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The Lagrangian paths, horizontal Lagrangian drift velocity, UL, and the Lagrangian
excess period, TL − T0, where TL is the Lagrangian period and T0 the Eulerian linear
period, are obtained by particle tracking velocimetry (PTV) in non-breaking periodic
laboratory waves at a finite water depth of h = 0.2 m, wave height of H = 0.49h and
wavenumber of k = 0.785/h. Both UL and TL − T0 are functions of the average vertical
position of the paths, Ȳ , where −1 < Ȳ /h < 0. The functional relationships UL(Ȳ ) and
TL − T0 = f(Ȳ ) are very similar. Comparisons to calculations by the inviscid strongly
nonlinear Fenton method and the second-order theory show that the streaming velocities
in the boundary layers below the wave surface and above the fluid bottom contribute
to a strongly enhanced forward drift velocity and excess period. The experimental drift
velocity shear becomes more than twice that obtained by the Fenton method which again
is approximately twice that of the second-order theory close to the surface. There is no
mass flux of the periodic experimental waves and no pressure gradient. The results from
a total number of 80 000 experimental particle paths in the different phases and vertical
positions of the waves show a strong collapse. The particle paths are closed at the two
vertical positions where UL = 0.

1. Introduction

The mean wave drift – the Stokes drift – was introduced by Stokes (1847). The
mathematical theory was in water of finite depth generalized to include the secondary
streaming effect caused by the boundary layers at the bottom and surface by Longuet-
Higgins (1953). The theory explained a set of measurements by Bagnold (1947) where
the drift at the bottom boundary layer along the wave propagation direction was strong
enough to cause a backward drift at all of the other vertical positions of the water column.
The Stokes drift contributes to the momentum and energy fluxes at the ocean surface.
E.g. Ardhuin et al. (2009) have used HF radar recordings in the field to decompose the
wave drift into a quasi-Eulerian current and a Stokes drift estimating their respective
contributions to the Ekman layer. In wave and ocean current interaction models, the
contribution by the Stokes drift is expressed in terms of a vortex force, material advection
terms and a gradient term in the turbulent kinetic energy equation, where the wave effects
in turn generate the Langmuir circulation in the oceanic boundary layer, see Sullivan
and McWilliams (2010). A generalized Lagrangian mean flow theory for the interaction
between a wave motion and a mean flow was developed by Andrews and McIntyre (1978).
A modification of the theory by Groeneweg and Klopman (1998) was tested for the case
of surface waves interacting with non-turbulent and turbulent shear flows comparing to
experiments. Return flows will develop under a finite packet of waves due to radiation
stress gradients, see Longuet-Higgins and Stewart (1962) and McIntyre (1981).
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Monismith et al. (2007) have presented several sets of laboratory measurements where
the averaged Lagrangian wave drift velocity has been found to be zero across all of the
water column. This implies that an Eulerian mean velocity locally cancels the Stokes
drift in those experiments. The results of Monismith et al. have primarily been found
in the combined cases with waves propagating on constant and sheared currents, where
in the experiments by Klopman, referred to in Groeneweg and Klopman (1998), and
those of Nepf et al. (1995), the underlying channel flows were turbulent, where the
effects of the bottom boundary layer could be felt throughout the depth at eariler
distance and time compared to the case where waves propagate along a fluid layer
otherwise at rest. However, not all experiments reported in the literature conform with
the measurements obtaining a vanishing Lagrangian wave drift velocity, where examples
include the experiments referenced in Groeneweg and Klopman (1998), see also the
references in Monismith et al. (2007). The differences in the results point to conflicts
between the various experimental observations including the differences in the nonlinear
wave and mean flow interaction processes as well as the boundary conditions.
At finite water depth, with kh → 1 or less (where k is the wavenumber and h the water

depth), Monismith et al. (2007) suggest that an interplay between the wave motion and
the bottom boundary layer may alter the vertical variation of the Lagrangian velocity.
In which way the changes occur await experimental clarification, however. It is rather
uncertain if the mean particle velocity would cancel exactly at all vertical positions as
in the deeper water cases (larger kh) reported by Monismith et al. (2007). Theoretical
calculations of the particle motion in nonlinear water waves at finite depth by, e.g.,
Constantin (2006), Hsu, Chen and Wang (2010) and Constantin (2015), do not address
the contributions by the boundary layers at the bottom and wave surface.

