
Actual and potential infinity

Abstract

The notion of potential infinity dominated in mathematical think-
ing about infinity from Aristotle until Cantor. The coherence and
philosophical importance of the notion are defended. Particular
attention is paid to the question of whether potential infinity is
compatible with classical logic or requires a weaker logic, perhaps
intuitionistic.

1 Introduction

Beginning with Aristotle, and until the nineteenth century, the vast ma-
jority of major philosophers and mathematicians rejected the notion of
the actual infinite. They argued that the only sensible notion is that
of potential infinity—at least for scientific or, later, non-theological pur-
poses. In Physics 3.6 (206a27-29), Aristotle wrote, “For generally the
infinite is as follows: there is always another and another to be taken.
And the thing taken will always be finite, but always different”(2o6a27-
29). As Richard Sorabji [51] (322-3) puts it, for Aristotle, “infinity is an
extended finitude” (see also [26], [27]).

This orientation towards the infinite was endorsed by mainstream
mathematicians as late as Gauss [16], who wrote: “I protest against
the use of infinite magnitude as something completed, which is never
permissible in mathematics. Infinity is merely a way of speaking”.

The definitive change in mathematicians’ orientation towards the in-
finite took place only in the late nineteenth century, resulting in large
part from pioneering work by Georg Cantor, who showed us how to make
mathematical sense of completed infinite collections or sets, and how to
assign a size or cardinal number to such sets. Indeed, Cantor’s theory
of infinite sets and numbers proved so elegant, insightful, and useful for
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mathematical purposes that it was quickly assimilated into mathemati-
cal practice, where it came to serve an important foundational role. Of
course, the set theoretic paradoxes discovered around the turn of the
century caused alarm. But many mathematicians no doubt agreed with
David Hilbert’s conviction that a solution can be found and accordingly
that “[n]o one shall drive us out of the paradise which Cantor created
for us” ([22], 191). Thankfully, in the course of the first half of the twen-
tieth century, our place in Cantor’s paradise was secured, not in the way
Hilbert envisaged, but thanks to the now-standard axiomatization ZFC
and the closely connected iterative conception of sets.

From this point on, the only sustained opposition to the Cantorian
conception of the actual infinite came from intuitionists and constructive
mathematics. If the existence of a set requires an explicit specification
or construction by us, as this alternative tradition maintains, there can
be no room for the actual or completed infinite. We can, with some
idealization, be said to be able to construct arbitrarily large finite sets.
But as finite creatures, it is out of the question that we ever complete
the construction of an infinite set. It follows that the only permissible
notion of infinite is the potential one.

The aim of this article is to advance our understanding of the no-
tion of potential infinity that has been eclipsed by the Cantorian notion
of actual infinity. Let us be absolutely clear: we no more wish to be
expelled from Cantor’s paradise than did Hilbert. Rather, our goal is
to understand the alternative conception of the infinite that dominated
until Cantor, both in order to make sense of two millenia of deep mathe-
matical and philosophical thinking, but also in order to examine whether
there is anything for post-Cantorian thinkers to learn from this earlier
tradition. We believe there is.1

We will be particularly interested in some logical questions concern-
ing potential infinity. Inspired, perhaps, by its only recent defender,
many philosophers and logicians believe there is a connection between
potential infinity and intuitionistic logic. Others deny the existence of
any such connection. After all, thinkers from Aristotle until Gauss re-
jected the actual infinite in favor of the potential, but never questioned
the law of excluded middle.

1The notion of potential infinity is still with us, perhaps in a more subtle form.
It is now a commonly held view in linguistics that languages are infinite. Noam
Chomsky [9], for example, once wrote that a grammar projects from a finite corpus
to a “set (presumably infinite) of grammatical sentences” (p. 15). It is, we think,
more natural to think of a language as potentially infinite. For another example, one
of us once asked a teacher about the infinite tape of each Turing machine. He was
told that we do not have to think of the tape as (actually) infinite. It is enough to
live near a tape factory.
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This current state of uncertainty and confusion concerning potential
infinity is manifested in some questions raised by the acclaimed logician
and philosopher William Tait.

Both Hilbert and the early intuitionists have associated com-
mitment to the actual infinite with the use of classical logic,
so that, for example, the use of quantification over the in-
tegers combined with classical logic commits one to the set
of integers as an actual infinity. I would like someone to
explain why this is the same notion of actual infinity as Aris-
totle’s. (One might ask, too, whether quantification over the
integers using intuitionistic logic commits one to the actual
infinite—and why.)2

We thus have the following questions:

(A) If the natural numbers are merely potentially infinite, are we en-
titled to quantify over all of them using (at least) intuitionistic
logic?

(B) Does quantification over all the natural numbers with classical logic
presuppose actual infinity?

These questions ask about connections between potential infinity and
intuitionistic logic. We must distinguish between a direct connection be-
tween the two ideas and a “common cause”. It is hardly news that some
thinkers postulate a common cause, namely the anti-realism that forms
the heart of the usual intuitionistic philosophy. According to this anti-
realism, the only legitimate sense in which a mathematical statement
can be true is by being proved. This anti-realism would support both
intuitionistic logic (in ways that have been extensively examined in the
philosophical literature) and a rejection of actual infinity (in the way
sketched above).

It would be far more interesting and surprising if we could find
a direct connection between potential infinity and intuitionistic logic.
Michael Dummett claims that there is such a connection and that this
provides a new argument for intuitionistic logic, which is independent
of the more familiar arguments that proceed via the mentioned anti-
realism.3 His contention is that quantification over a domain that is “in-
definitely extensible”—as for example any potentially infinite domain

2See http://www.cs.nyu.edu/pipermail/fom/2015-March/018602.html. A good
follow-up question was posed by Fred Richman: Why “should commitment to ac-
tual infinity entail classical logic? A number of people seem to think that it does.”
(http://www.cs.nyu.edu/pipermail/fom/2015-March/018606.html). We have little
to say on that question.

3See [12], ch. 24. A similar argument can be found in the second half of [11].
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would be—must be intuitionistic. Unfortunately, the contention has
never been substantiated. But if correct, it would be significant. Al-
though any potential infinity is indefinitely extensible, the notion of
indefinite extensibility is more general. Even if we side with Cantor,
against Aristotle, on the nature of the infinity exemplified by the natu-
ral numbers, there is a long tradition—which occasionally surfaces even
in Cantor’s thinking—of regarding the notion of a set as indefinitely
extensible (see below).

We proceed as follows. In the next section, we take a closer look
at the notion of potential infinity that figured in the mathematical and
philosophical tradition. Then, we use the resources of modal logic to
provide an analysis of potential infinity. The later sections develop this
analysis and explore its consequences. This yields answers to all of the
questions raised above. Our analysis shows that potential infinity is
not inextricably tied to intuitionistic logic. There is an interesting ex-
plication of potential infinity that sanctions classical logic, while still
differing in important ways from actual infinity. However, we show that
a stricter explication of potential infinity does lead to intuitionistic logic.
We emphasize that this route to intuitionistic logic flows directly from
our strict explication of potential infinity and does not depend on anti-
realist premises. This shows that the connection between intuitionistic
logic and philosophical anti-realism is less tight than is often assumed.4

We take this clarification of the relation between potential infinity, in-
tuitionistic logic, and philosophical anti-realism to be one of the main
achievements of the paper.

2 A brief history of potential infinity

Aristotle, along with ancient, medieval, and early modern mathemati-
cians, recognized the existence of certain procedures that can be iterated
indefinitely, without limit. Examples are the bisection and the extension
of line segments. Ancient mathematicians made brilliant use of such pro-
cedures. For example, the method of exhaustion, a kind of forerunner
to integration, was employed to calculate the areas of curved figures in
terms of rectilinear ones.

What was rejected are what would be the end results of applying
these procedures infinitely often: self-standing points, infinitely long
lines and regions, and infinite sets. The philosophers and mathemati-
cians would also object to thinking of a sequence as itself an actually
infinite entity—but perhaps it is too much of an anachronism to put the

4Of course, we do not deny the converse connection. Anti-realism can serve as a
“common cause” of both potential infinity and intuitionistic logic.
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matter in those terms.
In On generation and corruption, Aristotle writes:

For, since no point is contiguous to another point, magni-
tudes are divisible through and through in one sense, and yet
not in another. When . . . it is admitted that a magnitude is
divisible through and through, it is thought that there is a
point not only anywhere, but also everywhere in it: hence it
follows that the magnitude must be divided away into noth-
ing. For there is a point everywhere within it, so that it
consists either of contacts or of points. But it is only in one
sense that the magnitude is divisible through and through,
viz. in so far as there is one point anywhere within in and all
its points are everywhere within it if you take them singly.
(317a3-8)

Closely related to the notion of potential infinity here is that of po-
tential existence. For Aristotle, the points interior to a line segment only
exist potentially. They are places where the line can be broken. But if
the line is not broken at a given place, then the point only exists poten-
tially.’5 The same goes for the parts of the line segment themselves. As
a continuous magnitude, the line segment is a unity. Its parts exist only
potentially.

Jonathan Lear [26] argues that it is not the existence of iterated
procedures that makes for Aristotelian potential infinity. The matter
concerns the structure of geometric magnitudes:

. . . it is easy to be misled into thinking that, for Aristotle,
a length is said to be potentially infinite because there could
be a process of division that continued without end. Then
it is natural to be confused as to why such a process would
not also show the line to be actually infinite by division. . . .
[I]t would be more accurate to say that, for Aristotle, it is
because the length is potentially infinite that there could be
such a process. More accurate, but still not true . . . Strictly
speaking there could not be such a process, but the reason
why there could not be is independent of the structure of
the magnitude: however earnest a divider I may be, I am
also mortal. . . . even at that sad moment when the process
of division does terminate, there will remain divisions which
could have been made. The length is potentially infinite not

5This is the central feature of Aristotle’s resoluion to some of Zeno’s paradoxes.
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because of the existence of any process, but because of the
structure of the magnitude. (p. 193)

According to Lear, then, a line segment is potentially infinite because
there are infinitely many places where it can be divided. So, no matter
how many times one divides a line, there will still be some of the line
left. Lear concludes that Aristotle’s thesis is “that the structure of the
magnitude is such that any division will have to be only a partial real-
ization of its infinite divisibility: there will have to be possible divisions
that remain unactualized” (p. 194). Notice, however, that on either
Lear’s reading of Aristotle or the above conception in terms of iterated
procedures, potential infinity invokes both modality and the activities
of a perhaps idealized mathematician.6

There is a closely related matter. It is generally agreed that Eu-
clid’s Elements captures at least the spirit of geometry during Plato’s
and Aristotle’s period. Most of the language in the Elements is dy-
namic, talking about what a (presumably idealized) geometer can do.
For example, the First Postulate is “To draw a straight line from any
point to any point”, and the Second is “To produce a finite straight line
continuously in a straight line”. Or consider the infamous Fifth:

That, if a straight line falling on two straight lines make the
interior angles on the same side less than two right angles,
the two straight lines, if produced indefinitely, meet on that
side on which are the angles less than the two right angles.

