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This paper proposes a Finite Difference Multilevel Monte Carlo algorithm for degener-

ate parabolic convection diffusion equations where the convective and diffusive fluxes are
allowed to be random. We establish a notion of stochastic entropy solutions to these.

Our chief goal is to efficiently compute approximations to statistical moments of these

stochastic entropy solutions. To this end we design a multilevel Monte Carlo method
based on a finite volume scheme for each sample. We present a novel convergence rate

analysis of the combined multilevel Monte Carlo Finite Volume method, allowing in
particular for low p-integrability of the random solution with 1 < p ≤ 2, and low deter-
ministic convergence rates (here, the theoretical rate is 1/3). We analyze the design and

error versus work of the multilevel estimators. We obtain that the maximal rate (based
on optimizing possibly the pessimistic upper bounds on the discretization error), is ob-

tained for p = 2, for finite volume convergence rate of 1/3. We conclude with numerical

experiments.
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1. Introduction

Many problems in physics and engineering are modeled by nonlinear, possibly

strongly degenerate, convection diffusion equation. The Cauchy problem for such

equations takes the form{
ut + div f(u) = ∆A(u), (x, t) ∈ ΠT ,

u(0, x) = u0(x), x ∈ Rd,
(1.1)

where ΠT = Rd × (0, T ) with T > 0 fixed, u : ΠT → R is the unknown function,

f = (f1, . . . , fd) is the flux function, and A is the nonlinear diffusion. Regarding

this, the basic assumption is that a(u) := A′(u) ≥ 0, for all u. When (1.1) is

nondegenerate, i.e., a(u) > 0, it is well known that (1.1) admits a unique classical

solution [33]. This contrasts with the degenerate case where a(u) may vanish for

some values of u. A simple example of a degenerate equation is the porous medium

equation

ut = ∆(um), m > 1,

which degenerates at u = 0. This equation has served as a simple model to describe

processes involving fluid flow, heat transfer or diffusion. Examples of applications are

in the description of the flow of an isentropic gas through a porous medium, modelled

by Leibenzon [27] and Muskat [31] around 1930, in the study of groundwater flow by

Boussisnesq in 1903 [3] or in heat radiation in plasmas, Zel’dovich and collaborators

around 1950, [39]. In general, a manifestation of the degeneracy in (1.1) is the finite

speed of propagation of disturbances. If a(0) = 0, and if at some fixed time the

solution u has compact support, then it will continue to have compact support for

all later times.

By the term “strongly degenerate” we mean that there is an open interval such

that a(u) = 0 if u is in this interval. Hence, the class of equations under consideration

is very large and contains the heat equation, the porous medium equation and scalar

conservation laws. Independently of the smoothness of the initial data, due to the

degeneracy of the diffusion, singularities may form in the solution u. Therefore we

consider weak solutions which are defined as follows.

Definition 1.1. Set ΠT = Rd × (0, T ). A function

u(t, x) ∈ C
(
[0, T ];L1(Rd)

)
∩ L∞(ΠT )

is a weak solution of the initial value problem (1.1) if it satisfies:

D.1 gradA(u) ∈ L∞(ΠT ).

D.2 For all test functions ϕ ∈ D(Rd × [0, T ))∫∫
ΠT

(uϕt + f(u) · gradϕ+A(u)∆ϕ) dx dt+

∫
Rd

u0(x)ϕ(x, 0) dx = 0.

(1.2)



March 17, 2017 15:26 WSPC/INSTRUCTION FILE KRSW170317

Multilevel Monte Carlo method for degenerate convection diffusion equations 3

In view of the existence theory, the condition D.1 is natural, and thanks to this

we can replace (1.2) by∫∫
ΠT

uϕt + (f(u)− gradA(u)) · gradϕdxdt+

∫
Rd

u0(x)ϕ(x, 0) dx = 0.

If A is constant on a whole interval, then weak solutions are not uniquely determined

by their initial data, and one must impose an additional entropy condition to single

out the physically relevant solution. A weak solution satisfies the entropy condition

if

%(u)t + div q(u)−∆r(u) ≤ 0 in D′(ΠT ), (1.3)

for all convex, twice differentiable functions % : R → R, where q and r are defined

by

q′(u) = %′(u)f ′(u), and r′(u) = %′(u)A′(u).

Via a standard limiting argument this implies that (1.3) holds for the Kružkov

entropies %(u) = |u− c| for all constants c. We call a weak solution satisfying the

entropy condition an entropy solution.

For scalar conservation laws, the entropy framework (usually called entropy

conditions) was introduced by Kružkov [24] and Vol’pert [37], while for degenerate

parabolic equations entropy solution were first considered by Vol’pert and Hudajev

[38]. Uniqueness of entropy solutions to (1.1) was first proved by Carrillo [4].

Over the years, there has been a growing interest in numerical approximation

of entropy solutions to degenerate parabolic equations. Finite difference and fi-

nite volume schemes for degenerate equations were analysed by Evje and Karlsen

[11,10,9,12] (using upwind difference schemes), Holden et al. [18,19] (using oper-

ator splitting methods), Kurganov and Tadmor [25] (central difference schemes),

Bouchut et al. [2] (kinetic BGK schemes), Afif and Amaziane [1] and Ohlberger,

Gallouët et al. [32,14,15] (finite volume methods), Cockburn and Shu [7] (discon-

tinuous Galerkin methods) and Karlsen and Risebro [23,22] (monotone difference

schemes). Many of the above papers show that the approximate solutions converge

to the unique entropy solution as the discretization parameter vanishes. Rigorous

estimates of the convergence rate of finite volume schemes for degenerate parabolic

equations were proved in [20] (1-d) and [21] (multi-d).

This classical paradigm for designing efficient numerical schemes assumes that

data for (1.1), i.e., initial data u0, convective flux and diffusive flux are known

exactly.

In many situations of practical interest, however, these data are not known

exactly due to inherent uncertainty in modelling and measurements of physical

parameters such as, for example, the specific heats in the equation of state for

compressible gases, or the relative permeabilities in models of multi-phase flow

in porous media. Often, the initial data are known only up to certain statistical

quantities of interest like the mean, variance, higher moments, and in some cases,
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the law of the stochastic initial data. In such cases, a mathematical formulation

of (1.1) is required which allows for random data. The problem of random initial

data was considered in [29], and the existence and uniqueness of a random entropy

solution was shown, and a convergence analysis for Multilevel Monte Carlo Finite

volume discretizations (MLMCFV) was given. The MLMC discretization of balance

laws with random source terms was investigated in [30].

The first aim of this paper is to extend this mathematical framework to include

degenerate convection diffusion equations with random convective and diffusive flux

functions with possibly correlated random perturbations. We define random entropy

solutions and provide an existence and uniqueness result, generalizing the classical

well-posedness results to the case of uncertain initial data, and flux functions.

The second aim of this paper is to design fast and robust numerical algorithms for

computing random entropy solutions. In particular, we focus on statistical sampling

techniques of the Monte Carlo (MC) type. However, since the rate of convergence of

MC method is 1/2, we propose a MLMCFD method based on implicit/explicit finite

difference schemes for deterministic convection diffusion equations. In particular,

we show that MLMCFD schemes converge. Moreover, we use a Lagrange multiplier

type argument to determine the optimal number of MC samples needed to minimize

the computational work.

The rest of the paper is organized as follows: In Section 2, we present the prob-

abilistic framework used in this paper. In particular, we review notions of random

variables taking values in separable Banach spaces. Section 3 is devoted to a review

of convergence rates from [20,21] on convergence rates for scalar degenerate deter-

ministic convection diffusion problems. Particular attention is paid to the defini-

tion of entropy solutions and to existence-, uniqueness- and continuous dependence

results, and to the definition of the random entropy solutions, and to sufficient

conditions ensuring their measurability and integrability. In Section 4, we address

the discretization of such underlying problems. First, again reviewing convergence

rates of FD schemes for the deterministic case from [20,21], which we then extend

to MC as well as MLMC versions for the degenerate convection diffusion problem

with random coefficients and flux functions. The final Section 5 is then devoted

to numerical experiments which confirm the theoretical convergence estimates and,

in fact, indicate that they probably are pessimistic, at least in the particular test

problems considered.

2. Preliminaries from Probability Theory

To set the notation, we recapitulate prerequistes from measure and probability

theory which are needed in the subsequent sections. For proofs and further details,

we refer for example to [36, Chapter 1] and to the references there.
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2.1. Random variables on Banach spaces

Let (Ω,F ,P) be a probability space, and let (E,B(E)) be a Banach space E with

its Borel σ-algebra B(E). A map G : Ω→ E is called a P-simple function if it is of

the form

G(ω) =

J∑
j=1

gj1Aj
(ω), where 1A(ω) =

{
1 ω ∈ A,
0 otherwise,

and gj ∈ E for j = 1, . . . , J , for some finite J and for Aj ∈ F . A map f : Ω→ E is

strongly F-measurable if there exists a sequence of simple functions fn converging

to f (in the norm of E) P-almost everywhere on Ω.

We call two strongly P-measurable functions f, g : Ω→ E which agree P-almost

everywhere on Ω, P-versions of each other. We shall need the following lemma.

Lemma 2.1. [36, Corollary 1.13] Let E1 and E2 be Banach spaces, and (Ω,F ,P)

a probability space. If f : Ω → E1 is strongly measurable, and φ : E1 → E2 is

continuous, then the composition φ ◦ f : Ω→ E2 is strongly measurable.

Next, we define the integral of a simple function G =
∑
gj1Aj

by∫
Ω

GdP =

N∑
j=1

gjP(Aj) .

If f : Ω → E is strongly measurable, we say that f is Bochner integrable if there

exists a sequence of simple functions {fn}n≥0 converging to f P-almost everywhere,

and

lim
n→∞

∫
Ω

‖f − fn‖E dP = 0,

([36, Def. 1.15]). We then define the Bochner integral of f by∫
Ω

f dP := lim
n→∞

∫
Ω

fn dP. (2.1)

A strongly measurable function f : Ω→ E is Bochner integrable if and only if∫
Ω

‖f‖E dP <∞

(see for example [36, Prop. 1.16]) in which case∥∥∥∫
Ω

f dP
∥∥∥
E
≤
∫

Ω

‖f‖E dP . (2.2)

For each 1 ≤ p < ∞ we can define the Banach spaces Lp(Ω;E) to consist of those

strongly measurable functions f for which the integrals∫
Ω

‖f‖pE dP <∞ .
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These spaces have the natural norm

‖f‖Lp(Ω;E) =
(∫

Ω

‖f‖pE dP
)1/p

.

If p = ∞, we define L∞(Ω;E) to be the space of strongly measurable functions

f : Ω → E for which there exists a number r ≥ 0 such that P(‖f‖E > r) = 0.

Together with the norm

‖f‖L∞(Ω;E) := inf{r ≥ 0 : P(‖f‖E > r) = 0},

this space is a Banach space as well.

If f : Ω→ E is strongly measurable and (Ω,F ,P) is a probability space, we call

f an E-valued random variable.

In the following, we will be interested in random variables X : Ω→ Ej , j = 1, 2,

mapping from some probability space (Ω,F , P ) into subsets of the Banach spaces

Ej , j = 1, 2, equipped with the Borel σ-algebra B(Ej), where E1 = L1(Rd) ×
W 1,∞(I)×W 1,∞(I), for a closed and bounded interval I = [M−,M+] ⊂ (−∞,∞),

−∞ < M− < M+ < ∞, and E2 = C([0, T ];L1(Rd)), T > 0. On W 1,∞(I), we

choose the norm

‖f‖W 1,∞(I) = ess sup
x∈I

|f(x)|+ ess sup
x∈I

|f ′(x)|, f ∈W 1,∞(I).