We here provide wave tank measurements of the Lagrangian drift velocity in a non-
breaking strongly nonlinear periodic wave train at finite water depth with kh = 0.785.
The experiment has been previously published in Grue, Kolaas and Jensen (2014) where
the focus was directed to the maximum possible orbital velocity in the steep experimental
waves. The experimental data are here reprocessed obtaining the Lagrangian particle
paths, drift velocity and its shear. Particularly the drift caused by the streaming in the
boundary layers at the bottom and below the surface are investigated. By means of
particle tracking velocimetry (PTV) we record the wave field at an early position of the
wave tank when the wave train has become periodic and before the waves interact with
the beach at the end opposite to the wave maker. The waves we measure propagate in
practice in an open-ended channel where no external pressure gradient exists.
Section 2 describes the experiments, methods and the particle paths, section 3 the

Lagrangian period, drift velocity and its shear, while section 4 is a conclusion.

2. Experiments and methods

The waves are generated in a 25 m long and 0.5 m wide wave tank in the Hydrodynam-
ics Laboratory at the University of Oslo. The water depth is h = 0.2 m. Recordings of
the waves generated at a paddle frequency of 1/T0 = 0.8 Hz (T0 the period) are obtained
at a distance from the wave maker of 4.4 m = 22h. The elevation and velocity field
become periodic, after a short transient build-up, where the recordings are made before
the leading part of the wave train has interferred with the beach at the other end of
the tank. The fluid velocities are obtained by PTV using the code DigiFlow, see Dalziel
(1992). The slightly tilted camera has a field of view (FOV) extending 0.206 m vertically
by 0.21 m along the upper horizontal and 0.198 m along the lower horizontal, with a
resolution of 1024 by 1024 pixels, and a sampling rate of 1500 frames per second (fps).
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The recordings are obtained in four time intervals, each lasting for 3.9 seconds. With
the camera at two vertical positions, totally eight sequences of the PTV are recorded as
indicated by the white lines in figure 1a.

The trough to crest heigth H of the eight crests from 8 to 17.7 s has a maximum of H =
0.49h, average of H̄ = 0.47h and a standard deviation of 3 %. The maximum horizontal
orbital velocity is 0.50

√
gh (where g denotes the acceleration of gravity). We compare the

non-breaking experimental waves to the strongly nonlinear Fenton (1988) method where
in the latter 20 terms of the expansions are used and the vertically averaged Eulerian
volume flux is put to zero. The similar theoretical wave withH/h = 0.49 gives a calculated
maximum of the horizontal orbital velocity of 0.42

√
gh. This velocity is approximately

16% smaller than the experimental value. The discrepancy between the experimental and
theoretical velocity illustrates the contribution by the small parasittic second-harmonic
free waves riding on the mother wave train, where the parasittic waves originate from the
finite excursions of the wave maker. We note that the parasittic free wave is moving at the
double frequency 2ω0 and the wavenumber k2 which are connected by the linear dispersion
relation, i.e., (2ω0)

2 = gk2 tanh(k2h), where ω0 = 2π/T0. Since the frequency is twice
that of the mother wave, the wave height of the parasittic waves is approximately 16%
divided by two giving 8% compared to the mother wave. The parasittic wave amplitude
may alteratively be estimated from the difference of the wave height of the unpolluted
wave crest number three in figure 1a, of H/h ∼ 0.435, which arrives before the slower
propagating parasittic wave train, and the subsequent wave crests number 4 to 11. This
estimate confirms a parasittic wave amplitude of approximately 8% of that of the mother
wave. We note that the contribution by the parasittic wave train to the drift velocity
does not couple to the mother wave and its higher harmonic bound modes where the
relative contribution is proportional to the relative amplitude squared, i.e. 0.082 ≃ 0.006.