Book 10, Proposition 1, is an Archimedean principle, also cast in dy-
namic terms:

Two unequal magnitudes being set out, if from the greater
there be subtracted a magnitude greater than its half, and
from that which is left a magnitude greater than its half, and
if this process is repeated continually, there will be left some
magnitude less than the lesser magnitude set out.

Plato was critical of the geometers of his day, arguing that this dy-
namic language is inconsistent with the nature of the true subject matter

6We make no attempt here (or anywhere else) to be faithful to everything, or
even most things, that Aristotle himself says about modality. Our plan here is to
invoke some technical notions from contemporary modal logic and metaphysics in an
attempt to explicate a broadly Aristotelian notion of potential infinity. It has a role
to play in at least some philosphy of mathematics.

6



of geometry:7

[The] science [of geometry] is in direct contradiction with the
language employed by its adepts . . . Their language is most
ludicrous, . . . for they speak as if they were doing something
and as if all their words were directed toward action . . . [They
talk] of squaring and applying and adding and the like . . .
whereas in fact the real object of the entire subject is . . .
knowledge . . . of what eternally exists, not of anything that
comes to be this or that at some time and ceases to be.
(Republic, VII)

This, of course, is a nice Platonic thought—for those who like such
thoughts. Aristotle rejected this orientation and, we suggest, the dy-
namic language employed in Ancient geometry better reflects his views.
The matter of infinity is tied to this. For Aristotle, we never have infi-
nite collections of points, objects, or anything else, and we never have
infinitely long lines or infinitely large regions of space or time. Because
of the structure of the geometric magnitudes (to echo Lear), we have
procedures that can be iterated indefinitely, and we speak about what
those procedures could produce, or what they will eventually produce
if carried sufficiently (but only finitely) far. In holding that these geo-
metric procedures can be iterated indefinitely, Aristotle again follows the
mathematical practice of the time, this time in opposition to his other
major opponents, the atomists (see [37]), who postulate a limit to, say,
bisection.

As noted, when it comes to the infinite, views like Aristotle’s were
standard throughout the medieval and early modern period, through
most of the nineteenth century. The greatest mathematical minds in-
sisted that only the potentially infinite makes sense. Leibniz, for exam-
ple, wrote:

It could . . . well be argued that, since among any ten terms
there is a last number, which is also the greatest of those
numbers, it follows that among all numbers there is a last
number, which is also the greatest of all numbers. But I think
that such a number implies a contradiction . . . When it is
said that there are infinitely many terms, it is not being said

7According to Proclus [42] (p. 125) the “problem” of dynamic language in ge-
ometry occupied those in Plato’s Academy for some time. It might be noted that
the Euclidean geometry in Hilbert [21] uses a more static language. For example,
Hilbert’s first axiom is “For every two points A,B there exists a line a that contains
each of the points A,B.” At least that much would be more to Plato’s liking.
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that there is some specific number of them, but that there
are more than any specific number. (Letter to Bernoulli, [28],
III 566, translated in [31], 76-77, 87)8

. . . we conclude . . . that there is no infinite multitude, from
which it will follow that there is not an infinity of things,
either. Or [rather] it must be said that an infinity of things
is not one whole, or that there is no aggregate of them. ([29],
6.3, 503, translated in [31], 86)

Yet M. Descartes and his followers, in making the world out
to be indefinite so that we cannot conceive of any end to it,
have said that matter has no limits. They have some reason
for replacing the term “infinite” by “indefinite”, for there is
never an infinite whole in the world, though there are always
wholes greater than others ad infinitum. As I have shown
elsewhere, the universe cannot be considered to be a whole.
([30], 151)

We can add the passage from Gauss [16] mentioned at the outset of this
article: “I protest against the use of infinite magnitude as something
completed, which is never permissible in mathematics. Infinity is merely
a way of speaking”.9

For Gauss, as for Leibniz, as for Aristotle, as for a host of others, the
infinite just is the limitlessness of certain processes; no actual infinities
exist. The only intelligible notion of infinity is that of potential infinity—
the transcendence of any (finite) limit.

At least for the cases of interest here—regions, natural numbers, and
the like—Georg Cantor argued for the exact opposite of this, claiming
that the potentially infinite is dubious, unless it is somehow backed by
an actual infinity:

I cannot ascribe any being to the indefinite, the variable, the
improper infinite in whatever form they appear, because they
are nothing but either relational concepts or merely subjec-
tive representations or intuitions (imaginationes), but never
adequate ideas ([6], 205, note 3).

8The “contradiction” mentioned here might be the so-called “Galileo paradox”,
that with infinite collections, a proper subset can be equinmerous with a set. This,
of course, is now a standard feature of infinite sets, a feature and not a bug.

9To be sure, Leibniz, Gauss, and a host of others were not completetely consistent
on this. They were, after all, pioneers in the emergence of modern mathematics, not
to mention their use of infinitesimals. The exegetical issues are (well) beyond the
scope of this paper.
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. . . every potential infinite, if it is to be applicable in a rig-
orous mathematical way, presupposes an actual infinite ([7],
410–411).

We think it safe to say that this Cantorian orientation is now domi-
nant in the relevant intellectual communities, especially concerning the
mathematical domains mentioned above. Notable exceptions are various
constructivists, who reject the actually infinite (stay tuned).

It should be noted that, on the surface, at least, Cantor was not
consistent in his rejection of the potential infinite. Sometimes he ascribed
to the so-called “absolutely infinite”, or what he dubbed “inconsistent
multitudes” (e.g., the ordinals), features closely analogous to those of
the potentially infinite. In a much quoted letter to Dedekind, in 1899,
he wrote:

[I]t is necessary . . . to distinguish two kinds of multiplici-
ties (by this I always mean definite multiplicities). For a
multiplicity can be such that the assumption that all of its
elements ‘are together’ leads to a contradiction, so that it is
impossible to conceive of the multiplicity as a unity, as ‘one
finished thing’. Such multiplicities I call absolutely infinite
or inconsistent multiplicities . . . If on the other hand the
totality of the elements of a multiplicity can be thought of
without contradiction as ‘being together’, so that they can
be gathered together into ‘one thing’, I call it a consistent
multiplicity or a ‘set’. (Ewald [14], 931-932)

An 1897 letter to Hilbert is even more suggestive:

I say of a set that it can be thought of as finished . . . if it
is possible without contradiction (as can be done with finite
sets) to think of all its elements as existing together . . . or
(in other words) if it is possible to imagine the set as actually
existing with the totality of its elements. (Ewald [14], 927)

Of course, Cantor considered all of the transfinite sets, such as the natu-
ral numbers and the real numbers, to be actual infinities.10 Our present
concern is with those; we plan to address the potentiality of the iterative
hierarchy elsewhere (see Linnebo [33]).

At least with hindsight, it is clear what Aristotle, and the ancient,
medieval, and early modern mathematicians did not have: infinitely

10Jané [23] is an insightful discussion of these themes in Cantor’s thought at various
stages of his career.
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large, completed collections and infinitely large geometric figures. But
what did they have instead? Just what is a potential infinity?

Many contemporary thinkers are skeptical that a workable notion of
potential infinity can be made out which doesn’t just collapse to the
standard Cantorian notion of actual infinity. A good examplar of this
attitude is Karl-George Niebergall [39], who contends that “a clear mean-
ing has never been given to” the phrases “x is potentially infinite” and
“T makes an assumption of the potentially infinite”(p. 231). He later
expands as follows:

I simply have no ordinary understanding of these phrases,
and I do not find much help in the existing literature on
them. It seems that even examples are missing . . . [T]hose
philosophers who are interested in the theme of the poten-
tially infinite are usually drawn to it because they regard
it as desirable to avoid assumptions of infinity (i.e., of the
actual infinity), yet do not want to be restricted to a mere
finitist position. An assumption of merely the potentially in-
finite seems to be a way out of this quandary: . . . it allows
you to have your cake and eat it too (p. 256-7).

Niebergall [38], §§2.5,3; [39], §6 argues that, on some straightforward
attempts at definition, the potentially infinite just collapses into the
actually infinite (or the finite). So, what we cannot have, he claims, is a
notion of the potentially infinite that is distinct from both the finite and
the actually infinite. If we follow contemporary practice and allow the
actually infinite a place, then there is no room for the merely potentially
infinite. Everything is either finite or infinite—nothing can fit between
those.11

Niebergall [39], 257 makes one concession, however: “It is granted
that one could try to define ‘x is potentially infinite’ by employing a
modal vocabulary.” This is the strategy that we will explore. We hope
to articulate a serviceable notion of the potentially infinite, which can
live alongside the actually infinite. This plays a role in understanding
the notions of mathematical “construction”, in indefinite extensibility,
and in the debate over absolute generality. It will also help to articulate
the thesis that the cumulative hierarchy of sets is itself potential.

