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Abstract. Suppose observations y1, . . . , yn stem from a parametric model f(y, θ),

with the parameter taking one value θL for y1, . . . , yτ and another value θR for

yτ+1, . . . , yn. This article provides and examines two different general strategies for

not merely estimating the break point τ but also to complement such an estimate

with full confidence distributions, both for the change-point τ and for associated

measures of differences between the two levels of θ. The first idea worked with

involves testing homogeneity for the two segments to the left and the right of a

candidate change-point value at a fine-tuned level of significance. Carrying out

such a scheme requires having a goodness-of-fit test for constancy of the θ param-

eter over a segment of indices, and we also develop classes of such tests. These

also have some independent interest. The second general method uses the log-

likelihood function, profiled over the other parameters, and we show how this may

lead to confidence inference for τ . Our methods are illustrated for four real data

stories, with these meeting different types of challenges.

Key words: change-points, confidence distributions, homogeneity testing, log-likelihood

profiling, monitoring bridges, regime shifts, Tirant lo Blanch

1. Introduction and summary

Many types of processes and natural phenomena experience change-points, some-

times via a jump in mean level and on other occasions via different and perhaps more

subtle changes of behaviour. Such changes and discontinuities, when parameters of

a model change from one state to another, are variously called break-points, tipping

points, paradigm or regime shifts, structural changes or critical transitions, depend-

ing on the type or school of application. There is naturally a vast literature inside

several areas of application, from engineering (see e.g. Frick et al. (2014)), econom-

ics and finance, to biology (e.g. Gould & Eldredge (1977)), meteorology, geology,

climate, sociology and history (cf. Spengler (1918), Fukuyama (1992)). As Glad-

well (2000) writes in The Tipping Point, “the tipping point is that magic moment

when an idea, trend, or social behavior crosses a threshold, tips, and spreads like

wildfire”. There is similarly a large literature regarding aspects of estimation and

assessment of change-points inside statistical methodology. The present paper is
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2 CONFIDENCE FOR CHANGE-POINTS

a contribution to the methodological side but also presents real data applications

stories. Our methods aim at spotting change-points, but, importantly, along with a

full assessment of uncertainty, in the form of confidence distributions.

A fruitful statistical framework is as follows. Suppose y1, . . . , yn are independent

from a model with density say f(y, θ), with θ of dimension say p. Our theme is that

of pinpointing and providing full inference for the break point τ , assumed to exist,

where the θ associated with y1, . . . , yτ is equal to one value, say θL, whereas the

parameter vector behind yτ+1, . . . , yn, say θR, is different. For various applications

it may be necessary to extend this framework to models with dependence, as for

time series, and several of our methods work also for such cases. The statistical

challenge is to estimate τ , along with measures of uncertainty. The traditional ways

of reporting precision of parameter estimates are via standard errors (estimates

of standard deviation) or say 95% confidence intervals. Our preferred format is

that of a full confidence curve, say cc(τ, yobs), based on the observed dataset yobs.

Its interpretation is that, at the true change-point parameter τ , the set R(α) =

{τ : cc(τ, Y ) ≤ α} ought to have probability approximately equal to α, with Y

denoting a random dataset drawn from the model; see Schweder & Hjort (2016)

for a full account of confidence distributions. In particular, confidence sets at any

confidence level can be read off from the confidence curve.

The theory and applications of confidence distributions work out more easily for

continuous parameters in smooth models, for several reasons. First, for a continuous

parameter there is then a possibility of having exact or nearly exact confidence dis-

tributions, in the sense that R(α) given above has probability equal to or very close

to α, for each confidence level α. This is not fully attainable for the present case

of change-point parameters, as the natural statistics informative for τ , like a point

estimator τ̂ , have discrete distributions. Secondly, various methods and results per-

taining to continuous parameters of smooth models, related to exact or approximate

distributions for such statistics, like large-sample normality or chi-squaredness of

deviances, are not valid and have no clear parallels when it comes to inference for τ .

Confidence distributions and confidence curves may nevertheless be fruitfully con-

structed for various situations with discrete parameters, as developed in Schweder

& Hjort (2016, Ch. 3). This is also the line of development and investigation for the

present paper.

In Sections 2 and 3 we propose two different general methods for obtaining such

confidence curves for change-points. The first of these requires having a homogeneity

test for each given segment of data points where the hypothesis of no change can be

accurately examined. For this reason we develop classes of general goodness-of-fit

tests for such homogeneity hypotheses in Section 4. Tests we develop there, based on
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successive log-likelihood maxima, ought also to have independent interest. Questions

regarding behaviour and performance of our different confidence distributions are

then treated in Section 5.

The methods we develop in this paper are then shown at work for four different

stories with real data, each involving separate challenges. In Section 6 a Poisson

model is used to assess British mining disasters 1851–1962, with confidence infer-

ence for both the change-point and the relative change. In Section 7 we use different

versions of our methodology to pinpoint precisely where the second author (Marti

Joan de Galba) took over for the first author (Joanot Martorell), in what is arguably

the world’s first proper novel, Tirant lo Blanch, published in València 1490. Sev-

eral scholars have previously worked with multinomial models for word sizes, but

we demonstrate that the data are overdispersed, inviting the use of multinomial-

Dirichlet type models. Then in Section 8 we consider a time series of the number of

skiings days at a certain place near Oslo, from 1897 to 2014, and where the question

is precisely when Nature started changing her ways. Finally in Section 9 we examine

an important and long-running time series from fisheries sciences, consisting of the

liver quality of skrei (the North-East Atlantic cod, Gadus Morhua), from 1859 to

2013, along with potentially influencing covariates. The aim is again to pinpoint

where a moderately complex model for such data experiences a regime shift. We

end our article by offering a list of concluding remarks in Section 10, some pointing

to further relevant research for change-point inference.

For further pointers to the statistics literature, regarding both methods and ap-

plications, see e.g. Frigessi & Hjort (2002) for a general discussion of discontinuities

in statistical models, in their introduction to a special issue of Journal of Nonpara-

metric Statistics on such topics, and the edited volume Carlstein et al. (1994). Frick

et al. (2014) develop methods for joint inference of multiple jumps in a certain class

of models, and references in that paper give pointers to several other approaches

to change-point analyses. For Bayesian approaches, consult Carlin et al. (1992),

Fearnhead (2006), and also Section 5.3 below.

2. General method A: via tests of homogeneity

Though we shall work with models with dependence later in our paper, we

assume in the present section that the Yi are independent, with density f(y, θi) for

observation i. Assume further that we for each given n have managed to construct a

well-working goodness-of-fit test for the homogeneity hypothesis H1,n : θ1 = · · · = θn,

say Z1,n, with null distribution G1,n. Testing H1,n at level 0.05, for example, is then

carried out by rejecting if Z1,n > G−11,n(0.95), etc. We shall come back to classes of

such tests in Section 4.



4 CONFIDENCE FOR CHANGE-POINTS

Consider now the regime shift setup, where the θi are equal to a θL for i =

1, . . . , τ but equal to a different θR for i = τ + 1, . . . , n. To form a confidence set for

τ , at confidence level α, we suggest forming

R(α) = {τ : H1,τ is accepted at level
√
α,Hτ+1,n is accepted at level

√
α}

= {τ : Z1,τ ≤ G−11,τ (
√
α), Zτ+1,n ≤ G−1τ+1,n(

√
α)}

(2.1)

for each of a grid of α values. The probability that τ belongs to this random set,

under the true τ , is then

Pτ{τ ∈ R(α)} =
√
α
√
α = α.

Note that R(α) consists of points, seen as candidate values for τ at level confidence

α, not an interval, per se; also, it may not be connected, as seen in e.g. Figure 9.2.

For an easy illustration, suppose Yi ∼ N(θi, 1). Here there is a simple test for

homogeneity for any given segment of observations using Qa+1,a+b =
∑a+b

i=a+1(Yi −
Ȳ )2, with Ȳ = Ȳa+1,a+b the average, and which has a simple χ2

b−1 null distribution

(other tests will be considered in Section 5). Thus we may easily find the set

R(α) = {τ : Q1,τ ≤ H−1τ−1(
√
α), Qτ+1,n ≤ H−1n−τ−1(

√
α)} (2.2)

for each confidence level α, writing Hν(·) for the distribution function of a χ2
ν . The

R(α) sets can then be displayed for α values 0.01, 0.02, 0.04, . . . , 0.96, 0.98, 0.99, say.

Simple simulations reveal that the R(α) sets for given confidence level α might not be

connected, i.e. may consist of a union of different connected sets, and also that they

may be empty for smaller levels. The sets R(α) can be used to define a confidence

curve for our method A,

ccA(τ, y) = min{α : τ ∈ R(α)}. (2.3)

This curve fulfils the important property that it will be uniformly distributed at the

true change-point value τ0. This is easily established by realising that ccA(τ0, Y ) ≤ α

is equivalent to τ0 ∈ R(α). For some further properties of this confidence curve, see

Section 5.

The
√
α
√
α = α idea works of course also with other combinations, like using

ατ/nα1−τ/n for the τ under scrutiny, which we find tends to work slightly better

in terms of leading to somewhat slimmer confidence sets; see Section 5. For the

illustration just considered, cf. (2.2), there are other homogeneity tests that may be

used, in addition to the simple chi-squared method used there, and some alternatives

are worked with in Section 5.

In more complex models the situation is less clear-cut than for the illustration

around eq. (2.2), not due to any conceptual difficulties with method (2.1), but be-

cause we may not have a test of homogeneity with an exact null distribution fully

free of parameters. As long as there is a decent test Z1,n, for each stretch 1 to n, with
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a null distribution exactly or approximately independent of any underlying parame-

ters, we are very much in business, however. We discuss two classes of such tests in

Section 4. It is also important to realise that the (2.1) method works in complicated

and perhaps high-dimensional situations, as long as there is such a homogeneity test.

