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Abstract. Traditional programs based on feature engineering are under performing on a
steadily increasing number of tasks compared with Artificial Neural Networks (ANNs), in
particular for image analysis. Image analysis is widely used in Fluid Mechanics when
performing Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV), and
therefore it is natural to test the ability of ANNs to perform such tasks. We report for the
first time the use of Convolutional Neural Networks (CNNs) and Fully Connected Neural
Networks (FCNNs) for performing end-to-end PIV. Realistic synthetic images are used for
training the networks and several synthetic test cases are used to assess the quality of each
network predictions and compare them with state-of-the-art PIV softwares. In addition, we
present tests on real-world data that prove that ANNs can be used not only with synthetic
images but also with more noisy, imperfect images obtained in a real experimental setup.
While the ANNs we present have slightly higher Root Mean Square (RMS) error than state-of-
the-art cross-correlation methods, they perform better near edges and allow for higher spatial
resolution than such methods. In addition, it is likely that one could with further work develop
ANNs which perform better that the proof-of-concept we offer.

1. Introduction

Since the diffusion of ideas and methods related to Artificial Neural Networks (ANNs)
into Fluid Mechanics is still limited at the time of writing this article [26], a brief general
introduction about ANNs is included. More detailed introductions are available in articles
and books [15, 41, 28, 9].

Neural networks are the attempt to reproduce in machines some of the features that are
believed to be at the origin of the intelligent thinking of the brain [28]. The key idea consists
in performing computations using a network of simple processing units, called neurons. The
output value of each neuron is obtained by applying a transfer function on the weighted sum of
its inputs [9]. When performing supervised learning an algorithm, such as stochastic gradient
descent, is then used for tuning the neurons weights so as to minimize a cost function on a
training set [9].

Attempts to develop ANNs appeared with the first computers [37], but with limited
success until recently. Looking back at the history of neural networks development, it appears
that many of the key ideas had been present in a long time, but that both computational
power and semi-empirical best practice rules were lacking until recently. For example the
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importance of moving to Rectified Linear Units (ReLUs) to avoid artificial neurons saturation,
rather than using sigmoidal neurons that are better approximation of biological neurons, was
understood only recently compared with the age of the field [8]. Similarly the use of backward
propagation of the error gradient together with Convolutional layers was proposed only in the
1990s [29] and was widely adopted even more recently [25, 28]. In the same vein, a simple
systematic method for selecting reasonable variance for the initialization of neural network
parameters taking into account the size of both the upstream and downstream layers was
presented as late as year 2010 [7], even though a simpler method based on the same idea was
already presented in 1998 [30]. In addition the computational power available limited until
recently large scale use of neural networks to relatively simple tasks, such as digits recognition
[29]. While it is well known that a large enough feed-forward neural network can fit arbitrarily
well any function and that feed-forward neural networks are therefore universal approximators
[17], or that the recurrent neural network paradigm is Turing complete [39], the proofs of those
results do not predict anything about the size, architecture or training method that should be
used to build and optimize those networks. Therefore, designing neural networks is largely
an experimental science: one starts with a simple network (which architecture is critical for
performance, and is often chosen following currently available best practice semi-empirical
rules), and increases its complexity until over-fitting occurs or limits in the computing power
available make it impossible to further increase the model size.

Despite those difficulties many breakthroughs have been achieved in the recent years.
The first step in the renewed interest for neural networks came in 2012 when it was shown
that using Convolutional Neural Networks (CNNs) could reduce the error rate in an image
classification task by a factor of two compared with the best feature engineering methods
available [25]. Following this milestone, it has become clear that feature engineering
underperforms compared with neural networks in a variety of tasks including image
classification, speech and hand writing recognition, text analysis, and control of autonomous
cars among others.

Experimental Fluid Mechanics relies on using image processing for measuring flow
velocities. Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) are two
popular measurement techniques that rely on comparing images of a flow seeded with tracer
particles and separated by a short time interval, in order to gain information about the flow
motion [36]. This makes it possible to reconstruct a velocity field (PIV, [1, 42]), or to track the
motion of individual particle images between pictures (PTV, [3]), or a combination of both
[20]. A variety of techniques can be used to implement each of those methods. PIV processing
usually relies on computing the cross-correlation of a spatial window between two frames for
finding a correlation peak, which indicates the most probable displacement of the flow in the
corresponding window [42, 13], but several other methods and algorithms were presented in
the literature [38, 35, 5, 12]. PIV algorithms have been refined and complexified with time
so that several correlation techniques can be used, subpixel accuracy can be achieved, and
outliers can be automatically detected and interpolated [42, 13, 33]. PTV processing on the
other hand relies on tracking individual particle images. The particle image centres are usually
identified using a blob algorithm [3], and a pairing of the particle image centres identified in
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the different frames is then performed by minimizing a cost function [3].
On many aspects, the methods currently used for performing PIV and PTV rely on

complex feature engineered algorithms. Based on the trends observed in the other branches of
image processing, one can therefore expect that well designed ANNs should become better at
performing those tasks than the algorithms used today. In addition, ANNs could be a solution
to some of the limitations of current PIV algorithms. In particular, ANNs can be trained
to evaluate velocity gradients from a simple subwindow, which is not easy with area based
matching algorithms [43] including current PIV algorithms, though some attempts have been
made [6]. ANNs have been suggested in the past for tackling PIV and PTV related problems,
but to the authors knowledge all the corresponding articles date back to before the recent
improvements in the understanding of ANNs and therefore the use of ANNs for performing
PIV should be investigated again, following the technical improvements that have emerged
recently. In addition, ANNs were mostly investigated for performing only parts of the PIV or
PTV processing in complement of traditional methods, rather than as a standalone method.
Such uses include detection of spurious modes in conventional PIV algorithms output [31],
image denoising [11], identification of particle image centres [11], or pairing of particle image
centres for PTV tracking [10, 14, 27].