2.1. Particle paths

Particle paths are calculated in time window number 1 for t ∼ 9.9 − 13.8 seconds
and time window number 2 for t ∼ 13.8 − 17.7 seconds, see figure 1a. In each single
image a number of approximately 104 particles are identified by the PTV. With a
rate of 1500 fps a total number of 120 million individual particles is identified in each
time window including recordings in the upper and lower water column. Particle path
fragments through time intervals exceeding a lower threshold of 33dt = 0.02 seconds,
totally 0.21 (and 0.23) million such fragments form the basis of the path calculations
in the time window 1 (and 2). A small number of 34 (and 12) particles through the
entire recording in time window 1 (and 2) are traced. The particle path through an
entire wave period emerge by an interpolation combining several fragments. Smoothing
of the particle paths are obtained using a 31 points second order Savitzky-Golay Filter
in time (Savitzky and Golay, 1964). For the interpolation of the paths a third order local
polynomial approximation in space is used where the 250 nearest points are weighted
by the distance from the evaluation point (Ruppert and Wand, 1994). Particle paths,
obtained for various wave phases by integrating one period both backward and forward
in time, see figure 2a, show a net forward motion right below the wave surface, a net
backward drift in the middle of the wave column and then a net forward drift close to the
bottom. Different from theoretical calculations, e.g., Constantin (2006), closed particle
paths occur at the two vertical positions where the Lagrangian drift velocity (UL) is
zero, where UL is defined below. The use of interpolation polynomials implies that Gibbs
phenomenon appears at the boundaries of the images, near the surface, bottom and
where the velocity gradients are strong.
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3. Lagrangian period and drift velocity

For convenience, horizontal axis x and vertical axis y with y = 0 at the water level at
rest are introduced. In order to accurately evaluate the Lagrangian drift, the path of the
backward time integration is translated in the x- and y-direction until it fits with the
path of the forward time integration, evaluating the distance function

d =
1

TL

∫ t0+TL/2

t0−TL/2

dt
√

(xL(t+ TL)− xL(t)− x0)2 + (yL(t+ TL)− yL(t)− y0)2. (3.1)

Here, xL and yL denote the Lagrangian horizontal and vertical positions, respectively.
Values of the Lagrangian period TL and the drift distances x0 and y0 are obtained by
minimizing the function d in (3.1), see figure 2b. The starting time t0 (the phase) of
the integration is varied within the time windows one and two. The resulting particle
paths are compressed in the lower part and uplifted in the central upper part, due to the
strong nonlinearity. The paths are also somewhat tilted and is an effect of the shorter
parasittic second harmonic waves riding on the mother wave. They contribute to a weak
shear deformation of the path, an effect that may be calculated by a superposition of the
velocity field due to the parasittic waves. The tilt varies according to the phase (or initial
time t0). A small observed vertical drift velocity, both positive and negative, is one order
of magnitude smaller than the horizontal drift velocity and indicates the accuracy of the
experiments, see figure 4c,d, and is further commented on below.
It is convenient to define the average vertical coordinate of a loop by

Ȳ =
1

TL

∫ t0+TL/2

t0−TL/2

yL(t)dt. (3.2)

A number of 75 different initial times t0 (phases) at approximately 0.5 · 103 points along
the vertical, in totally ∼ 4 · 104 combinations in each time window, are used in the
evaluations of the functions Ȳ , TL, x0 and y0. It is noted that the vertical coordinate Ȳ
spans the range −1+ < Ȳ /h 6 −ǫ where −ǫ ≃ 0−. The components of the drift velocity
are obtained by UL = x0/TL and VL = y0/TL.
The experimental Lagrangian excess period, TL − T0, and the horizontal drift velocity

as functions of the vertical position Ȳ are illustrated in figure 3 for the two time windows.
Both variables exhibit a strong collapse of the experimental data, particularly UL. The
mean Eulerian velocity, UE(y), is obtained in the figure as well. The experimental volume
flux is obtained by evaluating the integral

ŪL =
1

h

∫ 0

−h

UL(Ȳ )dȲ , (3.3)

where extrapolation of UL near Ȳ = 0 and Ȳ = −h is used. The integration gives
ŪL/

