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With reference to laboratory Q-machine studies we analyze the dynamics of a plasma diode under

external forcing. Assuming a strong axial magnetic field, the problem is analyzed in one spatial

dimension by a particle-in-cell code. The cathode is assumed to be operated in electron rich

conditions, supplying an abundance of electrons. We compare different forcing schemes with the

results obtained by solving the van der Pol equation. In one method of forcing we apply an

oscillation in addition to the DC end plate bias and consider both amplitude and frequency variations.

An alternative method of perturbation consists of modelling an absorbing grid at some internal

position. Also in this case we can have a constant frequency with varying amplitude or alternatively

an oscillation with chirped frequency but constant amplitude. We find that the overall features of the

forced van der Pol equation are recovered, but the details in the plasma response need more attention

to the harmonic responses, requiring extensions of the model equation. The analysis is extended by

introducing collisional effects, where we emphasize charge exchange collisions of ions, since these

processes usually have the largest cross sections and give significant modifications of the diode

performance. In particular we find a reduction in oscillator frequency, although a linear scaling of the

oscillation time with the system length remains also in this case. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4747620]

I. INTRODUCTION

The present paper discusses the performance of a long

plasma diode of length L as studied by numerical methods.

The basic model corresponds to a single ended Q-machine,1,2

where electrons are emitted thermally while ions are produced

by surface ionization at a hot cathode. In the basic version of

the Q-machine the ions are produced by contact ionization3 of

hot alkali metals with suitable work functions.4 The metal plate

also supplies electrons by Richardson emission. We will in the

following assume that a confining axial magnetic field is suffi-

ciently strong to justify a description in one spatial dimension.

This configuration has been studied extensively for instance to

find steady state potential variations, some involving trapped

plasma populations or “virtual cathodes.”5–7 For weaker mag-

netic fields the dynamics are changed since the particles are no

longer confined to move along the magnetic field lines.8 Our

analysis emphasizes results relevant for Q-machines where

L=kDe >
ffiffiffiffiffiffiffiffiffiffi
M=m

p
in terms of the Debye length kDe and the

electron-ion mass ratio M/m, but the basic principles have

more general applications, for instance for diodes.9,10 Diodes

as well as Q-machines can be operated in electron rich or ion

rich conditions, depending on the relative abundance of the

two species emitted at the surface. The present study assumes

electron rich conditions which are also the most common one

for Q-machine applications.

The performance of an oscillating diode with a cold pos-

itively biased end plate is usually modelled by a van der Pol

equation.11–13 The present study will address the accuracy of

the van der Pol model for describing the diode for unstable

conditions. For a freely oscillating diode, the conditions are

well defined. In the case of external forcing, also included in

the van der Pol model, the situation is ambiguous: it is

not obvious how to apply perturbations to a physical diode.

Several methods will be discussed and compared here. The

basic diagnostics of the diode performance will be the fluctu-

ating current through the diode.

Several studies discuss chaotic behaviour of diodes,14,15

but these topics will not be addressed here. Also, non-neutral

diodes have been studied elsewhere.16–19

II. STANDARD CONDITIONS

Under standard operating conditions for a Q-machine,

we have electron rich conditions, where the hot plate at x¼ 0

can supply electrons in abundance. The electrons are emitted

with a velocity distribution n0e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m=pT0

p
expð� 1

2
mu2=T0Þ

for u > 0, where T0 is the hot plate temperature in energy

units, and similarly for ions we have n0i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=pT0

p
expð� 1

2
Mu2=T0Þ, where we assume n0e > n0i. The distribu-

tion functions are normalized over the interval u 2 f0;1g.
Our reference case corresponds to electron rich conditions

with n0e=n0i ¼ 2. For such cases, the plasma assumes a nega-

tive potential in front of the cathode in order to reflect the

surplus of electrons, while ions on the other hand are acceler-

ated by the potential drop. The numerical plasma injection

scheme used here differs from the one used in some other

related studies.20

With standard operation, the cold end plate at x ¼ L is

biased negatively at a potential �W, reflecting most of the

electrons: only the most energetic tail of the Maxwellian

velocity distribution has sufficient energy to overcome the
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reflecting potential, while all ions will be absorbed at the end

plate. For long systems we have conditions where the plasma is

quasi-neutral and has a large region at an approximately con-

stant potential, the plasma potential �Up. The plasma is not in

thermal equilibrium and for x > 0 it has no characteristic tem-

perature. A useful length-measure will here be the Debye length

defined in terms of the reference temperature T0. Similarly we

can define a reference ion sound speed by the same temperature.

For conditions relevant for the present study, the plasma density

will be inhomogeneous and non-stationary. To have an unam-

biguous definition of a Debye length we use n0e for the density.

We first assume the axially varying potential to be nega-

tive, �UðxÞ with UðxÞ > 0, for all x. For the ion density we

have the consistency relation

niðxÞ ¼ n0i exp ðeU=T0Þð1� erf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eU=T0

p
Þ; (1)

with erf being the error function. For the electrons we have

neðxÞ ¼ n0e exp ð�eU=T0Þ
�

1þ erf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðW� UÞ=T0

p �
; (2)

as long as the end plate potential is below the plasma poten-

tial in the device, W > Up > 0. For given T0; n0e; n0i, and W,

the plasma potential Up is found by setting ne ¼ ni. For vary-

ing W, the resulting equation is solved most easily by graphi-

cal methods. No solution with a quasi-neutral plateau exists

for small W (more precisely, for n0e=n0i ¼ 2 and a range

�1:73 < eW=T0 < 0:2, no solution with a quasi-neutral pla-

teau exists. This domain corresponds to oscillatory solu-

tions). For a very negative end plate bias W!1 with

erf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðW� UÞ=T0

p
! 1, where all electrons are reflected at

x ¼ L, the plasma potential is determined as the solution of

expð2eUp=T0Þð1� erf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eUp=T0

p
Þ ¼ 2n0e=n0i, giving for

instance eUp=T0 � 2:57 for n0e=n0i ¼ 2. Plasma potentials

observed in Q-machines1 are of this order of magnitude. The

mass ratio does not enter the result, and only the density ratio

n0e=n0i is important, not the individual densities. As long as

the end plate is negative compared to the plasma potential,

jWj > jUpj, we have the ion current contribution to be con-

stant and equal to the ion flux at the hot plate, en0i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0=Mp

p
.