In the present article, we investigate how ANNs built following some of the recent best
practice design rules perform at extracting flow velocity from a pair of PIV images. Both a
Convolutional Neural Network (CNN) and a Fully Connected Neural Network (FCNN) are
evaluated. Synthetic images representative of real PIV data are used for both training the
networks and benchmarking against state-of-the-art PIV codes. In addition, we perform a
benchmarking on some real-word data, which proves that ANNs can be used not only with
synthetic images but also with more noisy, imperfect images obtained in a real experimental
setup. In section II we describe the architecture of the ANNs implemented and the method
used for generating the synthetic PIV pictures. In section III we describe the conventional
PIV technique used as a reference for comparison with ANNs. In section IV we analyze the
results obtained and compare them with state-of-the-art PIV codes. Finally we discuss our
results and further work.

2. Training set and Neural Networks used

The synthetic data used for training and evaluation are generated in Matlab. Tensorflow is
used for performing training and evaluation of the models. GTX970 and GTX980 TI GPUs
performing single precision computations are used in all the following. For both networks,
images are fed to the network by batches of 128 pairs. A pair of images is considered as a two
channel input, so that the input dimension corresponding to one batch is 128× 32× 32× 2
pixels. Both neural networks are trained to predict the linear displacement along the X and Y
axis and the Jacobian deformation matrix, i.e. 6 quantities in total.

In this section, we first describe the procedure applied for generating synthetic images
before presenting the architecture of each ANN used.



PIV ANN 4

2.1. Synthetic training set

Synthetic data [21] are used for training and evaluation of the networks. This allows to create
arbitrarily big labeled training dataset and therefore issues common with ANN training, such
as over-fitting, are avoided. Each image pair is generated independently from the rest of the
dataset. Each time a new image pair is generated, second order polynomials are created for
the u and v components of the velocity as:{

u(x,y) =U0 + J̄u · r̄+ r̄T · ¯̄Hu · r̄
v(x,y) =V0 + J̄v · r̄+ r̄T · ¯̄Hv · r̄,

(1)

where the position of the point considered is r̄ = (x,y), (U0,V0) is the velocity at the centre of
the image, and the Jacobian and Hessian tensors of the velocity component i at the centre of the
image are J̄i and ¯̄Hi, respectively. U0, V0, J̄i and ¯̄Hi are randomly generated from the uniform
distribution. U0 and V0 are in the range ±4pixels/ f rame, Ji in the range ±0.05/ f rame, and
Hi in the range ±0.001/pixels f rame. Those values are typically representative of real-world
applications, even though training on a wider pixel displacement range would be necessary
to go beyond a proof-of-concept. The maximum pixel displacement value was chosen so that
reasonably fast training time could be achieved, when we were still exploring ANN designs
but did not know if end-to-end PIV could even be performed. However extending to wider
displacements presents no theoretical difficulty, as it is simply a matter of generating a larger
training dataset, featuring also images with more important pixel displacements. For each
image pair U0, V0, J̄u and J̄v are concatenated into a label vector. Therefore the neural networks
get trained to predict not only the translation velocity at the centre of the images, but also the
velocity gradients of the image.

Once the random velocity field has been generated, a set of initial positions for the tracer
particles is drawn from a random uniform distribution. The particles are assumed to follow
perfectly the flow so that the equation describing their advection by the velocity field is:

dx̄p

dt
= ū(x̄p(x̄0, t), t), (2)

with x̄p(x̄0, t) the position of the particle p initially at the position x̄0 after a time t. Equation
(2) is then integrated half a timestep backward and forward in time using the Runge-Kutta 4
method for generating the particles positions in both frames of the image pair. The velocity
field and particle distribution are extended to an area slightly larger than the size of the image,
allowing the particles to leave and enter the field of view.

Sufficiently small particles imaged by a camera form circular patterns known as Airy
disks. The central lobe of the Airy disks are normally well approximated by Gaussian bell
curves. Gaussian distributions are therefore used to generate the synthetic particle images
[36]:

I(x,y) = I0 exp

(
−(x− x0)

2− (y− y0)
2

(1/8)d2
τ

)
, (3)
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Figure 1: Comparison between a 128 × 128 pixels artificial image (left) and a real image
sample of similar size (right).

where I0 is the particle image luminosity, dτ the effective particle image diameter, and (x0,y0)

the position of the particle image centre. I0 and dτ are random and drawn from a uniform
distribution independently for each particle image, resulting in typical particle images size of
2.5 pixels (varying between 1.5 and 3.5). The particle image intensity is not integrated over
the pixel area in order to save computation time, which may introduce a small source of noise
that is probably negligible owing to the size of the particles.

As a final step a Gaussian white noise of variance 1% of the maximum image intensity
is added to the images. The aim of this Gaussian noise is to train the network on non-perfect
data, in order to make the training set closer to reality and the training more robust. 1% is taken
as a proxy value, which is deemed reasonable in the case of an experiment. A comparison
between a 128×128 pixels artificial image and a real image sample of similar size is presented
in Fig. 1.