11Niebergall’s argument here relies on the law of excluded middle. Charles McCarty
[36] shows how to capture the notion of a set that is not finite and also not infinite
(on straightforward definitins of those notions) in an intuitionistic background. Even
in a classical setting, one can consistently maintain the existence of a set that is not
finite and also not Dedekind-infinite, by rejecting the axiom of dependent choice.
One of our goals here is to develop a workable notion of potential infinity that is
substantially independent of the backgrould logic and set theory.
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This strategy requires a substantive use of modal notions in math-
ematics. Niebergall thus notes that it clashes with the dominant con-
temporary view that in mathematics, “talk of possibility and necessity
becomes dispensable” since “a mathematical sentence is regarded as nec-
essary if true” (p. 258). It is therefore incumbent on us to say some-
thing about the modality involved, and to distinguish it from the sense
in which every sentence of pure mathematics is “necessary if true”.

3 Modal explications of potential infinity

Aristotle, we recall, characterizes the infinite as follows: “there is always
another and another to be taken. And the thing taken will always be
finite, but always different” (Physics, 206a27-29). Aristotle’s claim that
matter is infinitely divisible provides a nice example. Consider a stick.
However many times one has divided the stick, it is always possible to
divide it again (or so it is assumed).

It is fairly natural to explicate Aristotle’s temporal vocabulary in a
modal way. This yields the following analysis of the infinite divisibility
of a stick s:

�∀x(Pxs→ ♦∃y Pyx)(1)

where Pxy means that x is a proper part of y. If, by contrast, the
divisions of the stick formed an actual infinity, the following would hold:

∀x(Pxs→ ∃y Pyx)(2)

According to Aristotle, it is not even possible to complete infinitely many
divisions of the stick, that is:

¬♦∀x(Pxs→ ∃y Pyx)(3)

By endorsing both (1) and (3), Aristotle is asserting that the divisions
of the stick are merely potentially infinite, or incompletable, as we will
also put it.

According to Aristotle, the sequence of natural numbers too is merely
potentially infinite. We can represent this view as the conjunction of the
following theses:

�∀m♦∃nSucc(m,n)(4)

¬♦∀m∃nSucc(m,n)(5)

Thus, provided we are willing to use the resources of modal logic, there
is no problem whatsoever in distinguishing the merely potential infinite
from the actual infinite.
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Informal glosses aside, the language of contemporary mathematics is
strictly non-modal. Thus, when the question of the appropriate logic for
reasoning about potential infinity arises, it typically does so in the or-
dinary, non-modal language of arithmetic. This is the context in which
Hilbert, Brouwer, Dummett, and others mentioned above discuss the
question. We thus need a translation to serve as a bridge connecting the
non-modal language in which mathematics is ordinarily formulated with
the modal language in which our analysis of potential infinity is devel-
oped. Suppose we adopt a translation ∗ from the non-modal language,
say L, to the corresponding modal language, say L♦. The question of
the right logic of potential infinity is the question of which entailment
relations obtain in L. To determine whether φ1, . . . , φn entail ψ, we need
to apply the translation and ask whether φ∗1, . . . , φ

∗
n entail ψ∗ in the rele-

vant modal system. This means that the right logic of potential infinity
depends on two factors. First, the logic obviously depends on our modal
analysis of potential infinity; in particular, on the modal logic that is
used in this analysis. Second, the logic also depends on the bridge that
we choose to connect the non-modal language of ordinary mathematics
with the modal language in which our analysis of potential infinity is
given. Both factors will be investigated in what follows.

This approach to the logic of potential infinity opens the door to an
interesting combination of logical orthodoxy and heterodoxy. One can
be orthodox concerning the logic of the modal system; adopting some
form of classical modal logic. Even so, non-classical logical principles
may nonetheless end up being validated in the non-modal language via
the translation ∗. From this perspective, the single controversial claim
that potentialists make is to deny that the non-modal language L is fully
explicit. To make its claims explicit, we need to apply the translation
∗. Suppose this single controversial claim is right. Then there is no
room for further controversy concerning inferential relationships in L.
Before such relationships can be determined, the statements in question
must always be made explicit. In our case, we explicate by applying the
translation ∗.

Before we embark on our investigation of the two identified factors,
it will be useful to distinguish some different orientations towards the
infinite. Actualism about the infinite unreservedly accepts actual in-
finities, and thus finds no use for modal notions in mathematics (or at
least no use when it comes to the infinity). Actualists maintain that the
non-modal language of ordinary mathematics is already fully explicit
and thus deny that we need a translation into some modal language.
Furthermore, actualists accept classical logic when reasoning about the
infinite and typically also accept all of classical mathematics.
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Potentialism is the orientation that stands opposed to actualism.
According to this orientation, the objects with which mathematics is
concerned are generated successively, and some of these generative pro-
cesses cannot be completed. There is room for disagreement about which
processes can be completed. A traditional Aristotelian form of potential-
ism takes a very restrictive view, insisting that at any one stage, there
are never more than finitely many such objects, but that we always (i.e.,
necessarily) have the ability to go on and generate more. Generalized
forms of potentialism take a more relaxed attitude. Potentialism about
set theory provides an extreme example. According to this view, it is im-
possible to complete the process of forming sets from any objects that are
available, but any generative process that is indexed by a set-theoretic
ordinal can be completed.12 In particular, potentialists about set theory
hold that the generation of natural numbers can be completed:

(6) ♦∀m∃nSucc(m,n).

In short, the potentialist about set theory accepts the possibility of the
existence of some actual infinities.

Loosely speaking, these different versions of potentialism disagree
on the quantitative matter of “the length” of the processes that can
be completed. Traditionalists insist that only finite processes can be
completed, while generalized forms of potentialism accept that some,
but not all, infinite processes can be completed. In this paper, we are
mostly concerned with the traditional form of potentialism that denies
(6) and accepts only (4).

Potentialists also differ with respect to a qualitative matter. As char-
acterized above, potentialism is the view that the objects with which
mathematics is concerned are successively generated and that some of
these generative processes cannot be completed. What about the truths
of mathematics? Of course, on any form of potentialism, these are modal
truths concerned with certain generative processes. But how should
these truths be understood?

Liberal potentialists regard the modal truths as unproblematic. In
particular, there are modal truths about generative processes in their
entirety, including those that cannot be completed. Consider Goldbach’s
conjecture. As potentialists interpret it, the conjecture says that neces-
sarily any even natural number that is generated can be written as a sum
of two primes. Liberal potentialists maintain that this modal question
has an unproblematic answer—it is either true or false. Their approach

12As the quotes from p. 9 reveal, the view can be traced back to Cantor. See
Putnam [43] and Hellman [17] for a modal structuralist development of the view,
and Parsons [40] and Linnebo [33], for non-structuralist development.
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to modal theorizing in mathematics is thus much like a realist approach
to modal theorizing in general: there are objective truths about the rel-
evant modal aspects of reality, and this objectivity warrants the use of
some classical form of modal logic. In the next few sections, we show
that, provided the modal logic is sufficiently strong, liberal potentialists
are entitled to classical first-order logic in their ordinary mathematical
reasoning about potential infinity.

The matter is closely related to the so-called weak Brouwerian coun-
terexamples to excluded middle. The liberal potentialist insists that
there will or will not be a sequence of twelve consecutive 5’s somewhere
in the decimal expansion of π. This is not, of course, because the se-
quence exists all at once, so to speak, as an actual infinity. Rather, the
liberal potentialist notes that, in this case, the digits of the sequence are
completely determined by a fixed rule, and it is this rule that guarantees
that either there will or will not be the run of 5’s.13

In later sections, we discuss a view we call strict potentialism, which
goes beyond the liberal view by requiring, not only that every object
be generated at some stage of a process, but also that every truth be
“made true” at some stage. Consider Goldbach’s conjecture. If there are
counterexamples to the conjecture, then its negation will presumably be
“made true” at the stage where the first counterexample is generated.
But suppose there are no counterexamples. Given the conjecture’s con-
cern with all the natural numbers, it is hard to see how it could be “made
true” without completing the generation of natural numbers. This com-
pletion would, however, violate the strict potentialists’ requirement that
any truth be made true at some stage of the process. So how, if at
all, can strict potentialists make sense of quantification over all natural
numbers? We will solve this problem by providing an account of how a
sentence can be “made true” before all the objects with which the sen-
tence is concerned have been generated. The price, as we will see, is the
adoption intuitionistic logic.

13Since our liberal potentialist is a realist (in truth-value) about the modality, we
might be tempted to call her a “modal realist”, except, of course, that that label has
already been taken. None of our characters is a Lewis-style realist about possible
worlds.

Ian Rumfitt [46], §7.4, argues against the intuitionistic use of weak counterexamples
(not under that name) against classical logic. If the decimal expansion of π does
contain the pattern in question, then, of course, that will be discovered eventually.
Rumfitt argues that if “the pattern occurs nowhere in the expansion, it will lie in
the rule for expaning π, together with the axioms that characterize the sequence of
natural numbers, that it occurs nowhere” (p. 204). Rumfitt thus supports what we
call liberal potentialism here, as an interpretation of intuitionism.
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4 The modal logic

Our next task is to identify the modal logic to be used in our modal ex-
plication of potential infinity.14 For the time being, we will be neutral on
the non-modal part of the logic (and thus neutral on the liberal/potential
divide).

It is often useful to invoke the contemporary heuristic of possible
worlds, but, again we understand this as only heuristic, as a manner-of-
speaking. Our official theory is formulated in the modal language, with
(one or both of) the modal operators as primitive. The modal language
is rock bottom, not explained or defined in terms of anything else. To
invoke the heuristic, then, the idea is that a “possible world” has access
to other possible worlds that contain objects that have been constructed
or generated from those in the first world. From the perspective of the
earlier world, the “new” objects in the second exist only potentially.

One sort of construction is geometric, following Euclid: the later
world may contain, for example, a bisect of a line segment in the first.
Or the later world might contain an extension of a line segment from
the first world. Other sorts of constructions are arithmetic: the later
world might contain more natural numbers than those of the first, say
the successor of the largest natural number in the first world. Or, for a
third kind of example, the later world may contain a set whose members
are all in the first world. Or, to look ahead, beyond the scope of this
paper, a given sequence may have one (or more) elements in the later
world than it has in the first world.