On E1, we will use the sum norm

‖g‖E1
= ‖g1‖L1(Rd) + ‖g2‖W 1,∞(I) + ‖g3‖W 1,∞(I), g = (g1, g2, g3) ∈ E1,

and on E2, the norm

‖h‖E2 = sup
0≤t≤T

∫
R
|h(t, x)| dx, h ∈ E2.

2.2. Approximation of moments of random variables on Banach

spaces

Often, one is not interested in the law of a random variable X : Ω→ E1 on a Banach

space E1, but only in statistics, such as the mean field (ensemble average) E[Y ] of

quantities of interest Y = g(X) of it (for some continuous mapping g : E1 → E2, E2

another Banach space). As explicit expressions for those are not always available,

one has to approximate them. This can be done using Monte Carlo sampling. To this

end, let Ŷi := g(X̂i) : Ω→ E2, i = 1, . . . ,M , be independent identically distributed

random variables. We define the the sample average

EM [Y ] :=
1

M

M∑
i=1

Ŷi, (2.3)

as so-called Monte Carlo estimator for E[Y ]. We would like to know how good of an

estimate the sample average EM [Y ] is for the expectation E[Y ] of Y . Specifically,

we are interested in at what rate

E
[
‖E[Y ]− EM [Y ]‖pE2

]1/p
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converges as M →∞ for some 1 ≤ p <∞. If p = 2 and if E is a Hilbert space then

it is classical that the so called mean square error (MSE) satisfies

E
[
‖E[Y ]− EM [Y ]‖2E

]
=

1

M
E
[
‖Y − E[Y ]‖2E

]
=

1

M
Var[Y ] . (2.4)

Equation (2.4) is only meaningful for Hilbert space valued random variables.

For general Banach spaces, the convergence rate depends on the type of the Banach

space, [26, Page 246].

Definition 2.2. Let 1 ≤ q ≤ ∞ and Zj, j ∈ N a sequence of independent

Rademacher random variables. A Banach space E is said to be of type q ≥ 1

if there is a type constant Ct > 0 such that for all finite sequences (xj)
N
j=1 ⊂ E,

N ∈ N, ∥∥∥∥∥∥
N∑
j=1

Zjxj

∥∥∥∥∥∥
E

≤ Ct

 N∑
j=1

‖xj‖qE

1/q

.

Remark 2.3. (i) By the triangle inequality, every Banach space has type 1. (ii)

Hilbert spaces (and in particular finite-dimensional spaces) have type 2 (with the

type constant Ct depending on the dimension, in general) (iii) Lp-spaces have type

q = min{2, p} for 1 ≤ p <∞, [26, Page 247].

One has the following result [26, Proposition 9.11] for Banach spaces of type q:

Proposition 2.4. Let E be a Banach space of type q with type constant Ct. Then,

for every finite sequence (Yj)
M
j=1 of independent random variables in Lq(Ω;E) with

zero mean, one has,

E

∥∥∥∥∥∥
N∑
j=1

Yj

∥∥∥∥∥∥
q

E

 ≤ (2Ct)
q
N∑
j=1

E
[
‖Yj‖qE

]
.

This implies a convergence rate in Lq(Ω) for the Monte Carlo estimator (2.3).

Corollary 2.5. Let E be a Banach space of type q with a type constant Ct. Then

for every finite sequence (Yj)
N
j=1 of iid random variables with zero mean and with

Yj(ω) ∼ Y (ω) in Lq(Ω) and Y ∈ Lq(Ω;E), there holds

E [‖EM [Y ]‖qE ] = E

∥∥∥∥∥∥ 1

M

M∑
j=1

Yj

∥∥∥∥∥∥
q

E

 ≤ (2Ct)
qM1−qE [‖Y ‖qE ] .

For q = 2, we recover (2.4) (up to the value of the constant).

3. Degenerate Convection Diffusion Equation with Random

Diffusive Flux

We develop a theory of random entropy solutions for degenerate convection diffusion

equation with a class of random flux flunctions, proving in particular the existence
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and uniqueness of a random entropy solution. To this end, we first review classical

results on degenerate convection diffusion equation with deterministic data.

3.1. Deterministic Scalar Degenerate Convection Diffusion

Equation

We consider the Cauchy problem for degenerate convection diffusion equation of

the form {
ut + div f(u) = div (a(u) gradu) , (x, t) ∈ ΠT ,

u(0, x) = u0(x), x ∈ Rd,
(3.1)

3.2. Entropy Solutions

It is well-known that if f is Lipschitz continuous and a(u) ≥ 0, then the deterministic

Cauchy problem (3.1) admits, for each u0 ∈ L1(Rd) ∩ L∞(Rd), a unique entropy

solution (see, e.g., [16,35,8]). Moreover, for every t > 0, u(·, t) ∈ L1(Rd) ∩ L∞(Rd)
and several properties of the (nonlinear) data-to-solution operator

S : (u0, f, A) 7−→ u(·, t) = S(t) (u0, f, A), t > 0,

will be crucial for our subsequent development. To state these properties of

{S(t)}t≥0, following [11], we introduce the set of admissible initial data

A(f,A) :=
{
z ∈ L1(Rd) ∩BV (Rd)

∣∣ |f(z)− gradA(z)|BV <∞
}
. (3.2)

Next, we collect fundamental results regarding the entropy solution u of (3.1)

in the following theorem, for a proof see [38,5],

Theorem 3.1. Let f and A be locally Lipschitz continuous functions. Then

1) For every u0 ∈ A(f,A), the initial value problem (3.1) admits a unique BV

entropy weak solution u ∈ C
(
[0, T ];L1

loc(Rd)
)
.

2) For every t > 0, the (nonlinear) data-to-solution map S(t) given by

u(·, t) = S(t) (u0, f, A)

satisfies

i) For fixed f,A ∈ Lip(R), S(t)(·, f, A) : L1
loc(Rd) → L1(Rd) is a (non-

expansive) Lipschitz map, i.e.,

‖S(t)(u0, f, A)− S(t)(v0, f, A)‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd) . (3.3)

ii) For every u0 ∈ A(f,A), f,A ∈ Liploc(R)

‖S(t)(u0, f, A)‖L∞(Rd) ≤ ‖u0‖L∞(Rd), (3.4)

‖S(t)(u0, f, A)‖L1(Rd) ≤ ‖u0‖L1(Rd) , (3.5)

‖S(t)(u0, f, A)‖BV (Rd) ≤ ‖u0‖BV (Rd) , (3.6)

|f(u(·, t))− gradA(u(·, t))|BV (Rd) ≤ |f(u0)− gradA(u0)|BV (Rd) .

(3.7)
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iii) Lipschitz continuity in time: For any t1, t2 > 0, u0 ∈ A(f,A),

‖S(t1)(u0, f, A)− S(t2)(u0, f, A)‖L1(Rd)

≤ |f(u0)− gradA(u0)|BV (Rd) |t1 − t2| . (3.8)

Proof. Point 1) of Theorem 3.1 is proved in [38] or [5, Thm 1.1], (3.3), (3.5) also

follow from [5, Thm 1.1], (3.4) was proved in [5, Thm 1.2], and (3.6), (3.7), (3.8)

were proved in [38].

Remark 3.2. We can use the entropy condition (1.3) to obtain Lp(Rd)-estimates

on the solution at time t. Let ρε be a smooth, sign-preserving approximation of the

function ρ(u) = |u|p for 1 ≤ p < ∞, then (1.3) implies after integrating in space

and time ∫
Rd

ρε(u(t, x)) dx ≤
∫
Rd

ρε(u0(x)) dx.

Letting ε→ 0, we obtain

‖u(t, ·)‖p
Lp(Rd)

≤ ‖u0‖pLp(Rd)
. (3.9)

In our convergence analysis of MC-FD discretizations of degenerate convection

diffusion equation with random fluxes, we will need the following result regarding

continuous dependence of S with respect to f and A ([6, Thm. 3]):

Theorem 3.3. Assume u0, v0 ∈ BV (Rd)∩L1(Rd)∩L∞(Rd), and f(·), g(·), A(·),
B(·) ∈ Liploc(R) with A′, B′ ≥ 0.

Then the unique entropy solutions u(t, ·) = S(t)(u0, f, A) and v(t, ·) =

S(t)(v0, g, B) of (3.1) with initial data u0, v0, convective flux functions f and g

and with diffusive flux functions A and B satisfy the Kružkov entropy conditions,

and the à priori continuity estimate

‖u(·, t)− v(·, t)‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd) (3.10)

+ C

(
t ‖f ′ − g′‖L∞(M−,M+) + 4

√
t
∥∥∥√A′ −√B′∥∥∥

L∞(M−,M+)

)
,

where M− ≤ u0 ≤ M+ and C = |u0|BV (Rd) < ∞. The above estimate holds for

every 0 ≤ t ≤ T .

Remark 3.4. Using that for nonnegative numbers a, b ≥ 0, a 6= 0,

|
√
a−
√
b| =

√
|a− b|

√
|a− b|

√
a+
√
b
≤
√
|a− b|,

it follows from (3.10) that under the assumptions of Theorem 3.3,

‖u(·, t)− v(·, t)‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd) (3.11)

+ C
(
t ‖f ′ − g′‖L∞(M−,M+) + 4

√
t
√
‖A′ −B′‖L∞(M−,M+)

)
,
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hence the mapping S(t) : L1(Rd)×W 1,∞([M−,M+])×W 1,∞([M−,M+])→ L1(Rd),
(u0, f, A) 7→ u(t, ·) is continuous as a mapping between Banach spaces if restricted to

initial data u0 in U1 :=
{
u0 ∈ L1(Rd) : M− ≤ u0(x) ≤M+, a.e. x ∈ R

}
⊂ L1(Rd)

and A satisfying A′ ≥ 0.

3.3. Random Entropy Solutions

Existence and uniqueness for random initial data u0 and random flux f for A ≡ 0

for the Cauchy problem was proved in [28,34]; we now review these results. We

remark that these results remain valid in bounded, axiparallel rectangles D with

periodicity conditions with respect to each variable.

Here we are interested in the case where the initial data u0, the convective flux

function f and the diffusive flux function A in (1.1) are uncertain, that is, random

functions taking values in the Banach spaces BV (Rd) ∩ L∞(Rd) and W 1,∞(R;R)

respectively.

To define these, we denote by (Ω,F ,P) a probability space. We consider spa-

tially homogeneous random flux functions and diffusion operators f , A, i.e., strongly

measurable maps f : Ω→ Lip(R;Rd), A : Ω→ Lip(R;Rd), and random initial data

u0 being strongly measurable maps from Ω to the intersection of the Banach spaces

BV (Rd) and L∞(Rd).

Definition 3.5. Random data for the scalar degenerate convection diffusion equa-

tion (1.1) is a random variable taking values in

E1 =
(
BV (Rd) ∩ L∞(Rd)

)
×W 1,∞(R;Rd)×W 1,∞(R;Rd).

The set E1 is a Banach space which we equip with the norm

‖(u, f,A)‖E1
= ‖u‖L1(Rd) + TV(u) + ‖u‖L∞(Rd) + ‖f‖W 1,∞(R;Rd) + ‖A‖W 1,∞(R;Rd) .