2.2. Convolutional Neural Network

Several variants of CNNs were tried before fine training the best prototype. The best prototype
convolutional network finally used is composed of a single convolution layer featuring 512
kernels of size 16×16 pixels and depth 2 applied with a stride of 8 pixels (as a consequence,
no zero padding is needed), so that the size out of the convolution layer is 8192, followed
by fully connected layers. The two images being fed in the network are considered as
two channels. Four fully connected layers are used to process the data generated by the
convolutions. The sizes of the fully connected layers are 8192, 4096, 2048 and 6 neurons
going downwards in the network. The first three layers use leaky Rectified Linear Units
(leaky ReLUs) of slope 0.1 for negative x values. The last layer uses linear activation function
for producing the output prediction of the network. The whole network is trained using the
Adam optimizer. Gradient Descent, Adadelta and Adagrad optimizers were tested on an early
version of the network but found to perform less well. Dropout layers were used in the early
versions of the network but removed later on since arbitrarily much data can be generated to
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train the network, eliminating the over-fitting issue and the need for regularization. Similarly,
while L1 and L2 regularization were tested on early versions of the network, they were not
included in its final version. The cost function to be minimized is the absolute norm of the
prediction error:

Cost = |label− prediction| . (4)

L2 norm was tested on early versions of the model but found less performant. The Xavier
initialization relying on a Normal distribution [7] is used, except for the convolutional layers
where a reduction factor is further applied to the Xavier standard deviation value. The learning
rate is progressively decreased following an exponential decay rate scheme, and the absence
of over-fitting is checked by comparing the prediction error on the training set with the one
on a separate test set. Both the training set and the separate test set are generated from the
exact same random images generation algorithm previously presented, so that this is formally
equivalent to using a validation data split.

There are several reasons why CNNs are appealing for performing PIV. The use of
convolution kernels, that are applied in the same way on several parts of the image pair, makes
sure that a similar processing is applied on all parts of the image. It is easy to understand why
convolution kernels can perform tasks that are relevant to PIV. For example, the following
3×3×2 kernel:

K:,:,0 =

 0 0 0
0 1 0
0 0 0

 ,K:,:,1 =

 0 0 0
0 0 1
0 0 0

 (5)

where K:,:,0 is the kernel slice applied on the first image (first channel) and K:,:,1 the kernel
slice applied on the second image (second channel), computes the local difference between the
image channel 1, and the channel 2 translated by one pixel along x direction. This difference
can then be interpreted by the fully connected layers of the network. While it is not possible
to know which processing strategy the fully connected layers of the network choose, it would
be possible for them to compute for example a L1 or L2 norm of the difference. Methods
based on the L1 or L2 norm of the difference between translated windows, while less common
than the cross-correlation approach, can be used to perform PIV [32] and are available in for
example Digiflow [2].

We can further investigate the strategy followed by the convolution layer by studying in
details the convolution kernels obtained. In many ANN applications, including the case of
object recognition, it is well established that convolution kernels ideally should evolve into
feature extractors as the network properly converges, leading to well defined shapes to be
visible in the kernels [25]. However, in the present case, the data to analyse has much less
structure than what is present in a typical object recognition or image analysis task: the most
apparent property of a single image, which is the particle images distribution, is random and
the information to be extracted is contained in the time evolution of this random pattern.

Convolution kernels are shown in the two first lines of Fig. 2. Very little structure is
visible. While this could be the sign of poor network convergence, we carefully checked



PIV ANN 7

Figure 2: Top two lines: first channel of the convolution kernels 0 to 20. The kernels seem
messy and no clear global structure is visible. This sample is representative of what can be
observed for all 512 kernels. Bottom two lines: cross-correlation maps computed between the
first and second channel of each convolution kernel (we reproduce here only the first 20 such
correlation maps). The cross-correlation maps display some clearly visible patterns. This
sample is representative of what can be observed on the cross-correlation maps of all 512
kernels.

that the network convergence is, if not finished, at least extremely slow by training the
networks for times several times longer than what is required to reach a plateau in prediction
performance, and also verifying that diminishing or increasing the learning rate does not yield
better training. The absence of structure in the individual channels of each kernel may not
be surprising even for an otherwise well-converged network, as the pattern present in each
individual image is completely random. As a consequence, the shape of one kernel channel
may not be important by itself, but in relation to the shape of the other channel of the same
kernel. Therefore, we compute the cross-correlation between the two channels of each kernel,
defined in our case as:

Ci(k, l) = ∑
m=0..W−1

∑
n=0..W−1

K[m,n,0, i]K[m− k,n− l,1, i], (6)

where W = 16 is the kernel width, i is the number of the two-channels kernel considered, 0 or
1 the channel considered, −(W −1)< k, l < (W −1), and the value of a kernel channel taken
outside of its domain of definition is set to zero.

Results are presented in the two lowest lines of Fig. 2. Structures clearly appear in the
cross correlation between the two channels of each kernel. The patterns are concentrated close
to the center of the correlation maps, which is expected as the zero padding introduced in the
computation of the cross-correlation maps smears out results obtained for large negative and
positive k and l indexes.

It is worth mentioning that, since the convolution operation is linear, the output of a
convolution kernel over the whole picture can be recovered from the sum of the output of the
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same convolution kernel on several parts of the pictures pair. Therefore the use of kernels
smaller than the size of the images does not restricts the ability of the network to compute
a pattern difference over the whole picture, since this information can be obtained from
summing the different outputs of one kernel over the pictures.

A limitation with convolution kernels is that their shape cannot get adapted to the flow
gradients, since their shape is fixed a priori when performing a computation. By contrast,
state-of-the-art PIV codes use window deformation to take into account the fact that an
initially square flow area gets distorted by velocity gradients into a more complex shape as
time increases. This effect is then taken into account by performing multi-pass processing,
where the shape of the second window is computed based on the velocity and velocity
gradients obtained from the previous flow field estimates [18, 19]. However, our CNN
compares well in accuracy with such state-of-the-art method as shown in section 4.

