a threat.

The new message is a new message in the system with the

intention of manipulating system behaviour.

The altered message is a message that has been manipulated

to deviate from expected behaviour.

A deleted message is a message that has been deleted as a

result of previous manipulations.

An unwanted incident represents an event that harms or

reduces the value of an asset.

Description

Threat Model - Example

➢ Let’s assume we have a very naive

implementation for session management.

1. A user’s web browser issues a request to the web

server that it wants a new session.

2. The web server replies by redirecting the user’s

web browser to a web page with the new

sessionID.

Web Server

sd User initiates a session with web server

User s Web

Browser

Threat Model - Example

➢ Further, let’s assume a our deliberate threat is a hacker. The hacker performs an attack by first initiating a

new session with the web site. Then, modifies a URL parameter to point to his sessionID.

➢ The hacker proceeds to share this link with another user of the web site through social engineering.

➢ The user opens the link and proceeds to use the web site with the same sessionID. If for example the user

logs onto the web application using this session, the hacker will be logged in as well (as the user).

(Assuming that the web server blindly accepts an existing sessionID for the initSession() function).

message name

Messages

General message

Message type Notation

message name

message name

message name

message name

New message

Altered message

Deleted message

Unwanted

incident message

Confidentiality

of user data

Web Server

Hacker s

Web

Browser
Hacker

sd Hacker performs an attack by modifying a URL parameter to point to his sessionID

User
User s Web

Browser

shareLink(sessionID)

openLink(sessionID)

142

Appendix D

Presentation – Group B

143

➢ In this experiment we need your help to assess a graphical notation used to model

attacks in sequence diagrams.

➢ Stage 1:

You will be given a survey to gather background information. This will be used to

further divide participants into two groups fairly based on competence.

Furthermore, the letter of consent must be signed and emailed back to

vetlevo@ifi.uio.no

➢ Stage 2:

You will be given a survey with tasks to solve.

There are a total of 13 tasks to solve, divided into two parts:

➢ Part 1: 6 tasks given a 1 minute time restriction.

➢ Part 2: 7 tasks given time restrictions > 1 minute.

➢ At the end there is a short post-experiment questionnaire that will assess

your experience with the experiment.

Experiment – Assessment of

Graphical Notation

Graphical Notation

Lifelines

Lifeline type

General lifeline

Deliberate threat

lifeline

Asset lifeline

Notation Description

A general lifeline is a

process/part of the system

or an environment that

interacts with the system.

A deliberate threat is a

human threat that has

malicious intents.

An asset lifeline is a security

asset which we want to

protect.

Simple example of a log in feature in a web application

1. The scenario begins with the message logIn(usr, pwd)

2. The web server then executes a query on the

database to verify the user credentials.

3. We then enter the alt (potential alternatives) with two

guards ([no match], [else]).

4. If the provided crendentials are incorrect, the

database will issue a message false, and the web

server will notify the user that either the username or

password is incorrect.

5. If the crendentials provide a match, the web server

redirects the web browser to the user page.

Graphical Notation

message name

Messages

General message

Message type Notation

message name
New message

Altered message

Deleted message

Unwanted incident

message

The general message is a message that has not been

manipulated by a threat.

The new message is a new message in the system with the

intention of manipulating system behaviour.

The altered message is a message that has been manipulated

to deviate from expected behaviour.

A deleted message is a message that has been deleted as a

result of previous manipulations.

An unwanted incident represents an event that harms or

reduces the value of an asset.

«NewMessage»

message name

«AlteredMessage»

message name

«DeletedMessage»

message name

«UnwantedIncident»

Description

Threat Model - Example

➢ Let’s assume we have a very naive

implementation for session management.

1. A user’s web browser issues a request to the web

server that it wants a new session.

2. The web server replies by redirecting the user’s

web browser to a web page with the new

sessionID.

Threat Model - Example

➢ Further, let’s assume a our deliberate threat is a hacker. The hacker performs an attack by first initiating

a new session with the web site. Then, modifies a URL parameter to point to his sessionID.

➢ The hacker proceeds to share this link with another user of the web site through social engineering.

➢ The user opens the link and proceeds to use the web site with the same sessionID. If for example the

user logs onto the web application using this session, the hacker will be logged in as well (as the user).