Our potentialist assumes that every possible world is finite, in the
sense that it contains only finitely many objects. That is in line with
the rejection of the actually infinite. We make no such assumption here,
however. Our goal is to contrast the actually infinite and the poten-
tially infinite, so we need a framework where both can occur (to speak
loosely). An actual infinity—or, to be precise, the possibility of an ac-
tual infinity—is realized at a possible world if it contains infinitely many
objects.

We also assume, without much by way of argument, that objects are
not destroyed in the process of construction or generation. This is in
keeping with most ordinary mathematical talk about construction. We
construct new objects but never destroy old ones. Suppose, for exam-
ple, that a given line segment is bisected. Then the resulting “world”
contains the two bisects, as well as the original line segment.

14Our approach takes its inspiration from Linnebo [33], which develops a modal
explication of the Cantorian notion that the universe of set theory is itself potential
(as noted just above).
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As noted, we must say something about the modality that we invoke,
which motivates a specific modal logic. To continue the heuristic, it
follows from the foregoing that the domains of the possible worlds grow
along the accessibility relation. So we assume:

w1 ≤ w2 → D(w1) ⊆ D(w2),

where ‘w1 ≤ w2’ says that w2 is accessible from w1, and for each world w,
D(w) is the domain of w. For present purposes, we can think of a possible
world as determined completely by the mathematical objects—regions,
numbers, sets, etc.—it contains. So we can add that if D(w1) = D(w2),
then w1 = w2; and we can strengthen the above to a biconditional.
However, the above conditional is sufficient for our technical purposes.
We will talk neutrally about the extra mathematical objects existing at
a world w2 but not at an “earlier” world w1 which accesses w2, as having
been “constructed” or “generated”.

As is well-known, the above conditional entails that the converse
Barcan formula is valid. That is,

(CBF) ∃x♦φ(x)→ ♦∃xφ(x)

The validity of (CBF) makes it doubtful that the modality in ques-
tion can be “ordinary” metaphysical modality—whatever exactly that is.
For it is widely held that there are objects whose existence is metaphys-
ically contingent (Williamson [56] notwithstanding). For example, let
φ(x) say (or entail) that x does not exist. Presumably, there is someone,
such as Aristotle, or a given region, that might not have existed. So we
have ∃x♦¬φ(x). But then it would follow via (CBF) that it is possible
for there to exist something that doesn’t exist, which is absurd. We are
also rejecting the common thesis that the ontology of pure mathemat-
ical objects is modally invariant, at least in the metaphysical sense of
modality. However, we do have that once a mathematical object comes
into existence—by being constructed—it continues to exist, of necessity.
In short, we accept generation, but not corruption.

How should the modality used in our explication of potential infinity
be interpreted? It is not our aim to provide a definite answer. Our
current aim is only to identify structural features of any modality that
can be used in the mentioned explication. Let us briefly mention some
options, however.

One option is that the modality is a restriction of “ordinary” meta-
physical modality. In terms of possible worlds, the relevant modality is
the one that results from restricting the accessibility R associated with
metaphysical modality by imposing that additional requirement that do-
mains only ever increase along the accessibility relation. More explicitly,
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we define:15

w1 ≤ w2 :↔ w1Rw2 ∧ D(w1) ⊆ D(w2).

An alternative option is to sever any link between the metaphysical
modality and the modality invoked in explicating potential infinity. In-
stead, we might regard the latter as an altogether distinct kind of modal-
ity, say the logico-mathematical modality of [43] or [17], or the interpre-
tational modality of [15] or [33]. As mentioned, we here remain neutral
on the exact interpretation of the modal operators, contenting ourselves
with identifying some structural features of any plausible interpretation.

Our next issue concerns the right modal logic. Again, it is useful to
indulge in talk about possible worlds, writing the associated accessibility
relation as ≤. Recall that w ≤ w′ means that we can get from w to w′

by generating more objects. This motivates the following principle:

Partial ordering: The accessibility relation ≤ is a partial
order. That is, it is reflexive, transitive, and anti-symmetric.

We can also require the accessibility relation to be well-founded, on
the grounds that all mathematical construction has to start somewhere.
Nothing of substance turns on this, however.

At any given stage in the process of construction, we generally have a
choice of which objects to generate. This seems especially relevant in ge-
ometry. For example, given two intervals that don’t yet have bisections,
we can choose to bisect one or the other of them, or perhaps to bisect
both simultaneously. Assume we are at a world w0 where we can choose
to generate objects, in different ways, so as to arrive at either w1 or w2.
It makes sense to require that the licence to generate a mathematical
object is never revoked as our domain expands. The option to bisect a
given line segment, for example, can always be exercised at a later stage.

This corresponds to a requirement that any two worlds w1 and w2

accessible from a common world have a common extension w3. This is a
directedness property known as convergence and formalized as follows:

∀w0∀w1∀w2(w0 ≤ w1∧w0 ≤ w2 → ∃w3(w1 ≤ w3 ∧ w2 ≤ w3))

We therefore adopt the following principle.

15This restriction can be captured proof-theoretically, using the resources of plural
logic (which we explain in Section 7). Let �φ indicate that φ is metaphysically
necessary, and let Exx be a plural existence predicate (either primitive or defined).
Then the relevant notion � of necessity can be defined by letting �φ abbreviate
∃xx(∀x(x ≺ xx)∧�(Exx→ φ)), that is, the metaphysical necessity of φ, conditional
on everything that in fact exists still existing.
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Convergence: The accessibility relation ≤ is convergent.

This principle ensures that, whenever we have a choice of mathematical
objects to generate, the order in which we choose to proceed is irrelevant.
Whichever object(s) we choose to generate first, the other(s) can always
be generated later. Unless ≤ is convergent, our choice whether to extend
the ontology of w0 to that of w1 or that of w2 might have an enduring
effect.16

The mentioned properties of the accessibility relation ≤ allow us to
identify a modal logic appropriate for studying the generation of math-
ematical objects. Since ≤ is reflexive and transitive, the modal logic S4
will be sound with respect our intended system of possible worlds. As is
well known, the convergence of ≤ ensures the soundness of the following
principle as well:

(G) ♦�p→ �♦p.

The modal propositional logic that results from adding this principle to
a complete axiomatization of S4 is known as S4.2.

Taking stock, we have completed the first task of identifying the
propositional modal logic that governs our modal explication of potential
infinity: S4.2. We add to this logic the ordinary rules for the first-order
quantifiers. As is well known, this enables us to derive the Converse
Barcan Formula:

(CBF) ∃x♦φ→ ♦∃xφ.

But that is fine, since we are anyway committed to the validity of this
formula. This means that no complications are needed to block the men-
tioned derivation, such as a free logic or an existence predicate.17 The

16It should be noted that convergence is at least questionable for construction that
has some indeterminacy, such as Browerian choice sequences. We plan to treat those
in later work. Note also that convergence does not hold for other sorts of modality
that relate to producing things. Suppose, for example, that I can either bake bread
or bake a cake, since I have enough flour, eggs, water, etc. to do either. So there
is one accessible world in which I bake bread and another in which I bake a cake.
But if I choose to bake bread, I may no longer be able to bake a cake, as I may no
longer have the ingredients. See Barker [4]. This does not present a problem for the
present approach, since we restrict attention to cases where the objects added are
mathematical in nature, and where there is thus no concern about using up resources.

17If one wants to have function symbols, say in order to better reflect ordinary
mathematical language, one should adopt a negative free logic. A number n might
exist at a given world (representing a stage of the generative procedure) without the
successor of n existing there. The details are a distraction here.
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question of higher-order extensions of our modal logic will be considered
shortly.

The following proves useful in what lies ahead. Say that a formula
φ is stable if the necessitations of the universal closures of the following
two conditionals hold:

φ→ �φ ¬φ→ �¬φ

Intuitively, a formula is stable just in case it never “changes its mind”, in
the sense that, if the formula is true (or false) of certain objects at some
world, it remains true (or false) of these objects at all “later” worlds as
well.

Are our atomic predications stable? This question becomes very im-
portant in the next section. Since our plan is to use the modal framework
to develop potentialist and actualist accounts of various kinds of math-
ematical objects—geometric, arithmetic, analytic, set theoretic—there
are many predicates to consider. In all cases, we contend, atomic pred-
ications are stable. Whether or not a number is a successor of another
won’t be affected by any further generation of objects. The same goes
for set theoretic membership. A set already generated will neither lose
or gain elements as a result of the generation of further sets. For the
case of geometry, see [35].

5 The bridge

Our next task is to specify a bridge that connects the non-modal lan-
guage of ordinary mathematics with the modal language in which our
explication of potential infinity is given.

The Gödel translation of the language of intuitionistic logic into clas-
sical logic provides one well-known bridge. The universal quantifier ∀
is translated as �∀. The existential quantifier translates as itself. (See
Appendix A for details.)

We contend, however, that the Gödel translation is inappropriate for
our present purposes because it fails to capture the potentialist under-
standing of the quantifiers. To see this, consider the principle that every
number has a successor:

(7) ∀m∃nSucc(m,n)

This is an axiom of both Peano and Heyting arithmetic. But its Gödel
translation is

(8) �∀m∃nSucc(m,n)
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which requires that every world that contains one number, contains all
of them. This is precisely what potentialists deny.18

At the heart of potentialism lies the idea that the existential quan-
tifier of ordinary non-modal mathematics has an implicit modal aspect.
When we say that a number has a successor, we really mean that it
potentially has a successor, that is, that it is possible to generate a suc-
cessor. This suggests that the right translation of ∃ is ♦∃. Since the
universal quantifier can hardly be less inclusive in its range than the
existential, this also suggests that ∀ be translated as �∀, as it is in the
Gödel translation.19

So understood, the quantifiers of ordinary non-modal mathematics
are understood as devices for generalizing over absolutely all objects,
not only the ones available at some stage, but also any that we may
go on to generate. In our modal language, these generalizations are
effected by the strings �∀ and ♦∃. Although these strings are strictly
speaking composites of a modal operator and a quantifier proper, we will
shortly show that they behave logically just like quantifiers ranging over
all entities at all (future) worlds. We will therefore refer to the strings
as modalized quantifiers. The proposal is thus that each quantifier of
the non-modal language is translated as the corresponding modalized
quantifier.