(3.12)

In particular, random data (u0, f, A) for the degenerate convection diffusion equa-

tion (1.1) is a strongly measurable map

(u0, f, A) : (Ω,F) 7−→ (E1,B(E1)) . (3.13)

For the ensuing convergence analysis, we shall also require that for P-a.e. ω it

holds

−∞ < M− ≤ u0(ω;x) ≤M+ <∞, a.e. x ∈ Rd, (3.14)

|u0(ω; ·)|BV (Rd) ≤ CTV <∞, (3.15)

‖f(ω; ·)‖W 1,∞([M−,M+]) ≤ Cf <∞, (3.16)

A′(ω; ·) ≥ 0, (3.17)

‖A(ω; ·)‖W 1,∞([M−,M+]) ≤ CA <∞, (3.18)

|f(ω;u0(ω; ·))− gradA(ω;u0(ω; ·))|BV (Rd) ≤ CA,f <∞.. (3.19)
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We shall refer to a random flux f which satisfies (3.16) as bounded random flux

and similarly to A satisfying (3.17)–(3.19) as bounded random diffusion operator.

In addition, we shall assume

‖u0‖Lr(Ω;Lp(Rd)∩L1(Rd)) <∞, (3.20)

for some p, r ≥ 1. By (2.2), for random data with (3.14)–(3.20) the map

Ω 3 ω
↓(

‖u0(ω; ·)‖L1(Rd) ,TV(u0(ω; ·)), ‖u0(ω; ·)‖L∞(Rd) , ‖f‖W 1,∞(R;Rd) , ‖A‖W 1,∞(R;Rd)

)
(3.21)

is in Lr(Ω;R5).

Then we are interested in random solutions of the random degenerate convection

diffusion equation{
ut(ω;x, t) + div(f(ω;u(ω;x, t))) = ∆A(ω;u(ω;x, t)), t > 0, x ∈ Rd,
u(ω;x, 0) = u0(ω;x), x ∈ Rd.

(3.22)

Definition 3.6. A random field u : Ω 3 ω → u(ω;x, t), i.e., a measurable mapping

from (Ω,F) to C([0, T ];L1(Rd)), is called a random entropy solution of (3.1) with

random initial data u0, flux function f and diffusive flux A satisfying (3.13) and

(3.14) – (3.21) for some r ≥ 1, if it satisfies:

(i) Weak solution: for P-a.e. ω ∈ Ω, u(ω; ·, ·) satisfies

∞∫
0

∫
Rd

(
u(ω;x, t)ϕt+(f(ω;u(ω;x, t))− gradA(ω;u(ω;x, t)))·gradϕ

)
dxdt

+

∫
Rd

u0(x, ω)ϕ(x, 0) dx = 0,

for all test functions ϕ ∈ C1
0 (Rd × [0,∞)).

(ii) Entropy condition: For any pair consisting of a (deterministic) entropy η

and (stochastic) entropy flux q(ω; ·) and r(ω; ·) i.e., η, q and r are func-

tions such that η is convex and such that q′(ω; ·) = η′f ′(ω; ·), r′(ω; ·) =

η′A′(ω; ·)and for P-a.s. ω ∈ Ω, u satisfies the following integral identity:

∞∫
0

∫
Rd

(
η(u(ω;x, t))ϕt+grad q(ω;u(ω;x, t))·gradϕ+r(ω;u(ω;x, t))∆ϕ

)
dxdt

+

∫
Rd

η(u0(ω;x))ϕ(x, 0) dx ≥ 0, (3.23)

for all test functions 0 ≤ ϕ ∈ C1
0 (Rd × [0,∞)).
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We state the following theorem regarding the random entropy solution of (3.22):

Theorem 3.7. Consider the degenerate convection diffusion equation (3.1) with

random initial data u0, flux function f and random diffusion operator A, as in

(3.13), and satisfying (3.14) – (3.20) for some r ∈ [1,∞].Then there exists a unique

random entropy solution u : Ω 3 ω → C([0, T ];L1(R)) which is “pathwise”, i.e., for

P− a.s. ω ∈ Ω, described in terms of a nonlinear mapping S(t) which depends only

on the random flux and diffusion,

u(ω; ·, t) = S(t)(u0(ω; ·), f(ω; ·), A(ω; ·)), t > 0, P− a.e. ω ∈ Ω

such that for every 0 ≤ t ≤ T <∞ and for s = 1, p;

‖u‖Lr(Ω;C([0,T ];Ls(Rd))) ≤ ‖u0‖Lr(Ω;Ls(Rd)) , (3.24)

‖S(t)(u0, f, A)(ω)‖(L1∩L∞)(Rd) ≤ ‖u0(ω; ·)‖(L1∩L∞)(Rd) . (3.25)

Moreover, we have P-a.s.

|S(t)(u0, f, A)(ω)|BV (Rd) ≤ |u0(ω; ·)|BV (Rd) , (3.26)

|f(ω;u(ω; ·, t))− gradA(ω;u(ω; ·, t))|BV (Rd)

≤ |f(ω;u0(ω; ·))− gradA(ω;u0(ω; ·))|BV (Rd) , (3.27)

‖u(ω; ·, t1)− u(ω; ·, t2)‖L1(Rd)

≤ |f(ω;u0(ω; ·))− gradA(ω;u0(ω; ·))|BV (Rd) |t1 − t2| . (3.28)

and, with M := max{|M−|, |M+|} for M−,M+ as in (3.14),

sup
0≤t≤T

‖u(ω; ·, t)‖L∞(Rd) ≤M P-a.s. ω ∈ Ω . (3.29)

Proof. For ω ∈ Ω, we define, motivated by Theorem 3.1, for P-a.e. ω ∈ Ω a random

function u(ω; t, x) by

u(ω; ·) = S(t)(u0, f, A)(ω). (3.30)

By the properties of the solution mapping (S(t))t≥0, see Theorem 3.1, the ran-

dom field defined in (3.30) is well defined; for P-a.e. ω ∈ Ω, u(ω; ·) is a weak

entropy solution of the degenerate diffusion equation (3.1). Moreover, we obtain

from Theorem 3.1 that P-a.s. all bounds (3.25)–(3.28) hold, with assumption (3.14)

also (3.29). The measurability of the mapping Ω 3 ω 7→ u(ω; ·, t) ∈ L1(R),

0 ≤ t ≤ T follows from Lemma 2.1, (3.11) and the assumption that the map-

ping Ω 3 ω 7→ (u0, f, A)(ω) ∈ E1 is a random variable. Finally, (3.24) follows from

(3.20) together with (3.5) in Theorem 3.1.

Theorem 3.7 generalizes the existence of random entropy solutions for random

initial data from [29] and random convective flux function [28].
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Remark 3.8. All existence and continuous dependence results stated so far are

formulated for the deterministic Cauchy problem (3.1). By the ‘usual arguments’,

verbatim the same results will also hold for solutions defined in a bounded, axi-

parallel domain D ⊂ Rd, provided that periodic boundary conditions in each space

coordinate are enforced on the weak solutions.

4. Numerical approximation of random degenerate convection

diffusion equation

We wish to compute various quantities of interest, such as the expectation of the

solution u to the random degenerate diffusion equation (3.22). We choose to split

the approximation into two steps: On one hand, we need to approximate in the

stochastic domain ω ∈ Ω and on the other hand, since in general exact solutions to

(1.1) are not available, we need an approximation in the physical domain (x, t) ∈ ΠT .

In this paper, we will consider a Multilevel Monte Carlo Finite Difference Method

(MLMC-FDM), that is, a combination of the multilevel Monte Carlo method with a

deterministic finite difference discretization. We will briefly review the two methods

and mention some relevant results in the following sections.

4.1. Monte Carlo method

To “discretize” the stochastic domain, we will use the Monte Carlo method as

described in Section 2.2. We again assume that (u0(ω; ·), f(ω; ·), A(ω; ·)) ∈ E1 and

that satisfy in addition (3.14)–(3.19) and (3.20) for some r, p ∈ [1,∞) to be specified

later. We shall be interested in the statistical estimation of the first moment of u,

i.e. E[u]. The Monte Carlo (MC) approximation of E[u] is defined as follows: given

M independent, identically distributed samples (ûi0, f̂
i, Âi), i = 1, . . . ,M , of initial

data, flux function and diffusion, the MC estimate of E[u(·, t; ·)] at time t is given

by

EM [u(·, t)] :=
1

M

M∑
i=1

ûi(·, t) (4.1)

where ûi(·, t) denote the M unique entropy solutions of the M Cauchy problems

(1.1) with initial data ûi0, flux function f̂ i and diffusion operator Âi. Since

ûi(·, t) = S(t) (ûi0, f̂
i, Âi),

we have for every M and for every 0 < t < ∞, by (3.5) (for p = 1) or the entropy

(p > 1) condition (3.23) (cf. Remark 3.2),

‖EM [u(·, t;ω)]‖Lp(Rd) =
∥∥∥ 1

M

M∑
i=1

, S(t)(ûi0, f̂
i, Âi)(ω)

∥∥∥
Lp(Rd)

≤ 1

M

M∑
i=1

∥∥∥S(t)(ûi0, f̂
i, Âi)(ω)

∥∥∥
Lp(Rd)



March 17, 2017 15:26 WSPC/INSTRUCTION FILE KRSW170317

14 Koley, Risebro, Schwab, Weber

≤ 1

M

M∑
i=1

‖ûi0(·;ω)‖Lp(Rd).

Using this inequality, the i.i.d. property of the samples
{

(ûi0, f̂
i, Âi)

}M
i=1

, we obtain

the bound

E
[
‖EM [u(·, t)]‖Lp(Rd)

]
≤ E

[ 1

M

M∑
i=1

‖ûi0(·;ω)‖Lp(Rd)

]
= E

[
‖u0‖Lp(Rd)

]
= ‖u0‖L1(Ω;Lp(Rd)) <∞.

Theorem 4.1. Assume that in (3.22) the random variable (u0, f, A)(ω) as in (3.13)

satisfies (3.14) – (3.19) and that A′(ω; ·) ≥ 0, for P-a.s. ω ∈ Ω and, for some

r ∈]1,∞[, p ≥ 1,

u0 ∈ Lr(Ω;Lp(Rd)) .

Then the Monte Carlo estimates EM [u(·, t)] in (4.1) converge in Lq(Ω;Lp(Rd)) for

q := min{2, p, r} > 1 as M → ∞, to M1(u(·, t)) = E[u(·, t)]. In addition, for any

M ∈ N, 0 < t <∞, we have the error bound

‖E[u(·, t)]− EM [u(·, t)]‖qLq(Ω;Lp(Rd)) ≤ CM
1−q ‖u0‖qLq(Ω;Lp(Rd)) . (4.2)

Proof. By the linearity of expectation, we have

‖E[u(·, t)]− EM [u(·, t)]‖qLq(Ω;Lp(Rd)) = E
[
‖E[u(·, t)]− EM [u(·, t)]‖qLp(Rd)

]
= E

∥∥∥∥∥ 1

M

M∑
i=1

(
E[u(·, t)]− ûi(·, t)

)∥∥∥∥∥
q

Lp(Rd)

 .
It follows from Remark 2.3 (iii), that the Banach space E = Lp(Rd) is of type

q = min{2, p, r} > 1. Hence we can apply Corollary 2.5 to the iid random variables

Yi := E[u(·, t)]− ûi(·, t) which have zero mean in the last term to estimate

E

∥∥∥∥∥ 1

M

M∑
i=1

(
E[u(·, t)]− ûi(·, t)

)∥∥∥∥∥
q

Lp(Rd)

 := E

∥∥∥∥∥ 1

M

M∑
i=1

Yi

∥∥∥∥∥
q

Lp(Rd)


≤ (2Ct)

q

Mq−1
E
[
‖Y1‖qLp(Rd)

]
=

C

Mq−1
E
[
‖E[u(·, t)]− u(·, t)‖qLp(Rd)

]
≤ C

Mq−1
E
[
‖u(·, t)‖qLp(Rd)

]
.
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Using the entropy condition (3.23) (cf. Remark 3.2), the last expression can be

bounded by

C

Mq−1
E
[
‖u(·, t)‖qLp(Rd)

]
≤ C

Mq−1
E
[
‖u0‖qLp(Rd)

]
,

and the claim follows.