A case in point is the nonparametric graph-based scan statistics method of Chen

& Zhang (2015), which may be put to work as long as a similarity measure on the

sample space can be given. In fact Chen & Zhang (2015) utilise an idea similar to

our (2.1) above, but in the context of constructing a single confidence interval inside

a special model framework only; our concern is that of a full confidence curve, and

we emphasise the broad generality of the approach. One may also find traces of

related ideas, such as for blocking parameters into groups and identifying splits, in

Cox & Spjøtvoll (1982); Worsley (1986). We take time to mention that a Bonferroni

version of the argument may be used in cases where data from the left and right

segments are dependent, with 1
2

+ 1
2
α replacing

√
α in (2.1, yielding an alternative

set Rb(α); this secures a conservative Pτ{τ ∈ Rb(α)} ≥ α. The difference is actually

slight for confidence levels α > 1
2

and very small for the higher levels.

3. General method B: profiled log-likelihood and deviance

Suppose in general terms that Y1, . . . , Yτ come from f(y, θL) and Yτ+1, . . . , Yn

stem from f(y, θR). This corresponds to a log-likelihood function of the form

`(τ, θL, θR) =
∑
i≤τ

log f(yi, θL) +
∑
i≥τ+1

log f(yi, θR) = `1,τ (θL) + `τ+1,n(θR).

We shall see how profiled versions may lead to confidence distributions, for both the

breakpoint position τ and for the degree of change, suitably measured.

3.1. Confidence for the breakpoint. From the function above we may compute

the profile log-likelihood function

`prof(τ) = maxθL,θR `(τ, θL, θR) = `(τ, θ̂L(τ), θ̂R(τ))

= `1,τ (θ̂L(τ)) + `τ+1,n(θ̂R(τ)),
(3.1)

involving the maximisers of `(τ, θL, θR) over θL and θR for given τ . The maximiser of

`prof is the maximum likelihood (ML) estimator τ̂ , yielding also the ML estimators

θ̂L = θ̂L(τ̂) to the left, θ̂R = θ̂R(τ̂) to the right. From the profile we form and display

the deviance function

D(τ, Y ) = 2{`prof(τ̂)− `prof(τ)}. (3.2)

To construct a confidence curve for τ based on the deviance, consider the esti-

mated distribution of D(τ, Y ) at position τ ,

Kτ (x) = Pτ,θ̂L,θ̂R{D(τ, Y ) < x}.
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The Wilks theorem says that Kτ (x) is approximately the distribution function of a

χ2
1, in the case of parametric models smooth in its continuous parameters. There is

no Wilks theorem in the present case of a discrete-valued parameter τ , however, so

we typically need to resort to computing Kτ (x) by simulation. Also, D(τ, Y ) has

a discrete distribution, say with positive point probabilities kτ (x) for certain x; in

particular, there is a positive probability kτ (0) = Pτ,θ̂L,θ̂R{τ̂ = τ} that the deviance is

zero. Hence the probability transform Kτ (D(τ, Y )) does not have an exact uniform

distribution.

We shall nevertheless work with the construction

cc(τ, yobs) = Kτ (D(τ, yobs)) = Pτ,θ̂L,θ̂R{D(τ, Y ) < D(τ, yobs)}. (3.3)

The probability that cc(τ, Y ) ≤ α, under the true change-point parameter τ , is often

well approximated with α, allowing the interpretation that confidence sets for τ can

be read off from a plot of cc(τ, y), which we call a confidence curve. The cc(τ, y) of

(3.3) is the acceptance probability for τ , or one minus the p-value for testing that

value of τ , using the deviance based test which rejects for high values of D(τ, Y ).

We compute Kτ and hence cc(τ, y) by simulation, i.e.

cc(τ, yobs) = B−1
B∑
j=1

I{D(τ, Y ∗j ) < D(τ, yobs)},

for a large enough number B of simulated copies of datasets Y ∗. This needs to be

carried out for each candidate value τ , with generated data Y ∗i from f(y, θ̂L) to the

left of τ and f(y, θ̂R) to the right of τ . For a related idea see Section 10.1.

3.2. The normal case. An important special case of our general problem formu-

lation is that of the normal with constant variance. Consider first the case where

this variance is known, for convenience now taken to be one. With levels ξL and ξR

to the left and to the right, the log-likelihood is

`(τ, ξL, ξR) = −1
2

∑
i≤τ

(yi − ξL)2 − 1
2

∑
i≥τ+1

(yi − ξR)2,

leading to `prof(τ) = −1
2
{QL(τ) + QR(τ)}, with QL(τ) =

∑
i≤τ{yi − ȳL(τ)}2 and

QR(τ) =
∑

i≥τ+1{yi − ȳR(τ)}2, writing ȳL(τ) and ȳR(τ) for the averages to the left

and the right of τ . The ML for τ is the value minimising the sum of these empirical

variances to the left and the right, or, equivalently, maximising τ ȳL(τ)2 + (n −
τ)ȳR(τ)2. Confidence statements for τ can then be reached via the recipe above,

based on the deviance

D(τ, y) = QL(τ) +QR(τ)−QL(τ̂)−QR(τ̂).
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Next assume that the model takes N(ξL, σ
2
L) to the left and N(ξR, σ

2
R) to the right,

with the four parameters being unknown, in addition to the breakpoint. Maximising

the log-likelihood

` = −τ log σL − 1
2
(1/σ2

L)[QL(τ) + τ{ȳL(τ)− ξL}2]

−(n− τ) log σR − 1
2
(1/σ2

R)[QR(τ) + (n− τ){ȳR(τ)− ξR}2]

over first ξL, ξR and then σL, σR yields the profile log-likelihood function

`prof(τ) = −τ log σ̂L(τ)− (n− τ) log σ̂R(τ),

where σ̂L(τ)2 = (1/τ)
∑

i≤τ{yi− ȳL(τ)}2 and similarly with σ̂R(τ)2. We see that the

ML estimate of τ is the value that minimises σ̂L(τ)τ/nσ̂R(τ)1−τ/n. Also,

D(τ, y) = 2{τ log σ̂L(τ) + (n− τ) log σ̂R(τ)− τ̂ log σ̂L(τ̂)− (n− τ̂) log σ̂R(τ̂)},

and a confidence curve can be based on this, as per (3.3).

In this brief section on inference for the breakpoint in the normal model we finally

include the important case where data follow N(ξL, σ
2) to the left and N(ξR, σ

2) to

the right, i.e. with a common σ. This requires a modest extension of (3.1)–(3.2) to

the case of common parameters being present on both sides of the breakpoint. The

point is that recipe (3.3) for the confidence curve is still operable and valid. The

log-likelihood function for this four-parameter model becomes

−n log σ − 1
2
(1/σ2)[QL(τ) + τ{ȳL(τ)− ξL}2 +QR(τ) + (n− τ){ȳR(τ)− ξR}2],

which is easily maximised over (ξL, ξR, σ) for each fixed τ . We find

σ̂(τ)2 = n−1{QL(τ) +QR(τ)},

and `prof(τ) = −n log σ̂(τ). The ML for τ is the τ̂ making σ̂(τ) smallest. Also,

D(τ, y) = n log
σ̂2(τ)

σ̂2(τ̂)
.

3.3. The multinormal case. Assume the observations yi are multivariate and nor-

mally distributed. Here we derive the required formulae for log-likelihood maxima

and deviance functions, under two scenarios, corresponding to having the variance

matrix constant or not, for the left and the right part of the data.

When y1, . . . , yn are i.i.d. Np(ξ,Σ), the log-likelihood function is

`n = −1
2
n log |Σ| − 1

2

n∑
i=1

(yi − ξ)tΣ−1(yi − ξ)− 1
2
n log(2π).

This is maximised by ξ̂ = ȳ and Σ̂ = n−1
∑n

i=1(yi− ξ̂)(yi− ξ̂)t, see e.g. Mardia et al.

(1979), with ensuing maximum `n,max = −1
2
n log |Σ̂| − 1

2
np{1 + log(2π)}. This leads
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to a clear formula for the profile log-likelihood function for the model which takes

Np(ξL,ΣL) to the left and Np(ξR,ΣR) to the right; indeed,

`prof(τ) = −1
2
τ log |Σ̂L(τ)| − 1

2
(n− τ) log |Σ̂R(τ)| (3.4)

plus irrelevant constants. Here Σ̂L(τ) = (1/τ)
∑

i≤τ (yi − ȳL)(yi − ȳL)t, with ȳL the

average to the left, and similarly for Σ̂R(τ).

Analogous calculations for the case of a common Σ across the range of data, but

with different mean levels ξL and ξR, lead to

`prof(τ) = −1
2
n log |Σ̂(τ)|, with Σ(τ) = (τ/n)Σ̂L(τ) + (1− τ/n)Σ̂R(τ). (3.5)

In particular, the ML estimator τ̂ for this model is the value of τ minimising

log |Σ̂(τ)|. This also yields the deviance formula

D(τ, y) = n{log |Σ̂(τ)| − log |Σ̂(τ̂)|},

with τ̂ the ML estimator.

3.4. Confidence for the degree of change. In addition to spotting the real

breakpoint τtrue itself there is often interest in the degree of change taking place,

say via a suitable one-dimensional distance measure δ = δ(θL, θR). The natural

estimator is

δ̂ = δ(θ̂L(τ̂), θ̂R(τ̂)), (3.6)

featuring the ML estimators of the left and right parameters, calculated at the ML

position τ̂ . The distribution of δ(θ̂L(τ), θ̂R(τ)), for a given τ , is typically close to a

normal, but with a statistical bias of size O(|τ − τtrue|/τ) + O(|τ − τtrue|/(n − τ)),

depending on how close τ is to the real value. The distribution of δ̂ of (3.6) is

a complex mixture of many such approximate normals, and with variable biases,

depending also on how precise τ̂ is for estimating τtrue.

