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Abstract— Percutaneous image-guided tumor ablation is a
minimally invasive surgical procedure for the treatment of malig-
nant tumors using a needle-shaped ablation probe. Automating
the insertion of a needle by using a robot could increase the
accuracy and decrease the execution time of the procedure.
Extracting the needle tip position from the ultrasound (US)
images is of paramount importance for verifying that the needle
is not approaching any forbidden regions (e.g., major vessels
and ribs), and could also be used as a direct feedback signal
to the robot inserting the needle. A method for estimating the
needle tip has previously been developed combining a modified
Hough transform, image filters, and machine learning. This
paper improves that method by introducing a dynamic selection
of the region of interest in the US images and filtering the
tracking results using either a Kalman filter or a particle filter.
Experiments where a biopsy needle has been inserted into a
phantom by a robot have been conducted, guided by an infrared
tracking system. The proposed method has been accurately
evaluated by comparing its estimations with the needle tip’s
positions manually detected by a physician in the US images.
The results show a significant improvement in precision and more
than 85% reduction of 95th percentile of the error compared with
the previous automatic approaches. The method runs in real time
with a frame rate of 35.4 frames/s. The increased robustness and
accuracy can make our algorithm usable in autonomous surgical
systems for needle insertion.

Index Terms— Biomedical image processing, Kalman filtering,
medical robotics, needle insertion, particle filtering, ultra-
sound (US) imaging.

I. INTRODUCTION

ERCUTANEOUS image-guided tumor ablation is a
minimally invasive surgical procedure for the treatment
of malignant tumors [1]. A needle-shaped probe is inserted
from the outside into the patient in order to destroy one or
more pathological areas through the application of energy or
chemicals. The advantages compared with surgical resection
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are the potential to destroy only a minimal amount of healthy
tissue [2], lower cost [1], and faster recovery. Imaging
techniques used for monitoring the placement of ablation
probe include ultrasound (US), computed tomography (CT),
and magnetic resonance imaging [3]. However, US guidance
is the most commonly used modality for thermal ablation [1]
and biopsy.

Automating the insertion of a needle by using a robot
could increase the accuracy and decrease the execution time of
the procedure [4], [S]. Moreover, in cryoablation treatments,
robot-aided insertion will reduce the number of CT scans the
patient has to undergo. The needle is the end-effector of the
robot and its tip should be positioned inside the human body
to hit a target from a specific insertion point. Then, estimating
the needle tip position from the US images is of paramount
importance for verifying that the needle is not approaching
any forbidden regions (e.g., major vessels, ribs, and nerves)
and for eventually updating the planned trajectory.

There are several reasons for tracking the needle tip during
the insertion. The estimated needle tip may be used directly by
the controller of the robot inserting the needle as a feedback
variable. In addition, when a robot is inserting the ablation
probe, the insertion trajectory is planned using preoperative
images and errors in the registration or movement during the
intervention may cause deviations from the precalculated plan.
In manual insertion, it is hard even for expert radiologists
to position the device accurately: an autonomous tracking
system for the needle could be very helpful to increase the
precision.

Robotic approaches to needle insertion are shown
in [6] and [7], but none of these use US image feedback during
the insertion. Pollock et al. [6] use CT, while Boctor et al. [7]
use a preoperative 3-D US model and a magnetic tracker.
A real-time algorithm for finding straight biopsy needles is
presented in [8] based on a modified version of the Hough
transform. However, a detailed accuracy analysis of the needle
tip detection is not provided. In [9], two real-time algorithms
for finding curved needles in 2-D US images are presented,
one based of the Hough transform and one approximating the
cured needle as an arc of constant radius. The algorithms find
points on the needle, but do not provide a reliable estimation
of the needle tip position. Those algorithms are compared with
a novel method to find biopsy needles in [10] on transrectal
US images, where both of the above algorithms are found to
give biased results. The algorithm in [10] defines an objective
function from three needle tip metrics, and selects the needle
tip based on this function. The results are very accurate,
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but all the images of the biopsy procedure need to be available
before the execution of the algorithm. Therefore, the method
is not suitable for real-time applications. A Gabor filter is used
in [11] for localizing the needle, and is improved in [12]
by introducing an entropy-based parameter tuning scheme.
Kalman filtering of the result is introduced in [13] to reduce
estimation noise.

Segmentation of 3-D US images is done in [14] for
brachytherapy needles and [15] for biopsy needles. Another
method for localization and tracking of biopsy needles is
presented in [16]. This method uses the random sample
consensus algorithm and Kalman filtering, and adapts the
region of interest (ROI) to decrease the execution time. These
methods have a much higher computational cost than the
2-D segmentation methods and can only be used in real-time
applications using dedicated graphics processing unit [17].
Some recent attempts have been proposed by moving the
US probe to track the needle. In [18], the image plane is
perpendicular to the needle and the US probe is moved by
a robot to continually see the tip. The main drawback of this
approach is that neither the target itself nor the needle axis is
visible in the US image. Chatelain et al. [19] present a method
to localize and track a needle by combining the random sample
consensus algorithm with Kalman filtering on the images from
a 3-D US probe. It also presents a visual servoing algorithm
for keeping the needle within the field of view.

Rather than segmenting the needle to find the tip from
gray-scaled US images, it is possible to use stylet vibration
and power Doppler, as shown in [20] and [21]. Even though
this method guarantees a very high accuracy, it requires
a mechanical device to induce the vibration of the needle
increasing the overall complexity and cost.

In this paper, we present a new real-time needle tip estima-
tion method for rigid needles based on 2-D US images. The
method presented here improves the one proposed in [22] in
the following aspects.

1) Online adaptation of the ROI for estimating the needle
axis in a more robust and reliable way.

2) Implementation of Statistical Filtering: Kalman
filter (KF) and particle filter (PF) have been used to
improve the accuracy and precision of the tip tracking,
to filter out the noise, and to cope with outliers.

3) The algorithm can also rely on velocity measurements
to improve the tracking accuracy when the insertion is
performed by a robotic system.

The performance of the algorithm in manual and robotic inser-
tions is deeply investigated and compared, and the differences
between using a KF and a PF for this specific application are
evaluated. The main objective of this paper is to design an
accurate and robust observer for a robotic system inserting a
needle, while a secondary objective is to provide a method
that may assist physicians inserting a needle manually.

This paper is organized as follows. In Section II, the
proposed approach is presented, and in Section III, the experi-
mental setup is described. Experimental results are reported in
Section IV, whereas their discussion is in Section V. Finally,
the conclusions are drawn in Section VL.

lneedl(‘

Fig. 1. Sample US image showing the ROI (solid lines) with the rays (dashed-
dotted lines). The smoothed histogram of the ray score values is shown in the
top-right corner.

II. ESTIMATION ALGORITHMS

The problem of tracking the needle tip in a US image can
be decomposed in three sequential phases:

1) needle detection in the image;

2) estimation of the needle axis! (i.e., orientation 9, and
entry point pp);

3) localization of the needle tip (i.e., position along the
needle axis py).

This paper will focus on the last two phases of the procedure.
A robot or a radiologist will insert the needle, and when
it is inside the phantom by a certain length, the estimation
algorithm is activated. The true position of the needle tip is
denoted by p and the true needle axis is denoted by v,. The
estimated needle tip position and the needle axis are denoted
by p=1[pp pn]T and b, respectively. These values are shown
in Fig. 1.