The electron current en0e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0=mp

p
expð�eW=T0Þ, on the

other hand, changes due to the change in electrons absorbed at

the end plate when W is varied.

The average ion velocity at any position x is given by

Ui ¼
ffiffiffiffiffiffiffi
2T0

pM

r
n0i

niðxÞ

¼
ffiffiffiffiffiffiffi
2T0

pM

r
expð�eUðxÞ=T0Þ

1� erf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eUðxÞ=T0

p ; (3)

using Eq. (1). Defining the edge of the end plate sheath as the

position where we have quasi-neutrality, ni ¼ ne, we can

determine the average velocity of the ions as they arrive at the

sheath edge for varying bias W. For our reference case with

n0e=n0i ¼ 2 we find graphically that Ui � 1:8
ffiffiffiffiffiffiffiffiffiffiffiffi
T0=M

p
for all

values of W that allow solutions for a steady state plasma

potential Up. A sound speed for the present conditions cannot

be defined uniquely, since in general neither ions nor electrons

are in thermal equilibrium, but if we use Cs �
ffiffiffiffiffiffiffiffiffiffiffiffi
T0=M

p
as an

estimate, we can argue that the Bohm condition21,22 is fulfilled

with a good margin also in the present case. For the present con-

ditions, the ion accelerating pre-sheath is found at the cathode.

Here the pre-sheath is not quasi-neutral as usually assumed.22

As long as the end plate bias is below the plasma poten-

tial, jUpj < jWj, we have a monotonically decreasing potential

UðxÞ, giving a one-to-one correspondence between potential

and the axial x-position. Plotting the density difference ni � ne

as a function of U we find that ne > ni for all jUj < jUpj,
while ne < ni for all jUj > jUpj. If we insert the charge density

eðni � neÞ with Eqs. (1) and (2) into Poisson’s equation we

conclude (even without solving for UðxÞ) that the curvature of

the potential variation d2UðxÞ=dx2 is consistent with an elec-

tron rich sheath at x � 0 and an ion rich sheath at x � L.

When the end plate potential is changed to be less nega-

tive, more electrons will be absorbed at x ¼ L, while all ions

will still be absorbed. Eventually the plasma potential and end

plate potential become equal. As the end plate potential is

made even less negative, the curvature d2UðxÞ=dx2 should

change to give an electron rich sheath. Since all particles origi-

nate from the cathode at x¼ 0, the only way more electrons

can arrive at x � L is by changing the plasma potential to be

less negative, so that less electrons are reflected by the sheath

at x � 0. From then on the plasma potential will follow the

end plate bias as W! 0. At some critical potential it is no lon-

ger possible to supply enough electrons and the sheath at the

end plate becomes unstable. It is the dynamics of these unsta-

ble conditions we study in this work. The origin of the oscilla-

tions is often termed the “potential relaxation” instability.23,24

Particular attention is here given to the diode response

to external perturbations when its end plate is biased posi-

tively with conditions that give spontaneously excited oscil-

lations. The results are compared to predictions obtained by

the standard van der Pol equation11,12 that is often used to

model this type of diodes. It is demonstrated that this model

can account for the free oscillations, while only qualitative

agreement is found for the driven cases. Several methods for

introducing perturbations of the diode were considered.

Our particle-in-cell (PIC) code is standard,25 with one

important feature being the freedom to impose conditions at

the ends of the system, allowing for both Dirichlet and von

Neumann conditions. The code allows for introducing colli-

sional effects also. We use the mass ratio for electrons and

Hydrogen ions, M/m¼ 1836 and approximately 106 particles

of each species. The assumed mass ratio can only be consid-

ered as representative: a Q-machine, for instance, is usually

operated with low ionisation potentials alkali metals, result-

ing in larger mass ratios. Some early numerical study of

diode performance26 assumed ion to electron mass ratios

M=m � 128, and 3� 103 particles altogether. Later studies13

were content with M/m¼ 10, arguing that not much addi-

tional knowledge is gained by use of larger M/m-values.

III. PLASMA CONDITIONS WITH VARYING BASIC
PARAMETERS

For computational reasons we restrict the length of the

system to be L ¼ 103kDe, noting that we by this choice have
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L � kDe

ffiffiffiffiffiffiffiffiffiffi
M=m

p
in the reference cases studied. In all cases

we initiate the plasma column so that the electrons and ions

from the cathode are injected into empty space at t¼ 0. For

the given initial condition, the plasma current contains a

transient initial part. As an interesting feature we note that

very early in the process some of the ions are accelerated to

very high velocities, up to 20% of the electron thermal veloc-

ity, although the density of these ions is very low.27 At a later

stage, the ions are accelerated by the potential drop at the

cathode sheath, and here the velocities are only of the order

of
ffiffiffiffiffiffiffiffiffiffiffiffi
T0=M

p
. The initial acceleration is seen best in a video

representation.