2.3. Fully Connected Neural Network

Several configurations of FCNNs consisting of fully connected leaky ReLUs were evaluated.
The data corresponding to the two pictures are directly injected into the first fully connected
layer. The best prototype network has a total of 6 layers. The first five layers feature 4096
leaky ReLUs, and the last layer has 6 linear units that are used to produce the network
prediction. The leaky ReLUs have a slope 0.1 for negative x values, the Adam optimizer
is used to minimize the absolute norm of the prediction error and no regularization is imposed
on the network. The Xavier initialization relying on a Normal distribution [7] is used on all
layers. The learning strategy is similar to what was presented for the CNN.

3. Particle image velocimetry setup

In all the following, comparisons were performed against LaVision DaVis v8.1.1, a market
leading commercial code, and HydrolabPIV, an in-house PIV code developed at the University
of Oslo [22].

State-of-the-art PIV algorithms are based on multipass methods and therefore designed to
work on full size images, which makes a direct comparison of subwindow performance with
ANNs irrelevant. To overcome this problem, traditional PIV codes were used on extended
images of size 128x128 pixels so that multipass can be applied, and the velocity from the
center 32x32 subwindow was extracted for generating the predictions of the ANNs. Since
the predictions of the ANNs are performed based on the single 32x32 center subwindow, this
gives an advantage to the classical PIV codes as they are given sixteen times more pixels. Of
course, one cannot assert that the traditional PIV method uses sixteen times more information
than the ANNs, since information far from the center of the image is less predictive of the
velocity at this position. Based on the maximum subwindow size used, the overlap value
selected, the extent of B-spline basis functions used to approximate the velocity field for
window distortion and to some degree the width of the Lanczos kernel, we estimate that the
HydrolabPIV code uses in practice slightly over four times more information than the ANNs
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for predicting the velocity at the center of the image. This is likely similar for LaVision, where
few details of the computational strategies are available.

3.1. LaVision

The PIV processing performed in LaVision was done using mulitpass with decreasing
interrogation windows size and pixelwise windows deformation. A total of four passes were
used, which consisted of two passes with 64x64 pixels subwindows, followed by two passes
with 32x32 pixels subwindows. A 75% overlap was used for all passes. To achieve the best
possible quality, normalized cross-correlation was used in all passes and the LaVision high
accuracy mode, which relies on Lanczos reconstruction for image interpolation, was enabled
for the final pass.

3.2. HydrolabPIV

The PIV processing performed in HydrolabPIV was done using an initial pass with 48x48
pixels subwindows followed by a shifted pass with 32x32 pixels subwindows and finally four
32x32 pixels subwindow passes. All passes used masked normalized cross-correlations [34]
and a 75% overlap. For the last four passes, windows distortion using Lanczos reconstruction
were used.

4. Results

The quality of the predictions computed by the ANNs is evaluated using a set of test cases
generated in a similar way as the training sets. As previously underlined the size of the test
cases generated is 128x128 pixels so that conventional PIV methods can be used at the best
of their performance for comparison, while reduced size 32x32 subwindows are given to the
ANNs.

When the error should be evaluated on both components of the velocity prediction at the
same time, the mean value of the Frobenius norm of the error is used:

||u− û||F =

√
1
N

N

∑
i=1

[
(Ui−Ûi)2 +(Vi−V̂i)2

]
, (7)

where (Ui,Vi) is the i-th velocity prediction, and (Ûi,V̂i) is the true value used for generating
the image. This error can be splitted in a variance error and a bias error, where the bias error
is the mean value of the prediction error.

In the boundary performance tests the RMS error on the X component:

rmse(U) =

√
1
N

N

∑
i=1

(Ui−Ûi)2, (8)

and the bias error on the X component:
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bias(U) =
1
N

N

∑
i=1

(Ui−Ûi), (9)

will be used instead.

4.1. Simplified velocity fields

Several simplified velocity fields were used for comparing the quality of the results obtained
from traditional PIV software with ANNs. Results are presented in Fig. 3.

The first test (Fig. 3 a), which is also the most common in the literature, is a pure
translation test for which the velocity is constant within the image. While it is an easy test
to implement, it is likely to underestimate the error in real world cases when gradients and
curvatures are present. Both ANNs have a reasonable accuracy within the training range
(±4pixels/ f rame). As expected the performance outside of the training range, indicated by
the dashed line, is very poor. This could be easily improved by training the networks with an
image set including greater maximum particles displacement. Both traditional PIV softwares
are expected to do well for this test since their algorithms first assume that the velocity field
within a subwindow is approximately constant, before refining the predictions through image
deformation during the iterative multipass steps. We note that while HydrolabPIV has the
lowest error, it also has some peak-locking effect, which is a bias error caused by subpixel
interpolation.

In the second simplified velocity field test (Fig. 3 b) the velocity field is set to a constant
gradient in the y direction, with a zero velocity at the center of the image. The overall RMS
error value is similar to the pure translation case. However, rather than an abrupt change of the
error when going outside of the training domain, the error obtained from the ANNs increases
slowly as gradients become greater than the maximum value used during training. This means
that the prediction of the velocity value is robust against local shear of the images.

In the last simplified velocity field test (Fig. 3 c) the velocity field is chosen to have
a constant curvature rate in the y direction, while keeping the translation and local gradient
values to zero at the center of the images. We note that the error is not constant within
the training range, indicating a bias error which increases with the curvature. While the
training set does have curvature, the ANNs are not trained to estimate the Hessian used for
generating the images and therefore are not trained to recognize the effect of curvature in the
images. Therefore we expect that the bias error due to the curvature would be likely to be
reduced if the ANNs were trained predicting also the Hessian matrix, at the possible cost of a
slightly increased RMS error. One can note that both traditional PIV codes also have a similar
tendency towards bias error, though to a lesser extent.