(Assuming that the web server blindly accepts an existing sessionID for the initSession() function).

message name

Messages

General message

Message type Notation

message name
New message

Altered message

Deleted message

Unwanted incident

message

«NewMessage»

message name

«AlteredMessage»

message name

«DeletedMessage»

message name

«UnwantedIncident»

150

Appendix E

Letter of Consent

151

Request to Participate in the Research Project

Experiment - Assessment of Graphical
Notation

Background and Purpose
The research project is part of a master’s thesis, and is conducted in order to assess graphical
notation that is used to create models within the domain of risk-driven security testing. The
master thesis project is affiliated with the University of Oslo and Sintef. The participants are
contacted through the student’s network.

What Does Participation in the Study Involve?
The participation in the study is divided into two parts.

1. The participant is given the letter of consent through email along with a link to an online
survey (USIT’s nettskjema). This survey is a demographical survey. The demographical
survey will be used to further divide participants into two groups fairly based on compe-
tence.

2. The participants are given a short presentation through email along with a link to an online
questionnaire (Eval&Go). The presentation will briefly present the information needed in
order to solve the tasks in the questionnaire. The questionnaire will include several tasks
for the participants to solve. The tasks will be based on threat models with respect to
attacks towards web applications. There are a total of 13 tasks to solve, divided into two
parts:

• Part 1: 6 tasks given a 1 minute time restriction.

• Part 2: 7 tasks given time restrictions ¿ 1 minute.

• At the end there is a short post-experiment questionnaire that will assess participants’
experience with the experiment.

What Happens With your Information?
The only direct personally identifiable information that is collected are email addresses. How-
ever, these are only used for the contact between the participant and the master’s student
responsible for the research project. The email addresses are not connected to any of the gath-
ered data, and the list of email addresses will not be persisted after the experiment has been
conducted. The project will according to plan be finished by late June depending on when
all participants have finally submitted all the surveys. The only data that will be persisted

1

is indirect personally identifiable information like education level education programme and
occupation.

Voluntary Participation
It is voluntary to participate in the study, and you can at any time withdraw your consent
without giving any reason. If you withdraw, all your information will be anonymous.

If you want to participate or have any questions about the study, please contact master’s stu-
dent Vetle Volden-Freberg +47 454 037 71 vetlevo@ifi.uio.no, or thesis supervisor Ketil Stølen
+47 922 16 112 Ketil.Stolen@Sintef.no. The study has been reported to the Norwegian Centre
for Research Data (NSD).

Consent for Participation in the Study

I have received information about the study, and am willing to participate:

(Participant’s signature / date)

2

154

Appendix F

Task Scores from the
Experiment

155

Table
F.1:Task

scores
for

G
roup

A
.

G
roup

A
P#

Task
1

Task
2

Task
3

Task
4

Task
5

Task
6

Task
7

Task
8

Task
9

Task
10

Task
11

Task
12

Task
13

Total
P1

1
1

1
3

2
4

0
1

1
1

2
2

1
20

P2
1

1
1

1
0

4
2

1
3

1
0

3
2

20
P3

1
1

1
2

2
4

0
0

0
0

0
2

2
15

P4
0

0
0

0
1

2
0

1
0

1
0

0
0

5
P5

0
1

1
2

2
4

0
1

3
1

0
0

2
17

P6
1

1
1

3
2

4
2

1
2

1
0

1
2

21
P7

1
1

1
0

2
3

1
1

1
1

3
0

2
17

P8
1

1
1

2
2

4
0

0
3

1
3

2
2

22
A

vg.
0.75

0.875
0.875

1.625
1.625

3.625
0.625

0.75
1.625

0.875
1

1.25
1.625

17.125

156

Ta
bl

e
F.

2:
Ta

sk
sc

or
es

fo
r

G
ro

up
B.

G
ro

up
B

P#
Ta

sk
1

Ta
sk

2
Ta

sk
3

Ta
sk

4
Ta

sk
5

Ta
sk

6
Ta

sk
7

Ta
sk

8
Ta

sk
9

Ta
sk

10
Ta

sk
11

Ta
sk

12
Ta

sk
13

To
ta

l
P9

1
1

1
3

2
4

0
1

2
1

2
3

2
23

P1
0

0
0

1
2

2
4

0
1

2
1

2
3

2
20

P1
1

1
1

1
0

1
4

0
1

0
1

0
1

0
11

P1
2

1
1

1
3

2
4

0
1

2
1

3
3

2
24

P1
3

1
1

1
3

2
3

0
1

2
0

3
2

2
21

P1
4

1
1

1
3

2
4

0
0

0
1

0
0

2
15

P1
5

0
0

0
1

1
4

0
1

0
1

0
0

0
8

P1
6

1
1

1
3

2
3

0
1

2
1

2
2

2
21

A
vg

.
0.