To illustrate the basic operating conditions of the plasma

diode, we show in Fig. 1 the variations in diode current and

plasma potential at x ¼ L=2 as the end plate potential is

swept from a large negative to a large positive bias. As long

as �W is negative we find a slow change in the current, but

at a well defined threshold value, here at W � 0, we find a

sudden onset of low frequency oscillations. The variations in

plasma potential and current follow each other, so in the fol-

lowing we use the diode current as the sole diagnostic for the

diode performance. Details of the phase space dynamics of

ions as well as electrons can be seen in Video 1 (see sum-

mary in Fig. 2). During the time interval when �1 < eW=T0

< 1, we find the onset of an instability with wave-length

k � 1
4
L, with characteristics different from the saturated

diode oscillations. These spontaneously excited, short wave-

length, oscillations are assumed to be caused by the ion-

electron two stream instability. These oscillations are found

only for a narrow interval of the end plate bias.

As long as the end plate potential is sufficiently negative

to reflect the majority of the electrons, we find a stable nega-

tive plasma potential Up. As the end plate potential �W is

made less negative we reach the condition where jWj ¼ jUpj,
and from this stage the plasma potential is following W until

W � 0. At this point the sheath becomes unstable, and large

FIG. 1. Variation of the current through the diode (top) and plasma potential

at x ¼ L=2 (bottom) for varying end plate bias. Also the externally applied

potential sweep at the end plate is shown. The initial current is vanishing

since we start with an empty diode.

FIG. 2. Summary figure for Video 1, showing also the phase space dynamics. The column to the left shows from the top the potential and electric fields as a

function of position. Below we find first the electron phase space and then at the bottom, the ion phase space. The triple column on the right hand side shows

the net plasma current (left) and the applied signal (right) with time increasing from top to bottom. The middle panel shows the plasma potential at a position

x ¼ L=2. A moving dotted horizontal line gives the time during the video. The frames to the left are obtained at the time indicated by a horizontal dotted line

on the right hand side (enhanced online) [URL: http://dx.doi.org/10.1063/1.4747620.1].
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amplitude, low frequency oscillations are excited (see also

Fig. 1). Once the system is unstable, its basic oscillation

frequency and saturated amplitude is found to be independent

of further increases in the end plate potential, indicating a satu-

ration. The basic oscillation frequency of the oscillations is

inversely proportional to the length of the system, as illustrated

in Fig. 3. This scaling could invite an interpretation of the

instability as a current driven ion acoustic mode,28 where the

most unstable frequency could be assumed to be fa � Cs=2L.

If we introduce the standard definition Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
T0=M

p
, we find

that the observed frequency is approximately 3 times larger

than fa. The simulation allows parameter variations to be

obtained with an accuracy much better than what is found in a

laboratory. We note that for L < 500kDe there are small but

measurable and systematic deviations from this simple propor-

tionality between f�1
0 and L. For very short systems,

L < 80kDe, the oscillations disappear. We attribute this feature

to be associated with an overlap of the electron and ion rich

sheaths at x � 0 and x � L, respectively.

The details of the phase space dynamics are best seen

in Video 1 (Fig. 2). In Fig. 4 we show a sample of phase

space for a selected time when the end plate is kept on a

constant positive potential. At this time we find features

usually associated with a double layer,23,29 in this case one

moving with a velocity of approximately 0:02 vthe with

vthe being the electron thermal velocity derived from the

cathode temperature T0. The analogy is best seen by con-

centrating on the part of phase space between the two ver-

tical dashed lines. The important feature is that the free

ions moving in the negative direction towards the cathode

are some that have been reflected by the positive potential

at the end plate. The trapped electron component is in

reality a “blob” of electrons oscillating in a moving local

potential maximum.9 The double layer like structure dis-

solves when the source of reflected ions from the end plate

is temporarily disrupted. The whole process repeats with

the period of the instability.

For completeness we show in Fig. 5 the space-time vari-

ation of the electrostatic potential and the corresponding net

plasma current variation. The slope of the slanting shaded

area in both figures gives a characteristic propagation veloc-

ity that corresponds to the velocity of the double layer like

feature in Fig. 4.

FIG. 3. Illustration of the period of the oscillation of the diode at a large pos-

itive bias for varying length of the system L shown in the top frame with

filled red circles. The full line gives 2L=Cs as reference. In the bottom frame

we divided the observed normalized oscillation period by the best linear fit

to the data in the top frame. With filled green squares we give selected

results where the ions undergo change exchange collisions, as explained in

Sec. VI.

FIG. 4. Selected sample of spatial potential variation together with corre-

sponding electron and ion phase spaces, illustrating transient double layer

like features. The time is t ¼ 1270:47 x�1
pi , i.e., a late time when the plasma

has settled in a steady oscillatory state.

FIG. 5. Selected time interval of unstable diode oscillations. The top figure

shows the space-time variation of the electrostatic potential, the lower figure

shows the corresponding net plasma current variation. The vertical dashed

line shows the time for the phase-space presentation shown in Fig. 4. In both

cases the cathode is at the bottom of the figure.
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Video 1 (Fig. 2) shows the full temporal evolution of

electron and ion phase spaces. The formation and propaga-

tion of the transient double layer can be observed, in particu-

lar. From Fig. 1 we note a locally enhanced high frequency

noise component at the negative extremum of the plasma

current. Inspection of Video 1 (Fig. 2) demonstrates that this

noise is due to a localized irregular “blob” of electrons

trapped near a local potential maximum. The oscillations of

these trapped electrons in their local, approximately para-

bolic, potential well gives rise to the observed noise. The

details in the dynamics of the trapped electron population

will be susceptible to collisions as discussed in Sec. VI.

As a test, we monitored the total number of simulation

particles in the system during the simulations. This number

was pulsating with the periodicity of the oscillations due to

the modulated losses, but with constant end-plate potential

we saw no systematically decreasing or increasing trend in

the particle number, when averaged over one oscillation

period.