Each connective is translated as itself. Let us call this the potentialist
translation, and let φ♦ represent the translation of φ. We say that a
formula is fully modalized just in case all of its quantifiers are modalized.
Clearly, the potentialist translation of any non-modal formula is fully
modalized.

18As noted, it is well known that, when the logic of the modal language is S4,
the Gödel translation validates intuitionistic logic. When the modal logic is stronger
but still weaker than S5, a logic strictly intermediate between intuitionistic and
classical is validated. In particular, when the modal logic is S4.2, as it is here,
the Gödel translation validates the sub-classical system that results from of adding
to intuitionistic logic so-called ‘weak excluded’ middle, namely ¬φ ∨ ¬¬φ. So if
you believe the Gödel translation provides the appropriate bridge, you should also
believe that the logic of potential infinity is some system strictly intermediate between
intuitionistic and classical logic. One might also tinker with the Gödel translation to
get it closer to potentialism. For example, one might translate ∃ as ♦∃; or as �♦∃.
The result, via the bridge, is a perverse logic that violates uncontroversial quantifier
principles such as existential elimination. Another option, perhaps, is to adopt van
Dalen’s [10] Beth-Kripke semantics, instead of the usual Kripke-style model theory.
The details would be a distraction here.

19We would get the same result if we began with the Gödel translation of the
universal quantifier and then took the existential quantifier to be the dual of the
universal, i.e., if ∃xφ is defined as ¬∀x¬φ. As noted below, however, we are not
translating the connectives here.
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6 The first-order logic of potential infinity

We are now ready to put the pieces together. Recall that we take an
entailment to obtain in our non-modal language just in case the cor-
responding entailment obtains between the translations of the relevant
formulas into the modal language in which our analysis of potential in-
finity is given.

Let us state a key result. Let ` be the relation of classical deducibil-
ity in a non-modal first-order language L. Let L♦ be the corresponding
modal language, and let `♦ be deducibility in this language correspond-
ing by `, S4.2, and axioms asserting the stability of all atomic predicates
of L.

Theorem 1 (Classical potentialist mirroring) For any formulas φ1,
. . . , φn, ψ of L, we have:

φ1, . . . , φn ` ψ iff φ♦
1 , . . . , φ

♦
n `♦ ψ♦.

(See [33] for a proof.)
The assumptions of the theorem were defended in Section 4, namely a

modal logic based on S4.2 and the stability axioms. It is worth observing
that the use of S4.2, rather than just S4, is essential. Without the
assumption that the accessibility relation is directed and thus that the
axiom G is valid, the theorem would no longer hold.20

The theorem has a simple moral. Suppose we are interested in logical
relations between the modalized translations, in a classical modal theory
that includes S4.2 and the stability axioms. Then we may delete all the
modal operators and proceed by the ordinary non-modal logic underlying
`. In particular, under the stated assumptions, the modalized quantifiers
�∀ and ♦∃ behave logically just as ordinary quantifiers, except that they
generalize across all (accessible) possible worlds rather than a single
world. This buttresses our choice of the potentialist translation as the
bridge connecting actualist and potentialist theories.

The most important upshot of the theorem, however, is that ordinary
classical first-order logic is validated via this bridge. This answers one
of our guiding questions. Consider an Aristotelian notion of potential
infinity. We take it this notion is based on some form of metaphysi-
cal modality, which behaves classically. Given this and the fact that
Aristotle does not seem to allow any exceptions to the Law of Excluded

20For instance, while ∃xφ(x)∧∃x¬φ(x) entails ∃x∃y(x 6= y), the potentialist trans-
lation of the former does not entail that of the latter. We see this by considering a
Kripke model with three worlds, where w0 has access to w1 and w2, but no other
world has access to any world other than itself. Let the domain of w1 and w2 contain
a single object, which satisfies φ at w1 but not at w2.
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Middle, he—and all the thinkers he inspired—are entitled to take the
logic of potential infinity to be classical.21

It might be objected that on this liberal explication, potential infinity
is scarcely different from actual infinity. Consider the case of arithmetic.
While actualists defend classical first-order Dedekind-Peano arithmetic,
liberal potentialists defend a theory that is equivalent via the mirroring
theorem. One response is that, while the theories are indeed equivalent in
this sense, their intended interpretations are very different: one involves
modal notions, which the other eschews.22

The robustness of this response depends on the robustness of our
grasp on the modality. When the modality is metaphysical, as it is
for our Aristotelian, most contemporary philosophers would grant that
there is a real difference. When the modality is understood in some
other way, however, it needs to be confirmed that the modality makes
a real difference and that the resulting theory isn’t just actualism in
potentialist garb. A second, supplementary response is developed in
the next section, where we show that actualism and liberal potentialism
validate different principles of higher-order logic.

Suppose, now, that potentialism pushes in the direction of intuitionis-
tic logic. If so, this push must be compatible with the potentialist trans-
lation. How might this work? As a first step, consider what happens
when the propositional modal logic S4.2 is combined with intuitionistic
rather than classical first-order logic.

Our question is answered by another mirroring theorem. As usual,
we say that a formula Φ is decidable in a given theory if the universal
closure of Φ ∨ ¬Φ is deducible in that theory. Let `int be the relation
of intuitionistic deducibility in a first-order language L, and let `♦int be
deducibility in the modal language corresponding to L, by `int, S4.2, the
stability axioms for all atomic predicates of L, and the decidability of
all atomic formulas of L.

21In a short appendix to an article on formalism, Abraham Robinson [45] defines
a notion of “potential truth” for a language of arithmetic. He is keen to show that
mathematics does not require the actual existence of anything infinite. Robinson
does not use a modal language, but he does develop a Kripke-style framework (not
under that name). Robinson shows that potential truth is the the same (in extension)
as regular truth on the full domain (i.e., the union of the “worlds”). He has what is,
in effect, a directed frame (where any two nodes have a common “future”). And his
definitions include the positive and negative stability of the atomics. One can “trans-
late” his clauses (for potential truth) into that of the corresponding modal language.
If rendered into the modal framework, Robinsion’s clause for ∃xΦ is ♦∃x�Φ.

22The potentialist can use the background modal language to state certain meta-
physical principles that have no non-modal translation. See, for example, [35].
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Theorem 2 (Intuitionistic potentialist mirroring) For any formu-
las φ1, . . . , φn, ψ of L, we have:

φ1, . . . , φn `int ψ iff φ♦
1 , . . . , φ

♦
n `♦int ψ♦.

(See Appendix B for a proof.)

Together, the two mirroring theorems show how our analysis of quan-
tification over a potentially infinite domain can be separated from the
question of whether the appropriate logic is classical or intuitionistic.
Hold fixed our modal analysis of potential infinity, the propositional
modal logic S4.2, and the potentialist bridge. Then the appropriate
logic of potential infinity depends entirely on the first-order logic used in
the modal system. Whichever first-order logic we plug in on the modal
end—classical or intuitionistic—we also get out on the non-modal end.
Since liberal potentialists see no reason to plug in anything other than
classical first-order logic, they can reasonably regard this as the correct
logic for potential infinity.

It is far less clear what strict potentialists should say, given their
added requirement that every truth be “made true” at some stage. We
later ask whether they have reason to take the logic of the modal lan-
guage to be intuitionistic, which would entail that the logic of potential
infinity too is intuitionistic.

7 The higher-order logic of potential infinity

The only difference between actualism and liberal potentialism that we
have detected so far is a philosophical one, concerned with the presence
or absence of an implicit modal aspect of ordinary mathematical quan-
tification. Both approaches are entitled to classical first-order logic in the
non-modal language of ordinary mathematics. However, an interesting
technical difference emerges when we consider higher-order logic. This
fact is significant, since many mathematical theories use higher-order
axioms: induction for arithmetic, completeness for geometry, Dedekind
or Cauchy completeness for real analysis, replacement for set theory.23

These principles are usually formulated using some form of higher-order
variables.

Our procedure is as before. First, we identify the appropriate higher-
order modal logic to be applied to our analysis of potential infinity. Then,
we examine which non-modal inferences are validated via the potentialist
bridge.

23With the exception of replacement, the various principles can be formulated in
terms of sets. That would push our issues to the proper formulation of set theory,
especially when some of the sets are infinite.
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We remind the reader that the above mirroring theorems are stated
only for first-order languages. It is straightforward to extend them to the
standard introduction and elimination rules for higher-order quantifiers,
formulated in terms of free higher-order variables or parameters. The
issues concern the comprehension scheme. In other words, we must figure
out which formulas determine higher-order entities.

There are two kinds of extension of our first-order system to consider:
to plural logic, which permits quantification into plural noun phrase
position; and to second-order logic, which permits quantification into
predicate position, in effect quantification over properties. In the usual
extensional contexts of classical mathematics, these two approaches are
substantially equivalent. No so here. We begin with the plural inter-
pretation, where the most interesting and clear cut difference between
actualists and even liberal potentialists emerges.

Let us first remind ourselves how plural logic without modality can be
axiomatized. Of course, given the incompleteness of plural and second-
order logics with respect to standard semantics, the axiomatization can-
not be complete. But there is a standard axiomatization, which suffices
for a wide range of deductive purposes. We begin by adopting the ordi-
nary introduction and elimination rules for the plural quantifiers. Next,
we adopt the ordinary unrestricted plural comprehension scheme:

(P-Comp) ∃xφ(x)→ ∃xx ∀u[u ≺ xx↔ φ(u)]

That is, provided there is at least one φ, there are some things xx that
are all and only the φ’s.

Now we wish to add modality to the mix. We do this in the same
straightforward way as in the singular first-order case. This means that
we can prove a plural version of the converse Barcan Formula. But this
is unproblematic for the same reason as before, namely that all of our
domains are non-decreasing along the accessibility relation. We can also
allow each plural comprehension axiom to be necessitated. In any world,
any instantiated condition φ(x) can be used to define some things that
are—that is, are at the relevant world—all and only the φ’s.