75
0.

75
0.

87
5

2.
25

1.
75

3.
75

0
0.

87
5

1.
25

0.
87

5
1.

5
1.

75
1.

5
17

.8
75

157

158

Appendix G

SPSS – Statistics Calculations

G.1 Total Score

159

 EXAMINE VARIABLES=Total BY Group
 /PLOT BOXPLOT HISTOGRAM

 /COMPARE GROUPS

 /STATISTICS DESCRIPTIVES

 /CINTERVAL 95

 /MISSING LISTWISE

 /NOTOTAL.

Explore

Notes

Output Created

Comments

Input Data

Active Dataset

Filter

Weight

Split File

N of Rows in Working Data
File

Missing Value Handling Definition of Missing

Cases Used

Syntax

Resources Processor Time

Elapsed Time

DataSet1

<none>

<none>

<none>

16

User-defined missing values for
dependent variables are treated as
missing.
Statistics are based on cases with
no missing values for any dependent
variable or factor used.
EXAMINE VARIABLES=Total BY
Group
 /PLOT BOXPLOT HISTOGRAM
 /COMPARE GROUPS
 /STATISTICS DESCRIPTIVES
 /CINTERVAL 95
 /MISSING LISTWISE
 /NOTOTAL.

00:00:01,27

00:00:00,43

Group

Page 1

Case Processing Summary

Group

Cases

Valid Missing Total

N Percent N Percent N Percent

Task Score A

B

8 100,0% 0 0,0% 8 100,0%

8 100,0% 0 0,0% 8 100,0%

Descriptives

Group Statistic Std. Error

Task Score A Mean

95% Confidence Interval for
Mean

Lower Bound

Upper Bound

5% Trimmed Mean

Median

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

B Mean

95% Confidence Interval for
Mean

Lower Bound

Upper Bound

5% Trimmed Mean

Median

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

17,13 1,922

12,58

21,67

17,53

18,50

29,554

5,436

5

22

17

5

-1,862 ,752

3,956 1,481

17,88 2,074

12,97

22,78

18,08

20,50

34,411

5,866

8

24

16

11

-,827 ,752

-,812 1,481

Page 2

Task Score

2015105

F
re

q
u

en
cy

4

3

2

1

0

Histogram

for Group= A

Mean = 17,13

Std. Dev. = 5,436

N = 8

Page 3

Task Score

Histograms

Task Score

252015105

F
re

q
u

en
cy

4

3

2

1

0

Histogram

for Group= B

Mean = 17,88

Std. Dev. = 5,866

N = 8

Page 4

Group

BA

4

20,5

18,5

T
as

k
S

co
re

25

20

15

10

5

Page 5

G.2 Total Score – Without Outlier

165

 EXAMINE VARIABLES=Total BY Group
 /PLOT BOXPLOT HISTOGRAM

 /COMPARE GROUPS

 /STATISTICS DESCRIPTIVES

 /CINTERVAL 95

 /MISSING LISTWISE

 /NOTOTAL.

Explore

Notes

Output Created

Comments

Input Data

Active Dataset

Filter

Weight

Split File

N of Rows in Working Data
File

Missing Value Handling Definition of Missing

Cases Used

Syntax

Resources Processor Time

Elapsed Time

DataSet2

<none>

<none>

<none>

15

User-defined missing values for
dependent variables are treated as
missing.
Statistics are based on cases with
no missing values for any dependent
variable or factor used.
EXAMINE VARIABLES=Total BY
Group
 /PLOT BOXPLOT HISTOGRAM
 /COMPARE GROUPS
 /STATISTICS DESCRIPTIVES
 /CINTERVAL 95
 /MISSING LISTWISE
 /NOTOTAL.