In our investigations we have found it a sounder general approach to go for

the profiled log-likelihood and deviance function, as for method B above, but now

profiling for δ. The recipe is hence to compute

`prof(δ) = max{`(τ, θL, θR) : δ(θL, θR) = δ},

then the deviance D(δ, yobs) = 2{`prof(δ̂)− `prof(δ)}, followed by

cc(δ, yobs) = Pδ{D(δ, Y ) ≤ D(δ, yobs)} = Lδ(D(δ, yobs)). (3.7)

There are two options here, for defining and then computing the probability distri-

bution Lδ of D(δ, Y ); these are related and often lead to very nearly the same results.

The first is to fix τ at the ML position τ̂ and compute Lδ under (τ̂ , θ̂L(δ), θ̂R(δ)),

the position in the parameter space maximising `(τ, θL, θR) under the profiling con-

straint δ(θL, θR) = δ. The second is to follow the full profiling also for the τ part,
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i.e. finding for given δ the point (τ̂(δ), θ̂L(δ), θ̂R(δ)) at which the log-likelihood is

maximised, again under δ(θL, θR) = δ but without fixing τ at the ML position. In

both cases one computes Lδ(·) and hence cc(δ, y) of (3.7) by simulating datasets y∗L
and y∗R to the left and the right from the estimated models and then computing the

log-likelihood functions and hence D(δ, Y ). This approach to reaching confidence

inference for a degree of change parameter is illustrated for the ratio of Poisson rate

parameters in Section 6 and for a ratio of standard deviances inside a broader model

in Section 8.

4. Monitoring bridges and homogeneity tests

To apply the general method proposed in Section 2, particularly when encounter-

ing models outside the slim standard list where explicit tests might be available, one

needs methods for testing distributional homogeneity of a sequence of observations,

i.e. that θa+1, . . . , θa+b associated with observations a + 1, . . . , a + b have remained

unchanged. Here we describe some tests of this type. The monitoring bridges we con-

struct based on log-likelihood maxima, along with associated goodness-of-fit tests,

appear to be new and ought to have independent interest.

4.1. Monitoring bridges. Consider the sequence y1, . . . , yn, with yi ∼ f(y, θi).

Classes of such tests for constancy of the θi have been worked with in Hjort &

Koning (2002). In particular, one may use the monitoring process

Mn(t) = n−1/2Ĵ−1/2
∑
i≤nt

u(Yi, θ̂) for 0 ≤ t ≤ 1, (4.1)

in terms of the score function u(y, θ) = ∂ log f(y, θ)/∂θ and the maximum likelihood

estimator θ̂ assuming θi = θ. Also, Ĵ is the p×p estimated Fisher information matrix,

with p the dimension of the model. We note that Mn(·) consists of p components,

each starting and ending in zero; also, Mn is constant on each cell [k/n, (k + 1)/n),

with Mn(k/n) = n−1/2Ĵ−1/2
∑

i≤k u(Yi, θ̂). Hjort and Koning prove that Mn →d M ,

the limit having p independent components W 0
1 , . . . ,W

0
p , each a Brownian bridge.

Hence plotting Mn,j and checking various behavioural aspects, like their maxima or

minima, leads to clear tests for homogeneity. These may be used in connection with

the general construction of Section 2.

One particular version of this strategy is to test homogeneity using

Zn = max
j≤p
‖Mn,j‖ = max

j≤p
max
k≤n
|Mn,j(k/n)|.
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Under homogeneity, Zn →d Z = maxj≤p max0≤t≤1 |W 0
j (t)|. The distribution for a

single of these maxima of a Brownian bridge can be expressed as

H(z) = P{max
0≤t≤1

|W 0(t)| ≤ z} = 1 + 2
∞∑
k=1

(−1)k exp(−2k2z2), (4.2)

as proved in Billingsley (1968, Ch. 3). For the case the maximum over several

asymptotically independent components, as with the construction (4.1), we have

P{Zn ≤ z} → H(z)p, which is easily computed. Other variations can of course be

used here, like the sum of maxima rather than the maximum of maxima, or the

sum of Cramér–von Mises type statistics n−1
∑n

k=1{Mn,1(k/n)2 + · · ·+Mn,p(k/n)2}.
The latter tends in distribution to

∑p
j=1

∫ 1

0
W 0
j (t)2 dt, which can be computed and

tabled via simulations, or via results obtained in Csörgő & Faraway (1996).

4.2. New monitoring bridges for model homogeneity. Here we are however

eager to build a new type of test, using the succession of attained log-likelihood

maxima. Assume homogeneity, i.e. that there is a common θ0 underlying the obser-

vations. With `j = `j(θ) the log-likelihood function based on y1, . . . , yj, we compute

the maximum likelihood estimate θ̂j and the associated log-likelihood maximum̂̀
j = `j(θ̂j). Computing the maximum likelihood estimator takes at least p observa-

tions. Our monitoring bridges take the form

B̂n,j = n−1/2{̂̀j − (j/n)̂̀n}/κ̂ for j = p, . . . , n. (4.3)

Here κ̂ is a consistent estimator of the standard deviation κ of log f(Y, θ0), e.g.

κ̂2 =
1

n

n∑
i=1

{log f(yi, θ̂)− ξ̂}2,

where ξ̂ = ̂̀
n/n the estimate of ξ = Eθ0 log f(y, θ0) =

∫
fθ0 log fθ0 dy.

We show below that the process with these B̂n,j values tends to a Brownian

bridge, under the null hypothesis of homogeneity. More precisely, consider the piece-

wise constant process B̂n on [0, 1] with values B̂n,j on [j/n, (j+ 1)/n) for j ≥ p, and

zero for [0, p/n). The claim is that under unchanging model conditions,

B̂n →d W
0 in D[0, 1], (4.4)

the limit being a Brownian bridge (a zero-mean Gaussian process with covariance

function s(1− t) for s ≤ t). The convergence in distribution in question takes place

in the space of all functions x : [0, 1] → R, right continuous with limits from the

left, equipped with the Skorohod topology; cf. Billingsley (1968). Plotting the B̂n,j,

therefore, gives a monitoring bridge which should behave like a Brownian bridge

under homogeneity conditions. The weak convergence result (4.4) implies h(B̂n)→d

h(W 0) for all continuous functionals, so that maxp≤j≤n |B̂n,j| →d max0≤t≤1 |W 0(t)|,
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(n − p + 1)−1
∑n

j=p B̂
2
n,j →d

∫ 1

0
W 0(t)2 dt, etc. Among the benefits of the new

goodness-of-fit construction (4.3) is that a multidimensional parametric family is

mapped directly into a one-dimensional monitoring bridge.

To prove (4.4), start out considering the partial-sum process

An(t) = n−1/2
∑
i≤[nt]

{log f(yi, θ0)− ξ}/κ = n−1/2(`j − jξ)/κ for 0 ≤ t ≤ 1,

writing `j =
∑

i≤j log f(yi, θ0) and j = [nt] (so that j/n tends to t). From Donsker’s

theorem, cf. Billingsley (1968, Ch. 3), An →d A, the Brownian motion process. It

then follows that the process Bn, defined by Bn(t) = An(t) − tAn(1), converges in

distribution to the process B, defined by B(t) = A(t) − tA(1), and this limit is

demonstrably a Brownian bridge process on [0, 1]. Also,

Bn(j/n) = n−1/2{`j − (j/n)`n}/κ,

i.e. the tying-down has caused ξ to not being present.

We may now prove that Ân and B̂n have the same limits as An and Bn, where

Ân(t) = n−1/2(̂̀j − jξ)/κ̂ and B̂n(t) = n−1/2{̂̀j − (j/n)̂̀n}/κ̂
for t ∈ [j/n, (j + 1)/n). To show this, note from a Taylor expansion argument that

`j(θ0) = `j(θ̂j) + 1
2
(θ0 − θ̂j)t`′′j (θ̂j)(θ0 − θ̂j) + opr(1), which leads to

̂̀
j = `j(θ0) + 1

2
Wj + opr(1), (4.5)

where Wj = j(θ̂j − θ0)tĴj(θ̂j − θ0) + opr(1), with Ĵj = −(1/j)`′′j (θ̂j) being the nor-

malised observed Fisher information after j data points. The Wj tends to a χ2
p

as j increases. Hence the differences max |Ân − An| and max |B̂n − Bn| are both

Opr(p/
√
n), which goes to zero in probability. This proves claim (4.4).

Note that ̂̀j of Ân overshoots `j(θ0) of An, essentially with the amount 1
2
Wj, a

random variable with distribution tending to a half a χ2
p, with mean value 1

2
p. This

suggests using the sample-size modification n−1/2(̂̀j− 1
2
p− jξ)/κ̂ for Ân, which with

a bit of algebra leads to the modification

B∗n,j = n−1/2{̂̀j − (j/n)̂̀n − 1
2
p(1− j/n)}/κ̂

for B̂n,j of (4.3). This version is closer in distribution to that of a Brownian bridge

for finite n. We also point out that the key result (4.4) continues to hold also

in situations with short-range dependence, as for most time series models. This

is essentially since the partial-sum process An above still tends to the Brownian

motion, under weak assumptions of this type; see Billingsley (1968, Ch. 4).
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5. Performance

In previous sections we have developed a general machinery for confidence in-

ference for change-points. It is clear from these developments that there are several

available methods, for a given dataset and a given vehicle model. In particular, for

general method A there is a choice to be made for the homogeneity test. In the

present section we consider performance issues for the resulting confidence distribu-

tions, also comparing method A with method B. The primary performance aspect is

that the confidence distributions really come close to delivering adequate coverage,

which in our change-point context means that the confidence curve construction

cc(τ, y) should have G(α) = Pτ{cc(τ, Y ) ≤ α} close to α. For method B, the distri-

bution of Uτ = cc(τ, Y ) is never perfectly uniform, since it is discrete, though G(α)

is often seen to be close to α with our constructions. For method A, however, the

uniformity at the true change-point value τ is exact (as long as the homogeneity

tests on each side are exact), as demonstrated in Section 2, and will be retained

even if the change-point is very clear and only one τ value, the true one, “survives”

at all levels. In that case the minimum of ccA(τ) will be uniformly distributed. This

has consequences for the interpretation of the confidence curve defined by method

A: while the τ minimising ccA(τ, y) may be considered an estimate of the change-

point, the actual minimal value of ccA(τ, y) is of limited interest, and should not be

interpreted as a measure of certainty of the change-point estimate.