A. Needle Axis Estimation

The method described in [9] has been improved to find the
needle axis in a more reliable way. In this section, the original
method is briefly recalled and our changes highlighted. The
algorithm is based on a search method, where a range of
insertion angles are checked and the one with the highest score
is selected. The range of insertion angles is a parameter of the
method, and will be discussed in more detail later. We start by
looking at the algorithm when it checks one insertion angle,
i.e., one iteration of the search.

1) One Search Step: The algorithm presented in this section
is summarized in Algorithm 1, and references to the lines
in the algorithm will be given throughout the section. The
algorithm is defined as a function with inputs listed between
parentheses after the function name, and the output listed in
brackets before the function name. First, an ROI needs to be
defined (line 2). In [9] the authors suggest to “Choose a rough

I'Notation: in this paper, we use the symbol X for the estimation of x.
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Algorithm 1 One Search Step in Estimating the Needle Axis

function [p,, H,,a: 1=AXISSEARCHSTEP(Z, 0, p, [k —1])
Define ROI using 6 and p,,[k — 1] from previous step
Reduce N4y, if necessary

// Find score values

1:

2

3

4:

5; for k € [1, Nmys] do

6 Tk+Ss
7

8

9

I(i,y) VYye€ ROI
(’I”k, )V y € ROI

R(Tk’ ) 23+1 =T —S8
RA(TkTa ) — R(Tka ) + 1)
for y € ROI do
: Stcad (T, y) < Yowmos RA(% y+w)
10: Slag(hw ) “— Zw'"“ R (Tk,

—w—1)
11: S(’I"k,, y) ~ Slag Slead ‘Slag + Slead‘
12: end for
13: end for
14: /I Create histogram and smooth it
15: H(b) <« 0 Vb € [1, Npins)
16: for k € [1, Nyoys] do
17: for y € ROI do
18: b N;:yyi
19: H(b) « H()+ S(rg,y)
20: end for
21: end for
22: for b € [1, Nyins] do
23: Hg(b) « H(b)+ sH(b—1)+1H(b+1)
24: end for
25: /I Find points that lie on the needle
26: [H'm(m7 bmam] < MAaXpe (1, Nyips] Hs(b)
27: for k € [1, Nyoys) do
28: [—, pr] < maxye,. .. —3b.bimas+36] S (Ths Y)
29: end for
30: // Find the average position of the points
31: Dp < mean(py)

32: end function

approximation of the needle’s axis line in the US image based
on the expected trajectory and define a rectangular ROL”
We have modified the method to dynamically adapt the ROI
according to the current estimation of the tip position. As said
previously, the axis is estimated first, and then, it is used to
estimate the tip position. When estimating the axis for the next
image, the current tip estimate is used to update the next ROI.
In this way, the tip estimate is fed back to the axis estimation;
hence, we call this feature feedback. This can be seen in Fig. 2,
where the estimated needle position along the needle axis p,
is given to the axis estimation step.

The main axis of the rotated rectangular ROI is equal to
the estimation of the needle direction,? vy, whereas v, is the
perpendicular axis, as shown in Fig. 1. The ROI is then a
rectangular box around the needle.

The algorithm requires to cast a number of rays parallel
to v, within the ROI, as shown in Fig. 1 (dashed-dotted
lines). Each pixel along each ray should be averaged with the
pixels on both sides of the ray. The rays R are defined in the

ZNotation: ¥ is used for variables in one search step, while X is used for
final estimates.

KF [ 0kr
N j)p
4 h(z)
Axis Est Tip Est KF/PF P
by
Fig. 2. Diagram describing the different parts in the method. “Axis Est”

is the axis estimation described in Sections II-Al and II-A2. “KF” is the
Kalman filter used on the angle 6, described in Section II-A3. “Tip Est” is
the tip estimation described in Section II-B. “KF/PF” is the Kalman filter or
PF used to estimate the tip position, described in Sections II-C and II-D.

US image plane by
rr+s

m 13, y) (1)

i=ry—s

R(re,y) =

where ry is the position of the kth ray in the direction v,, y is
the position in the v, direction, s is the number of pixels used
to calculate the average, and 7 (i, y) is the pixel grayscale value
in position (i, y). I denotes the matrix containing the pixel
grayscale values of the entire image. These rays are evenly
distributed along v,, and the values should be calculated for
all y in the ROI (line 6). By averaging the pixel values, the
noise and features that are not parallel to v, are filtered out.

Our method adapts at run time the number of rays Npays
along the needle axis (line 3). The spacing between the rays
(srays; see Fig. 1) is the distance from the first ray to the
estimated tip position (Ipeedle; see Fig. 1) divided by the
number of rays (Nrys). As a rule of thumb, the distance
between two rays should be larger than twice the averaging
width s of the rays, to avoid the rays to overlap. If the distance
between the rays (srays) is smaller than s, the number of rays
is decreased. If it is larger, the number of rays is increased.

When the rays are computed, the derivative along v, is
evaluated as

Rk, y) = R(ri, y + 1) — R(rg, ¥) (2)

for all 7, and all y in the ROI (line 7). This is the edge
detection step of the method. Since finding the derivative in
this way yields noisy results, the next steps are needed to filter
out the noise because of an averaging effect.

Traversing each ray (along the v, direction) looking at a
window of the derivative values R2, a score value should be
calculated (lines 8-12) using the following equation:

Sk, y) = Stag(rk> ¥) — Siead (k> ¥)
— [S1ag ("> ¥) + Stead (k> ) €))
where Sjeaq and Sjag are the sum of the derivative values of

the leading and lagging half of the window with size wmax.
They are given as

Wmax

Siead (ks ¥) = D R (i, y + w) “)
w=0
Wmax

Stag(ri, y) = D Ry —w = 1). (5)

w=0
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Bright line structures in the image, which are parallel to
vy, will have a high score value. This will include the needle,
but also other structures in the image. The needle will have a
high score on approximately the same position along v,, for all
the rays, while other nonneedle structures will be distributed
on different positions on the different rays. A histogram (H)
is made using the score values of all the rays (lines 15-21).
As the needle will have a high score value on approximately
the same ray position, these values will be added together
in the same histogram bin, while the nonneedle structures
will be distributed on several bins. Then, this histogram is
smoothed by adding one half of the bin values from the
bins on the right and on the left (lines 22-24). The function
[ fmax»> Xmax] = max,cs f(x) finds the maximum of f(x) for
all x in the set S, and returns the maximum value of f(x) as
Jfmax and the x that corresponds to the maximum value as xm;x-
A “—” symbol indicates that the return value is unused. The
last step is performed to detect the needle even if it lies on
the boundary of two bins. A smoothed histogram is illustrated
in the top-right corner of Fig. 1. The points that belong to the
needle axis are selected by looking at the region centered on
the highest bin of the smoothed histogram and including three
bins on both sides (lines 26-29). For each ray, the position
within this region that has the highest score value is considered
to be on the needle axis. These positions yield a set of positions
that all lie on the needle axis.