IV. THE VAN DER POL MODEL

A standard and widely used analytical model for study-

ing the nonlinear properties of driven linearly unstable sys-

tems is the van der Pol model

d2

dt2
n� ða� bn2Þ d

dt
nþ x2

0n ¼ Ax2
0 sin ðxetÞ ; (4)

where we included a harmonic forcing. The coefficients a > 0

and b > 0 refer to the linear growth phase and the nonlinear

saturation, respectively, while x0 is the natural frequency of

the oscillator and A is the amplitude of the forcing term. The

variable n denotes any quantity of physical interest; in most

of the present study it will be taken to be the current through

the system. The right hand side of Eq. (4) can be made more

general, but the form used here is the one found most often.

The form Eq. (4) can be simplified by introducing a normal-

ized time s ¼ tx0 and a normalized amplitude g ¼ n=n0 with

n0 �
ffiffiffiffiffiffiffiffi
a=b

p
to obtain d2g=dt2 � �ð1� g2Þdg=dtþ g ¼ Asin

ðsxe=x0Þ=n0 where � ¼ a=x0.

The results of Fig. 1 indicate that the onset of the oscil-

lations is sudden: they reach maximum amplitude within

approximately one period of oscillations. This feature was

confirmed also by other detailed simulations where the end

plate potential was changed from being below to being above

threshold by a step function. The van der Pol model therefore

needs a growth rate comparable to the frequency. In Fig. 6

we show results for diode simulation data (shown with full

line) and numerical solutions of the van der Pol equation (4)

with A¼ 0 and parameters adjusted to a=x0 ¼ 0:1 for

optimum fit. The parameters are chosen to give the best fit to

the numerical observations. The results summarized Fig. 6

indicate that the van der Pol equation is able to give a very

convincing representation of the performance of the steady

state oscillations of the plasma diode without forcing. We have

analyzed a wide parameter range giving consistent results.

In Fig. 7 we show numerical solutions of the normalized

van der Pol equation. Two cases are considered: one (top figure)

by applying a chirped frequency with constant amplitude as

forcing on the right hand side, and one (bottom figure) with a

FIG. 6. Solution of the normalized van der Pol equation (dashed line) with

parameters fitted to the data from the diode simulations (full line). Equation (4)

is here solved without forcing with a=x0 ¼ 0:1. The simulation data for the

plasma current are obtained with a constant positive end plate bias.

FIG. 7. Top figure: numerical solution of the van der Pol equation (4) in its

normalized form with � ¼ 0:1, here applying a chirped frequency with con-

stant amplitude as forcing on the right hand side. The dotted oblique line

gives the local frequency of the applied forcing. Bottom figure: forcing with

constant frequency but with a linearly increasing amplitude. The wavelet

transform of the resulting signal is shown in both cases.
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constant frequency (here taken to be larger than f0) but with a

linearly increasing amplitude. The wavelet transform of the

resulting signal is shown for both cases. The conspicuous feature

of the solution with chirped frequency is the “frequency pulling”

characteristic of the van der Pol equation. This is seen as the

tilted frequency response in the local wavelet transform in the

lower panel of Fig. 7(a), where the frequency of the oscillation

response becomes synchronized with the applied signal. An

increase in amplitude of the forcing increases the time interval

where the synchronization can be observed. We note the ab-

sence of harmonic interactions in the numerical solutions. The

constant frequency solutions illustrate how the natural mode of

oscillation is stabilized (that is the frequency shifted or

synchronized with the external forcing) for a sufficiently large

amplitude of the excitation.

V. PERTURBATIONS OF THE DIODE

Mathematically, the question of forcing within the van

der Pol equation is simple: an additional term is inserted on

the right hand side as shown in Eq. (4). For a physical diode,

a forcing can be applied in several ways, not necessarily

equivalent.

The diode can be forced by applying a signal either to

the end plate or at some internal position in the system. The

two cases will be distinguished here, external end plate and

internal forcings. One of the aims will be to analyze two of

the characteristic features of the van der Pol model, synchro-

nization and frequency pulling.11,12,28 These features can be

demonstrated most easily by a wavelet analysis of the data.30

We made two series of simulations, using two different

forcing signals: one with a fixed frequency but varying am-

plitude and one with fixed amplitude but with “chirped”

frequency.

The simplest form of external excitation (both in labora-

tory and in simulations) consists of applying an external sig-

nal to the cold end plate of the diode. The plasma diode can

also be forced internally. In a Q-machine this forcing is usu-

ally achieved by immersing a fine-meshed grid in the plasma

and then applying some time-varying signal to this grid. The

operation of such a grid and its interaction with the plasma

has been subject to some controversy,6,31 where one model

assumes that the local charge distribution is important and

another that the modulated ion absorption is the dominant

excitation mechanism. We start by discussion the two latter

cases.

A. Oscillating localized electric field

We considered a model where externally controlled

charges were introduced at two nearby grid-points (here sep-

arated by 10kD) with opposite polarity. These charges came

in addition to the ones arriving at the grid-points from the

surrounding plasma. The excitation mechanism is here due

to particle acceleration by the local electric field between the

two charged grid-points. This form of excitation corresponds

to a velocity modulation rather than a density modulation.

We found that internal excitation by this method was indeed

possible, but the charges applied had to be very large. The

results were inconclusive and are not reported here. The

excitation mechanism using an oscillating electric dipole

was important for the early discussions of analytical studies

of linear ion acoustic Landau damping.31 As a practical

method of wave excitation it seems to have little value in

comparison to the model based on a grid giving a modulated

particle absorption to be discussed in Sec. V B.