What about the modal behavior of plural membership? In this con-
text, we contend it is plausible to take pluralities to be modally rigid.
That is, when x is one of some objects yy, then this is necessarily so, at
least on the assumption of the continued existence of yy. And likewise
when x is not one of yy. Since our intended interpretation has domains
that are non-decreasing along the accessibility relation, we may omit the
existential presuppositions and adopt the following rigidity principles for
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plural membership:24

x ≺ yy → �(x ≺ yy) x 6≺ yy → �(x 6≺ yy)

Modal rigidity is quite intuitive, at least for metaphysical modality,
and for some plural constructions, such as lists. Consider Barack and
Michelle. If Michelle were not one of some people, then these people
would not be Barack and Michelle but some other people. Likewise, if
Vladimir were one of some people, these people would not be Barack and
Michelle but some other people. Modal rigidity has, admittedly, been
challenged as an interpretation of the ordinary, English plural idiom in
full generality (see [20]). But for present purposes, we would, if neces-
sary, be content simply to stipulate the ridigidy. The alternative treats
plurals as more intensional, like properties. They would thus fall under
our treatment of second-order logic.

We are now ready to determine the appropriate plural logic for rea-
soning about a potentially infinite domain. Suppose we reason plurally
about such a domain but leave the modality implicit. Under what con-
ditions do some formulas φ1, . . . , φn entail ψ? To answer the question,
we must first make the modality explicit—which we do by applying
the potentialist translation. The answer is thus: when and only when
φ♦
1 , . . . , φ

♦
n entail ψ♦ in our modal system.

By far the most interesting case is the plural comprehension scheme.
Which of its instances remain valid when applied to a potentially infinite
domain? To answer the question, we apply the potentialist translation
to obtain:

(P-Comp♦) ♦∃xφ(x)→ ♦∃xx�∀u[u ≺ xx↔ φ(u)]

So when properly explicated, the question is this: for which formulas φ
that are possibly instantiated is it possible for there to be some objects
xx which necessarily are all and only the φ’s?

The rigidity of pluralities gives rise to a surprising answer. Consider
the condition ‘x = x’ of being self-identical. Since the condition is
obviously instantiated, the question is whether it is possible for there to

24The latter principle ensures that a plurality can never grow at a larger world by
picking up members that were antecedently available. We would also like to state
that a plurality cannot grow by picking up members that became available only at
the larger world. It turns out this can be expressed by the following axiom scheme:

(∀x ≺ yy)�θ → �(∀x ≺ yy)θ

See Linnebo [33] for explanation. (Hint: the axioms are Barcan formulas for the
relativized quantifier ∀x ≺ yy.)
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be some objects xx which necessarily are all and only the self-identical
objects, that is, such that:

�∀u(u ≺ xx↔ u = u)

The answer is ‘no’. By the rigidity of pluralities, the condition of being
one of xx is rigid and therefore not satisfied by more objects as we
consider more populous possible worlds. By contrast, the condition of
being self-identical is necessarily satisfied by everything and thus must
be satisfied by more objects as we consider more populous worlds. It
follows that the two conditions cannot be necessarily coextensive, and
hence that the corresponding instance of (P-Comp♦) must be rejected.

So potentialists of all stripes have a reason to restrict the plural
comprehension scheme. So here we have a clear logical difference between
actualism, on the one hand, and the two forms of potentialism, on the
other.

Consider, for example, the theory of the natural numbers and plural-
ities thereof. Since actualists are entitled to unrestricted plural compre-
hension, their version of the theory is in effect full classical second-order
PA (the only difference being the trivial one that there is no empty
class of numbers, as all pluralities must be non-empty). By contrast,
a traditional Aristotelian potentialist is committed to the view that all
pluralities are finite. This motivates a plural variant of so-called weak
second-order logic, where the second-order variables are stipulated to
range over all and only finite collections from the first-order domain (see
[48], Chapter 9).

Unlike plural logic, which generalizes into plural noun-phrase posi-
tion, second-order logic (as we will henceforth use the term) generalizes
into predicate position. What do our various conceptions of the infinite
entail concerning second-order logic? Our answer proceeds much as in
the case of plural logic. So we limit ourselves to pointing out the dif-
ferences. Unlike the semantic value of a plural noun-phrase, which we
take to be modally rigid, there is no reason to expect the semantic value
of all predicates to be rigid.25 For example, although Socrates satisfies
the predicate ‘is a philosopher’, he might not have done so. Thus, the
considerations that required potentialists to restrict plural comprehen-
sion are not available in the case of second-order logic. Consider the
second-order comprehension scheme:

(2-Comp) ∃F∀x(Fx↔ φ(x))

25Of course, some predicates will have rigid semantic values; for example, the
predicate ‘x = Socrates’.
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Applying the translation (to all but the embedded formula φ), the two
potentialists hold that the question can be explicated as follows26:

(2-Comp♦) ♦∃F�∀x(Fx↔ φ(x))

There is no obvious reason why the liberal potentialist should wish to
restrict this. Since the concept F need not be modally rigid, it is fine
to let its application condition at any possible world be given by the
condition φ(x) at that world, even if the embedded formula φ contains
modal operators. Since this potentialist is liberal, she has every reason
to assume the condition expressed by φ to yield a determinate truth-
condition at every world. So on the question of second-order logic, there
is no reason why the liberal potentialist should disagree with the actual-
ist. Near the end of this paper, we briefly consider the question of what
the strict potentialist should say about second-order logic.

In sum, liberal potentialists have a reason to restrict higher-order
comprehension on the plural interpretation but not on the conceptual or
second-order interpretation.

What is the significance of this discovery? In cases where the inter-
pretation of the higher-order variables doesn’t matter, this means there
is no deep logical difference between actualism and liberal potentialism.
Both are entitled to a form of full second-order arithmetic, for example,
provided that the second-order variables are interpreted conceptually.

There may, however, be cases where it does matter that the higher-
order variables are interpreted plurally. A case in point is the question
of which “collections” define sets.27 An analogy conveys the gist of the
argument. Suppose we are designing a web page. To which “collections”
of web pages may our new page be required to link? The answer depends
on how the “collection” is specified. If it is specified intensionally by the
concept web page that doesn’t link to itself, it would be paradoxical to
require our new page to link to all and only members of that “collection”.
The new page would have to link to itself just in case it does not link
to itself. By contrast, if the “collection” is specified extensionally by
the plurality of each and every web page that doesn’t link to itself, it
is unproblematic to require our new web page to link to all and only
members of that “collection”. According to the argument in question,
the question of set formation is analogous to the question of web page

26Some may want to drop the opening possibility operator. This depends on the
modal status of properties and relations. Do they exist at some worlds and not others
(so to speak), or are they somehow outside of the realm of possible worlds—existing
of necessity? We will say no more on this matter of metaphysics.

27See Linnebo [32].
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design: while there is no compelling reason to think that every concept
defines a set, it is hard to resist the view that every plurality suffices to
define a set. This view of set formation traces its roots back to Cantor,
whose distinction between “consistent” and “inconsistent multiplicities”
(cf. Section 2) mirrors ours between pluralities and mere concepts. Our
discussion in the present section shows that this view of set formation is
available to liberal potentialists but not to actualists.

8 Strict potentialism

Strict potentialism, we recall, goes beyond its liberal cousin by requiring,
not only that every object be generated at some stage of a process, but
also that every truth be “made true” at some stage. For example, “18
is the sum of two primes” is plausibly taken to be “made true” once the
numbers up through 18 have been generated. By that stage, we have
established that 5 + 13 = 18 and 7 + 11 = 18. There is no need to look
beyond these five numbers to determine the truth of our example. For
an existential generalization is plausibly “made true” when a witness is
generated.28 Next, consider the claim that there are counterexamples to
Goldbach’s conjecture, that is, even numbers that are not the sum of
two primes. If true, this claim is presumably “made true” when the first
counterexample is generated.

By contrast, universal generalizations over the natural numbers pose
a problem for strict potentialists. Again, consider Goldbach’s conjecture.
Since the conjecture is concerned with all the natural numbers, it is hard
to see how it could be “made true” at any finite stage where, after all,
only finitely many numbers will have been generated. Yet if we are
serious about the merely potential character of the sequence of natural
numbers, strict potentialists contend, there cannot be any arithmetical
truths that are “made true” only by the sequence in its entirety. When
a sequence is incompletable, there is no such thing as “the sequence in
its entirety”. In short, the extra demand that differentiates strict from
liberal potentialism puts great pressure on universal generalizations over
a potentially infinite domain. It is hard to see how a generalization over
all F ’s could be “made true” by some particular stage at which most
F ’s haven’t even been generated.

For strict potentialism to provide a coherent conception of potential
infinity, two challenges need to be met. First, the loose talk about being
“made true” needs to be made formally precise. Second, we need to
explain how strict potentialists can make sense of universal generaliza-
tions over potentially infinite collections, such as the natural numbers.

28We say that a is a witness to ∃xφ(x) at a world w iff φ(a) is “made true” at w.
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Without the ability to state and prove such generalizations, we do not
have a conception of the infinite, only a draconian restriction of quantifi-
cational reasoning to finite domains. Our aim in what follows is to show
how both challenges can be met and how this implies that the logic of
potential infinity is intuitionistic. For example, we explain what it is for
Goldbach’s conjecture to be “made true” at some finite stage, despite
the conjecture’s concern with numbers not generated by that stage. But
on this account there is no guarantee that either the conjecture or its
negation will be made true by any finite stage—thus the connection to
excluded middle and intuitionistic logic.

What might it be for a universal generalization over the natural num-
bers to be “made true” at some finite stage? Traditional intuitionism
proposes one answer, namely to identify mathematical truth with our
possession of a proof, or at least of an algorithmic strategy guaranteed
to yield one.29 On this strong anti-realist conception of truth, a gener-
alization is “made true” when we produce a proof of it. And since every
proof is produced at some finite stage, this satisfies the strict potential-
ist’s requirement.30 The problem is the strong anti-realism on which this
answer rests. The generative process is understood as a process of actual
constructions, whereby mathematical objects and truths/proofs—which
did not previously exist or obtain—are brought into being.