A second performance aspect, which is a measure of certainty of the change-

point estimate, is that a cc(τ, y) should lead to ‘thin’ or narrow confidence sets

{τ : cc(τ, y) ≤ α}, for most or all values of the confidence level α. We measure such

thinness or slimness here by the number of τ belonging to the confidence set where

cc(τ, y) ≤ α, for a range of α levels (rather than the width or range of the set, as the

sets may be non-connected); for simplicity we use the term ‘size’ below to indicate

such numbers.

Schweder & Hjort (2016, Ch. 5) offer a broad discussion of performance and risk

functions for confidence distributions, also identifying classes of situations where

there is a unique optimal confidence procedure; see also the discussion on perfor-

mance in Xie & Singh (2013). Such clear results seem out of reach when it comes

to confidence for change-points, however. Below we report briefly on investigations

into the mentioned performance aspects for our confidence methods.

5.1. Method A with different tests. Method A is a general method for con-

structing confidence sets for a change-point, but depends on having a well-working

test of homogeneity for the segments 1, . . . , τ and τ + 1, . . . , n. It may also depend

upon the choice of the test levels at work in (2.1); here we compare having the
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fixed level, i.e.
√
α
√
α, with the alternative where it depends on the sizes of the

segments, via ατ/nα1−τ/n. Considering the simple model with yi ∼ N(ξL, 1) to the

left of τ and yi ∼ N(ξR, 1) to the right, and with ξL and ξR unknown, we have

investigated three different tests and the two different versions of test levels via sim-

ulations. The first test is that used in connection with the (2.2) illustration, using

Qa+1,a+b =
∑a+b

i=a+1(Yi − Ȳ )2 with a χ2
b−1 null distribution. The second test uses

the regression slope coefficient from a regression model; on the segment 1, . . . , τ we

consider b̂ =
∑τ

i=1(i − ī)yi/M(τ), where we know that M(τ )̂b2 ∼ χ2
1, under the

homogeneity hypothesis; here M(τ) =
∑

i≤τ (i− ī)2 and ī is the average of 1, . . . , τ .

The test for the segment τ + 1, . . . , n is similar. The third test uses monitoring

bridges from Hjort & Koning (2002), as presented in Section 4.1. For this model the

monitoring processes become

ML(t) =
1

τ 1/2

∑
i≤[τt]

(Yi − ξ̂L) and MR(t) =
1

(n− τ)1/2

∑
τ+1≤i≤τ+1+(n−τ−1)t

(Yi − ξ̂R)

to the left and to the right of τ , respectively. From these processes we use VL =

maxt |ML(t)| and VR = maxt |MR(t)| as test statistics, with the theory from Hjort

& Koning (2002) implying that these are asymptotically distributed as maxima of

Brownian bridges; cf. (4.2).

method 50% coverage 50% size 90% coverage 90% size 95% coverage 95% size

A-I 0.49 0.50 34.01 17.19 0.88 0.88 112.72 66.28 0.94 0.95 135.86 86.13

A-II 0.52 0.51 10.30 8.91 0.90 0.90 33.64 23.62 0.94 0.95 44.96 28.72

A-III 0.60 0.58 10.53 9.28 0.93 0.93 28.88 23.43 0.97 0.96 37.57 27.81

B 0.50 0.51 2.47 2.11 0.90 0.90 10.59 7.97 0.95 0.95 14.60 10.51

Table 5.1. Coverage and mean size of confidence sets produced with method A

with three different tests (and test level depending on τ) and with

method B, applied to the normal model with known variance, with

n = 200. Test A-I is the simple test, A-II is the regression test and A-

III is the Hjort–Koning test. The leftmost numbers in each column

are results from datasets with τ = 25, the rightmost numbers are

results from datasets with τ = 100. Each number is based on 103

simulated datasets.

The simulations were carried out by generating datasets of size n = 200. We

examined different combinations of position of τ , confidence levels, and difference

between the left and right levels. Here we briefly report on the cases where τ

positions were set to 25, 50, 75, 100 (cases 175, 150, 125 are fully symmetric with

25, 50, 75), and with ξL = 2.2 and ξR = 3.3, indicating a difference not easy to

tell immediately from the data. In order to evaluate the six different combinations
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of tests and test levels, the coverage and size (number of τ values, rather than the

range from smallest to largest value) of the confidence sets of level 0.50, 0.90 and 0.95

were recorded. One method is considered superior (more powerful) than another if

it produces slimmer confidence sets while keeping the correct coverage. Method A

with tests 1 and 2 has the correct coverage probability, per construction, and this is

reflected in the simulations (see Table 5.1). The third test (Hjort–Koning) is based

on an asymptotic result and therefore does not have exactly the right coverage,

however. The simulations reveal that the deviation is generally small, for example

a 95% confidence set typically covers the true τ value 97% of the time. Tests 2

and 3 produce confidence sets of very similar size, but the first test is clearly less

powerful than the two others. For example, while test 2 and 3 produce confidence

sets with a mean size of 29 and 28 at the 95% level for τ = 100, the first test has

confidence sets of mean size 86. When it comes to the choice of test level, it is

beneficial to let the level depend on τ , in the manner of ατ/nα1−τ/n, rather than

using
√
α
√
α in (2.1), but the differences between these two alternatives tends to be

small; in Table 5.1 we therefore include only the first choice. For all methods the

resulting confidence sets are smaller for τ values near the middle of the data (close

to 100). The opposite effect is most obvious for the datasets with τ = 25, where the

confidence sets typically are close to 1.5 times larger than the confidence sets from

data with τ = 100. The results for datasets with τ equal to 50 and 75 are not shown

here, but have been seen to be fairly close to the results for τ = 100. For the good

performance of method B see Section 5.2

We also investigated the behaviour of the different versions of method A when

datasets without change-points were generated. In these cases, the method produces

extremely wide confidence sets, generally spanning nearly the entire set of possible

τ values, thus indicating, as they should, that the data are homogeneous on both

sides of nearly all possible choices of τ .

Further examined were the two different tests for method A for the model

where the variance is unknown (and potentially different on the two segments);

yi ∼ N(ξL, σ
2
L) to the left of τ and yi ∼ N(ξR, σ

2
R) to the right. The first test is an

extension of the regression based test above. Writing down the required formulae

for the full segment 1, . . . , n (and then applying these for the left and right seg-

ments later on), we have b̂ =
∑

(i − ī)yi/M with M =
∑n

i=1(i − ī)2, and employ

t = M1/2b̂/σ̂, where σ̂2 =
∑n

i=1{yi − ȳ − b̂(i− ī)}2/(n− 2). Here ī is the average of

indexes employed. Under homogeneity, t ∼ tn−2. The second test is an application

of the monitoring bridges from Hjort & Koning (2002). This time we have two un-

known parameters and thus the monitoring process is two-dimensional. Following



CONFIDENCE FOR CHANGE-POINTS 15

the recipe for these monitoring processes, we have to the left of τ

ML(t) = τ−1/2
∑
i≤[τt]

(
Zi

(Z2
i − 1)/

√
2

)
for 0 ≤ t ≤ 1,

with Zi = (Yi − ξ̂L)/σ̂L, and as the test statistic we use

VL = max{max
t≤1
|ML,1(t)|,max

t≤1
|ML,2(t)|},

the maximum of the absolute maxima of the two bridges. The asymptotic distribu-

tion of VL (under homogeneity) can be easily computed via H(z)2 with H(z) from

(4.2). We construct a similar test statistic for the segment to the right of τ .

Again we generated datasets of size n = 200 with four different τ values (25,

50, 75, 100), and again we recorded the coverage and size (number of τ values) of

the confidence sets of level 0.50, 0.90 and 0.95. We studied the two tests for two

different settings, one where the change-point is a change in the mean, with ξL = 2.2,

ξR = 3.3 and σL = σR = 1, and the other where it is a change in the variance level,

with ξL = ξR = 2.2, σL = 1 and σR = 2.

method 50% coverage 50% size 90% coverage 90% size 95% coverage 95% size

A-I 0.49 0.52 6.32 6.14 0.92 0.90 28.44 20.53 0.96 0.96 58.03 34.03

A-II 0.62 0.60 14.88 11.92 0.94 0.94 43.03 28.65 0.97 0.98 40.97 26.40

B 0.49 0.51 2.73 2.19 0.86 0.89 12.72 8.57 0.92 0.95 18.00 11.36

A-I 0.50 0.52 99.27 99.08 0.92 0.90 177.26 176.86 0.96 0.95 186.76 185.93

A-II 0.63 0.64 35.24 16.59 0.94 0.94 130.31 37.57 0.97 0.98 155.42 43.82

B 0.46 0.49 4.79 3.24 0.85 0.90 21.59 12.28 0.89 0.96 30.95 16.28

Table 5.2. Coverage and mean size of confidence sets produced with method

A with two different tests (and test level depending on τ) and with

method B, applied to the normal model with unknown variance. The

first three rows concern the case where the change-point is a change

in the mean, and the second three concern the case where the change-

point is a change in the variance. Test A-I is the regression test and

test A-II is the Hjort–Koning test. The leftmost numbers in each

column are results from datasets with τ = 25, the rightmost numbers

are results from datasets with τ = 100. Each number is based on 103

simulated datasets.