4.2. Resolution

Obtaining high resolution is also an important feature for real world PIV applications. To test
the resolution of each method a testset is generated as a collection of random velocity fields,
i.e. one random velocity value is generated at each pixel location (with a uniform velocity
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Figure 3: (a, b, c): RMS of the velocity error estimates computed at the center of the 128x128
pixels images using multipass (LaVision and HydrolabPIV), or obtained from a single 32x32
pixels window taken at the the center of the 128x128 pixels image (CNN, FCNN). The
Translation, Gradient and Curvature test cases correspond to idealized velocity fields, while
the last test aims at estimating the resolution obtained with each method. Vertical lines
indicate the maximum value of the parameters selected when generating the pictures used for
training the networks. (d): investigation of the spatial resolution of each method, performed
by assessing the quality of the predictions obtained on velocity fields featuring a range of
typical autocorrelation length.

spectrum, centered on zero), on which a pseudo-gaussian convolution kernel (acting as a low-
pass filter) is applied. One can investigate the ability of the PIV algorithms to resolve small
size structures by applying a convolution kernel with circular padding of varying radius to
smooth out the local fluctuations of the velocity field on a varying length scale and estimate
the RMS error of the predictions obtained. The smoothing convolution kernel is chosen as:

|1− εr|4+ (4εr+1) , (10)

where r =
√

x2 + y2 is the radial distance from the center of the kernel, L = 1/ε is the kernel
radius and |x|+ = max(x,0). The formula describing the smooting convolution kernel is
chosen so that it looks like a gaussian kernel, but with compact support. The cutoff wavelength
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Table 1: Velocity error estimates for both the simplified testsets described in section 4.1 and
a full validation testset, representative of the complete training set.

‖ui− ûi‖F [pixel/frame]

translation gradient curvature full

ANN 0.031 (±0.017) 0.029 (±0.017) 0.036 (±0.020) 0.041 (±0.024)

CNN 0.027 (±0.015) 0.027 (±0.015) 0.034 (±0.019) 0.037 (±0.022)

HydrolabPIV 0.016 (±0.009) 0.016 (±0.009) 0.018 (±0.010) 0.020 (±0.011)

LaVision 0.022 (±0.013) 0.022 (±0.012) 0.025 (±0.014) 0.026 (±0.014)

λc is computed from the 2D FFT of the kernel, and corresponds to the scale at which 50% of
the energy in the velocity spectrum has been suppressed by the low-pass filtering.

Results are presented in Fig. 3 d. The resolution of the ANNs is limited by the validity
of the Taylor expansion assumed in the training sets, i.e. when the features become too small
the Taylor expansion is not a good approximation for the velocity field and the training set
is not representative of the test case. In addition, there are probably inherent limitations
for the resolution that can be attained, for example in the CNN case due to the size of the
convolution kernels. The ANNs are observed to have a better resolution than the traditional
PIV codes: while traditional codes have lower error than ANNs for large L (i.e., velocity fields
without sharp gradients), the opposite is observed for small L (i.e., velocity fields with sharp
gradients). This is a welcome feature as conventional PIV easily underresolves complex flows
[16]. The reduced resolution of traditional PIV codes is caused by using information from
neighbouring subwindow in the window deformation step of the multipass process, which is
avoided in the ANN case.

4.3. Comparison on the full training domain

A performance comparison on an image set representative of the full training domain (but
generated separately from the training set) is also used to evaluate the ANNs compared with
traditional PIV softwares. Mean results, together with the ones corresponding to the part of
the simplified velocity fields that lie in the training domain, are summarized in Table 1. As
summarized in Table 1 both ANNs are found to have a reasonable accuracy, with the CNN
doing slightly better. While not as good yet as the conventional state-of-the-art multipass PIV
algorithms fed with 128x128 pixels images, results from ANNs are a lot better than what
would be obtained from single pass PIV on 32x32 pixels images (which yield RMS errors of
typically ∼ 0.10pixel/ f rame).

4.4. Boundary performance for simplified velocity fields

Traditionally, most error analysis on PIV is done for interior velocity vectors, and this
is therefore how we designed the comparisons we presented so far. However, boundary
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performance is also a critical real world problem when performing PIV [40]. Performing PIV
predictions near boundaries is challenging, as part of the subwindow to process is masked
when predictions should be performed at a distance to the wall less than half the subwindow
size. In addition, multipass methods rely on the velocity field being available in the whole
neighbourhood of the point where velocity should be estimated for performing windows
deformation, which is not the case either close to the boundaries. Therefore, ANNs should be
less impacted by the presence of a wall.

To assess the ability of each method to perform predictions near the boundaries, the
full vector fields obtained from 128x128 images processed by LaVision and HydrolabPIV
were compared to the results obtained using the ANNs on 289 32x32 subwindows per image,
generated using 75% overlap. This was done for 442 128x128 images giving a total of 127738
32x32 subwindows being evaluated by the ANNs. The RMS and bias errors were estimated by
averaging over the number of images and along the x-axis. The vectors used in the averaging
process are those for which the masking is a function of the y-position only, i.e. we do not
include the corners of the images. This results in the two outermost vectors on each side being
computed from subwindows masked at 50% and 25%.