√
gh ≃ −0.2 · 10−3 for time window 1 and ŪL/

√
gh ≃ −1.3 · 10−3 for time window 2

and means that the mass flux in practice is zero in the experimental waves. The excess
period and horizontal drift velocity obtained in the experiments differ significantly from
the inviscid Fenton method and the second-order theory. Note that the Fenton method
gives a vertically averaged Lagrangian drift velocity of ŪL,Fenton ∼ −0.9 · 10−3

√
gh. The

second-order theory obtains the drift velocity by, see Longuet-Higgins (1953),

Ū2nd =
a2ωk cosh 2k(y + h)

2 sinh2 kh
− a2ω

2h
coth(kh), (3.4)

in which the vertical average is assumed to be zero and the amplitude is taken as a = H/2.
Based on the second-order theory, Longuet-Higgins (1953) obtained mathematically
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[]
Experiments Inviscid theory

t.w.1 t.w.2 av. Fenton 2nd-order

UL/
√
gh 0.048 0.038 0.043 0.031 0.023

∂UL/∂Ȳ
√

h/g 0.41 0.29 0.35 0.15 0.08

Table 1. The drift velocity and its gradient at Ȳ = 0. Experiments in time windows 1 (t.w.1), 2
(t.w.2) and the average of the two (av.). Same obtained by the Fenton theory and second-order
theory.

the streaming effect due to the oscillatory boundary layer at the bottom giving a
mass-transport velocity of ∆UL = (5/4)a2ωk/ sinh2(kh) (≃ 0.056

√
gh with the present

parameters). The similar analysis of the streaming effect below the surface gives a
drift velocity gradient that is twice that obtained from (3.4), where both results are
independent of the viscosity. The doubling of the drift velocity gradient below the surface,
derived in the context of the second-order theory, was experimentally confirmed by
Longuet-Higgins (1960). An even larger excess of the drift velocity gradient at Ȳ = 0 is
measured here in the strongly nonlinear waves. Comparing the experimental and inviscid
drift velocities right below the wave surface at Ȳ = 0 the experimental UL is 50% higher
than the prediction by the Fenton method, and 100% higher than the second-order theory,
approximately, see table 1. Above the bottom the increase in the experimental drift
velocity due to the streaming effect is ∆UL/

√
gh ≃ 0.020 in time window 1 and 0.023 in

time window 2, both about the half of the prediction by Longuet-Higgins (1953). Note
that the dimensionless functions TL/T0 − 1 = f(Ȳ ) and UL(Ȳ )/

√
gh are rather similar

through the entire water column, where both the drift velocity and the Lagrangian period
are significantly modified by the streaming effects at Ȳ = 0 and Ȳ = −h as well as the
nonlinearity of the waves.

The Eulerian mean horizontal velocity (UE) obtained by a gliding time average exhibit
a steady state for t > 9 seconds at positions close to the bottom (y/h = −0.994, −0.96)
(note a small increase at −0.996) and below the surface at y/h = −0.15 (figure 1b) (For
y above the troughs UE is not meaningful.) While y/h = −0.994 corresponds to a level
of 1.2 mm above the bottom, the estimated boundary layer thickness is δ =

√

2ω/ν ≃ 3
mm. However, the effects of the streaming above the bottom and below the surface extend
further into the body of the water layer, above the bottom up to y/h ≃ −0.92, and below
the surface down to y/h ≃ −0.2, see below. We note that Longuet-Higgins’ solution does
not apply to the present experiments since the wave amplitude (of H/2 = 49 mm) is
much bigger than the boundary layer thickness of 3 mm. The potential effect of the
surface tension to the surface boundary layer was discussed by Weber and Saetra (1995).
Particularly their figure 3 shows that the velocity is reduced right below the surface
(corresponding to Ȳ /h > −0.12) for the conditions in the present experiments where an
estimate of their parameter α in their eq. (27) is close to 300, contributing to an enhanced
shear for Ȳ /h < −0.12 and a reduced shear for −0.12 < Ȳ /h < 0.