For datasets with a change in the mean, the regression-based test was slightly

more advantageous than the Hjort–Koning test, having the correct coverage and

narrower confidence sets (see Table 5.2). However, the regression-based test is only

constructed to discover changes in the mean levels and the Hjort–Koning test is

therefore a more flexible test, able to discover change-points also when the change

only affects the variance (see Table 5.2, lower part). For both settings, the resulting
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confidence sets were much larger for datasets with τ = 25. This was most apparent

for the Hjort–Koning test in the second setting (change in the variance), where the

size of the confidence sets increased from around 44 on the 95% level (for τ equal to

50, 75 or 100) to 155 for τ = 25.

5.2. Method A versus Method B. The two methods proposed in this article have

similar aims, but different points of departure and different performances. While

method B assumes a model where there is a change-point (exactly one) on the whole

data segment, method A considers possible τ values as points where the data on each

side of τ are deemed homogeneous. The performance of method A is thus mostly

dependent on the power of the chosen test in discovering lack of homogeneity. We

included method B in the three simulation studies described above, and they reveal

that method B produces clearly smaller confidence sets compared to the different

versions of method A we have included. However, method B has a tendency to

produce confidence sets with slightly lower coverage than the specified level (and the

confidence sets should therefore be larger). The coverage problem is more apparent

when the change-point is far from the centre of the data, especially for the more

complex model with unknown variance (see Table 5.2). Method B seems nonetheless

to outperform A in these simulations. We still consider method A to be fruitful, with

a higher degree of flexibility considering the choice of test and more applicable to

complicated high-dimensional or even nonparametric situations.

5.3. The Bayesian approach. Bayesian solutions to the change-point problem are

not hard to put up, but they require of course a prior to be set up for (τ, θL, θR),

sometimes with ad hoc constructions. This leads to a posterior distribution for τ .

Suppose in particular that τ is given the prior π0(τ), independently of priors πL and

πR for θL and θR. This leads to the posterior distribution

π(τ | data) ∝ π0(τ)λL(τ)λR(τ),

expressed via the marginal left and right likelihoods

λL(τ) =

∫
LL(θL)πL(θL) dθL and λR(τ) =

∫
LR(θR)πR(θR) dθR.

These can be computed explicitly in a few models, and lead to a clear Bayesian

posterior for τ . Via numerical integration methods or MCMC one may also compute

such a π(τ | data) in a range of other situations, even without clear formulae for the

marginal likelihoods; see Carlin et al. (1992) and Fearnhead (2006).

Useful approximations emerge via the following Taylor expansion arguments,

which we first put up for the case of n observations from the same model with a
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prior π(·) for the same θ parameter, of dimension p:

λ =

∫
exp{`n(θ)}π(θ) dθ

.
=

∫
exp{`max − 1

2
(θ − θ̂)tnĴ(θ − θ̂)}π(θ) dθ

.
= exp(`max)|nĴ |−1/2π(θ̂)(2π)p/2.

Here θ̂ is the ML estimator and Ĵ = −n−1∂2`(θ̂)/∂θ∂θt the normalised Hessian

matrix, converging with increasing n to a certain matrix. This leads to log λ = `max−
1
2
p log n + Opr(p), akin to the approximation leading to the Bayesian information

criterion BIC (see Claeskens & Hjort (2008, Ch. 4)).

Now going back to the change-point analysis, and keeping the leading terms

only, we are led to the approximation

π(τ | data) ∝ π0(τ) exp
[
`prof(τ)− 1

2
p log{τ(n− τ)}

]
= π0(τ) exp{`prof(τ)}{τ(n− τ)}−p/2.

(5.1)

This assumes that the left and right priors for θL and θR are not overly different. At

any rate, the sizes of the leading terms of log π(τ | data) are Opr(n) and O(p log τ +

p log(n − τ)), with remainder terms of size Opr(p). The approximation is useful

for the computational side of things, as it bypasses the need for high-dimensional

integration or for MCMC setups, but also for shedding light on the behaviour of the

posterior distribution and for how it differs from the frequentist approaches we are

developing and advocating in the present paper. We learn e.g. that the Bayesian

posterior has a tendency to push τ towards the extreme ends. The (5.1) formula

is incidentally exactly correct for the case of the model Np(ξL, Ip) to the left and

Np(ξR, Ip) to the right, and with flat priors for ξL and ξR.

For quantities associated with smooth parametric models one is used to the

phenomenon described via so-called Bernshtĕın–von Mises theorems, that Bayesian

and frequentist inference tend to agree well, and with the prior in question being

reasonably quickly washed out by the data provided the parameter dimension being

low; see e.g. the discussion in Hjort et al. (2010, Introduction). This is different

here, however, in view of (5.1) and its consequent

log π(τ | data) = log π0(τ) + `prof(τ)− 1
2
p{log τ + log(n− τ)}+Opr(1),

which shows both that there is a certain bias inherent in the Bayes construction

and that this bias is more slowly disappearing with increasing sample size than in

regular parametric models. Simple simulation exercises reveal that the distribution

of Uτ =
∑

τB<τ
π(τB |Y ) + 1

2
π(τ |Y ), the half-correction version of the cumulative

posterior distribution for the Bayesian parameter τB, computed under the true τ , is

often far from the uniform, even for moderately large n. From such investigations,
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along with those reported on earlier in this section, it is apparent that confidence

distribution Method B based on the deviance and its distribution does a much better

job than the Bayesian apparatus when it comes to delivering confidence intervals

with correct coverage. The reason the Bayes method does badly in this regard is

partly that there is an inherited bias of size O(p log n + p log(n − τ)) in the log-

posterior, but even more so that the distribution

π(τ | y) ∝ exp{`prof(τ)}

also often delivers inaccurate confidence, even for moderately large n in simple mod-

els. This is in contrast to how things pan out for parameters of smooth regular mod-

els, where such a recipe typically leads to accurate coverage with increasing sample

size, as per the Bernshtĕın–von Mises theorems (here in the form of the Laplace

type inverse probability, Bayes with a flat prior). In this connection see also Fraser

(2011), who argues that Bayes is sometimes only ‘quick and dirty confidence’, and

Efron (2015), who is concerned with frequentist accuracy of Bayes solutions in a

general perspective. We also mention that the ML estimator τ̂ typically does better

than the Bayes estimator τ̂B maximising the posterior distribution (i.e. the Bayes

solution under a 0-1 loss function), as judged by e.g. mean absolute deviation, as

seen via simulation experiments.

6. Application 1: British mining accidents

As a first, simple illustration, we apply method B of Section 3 to a dataset from

the change-point literature, the number of British coal-mining disasters from 1851

to 1962; see Jarrett (1979) for relevant background and for certain corrections that

were made to earlier accounts. With yi the number of mining disasters in year i, we

take these to be independent and Poisson distributed with parameter θL for i ≤ τ

and θR for i ≥ τ+1. This is the model used for these data by Carlin et al. (1992), for

a Bayesian analysis, where clear posterior distributions are found for the parameters

based on their given prior for (τ, θL, θR). They also provided a posterior density for

the relative change parameter ρ = θL/θR. In this case, our methods give very similar

results to the above-mentioned Bayesian analysis; with our confidence distributions

matching their posteriors, but without priors.

In order to compute the confidence curve for the breakpoint, we need the de-

viance function and the profile log-likelihood function, here taking the form

`prof(τ) = τ ȳL(τ){log ȳL(τ)− 1}+ (n− τ)ȳR(τ){log ȳR(τ)− 1}.

The ML estimates are τ̂ = 41 (corresponding to year 1891), θ̂L = 3.098 and θ̂R =

0.901. From the estimates of θL and θR we simulated datasets under each possible

change-point value (that is, for all years between 1851 and 1961), calculated the
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deviance functions and computed the confidence curve from recipe (3.3); this yields

the left panel of Figure 6.1. The curve agrees with the posterior distribution for

the change-point given in Carlin et al. (1992), where the posterior mode also agrees

with the ML estimate.
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Figure 6.1. Left panel: Confidence curve for the change-point τ , using the de-

viance based method B. Right panel: Confidence density for the de-

gree of change ρ = θL/θR, via method B (full line), and the Bayesian

method (dashed line).

In order to analyse the degree of change ρ (the ratio between the rates of disas-

ters, for the past state of affairs and for the present), we reparametrise the model as

yi ∼ Pois(ρθ) for i ≤ τ and yi ∼ Pois(θ) for i ≥ τ + 1. The log-likelihood function is

`(τ, ρθ, θ) = τ{−ρθ + ȳL log(ρθ)}+ (n− τ)(−θ + ȳR log θ),

which we then maximise over θ and τ to reach the profile log-likelihood function

`prof(ρ) = τ̂(ρ)
[
−ρθ̂(ρ) + ȳL(τ̂(ρ)) log{ρθ̂(ρ)}

]
+{n− τ̂(ρ)}{−θ̂(ρ) + ȳR(τ̂(ρ)) log θ̂(ρ)},

with θ̂(ρ, τ) = {τ ȳL+(n− τ)ȳR}/{τρ+n− τ} = nȳ/{τρ+n− τ} and τ̂ obtained by

maximising over all possible τ values. The ML estimate for the degree of change was

3.437, and the confidence curve was obtained by (3.3) by simulating datasets from
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a grid of ρ values, using the overall ML estimate for τ along with θ̂L(ρ) and θ̂R(ρ),

following the recipe of Section 3.4. The confidence curve cc(ρ, y) can be converted

to a cumulative confidence distribution C(ρ, y), via cc(ρ, y) = |1− 2C(ρ, y)|, which

then via numerical derivation yields a confidence density, say c(ρ, y), displayed in the

right panel of Figure 6.1. This may now be compared to the posterior density for ρ

arrived at with any reasonable start prior for (τ, θL, θR), e.g. from MCMC methods

presented in Carlin et al. (1992). Our prior-free method gives results very similar

to those of the Bayesian machinery, with the almost noninformative priors used by

Carlin et al. (1992). The right panel of Figure 6.1 displays two very similar curves;

the confidence density and the Bayesian posterior calculated using a flat prior for

τ and independent almost noninformative Gamma priors with parameters (1
2
, 1
2
) for

the two levels.