The needle can be found by the set of points on the
needle axis vp, since we assume to work with rigid needles
(e.g., cryoablation needles). The average position along v, is
the estimated needle axis position for this iteration. This
position is denoted by p, and is returned to the search
algorithm along with the value of the highest bin of the
smoothed histogram, denoted by Hmax. A summary of one
iteration of the search is given in Algorithm 1.

2) Searching for the Needle Axis: The estimated insertion
angle 6 is found by coarse-fine searching over a range of pos-
sible insertion angles. In the original method, an incremental
step of 1.5° was used, and the angle showing the highest bin
score values Hp,x was selected as the best estimation 0 of the
true insertion angle §. We have improved this approach by
implementing a two-step procedure in order to get a higher
resolution (see Algorithm 2). First, a search is conducted with
a step of 1° (lines 2—4). The search range is from Oyt t0 Geng
and can be varied, but this affects the computation time of
the method. The angle with the highest score value is selected
(lines 5 and 6), and a new search is conducted (lines 7-9). This
time an increment of 0.1° is used to refine the estimation on the
range £0.5° around the result of the coarse step. This yields
a resolution of 0.1° at a low computational cost. The angle @
and position p, pair that has the highest Hp,x in this search
is the best estimation of the insertion angle 6 and position p,
(lines 10-12). The estimated needle axes ¥, and ¥, can be
calculated from the estimated insertion angle. In summary, the
search is carried out as follows.

3) Filtering Estimated Angle Using Kalman Filter: A KF
will be used to reduce variations in the estimated angle 0
between the images. The tip estimation step in Section II-B
is sensitive to small deviations around the bright pixels

Algorithm 2 Estimating the Axis by Searching for It Over
a Range of Possible Angles

1: function [p,, ]=ESTIMATEAXIS(I, py, [k — 1))
2 for 6i € [Ostart, Oena) steps of 1° do
3 [px, Hi] < AXISSEARCHSTEP(I, O, py,)
4: end for

5: [—, kmax] < maxy Hy
6 emax — ekmam

7 for 05, € [01naz — 0.5°, 0,40 + 0.5°] steps of 0.1° do
8 [px, Hi] < AXISSEARCHSTEP(I, O, p,)

9: end for

10: [—, kmax] < maxy Hy,

1 00O

12: Dp < Phypas

13: end function

Algorithm 3 Estimating the Tip

1: function [A]=ESTIMATETIP(I, p,, é)
2: Define the ROI using p,, and 0

3:  Filter I using K59 and K¢

4; h(z) + Ele w; E;(x)

5: end function

Vx e ROI

representing the needle in the image. Therefore, a KF is
implemented to have a smoother estimation of 6 in Cascade to
the previous steps. Fig. 2 shows the block diagram describing
the whole method.

B. Needle Tip Estimation

To estimate the needle tip position, we analyze five features
defined along the needle axis v,. These features are combined
in a linear function and the needle tip position is located in
correspondence of its maximum [10]. With respect to [10],
our approach uses different features except for one, and a
new method is implemented for choosing the tip position. This
method improves the method proposed in [22].

The image filtering and feature calculation is shown as the
“Tip Est” block in Fig. 2, and summarized in Algorithm 3.
In Cascade of this block, there is the “KF/PF” block: the tip
position is filtered by either a KF or a PF to improve accuracy
and robustness by reducing noises and removing outliers.

1) Image Filters and Features: Five different features based
on two different image filters were taken into account in [22].
Each feature E;(x) is calculated along the estimated needle
axis v,, where x is the position along the needle axis. A high
value of these features indicates a high likelihood that x is the
needle tip. These features are combined linearly in a function &

5
h(x) =D w;Ei(x) (6)
i=1

where w; is the relative weight for the feature E;(x). Peaks
of this function give a set of possible needle tip positions,
the most likely one corresponds to the maximum of /4(x).
h denotes a vector containing the values of h(x) for a set
of x values.
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Since the needle in the US images is characterized by high
gray-level intensities, a sudden drop is expected at the needle
tip. A function that has a high value when such drop in
intensity occurs is the derivative of the grayscale image /°3

Eix)= > I%w - > 1%w) @
ueTR velR
where LR is the leading region of pixels and TR is the trailing
region of pixels. This feature is a modified version of the
feature used in [10] based only on the current image.
In order to take into account temporal information, the
difference between the current and the previous image is
calculated as

A _ yGS _ 7GS
I =1L — LD ®)

where k is the time step. We use the image o time steps behind
instead of just one to increase the position displacement of the
needle in the two images. If the needle moves, there should be
a region with high intensity where the needle has moved, and
low intensity everywhere else. The needle tip should be located
at the border of the high intensity region. Therefore, we also
consider the derivative of difference image using (7) to define
the second feature E. The difference image should ideally
have a bright line where the needle has moved. This bright
line has two ends giving two possible needle tip locations.
Using (7), the real needle tip should be positive and the needle
location in the image at k —d should be negative. This assumes
that the needle axis is in the same place in the two images,
but the surrounding tissue may move. However, if the needle
axis is shifted between the two images, the assumption is no
longer valid and the feature will not necessarily represent the
needle tip position.

The next two features (E3 and E4) also use (7), but with
the images filtered by K52 and K G"_ The first image filter
uses a squared kernel K5Q given by

1
<Yy < =

1 if 3 ©)

KSQx, y) = 2
—1 else

where y; is a scaled version of y, ranging from —1 to 1. The
size s, in the v, direction should be twice the size of sy in the
v, direction. The size sy should be twice of the echo created
when the waves reflect back from the needle. This depends
both on the needle and medium which the waves propagate in.
The second filter uses a kernel based on the second derivative
of a Gaussian K¢" given by
) 7Sszcaleyz
1)e o2

2 2
G” _ SscaleY
K ()C, y) - _2( 0_2 -

where y € [—((sy — 1)/2), ((sy — 1)/2)], sy is the kernel size
in the v, direction, ¢ is the standard deviation, and sscale is
a scaling parameter. These filters enhance the visibility of the
needle in the image by enhancing the tubular shape of the
needle.

In the case of K32, an offset is observed between the peak
of the feature and the position of the needle tip. This offset
is due to the long shape of the kernel and can be removed by
shifting the image of —s, pixels along v,.

(10)

The last feature E5 is similar to E3, but with a shift in
the 9, direction. On grayscale US images, there is a bright
spot produced by the bevel tip of the needle. This distorts
the negative boundary below the needle in the K5Q image.
The region goes from negative to zero around the location
of the needle tip. By shifting the image »n pixels up and then
use (7), we can detect this, where n is determined based on
the needle and US probe used.

The last improvement with respect to [22] is the imple-
mentation of statistical filters: the tip position is estimated
by a KF and a PF. The implementation of these two filters
will be described in Section II.C-II.D and the corresponding
performance improvements compared in Section IV.

C. Filtering the Tip Estimation Using a Kalman Filter

A KF will be used here to estimate the needle tip position.
This step is shown as the “KF/PF” block in Fig. 2, as both a KF
and a PF could be implemented. To estimate the needle tip, we
use a second-order kinematic model. The first component of
the state vector xj is the needle tip position along 9, denoted
by xx, and the second component is the velocity along the
same axis denoted by vx. This yields to the state-space model

xk+1=[é ﬂxk+wk (an
where T is the sampling time and wy is the driving white
Gaussian noise. The measurement equation for the tip position
will be shown in Section II.C.1-II.C.2. If a robot is used
to insert the needle, also the velocity is known or, at least,
can be accurately estimated. Therefore, we have two different
measurement updates for the KF, depending on the availability
or not of velocity measurements.

