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Abstract We study a coupled system of controlled stochastic differential equations

(SDEs) driven by a Brownian motion and a compensated Poisson random measure,

consisting of a forward SDE in the unknown process X (t) and a predictive mean-field

backward SDE (BSDE) in the unknowns Y (t), Z(t), K (t, ·). The driver of the BSDE

at time t may depend not just upon the unknown processes Y (t), Z(t), K (t, ·), but

also on the predicted future value Y (t + δ), defined by the conditional expectation

A(t) := E[Y (t +δ)|Ft ]. We give a sufficient and a necessary maximum principle for

the optimal control of such systems, and then we apply these results to the following

two problems: (i) Optimal portfolio in a financial market with an insider influenced

asset price process. (ii) Optimal consumption rate from a cash flow modeled as a

geometric Itô-Lévy SDE, with respect to predictive recursive utility.
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1 Introduction

The purpose of this paper is to introduce and study a pricing model where beliefs

about the future development of the price process influence its current dynamics. We

think this can be a realistic assumption in price dynamics where human psychology

is involved, for example in electricity prices, oil prices and energy markets in general.

It can also be a natural model of the risky asset price in an insider influenced market.

See Sect. 5.1.

We model such price processes as backward stochastic differential equations

(BSDEs) driven by Brownian motion and a compensated Poisson random measure,

where the coefficients depend not only of the current values of the unknown processes,

but also on their predicted future values. These predicted values are expressed mathe-

matically in terms of conditional expectation, and we therefore name such equations

predictive mean-field equations. To the best of our knowledge such systems have

never been studied before.

In applications to portfolio optimization in a financial market where the price

process is modeled by a predictive mean-field equation, we are led to consider coupled

systems of forward-backward stochastic differential equations (FBSEDs), where the

BSDE is of predictive mean-field type. In this paper we study solution methods for

the optimal control of such systems in terms of maximum principles. Then we apply

these methods to study

(i) optimal portfolio in a financial market with an insider influenced asset price

process. (Sect. 5.1), and

(ii) optimal consumption rate from a cash flow modeled as a geometric Itô-Lévy

SDE, with respect to predictive recursive utility (Sect. 5.2).

2 Formulation of the Problem

We now present our model in detail. We refer to [5] for information about stochastic

control of jump diffusions.

Let B(t) = B(t, ω); (t, ω) ∈ [0,∞)×Ω and Ñ (dt, dζ ) = N (dt, dζ )−ν(dζ )dt

be a Brownian motion and an independent compensated Poisson random measure,

respectively, on a filtered probability space
(

Ω, E, F = {Ft }t≥0, P
)

satisfying the

usual conditions. We consider a controlled system of predictive (time-advanced)

coupled mean-field forward-backward stochastic differential equations (FBSDEs)

of the form (T > 0 and δ > 0 are given constants)

• Forward SDE in X (t):



















d X (t) = d Xu(t) = b(t, X (t), Y (t), A(t), Z(t), K (t, ·), u(t), ω)dt

+σ(t, X (t), Y (t), A(t), Z(t), K (t, ·), u(t), ω)d B(t)

+
∫

R
γ (t, X (t), Y (t), A(t), Z(t), K (t, ·), u(t), ζ, ω)Ñ (dt, dζ ) ; t ∈ [0, T ]

X (0) = x ∈ R



Optimal Control of Predictive Mean-Field Equations … 303

• Predictive BSDE in Y (t), Z(t), K (t):











dY (t) = −g(t, X (t), Y (t), A(t), Z(t), K (t, ·), u(t), ω)dt + Z(t)d B(t)

+
∫

R
K (t, ζ )Ñ (dt, dζ ) ; t ∈ [0, T )

Y (T ) = h(X (T ), ω).

(1)

We set

Y (t) := L ; t ∈ (T, T + δ], (2)

where L is a given bounded F -measurable random variable, representing a “ceme-

tery” state of the process Y after time T . The process A(t) represents our predictive

mean-field term. It is defined by

A(t) := E[Y (t + δ) | Ft ] ; t ∈ [0, T ]. (3)

Here R is the set of functions from R0 := R\{0} into R, h(x, ω) is a C1 function

(with respect to x) from R × Ω into R such that h(x, ·) is FT -measurable for all x ,

and

g : [0, T ] × R × R × R × R × R × U × Ω → R

is a given function (driver) such that g(t, x, y, a, z, k, u, ·) is an F-adapted process

for all x, y, a, z ∈ R, k ∈ R and u ∈ U, which is the set of admissible control values.

The process u(t) is our control process, assumed to be in a given family A = AG

of admissible processes, assumed to be càdlàg and adapted to a given subfiltration

G = {Gt }t≥0 of the filtration F, i.e. Gt ⊆ Ft for all t . The sigma-algebra Gt represents

the information available to the controller at time t .