The simulations required for constructing the confidence curve with method B

can be time-consuming, but here we may resort to an approximate solution based on

the Wilks theorem. If we fix τ at the ML value τ̂ , and proceed with deviance calculus

profiling over (θL, θR) subject to θL/θR = ρ, then the D(ρ, Y ) is very closely approx-

imated with a χ2
1, leading to a confidence curve for ρ via cc(ρ, yobs) = Γ1(D(ρ, yobs)),

where Γ1 is the cumulative distribution function of a χ2
1 distribution. The resulting

confidence curve is indistinguishable from the one computed with simulations and

displayed in the right panel of Figure 6.1, demonstrating that τ is sufficiently well

estimated in this case.

7. Application 2: Tirant lo Blanch

Our next change-point challenge concerns the Catalan novel Tirant lo Blanch.

This chivalry romance, written in the 1460s, can be considered the world’s first

novel, and was incidentally much admired by Cervantes (who wrote the more famous

Don Quixote about 150 years later). Most scholars agree that the novel had two

authors; the first author Joanot Martorell died before the completion of the novel,

and Marti Joan de Galba claimed to have finished it. Hence there is a change-point

problem, where we should hunt for the chapter number where the change from the

first to the second author takes place. Earlier statistical analyses include Girón

et al. (2005), Riba & Ginebra (2005), Koziol (2014) and Chen & Zhang (2015).

Most researchers favouring the change-of-author hypothesis believe that the change

takes place towards the end of the 487 chapter long book, more accurately between

chapter 350 and 400 (Chen & Zhang, 2015).

Different aspects of the chapters and the writing may be considered for statis-

tical measurements and then collected from the text. Analysing a quarrel between

Nobel Prize winners, Hjort (2007) used statistical modelling of sentence lengths to
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discriminate between two literary corpora, for example, and in Section 10.2 we are

indeed using such information to assist us in pinpointing the author change-point.

Presently we are concentrating on the word lengths in each chapter, and we have

only considered the 425 chapters with more than 200 words. From these we collect

vectors yi of dimension 10, displaying the number of words of length 1, 2, 3 and so

on, up to the number of words equal to or longer than 10 letters. The aforementioned

authors have used the same dataset, and all, except for Chen & Zhang (2015), model

the 425 word count vectors as multinomially distributed. Chen & Zhang (2015) pro-

pose a graph based, nonparametric change-point method. Girón et al. (2005) adopt

a Bayesian framework and provide a posterior distribution for the change-point τ .

Similar models as in Girón et al. (2005) are assumed in Riba & Ginebra (2005),

but in a frequentist framework and without providing any uncertainty around the

change-point estimates. Koziol (2014) approaches the change-point problem with

Lancaster partitions of chi-squared tests of homogeneity.

Initial goodness-of-fit checks demonstrate that the word lengths in the different

chapters of the book have heterogeneous distributions; in particular, the pure multi-

nomial model favoured by several previous scholars, with fixed probabilities of word

lengths from chapter to chapter inside a segment, does not fit well/ allows for too

little variability between chapters. We therefore investigated three other models: an

overdispersed multinomial, that is the Dirichlet-multinomial distribution, and two

different multinormal models. The first one allows the change-point to affect both

the mean vectors and the covariance matrices, while the second assumes that the

authors differ in the mean vector only. To judge between candidate models we have

computed values of the Akaike information criterion, cf. Claeskens & Hjort (2008,

Ch. 3), defined as AIC = 2 `max − 2 dim, with dim the number of parameters esti-

mated in the model and `max the associated maximum of the log-likelihood function

(see Table 7.1). These AIC values give a clear indication that the multinormal model

has a better fit to the data, and we thus used the multinormal for the construction

of the confidence curve for the change-point.

model `max dim AIC

multinomial −14, 449 19 −28, 936
Dirichlet-multinomial −13, 870 21 −27, 780

multinormal 1 −13, 722 109 −27, 660
multinormal 2 −13, 771 64 −27, 671

Table 7.1. Number of parameters and AIC values for different models: multinor-

mal 1 is the model assuming that the two authors both have different

mean vectors and different covariance matrices, while multinormal 2

assumes that the authors differ only in the mean vector.
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The multinormal model assumes that the observed proportions zi = yi/mi in

each chapter follow a multinormal distribution, with precision related to the sample

size. Disregarding element no. 10, since the proportions sum to one for each chapter,

the model used is

zi ∼ N9(ξL,ΣL/mi) for i ≤ τ and zi ∼ N9(ξR,ΣR/mi) for i ≥ τ + 1.

Here ξL and ξR are the mean vectors of these distributions of proportions, and ΣL

and ΣR appropriate 9 × 9 covariance matrices. The confidence curve was obtained

by method B (Section 3). First we find the profile log-likelihood function, which in

generalisation of the result (3.5) to the present case with variance matrices Σ/mi

becomes

`prof(τ) = −1
2
τ log |Σ̂L(τ)| − 1

2
(n− τ) log |Σ̂R(τ)|,

now with

Σ̂L(τ) =
1

τ

∑
i≤τ

mi{zi − ξ̂L(τ)}{zi − ξ̂L(τ)}t,

Σ̂R(τ) =
1

n− τ
∑
i≥τ+1

mi{zi − ξ̂R(τ)}{zi − ξ̂R(τ)}t,

where ξ̂L(τ) =
∑

i≤τ mizi/
∑

i≤τ mi and similarly for ξ̂R(τ). There is a consequent

formula for the deviance function for τ . The ML estimate for the change-point was

found to be τ̂ = 320. In the original numbering of the chapters this corresponds

to chapter 371, which is the same point estimate as with the ordinary multinomial

model in Riba & Ginebra (2005), and also the mode of the change-point posterior

distribution in Girón et al. (2005). The multinormal model gave the following ML

estimates for the mean of the world length proportions (the covariances matrices are

not given):

1 2 3 4 5 6 7 8 9 10

left 0.106 0.222 0.209 0.103 0.105 0.104 0.053 0.045 0.029 0.024

right 0.114 0.209 0.190 0.098 0.103 0.105 0.058 0.050 0.038 0.035

Table 7.2. Estimated proportions of words of different lengths, before and after

estimated change-point τ̂ = 320, via the multinormal model.

By simulating the distribution of D(τ, Y ) we obtain the confidence curve for τ ,

shown in Figure 7.1. Interestingly, the curve indicates some confidence in τ = 295,

which corresponds to chapter 345, which is in accordance with the Bayesian posterior

distribution in Girón et al. (2005) and with some of the analyses based on summary

measures presented on the next page.
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Figure 7.1. Confidence curve for the change-point τ , using method B based on

the multinormal model.

In addition to modelling the whole vector of proportions we can look at different

summary measures for each chapter, for example the average word length per chap-

ter. This was also used in Riba & Ginebra (2005), where they assumed a normal

model for the average word length per chapter and for the value taken by the first

principal component from correspondence analysis, yielding point estimates corre-

sponding to chapters 345 and 371, respectively. We also consider the average word

length, and in addition the standard deviation of word lengths, the proportions of

words of length 3 or less, and the proportions of words of length at least 8 letters,

in each chapter. The two last summary statistics are motivated by the fact that the

change in author seems to be mostly reflected in the proportions of short and long

words, cf. Table 7.2. Each of these summary measures, say wi, can be modelled as

wi ∼ N(θL, σ
2
L/mi) for i ≤ τ, and wi ∼ N(θR, σ

2
R/mi) for i ≥ τ + 1,

and confidence curves can easily be constructed by method B; see Figure 7.2.

Three of the summary measures give the most confidence to τ̂ = 295, corre-

sponding to chapter 345, but all of these curves also place some confidence on the

change-point taking place in chapter 371. When looking at the proportions of short

words (of length 1 or 2 or 3 letters) in each chapter, the most confidence is however
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Figure 7.2. Confidence curves for the change-point τ , using method B: Full line,

based on the average word length per chapter; dashed line, based

on the standard deviation in word lengths; dotted line, based on the

proportions of words of length 3 letters or less; and dot-dashed line,

based on the proportions of words of length 8 or more.

placed on τ̂ = 320, corresponding to chapter 371, consistent with the multinormal

analysis above. All our analyses for Tirant lo Blanch indicate that the change of

authors takes place towards the end of the book, with the most confidence placed

on the chapters 345 and 371. These results are consistent with previous statistical

analyses of the work (Riba & Ginebra, 2005; Girón et al., 2005; Koziol, 2014; Chen

& Zhang, 2015), with aspects of literary analyses (Rosenthal, 1984, preface), and

with the assertion made by the second author himself, who, in the afterword of the

book, writes that he completed the final quarter of the book.

8. Application 3: skiings days at Bjørnholt

The number of skiing days in a winter season is defined as the number of days

with at least 25 cm snow.1 In Figure 8.1 the number of such days at the particular

location of Bjørnholt in Oslo’s skiing and recreation area Nordmarka are plotted

1The definition and term ‘skiing day’ was introduced by the Norwegian meteorologist Gustav

Bjørbæk as the least amount of snow needed to avoid injury in case of a fall.
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for the winter seasons 1896-97 to 2014-15. The expected number of skiing days

and the future prospects for snowy winters are of especially great interest to the

skiing enthusiasts. Moreover, these numbers are good indicators of how cold winters

are and provide indications of the general trend of temperature over a given period

of time. This suggests that joint analysis of such skiing days time series form yet

another potential source for studying climate change.
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Figure 8.1. The number of skiing days for the winter seasons 1896-97 to 2013-14

at Bjørnholt. The imputed data points are meteorologists’ recon-

structions making use of nearby locations. The global linear trend

(dashed line) decreases with an estimated slope of about −0.40.