1) Finding Needle Tip Position Candidates: To find possible
needle tip position candidates, we observe that a high value
of h(x) in (6) indicates a high probability for a needle tip [10].
The goal is to find all the peaks of this function and select
the right one. This is done by finding all the points that are a
local maximum within a M pixel radius’

xeJ ifh(x)>h(x+i) VYie[-M...M]. (12)

This procedure returns a set of plausible points [J: these
points will undergo a probabilistic selection as described in
the following.

2) Probabilistic Selection of Measurement: The points in J
represent the possible needle tip positions and we need to
select the most likely one to be used in the KF through
the measurement equation. For this selection, we will use the
Bayesian theory to find the probability of each point given the
predicted needle tip position. This can be achieved by using
Bayes’ rule
PG5 = PELIDPG)

P (xx)
where j; € J and X is the predicted needle tip position from
the KF. In order to find this probability, the values of the
right side of the equations need to be found. Let P (xg|j;) be

13)

3We set M = 10 in the experimental section.
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a Gaussian distribution with mean x; and standard deviation o .
The standard deviation is a design parameter that has to be
chosen: the smaller its value, the lower the probability of the
points that are far away from the prediction. The probability
function can then be written as

PGl 1 7(./,-—2;)2 14
X i) = e 20
k .]l) am
whereas P (xj) is approximated by
_ (R &
P(xx) = e 2072, (15)
o2m
The prior probabilities are calculated using the i(x) function
. h(ji)
PU)=<c—"7+ (16)
' Zjiej h(.]l)

Now, the probability of each point j; given the prediction X
can be computed. The point with the highest probability is
selected to be the new measurement for the KF

(= 2] = max P(jil). (17)

The time-varying variance Ry for the measurement is updated
according to

_ RwviN

P(jilxi)
where RyN is the minimum variance possible.

A problem with this approach is how to initialize it. Since
the initial position of the needle tip is unknown, it is not
possible to calculate the probabilities. The simplest approach
is to choose the initial position at the position the needle is
expected to appear. Because the estimation is very uncertain
in the beginning, the o parameter is dynamically adjusted
to avoid relying too much on the prediction. It begins with
oMax and is reduced by Ao at each step of the KF until it
reaches oMIN.

3) Adding Robot Measurements: The previous KF uses
only position information obtained from the US images. This
makes the algorithm generic and it can be used during manual
insertion of the needle. When a robot is inserting the needle,
the velocity measurements can be added to the measurement

equation as
a1
n=[5]-[s

where z; is from (17), zx is the measured velocity, and the
measurement noise has a matrix variance R; = [%k 190].
The KF will be evaluated with and without the velocity
measurements.

Ry (18)

(l)i|xk+rk (19)

D. Filtering the Tip Estimation Using a Particle Filter

The PF is a probabilistic approach, where the underlying
probability density functions (pdfs) are sampled. The PF used
here is the generic PF [23] with systematic resampling and
using the prior as the importance sampling function. The PF
will be compared with the KF introduced in Section II-C.
It is worth highlighting that the PF works also when the

distributions are not Gaussian, but multimodal. This step is
shown as the “KF/PF” block in Fig. 2. When using KF, one
point is selected as the outcome of the tip estimation phase,
whereas when using the PF, the whole 4 (x) function is taken
into account in the measurement equation.

The system model is the same as for the KF (11), but the
measurement model is different. The i (x) function is scaled
into a pdf hpar(x): hpar(x) is positive or equal to zero for all x
and its integral is equal to one, that is

_ hmod (X, X)
hpdgf(x, X)) = —————— (20)
P D) = S e, )
with
=
h x,x) = (h(x) — minh(x e 5 21
mod( ) ( ( ) . ( ))O'Sm ( )

where X is the current estimate of the tip position, and o is
a parameter to be tuned.
Linear interpolation is used to find the values of Apqgr(x, X)

P (yilxk) = hpar(xe, yr) (22)

where yi is the maximum of %i(x), and x; is the position
particle.

1) Adding Robot Measurements: As with the KF, the robot
velocity is added as a measurement for the PF. The noise in
the velocity measurement is modeled as Gaussian white noise.
Adding the Gaussian white noise to the prior yields

1 (v 721{)2
e 2 Ry

1
P (yi|xr) = hpar(xk, yi) (23)
V2R,
where x; and o are the position and velocity particles,
yr and z; are the measurements, and R, is the variance of
the Gaussian white noise.

E. Training the Linear Function

To tune the weights in (6), we use data from a separate
experiment. A genetic algorithm [24] is used to optimize the
weights. The genetic algorithm is designed to minimize the
following function:

min >_pi — pil 24)
1

where i denotes the ith frame of the training set, p; is the

ground truth position vector of the needle tip measured by the

optical tracking system, and p; is the position vector estimate
from h(x).

F. Summary

The two needle estimation methods are summarized in
Algorithms 4 and 5 using KF and PF, respectively. Fig. 2
shows the different parts of the method. The “Axis est” block
is described in Algorithm 2 and line 2 in Algorithms 4 and 5.
The “KF” block filtering @ is lines 16 and 12 in
Algorithms 4 and 5, respectively. The “Tip est” block is given
in Algorithm 3 and line 4 in Algorithms 4 and 5. The
“KF/PF” block is given in lines 4-15 of Algorithm 4 and
lines 4—11 of Algorithm 5.
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Algorithm 4 Estimating the Tip Using Kalman Filter

1: function [p, 0]=ESTIMATENEEDLEKF(Z, Pnlk — 1))
2 [pp, 0] < ESTIMATEAXIS(T, pp[k — 1])

3 h < ESTIMATETIP(I, p,, 0)

4 Find the needle tip position candidates using (12)
5: Calculate the Kalman filter prediction

6 J «—A{z|h(z) > h(z+i)Vie[-M...M]}

7 [—,Zk] (—maniejP(ji‘.f'k)
3 Ry + Rmin
9

X P(jilzk) .
: if Robot measurements available then
10 21 < robot velocity
11: Update the Kalman filter update using (19)
12: else
13: Update the Kalman filter update using zj, and Ry
14: end if _ ) o
15: [ﬁn _]T — Fig. 3. . Experimental setup consisting of a robot, a phantom, and a
. ~ A US machine.
16: Filter 6 to get Ok
17: end function TABLE I
DATA SET FOR TRAINING AND VERIFICATION
Algorithm 5 Estimating the Tip Using Particle Filter 1 2
. A R Number of needle insertion experiments 6 18
functAlonA (D, 9]=ESTIMATENEEDLAEPF(I , Dnlk — 1)) Number of US Frames 513 1390
[Dp, 0] < ESTIMATEAXIS(I, pp[k — 1)) Mean starting needle length in image [mm]  11.7  11.0
) Mean stop needle length in image [mm] 463 423

if Robot measurements available then
Update the Particle filter using the prior:

1 (=22

1:
2
3: h < ESTIMATETIP(I, pp, 0)
4:
5

6: P(yrlar) < hpar (zn,y0) ggee 2 ™
7: else

8: Update the Particle filter using the prior:
o: Pyklzr) < hpar(Tr, Yx)

10: end if

11: Dn Ty,

12: Filter 0 to get O
13: end function

III. EXPERIMENTAL SETUP AND METHODS

In order to train and validate the proposed method, two
needle insertion experiments were conducted using a robot.
The robot inserted the needle into a beef meat phantom,
while the insertion was captured by a US video stream.
Two different samples of beef meat were used for the
training and validation experiments. The robot was a URS
from Universal Robots, Denmark. The biopsy needle was
an Angiotech ProMag 14 GA x 10-cm biopsy needle from
Medical Device Technologies Inc., Florida, USA. The needle
was sanded using a sanding paper for better visibility. The
US Machine was a System Five from GE Vingmed, Norway.
The experimental setup is shown in Fig. 3.