B. Locally modulated ion absorption

In Fig. 8 we show results from numerical simulations

with internal excitation by modulated particle absorption, here

by a signal chirped in frequency with constant oscillation am-

plitude. Ions are absorbed with a probability independent of

their velocity. This form of excitation corresponds to the gen-

erally accepted model for wave excitation by a grid immersed

perpendicular to the magnetized plasma column in a

Q-machine.6,28,32 For the case illustrated in Fig. 8 the absorp-

tion is strong, varying harmonically in the range 0%–70% at a

position 3L=7, that is, the absorbing “grid” is at the position

x=kDe � 430. This method of excitation captures the essential

part of grid excitation in, for instance, Q-machines at low

applied frequencies. A missing element in the simulations is

the electric fields being set up by the potential difference

between the grid and the plasma vessel when a time varying

potential is applied to the grid.

We note the distinct frequency pulling signature when

the chirped frequency comes near the natural nonlinear oscil-

lation frequency of the diode, i.e., in the frequency interval

f0=2� 3f0=2, approximately, where f0 is the natural oscilla-

tion frequency. At the same time we note also an enhance-

ment of the second harmonic, a feature not accounted for by

the van der Pol equation. Even more interesting is the strong

frequency pulling of the basic oscillator frequency observed

FIG. 8. Numerical simulations with internal excitation by modulated particle

absorption, here by a chirped signal with constant amplitude. The top panel

show the net current through the diode, the middle panel shows the time-

varying absorption at a reference position, here at x ¼ ð3=7ÞL, while the

lower panel shows the wavelet transform of the time varying current.

The horizontal dashed line in the lower panel shows the natural oscillation

of the free oscillator for the given DC end plate bias, while the dotted

oblique line gives the local frequency of the applied forcing.
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when the applied frequency is in the range 3f0=2� 2f0. In

this latter range, the strong oscillation has a frequency close

to half the applied frequency. At reduced excitation ampli-

tudes we will, however, see perturbations of the diode oscil-

lations also at half oscillator frequency. These effects are

masked in Fig. 8 by the frequency pulling which becomes

effective already at frequencies close to half of the free oscil-

lation frequency.

At time intervals when the applied frequency lies near

the natural oscillation frequency f0 and 3f0=2, we note excita-

tion also of f0=2. A weak signature of this frequency is seen

also when the applied frequency is near 2f0.

We have tried different positions of the excitation point.

Taking, for instance, 5L=7 we recover all the basic features

of Fig. 8, but now with a reduced amplitude. Our conclusion

from these and similar results is that the strongest excitation

is found when the perturbation is close to the cathode. In this

case the induced perturbation has the longest interaction dis-

tance with the ion flow before it reaches the end plate.

In Fig. 9 we show results where the frequency of the ion

absorption is constant, but the temporally varying absorption

ratio increases from 0 to 100% in the peak values. See also

Video 2 (Fig. 10). The applied frequency is here below the

natural frequency of the diode oscillations. For the present

choice of parameters we find a transition in the oscillator

characteristics at an absorption level of approximately 60%.

Here the natural diode oscillations disappear completely,

while we find a perfect locking to the applied frequency. At

FIG. 9. Numerical simulations with internal excitation by modulated parti-

cle absorption, here by a signal with constant frequency somewhat below

the natural oscillation frequency given by the dashed line (see also Video

2 (Fig. 10)). The amplitude of the oscillations increases from zero level

with full ion transmission to 100% modulation where the ion transmission

oscillates between 0 and 100%. The top panel show the net current through

the diode, the middle panel shows the time-varying absorption at a refer-

ence position at x ¼ ð3=7ÞL, while the lower panel shows the wavelet

transform of the time varying current. The dashed line in the lower panel

shows the natural oscillation frequency of the free oscillator for the given

end plate bias, while the dotted line gives the frequency of the applied

forcing.

FIG. 10. Summary figure for Video 2, showing also the phase space dynamics. The simulations model an absorbing grid at position x ¼ 430kD where the time

varying relative absorption is shown in the third frame to the right. See Fig. 2 for a detailed description of the set-up (enhanced online) [URL: http://dx.doi.org/

10.1063/1.4747620.2].
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the same time we find a very strong second harmonic

enhancement, even the third harmonic becomes noticeable

here. Prior to the onset of the synchronization we note a

strong modulation of the free oscillator frequency and, in

particular, also its second harmonic.

Consistent with the properties of the van der Pol model,

we note that for a certain applied amplitude the free oscilla-

tion at frequency f0 is quenched or stabilized, see again

Video 2 (Fig. 10) (it may be confusing to use the term

“stabilization” since the system is still oscillating at a large

amplitude, but now at the applied frequency). The amplitude

needed for this quenching depends on the applied frequency.

We show in Fig. 11 results for the variation of this threshold

amplitude for varying applied frequencies for two positions

of the excitation. There is a noticeable asymmetry with

respect to f=f0, but qualitatively the results are similar to

those expected from the van der Pol model, i.e., the threshold

amplitude decreases as jf � f0j decreases, as also found

experimentally.32

C. Modulated end plate bias

The external forcing can be applied also to the terminat-

ing end plate by adding a signal to the DC-bias. We used both

amplitude and frequency modulations, as in Figs. 8 and 9.

Illustrative results are shown Figs. 12 and 13 for a fixed fre-

quency with linearly increasing amplitude and a fixed ampli-

tude with chirped frequency, respectively. In many respects

the results are similar to those found in Figs. 8 and 9, with one

significant difference being in the harmonic content. We note

the frequency pulling in Fig. 13 is very similar to that in

Fig. 8, also when the local frequency approximates 2f0. Also,

the frequency modulation in Fig. 12 is similar to what is

seen in Fig. 9, but the signal at the second harmonic is com-

pletely absent. The feature near the frequency f0=2 is absent

in Fig. 13.