By evaluating the vertical gradient of UL it is evident that the inviscid Fenton method
and the second order theory represent the same physics as observed in the experiments,
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in the middle of the water column, for −0.9 < Ȳ /h < −0.2, see figure 4a,b. Near the
surface (−0.2 < Ȳ /h < 0) additional contributions are due to the combined effects of the
streaming and nonlinearity. At the bottom (−1 < Ȳ /h < −0.9) the notable differences
are caused by the boundary layer induced streaming. The experimental dimensionless
gradient at Ȳ = 0 is 0.40 in time window 1 and 0.28 in time window 2, with an average
of 0.34, while the Fenton method gives a value that is less than half of the experimental,
and the second order theory about a quarter of the experimental, see table 1. At the
bottom the nondimensional shear is down to −0.98 and −1.15 in the two time windows
(figure 4a,b). Evaluation of the vertical drift velocity provides an accuracy test of the
experiments, since this velocity should be zero. The results show that VL is one order of
magnitude smaller than UL (figure 4c,d). Right below the wave surface a small positive
VL is up to 8% of UL, while for Ȳ /h < −0.2 the velocity is small and negative, with a
magnitude of 5-10% of UL. We note that a small unsteadiness of the wave train in the
form of an increased amplitude contributes to a small positive VL close to the surface.
Potential contributions by the return flow in the water column to a negative/positive VL

await further exploration.
We note note that extensions of the Gerstner’s wave theory to a finite water depth,

where by definition the particle paths are closed and UL = 0 – contrary to the present
measurements, and where further the vorticity is non-zero, have been developed as model
for irregular waves, with favorable comparison of the theoretical horizontal velocity profile
below the wave crest and LDV-experiments, see Gjøsund (2003).
The average elevation within the experimental wave train is unaltered by the waves.

4. Conclusions

In experimental non-breaking periodic waves at finite water depth of kh = 0.785 and
H/h = 0.49, we obtain by PTV, from the Lagrangian paths, the horizontal drift velocity,
UL, and the Lagrangian excess period, TL−T0, where UL and TL−T0 are functions of the
average vertical position of the paths, Ȳ . The experimental results in the different phases
and vertical positions show a collapse of the data. The drift velocity and excess period
have similar functional relationships with Ȳ . By comparing to inviscid computations by
the Fenton method it is evident that the streaming velocities in the boundary layers
below the wave surface and above the fluid bottom contribute to a strongly enhanced
forward drift velocity as well an enhanced positive Lagrangian excess period right below
the wave surface and above the bottom. The effect of the nonlinearity is pronounced
near the surface. Conversely, both UL and TL − T0 become pronounced negative in the
middle of the water column. The particle paths are closed at the two vertical positions
where UL = 0, in contrast to many theoretical models, e.g., Constantin (2006). The
shear of the experimental drift velocity compares well to the nonlinear Fenton method
and the second-order theory for −0.9 < Ȳ /h < −0.2 while close to the surface the
measured shear becomes more than twice that obtained by the Fenton method which
again is approximately twice that of the second-order theory. There is no mass flux of
the periodic experimental waves, no pressure gradient, and the average elevation within
the wave train is unaltered by the wave motion. An experimental error of UL of 8% may
be estimated by the relative magnitude of the vertical drift velocity, VL, compared to the
horizontal drift velocity, where VL should be zero.
The present PTV-measurements highlight the additional shear due to the streaming in

the boundary layers at the bottom and below the wave surface, as well as the effect of the
nonlinearity, where the shears at Ȳ = 0 and Ȳ = −h are strong and of opposite sign. They
both contribute to enhancing the net forward Lagrangian drift velocity at Ȳ = 0,−h
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as well as the negative drift velocity in the water column is increased. The measured
Lagrangian drift velocity, systematically in excess of the inviscid theories, indicates that
the wave induced Stokes drift is significantly higher than what is commonly represented in
the wave-current interaction models, see e.g. Sullivan and McWilliams (2010, eq. 4), where
the primary additional effect due to the boundary layer streaming should be incorporated.
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