The needle was mounted on the robot end-effector, and the
US probe was positioned on the meat phantom using a rigid
arm. Both the US probe and the needle were tracked using
an infrared (IR) tracking system. The IR tracking system
was an OptiTrack system from Natural Point Inc., USA,
using 12 FLEX three cameras and the Arena software. The
tracking system was used to ensure that the needle was in
the image plane of the US probe and that the insertion had
the desired angle.

The needle is imaged using an FLA 5-MHz probe and using
the Limbs-Venous program on the US machine. The depth was
set to 5 cm, frequency to 8 MHz, power to O dB, compression
to 16, dynamic range to 10, and rejection to 0. The frame rate
was 15.9 according to the US machine. The US image stream
was acquired using a video VGA2Ethernet frame grabber
from Epiphan,* California, USA. The frame grabber acquired
20 frames/s.

The first experiment was used to train the method and
the second to validate the accuracy of the method. In both
experiments, the insertion angle was either 35° or 45°
measured by the tracking system. The insertion speeds were
5, 10, or 15 mm/s. This results in six different combinations
of parameters. For the training experiment, one insertion
for each parameter combination was conducted, while the
validation experiment had three insertions for each parameter
combination. The characteristics of the two experiments are
shown in Table I.

The robot inserting the needle was controlled in Cartesian
velocity in the end-effector frame. The proprietary controller
of the robot accepts joint velocities, and a Cartesian controller
using the inverse Jacobian of the manipulator was imple-
mented to control the robot [25]. The user selected the duration
of the insertions.

The needle axis and needle tip position were manually
extracted from the US images by a physician to evaluate the
accuracy of our method. The physician marked the needle
axis and tip on the acquired US images, starting with the
image when approximately 10 mm of the needle is visible.
To speed up this time-consuming manual task, the physician

4https://www.epipham.com/wp—content/uploads/ZO 14/07/epiphan-
vga2ethernet-brochure.pdf
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TABLE 11
KF PARAMETERS

KF KF,
omax  [px] 300 300
OMIN [px] 200 200
Ao [px] 5 5
- 202 0 202 0
2
P [px7] [ 0 52 } [ 0 52 }
AT? 4 12 AT? 12
2 AT%012 ¢ AT%012 o
Q [px*] { 0 0.12 0 0.12
Rurin  [px2] 302 302
R 0
R [PXZJ Rk ’r Ok 12 “

only evaluates every third image, and linear interpolation is
used to find the needle axis and the needle tip position for the
unevaluated images.

The algorithms were executed on a computer running
Ubuntu 12.04 and Xenomai 2.6.0 real-time framework. The
computer had an Intel Core i7 M620 CPU running at
2.67 GHz and 8 GB of RAM. The algorithm ran at the highest
priority level and paging was turned OFF.

A. Training the Method

When training the tip estimation method, only a selection
of the samples from the training experiment was used. Only
samples where the estimated axis was less than 3 mm from the
true axis (e.g., |pp — ppl < 3 mm) were used in training the
weights in (6). This is to ensure that the training data actually
represent the needle tip.

B. Implementation and Parameter Choices

In our implementation of the axis estimation algorithm, we
use 12 rays that are 97 pixels long and have an averaging
region of 9 pixels on each side of the ray. When using feedback
(i.e., dynamic ROI defined from the current tip position
estimate), there is a 20 pixels spacing between the rays. Then,
the minimum number of rays is 3 and the maximum ray
spacing is 45 pixels. The top corner of the ROI (see Fig. 1)
is set to 40 px to the left and 20 px downward of the
top-right corner of the US image. We use bilinear interpolation
to calculate the pixel values in the ROI.

We are working with 14 gauge biopsy needle with a
nominal diameter of 2.108 mm. Considering a scale factor of
0.10 mm/pixel for the acquired US images, the needle width s,
is approximately 20 pixels. The kernel K G” should be positive
in the range £((s,)/2). This is satisfied with s, = 89. The
K3Q kernel size was set to 40 x 20. The parameter § used for
calculating the image IkA is set to 10.

The variances of the system and measurement noises in the

KF used for estimating the insertion angle 0 are Qy = 1
and Ry = 42, respectively, whereas the initial covariance
P(0) = 102

The KF parameters for the tip estimation are listed
in Table II. The process noise of the KF is simplified by having
the position noise magnitude as a function of the velocity
noise magnitude. By doing so, we simplify the tuning process

by reducing the tuning problem to find the ratio between the
process and measurement noise [26].

The PF uses 200 particles. The standard deviation of the
Gaussian distribution, which is used to get the initial particles,
is ((AT)/(+/2))50 px for position. The standard deviation
for the velocity in the state equation is 50 px/s when no
velocity measurements are available and 5 px/s when such
measurements are available. The standard deviation o in (21)
is 150 when no velocity measurements are available and 75
when such measurements are available. The process noise
has a standard deviation of ((AT)/(v/2))100 px for the
position, 100 px/s for velocity when no velocity measurements
are available, and 5 px/s when velocity measurements are
available. The variance R, was set to 1 px.

C. Benchmarking Method

The proposed method in this paper will be compared
with the method in [8]. They have made a real-time needle
estimation method using Hough transform on segmented US
images, modifying the transform to achieve real-time per-
formance by utilizing a coarse-fine search. We have imple-
mented the method according to their description with some
small exceptions. The methods find a set of possible needle
axes. We have simplified the selection of the correct axis.
The method originally searches all possible insertion angles.
We have limited this to +5° of the expected insertion angle.
This is the same condition we use for our method, and this
means that the comparison is fair. We select the axis that has
the highest Hough transform value.

We extract the values from the segmented US image along
the needle axis. This data are processed using a morphological
close operation, with a structuring element of size 21, to close
the gaps along the needle axis. Then, the tip is assumed to be
at the first gap along the needle axis.

IV. EXPERIMENTAL RESULTS

The goal of the proposed method is twofold: 1) accurately
estimate the needle orientation and tip position and 2) perform
all the computation in real time. We will start by showing the
needle orientation and position errors and later the execution
times of the different methods.

A. Experimental Results of Estimation Error

To evaluate the performance of the algorithms, the same
error metrics for needle axis and tip error proposed in [10]
are used plus an additional one for the angular error, as
in [22]. The first error metric is the axis estimation error
e = 0 — 0, given by the difference between the rotation
obtained by the tracking system 8 and the estimated rotation 6.
This error metric is not used in [10]: they resort to the arccos
to find the angle difference between the true needle axis vector
and the estimated needle axis vector. This is the same as taking
the absolute value of the above error measure, i.e., |eg].