We show in Fig. 11 with crosses the normalized stabiliz-

ing amplitude A=A0 where A0 is the DC-bias applied to the

end plate. For amplitudes A > A0 the fundamental steady

state oscillation amplitude is stabilized. We note also in this

case a variation A=A0 	 jf � f0j.
As a general feature we find that large amplitude oscilla-

tions have to be applied to the end plate in order to find

observable effects: the amplitudes have to be significant frac-

tions of the DC-bias. The necessary amplitudes depend on

the DC-bias, provided the diode is conditioned to be in a

fluctuating state.

VI. EFFECTS OF COLLISIONS

The foregoing analysis assumed ideal collisionless

conditions. For realistic conditions we will often find that col-

lisional effects cannot be ignored. Considering, for instance, a

Q-machine operated with Caesium, which is a common prac-

tice, it is well known that the cross section for collisions of

thermal electrons at relevant temperatures and neutral Cae-

sium is particularly large.33 Neutral Caesium originating from

the neutral oven is found in abundance near the cathode. Also,

FIG. 12. The figure shows results for the case where a constant frequency

with slowly increasing amplitude is applied to the positive end plate bias.

The figure should be compared to Fig. 9.

FIG. 13. The figure shows results for the case where a chirped frequency

with constant amplitude is applied to the end plate. The figure should be

compared to Fig. 8.

FIG. 11. Variation of the stabilizing amplitude with applied frequency. The

error bar shown is representative for all open circles. Open circles correspond

to the excitation applied at a position 3L=7, triangles to a position 5L=7. The

error bar for the filled triangle represents the maximum uncertainty for those

symbols. The figure also shows results (with �-signs and a representative

error bar) for the case where a signal is applied to the end plate.
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the ions will in this case experience collisions with the neu-

trals, where charge exchange collisions have the largest cross

section, this type of interaction being resonant.34

We extended the analysis by considering also collisional

interactions in the PIC-code.20 Some basic features of our

model are summarized in the Appendix. The numerical code

offers an opportunity to introduce collisional effects for one

species at a time: this is unphysical but offers an insight into

the details in the process. We study ion neutral elastic colli-

sions (IS), electron neutral elastic collisions (ES), and charge

exchange ion collisions (CE). A summary of simulation

results is presented in Fig. 14, where L ¼ 103kDe as in

Fig. 6. Two parameter regimes are analyzed: one where the

scattering neutral gas temperature Tn equals the reference

temperature T0, while another case assumes Tn ¼ 0:15 T0. In

all cases we have taken the mean free path for collisions to

be approximately 140 kD. For reference, we also include a

result for the case where we have all collision processes acti-

vated: the mean free path for ion elastic and charge exchange

collisions is here 460kD for both, giving an average ion

mean free path of 230kD, while the electron mean free path

for elastic collision is 260kD.

The characteristic diode oscillations are changed by the

electron neutral collisions when we compare with the refer-

ence collisionless simulation also shown in Fig. 14. The high

frequency oscillations due to the trapped electron component

(see Video 1, Fig. 2) is quenched by the collisions, where we

have the collisional mean free path to be shorter than the

width of the potential well.35 The form of the current signal

becomes closer to the result obtained by the van der Pol

model (see also Fig. 6). The sheath region near the emitting

region at x¼ 0 is electron rich already without collisions,

and an additional slowing down of the electrons due to the

collisions is merely enhancing the local excess of electrons

there. The temperature of the scattering neutrals has little

effect in this context.

While Fig. 14 is a summary plot, we show in Fig. 15 the

detail of the effect of elastic collisions of electrons and neu-

trals. As long as the collisional mean free path is longer than

L as in the three top traces in Fig. 15, the collisions have

modest effect, but as the collisions become more abundant,

the frequency of the oscillations decreases slowly with

decreasing collisional mean free path. At the same time the

amplitude decreases to be almost indiscernible when the

mean free path is approximately L=30. At this stage the elec-

tron mobility is low, and the local electron density becomes

large in front of the emitting surface. For the shortest mean

free paths in Fig. 14, we observe the transient formation of

an ion phase space vortex.36,37 The life time of these vortices

seems to increase with decreasing collisional mean free

paths. If we decrease the collision mean free path even fur-

ther, we find a new type of small amplitude oscillations with

a frequency that is higher than seen in Fig. 14: these oscilla-

tions are due to the mobile ions.

Ion collisions are effective in modifying the diode; charge

exchange collisions are more effective than elastic ion colli-

sions. To gain some insight into the details of the elastic ion

collision processes, we determined an estimate for the joint

probability density PðE1;E2Þ, where E1 is the ion energy at

the beginning of a mean free collision path and E2 the energy

of the ion at the next collision time. The analysis does not dis-

criminate the positions of the collisional ion. The marginal

distributions PðE1Þ and PðE2Þ are obtained by projecting

PðE1;E2Þ on the E1 and E2 planes. We found that approxi-

mately we have PðE1;E2Þ � PðE1ÞPðE2Þ, indicating that to a

good approximation we can assume E1 and E2 to be statisti-

cally independent. This means that the collective electric

fields are just as effective as the elastic collisions in randomiz-

ing the ion energies. The main characteristics of the oscilla-

tions with significant charge exchange collisions (traces “CE”

in Fig. 14) is a decrease in the oscillation period (for elastic

FIG. 14. Diode currents for selected collision processes. The bottom trace

shows the reference calculations without collisions. The middle trace shows

IS, ES, and CE, all assuming that the scattering neutral gas has the electron

reference temperature at x¼ 0. The top frame shows results corresponding

to the middle frame, but now with the scattering gas being colder,

Tn ¼ 0:15 T0. The trace denoted “ALL” represents a simulation where all

collisions are activated simultaneously.