Comparisons between results obtained with all PIV techniques are presented in Fig. 4.
The Translation, Gradient and Curvature cases are directly inspired by the test cases presented
in section 4.2. As explained previously for each test case 442 image realizations, that feature
the same velocity field but different random particle images locations and sizes, are used to
generate the statistics presented. The Translation field is simply a purely translational field,
with a displacement of 2 pixels/frame. The Gradient field is constant along the X direction
and presents a constant gradient in the Y direction which is chosen so that the maximum
displacements at the top and bottom of the field are -4 and +4 pixels/frame, respectively. The
resulting gradient value is -0.0625 per frame, which is slightly outside of the training range
of the ANNs. The Poiseuille field is chosen so that there is zero displacement at the top and
bottom of the field, and a 2 pixels/frame maximum displacement at the center of the field. The
resulting value of curvature is 0.92.10−4 frame/pixel, which is close to the maximum value
for which the ANNs were trained.

Fig. 4 a and b summarize the results obtained with the Translation test image. The
rms error (which includes both variance and bias errors) is small for all methods, with a
slight advantage for conventional PIV which is expected as these algorithms are built on the
assumption that the displacement is approximately linear. None of the methods have any
significant bias error.

Fig. 4 c and d summarize the results obtained with the Gradient test image. As visible
in the figure c, LaVision makes a slight simplification when evaluating the normalized cross-
correlation, which results in boundary artifacts mostly contributing to the bias error. This can
be improved by using (more computationally expansive) masked normalized cross-correlation
[34], as done in HydrolabPIV. As a result boundary effects are reduced in HydrolabPIV,
though not completely eliminated either. ANNs, that do not use information from adjacent
subwindows, have good boundary accuracy except at the point exactly on the boundary for
which 50 percent of the image is missing. However it should be possible to train ANNs with
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Table 2: Comparison of the computational times (in seconds) for 128000 vectors measured
using CNN, FCNN and LaVision. HydrolabPIV is not included as its aim is to have an easy
to modify code for testing PIV algorithms, and as a consequence computation time is not a
priority.

CNN FCNN LaVision
GTX970 GTX980TI GTX970 GTX980TI CPU GTX970

Loading to RAM from HDD 8.2 5.4 7.5 6.0

- -
Generating slice from RAM 0.4 0.3 0.2 0.2

Computation on GPU 22.9 7.2 15.9 5.1

Writing result to HDD 1.5 0.9 1.5 1.0

Total time 33.0 13.8 25.1 12.3 70.6 55.0

masking, which would very likely improve further their boundary accuracy in this case.
Fig 4 e and f summarize the results obtained with the Curvature test image. ANNs display

more important bias error in the center of the image than other PIV algorithms, which was
discussed previously in section 4.1 as being probably a consequence of the Hessian not being
used in the training of the ANNs. As for the Gradient test, additional bias errors due to the
boundaries are small and ANNs perform best of all models close to the image boundaries,
with a good margin over LaVision.

4.5. Computation speed

Processing streams of high frequency, high resolution images creates a significant
computational burden, and computation speed is one of the limits encountered when
performing PIV. While innovative techniques, such as the use of FGPAs, have been presented
for adressing this issue [23, 24], resorting to CPUs and GPUs remains the norm. The
computation time needed for performing predictions on 128000 image pairs with each ANN
architecture using two different GPU models is compared with the time needed by LaVision,
which is used following the method indicated in section 3.1. HydrolabPIV is not included as
its aim is to have an easy to modify code for testing PIV algorithms, and as a consequence
computation time is not a priority, making it significantly slower than LaVision. The test case
used corresponds to the pure Curvature test (Poiseuille) presented in section 4.4. Results are
presented in Table 2.

While LaVision is claimed to attain speedup in the range of x10 for Stereographic and
3D PIV [4], a much more modest speedup was observed in our 2D PIV case. This may
be because more effort was put in developping fast 3D PIV on GPUs than for 2D PIV.
Using LaVision, no speedup was obtained using a GTX980TI compared with a GTX970.
ANNs perform faster than LaVision and take full advantage of the performance gain between
GTX970 and GTX980TI GPUs, with speedups relative to LaVision up to x4. As can be
seen in Table 2, the time needed to read the images data from HDD is comparable with the
time needed to perform computations on the most powerful GPU. While this implies that one
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Figure 4: RMS error (left) and bias error (right) of the X component of the velocity estimates
obtained with each PIV algorithm on a series of 442 128x128 pixels test image pairs. The
results shown for LaVision and HydrolabPIV are extracted from the last of the PIV pass. The
results shown for both the CNN and the FCNN are obtained from feeding them with a series
of 32x32 pixels subwindows sampled with a 75% overlap. All results presented are averaged
over the 442 image realizations and along the x-axis of the images, see the text for more
details. From top to bottom the 128x128 pixels images used correspond to a pure translation,
pure gradient and pure curvature velocity field.
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should be careful with minimizing readings from HDD, this should not be a limitation for real
world applications when large images are processed and overlap is used.

Performing fair benchmarking of codes can be challenging. In a real world application,
some of the computations performed by LaVision will be re-used for evaluating neighboring
velocity estimates on images bigger than 128x128 pixels. However, the same applies to at least
CNNs. The results of the convolution step, which is both time and memory expansive, could
be shared between adjacent velocity calculations when overlap is used. Therefore, the global
picture given by our benchmarks should hold also for the PIV analysis of complete images,
and the CNN computation time could even be further reduced by implementing sharing of the
convolution outputs between adjacent subwindows.

4.6. Test on real world data

The CNN, which is the best-performing of the two ANNs based on the results presented so
far in this section, is tested on some real world data. Due to the limitations of the proof-of-
concept ANNs that were trained, we must limit ourselves to images with a range of particle
images displacement of [−4,4] pixels in both the x and y directions. Some images fulfilling
this criterion were recently recorded by the first author of this paper during another project,
and are therefore used here. The images recorded correspond to exponentially damped water
waves propagating under a slush ice layer. A Falcon2 4M camera was used to record images
at a rate of 75 frames per second. A high power water-cooled LED array was used to provide
illumination, and 50 µm spherical Polyamid Seeding Particles (PSP) were used as tracers. In
the present study, we use the first two images of a run for performing the benchmarking.