Thankfully, another answer is available, which avoids saddling strict
potentialism with the controversial anti-realist views of traditional intu-
itionism. We take our cue from Hermann Weyl ([54], 54), who writes in a
discussion of whether there is a natural number that has some decidable
property P as follows.

Only the finding that has actually occurred of a determinate
number with the property P can give a justification for the
answer “Yes,” and—since I cannot run a test through all
numbers—only the insight, that it lies in the essence of num-
ber to have the property not-P , can give a justification for
the answer “No”; Even for God no other ground for decision
is available.

On this view, the truth of the universal generalization—that every num-
ber is not-P—has nothing to do with epistemic matters, such as our
knowledge or proofs. Even God, who is assumed to know all the facts,
cannot know facts that require running through all the natural numbers.

29This qualification will henceforth be elided.
30Brouwer’s treatment of the creative subject goes along these lines.
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The point is rather that there are no such facts! When a universal gen-
eralization is true, it is instead made true by its lying “in the essence
number” to have the relevant property.

Weyl’s proposal, as we understand it, is that not every generalization
is “made true” by the totality of its instances. Consider the truths that
every red object is colored and that every atom of gold consists of 79
protons. These truths seem unconcerned with individual red objects or
atoms of gold. They seem to be “made true” not by their instances
but by what it is to be red or colored. Likewise, we propose, there are
essence-based constraints on any future generation of the objects studied
by mathematics. For example, it is a constraint on the generation of
natural numbers that the arithmetical successor operation be injective:

(9) Succ(x, x′) ∧ Succ(y, y′) ∧ x′ = y′ → x = y

This important arithmetical axiom is “made true” by the mentioned
constraint prior to the generation of any particular natural numbers.

Admittedly, these are deep metaphysical waters, even if not exactly
those of orthodox intuitionism. In what follows, we explain the ideas in
question and provide at least one precise mathematical model. Our aim
is to meet the two challenges discussed above in a way that does not rely
on any anti-realist ideas, such as an identification of mathematical truth
with our possession of a proof. A striking feature of our explication of
strict potentialism is that it leads to intuitionistic logic. This means that
we provide a route from strict potentialism to intuitionistic logic that is
independent of any form of anti-realism.

9 A mathematical model of truthmaking

In the case of arithmetic, at least, a good first approximation is provided
by the realizability interpretation, going back to Stephen Cole Kleene
[24], in 1945. The loose talk about what “lies in the essence of number”
can be understood in terms of computable functions.

Let {e}(n) be the result of applying Turing machine with index e
to the input n̄. We now define what it is for a natural number e to be
a realizer for a sentence φ, written e 
 φ. The idea is that e encodes
information that establishes the truth of φ. For present purposes, a
useful metaphysical heuristic is that e functions as a “truth maker” for
φ.

The most important clause is the one for the universal quantifier,
where we define

e 
 ∀nφ(n) iff ∀n {e}(n) 
 φ(n)
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That is, e realizes the universal generalization ∀nφ(n) just in case the
Turing machine {e} computes a realizer for the instance φ(n) when given
any numeral n̄ as input. In terms of our metaphysical heuristic: e is a
truth maker for ∀nφ(n) just in case e specifies a function that maps any
numeral n̄ to a truth maker for the associated instance φ(n).

Let’s now regard a formula as true just in case it has a realizer or
“truth maker”. Since a realizer is just a natural number, this means that
any true formula is made true after finitely many steps. So our strict
potentialist avoids having to wait until the end of time.

Of course, there remains the question of whether this definition yields
the right truths. For our strict potentialist, a natural measure of what
is “right” is provided by the standard intuitionist theory of arithmetic,
known as Heyting arithmetic, whose axioms as the same as those of
first-order Peano-Dedekind arithmetic but where the logic is intuition-
istic, not classical. Pleasingly, there is a theorem stating that Heyting
arithmetic is sound with respect to the notion of truth that we have
defined.

Theorem 3 (Realizability) Every theorem of Heyting arithmetic has
a realizer. However, there are theorems of first-order Dedekind Peano
arithmetic that do not have a realizer.

Not every sentence with a realizer is a theorem of Heyting arithmetic,
however. For example, the intuitionistic version of Church’s thesis has
a realizer, although Church’s thesis is not a theorem of Heyting arith-
metic.31

Let us put all the pieces together. All we are entitled to assume
concerning truth making at a world is intuitionistic logic. Let us now
kick away the ladder of this talk about worlds in favor of just the modal
operators, representing the generative modality and based on S4.2. It
follows that this logic must be based on intuitionistic logic, not classical.
Thus, for the strict potentialist, the appropriate modal system is one
based on intuitionistic S4.2.

31This version of Church’s thesis is inconsistent with classical arithmetic. Troelstra
[52], §1.11, shows how to formulate realizability within the language of arithmetic,
and gives a sharp result. HA* is a conservative extension of Heyting arithmetic,
augmented with a term for the application of partial recursive functions, and ECT0

is a slight extension of Church’s thesis. Then HA* plus ECT0 entails that any
formula A is equivalent to the statement that A has a realizer. Also, for any sentence
A, classical Dedekind-Peano arithmetic proves that A has a realizer if and only
if Heyting arithmetic plus ECT0, plus Markov’s principle proves ¬¬A. Markov’s
principle is that if a given formula B is decidable, then ¬¬∃xB → ∃xB.
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As before, the next step is to apply the potentialist translation to pro-
vide a bridge back to the non-modal language of ordinary mathematics.
The result of doing so has already been established by Theorem 2, on
intuitionistic potentialist mirroring. As we recall, the theorem ensures
the following:

φ1, . . . , φn `int ψ iff φ♦
1 , . . . , φ

♦
n `♦int ψ♦.

The bottom line is that, for the strict potentialist, the appropriate first-
order logic for reasoning about a potentially infinite domain is intuition-
istic. This confirms a claim by Dummett and others, which has so far
never been properly substantiated, namely that only intuitionistic quan-
tification, not classical, is permitted over a domain that is potentially
infinite (or “indefinitely extensible”)—provided the potentiality is strict.

We end this section with some very brief remarks about higher-order
logic from a strict potentialist point of view. Note, first, that the re-
sults concerning realizability are restricted to first-order languages. So,
for now, we must restrict comprehension to those instances in which
the embedded formula is first-order. Any attempt to go beyond this
would require extending realizability to higher-order languages, which
goes beyond the scope of this article.

Second, recall that the intuitionistic mirroring theorem requires all
atomic predicates to be decidable. This means that the “membership”
notions x ≺ yy and Fx of plural and second-order logic, respectively,
need to be decidable. This will obviously result in a further restriction
on comprehension axioms. Consider second-order comprehension, which
the liberal potentialist can accept in its classical, unrestricted form. This
must now be restricted as follows:

∀x(φ(x) ∨ ¬φ(x))→ ∃F∀x(Fx↔ φ(x))

An analogous restriction must be added to plural comprehension scheme
(over and above the restrictions already imposed by liberal potentialists).

Summing up, we have described a theoretically interesting conception
of arithmetical truth, which satisfies the strict potentialist’s requirement
that every truth be made true after some finite number of steps, and on
which all the theorems of first-order intuitionistic—but not classical—
arithmetic are true. Notice, again, that the real locomotive of the argu-
ment is strict potentialism. There is no direct reliance on an anti-realist
conception of the numbers.

10 Conclusions

Let us return to William Tait’s questions, mentioned in the introduction.
He first observed that Hilbert and the early intuitionists associated a
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commitment to the actual infinite with the use of classical logic. For
example, they thought that the use of quantification over the natural
numbers combined with classical logic commits one to the set of natural
numbers as an actual infinity. Tait then writes:

I would like someone to explain why this is the same no-
tion of actual infinity as Aristotle’s. (One might ask, too,
whether quantification over the integers using intuitionistic
logic commits one to the actual infinite—and why.)

Of course, we are not scholars of the early history of mathematics and
philosophy. But we claim that the accounts of potential infinity devel-
oped here are in the spirit of the Aristotelian notion of potential infin-
ity, using contemporary modal logic (in roughly the same spirit as that
of [55]). In the course of this article, we have answered the questions
prompted by Tait.

(A) If the natural numbers are merely potentially infinite, are we en-
titled to quantify over all of them using (at least) intuitionistic
logic?

The answer is affirmative. First, we showed that liberal potentialism—
which is arguably the version of potentialism closest to Aristotle’s—
sanctions such quantification subject to classical logic. Then, we ex-
amined the strict potentialist’s added requirement that every truth be
“made true” at some finite stage of the generative process. We showed
that this is modeled by the realizability interpretation, which sanctions
such quantification subject to intuitionistic logic.

Next:

(B) Does quantification over all the natural numbers with classical logic
presuppose actual infinity?

Here the liberal and the strict potentialist part company. The liberal an-
swers the question negatively, insisting we are entitled to classical quan-
tification without assuming any actual infinities. The classical logic is
sanctioned by the liberal’s realist attitude toward the underlying modal-
ity. The strict potentialist disagrees, insisting that the potential infinity
of the natural numbers removes the licence to anything stronger than
intuitionistic quantification.

In the course of our discussion, we also found that our three main
characters—the actualist, and the liberal and strict potentialists—have
interestingly different commitments concerning higher-order logics as
well. The following diagram summarizes our findings.
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face value classical FOL 2-Comp P-Comp
Actualism 3 3 3 3

Liberal Pot. 7 3 3 7

Strict Pot. 7 7 7 7

The columns represent whether the non-modal language of ordinary
mathematics can be taken at face value; whether to accept classical first-
order logic (as opposed to intuitionistic); whether to accept unrestricted
second-order comprehension; and whether to accept unrestricted plural
comprehension.
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Appendices

A The Gödel translation

The Gödel translation † is given by the following clauses:

φ 7→ �φ for φ atomic

¬φ 7→ �¬φ†

φ ∨ ψ 7→ φ† ∨ ψ†

φ ∧ ψ 7→ φ† ∧ ψ†

φ→ ψ 7→ �(φ† → ψ†)

∀xφ 7→ �∀xφ†

∃xφ 7→ ∃xφ†

Let `S4 be deducibility in the logic that results from combining S4 with
classical first-order logic. Then we have the following theorem.