00:00:01,30

00:00:00,48

Group

Page 1

Case Processing Summary

Group

Cases

Valid Missing Total

N Percent N Percent N Percent

Task Score A

B

7 100,0% 0 0,0% 7 100,0%

8 100,0% 0 0,0% 8 100,0%

Descriptives

Group Statistic Std. Error

Task Score A Mean

95% Confidence Interval for
Mean

Lower Bound

Upper Bound

5% Trimmed Mean

Median

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

B Mean

95% Confidence Interval for
Mean

Lower Bound

Upper Bound

5% Trimmed Mean

Median

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

18,86 ,962

16,50

21,21

18,90

20,00

6,476

2,545

15

22

7

4

-,373 ,794

-1,314 1,587

17,88 2,074

12,97

22,78

18,08

20,50

34,411

5,866

8

24

16

11

-,827 ,752

-,812 1,481

Page 2

Task Score

22201816

F
re

q
u

en
cy

2,0

1,5

1,0

0,5

0,0

Histogram

for Group= A

Mean = 18,86

Std. Dev. = 2,545

N = 7

Page 3

Task Score

Histograms

Task Score

252015105

F
re

q
u

en
cy

4

3

2

1

0

Histogram

for Group= B

Mean = 17,88

Std. Dev. = 5,866

N = 8

Page 4

Group

BA

T
as

k
S

co
re

25

20

15

10

5

Page 5

G.3 Part 1 Score

171

 /PLOT BOXPLOT HISTOGRAM

 /COMPARE GROUPS

 /STATISTICS DESCRIPTIVES

 /CINTERVAL 95

 /MISSING LISTWISE

 /NOTOTAL.

Explore

Notes

Output Created

Comments

Input Data

Active Dataset

Filter

Weight

Split File

N of Rows in Working Data
File

Missing Value Handling Definition of Missing

Cases Used

Syntax

Resources Processor Time

Elapsed Time

DataSet1

<none>

<none>

<none>

16

User-defined missing values for
dependent variables are treated as
missing.
Statistics are based on cases with
no missing values for any dependent
variable or factor used.
EXAMINE VARIABLES=Part1 BY
Group
 /PLOT BOXPLOT HISTOGRAM
 /COMPARE GROUPS
 /STATISTICS DESCRIPTIVES
 /CINTERVAL 95
 /MISSING LISTWISE
 /NOTOTAL.

00:00:03,92

00:00:00,87

Page 1

[DataSet1]

Group

Case Processing Summary

Group

Cases

Valid Missing Total

N Percent N Percent N Percent

Task Score A

B

8 100,0% 0 0,0% 8 100,0%

8 100,0% 0 0,0% 8 100,0%

Descriptives

Group Statistic Std. Error

Task Score A Mean

95% Confidence Interval for
Mean

Lower Bound

Upper Bound

5% Trimmed Mean

Median

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

B Mean

95% Confidence Interval for
Mean

Lower Bound

Upper Bound

5% Trimmed Mean

Median

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

9,38 1,068

6,85

11,90

9,58

10,50

9,125

3,021

3

12

9

4

-1,515 ,752

2,379 1,481

10,13 ,789

8,26

11,99

10,25

11,00

4,982

2,232

6

12

6

4

-1,029 ,752

-,069 1,481

Page 2

Task Score

12,510,07,55,02,5

F
re

q
u

en
cy

3

2

1

0

Histogram

for Group= A

Mean = 9,38

Std. Dev. = 3,021

N = 8

Page 3

Task Score

Histograms

Task Score

1211109876

F
re

q
u

en
cy

3

2

1

0

Histogram

for Group= B

Mean = 10,13

Std. Dev. = 2,232

N = 8

Page 4

Group

BA

T
as

k
S

co
re

12

10

8

6

4

2

Page 5

G.4 Part 1 Score – Without Outlier

177

 /PLOT BOXPLOT HISTOGRAM

 /COMPARE GROUPS

 /STATISTICS DESCRIPTIVES

 /CINTERVAL 95

 /MISSING LISTWISE

 /NOTOTAL.

Explore

Notes

Output Created

Comments

Input Data

Active Dataset

Filter

Weight

Split File

N of Rows in Working Data
File

Missing Value Handling Definition of Missing

Cases Used

Syntax

Resources Processor Time

Elapsed Time

DataSet1

<none>

<none>

<none>

15

User-defined missing values for
dependent variables are treated as
missing.
Statistics are based on cases with
no missing values for any dependent
variable or factor used.
EXAMINE VARIABLES=Part1 BY
Group
 /PLOT BOXPLOT HISTOGRAM
 /COMPARE GROUPS
 /STATISTICS DESCRIPTIVES
 /CINTERVAL 95
 /MISSING LISTWISE
 /NOTOTAL.