4.2. Finite Difference Methods for degenerate convection diffusion

equations

So far, we considered the MCM under the assumption that the entropy solutions

ûi(x, t;ω) = S(t) (ûi0, f̂
i, Âi)(ω) for the Cauchy problem (1.1) with the data samples

(ûi0, f̂
i, Âi) are available exactly. In practice, however, we must use numerical ap-

proximations of S(t)(ûi0, f̂
i, Âi). We next present a family of convergent discretiza-

tion schemes, with corresponding stability and consistency bounds.

4.2.1. Definition, Stability and Consistency of the Scheme

The presentation will, from now on, be restricted to the one-dimensional case, that

is, we consider {
ut + f(u)x = A(u)xx, t > 0, x ∈ D ⊂ R,
u(x, 0) = u0(x).

(4.3)

We thus assume that D ⊂ R is a bounded interval in R and we shall consider D-

periodic solutions u. We shall examine the class of fully discrete monotone difference

schemes for which Karlsen, Risebro and Storrøsten obtained a convergence in L1

rate of ∆x1/3, where ∆x is the discretization parameter, in [20]. These schemes

are easily generalized to several space dimensions, but rigorous results regarding

convergence rates are much worse. To date, the best convergence rate in L1(Rd) for

a fully discrete, implicit in time scheme is ∆x2/(19+d), see [21].

For ∆x,∆t > 0, we discretize the space-time cylinder ΠT = D× [0, T ] by a grid

with cells

Inj = [xj−1/2, xj+1/2)× (tn−1, tn], n ≥ 0, j ∈ Nx,

where xj±1/2 = (j ± 1/2)∆x, j ∈ Nx, and tn = n∆t, n ∈ N. Nx := {N1, N1 +

1, . . . , N2 − 1, N2}, where N1, N2 ∈ Z are such that |D|/|N2 − N1| = ∆x and

xN1−1/2 = infxD and xN2+1/2 = supxD. We define cell averages of the initial data

via

u0
j =

1

∆x

∫
I0j

u0(x) dx, j ∈ Nx. (4.4)

Then we consider the following implicit scheme

Dt
−u

n
j +D−F

(
unj , u

n
j+1

)
= D−D+A(unj ), n ≥ 1, j ∈ Nx, (4.5)
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and the explicit scheme,

Dt
+u

n
j +D−F

(
unj , u

n
j+1

)
= D−D+A(unj ), n ≥ 0, j ∈ Nx, (4.6)

where we have denoted for a quantity {σnj }j∈Nx,n∈N,

Dt
±σ

n
j = ± 1

∆t
(σn±1
j − σnj ), D±σ

n
j = ± 1

∆x
(σnj±1 − σnj ).

We then define the piecewise constant approximation to (4.3) by

u∆(x, t) = unj , (x, t) ∈ Inj , (4.7)

where unj is defined by either (4.5) or (4.6). The numerical flux F ∈ C1(R2) is

chosen such that it is consistent with f , that is, F (u, u) = f(u) for all u ∈ R, and

monotone, which means

∂

∂u
F (u, v) ≥ 0 and

∂

∂v
F (u, v) ≤ 0.

In order to obtain convergence rates, it is furthermore necessary to choose F Lips-

chitz continuous and such that it can be written

F (u, v) = F1(u) + F2(v), F ′1(u) + F ′2(u) = f ′(u), (4.8)

see [20]. Examples of monotone numerical fluxes satisfying (4.8) are the Engquist-

Osher flux as well as the Lax-Friedrichs and the upwind flux. In order to show

convergence of the explicit scheme, the following CFL-condition is needed [11],

∆t ≤ C∆x2, (4.9)

and in order to show a convergence rate, one even needs

∆t ≤ C∆x8/3, (4.10)

see [20]. Whether this restrictive CFL-condition is sharp in order to prove a conver-

gence rate is not known. Naturally, no CFL-condition is needed to ensure stability

of the implicit scheme, [13]. In order to obtain à priori estimates for the explicit

scheme, the numerical flux function F and the diffusion operator A have to satisfy

the following condition

∆t

∆x
(F ′1(z)− F ′2(z)) + 2

∆t

∆x2A
′(w) ≤ 1, for all z and w, (4.11)

see [11]. Then we have the following stability and convergence results for the schemes

(4.5) and (4.6), [11,9,20] (which also hold for the bounded domain D replaced by

R.)

Theorem 4.2. Let u0 ∈ BV (D)∩L1(D), M− ≤ u0 ≤M+, f,A ∈ Lip([M−,M+]),

A′ ≥ 0 and u0 ∈ A(f,A), where A(f,A) is defined in (3.2). Let F be a monotone

numerical flux function consistent with f , satisfying (4.8). Denote by u∆(x, t) the

piecewise constant function defined in (4.7), where unj are computed by either the

explicit scheme (4.6) or the implicit scheme (4.5). Assume for the explicit scheme

in addition that ∆t satisfies (4.9) and that (4.11) holds. Then we have
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i) The approximations u∆ converge, as the discretization parameters

(∆x,∆t)→ 0 subject to the CFL condition (4.9) and (4.11), to the unique

entropy solution of (4.3). Moreover they satisfy

‖u∆(·, t)‖L1(D) ≤ ‖u0‖L1(D) ,

‖u∆(·, t)‖L∞(D) ≤ ‖u0‖L∞(D) , (4.12)

|u∆(·, t)|BV (D) ≤ |u0|BV (D) ,

sup
j

∣∣F (unj , u
n
j+1)−D+A(unj )

∣∣ ≤ sup
j

∣∣F (u0
j , u

0
j+1)−D+A(u0

j )
∣∣ ,∑

j

∣∣D−F (unj , u
n
j+1)−D−D+A(unj )

∣∣ ≤∑
j

∣∣D−F (u0
j , u

0
j+1)−D−D+A(u0

j )
∣∣ .

Furthermore, u∆ is L1(D)-Lipschitz continuous in time, viz., for any tn,

tm > 0,

‖u∆(·, tn)− u∆(·, tm)‖L1(D) ≤ |f(u0)−A(u0)|BV (D) |tn − tm| .

ii) If for the explicit scheme in addition (4.10) holds, the approximations u∆

converge at the rate 1/3 to the entropy solution u of (4.3):

‖u∆(·, tn)− u(·, tn)‖L1(D) ≤ ‖u∆(·, 0)− u0‖L1(D) + CT∆x1/3, (4.13)

where the constant CT takes the form

C(1+T )
(

(1 + ‖f‖Lip) |u0|BV (D) + ‖A(u0)x‖L1(D) + |f(u0)−A(u0)x|BV (D)

)
,

with C independent of u0, f and A.

Point i) was proved in [11, Thm. 3.9, Cor. 3.10] for the explicit scheme and [9,

Thm. 3.9, Lem. 3.3, 3.4, 3.5] for the implicit scheme , ii) in [20].

Remark 4.3. Combining (4.12), (3.4) respectively, with (4.13), we can obtain a

(possibly not optimal) estimate for the rate of convergence of the scheme in Lp(D)

for 1 ≤ p <∞ using Hölder’s inequality:

‖u∆(·, tn)− u(·, tn)‖Lp(D) ≤ ‖u∆(·, tn)− u(·, tn)‖1/pL1(D) ‖u∆(·, tn)− u(·, tn)‖1−1/p
L∞(D)

≤ C
(
‖u∆(·, 0)− u0‖1/pL1(D) + C

1/p
T ∆x1/(3p)

)
,

(4.14)

where the constant C is dependent on the L∞-norm of u0.

4.2.2. Work Bounds

For the purpose of analyzing the efficiency of the MC- and MLMC-method, it

is important to have an estimate on the computational work used to compute one

approximation of the solution by the deterministic FD-schemes and how it increases

with respect to mesh refinement. By (computational) work or cost of an algorithm,
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we mean the number of floating point operations performed during the execution of

the algorithm. We assume that this is proportional to the run time of the algorithm.

Because we deal with bounded domains in the actual computations, the number of

grid cells in one dimension scales as 1/∆x.

Work estimate for the explicit scheme (4.6). For the explicit scheme, the number

of operations per time step scales linearly with the number of cells in the spatial

domain D, which in turn scales as ∆x−1 (we assume the computational domain is

bounded). Hence the work can be bounded as W exp
∆ ≤ C∆t−1∆x−1. Taking the

CFL-condition (4.10) into account, we obtain the (likely pessimistic) work bound

W ex
∆ = O(∆x−11/3) .

Work estimate for the implicit scheme (4.5). In the implicit scheme we have to

solve the nonlinear equation (4.5) for un+1 := (. . . , un+1
j−1 , u

n+1
j , un+1

j+1 , . . . ) in each

timestep. Since solving this equation exactly is either impossible or computationally

very expensive, we prefer to solve it only approximately by an iterative method. We

consider here the case that this method is the Newton iteration, which we iterate

until the residual is of order ∆x∆t (this is possible since the mapping un → un+1 =:

Ψ(un) defined by (4.5) is a contraction for sufficiently small ∆t and CFL constant.

In general the Lipschitz constant should scale as 1/∆x, so a small value of ∆t

alone is not sufficient for the contraction property to hold. For details, we refer to

[9]. The additional error introduced by finite termination of the iterative nonlinear

system solver will not increase the overall error: denoting by un,(0) the approxi-

mation at time t = tn obtained by solving (4.5) exactly in each time step, un,(j)

the approximation obtained by solving (4.5) approximately via Newton iteration

in the first j timesteps and afterwards exactly (so that un,(n) := u∆(·, tn) is the

approximation obtained by using Newton’s method in each timestep), we have

‖u∆(·, tn)− u(·, tn)‖L1(D) =
∥∥∥un,(n) − u(·, tn)

∥∥∥
L1(D)

=

∥∥∥∥n−1∑
m=0

(un,(m+1) − un,(m)) + un,(0) − u(·, tn)

∥∥∥∥
L1(D)

≤
n−1∑
m=0

∥∥∥un,(m+1) − un,(m)
∥∥∥
L1(D)

+
∥∥∥un,(0) − u(·, tn)

∥∥∥
L1(D)

≤
n−1∑
m=0

∥∥∥um+1,(m+1) − um+1,(m)
∥∥∥
L1(D)

+ CT∆x1/3

≤ n∆x∆t+ CT∆x1/3

= tn∆x+ CT∆x1/3 ≤ C̃T∆x1/3,

where we have used the L1-contraction property of the scheme for the third last

inequality. If the starting value for the Newton iteration is chosen such that it is

in a sufficiently small neighborhood of the fixpoint, the convergence order of the

Newton method is locally quadratic. In order to achieve an error of less than C∆x∆t
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in one timestep by solving the nonlinear system only approximately, it suffices to

perform O(log(∆x−1∆t−1)) many Newton iterations. If we take ∆t = θ∆x for some

constant θ > 0, these are altogether O(log(∆x−2)) = O(log(∆x−1)) Newton steps.