The second error measure is the tip position error, given
by |lel| = ||p — Ppll, where p is the position of the needle
tip in the image plane, and p = [p, p,]’ is the estimated
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TABLE III

NEEDLE AXIS AND TIP ERROR (MEAN £ STANDARD DEVIATION [95th/2.5th—97.5th PERCENTILE])

# Method eq [°] leg| [°] [le]] [mm] en [mm] ep [mm]
1 DF 2661 £3.58 [-8.99-2.41] 333 4+296 867 1375 £ 10.09 33.68 9.32T & 13.43 [-17.59-37.44] 098" £ 4.77 [-15.76-6.95]
2 OM 0.06 £ 220 [-5.11-3.49] 1.67 & 1.44 4.44 3.55 £ 623 17.21 -0.13 £ 7.14 [-21.32-10.33] -0.04 £ 0.63 [-0.88-1.23]
S 3 OM+F -0.02 £ 2.16  [-6.07-3.36] 1.51 £ 1.54 4.48 313 £599 1933  -042 +6.70 [-22.74-8.07] -0.03 £ 0.79 [-0.76-1.29]
S 4 KF -0.06 £ 1.95 [-4.71-2.79] 1.48 = 1.26 3.92 1.81 £ 1.61 542 1161 £2.03  [-1.99-6.20] -0.04 £ 0.63 [-0.88-1.23]
= 5 KF+F -0.02 £ 1.73  [-5.04-2.38] 1.21 £ 1.23 3.75 1.68 £ 1.72 554 1161 £2.01 [-1.53-6.22] 0.00 + 0.63  [-0.63-1.14]
6 PF 1 -0.06 £ 1.95 [-4.71-2.79] 1.48 £1.26 3.92 2.68 £292 8.8l 2331 £3.15 [-1.34-10.32] -0.04 £+ 0.63 [-0.88-1.23]
7 PF+F T 0.102 £+ 1.74  [-4.96-2.66] 1.23 £ 1.23 3.89 2.64 £3.03 8.66 2431 £+ 3.14 [-0.92-10.55]  -0.033 4+ 0.65 [-0.69-1.19]
_ 8 KF, -0.06 £ 1.95 [-4.71-2.79] 148 £ 1.26 3.92 094 £0.74 2.12 0.04 £ 1.01 [-1.62-2.11] -0.04 £ 0.63 [-0.88-1.23]
2 9 KF,+F -0.23 £ 1.63  [-4.48-2.16] 1.17 £ 1.16 3.57 0.82 £0.76 2.17 0.02 £0.92 [-1.39-2.22] 0.05 £ 0.63 [-0.56-1.01]
& 10PF, t -0.06 £ 1.95 [-4.71-2.79] 1.48 £ 1.26 3.92 1.69 £ 2.26 7.66 0.941 £+ 2.58 [-3.17-8.80] -0.04 £ 0.63 [-0.88-1.23]
11 PF,+FT  -0.12% 4+ 1.70 [-5.09-2.35] 1.20 £ 1.22 3.51 1.81 £232 721 0.755 £2.76  [-4.84-8.32] 0.01 + 0.66 [-0.69-1.14]
OptiTrack 2891 £ 7.14 [-18.21-14.94]  6.26 & 4.49 15.20 389 £2.89 933 1241 £ 1.61 [4.61-1.12] 1461 £4.15 [-8.80-8.63]
! Significantly different from zero at p=0.001
2 Significantly different from zero at p=0.001 for 4 of 50 runs
3 Significantly different from zero at p=0.001 for 3 of 50 runs
4 Significantly different from zero at p=0.001 for 12 of 50 runs
5 Significantly different from zero at p=0.001 for 47 of 50 runs
needle tip position. The third error measure is the error on TABLE IV

the needle axis v, defined as e, = p, — p,, where p, is the
position of the needle tip measured by the tracking system,
projected onto v,, and p, is the estimated needle tip position
along 9,. The last error measure compares the perpendicular
positions pp and pp, e, = pp — Pp.

1) Estimation Error: Table III shows the error results. The
11 methods are divided in two groups. The first is named
“Manual,” as these methods do not require a robot and can,
therefore, also be used for manual insertion. The second group
is named “Robot,” as these methods require a robot or some
other means of measuring the insertion velocity in order to
work. The mean of the error measures ey, e,, and ¢, has been
tested for significant difference from a zero mean distribution
using the Student’s t-test at a significance level of 0.001.

The first method in Table III was proposed in [8], and is used
as a reference to evaluate the performance of the new methods,
and is denoted “DF” for the authors Ding and Fenster. The
second method was proposed in [22], and forms the basis of
the methods proposed in this paper. It is denoted “OM” for
original method. The next method (OM+F) uses an adaptive
ROI, where the needle tip position is given as feedback to the
needle axis estimation method, as explained in Section II-A:
this feature is denoted by “+4F” in Tables III-VI for all
methods where it is implemented. The next two methods
(KF and KF+F) use the KF introduced in Section II-C. Then,
the next two methods use the PF introduced in Section II-D,
denoted by PF and PF + F.

Since the PF samples the probability distribution randomly,
it has been run 50 times and the result in Table III is the
average of these runs. This is indicated with the { mark.
However, it is worth highlighting that there were only minor
differences among the runs.

The last four methods (from 8 to 11) use the velocity mea-
surements from the robot in addition to the US image to esti-
mate the tip position, as explained in Sections II-C3 and II-D1.
This is denoted by the subscript v. The last entry in Table III
is “OptiTrack,” which is the error of the tracking system.

The v, axis points from the needle entry point toward
the needle tip; thus, a negative/positive value of e, means
that the needle is inserted shorter/longer than estimated.

COMPARING METHODS FOR SIGNIFICANT DIFFERENCE IN THE STANDARD
DEVIATION (¢) OF THE ERROR MEASURE ¢y. THE p-VALUE IS SET TO
0.001, “-” DENOTES NO SIGNIFICANT DIFFERENCE, “|” DENOTES
SIGNIFICANTLY LOWER DIFFERENCE, AND “4” DENOTES
SIGNIFICANTLY LARGER DIFFERENCE

Methods
# Method o[°] | 12345678910 11|0T
1 DF 3.58 Tttt
2 OM 220 1L -t T T
3 OM+F 216 | | - 11111+ 1T 14
4 KF 9 | Ldd t-1-1 - 1]
5 KF+F L R LR R
6 PFT s | Ldd-1t -1 - 14
7 PE+Ft 174 [ L1l LL-1 [L-1 -1
8 KF, 1.95 J/\I/\L-T-T T'T \L
9 KF,+F 163 | L L L) -4-1) | -1
10 PF, * 195 | LLd-1-71-1t 1|4
11 PR,+Ff 170 | L L L L -1 -] - L 1
OT OptiTrack 7.14 | T T 1 T 1T 1T 1Tt 1T T 1
TABLE V