The first step in using the CNN on real world data consists in normalising the images
so that they present similar properties as the training set. If one uses the raw images without
performing such normalisation, the vector field generated by the CNN is noisy and many
outlier vectors are present. There are two main properties of the real world data that need to
be renormalised to successfully use the CNN. Firstly, the real world images are saturated
on several pixels near the center of each particle image, due to excessive light intensity
used during image acquisition. To reduce this effect, the raw images are convolved with a
kernel of size 3× 3 with small coefficients outside of the center of the kernel, so that the
images get smoother and the saturation effect is reduced. Secondly, the histogram of the
pixels intensities is renormalised so that it is approximately equal to the one of the training
set. This is performed by binning the pixels intensities and changing the values of the bins,
while preserving their ordering, so that the difference between the training and the real world
histograms is minimized. The renormalisation is performed on each 32× 32 sub-window,
before being fed into the network.

Results for the u and v velocity components obtained with the CNN, HydrolabPIV
and LaVision were examined by the authors. HydrolabPIV was the best performing cross-
correlation software from the tests performed on synthetic data, therefore its results together
with the ones from the CNN are presented in Fig. 5. LaVision was also used to analyse
the images, and results similar to HydrolabPIV and the CNN were found (not reproduced
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(a) u, HydrolabPIV (b) v, HydrolabPIV

(c) u, CNN (d) v, CNN

Figure 5: u and v velocity components obtained using HydrolabPIV and the CNN, from real-
world images. The results of both methods are very similar. Slightly higher noise levels are
observed with the CNN, which could be reduced using an outlier detection and interpolation
similarly to the built-in functionnality of HydrolabPIV. One line of disturbed results is visible
in the CNN output, as all subwindows are processed, including those for which 75 % or more
of the subwindow is masked. LaVision was also used to analyse the images, but the results
are not presented here are they are very similar.

here). As the mechanisms for selecting sub-windows is slightly different between the two
programs, the output velocity fields from the CNN are translated of around half a subwindow
and both velocity fields from the CNN and HydrolabPIV are interpolated on a common grid
for performing the comparison. As visible in Fig. 5, both methods produce very similar
results. The output of the CNN is slightly more noisy than the output of HydrolabPIV,
which could be improved by using an outlier detection filtering on the output from the CNN,
similarly to the built-in functionnality of HydrolabPIV. One line of vectors close to the surface
is slightly distorted in the case of the CNN, which is due to the fact that all subwindows are
computed by the CNN, including those that feature a masked region representing 75 % or
more of the subwindow.

Both the error maps of the horizontal component of the velocity, computed as the
difference between the x velocity component obtained from HydrolabPIV or LaVision and
the CNN, and the statistical distribution of those error maps were investigated by the authors.
Results corresponding to the comparison with HydrolabPIV are presented in Fig. 5. No
systematic bias in the prediction of the x velocity component between the two methods
is found, and the distribution of the values of the error maps is concentrated around zero
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and does not present secondary peaks. The mean value and standard deviation of the
error map distributions are 0.003 and 0.058 pxls/ f rame, respectively, between Hydrolab
PIV and the CNN, and −0.0026 and 0.035 pxls/ f rame, respectively, between Hydrolab
PIV and LaVision. The standard deviation of the discrepancy relative to the predictions of
HydrolabPIV is of the order of 1.5 % of the 4 pxls/ f rame prediction range of the CNN,
which is consistent with the results presented based on synthetic images. This comparison
proves that the CNN can be used not only with synthetic images but also with more noisy,
imperfect images obtained in a real experimental setup.

(a) error map (b) distribution of error

Figure 6: Error map for the x velocity component, and distribution of the error map,
corresponding to the comparison between HydrolabPIV and the CNN. The mean value and
standard deviation of the error map distribution are 0.003 and 0.058 pxls/ f rame, respectively.
The kurtosis of the distribution of the error map is 2.1. The best fit Gaussian curve is plotted
on top of the distribution of the error map, which shows that the error distribution is more
concentrated around 0 than would be a Normal law.

5. Conclusion

Both a Convolutional Neural Network (CNN) and a Fully Connected Neural Network (FCNN)
are trained to perform end-to-end PIV on realistic synthetic data and tested on several test sets,
both synthetic and from real-world data. The experimental results we report are a proof of
concept of the use of Artificial Neural Networks (ANNs) for performing end-to-end PIV. This
is the first time to the authors knowledge that ANNs are used to perform end-to-end PIV. The
level of Root Mean Square (RMS) error between ANNs predictions and the velocity values
used for generating the images is slightly higher than for state-of-the-art PIV codes, but much
better than what would be expected from single pass PIV. This is a good result considering that
current state-of-the-art PIV codes are the results of over 25 years of continuous improvements
of the processing algorithms, while the proof of concept ANNs we present here are fairly
simple in their design and better variants could very likely be developed with additional work.
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Moreover, our results suggest that ANNs may have several advantages over more
traditional 2D PIV methods. Benchmarking shows that ANNs are better at using efficiently
GPUs than the GPU module from LaVision we had access to, which may be of interest as
GPUs are seen as promising for large heavy computations. We were also able to obtain better
resolution with ANNs compared with traditional PIV methods, which could be of interest
in cases when high local flow variations are expected. Finally, we observed good boundary
performance of ANNs compared with more traditional PIV methods. In addition, ANNs could
be further trained with datasets including masked images, which should improve the network
predictions near the fluid boundaries.