In each step of the Newton iteration, we invert and multiply a tridiagonal matrix of

size O(∆x−2) with a vector of length O(∆x−1) and subtract it from another vector

of length O(∆x−1). The tridiagonal matrix can be inverted in O(∆x−1) operations

using the Thomas algorithm (in case of periodic boundary conditions we use the

Sherman-Morrison formula). Hence the total number of floating point operations

which are necessary for one Newton step is O(∆x−1). It follows that the work done

in one timestep is of order O(log(∆x−1)∆x−1). As there are altogether n = T/∆t

timesteps, and since we can choose the timestep of order ∆t = θ∆x, we obtain the

following bound on the total work for one execution of the implicit scheme,

W im
∆ = O(∆x−2 log(∆x−1)) .

4.2.3. Application to random data

In the Monte Carlo Finite Difference Methods (MC-FDMs), we combine MC sam-

pling of the random initial data with the FDMs (4.5) and (4.6). In the conver-

gence analysis of these schemes, we shall require the application of the FDMs (4.5)

and (4.6) to random initial data, flux function and diffusion operator (u0, f, A) ∈
Lp(Ω;E1) for some 1 ≤ p ≤ ∞. Given a draw (u0(ω; ·), f(ω; ·), A(ω; ·)) of (u0, f, A),

the FDMs (4.4) with (4.6) or (4.5) define families u∆(ω;x, t) of grid functions. We

have the following stability and consistency estimates, which hold uniformly, i.e.

P-a.s. with respect to ω.

Proposition 4.4. Consider the FDMs (4.4)–(4.6), (4.5) for the approximation of

the entropy solution corresponding to the draw (u0, f, A)(ω) of the random data.

Then, the random grid functions Ω 3 ω 7−→ u∆(ω;x, t) defined by (4.7) satisfy,

for every 0 < t <∞, 0 < ∆x < 1, and every r ≥ 1 the stability bounds:∥∥u∆(·; ·, t)
∥∥
Lr(Ω;L∞(D))

≤ ‖u0‖Lr(Ω;L∞(D)) ,∥∥u∆(·; ·, t)
∥∥
Lr(Ω;L1(D))

≤ ‖u0‖Lr(Ω;L1(D)) .

We also have the consistency bound: there exists a constant C > 0 independent of

t and of ∆, such that∥∥u(·; ·, t)− u∆(·; ·, t)
∥∥
Lr(Ω;L1(D))

≤ ‖u0 − u∆(·; ·, 0)‖Lr(Ω;L1(D))

+ C(1 + t)∆x1/3
{∥∥∥(1 + ‖f(ω; ·)‖Lip

)
|(u0)(ω)|BV (D)

∥∥∥
Lr(Ω)

+ ‖A(u0)x‖Lr(Ω;L1(D)) +
∥∥∥|(f(u0)−A(u0)x)(ω)|BV (D)

∥∥∥
Lr(Ω)

}
. (4.15)

Remark 4.5. Reasoning as in Remark 4.3, under the assumptions (3.14) – (3.19),

(4.15) becomes
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∥∥u(·; ·, t)− u∆(·; ·, t)
∥∥
Lr(Ω;Lp(D))

≤ CM1−1/p ‖u0 − u∆(·; ·, 0)‖1/pLr(Ω;L1(D))

+ CM
1−1/p

(
(1 + t)∆x1/3 {(1 + Cf + CA)CTV + CA,f}

)1/p

,

where M = max{|M−|, |M+|} (c.f. (3.14)).

4.3. MC-FDM Scheme

We next define and analyze the MC-FDM scheme. It is based on the straightforward

idea of generating, possibly in parallel, independent samples of the random initial

data and then, for each sample of the random initial data, flux function and diffusion

operator, to perform one FD simulation. The error of this procedure is bounded by

two contributions: a (statistical) sampling error and a (deterministic) discretization

error. We express the asymptotic efficiency of this approach (in terms of overall

error versus work). It will be seen that the efficiency of the MC-FDM is, in general,

inferior to that of the deterministic schemes (4.6) and (4.5). The present analysis

will constitute a key technical tool in our subsequent development and analysis of

the multilevel MC-FDM (“MLMC-FDM” for short) which does not suffer from this

drawback.

4.3.1. Definition of the MC-FDM Scheme

We consider once more the initial value problem (3.22) with random data (u0, f, A)

satisfying (3.14) – (3.19) and (3.20) for sufficiently large r ∈ R (to be specified

in the convergence analysis). The MC-FDM scheme for the MC estimation of the

mean of the random entropy solutions then consists in the following:

Definition 4.6. (MC-FDM Scheme) Given M ∈ N, generate M i.i.d. samples

{(ûi0, f̂ i, Âi)}Mi=1. Let {ûi(·, t)}Mi=1 denote the unique entropy solutions of the degen-

erate convection diffusion equations (1.1) for these data samples, i.e.

ûi(·, t) = S(t)
(
ûi0, f̂

i, Âi
)
, i = 1, . . . ,M.

Then the MC-FDM approximations of Mk(u(·, t)) are defined as statistical esti-

mates from the ensemble

{ûi∆(·, t)}Mi=1

obtained from the FD approximations by (4.6) or (4.5) of (1.1) with data samples

{(ûi0, f̂ i, Âi)}Mi=1: Specifically, the first moment of the random solution u(ω; ·, t) at

time t > 0, is estimated as

M1(u(·, t)) ≈ EM [u∆(·, t)] :=
1

M

M∑
i=1

ûi∆(·, t). (4.16)
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4.3.2. Convergence Analysis of MC-FDM

We next address the convergence of EM [u∆] to the mean E[u]. We combine The-

orem 4.1 for the convergence of the Monte Carlo method with the error estimate

Proposition 4.4 for the finite difference method to obtain,

Theorem 4.7 (MC-FD Error bound). Assume that

u0 ∈ Lr(Ω;L1(D) ∩BV (D))

for some r ∈]1,∞] and that (3.14) – (3.19) hold. In addition, assume that D is a

bounded, axiparallel rectangle and periodic boundary conditions for u. Then the MC

estimate EM [u∆(·, t)] defined in (4.16) as in Definition 4.6 satisfies, for every M ,

and for q = min{2, r} ∈]1, 2] the error bound

‖E[u(·, t)]− EM [u∆(ω; ·, t)]‖Lq(Ω;Lp(D)) ≤ C
{
M1/q−1 ‖u0‖Lq(Ω;Lmax{p,q}(D))

+M
1−1/p ‖u0 − u∆(·; ·, 0)‖1/pLq(Ω;Lp(D))+∆x1/(3p)M

1−1/p
(1+t)1/p

{
‖A(u0)x‖1/pLq(Ω;L1(D))

+
∥∥∥(1 + ‖f(ω; ·)‖Lip

)
|u0|BV (D) (ω)

∥∥∥1/p

Lq(Ω)
+
∥∥∥|f(u0)−A(u0)x|BV (D) (ω)

∥∥∥1/p

Lq(Ω)

}}
.

(4.17)

where C > 0 is independent of M and of ∆x as M → ∞ and as ∆x,∆t ↓ 0 and

M := max{M−,M+} as in (3.14).

Proof. The triangle inequality implies, for any 1 ≤ p, q ≤ ∞

‖E[u(·, t)]− EM [u∆(ω; ·, t)]‖Lq(Ω;Lp(D))

≤ ‖E[u(ω; ·, t)]− EM [u(ω; ·, t)]‖Lq(Ω;Lp(D))

+ ‖EM [u(ω; ·, t)]− EM [u∆(ω; ·, t)]‖Lq(Ω;Lp(D)) . (4.18)

For p < q, we estimate the first term in the upper bound of (4.18) with Hölder’s

inequality

‖E[u(ω; ·, t)]− EM [u(ω; ·, t)]‖Lq(Ω;Lp(D)) ≤ CD ‖E[u(ω; ·, t)]− EM [u(ω; ·, t)]‖Lq(Ω;Lq(D)) .

By Theorem 4.1, we have

‖E[u(ω; ·, t)]− EM [u(ω; ·, t)]‖Lq(Ω;Lp̃(D)) ≤ CM
1/q−1 ‖u0‖Lq(Ω;Lp̃(D)) ,

where p̃ = max{q, p}. Hence, we arrive at

‖E[u(ω; ·, t)]− EM [u(ω; ·, t)]‖Lq(Ω;Lp(D)) ≤ CDM
1/q−1 ‖u0‖Lq(Ω;Lpt(D)) .
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For the second term in the upper bound (4.18), we use the linearity of the estimator

EM [] and the triangle inequality, and Remarks 4.3, 4.5 to obtain

‖EM [u(ω; ·, t)]− EM [u∆(ω; ·, t)]‖Lq(Ω;Lp(D))

≤ ‖u(·, t)− u∆(·, t)‖Lq(Ω;Lp(D))

≤ ‖u∆(·, tn)− u(·, tn)‖1/pLq(Ω;L1(D)) ‖u∆(·, tn)− u(·, tn)‖1−1/p
Lq(Ω;L∞(D))

≤ CM1−1/p
(
‖u0 − u∆(·; ·, 0)‖1/pLq(Ω;Lp(D)) + ∆x1/(3p)(1 + t)1/p

{
‖A(u0)x‖1/pLq(Ω;L1(D))

+
∥∥∥(1 + ‖f(ω; ·)‖Lip

)
|u0|BV (D) (ω)

∥∥∥1/p

Lq(Ω)
+
∥∥∥|f(u0)−A(u0)x|BV (D) (ω)

∥∥∥1/p

Lq(Ω)

})
,

where the last inequality follows from the error estimate for the finite difference

scheme, Proposition 4.4. Combining the two, we obtain the estimate (4.17).

4.3.3. Work estimates

We have seen that the computational work to obtain {u∆(·, t)}0≤t≤T , computed

by the explicit or implicit scheme respectively, is asymptotically, as ∆x,∆t → 0,

bounded as

W ex
∆ ≤ C∆x−11/3, W im

∆ ≤ C∆x−2 log(∆x−1),

which implies that the work for the computation of the MC estimate EM [u∆(·, t)]
is of order

W ex
∆,M ≤ CM∆x−11/3, W im

∆,M ≤ CM∆x−2 log(∆x−1), (4.19)

so that we obtain from (4.17) the convergence order in terms of work: To this

end we equilibrate in (4.17) the two bounds by choosing M (1−q)/q ∼ ∆x1/(3p), i.e.

M = C∆x
q

3p(1−q) . Inserting in (4.19) yields

W ex
∆,M ≤ C∆x−

q+11p(q−1)
3p(q−1) , W im

∆,M ≤ C∆x−
q+6p(q−1)
3p(q−1) log(∆x−1),

so that we obtain from (4.17)

‖E[u(·, t)]− EM [u∆(·, t)]‖Lq(Ω;Lp(D)) ≤ (Cqu0,t,A,f
)1/p∆x

1
3p (4.20a)

≤ (Cqu0,t,A,f
)1/p (W ex

∆,M )−
q−1

q+11p(q−1) ,

‖E[u(·, t)]− EM [u∆(·, t)]‖Lq(Ω;Lp(D)) ≤ (Cqu0,t,A,f
)1/p (W im

∆,M (log(W im
∆,M ))−1)−

q−1
q+6p(q−1) ,

(4.20b)

where Cqu0,t,A,f
is given by

Cqu0,t,A,f
= C(1 + t)

{
‖ (1 + ‖f(ω; ·)‖Lip) |u0|BV (D) (ω)‖Lq(Ω)

+ ‖A(u0)x‖Lq (Ω;L1(D)) + ‖ |f(u0)−A(u0)x|BV (D) (ω)‖Lq (Ω)
}
. (4.21)



March 17, 2017 15:26 WSPC/INSTRUCTION FILE KRSW170317

Multilevel Monte Carlo method for degenerate convection diffusion equations 23

Estimates (4.20) hold for q = min{2, r} as we used Remark 2.3 in its derivation.