COMPARING METHODS FOR SIGNIFICANT DIFFERENCE IN THE STANDARD
DEVIATION (¢) OF THE ERROR MEASURE ej,. THE p-VALUE IS SET TO
0.001, “-” DENOTES NO SIGNIFICANT DIFFERENCE, “|” DENOTES
SIGNIFICANTLY LOWER DIFFERENCE, AND “4” DENOTES
SIGNIFICANTLY LARGER DIFFERENCE

Methods

# Method o [mm] 12345678910 11|0T
I DF 13.43 TITTTI[T T T 1[1
2 oM L A o I
3 OM+F 670 | L - F AT T
4 KF X0 B IR R K R
5 KF+F 2.01 R 2 B B RN B
6 PFf 3.15 e ity A
7 PF+Ff 3.14 B T e
8 KF, 1.01 A A
9 KF,+F 092 | L1l Ll LLdd Lo
10 PE, * 2.58 R A R b -7
11 PR+FT 276 | L L L1t L LTt - T
OT OptiTrack 1.61 RN 1

The 95th percentile of the error is also presented in Table III
for the errors that are always positive (|eg| and ||e||). For the
values ey, ey, and e, a range is given, where the lower value is
the 2.5th percentile and the upper value is the 97.5th percentile.
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TABLE VI
EXECUTION TIME OF THE ALGORITHMS
Method  Mean [ms] Max [ms]
DF 3.55 4.61
OM 26.13 27.35
OM+F 25.73 26.20
KF 26.13 27.19
KF+F 25.71 27.69
PF 26.09 27.16
PF+F 25.68 26.19
KF, 26.33 27.25
KF,+F 2591 28.23
PF, 26.31 27.42
PF,+F 25.89 26.30
30 1151.4 ;733‘0
T
20k | | | ]
| | -
| | T |
| I | |
ol L - ToT-
| I T : | I L : I
E I | | | |
£ =
5 or :'—IZI # é|I % $ i $' = $ % 1
0 | I I L ! 1 L1 L
| | | : L
| |
—10f : | i I 1
| | | L
| | |
ook ! | | 4
| | |
1 | |
| |
_3p 14-40.1 |1-40.1
1 z 3 4 5 6 7 8 9 10 11

Methods

Fig. 4. Box-and-whisker plot of the tip position error (e;) using both data
sets. The sample size is 1390 for all methods, and the whiskers are the
minimum and maximum samples. For the PF, all of the 50 runs are displayed.

Fig. 4 shows the box-and-whisker plot of the error ¢, for
the 11 methods under evaluation. The sample size is 1390 for
all methods, and the whiskers are the minimum and maximum
samples. For the PF, all of the 50 runs are displayed.

To compare the different methods, we focus on the variance
of the estimation errors, because the variance is strictly related
to the accuracy. The standard deviation of ey and e, has
been compared for significant differences at a 0.001 level in
Tables IV and V. These two error measures were chosen, as
they represent the main performance measures for the two
steps of the method, and they also have a distribution close
to the normal one. The F-test [27] has been used to compare
all the methods against each other: “-” denotes no significant
difference in the standard deviation of the error, whereas
“l}” and “1” denote significantly lower and larger differences,
respectively.

The probability distribution of the error e, is shown in Fig. 5
for the methods OM, KF+F, and KF,+F. The distribution is
estimated using a Parzen-Window with a bandwidth of 0.1 px.
Fig. 5 does not show the whole distribution. The error is in
the range from —5 to 5 mm for 75.2%, 95%, and 99.9% of
the samples for each method, respectively.

Fig. 6 shows the error ey as a function of the needle visible
in the US image for the KF+F method. The other methods
have similar characteristics. Gray dots represent the error for
one individual image, black solid line is the mean, and black
dashed lines are the mean =+ the standard deviation. The mean
and the standard deviation of the error ey are computed on the
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Fig. 5. Error distribution of the error e, for the three methods OM, KF+-F,
and KF, +F. The error is in the range from —5 to 5 mm for 75.2%, 95%, and
99.9% of the samples for each method, respectively.
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Fig. 6. Error ey as a function of how much of the needle is visible in

the image for the KF+F method. Gray dots: error for one individual image.
Black solid line: mean. Black dashed line: mean =+ standard deviation.

bins of size 5 mm of the visible needle length, where the first
bin contains all the measurements below 15 mm, while the
last one contains values above 45 mm.

B. Experimental Results of Execution Time

The time used for each US frame is reported in Table VI.
The standard deviation of the execution time is <0.13 ms for
all the methods.

V. DISCUSSION

The proposed methods, estimation error and real-time prop-
erties, are discussed in Section V-A, starting with the estima-
tion error.

A. Estimation Error

As described in Section II, the method consists of two
steps: the first step estimates the axis of the needle and the
second step estimates the tip position. The first step is
evaluated using the error in the insertion angle (ep and |ey|)
and the position error perpendicular to the needle (ep).
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The second step is evaluated by the position error along the
needle axis (e,). The last error measure (||e]|) is the overall
accuracy of the two steps.

The benchmarking method from [8] has large errors com-
pared with the other methods. The main reason is that it
relies on the segmentation of the needle in the US images
using thresholding. Although it used an adaptive scheme for
thresholding, the needle is often too faint compared with the
structures in the meat to be fully segmented. This makes the
method not particularly reliable.

Comparing the errors of OM and the results in [22],
we note that the lower errors are reported there. In the previous
experiments, the method was started when the needle was quite
far into the phantom, making the estimation easier, since there
are more data to be used during the axis estimation: in this
way, the axis estimation gave stable results. In the experiments
reported in this paper, it could fail for some images because
the algorithm is switched on when 10 mm of the needle
is visible in the image, which affects the overall accuracy.
In addition, a guide was used in [22] when inserting the needle,
which makes it easier to get the needle in the US plane.
In this experiment, the robot holding the needle was positioned
in correspondence to the US plane based on the measurements
of the tracking system, which is less robust than using a guide.
If the method is used as a visual aid for a physician, the
physician him/herself will ensure that the needle is in the
plane. Either by using a guide or manually adjusting the probe,
if a robot inserts the needle, a registration between the needle
and US probe is needed. This could be achieved by using an
IR tracking system, as in this paper, or by other means.

In this paper, all the insertions are done by a robot.
If the insertions are done manually, the insertion speed will
vary more. This might cause larger estimation errors, as the
KF and PF are tuned to the insertions made by a robot.

The errors of the OptiTrack system are given in the results,
for comparison with the methods. In general, the insertion
angle error and the position error perpendicular to the needle
are much larger for the tracking system than all the methods.
However, the position error along the needle axis is small,
and the standard deviation of the error is lower than 9 out
of the 11 methods. When it comes to absolute position error
of the needle tip, the OptiTrack system has errors comparable
with the PF-based methods, while the KF-based methods have
lower errors regardless of using insertion velocity or not.
This shows that the methods presented in this paper actually
increase the accuracy of both the orientation and position of
the needle compared with using an optical tracking system.
In addition, the issue of camera occlusion, which lowers the
optical tracking system’s accuracy, is avoided.

As previously stated, we assume that the needle is rigid.
This choice was made because it enables easier validation and
method comparison. The axis estimation method in this paper
is a modification of the method in [9], where bending needles
are detected.

Our method could be extended to work with bending
needles, since in real conditions, this is a very common event.
The main modification would be the estimation of curved
needle trajectory and the computation of features along this

trajectory, instead of a straight line. This is left as future
work.