The present work could be extended in several ways. More sophisticated synthetic
images could be use, to quantitavely take into account for example out of plane motion.
Images featuring high shear or even discontinuous flows could be used during training,
with the aim of overcoming the smoothing gradient effect observed with traditional cross-
correlation PIV techniques. Thanks to the use of small convolution kernel size and a fully
connected leaky ReLU network under the convolution layer that should be able to recognize
such jumps, a reduction in smoothing parasitic effects can be expected compared with
traditional cross-correlation methods. The flexibility allowed by using the leaky ReLU fully
connected layer could also be expected to help solving more sophisticated problems for which
it is challenging to provide a satisfactory method using a traditional approach, such as for
example cases when both a phase composed of large particles in suspension and a liquid phase
must be separately analysed on the same pictures. Finally the networks used are simple, and
more sophisticated or recent designs such as Recurrent Neural Networks and Residual Neural
Networks could be investigated. More generally, refinement of ANNs including training on a
wider range of pixel displacements and thorough testing on both synthetic and real world data
could make them a credible alternative to traditional PIV methods.
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[5] Drazen, D., Lichtsteiner, P., Häfliger, P., Delbrück, T., Jensen, A.: Toward real-time particle tracking using



PIV ANN 20

an event-based dynamic vision sensor. Experiments in Fluids 51(5), 1465 (2011). DOI 10.1007/s00348-
011-1207-y. URL http://dx.doi.org/10.1007/s00348-011-1207-y

[6] Ghosal, S., Mehrotra, R.: Robust optical flow estimation using semi-invariant local features. Pattern
recognition 30(2), 229–237 (1997)

[7] Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In:
In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS10).
Society for Artificial Intelligence and Statistics (2010)

[8] Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: G.J. Gordon, D.B. Dunson
(eds.) Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
(AISTATS-11), vol. 15, pp. 315–323. Journal of Machine Learning Research - Workshop and Conference
Proceedings (2011). URL http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf

[9] Goodfellow, I., Bengio, Y., Courville, A.: Deep learning (2016). URL http://www.deeplearningbook.org.
Book in preparation for MIT Press

[10] Grant, I., Pan, X.: An investigation of the performance of multi layer, neural networks applied to the
analysis of PIV images. Experiments in Fluids 19(3), 159–166 (1995). DOI 10.1007/BF00189704.
URL http://dx.doi.org/10.1007/BF00189704

[11] Grant, I., Pan, X.: The use of neural techniques in PIV and PTV. Measurement Science and Technology
8(12), 1399 (1997). URL http://stacks.iop.org/0957-0233/8/i=12/a=004

[12] Gui, L., Merzkirch, W.: A comparative study of the mqd method and several correlation-based piv
evaluation algorithms. Experiments in Fluids 28(1), 36–44 (2000). DOI 10.1007/s003480050005. URL
http://dx.doi.org/10.1007/s003480050005

[13] Gui, L.C., Merzkirch, W.: A method of tracking ensembles of particle images. Experiments in Fluids
21(6), 465–468 (1996). DOI 10.1007/BF00189049. URL http://dx.doi.org/10.1007/BF00189049

[14] Hassan, A.Y., Philip, G.O.: A new artificial neural network tracking technique for particle image
velocimetry. Experiments in Fluids 23(2), 145–154 (1997). DOI 10.1007/s003480050096. URL
http://dx.doi.org/10.1007/s003480050096

[15] Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall PTR, Upper Saddle
River, NJ, USA (1998)

[16] Herpin, S., Wong, C.Y., Stanislas, M., Soria, J.: Stereoscopic piv-measurements of a turbulent boundary
layer with large spatial dynamic range. Experiments in Fluids 45, 745–763 (2008)

[17] Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators.
Neural Networks 2(5), 359 – 366 (1989). DOI http://dx.doi.org/10.1016/0893-6080(89)90020-8. URL
http://www.sciencedirect.com/science/article/pii/0893608089900208

[18] Huang, H., Fiedler, H., Wang, J.: Limitation and improvement of PIV, part I. Experiments in Fluids 15,
168–174 (1993)

[19] Huang, H.T., Fiedler, H.E., Wang, J.J.: Limitation and improvement of PIV, part II. Experiments in Fluids
15(4), 263–273 (1993). DOI 10.1007/BF00223404. URL http://dx.doi.org/10.1007/BF00223404

[20] Keane, R.D., Adrian, R.J.a.: Super-resolution particle image velocimetry. Measurement Science and
Technology 6, 754–768 (1995)

[21] Kolaas, J.: Optimization of optical measurement techniques in fluid mechanics with application to micro
fluidics, multiphase flow and water waves. Ph.D. thesis, University of Oslo (2014)

[22] Kolaas, J.: Getting started with HydrolabPIV v1.0. Preprint series. Research Report in Mechanics
http://urn.nb.no/URN:NBN:no-53997 (2016)

[23] Kreizer, M., Liberzon, A.: Three-dimensional particle tracking method using fpga-based real-time
image processing and four-view image splitter. Experiments in Fluids 50(3), 613–620 (2011). DOI
10.1007/s00348-010-0964-3. URL http://dx.doi.org/10.1007/s00348-010-0964-3

[24] Kreizer, M., Ratner, D., Liberzon, A.: Real-time image processing for particle tracking velocime-
try. Experiments in Fluids 48(1), 105–110 (2010). DOI 10.1007/s00348-009-0715-5. URL
http://dx.doi.org/10.1007/s00348-009-0715-5

[25] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural
networks. In: F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger (eds.) Advances in



PIV ANN 21

Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012). URL
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[26] Kutz, J.N.: Deep learning in fluid dynamics. Journal of Fluid Mechanics 814, 14 (2017). DOI
10.1017/jfm.2016.803
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