Some time after 1960 there appears to be a structural change in the

series. The estimated year for the change-point of the connected

linear model (full line) is at 1977, where the relative slope changes

from a modest −0.14 to a dramatic −1.22.

Letting Yt be the number of skiing days for year t, we consider change-point

models of the type

Yt = m(βL, t) + εt for t ≤ τ and Yt = m(βR, t) + εt for t ≥ τ + 1, (8.1)

withm(β, t) being suitable trend functions (here taken constant or linear), and where

{εt} is an autoregressive time series model of order one, i.e. an AR(1). The latter is

defined via the representation εt = ρεt−1 + σδt, with the δt being independent and

standard normal. Some analysis suggests an AR(1) captures the essential depen-

dency structure here, with higher order autoregressions leading to overfitting. For

our analyses we do use the full data sequence, but to avoid instability in the estimated

model at the edges we only consider change-point candidates τ ∈ {1907, . . . , 2004}.
We will actually go through and briefly compare four different specialisations

of the model above. The three first take an unchanged AR(1) process for the εt
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but three different trend functions, each with a change-point: (i) constant, where

m(βL, t) = βL and m(βR, t) = βR; (ii) linear, using disconnected linear regression

models of time, one to the left and one to the right of τ ; and (iii) connected linear,

meaning two separate linear models with the additional restriction of continuity,

i.e. using trend aL+bLt to the left and aR+bRt to the right, but with aL+bL(τ+ 1
2
) =

aR + bR(τ + 1
2
). Model (iv) uses a common linear a+ bt trend across the 118 winters

but allows the σ associated with the εt of (8.1) to jump from some σL to some σR.

The number of unknown parameters for these four models, including the change-

point τ itself, are 5, 7, 6, 5, respectively.
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Figure 8.2. The confidence sets for the change-point τ (left) and the confidence

curves for the two slopes (right) in the connected linear model. The

estimated change-point for the connected linear model (with its six

parameters) is 1977, where the mean slope changes from −0.14 to

−1.22.

Our intention here is not to go into a detailed analysis of the underlying meteo-

rological phenomena. Instead we aim at demonstrating the usefulness of our general

method B of Section 3 for reaching confidence distributions, within the framework

of change-point models with dependent errors. The main focus is on τ , but we also

take an interest in the effect a change-point has on the estimated slopes. Method B

of Section 3 yields confidence inference for τ and for degree of change parameters,

within each of the four models just described.

The data in Figure 8.1 appear to indicate either a strong decreasing trend, or

a change in the structure of the underlying model, perhaps some time after 1960.

Our model (i), which has a change in a constant mean, finds via ML that the most

likely year for a change is 1988, with δ̂ = β̂L − β̂R = 45.65. In words, everything

is stable until 1988, then there is a massive drop, from 138.00 to 92.35, in the
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Figure 8.3. The confidence curve (left) suggests three possible locations for a

change in σ, viz. 1915, 1970 and 1988, with the latter given most

confidence. The confidence curve for σR/σL (right) indicates that

the σ of the AR(1) part of (8.1) has increased, around 1988, with a

factor of about 1.61.

expected number of skiing days per winter. Then consider model (ii), with two

separate linear trends. The mean slope for the first part is approximately zero, with

β̂L = (139.84,−0.04) given as (intercept, slope). Then there is a sudden drop and

change in the expectation at the break-point τ̂ = 1988, now with a steady increase

thereafter, with β̂R = (−131.57, 2.12), almost returning to the pre 1988 change-point

level with an expected 118 and 120 skiing days for the 2013-14 and 2014-15 winter

seasons. The abrupt changes found when analysing these two models do not match

prior meteorological conceptions well, and indicate overfitting. For these reasons

we prefer models (iii) and (iv). Figure 8.2 pertains to change-point analysis within

model (iii), with connected linear trends, displaying a confidence curve for τ , with

point estimate 1977, and confidence curves for the (negative) slope parameters for

the trend before and after the break point.

At the outset it is by no means obvious that the heterogeneity seen in the data

(interpreted in a wide sense) is a result of a change in mean structure. The apparent

change of behaviour could potentially be caused by a sudden change in either de-

pendence (i.e. the ρ parameter), the variability (i.e. the σ), or both. Investigations

via method B do not provide any evidence of a change in the correlation struc-

ture. There is however some evidence that the standard deviation σ is not constant

across years, see Figure 8.3. This model (iv) suggests that there is a change in σ

around τ̂ = 1988. The estimated parameters are β̂ = (147.5,−0.27), ρ̂ = 0.31,

(σ̂L, σ̂R) = (30.52, 49.15).
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9. Application 4: the Hjort time series 1859-2012

As an illustration of our general method A of Section 2, we apply the new

monitoring bridge plots from Section 4.2 to first test for full homogeneity of a long

and prominent time series from fisheries sciences, and then to look for a regime shift.

The time series in question is the Hjort liver quality index time series for the skrei,

the Northeast Arctic cod. In marine biology this hepatosomatic index (HSI) is used

as a measure or indicator for the ‘quality of fish’ in a certain population, and then

typically studied as a time series; see Figure 9.1 (left panel). The index (in so-called

bulk form) may be represented as

HSI = 100× total amount of liver

total amount of fish
= 100×

∑
xi∑
yi
, (9.1)

where (xi, yi) represent the weight of the liver and the total weight of fish number

i in one or several catches of fishes; in the Lofoten fishery tens of millions of fish

are landed each year. The study of the liver quality index for the skrei goes back to

Hjort (1914), where such measurements for the time period 1880–1912 were recorded

and analysed, as part of his seminal work on the population dynamics underlying

the fluctuations of the great fisheries. The series has since then been extended both

forwards and backwards in time, to 1859–2012, yielding one of the longest time series

of marine science; see Kjesbu et al. (2014) and Hermansen et al. (2016).

The underlying dynamics and evolution of such series are of great importance

in marine biology. Studies of how the HSI evolves over time and interacts with and

are influenced by associated factors include Kjesbu et al. (2014); Vasilakopoulos &

Marshall (2015); Hermansen et al. (2016). Here we focus on a subset of this long

time series, namely the years 1921–2012, where also the detailed monthly average

temperatures for Kola are available, see Boitsov et al. (2012). From these monthly

averages the average winter temperature can be constructed, averaging the monthly

means from the start of October (previous year) to start of March (current year).

Letting Yi be HSI for year i, consider the model where

Yi = β0 + βkolaxi−1 + εi, (9.2)

with i = 1, . . . , 90 representing the years 1922–2012, and where {εi} is an autoregres-

sive process of order one and xi−1 is the winter Kola temperature for the previous

year (checks suggest that there is no real model fit improvement using a higher

order autoregressive model). Several tests indicate that last year’s winter average

temperature carries more relevant information for the present value of the HSI, than

does the same year’s winter temperature; this also matches biological arguments, see

Hermansen et al. (2016) for additional discussion. Model (9.2) is quite simple and is
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Figure 9.1. Left panel: The Hjort liver quality index (HSI) series for 1921–

2012 (grey), along with average Kola winter temperature (black,

in degrees Celsius). The vertical lines indicate the range (1927–

2006) where we are searching for a potential change; the boundary

points are excluded due to instability of the methods at the edges.

Right panel: The monitoring bridge plot, reaching a maximum value

of 1.67, with a corresponding p-value less than 0.01, suggesting a

structural change in the model around 1987.

not meant to fully represent all the complex processes in the ocean influencing the

HSI index. The goal here is to illustrate our regime shift assessment methodology.

We use the theory of Section 4.2 to compute the monitoring bridge plot for the

HSI model (9.2), see Figure 9.1 (right panel). It indicates that the model is not

sufficient for describing the underlying mechanism generating the full time series.

The shape of the plot also suggests the existence of a regime shift. We shall search

for such a change-point, here using the general method A of Section 2 to construct

confidence sets for the location of this potential change. In short, the strategy is to

test for homogeneity to the left and to the right of each candidate point τ , using our

bridge plots. We do utilise the full data sequence in our analysis, but exclude the

first and last ten years from the list of candidate values for τ , which we hence take

as 1932, . . . , 2002. The resulting confidence curves are presented in Figure 9.2.

Our monitoring bridge tools are constructed to test the suitability of a model.

A structural break should therefore be interpreted as indicating that the underlying

model changes from one regime to another. Other terms used in marine science and

biology include ‘state shift’ and ‘critical transition’. A regime shift is characterised

by “relatively rapid change (occurring within a year or two) from one decadal-scale
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period of a persistent state (regime) to another decadal-scale period of a persis-

tent state (regime)”; see King (2005) and also Brander (2010); Vasilakopoulos &

Marshall (2015). Also, note that the underlying framework for our general method

A assumes that the observations to the left and the right are independent of each

other, as per (2.1); within a segment, however, the observations may be strongly

dependent without violating the underlying assumptions of the method. For the

time series framework there is not strict independence between goodness-of-fit sta-

tistics computed to the left and the right of a given τ ; the dependency is however not

strong here (the first order autoregressive model seems to capture most of structure),

and such a mild deviation from the underlying assumptions does not invalidate the

results using these versions of method A. A conservative Bonferroni correction, as

spelled out at the end of Section 2, yields a fairly similar confidence curve, for all

confidence levels above 0.60.
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Figure 9.2. Left panel: The confidence curve for a regime shift τ obtained

via method A, with absolute maxima of monitoring log-likelihood

bridges, as in Section 4.2. The curve indicates two plausible regions

for τ ; one right before 1980 (which may be related to a decrease

in variance, as suggested in Figure 9.1), and the second around

1991 (perhaps a change in the relationship between the HSI and

the Kola winter temperature). Right panel: Estimates of HSI using

the previous year’s winter temperature, via (9.2), before and after

the estimated regime shift.