1) Axis Estimation Error: Starting with the first step of the
method, Table III shows the error of the insertion angle eg.
All methods except DF, PF+F, and PF,+F have a mean error
that is not significantly different from zero. When looking at
the standard deviation in Table IV, it is worth remarking that
using a KF on 6 (as used in methods 4—11) yields a signifi-
cantly lower standard deviation. Among these methods, using
feedback (+F) decreases significantly the standard deviation.
It is also worth mentioning that the precision in the angle
estimation depends on how much of the needle is visible in the
image. This is shown in Fig. 6 where the standard deviation
of the error decreases when more of the needle is visible.
Pearson’s rank correlation coefficient between the standard
deviation of the error and the length of the needle visible in
the image is —0.94 with a p-value of less than 0.0005, when
using the eight standard deviations from Fig. 6.

In terms of the perpendicular position error ep,, the
DF method has high errors and a mean that is significantly
different from zero. Only 62.2% of the samples have an
error smaller than 1 mm. For all the other methods, more
than 95% of the samples have an error of less than 1 mm.
When comparing the methods using feedback (4+F) with the
methods not using feedback, the percentiles of the error (e))
is decreased for the methods using feedback.

2) Tip Estimation Error Without Velocity Measurements: On
the second step of the method, we will distinguish between
methods with and without velocity measurements from the
robot. We start with the methods not using velocity measure-
ments, i.e., the methods 1-7 marked “Manual” in Table III.
The error along the needle axis (e,) shows the performance
of the second step: the percentiles of this measure is shown
in Fig. 4. The error ||e|| shows the total position error of
the method. As this error measure is far from the Normal
distribution, no significance testing is done on it.

The feedback in the OMdecreases the mean and standard
deviation of the error ||e||, but there is no significant difference
in precision between the OM method with and without feed-
back, as shown in Table V. The OM method is very accurate
and precise when it is successful. This is shown in Fig. 4 where
the 25th and 75th percentiles of the error are among the lowest
of all the evaluated methods, and in Fig. 5 where the error dis-
tribution is very narrow. The main drawback of the method is
that there are many samples with a large error. Almost 25% of
the samples have an error e, of more than 5 mm. The methods
proposed in this paper are made to deal with this problem.

The use of the KF improves the tracking performance
compared with the original method. The 95th percentile of
the total position error is decreased by 68.5% and 67.8%
using the KF and KF+F method, respectively. The spread
in the error is also reduced. This is shown by the reduction
in the standard deviation of e, (71.9% and 71.6%) and
of |le]| (74.2% and 72.6%). This is a major reduction in
error compared with the original method. The KF and KF+F
methods have significantly smaller standard deviation of e,
compared with all methods not using velocity measurements
(Methods 1-7). The reduction in error makes the result of
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the method more reliable to be used in a clinical setting. The
total position error with the method using feedback has smaller
mean but higher standard deviation. From the other point of
view, the position error of the two methods is almost equal: the
KF+F method is better, because it estimates the angle more
accurately.

The KF methods have biased estimate of the tip position
along the needle, as the mean of e, is significantly different
from zero. The error distribution of e, for the KF+F method is
shown in Fig. 5. The distribution has its maximum at 0.26 mm
and has a positive skew. It is the skewness of the distribution
that creates the bias in the mean of e,.

The error e, has a larger reduction in the 2.5th percentile
than the 97.5th percentile. This means that the needle is
more often estimated to be inserted shorter than it really is.
This could come from the tracking model in the KF, which
weights more the predicted value of the tip. This causes the
KF estimate to lag behind the true needle position in some
instances.

The improvement when using PF is not as evident as using
the KF. All error measures of the PF methods have lower
values than the original method, except the mean of the
error e,. However, the error measures are not as low as when
using the KF. It is worth noting that the standard deviation of
both the total position error ||e|| and the tip position error e,
has a major reduction compared with original method; also,
the standard deviation of e, is significantly smaller than the
original method.

3) Tip Estimation Error With Velocity Measurements: In this
section, we analyze the methods using velocity measurements
from the robot (Methods 8-11). Compared with KF and
KF+F, the 95th percentile for the total position error is reduced
by 87.7% and 87.4% for the methods KF, and KF,+F
respectively. The standard deviation of the total position error
is reduced by 88.1% and 87.8% and the standard deviation
of e, is reduced by 85.6% and 87.1%. This is a remarkable
improvement. The KF,+F method has significantly lower
standard deviation of e, than all the other methods, making
it the most precise method when looking at tip position along
the needle axis. One should note that by introducing velocity
measurements, the bias in ¢, is removed.

The PF using velocity measurements does not perform as
well as the KF. This indicates that the measurement method
based on the KF is better than the one based on the PF,
probably because the unimodal approximation of the signals’
distribution is correct.

B. Execution Time

The second performance metric of the methods is the
execution time. To use the methods in real-time applications,
the computation needs to be finished before the next frame
is received from the US machine. Table VI shows that the
mean execution time is almost equal for all the methods,
except DF which has much lower execution time. The methods
using feedback are faster than the methods without feedback.
Feedback allows to reduce the number of rays during the axis
estimation, because the ROI is dynamically adapted according
to how much of the needle is visible in the image.

All methods presented in this paper have a finite predefined
maximum number of internal iterations; thus, there is no
jitter that could significantly affect the computational time.
This is clearly shown by the very low standard deviation of
the execution time, which is lower than 0.13 ms for all the
methods. The variation in the maximum execution times in
Table VI is, therefore, most likely caused by hardware or other
processes through priority inheritance. Using the absolute
maximum execution time in Table VI yields a maximum frame
rate of 35.4 frames/s, which is larger than the frame rate that
most commercial US machines can guarantee.

VI. CONCLUSION

This paper proposed and compared different algorithms that
allow to improve the needle tip tracking precision in the
US images with respect to other solutions in the literature. The
precision in the estimation of the needle insertion angle has
been increased significantly. The improvement comes from:
1) the introduction of a dynamical adaptation of the ROI to
find the needle axis and 2) filtering the insertion angle using
statistical estimators. The method with overall best perfor-
mance was the algorithm based on a KF with feedback and
velocity measurements (i.e., robotic-aided insertion), where the
95th percentile of the position error was reduced by 87.4%
and the standard deviation by more than 87.8% compared with
the previous methods. In addition, the standard deviation of the
tip position error along the needle was significantly smaller
than all other evaluated methods.

When no velocity measurements were available (i.e., manual
insertion), the method using KF with feedback had the best
performance as well. The method using KF without feedback
had very similar tip position error, but the standard deviation
of the insertion angle error was significantly lower when using
feedback. We, therefore, conclude that using feedback yields
better performance. The 95th percentile of the position error
was reduced by more than 67.8%, the standard deviation by
more than 72.6%. In addition, the standard deviation of the tip
position error along the needle was significantly lower than for
all other methods not using velocity measurements.

All the methods using KF had better accuracy than the
OptiTrack optical tracking system. This indicates that using
image information yields more reliable tracking accuracy than
using an external tracking system. It also removes the need for
having an expensive tracking system when tracking the needle.

As a future work, we plan to improve the algorithms in order
to track steering needles and to design a control architecture to
optimal positioning the US probe in robotic needle insertion.
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