00:00:03,84

00:00:00,85

Page 1

Case Processing Summary

Group

Cases

Valid Missing Total

N Percent N Percent N Percent

Task Score A

B

7 100,0% 0 0,0% 7 100,0%

8 100,0% 0 0,0% 8 100,0%

Descriptives

Group Statistic Std. Error

Task Score A Mean

95% Confidence Interval for
Mean

Lower Bound

Upper Bound

5% Trimmed Mean

Median

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

B Mean

95% Confidence Interval for
Mean

Lower Bound

Upper Bound

5% Trimmed Mean

Median

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

10,29 ,644

8,71

11,86

10,32

11,00

2,905

1,704

8

12

4

4

-,618 ,794

-1,396 1,587

10,13 ,789

8,26

11,99

10,25

11,00

4,982

2,232

6

12

6

4

-1,029 ,752

-,069 1,481

Page 2

Task Score

12111098

F
re

q
u

en
cy

2,0

1,5

1,0

0,5

0,0

Histogram

for Group= A

Mean = 10,29

Std. Dev. = 1,704

N = 7

Page 3

Task Score

Histograms

Task Score

1211109876

F
re

q
u

en
cy

3

2

1

0

Histogram

for Group= B

Mean = 10,13

Std. Dev. = 2,232

N = 8

Page 4

Group

BA

T
as

k
S

co
re

12

11

10

9

8

7

6

Page 5

G.5 Part 2 Score

183

 EXAMINE VARIABLES=Part2 BY Group
 /PLOT BOXPLOT HISTOGRAM

 /COMPARE GROUPS

 /STATISTICS DESCRIPTIVES

 /CINTERVAL 95

 /MISSING LISTWISE

 /NOTOTAL.

Explore

Notes

Output Created

Comments

Input Data

Active Dataset

Filter

Weight

Split File

N of Rows in Working Data
File

Missing Value Handling Definition of Missing

Cases Used

Syntax

Resources Processor Time

Elapsed Time

DataSet1

<none>

<none>

<none>

16

User-defined missing values for
dependent variables are treated as
missing.
Statistics are based on cases with
no missing values for any dependent
variable or factor used.
EXAMINE VARIABLES=Part2 BY
Group
 /PLOT BOXPLOT HISTOGRAM
 /COMPARE GROUPS
 /STATISTICS DESCRIPTIVES
 /CINTERVAL 95
 /MISSING LISTWISE
 /NOTOTAL.

00:00:01,17

00:00:00,36

Group

Page 1

Case Processing Summary

Group

Cases

Valid Missing Total

N Percent N Percent N Percent

Task Score A

B

8 100,0% 0 0,0% 8 100,0%

8 100,0% 0 0,0% 8 100,0%

Descriptives

Group Statistic Std. Error

Task Score A Mean

95% Confidence Interval for
Mean

Lower Bound

Upper Bound

5% Trimmed Mean

Median

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

B Mean

95% Confidence Interval for
Mean

Lower Bound

Upper Bound

5% Trimmed Mean

Median

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

7,75 1,191

4,93

10,57

7,83

8,50

11,357

3,370

2

12

10

6

-,638 ,752

-,291 1,481

7,75 1,509

4,18

11,32

7,83

10,00

18,214

4,268

2

12

10

8

-,579 ,752

-2,097 1,481

Page 2

Task Score

12108642

F
re

q
u

en
cy

2,0

1,5

1,0

0,5

0,0

Histogram

for Group= A

Mean = 7,75

Std. Dev. = 3,37

N = 8

Page 3

Task Score

Histograms

Task Score

12108642

F
re

q
u

en
cy

3

2

1

0

Histogram

for Group= B

Mean = 7,75

Std. Dev. = 4,268

N = 8

Page 4

Group

BA

T
as

k
S

co
re

12

10

8

6

4

2

Page 5

G.6 Part 2 Score – Without Outlier

189

 EXAMINE VARIABLES=Total BY Group
 /PLOT BOXPLOT HISTOGRAM

 /COMPARE GROUPS

 /STATISTICS DESCRIPTIVES

 /CINTERVAL 95

 /MISSING LISTWISE

 /NOTOTAL.

Explore

Notes

Output Created

Comments

Input Data

Active Dataset

Filter

Weight

Split File

N of Rows in Working Data
File

Missing Value Handling Definition of Missing

Cases Used

Syntax

Resources Processor Time

Elapsed Time

DataSet2

<none>

<none>

<none>

15

User-defined missing values for
dependent variables are treated as
missing.
Statistics are based on cases with
no missing values for any dependent
variable or factor used.
EXAMINE VARIABLES=Total BY
Group
 /PLOT BOXPLOT HISTOGRAM
 /COMPARE GROUPS
 /STATISTICS DESCRIPTIVES
 /CINTERVAL 95
 /MISSING LISTWISE
 /NOTOTAL.