FIG. 15. Diode currents for different electron neutral collisions. The

imposed collisional mean free path ‘c is indicated at each curve. The ions

are here collisionless.
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collisions, this has been observed also experimentally2,38), to-

gether with a distortion of the form of the oscillations, that

becomes “saw-tooth” like. When all collisional effects are

activated (see the trace labelled “ALL” in Fig. 14), we find

that the saw-tooth feature is still there but now with a “tilt” to

the opposite side, thus demonstrating that the temporal form

of the oscillations is sensitive to the nature of the collisions.

The results presented in Fig. 14 include the initial transient

part of the oscillations: we note significant modifications also

in this part when we compare with the reference collisionless

case.

When the collisional charge exchange drag on the ions

is large, we find the formation of a positive space charge

layer near x¼ 0, and the diode oscillations are modified.

Details in the propagation characteristics in the space-time

varying potential found in Fig. 5 disappear. Charge exchange

collisions are more effective than elastic collisions in slow-

ing down the ions, and charge exchange collisions with a

cold neutrals are more effective than similar collisions with

warm neutrals. All these observations are consistent with the

results summarized in Fig. 14. If we take the neutral gas tem-

perature to be very low, we find that the ion component can

develop two distinct populations39: one being the part accel-

erated through the potential drop at the sheath having not yet

collided, and a part formed by the charge exchange collisions

and appearing as a cold component with no drift velocity. In

this case we can have a kinetic ion-ion instability develop-

ing.40 This result has interest only for very low temperatures

Tn and is not elaborated further here. For very high ion colli-

sion rates the ion mobility becomes low, but the oscillations

can be maintained by the electron dynamics alone, as for a

Pierce diode41 provided the conditions on geometry and

end-plate bias are fulfilled. For such low ion mobilities, the

average ion distribution will be non-uniform.

The almost linear scaling between oscillation period and

the length of the system (shown in Fig. 3) remains valid also

when we have significant amounts of collisions, but the fre-

quency is now noticeably reduced and we have f0 � Cs=2L;

see results given by squares in Fig. 3, where a full line gives

the sound speed, and dotted line is the best fit to the data

(squares). The difference is minute.

In Video 3 (see Fig. 16) we show the space-time varia-

tion of the diode, giving the potential as well as the phase-

space information for the case where Tn ¼ 0:15 T0. We initi-

ate the simulation with no collisions and let the mean free

path be slowly decreasing until it reaches a value slightly

smaller than the one used for Fig. 14. We have ‘c 	 1=t so

that the average collision frequency becomes approximately

proportional to time. The effects of charge exchange colli-

sions begin to be noticeable when the collisional mean free

path is approximately L=2. The formation of the cold ion

population due to the charge exchange processes is clearly

seen in ion phase space. The results should be compared to

the free oscillations shown in Video 1 (Fig. 2). Note that the

number of ions reflected at the end plate is strongly reduced

for the case with charge exchange collisions. The

FIG. 16. Summary figure for Video 3, showing also the phase space dynamics. The simulations model the case where the ion charge exchange collisional

mean free path decreases with time as shown in the third frame to the right. See Fig. 2 for a detailed description of the set-up (enhanced online) [URL: http://

dx.doi.org/10.1063/1.4747620.3].
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propagating double layer structure is not significant with

charge exchange collisions, but the basic characteristics of

the diode oscillations remain, albeit with reduced frequency

and distorted temporal form of the oscillations. In Video 3

(Fig. 16) we show in the rightmost panel also the electro-

static potential as detected at a position x ¼ L=2. At this

position we find localized potential enhancements with long

quiescent time intervals in between, where all of the poten-

tial drop in the diode is found at the end sheath.

Also with collisions included, we find that the diode

retains the basic properties of a van der Pol oscillator. For

illustration we show in Fig. 17 the diode performance with

external forcing of a diode where the ions have charge

exchange collisions where ‘c ¼ 150kD. The top trace shows

the diode current, the next frame is the potential applied to

the end-plate. The third frame from the top gives the plasma

potential in the central position of the diode, while the bot-

tom frame gives the wavelet transform of the current. A

dashed line gives for reference the natural frequency of the

diode without collisions and constant positive end-plate

potential. When the externally applied frequency is near the

collisional diode frequency, we observe the frequency pull-

ing in the wavelet transform of the diode current. When the

difference between the natural and applied frequencies is

large, we find that the oscillations return to the frequency of

the constant bias diode. These low frequency oscillations

modulate the high frequency applied signal resulting in

bursts or “packets” of high frequency signals, most clearly

observed in the wavelet transform. We note a similarity with

the corresponding results in Fig. 13 for a collisionless diode.

VII. DISCUSSIONS

In the present study we analyzed the properties of a sim-

ple plasma diode with emphasis on the conditions with forc-

ings applied either to the boundary of the plasma or internally

by introducing either variable test charges or particle absorp-

tion. We compared the properties of the diode with solutions

of the van der Pol equation. It was found that for the unper-

turbed oscillation, i.e., without applied forcing, a very good

agreement could be found. Extending the analysis to the exter-

nally forced diode we found qualitative agreement in the sense

that some basic features of the van der Pol equation could be

recovered, but here it was important to specify the means of

external excitation. The most effective excitation turned out to

be one corresponding to an absorbing grid immersed in the

plasma column. Incidentally, this method was used by some

of the early investigations of the diode performance.28 Veloc-

ity modulation by a localized electric field had a much smaller

effect in comparison.