Assuming r ≥ 2 in (3.20), we may optimize the bound (4.20a) with respect to q

for any p ∈ [1,∞[. For 1 < q ≤ 2, the function q 7→ q/(q − 1) is monotonically

decreasing. Therefore,

max
1<q≤2

q − 1

q + 11p(q − 1)
= max

1<q≤2

1

q/(q − 1) + 11p

is attained for q̃ = min{2, r} resulting at best (for r ≥ 2) in the error vs. work rate

1/(2 + 11p) in (4.20a), and 1/(2 + 6p) for the implicit scheme in (4.20b). On the

other hand, in the deterministic case the convergence rates with respect to work

read

‖u(·, t)− u∆(·, t)‖Lp(D) ≤ C
1/p
T ∆x1/(3p) ≤ C1/p

T (W ex
∆ )−1/(11p), (4.22a)

‖u(·, t)− u∆(·, t)‖Lp(D) ≤ C
1/p
T (W im

∆ (log(W im
∆ ))−1)−1/(6p) . (4.22b)

4.4. Multilevel MC-FDM

We next present and analyze a scheme that allows us to achieve almost the accuracy

versus work bound (4.22) of the deterministic FDM also for the stochastic data

(u0, f, A) satisfying (3.14) - (3.20), rather than the single level MC-FDM error

bound (4.20). The key ingredient in the Multilevel Monte Carlo Finite Difference

(MLMC-FDM) scheme is simultaneous MC sampling on different levels of resolution

of the FDM, with level dependent numbers M` of MC samples. To define these, we

introduce some notation.

4.4.1. Notation

The MLMC-FDM is defined as a multilevel discretization in x and t with level

dependent numbers M` of samples. To this end, we assume we are given a family

of nested grids with cell sizes

∆x` = 2−`∆x0, ` ∈ N0, (4.23)

for some ∆x0 > 0. Similarly, we denote,

∆t` = C∆x
8/3
` ,

the size of the time step for the explicit scheme corresponding to grid size ∆x` and

∆t` = θ∆x`,

the size of the time step for the implicit scheme at level `. We denote by u` the

approximation to (4.3) computed by (4.6) or (4.5) on the grid with cell and time

step size ∆` := (∆x`,∆t`).
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4.4.2. Derivation of MLMC-FDM

As in plain MC-FDM, our aim is to estimate, for 0 < t < ∞, the expectation (or

“ensemble average”) E[u(·, t)] of the random entropy solution of (3.22) with random

data (u0, f, A)(ω), ω ∈ Ω, satisfying (3.13) – (3.20) for sufficiently large values of k

(to be specified in the sequel). As in the previous section, E[u(·, t)] will be estimated

by replacing u(·, t) by a FDM approximation.

We generate a sequence of approximations, {u`(·, t)}∞`=0 on the nested meshes

with cell sizes ∆x`, time steps of sizes ∆t`. In the following we set u−1(·, t) := 0.

Then, given a target level L ∈ N of spatial resolution, we have

E[uL(·, t)] = E
[ L∑
`=0

(u`(·, t)− u`−1(·, t))
]
. (4.24)

We next estimate each term in (4.24) statistically by a MCM with a level-dependent

number of samples, M`; this gives the MLMC-FDM estimator

EL[u(·, t)] =

L∑
`=0

EM`
[u`(·, t)− u`−1(·, t)] (4.25)

where EM [u∆(·, t)] is as in (4.16), and where u`(·, t) is computed on the mesh with

grid size ∆x` and time step ∆t`.

4.4.3. Convergence Analysis

We analyze the MLMC-FDM mean field error∥∥E[u(·, t)]− EL[u(·, t)]
∥∥
Lq(Ω;Lp(D))

(4.26)

for 0 < t < ∞, q ∈]1, 2], p ∈ [1,∞] and L ∈ N. In particular, we are interested

in the choice of the sample sizes {M`}∞`=0 such that, for every L ∈ N, the MLMC

error (4.26) is minimized. The principal issue in the design of MLMC-FDM is the

optimal choice of {M`}∞`=0 such that, for each L, an error (4.26) is achieved with

minimal total work given by (based on (4.19)),

W ex
L,MLMC = C

L∑
`=0

M`W
ex
∆`

= O
( L∑
`=0

M`∆x
−11/3
`

)
, (4.27a)

W im
L,MLMC = C

L∑
`=0

M`W
im
∆`

= O
( L∑
`=0

M`∆x
−2
` | log(∆x`)|

)
. (4.27b)

To estimate (4.26), we write (recall that u−1 := 0) using the triangle inequality,

the linearity of the mathematical expectation E[·] and the definition (4.25) of the

MLMC estimator

‖E[u(·, t)]−EL[u(·, t)]‖qLq(Ω;Lp(D))

≤ Cq ‖E[u(·, t)]− E[uL(·, t)]‖qLq(Ω;Lp(D))
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+ Cq
∥∥E[uL(·, t)]− EL[u(·, t)]

∥∥q
Lq(Ω;Lp(D))

= Cq ‖E[u(·, t)]− E[uL(·, t)]‖qLq(Ω;Lp(D))

+ Cq

∥∥∥ L∑
`=0

E[u` − u`−1]− EM`
[u` − u`−1]

∥∥∥q
Lq(Ω;Lp(D))

=: I + II

We estimate terms I and II separately. By linearity of the expectation, term I equals

I = Cq ‖E[u(·, t)− uL(·, t)]‖qLq(Ω;Lp(D)) ≤ Cq ‖u(·, t)− uL(·, t)‖qL1(Ω;Lp(D)) (4.28)

As the function E[u(·, t) − uL(·, t)] is deterministic, the Lq(Ω;Lp(D))-norm is

bounded by the L1(Ω;Lp(D))-norm due to P (Ω) = 1. Term I is therefore of the

order of the deterministic FV discretization error that can be bounded by (4.15)

with r = 1 (cf. Remarks 4.3, 4.5 for p > 1). We hence focus on term II. For p < q,

we have that

∥∥∥ L∑
`=0

E[u` − u`−1]− EM`
[u` − u`−1]

∥∥∥q
Lq(Ω;Lp(D))

≤ |D|(q−p)/p
∥∥∥ L∑
`=0

E[u` − u`−1]− EM`
[u` − u`−1]

∥∥∥q
Lq(Ω;Lq(D))

,

hence

II ≤ CD
∥∥∥ L∑
`=0

E[u` − u`−1]− EM`
[u` − u`−1]

∥∥∥q
Lq(Ω;Lp̃(D))

,

where p̃ = max{p, q}. The bound for term II can be written as

II ≤ CD
∥∥∥ L∑
`=0

M∑̀
i=1

1

M`

(
E[u` − u`−1]−

(
ûi` − ûi`−1

))∥∥∥q
Lq(Ω;Lp̃(D))

=: CD

∥∥∥ L∑
`=0

M∑̀
i=1

Yi,`

∥∥∥q
Lq(Ω;Lp̃(D))

where Yi,` := 1
M`

(
E[u` − u`−1]−

(
ûi` − ûi`−1

))
, i = 1, . . . ,M`, ` = 0, . . . , L. The

Yi,` are independent, mean zero random variables. Since p̃ = max{p, q}, Lp̃(D) is

of type q ∈]1, 2] (cf. Remark 2.3 (iii)). Therefore we can apply Proposition 2.4 to
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the finite sum
∑L
`=0

∑M`

i=1 Yi,` (first inequality in the following calculation):∥∥∥ L∑
`=0

M∑̀
i=1

Yi,`

∥∥∥q
Lq(Ω;Lp̃(D))

≤ (2Ct)
q
L∑
`=0

M∑̀
i=1

‖Yi,`‖qLq(Ω;Lp̃(D))

= (2Ct)
q
L∑
`=0

M` ‖Y1,`‖qLq(Ω;Lp̃(D))

= (2Ct)
q
L∑
`=0

M`

∥∥∥ 1

M`

(
E[u` − u`−1]−

(
û1
` − û1

`−1

))∥∥∥q
Lq(Ω;Lp̃(D))

= (2Ct)
q
L∑
`=0

M1−q
` ‖E[u` − u`−1]− (u` − u`−1)‖q

Lq(Ω;Lp̃(D))

≤ (2Ct)
q
L∑
`=0

M1−q
` ‖u` − u`−1‖qLq(Ω;Lp̃(D))

.

(4.29)

We estimate for every ` ≥ 0 the size of the detail u` − u`−1 with the triangle

inequality

‖u`(·, t)− u`−1(·, t)‖Lq(Ω;Lp̃(D)) ≤ ‖u(·, t)− u`(·, t)‖Lq(Ω;Lp̃(D))+‖u(·, t)− u`−1(·, t)‖Lq(Ω;Lp̃(D)) .

Combining this with (4.14), (4.15) with t = t, r = q, (4.21) and (4.23), we obtain

for every ` ∈ N the estimate (using Hölder’s inequality to get from Lp̃(D) to L1(D),

cf. Remark 4.3, 4.5)

‖(u` − u`−1)(·, t)‖Lq(Ω;Lp̃(D))

≤ CM1−1/p̃
(
‖u0 − u`(·; ·, 0)‖1/p̃Lq(Ω;L1(D)) + ‖u0 − u`−1(·; ·, 0)‖1/p̃Lq(Ω;L1(D))

)
+ (Cqu0,t,A,f

)1/p̃M
1−1/p̃

∆x
1/(3p̃)
` ,

where M = max{|M−|, |M+|}, cf. (3.14).

We use that the initial approximations u`(·; ·, 0) of u(·; ·, 0) satisfy for any 1 ≤
r ≤ ∞ to get

‖u(·; ·, 0)− u`(·; ·, 0)‖Lr(Ω;L1(D)) ≤ ∆x`
∥∥|u0|BV (D)

∥∥
Lr(Ω)

.

Thus we can estimate the contribution of the errors of the approximation of the

initial data by

‖u(·; ·, 0)− u`(·; ·, 0)‖1/p̃Lq(Ω;L1(D)) ≤ C
(

∆x`
∥∥|u0|BV (D)

∥∥
Lq(Ω)

)1/p̃

≤ C∆x
1/p̃
`

∥∥|u0|BV (D)

∥∥1/p̃

Lq(Ω)
.

We insert this in (4.30) to obtain

‖u`(·, t)− u`−1(·, t)‖Lq(Ω;Lp̃(D))
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≤M1−1/p̃
(

(Cqu0,t,A,f
)1/p̃ + C∆x

2/(3p̃)
`

∥∥∥|u0|BV (D)

∥∥∥1/p̃

Lq(Ω)

)
∆x

1/(3p̃)
`

≤M1−1/p̃
(
Cqu0,t,A,f

+
∥∥∥|u0|BV (D)

∥∥∥
Lq(Ω)

)1/p̃

∆x
1/(3p̃)
` , (4.30)

where we used that ∆x` ≤ O(1).