00:00:01,30

00:00:00,48

Group

Page 1

Case Processing Summary

Group

Cases

Valid Missing Total

N Percent N Percent N Percent

Task Score A

B

7 100,0% 0 0,0% 7 100,0%

8 100,0% 0 0,0% 8 100,0%

Descriptives

Group Statistic Std. Error

Task Score A Mean

95% Confidence Interval for
Mean

Lower Bound

Upper Bound

5% Trimmed Mean

Median

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

B Mean

95% Confidence Interval for
Mean

Lower Bound

Upper Bound

5% Trimmed Mean

Median

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

18,86 ,962

16,50

21,21

18,90

20,00

6,476

2,545

15

22

7

4

-,373 ,794

-1,314 1,587

17,88 2,074

12,97

22,78

18,08

20,50

34,411

5,866

8

24

16

11

-,827 ,752

-,812 1,481

Page 2

Task Score

22201816

F
re

q
u

en
cy

2,0

1,5

1,0

0,5

0,0

Histogram

for Group= A

Mean = 18,86

Std. Dev. = 2,545

N = 7

Page 3

Task Score

Histograms

Task Score

252015105

F
re

q
u

en
cy

4

3

2

1

0

Histogram

for Group= B

Mean = 17,88

Std. Dev. = 5,866

N = 8

Page 4

Group

BA

T
as

k
S

co
re

25

20

15

10

5

Page 5

Appendix H

Example of a CORAL Threat
Model Developed using the
CORAL Tool

Figure H.1: Example of CORAL threat model in the CORAL tool, depicting
an XSS attack toward the feedback feature of a web application for
shopping.

195

	Introduction
	Motivation
	Contribution
	Adaptation of CORAL as a UML Profile
	CORAL Plug-in – Tool Support for Risk-Driven Security Testing
	Empirical Study – Comparison of Textual and Graphical Notation

	Thesis Overview

	Problem Characterisation
	Background and Conceptual Clarifications
	Modelling
	Modelling Languages and Tools
	UML Sequence Diagrams
	The UML Testing Profile
	The CORAL Approach
	State of the Art Risk-Driven Security Testing

	Problem Specification
	Success Criteria

	Research Method
	Technology Research
	Evaluation Strategies
	Selection of Appropriate Evaluation Strategies
	Prototyping
	Empirical Study

	Research-Based Design
	Artefact Design
	Eclipse, Tools and Frameworks
	Eclipse Modelling Framework
	Graphical Editing Framework
	Graphical Modeling Framework
	Eclipse Papyrus

	Options for Tool Design
	Plug-in or RCP application?

	Adaptation of CORAL as a UML Profile
	Data Types
	Lifelines
	Messages
	Risk-Measure Annotations
	CORAL Constraints
	Object Constraint Language
	CORAL Constraints in OCL

	Customisation
	Graphical Notation
	Palette

	Deploying the Profile as a Plug-in
	Researched-Based Design Summary

	Evaluation - Empirical Study
	Characterisation of the Study
	Current State Analysis
	Topic of our Empirical Study

	Set Goals
	Formulate the Goal
	Formulate Research Questions

	Choose Process
	Formulate Hypothesis
	Determine Variables
	Identifying the Subjects of the Study
	Study Design
	Preparation of Experiment Material

	Execution
	Study Preparation
	Study Execution
	Data Validation

	Analysis of Results
	Data Visualisation
	Applying Descriptive Statistics
	Hypothesis Testing
	Findings Related to Efficiency
	Findings from the Post-Experiment Questionnaire
	Threats to Validity
	Analysis Summary

	Discussion
	Success Criterion 1.
	Success Criterion 2.
	Success Criterion 3.

	Conclusion
	Directions for Future Work

	Acronyms
	Bibliography
	Appendices
	Main Task Questionnaire – Group A
	Main Task Questionnaire – Group B
	Presentation – Group A
	Presentation – Group B
	Letter of Consent
	Task Scores from the Experiment
	SPSS – Statistics Calculations
	Total Score
	Total Score – Without Outlier
	Part 1 Score
	Part 1 Score – Without Outlier
	Part 2 Score
	Part 2 Score – Without Outlier

	Example of a CORAL Threat Model Developed using the CORAL Tool