Theorem 4 Let `int be intuitionistic deducibility in the given language.
Let `S4 be the corresponding deducibility relation in S4 and classical
logic. Then we have:

φ1, . . . , φn `int ψ iff φ†1, . . . , φ
†
n `S4 ψ†.

B Mirroring for intuitionists

We use the framework due to Alex K. Simpson [50]. We work in a more
or less standard possible-worlds-framework for the modal operators. We
define the notion of frame and interpretation, giving the usual clauses
for the connectives and quantifiers (i.e., not the ones in the usual Kripke
framework for intuitionism).32 We use intuitionistic logic in the meta-
theory (for the most part).

We begin by establishing an analogue of Lemma 5.3 of [33]:

Lemma 1 Let Φ be a fully modalized formula in a modal language.
Then intuitionistic S4.2, the stability axioms for that language, and
the decidability of all atomic formulas, prove that ♦Φ, Φ, and �Φ are
equivalent.

32So we say, for example, that a formula ∀xΦ(x) is true at a world w just in case
Φ(a) is true in w for all objects a in the domain of w. This, of course, is different
from the clause for the universal quantifier in the Kripke semantics for intuitionistic
logic (which requires Φ to be true for all objects in all worlds accessible from w).
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Proof. Clearly, it suffices to show that if Φ is fully modalized, then
♦Φ → �Φ holds. The proof goes by induction on the complexity of Φ.
Suppose, first, that Φ is atomic. Then, by hypothesis, Φ is decidable:
Suppose ♦Φ. We also have Φ ∨ ¬Φ. Argue by cases. If Φ then, by
stability, we have �Φ, and we are done. If ¬Φ, then, by stability �¬Φ.
But this is inconsistent with the hypothesis ♦Φ.

So suppose the Lemma holds for Φ and for Ψ. Suppose that ♦¬Φ
holds at a given world w. We want to show that �¬Φ also holds at w.
So suppose w ≤ w′. Suppose, for reductio, that Φ holds at w′. Then, by
the induction hypothesis, �Φ holds at w′. Since ♦¬Φ holds at w, there is
a world w′′ such that w < w′′ and ¬Φ holds at w′′. By the contrapositive
of the induction hypothesis, ¬♦Φ holds at w”. By directness, there is
a world w′′′ such that w′ ≤ w′′′ and w′′ ≤ w′′′. By the former, we have
that Φ holds at w′′′ and so ♦Φ holds at w′′. This is a contradiction. So
Φ does not hold at w′. So ¬Φ holds at w′. Since w′ is arbitrary, �¬Φ
holds at w.

Suppose next that ♦(Φ&Ψ). Then ♦Φ&♦Ψ. So, by the induction
hypothesis, �Φ&�Ψ. So �(Φ&Ψ).

Suppose now that ♦(Φ ∨ Ψ). Then ♦Φ ∨ ♦Ψ. So, by the induction
hypothesis, �Φ ∨�Ψ. So �(Φ ∨Ψ).

Suppose now that w is a world in an interpretation such that ♦(Φ→
Ψ) holds at w. We want to show that �(Φ→ Ψ) holds at w. So suppose
that w ≤ w′ and Φ holds at w′. We want to show that Ψ holds at w′. We
have that ♦Φ holds at w. So, by the induction hypothesis, �Φ holds at
w. We have that ♦(Φ→ Ψ) holds at w. So there is a world v such that
w ≤ v and (Φ → Ψ) holds at v. Also Φ holds at v (since �Φ holds at
w). So Ψ holds at v. And so ♦Ψ holds at the original world w. By the
induction hypothesis, �Ψ holds at w. So Ψ holds at w′ (since w ≤ w′).
So (Φ→ Ψ) holds at w′ (discharging the assumption that Φ holds at w).
But w′ is arbitrary. So �(Φ→ Ψ) holds at w.

Now suppose that the Lemma holds for each instance of Φ(x). We
have to show that it holds for �∀xΦ(x). So assume that ♦�∀xΦ(x) holds
at a world w. We have to show that ��∀xΦ(x) holds at w. This is the
same as showing that �∀xΦ(x) holds at w. So suppose that w ≤ w′

and let a be an object that exists at w′ (so that a ∈ D(w′)). By the
(G) principle, we have that �♦∀xΦ(x) holds at w and so ♦∀xΦ(x) holds
at w′. So there is a world w′′ such that w′ ≤ w′′ and ∀xΦ(x) holds at
w′′. Since the domains grow (or do not shrink) along the accessibility
relation, our object a exists at w′′, and so Φ(a) holds at w′′. So ♦Φ(a)
holds at w′. By the induction hypothesis, Φ(a) holds at w′. Since a was
arbitrary, we have that ∀xΦ(x) holds at w′. Since w′ was arbitrary, we
have that �∀xΦ(x) holds at w. And by S4, ��∀xΦ(x) holds at w.
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Suppose, again, that the Lemma holds for each instance of Φ(x).
We have to show that it holds for ♦∃xΦ(x). So assume that ♦♦∃xΦ(x)
holds at a world w. In S4, this amounts to assuming that ♦∃xΦ(x) holds
at w. We have to show that �♦∃xΦ(x) holds at w. So suppose that
w ≤ w′. We have to show that ♦∃xΦ(x) holds at w′. Since ♦∃xΦ(x)
holds at w, there is a world v such that w ≤ v and ∃xΦ(x) holds at v. So
there is an object a in D(v) such that Φ(a) holds at v. By the induction
hypothesis, �Φ(a) holds at v. By convergence, there is a world w′′ such
that w′ ≤ w′′ and v ≤ w′′. Since �Φ(a) holds at v, Φ(a) holds at w′′. So
∃xΦ(x) holds at w′′. So ♦∃xΦ(x) holds at w′. Since w′ is arbitrary, we
have that �♦∃xΦ(x) holds at w.

Suppose that the Lemma holds for Φ. We have to show that it holds
for �Φ. So assume that ♦�Φ holds at a world w. By the (G) principle,
�♦Φ holds at w. Let w ≤ w′. Then ♦Φ holds at w′. By the induction
hypothesis, �Φ holds at w′. Since w′ is arbitrary, ��Φ holds at w.

Suppose again (and finally) that the Lemma holds for Φ. We have
to show that it holds for ♦Φ. So assume that ♦♦Φ holds at a world w
(to show that �♦Φ holds at w). We thus have that ♦Φ holds at w. By
the induction hypothesis, �Φ holds at w. Let w ≤ w′. So Φ holds at w′.
Since the accessibility relation is reflexive, we have that ♦Φ holds at w′.
Since w′ is arbitrary, we have that �♦Φ holds at w. a

We are ready to prove Theorem 2, namely the intuitionistic mirroring
theorem. Start with the left-to right direction. As in [33], the proof goes
by induction on the derivation. The only hard cases are the quantifier
rules.

For the universal elimination rule, suppose we have Φ1, . . . ,Φn,`
∀xΨ(x). The induction hypothesis gives us Φ♦

1 , . . . ,Φ
♦
n `♦ �∀xΨ♦(x),

and from this conclusion we get ∀xΨ♦(x) and thus Ψ♦(t).
For the universal introduction rule, suppose we have Φ1, . . . ,Φn,`

Ψ(t), where the t does not occur free in any of the premises. By the in-
duction hypothesis, we have Φ♦

1 , . . . ,Φ
♦
n `♦ Ψ♦(t). And so Φ♦

1 , . . . ,Φ
♦
n `♦

∀xΨ♦(x). A standard move in S4 gives us �Φ♦
1 , . . . ,�Φ♦

n `♦ �∀xΨ♦(x).
Our Lemma thus gives us Φ♦

1 , . . . ,Φ
♦
n `♦ �∀xΨ♦(x). The conclusion of

this is (∀xΨ(x))♦.
For the existential introduction rule, suppose we have Φ1, . . . ,Φn,`

Ψ(t). The induction hypothesis gives us Φ♦
1 , . . . ,Φ

♦
n `♦ Ψ♦(t), and so we

have Φ♦
1 , . . . ,Φ

♦
n `♦ ∃xΨ♦(x), and so Φ♦

1 , . . . ,Φ
♦
n `♦ ♦∃xΨ♦(x).

Now for the existential elimination rule. Suppose we have

Φ1, . . . ,Φn,Φ(t) ` Ψ

where t does not occur free in any of the Φi, nor in Ψ. The induction
hypothesis thus gives us Φ♦

1 , . . . ,Φ
♦
n,Φ

♦(t) `♦ Ψ♦. That is, any world in
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which the premises hold, the conclusion holds as well (in that world). We
have to show that Φ♦

1 , . . . ,Φ
♦
n,♦∃xΦ♦(x) `♦ Ψ♦. So let w be any world

in which Φ♦
1 , . . . ,Φ

♦
n,and ♦∃xΦ♦(x) all hold. We have to show that Ψ♦

holds at w. Since ♦∃xΦ♦(x) holds at w, there is a world w′ such that
w ≤ w′ and ∃xΦ♦(x) holds at w′. So there is an object a in the domain
of w′ such that Φ♦(a) holds at w′. By the above Lemma, we have that
�Φ♦

1 , . . . , and �Φ♦
n all hold at w. So Φ♦

1 , . . . , and Φ♦
n all hold at w′. Now

recall that the induction hypothesis gives us Φ♦
1 , . . . ,Φ

♦
n,Φ

♦(t) `♦ Ψ♦.
The premises all hold at w′, interpreting t as a. So we have that Ψ♦

holds at w′. So, since w ≤ w′, we have that ♦Ψ♦ holds at the original
world w. By the Lemma, we have that Ψ♦ holds at w. This is what we
were to show.

Now for the right-to-left direction. Take any derivation of

Φ♦
1 , . . . ,Φ

♦
n `♦ Ψ♦

and erase all of the boxes and diamonds, and all of the parameters for
worlds. The result is easily converted in to an intuitionistic derivation
of Φ1, . . . ,Φn,` Ψ. a
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