Theorem 4.8. Assume (3.14) – (3.20) for some r > 1 and (4.23). Then, for any

sequence {M`}∞`=0 of sample sizes at mesh level `, we have for the MLMC-FDM

estimate EL[u(·, t)] in (4.25) the error bound, for q = min{r, 2},∥∥∥E[u(·, t)]− EL[u(·, t)]
∥∥∥q
Lq(Ω;Lp(D))

≤ CMq−q/p
{

(C1
u0,t,A,f )q∆x

q/(3p)
L + ∆x

q/p
L

∥∥∥|u0|BV (D)

∥∥∥q
L1(Ω)

}
+ CM1−q

0 ‖u0‖qLq(Ω;Lp̃(D))

+ CM
q−q/p̃

{
L∑
`=0

M1−q
` ∆x

q/(3p̃)
`

}(
Cqu0,t,A,f

+
∥∥∥|u0|BV (D)

∥∥∥
Lq(Ω)

)q/p̃
(4.31)

where we have denoted p̃ = max{p, q}, M = max{|M−|, |M+|}, (cf. (3.14)) and

Cju0,t,A,f
= C(1 + t)

{∥∥∥(1 + ‖f(·; ·)‖Lip

)
|u0|BV (D)

∥∥∥
Lj(Ω)

+ ‖A(u0)x‖Lj(Ω;L1(D)) +
∥∥∥|f(u0)−A(u0)x|BV (D)

∥∥∥
Lj(Ω)

}
,

for j = 1, q. In (4.31), C > 0 is a constant that depends on the size of the domain

D, but is independent of L, of {M`}L`=0, and of the parameters u0, f , t and A.

Proof. We raise (4.30) to the q-th power, and insert the resulting estimate into

the bound (4.29). The assertion (4.31) follows upon summing from ` = 0, ..., L, and

using ∆x` ≤ ∆x0 ≤ O(1) and adding the contribution from term I in (4.28).

4.4.4. Determining the number of samples needed on each level

The upper bound obtained in Theorem 4.8 is the basis for an optimization of the

numbers M` of MC samples across the mesh levels. Our selection of the Monte Carlo

sample sizes M` will be based on the last term in the error bound (4.31); we will

use a Lagrange multiplier argument to determine the number of samples needed at

each level in order to minimize the computational work given an error tolerance ε.

Lemma 4.9. Assume that ∆x` = 2−`∆x0 for some ∆x0 > 0 and that the work

scales aymptotically as in (4.27), i.e.,

W ex
L,MLMC = C

L∑
`=0

M`∆x
−w
` , W im

L,MLMC = C

L∑
`=0

M`∆x
−w
` log(∆x−1

` ), (4.32)
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for w > 0, where w = 11/3 for the explicit scheme and w = 2 for the implicit finite

difference scheme. Assume furthermore that L and ∆x0 are large enough such that

∆xs−wL > ∆x−w0 . Given an error tolerance ε > 0 and that the error at level L scales

as (cf. (4.31))

ErrL = C

(
L∑
`=0

M1−q
` ∆x

qs/p̃
` + ∆x

qs/p
L +M1−q

0

)
. (4.33)

Then, the optimal sample numbers M`, with respect to the work measure (4.32) and

with respect to the error bound (4.33), are given by

Mex
` 'Mex

0 ∆x
s
p̃

0 2−`(
s
p̃ + w

q ), (4.34a)

M im
` 'M im

0

∆x
s
p̃

0 2−`(
s
p̃ + w

q )

(`+ log(∆x−1
0 ))

1
q

, ` = 1, . . . , L, (4.34b)

where

Mex
0 '

 1

ε−∆x
qs
p

0 2−
qsL
p

1 + ∆x
s
p̃

0

L∑
j=1

2j(
(q−1)w

q − s
p̃ )

 1
q−1

, (4.35a)

M im
0 '

 1

ε−∆x
qs
p

0 2−
qsL
p

log(∆x−1
0 )

q−1
q + ∆x

s
p̃

0

L∑
j=1

(
j + log(∆x−1

0 )
) q−1

q 2j(
(q−1)w

q − s
p̃ )

 1
q−1

(4.35b)

where the ' indicates that this is the number of samples up to a constant which may

depend on the data (u0, f, A) and the domain but not on ` and L. In particular, as

L→∞, the error of the MLMC-FDM algorithm, (4.31) scales for p = 1, r = q = 2

with respect to work as∥∥E[u(·, t)]− EL[u(·, t)]
∥∥2

L2(Ω;L1(D))
≤ Ĉu0,t,A,f (W ex

L,MLMC)−1/6, (4.36a)∥∥E[u(·, t)]− EL[u(·, t)]
∥∥2

L2(Ω;L1(D))
≤ Ĉu0,t,A,f

(
W im
L,MLMC(log(W im

L,MLMC))−1
)−2/7

.

(4.36b)

Proof. From (4.27), under the assumption ∆x` = 2−`∆x0 for some ∆x0 > 0, in

space dimension d = 1 the work scales as in (4.32), that is,

W ex
L,MLMC = C

L∑
`=0

M`∆x
−w
` = C∆x−w0

L∑
`=0

M`2
w`,

W im
L,MLMC = C

L∑
`=0

M`∆x
−w
` log(∆x−1

` ) = C∆x−w0

L∑
`=0

M` (`+ log(∆x−1
0 )) 2w`,

for w = 11/3 in the case of the explicit scheme and w = 2 for the implicit scheme.
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The bound for the multi-level error (4.31) with L discretization levels reads,

asymptotically as L→∞,

ErrL = C
( L∑
`=0

M1−q
` ∆x

qs/p̃
` + ∆x

qs/p
L +M1−q

0

)
= C

(
M1−q

0 + ∆x
qs/p̃
0

L∑
`=0

M1−q
` 2−qs`/p̃ + ∆x

qs/p
0 2−qsL/p

)
= C

(
M1−q

0 + ∆x
qs/p̃
0

L∑
`=1

M1−q
` 2−qs`/p̃ + ∆x

qs/p
0 2−qsL/p

)
.

We optimize error versus work assuming a generic convergence order s > 0 of the

FV scheme, bearing in mind that we will choose finally s = 1/3, based on the

convergence estimate (4.13).

Using a Lagrange multiplier λ, we get for L := W − λ(ε−ErrL) the first order

conditions

0 =
∂L
∂M`

, ` = 0, . . . , L.

This means that (omitting the constants C) there exist constants λex and λim which

are independent of ` (but may depend on L) such that, for 1 < q ≤ 2,

∆x−w0 2`w = λex(q − 1)∆x
qs/p̃
0 M−q` 2−q`s/p̃, ` = 1, . . . , L,

∆x−w0 = λex(q − 1)M−q0 , ` = 0,

for the explicit scheme and

∆x−w0 (`+ log(∆x−1
0 ))2`w = λim(q − 1)∆x

qs/p̃
0 M−q` 2−q`s/p̃, ` = 1, . . . , L,

∆x−w0 log(∆x−1
0 ) = λim(q − 1)M−q0 , ` = 0,

for the implicit scheme. Since q > 1, we may solve for the sample numbers:

M ex
` = (λex(q − 1))

1
q
(
∆x02−`

) s
p̃ + w

q , M im
` =

(
λim(q − 1)

`+ log(∆x−1
0 )

) 1
q (

∆x02−`
) s

p̃ + w
q ,

for ` = 1, . . . , L, and

M ex
0 = (λex(q − 1))

1
q ∆x

w/q
0 , M im

0 =

(
λim(q − 1)

log(∆x−1
0 )

) 1
q

∆x
w/q
0 .

Using the constraint ErrL = ε, we get for the prescribed accuracy ε > 0,

ε = ∆x
qs
p

0 2−
qsL
p +

∆x
w(1−q)

q

0

(λex(q − 1))
q−1
q

(
1 + ∆x

s
p̃

0

L∑
`=1

2`(
(q−1)w

q − s
p̃ )

)
,

ε = ∆x
qs
p

0 2−
qsL
p +

∆x
w(1−q)

q

0

(λim(q − 1))
q−1
q

(
log(∆x−1

0 )
q−1
q + ∆x

s
p̃

0

L∑
`=1

(
`+ log(∆x−1

0 )
) q−1

q 2`(
(q−1)w

q − s
p̃ )

)
.
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We solve this for λex, λim respectively,

λex =
1

∆xw0 (q − 1)

 1

ε−∆x
qs
p

0 2−
qsL
p

1 + ∆x
s
p̃

0

L∑
j=1

2j(
(q−1)w

q − s
p̃ )


q

q−1

,

λim =
1

∆xw0 (q − 1)

×

 1

ε−∆x
qs
p

0 2−
qsL
p

log(∆x−1
0 )

q−1
q + ∆x

s
p̃

0

L∑
j=1

(
j + log(∆x−1

0 )
) q−1

q 2j(
(q−1)w

q − s
p̃ )


q

q−1

,

and insert it in the expressions for M`, resulting in (4.34):

M ex
` '

 1

ε−∆x
qs
p

0 2−
qsL
p

1 + ∆x
s
p̃

0

L∑
j=1

2j(
(q−1)w

q − s
p̃ )

 1
q−1

∆x
s
p̃

0 2−`(
s
p̃ + w

q ),

M im
` '

 1

ε−∆x
qs
p

0 2−
qsL
p

log(∆x−1
0 )

q−1
q + ∆x

s
p̃

0

L∑
j=1

(
j + log(∆x−1

0 )
) q−1

q 2j(
(q−1)w

q − s
p̃ )

 1
q−1

× ∆x
s
p̃

0 2−`(
s
p̃ + w

q )

(`+ log(∆x−1
0 ))

1
q

, ` = 1, . . . , L,

where the ' indicates that this is the number of samples up to a constant which

may depend on the data (u0, f, A) and the domain but not on ` and L. For M0, we

obtain

M ex
0 '

 1

ε−∆x
qs
p

0 2−
qsL
p

1 + ∆x
s
p̃

0

L∑
j=1

2j(
(q−1)w

q − s
p̃ )

 1
q−1

,

M im
0 '

 1

ε−∆x
qs
p

0 2−
qsL
p

log(∆x−1
0 )

q−1
q + ∆x

s
p̃

0

L∑
j=1

(
j + log(∆x−1

0 )
) q−1

q 2j(
(q−1)w

q − s
p̃ )

 1
q−1

Inserting into the work estimate (4.32), we obtain ther asymptotic work vs. accuracy

relations

W ex
L,MLMC '

 1

ε−∆x
qs
p

0 2−
qsL
p

1 + ∆x
s
p̃

0

L∑
j=1

2j(
(q−1)w

q − s
p̃ )

 1
q−1

∆x−w0

(
1 + ∆x

s
p̃

0

L∑
`=1

2`(
w(q−1)

q − s
p̃ )

)
,

W im
L,MLMC '

 1

ε−∆x
qs
p

0 2−
qsL
p

log(∆x−1
0 )

q−1
q + ∆x

s
p̃

0

L∑
j=1

(
j + log(∆x−1

0 )
) q−1

q 2j(
(q−1)w

q − s
p̃ )

 1
q−1

×∆x−w0

(
log(∆x−1

0 ) + ∆x
s
p̃

0

L∑
`=1

(
`+ log(∆x−1

0 )
) q−1

q 2`(
w(q−1)

q − s
p̃ )

)
.
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Assuming that r ≥ 2, we may choose q = 2 and p = 1 which implies p̃ = max{p, q} =

2. With s = 1/3 we obtain for the explicit scheme with w = 11/3, that

(q − 1)w

q
− s

p̃
=
w − s

2
=

11

6
− 1

6
=

5

3
> 0

and hence the terms 2L
w−s

2 dominate the sums in the expression for W ex
L,MLMC .