We point out that a similar study, also involving the Kola winter temperature,

is given in Hermansen et al. (2016), and that an investigation of structural breaks

for this series is also conducted by Kjesbu et al. (2014); these studies tentatively

identify a potential departure in the pattern connecting Kola temperature and HSI
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model β̂0 β̂kola ρ̂ σ̂

global 4.85 (0.85) 0.29 (0.16) 0.86 (0.06) 0.68 (0.05)

left 5.09 (0.77) 0.37 (0.16) 0.78 (0.08) 0.62 (0.05)

right 6.36 (2.26) −0.30 (0.48) 0.39 (0.27) 0.71 (0.11)

Table 9.1. Estimated parameters (with standard errors in parentheses) for the

model defined in (9.2), using the complete series observations, i.e. no

change points (global), and the for the two sets 1922–1991 (left) and

1992–2012 (right) corresponding to the estimated change point be-

tween 1991 and 1992. The two most striking changes are the reversed

influence of Kola temperature and change in correlation after 1991.

in beginning of the 1980s. Also, Vasilakopoulos & Marshall (2015) identified a regime

shift having taken place in 1981 using principal component analyses on 13 North-

East Atlantic cod population descriptors (including HSI) and 5 so-called stressors

(also including Kola temperature). According to these authors, the shift in the early

1980s was largely driven by the combined effect of low temperature, high mortality

rate and low stock size. Our methodology is capable not only of estimating the

location of a potential change-point, but also to supplement such estimates with a

measure of uncertainty using confidence sets; such questions are not touched upon

in these other studies.

10. Concluding remarks

Below we offer a few concluding remarks, some pointing to further relevant

research questions.

10.1. Approximations and related approaches. For our general method B we

have relied on straight simulations to compute the required probabilities and confi-

dence curves, as with (3.3). This brute force method works well, but approximations

to the distributions of both the ML estimator τ̂ and the deviance statistic D(τ, Y )

can be worked with too; these are by necessity more complicated than the usual

results concerning limiting normality and chi-squared-ness of deviances valid for

continuous parameters of smooth parametric models. Such results have however the

potential to both speed up calculations of confidence curves and to yield additional

insights, also when it comes to comparing performances of different strategies. Meth-

ods initially worked with in Hinkley (1970), Hinkley & Hinkley (1970) and later on

by Cobb (1978), Worsley (1986) and other authors are relevant here, and have the

potential for being developed and finessed further. These lead in particular to cer-

tain approximations for the case where both τ and n− τ are large. Such envisioned

results ought also to shed more light on questions of performance and for theoretical

comparison of different confidence curve constructions.
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Notably, Siegmund (1988) discusses the performance of several methods in a

single change-point setting. He starts by comparing five different methods for the

simple situation where the change-point τ is the only unknown parameter, i.e. when

θL and θR are known. He also presents a method for the more general (and inter-

esting) case, where θL and θR are unknown. The method produces exact confidence

sets and is related to our method B. It can be re-written as a confidence curve and

in our notation as

cc(τ, yobs) = Pτ{D(τ, Y ) < D(τ, yobs) | θ̂L(τ), θ̂R(τ)}. (10.1)

The method is restricted to models within the exponential family, where we have

sufficient statistics for the θ parameters and where one thus obtains a probability

only dependent on τ by conditioning on the ML estimates θ̂L(τ) and θ̂R(τ) for each

τ value. In practice this requires the user to simulate copies Y ∗ of the dataset from

the conditional distribution of Y | (θ̂L(τ), θ̂R(τ)), as opposed to our method B where

data are generated from f(y, θ̂L) and f(y, θ̂R), with the ML estimators θ̂L = θ̂L(τ̂)

and θ̂R = θ̂R(τ̂). We have not yet undertaken a thorough comparison between our

method B and Siegmund’s method, but our initial investigations suggest that the

two methods give very similar confidence curves in many cases. However, when

either τ or n − τ are small, confidence sets from Siegmund’s method appear to

obtain more correct coverage than method B. This is not surprising as our method

relies on estimating the θ parameters sufficiently well. Contrary to our method B,

Siegmund’s method is restricted to the class of exponential family models and is also

more difficult to use in some cases, as generating datasets from Y | (θ̂L(τ), θ̂R(τ)) can

be complicated. Siegmund (1988) also provides approximations to the conditional

probability in (10.1). Again these rely on both τ and n− τ being large, and remain

yet to be compared with our methods.

10.2. Combination of information. There are sometimes several sources of infor-

mation about a given change-point. In our analysis of Tirant lo Blanch in Section 7,

for example, we investigated how the change of authors is reflected in aspects of the

distribution of word lengths per chapter, such as the the mean word length chapter

by chapter. There it is also worthwhile examining the sentence length distribution,

through the chapters, to see if a change of author style can be detected there. Via a

suitable R script operating on an electronic version of the Catalan 1490 manuscript

we have indeed gotten hold of the string of the manuscript’s 17593 sentence lengths.

The mean sentence lengths, chapter by chapter, can be modelled as normally dis-

tributed on both sides of τ with (possibly) different mean and variance parameters

and with the variance depending on m′i, the number of sentences in chapter i. The
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mean word length and mean sentence length can be analysed separately by the meth-

ods developed in this paper, and as they can be considered independent sources of

information, their inference on τ may be combined. One potential strategy is to use

ideas related to combination of p-value functions in Liu et al. (2014), for a particu-

lar case involving discrete distributions, but there are better methods, as shown in

Cunen & Hjort (2015), Cunen & Hjort (2016). The parallel for the present case is

to stay with the log-likelihood profiles, naturally extending method B. Let `prof,1(τ)

and `prof,2 be the profiled log-likelihoods function from information sources 1 and 2.

These can be summed to `prof,comb(τ) = `prof,1(τ)+ `prof,2(τ), from which we can find

the combined maximum likelihood estimator τ̂ and construct the combined deviance

function, say Dcomb(τ, Y ) = 2{`prof,comb(τ̂)− `prof,comb(τ)}. Then we can simulate its

distribution at each position τ by generating a large number of datasets Y ∗1 and Y ∗2
based on the first and second data source respectively. The result of the combination

varies from case to case; if the two sources produce the same τ estimate then the

combined confidence curve will also point to the same number, but with slimmer/s-

maller confidence sets, reflecting the increase in information. If the two sources

have different estimates of τ , the combined confidence curve may give an estimate

between the two sources (a compromise), but it may also favour the estimate from

one source over the other. This is exactly what we observe with Tirant lo Blanch;

in Figure 10.1 we see that the sentence length data indicate a much earlier change

of author than the word length dataset (see also Section 7). The combined confi-

dence curve is quite similar to the one from the word length data; the log-likelihoods

and deviances thus appear to judge this source more informative than the sentence

length data.

10.3. More than one change-point. The focus of our paper has been that of

inference for a single change-point in a sequence of observations, under the operating

assumption that precisely one such change-point exists. Sometimes there are strong

a priori reasons for this, as with our application story of Section 7. In other cases

it is useful to precede a change-point analysis with a test for full homogeneity;

only when the data sequence fails such a test is it meaningful to go hunting for

change-points. In various applications there may also be more than one breakpoint

present. Some of our methods may be extended to cover such cases too, calling also

for additional tools, such as model selection mechanisms to decide on the ‘right’

number of parameter discontinuities.

Our methods can be extended to the case of multiple change-points, but both

become more complicated. In some cases we may perform a test, or have some a

priori reasons to expect a specific number of change-points, for example two, say

τ1 and τ2 (and assuming τ1 < τ2). Our method A then corresponds to identifying
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Figure 10.1. Confidence curves for the change-of-author-point τ , the dot-dashed

line is the curve based on the mean sentence length in each chapter,

the dashed line is the curve based on the mean word length in each

chapter, and the full line is the combined confidence curve.

confidence regions, at level α, in the following way (see corresponding formula (2.1))

R(α) = {τ1, τ2 : H1,τ1 accepted at level α1/3, Hτ1+1,τ2 accepted at level α1/3,

Hτ2+1,n accepted at level α1/3}

= {τ1, τ2 : Z1,τ1 ≤ G−11,τ1
(α1/3), Zτ1+1,τ2 ≤ G−1τ1+1,τ2

(α1/3), Zτ2+1,n ≤ G−1τ2+1,n(α1/3)}.

This will produce joint confidence regions for τ1 and τ2. For method B, however, it is

more natural to consider confidence curves for each of the change-points separately.

With two change-points the likelihood takes the form

`(τ1, τ2, θL, θM , θR) =

τ1∑
i=1

log f(yi, θL) +

τ2∑
i=τ1+1

log f(yi, θM) +
n∑

i=τ2+1

log f(yi, θR),

where θM is the model parameter between the two change-points. In order to con-

struct a confidence curve for one of the two change-points, say τ1, we need (as before)

the profile log-likelihood function,

`prof(τ1) = maxτ2,θL,θM ,θR `(τ1, τ2, θL, θM , θR), (10.2)

requiring `(τ1, τ2, θL, θM , θR) to be maximised over θL, θM , and θR as before, but also

over all possible values of τ2. The confidence curve is constructed in a similar way

as before, but in this case the distribution of the deviance will be depending on τ2

and the success of our simulation recipe will then depend on how well we estimate τ2

from the data. Neither of these two suggestions has been tried out in detail. Further

work in these directions could possibly follow ideas from Schweder (1976), Yao &
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Au (1989), Bai & Perron (1998) and Braun et al. (2000). However, these articles do

not treat change-points very generally. Yao & Au (1989) and Braun et al. (2000)

consider segmentation problems, while Schweder (1976) and Bai & Perron (1998)

work in a regression setting.
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