Another method of diode perturbation consists of apply-

ing a variable, externally controlled, potential to the end

plate. We analyzed also this method and found that in this

case elements of the results from a perturbed van der Pol

equation could be recovered. It was, however, necessary to

apply external amplitudes comparable to the DC bias, an ob-

servation which is after all also intuitively reasonable. This

latter method of excitation is the one that comes closest to

giving results similar to those found by solving the van der

Pol equation with external forcing. We find, however, the

similarities of the results to be more interesting than the dif-

ferences: the two very different methods of excitation both

reproduce the periodic pulling and mode stabilization fea-

tures found in the van der Pol model.

The excitation obtained by modulating the end plate

bias corresponds to applying an ideal voltage generator,20

i.e., one that maintains a potential irrespective of the load.

The case where the end plate voltage is modulated can be

modeled by a dc-generator in series with a variable genera-

tor, both elements considered ideal. The alternative ideal

generator used in lumped electrical circuits, the ideal cur-

rent generator (one that maintains the current irrespective

of the load), is not readily realized experimentally and

therefore not studied here. As a first approximation it can

be argued that the modulation of the ion flux passing a ref-

erence position as described in Sec. V B is equivalent to a

current modulation. Such a model can be taken only as an

approximation, however, since the efficiency depends on

the position of the excitation along the axis of the device as

evidenced by Fig. 11.

The most significant difference between the diode simula-

tions and the numerical solutions for the van der Pol equation

lies in the second and third harmonic generation. These were

much more significant in the numerical simulations of the

diode, and we conclude that the nonlinear term in the van der

Pol model has to be elaborated for a better agreement and

FIG. 17. External forcing of a diode with ions have charge exchange colli-

sions where ‘c ¼ 150kD. The top trace shows the diode current, the next

frame is the potential applied to the end-plate (see also Fig. 13). The third

frame from the top gives the plasma potential in the central position of the

diode, while the bottom frame gives the wavelet transform of the current. A

dashed line gives for reference the natural frequency of the diode without

collisions and constant positive end-plate potential.
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found also that a simple addition of terms with exponents

exceeding 2 is not sufficient. We found numerical confirma-

tions also of experimentally observed propagating double

layers.23 Details concerning the ion population are not readily

revealed experimentally, and numerical simulations like those

presented here are necessary for a complete understanding.

The internal modulations destroy the propagating double

layer, and the stabilization of the van der Pol oscillations for

that case is in part due to this effect. When the applied fre-

quency is very high compared to the natural frequency, the

perturbation reduces to a local modulation of the plasma den-

sity, where the oscillating diode returns approximately to its

original state with a DC-bias.

In all cases we found that large forcing amplitudes have

to be applied to the system in order to recover solutions

resembling those characterizing a van der Pol oscillator. We

tried various modifications of the basic van der Pol equation

to make its solutions closer to observations but found that

minor modifications are insufficient. Terms containing dn=dt
as well as n in the bracket of the nonlinear term of (4) were

tried.

The effect of collisions was discussed in Sec. VI. Sev-

eral types of collisions were studied. We found that charge

exchange collisions were particularly effective in modifying

the oscillation characteristics of the diode, with results sum-

marized in Figs. 3 and 14. Charge exchange collisions usu-

ally have the largest cross sections and are physically the

most relevant. The most important observation regarding the

oscillation characteristics of the diode with collisions seem

to be a pronounced reduction in oscillation frequency. Also,

a change in shape of the signal is noted: the current becomes

more “saw-tooth like,” with an increased harmonic content

with collisional ions, while electron collisions on the other

hand give smoother signals, with less harmonic content. For

the collisionless diode we find that the growth of the large

amplitude perturbation begins at the sheath near the end

plate, and progresses rapidly into the main plasma (see

Video 1 (Fig. 2)). For the collisional diode, with the parame-

ters studied here, the perturbation begins at the plasma emit-

ting plate to propagate rapidly into the main plasma, see

Video 3 (Fig. 16). Our three videos offer detailed insight into

the phase space dynamics of ions as well as electrons. The

general space-time characteristics of the oscillations are

changed, e.g., details in the double layer like structure shown

in Fig. 4 are lost.
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APPENDIX: DETAILS OF THE COLLISION ALGORITHM

The numerical collision model developed for the present

study is based on a Monte Carlo collision (MCC) model for

PIC simulation codes and is directly based upon previous

works.42,43 While traditional collision models44,45 calculate

the time between collisions for each particle, the MCC-PIC

package generalizes these calculations to allow for more effi-

cient algorithms.

The collision algorithm is based on the null-collision

methodology. Instead of entering the rather time-consuming

evaluation of cross section rðEÞ or equivalently collision fre-

quency �ðEÞ for each simulation particle at each time step, a

maximum collision frequency �max is introduced for each

particle species

�max � maxE

�X
s

�sðEÞ
�
; (A1)

where �sðEÞ is the collision frequency of type s for the given

specie. Potential candidates for collision events during the

time interval Dt are now draw with probability P ¼ 1� exp

ð��maxDtÞ. For these candidates only the exact evaluation of

�ðEÞ is performed. A fraction �ðEÞ=�max of the potential can-

didates drawn are then subjected to an actual collision event.

The remaining fraction suffer a “null-collision,” that is they

avoid collisions in the given time interval Dt.
The current model allows for both elastic and inelastic

scattering and charge exchange collisions, for any arbitrary

combination of particle species, with input parameters as

cross sections, scattering angles, and VDF’s of the target

species given. Cross section and scattering angles are gener-

ally given as functions of kinetic energy in a centre-of-mass

reference system.

The present study is restricted to constant cross sections

and isotropic scattering. Realistic scattering cross sections

that vary with energy and which may differ significantly

from one species to another can be readily introduced. For

the illustration intended with the present analysis we find

that constant cross sections and, thereby, constant mean free

paths will suffice. Taking the cross section to be constant, in-

dependent of energy, allows us to use a constant mean free

path for all particles.
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