Choosing ε = 2∆x2s
0 · 2−2sL ' 2∆x2s

L , the work for the explicit MLMC scheme is

thus of the order

W ex
L,MLMC ' ∆x−2s

0 22sL
(

∆x
−w

2
0 + ∆x

s−w
2

0 2L
w−s

2

)2

' ∆x−2s
0 22sL

(
∆x−w0 + ∆xs−w0 2L(w−s)

)
' ∆x−2s

L

(
∆x−w0 + ∆xs−wL

) (4.37)

If ∆xs−wL > ∆x−w0 , then this term is dominated by ∆x
−(s+w)
L and

ε ' ∆x2s
L '

(
∆x
−(s+w)
L

)− 2s
s+w '

(
W ex
L,MLMC

)− 2s
s+w .

For the explicit scheme 2s
s+w = 1/6.

For the implicit scheme, we have

W im
L,MLMC ' ∆x−2s

0 22sL
(

log (∆x−1
0 )

3/4
∆x
−w

2
0 + ∆x

s−w
2

0 (L+ log(∆x−1
0 ))1/22L

w−s
2

)2

' ∆x−2s
0 22sL

(
log (∆x−1

0 )
3/2

∆x−w0 + ∆xs−w0 (L+ log(∆x−1
0 ))2L(w−s)

)
' ∆x−2s

L

(
log (∆x−1

0 )
3/2

∆x−w0 + log(∆x−1
L )∆xs−wL

)
.

(4.38)

So if log (∆x−1
0 )

3/2
∆x−w0 < log(∆x−1

L )∆xs−wL , the work is asymptotically domi-

nated by

W im
L,MLMC ' ∆x

−(s+w)
L log(∆x−1

L ),

and we get,

ε ' ∆x2s
L '

(
∆x
−(s+w)
L

)− 2s
s+w '

(
W im
L,MLMC log(W im

L,MLMC)−1
)− 2s

s+w .

Since s = 1/3 and w = 2 for the implicit scheme, the rate is 2s
s+w = 2/7 up to the

logarithmic factor.

Summing up, under Assumption 3.20 with r ≥ 2 and for p = 1, we have, as

L→∞, the following error estimate of the MLMC method in terms of work∥∥E[u(·, t)]− EL[u(·, t)]
∥∥2

L2(Ω;L1(D))
≤ Ĉu0,t,A,f (W ex

L,MLMC)−1/6,∥∥E[u(·, t)]− EL[u(·, t)]
∥∥2

L2(Ω;L1(D))
≤ Ĉu0,t,A,f

(
W im
L,MLMC(log(W im

L,MLMC))−1
)−2/7

.

Remark 4.10. This is worse than the error vs. work bounds (4.22) for the deter-

ministic schemes for p = 1 but an improved rate as compared to the single level
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Monte Carlo, c.f. (4.20). We conclude the analysis with the observation that in

(4.36), we assumed the integrability condition (3.20) holds with some r ≥ 2. If

(3.20) holds with 1 < r < 2, analogous error bounds will result from the foregoing

analysis, albeit with more pessimistic error vs. work bounds.

5. Numerical Experiments

In this section, we will test the method on two examples motivated by two-phase

flow in porous mediaa. In one space dimension, the time evolution of the water

saturation u ∈ [0, 1] can be modeled by the conservation law

ut + f(u)x = (a(u)ux)x, (t, x) ∈ [0, T ]× R, u(0, x) = u0(x), x ∈ R. (5.1)

The functions f and a are of the form

f(u) =
λw(u)

λw(u) + λo(u)
, a(u) =

λw(u)λo(u)

λw(u) + λo(u)
p′c(u), (5.2)

here p′c denotes the derivative of the capillary pressure. In some models this deriva-

tive has the expression

p′c(u) = −
(
u−κ/3 − 1

)1/κ

, (5.3)

for a constant κ ∈ (0, 1), see [17]. The functions λw, λo are the phase mobili-

ties/relative permeabilities of the water and the oil phase respectively. The rela-

tive permeability of the water phase λw is a monotone function with λw(0) = 0,

λw(1) = 1, and the relative permeability of the oil phase λo is a monotone decreasing

function such that λo(0) = 1 and λo(1) = 0. Often one uses the simple expressions

λw(u) = u2, λo(u) = (1− u)2. (5.4)

Such a form of the relative permeability is of course a simplification, more accurate

models are based on experiments. These functions therefore have some uncertainty

associated with them. Hence it is natural to model the relative permeabilities as

random variables.

Using (5.3) and (5.4) will yield an expression for A(u) =
∫
a(u) du that is costly

to evaluate numerically since there is no closed form expression available. Therefore

we use the expression

A(u) =
1

282

( λ(u)

λw(u) + λo(u)

)2

. (5.5)

This function is quite close to the diffusion function given by (5.2), (5.3) and (5.4)

for κ = 4. In our numerical experiments, we use the domains D = (0, 2) with

periodic boundary conditions. Furthermore, we test only the implicit scheme.

aThe codes used to produce these experiments can be found at http://folk.uio.no/nilshr/DMLMC.

http://folk.uio.no/nilshr/DMLMC


March 17, 2017 15:26 WSPC/INSTRUCTION FILE KRSW170317

Multilevel Monte Carlo method for degenerate convection diffusion equations 33

In the experiments we also indicate an estimator of the variance of the computed

estimation of the mean. The estimate of the variance is calculated using the following

formula

VL =

L∑
`=1

∆V` + V0,

∆V` = EM`

[
(u` − u`−1 − EM`

[u` − u`−1])
2
]
,

V0 = EM0

[
(u0 − EM0

[u0])
2
]
.

When choosing the number of samples we use formulas (4.34) – (4.35) with “=”

replacing “'”, and p = 1, r = q = 2 and s = 1/3. If the resulting number is not an

integer, we choose the number of samples to be the smallest integer greater than

this number.

In order to compute an estimate of

E
[∥∥EL[u(·, T )]− E[u(·, T )]

∥∥2

L1(D)

]
,

we use the root mean square estimate

RMS =

√√√√ N∑
k=1

(RMSk)2/N , (5.6)

where

RMSk = 100× ‖Uref(·, T )− Uk(·, T )‖L1

‖Uref(·, T )‖L1

.

In [29], the sensitivity of the error with respect to the parameter N is investigated.

In the present numerical experiments, we use N = 10 which was shown to be

sufficient for most problems [29,30]. The reference approximation of E[u(T )], Uref ,

was computed by first computing an approximation u∆(ωi; ·, T ) to u(ωj ; ·, T ) for

a large number of uniformly spaced points {ωi}Ki=1 in Ω (which in our examples

are a closed interval and a rectangle), and then finding Uref(·, T ) by applying the

trapezoidal rule to approximate the integral
∫

Ω
u(ω; ·, T ) dω using {u∆(ωi; ·, T )}Ki=1.

The CFL constraint which ensures convergence of the nonlinear solver at each

(implicit) timestep was (empirically) chosen as

max{10∆x, 0.0824 log(∆x) + 0.7286}.

This is the maximum of a linear interpolation in log(∆x) between (log(2−4), 1/2)

and (log(2−11), 1/10), and 10∆x, and was found to be sufficient to ensure stability

for these two numerial experiments.

5.1. Random exponent

For this example we will model the relative permeabilities by

λw(u) = up(ω), λo(u) = (1− u)p(ω), (5.7)
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where the random exponent p is uniformly distributed in the interval [1.5, 2.5]. As

initial data, we use

u0(x) =

{
0, x ∈ [0, 0.1) ∪ [1, 2),

1, x ∈ [0.1, 1),
(5.8)

and periodically extended outside [0, 2]. Figure 1 shows a sample of the approximate

random entropy solution with p = 2.13 calculated using 29 grid points, at time

T = 0.5, and an estimate of the mean E[s(·, 0.5)] computed by the implicit multilevel

Monte Carlo finite difference method with ∆x0 = 2−4 and L = 5, which gives M0 =

4150. To compute the reference solution we approximated the expectation with

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

0

0.2

0.4

0.6

0.8

1 u0
u∆t(x, 0.5)

Fig. 1. Left: One sample of the random entropy solution of (5.1) with (5.8), (5.5) and (5.7) at time

T = 0.5 computed on a mesh with 512 points using the implicit scheme. Right: A sample of the
estimator EL[u(·, T )] for (5.1) with (5.8), (5.2) and (5.7) at time T = 0.5 (solid line), the dashed

lines denote EL[u(·, T )] ± standard deviation.

respect to the uniform probability measure in the interval (1.5, 2.5) by a trapezoidal

rule with 200 equispaced grid points in [1.5, 2.5].

Table 1 shows the estimated RMS errors as a function of the number of levels

L for L = 1, . . . , 6 and ∆x0 = 2−4. In addition we show the rates r1 and r2

based on a best linear fit under the assumptions that error ∼ (∆xL)r1 and error ∼
(time used)−r2 . We see that the rates, both with respect to error vs. mesh resolution

L 1 2 3 4 5 6 rate

∆xL 2−5 2−6 2−7 2−8 2−9 2−10

RMS 10.5 5.0 3.0 1.5 0.6 0.3 1.04

run time (s) 1 4 16 73 321 1405 0.49

Table 1. RMS vs. L for experiment 1.

at level L and with respect to error vs. work (in this case crudely measured via the
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run time), are better than what theory predicts.

5.2. Random residual saturation

In the following numerical example, we will model the relative permeabilities by

two random variables

λw(u) = 1u>u∗w(ω1)(u)
(u− u∗w(ω1))

2

(1− u∗w(ω1))
2 , λo(u) = 1u≤u∗o(ω2)(u)

(
1− u

u∗o(ω2)

)2

,

(5.9)

with u∗w(ω1) ∼ U(0.0, 0.3), u∗o(ω2) ∼ U(0.7, 1.0), u∗w(ω1) ⊥ u∗o(ω2),

that is, we assume that the residual saturations u∗w, u∗o are independent, uniformly

distributed random variables. As initial data, we use again (5.8) with periodic

boundary conditions.

The resulting (f,A)(ω1, ω2; ·) again satisfies assumptions (3.13) – (3.19), so that

the random entropy solution from Definition 3.6 exists and Theorems 3.7, 4.8 apply.

In Figure 2 on the left hand side, we have plotted a sample u(ω;T, ·) of the random

entropy solution at time T = 0.5 and on the right hand side we have plotted

a sample of the MLMC-FDM estimator EL(u(T )) for L = 5, ∆x0 = 2−4. To

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

0

0.2

0.4

0.6

0.8

1 u0
u∆t(x, 0.5)

Fig. 2. Left: One sample of the random entropy solution of (5.1) with (5.8), (5.2) and (5.9) at time

T = 0.5 computed on a mesh with 512 points. Right: A sample of the estimator E5[u(·, T )] for

(5.1) with (5.8), (5.2) and (5.9) at time T = 0.5 (solid line), the dashed lines show E5[u(·, T )] ±
standard deviation.

compute the reference solution in this case we approximated the expectation with

respect to the uniform probability measure over the rectangle [0, 0.3]× [0.7, 1.0] by

a tensorized trapezoidal rule with 60× 60 uniformly spaced points in the rectangle

[0, 0.3]× [0.7, 1.0]. Table 2 shows the estimated errors RMS calculated using (5.6)

as a function of L. Again, we observe that the numerical convergence rates are larger

than the theoretical bounds.
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L 1 2 3 4 5 6 rate

∆xL 2−5 2−6 2−7 2−8 2−9 2−10

RMS 6.9 3.6 2.2 1.2 0.7 0.5 0.75

run time (s) 2 11 60 227 628 2457 0.37

Table 2. RMS vs. L for experiment 2.
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