We assume that for all u ∈ A the coupled system (1)–(3) has a unique solution

X (t) = Xu(t) ∈ L2(m × P), Y (t) = Y u(t) ∈ L2(m × P), A(t) = Au(t) ∈

L2(m × P), Z(t) = Zu(t) ∈ L2(m × P), K (t, ζ ) = K u(t, ζ ) ∈ L2(m × ν × P),

with X (t), Y (t), A(t) being càdlàg and Z(t), K (t, ζ ) being predictable. Here and

later m denotes Lebesgue measure on [0, T ].

To the best of our knowledge this system, (1)–(3), of predictive mean-field FBS-

DEs has not been studied before. However, the predictive BSDE (1)–(3) is related to

the time-advanced BSDE which appears as an adjoint equation for stochastic con-

trol problems of a stochastic differential delay equation. See [7] and the references

therein.

The process A(t) models the predicted future value of the state Y at time t + δ.

Therefore (1)–(3) represent a system where the dynamics of the state is influenced by

beliefs about the future. This is a natural model for situations where human behavior

is involved, for example in pricing issues in financial or energy markets.



304 B. Øksendal and A. Sulem

The performance functional associated to u ∈ A is defined by

J (u) = E

[∫ T

0
f (t, X (t), Y (t), A(t), u(t), ω)dt + ϕ(X (T ), ω) + ψ(Y (0))

]

(4)

where f : [0, T ] × R × R × U × Ω → R, ϕ : R × Ω → R and ψ : R → R

are given C1 functions, with f (t, x, y, a, u, ·) being F-adapted for all x, y, a ∈ R,

u ∈ U. We assume that ϕ(x, ·) is FT -measurable for all x .

We study the following predictive mean-field stochastic control problem:

Find u∗ ∈ A such that

sup
u∈A

J (u) = J (u∗). (5)

In Sect. 3 we give a sufficient and a necessary maximum principle for the optimal

control of forward-backward predictive mean-field systems of the type above.

An existence and uniqueness result for predictive mean-field BSDEs is given in

Sect. 4.

Then in Sect. 5 we apply the results to the following problems:

• Portfolio optimization in a market where the stock price is modeled by a predictive

mean-field BSDE,

• Optimization of consumption with respect to predictive recursive utility.

3 Solution Methods for the Stochastic Control Problem

3.1 A Sufficient Maximum Principle

For notational simplicity we suppress the dependence of ω in f, g, h, ϕ and ψ in the

sequel. We first give sufficient conditions for optimality of the control u by modifying

the stochastic maximum principle given in, for example, [6], to our new situation:
We define the Hamiltonian H : [0, T ]×R×R×R×R×R×U×R×R×R×R) →

R associated to the problem (5) by

H(t, x, y, a, z, k, u, p, q, r, λ) = f (t, x, y, a, u) + b(t, x, y, a, z, k, u)p + σ(t, x, y, a, z, k, u)q

+

∫

R

γ (t, x, y, a, z, k, u, ζ )Ñ (dt, dζ ) + g(t, x, y, a, z, k, u)λ.

(6)

We assume that f, b, σ, γ and g, and hence H , are Fréchet differentiable (C1) in

the variables x, y, a, z, k, u and that the Fréchet derivative ∇k H of H with respect

to k ∈ R as a random measure is absolutely continuous with respect to ν, with
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Radon-Nikodym derivative
d∇k H

dν
. Thus, if 〈∇k H, h〉 denotes the action of the linear

operator ∇k H on the function h ∈ R we have

〈∇k H, h〉 =

∫

R

h(ζ )d∇k H(ζ ) =

∫

R

h(ζ )
d∇k H(ζ )

dν(ζ )
dν(ζ ). (7)

The associated backward-forward system of equations in the adjoint processes

p(t), q(t), r(t), λ(t) is defined by

• BSDE in p(t), q(t), r(t):







dp(t) = −
∂ H

∂x
(t)dt + q(t)d B(t) +

∫

R

r(t, ζ )Ñ (dt, dζ ) ; 0 ≤ t ≤ T

p(T ) = ϕ′(X (T )) + λ(T )h′(X (T )).

(8)

• SDE in λ(t):



















dλ(t) =
{

∂ H
∂y

(t) + ∂ H
∂a

(t − δ)χ[δ,T ](t)
}

dt + ∂ H
∂z

(t)d B(t)

+

∫

R

d∇k H

dν
(t, ζ )Ñ (dt, dζ ) ; 0 ≤ t ≤ T

λ(0) = ψ ′(Y (0)),

(9)

where we have used the abbreviated notation

H(t) = H(t, X (t), Y (t), A(t), Z(t), K (t, ·), u(t), p(t), q(t), r(t), λ(t)).

Note that, in contrast to the time advanced BSDE (1)–(3), (9) is a (forward) stochastic

differential equation with delay.

Theorem 1 (Sufficient maximum principle) Let û ∈ A with corresponding solution

X̂(t), Ŷ (t), Â(t), Ẑ(t), K̂ (t, ·), p̂(t), q̂(t), r̂(t), λ̂(t) of (1)–(3), (8) and (9). Assume

the following:

•

λ̂(T ) ≥ 0 (10)

• For all t , the functions

x → h(x), x → ϕ(x), x → ψ(x) and

(x, y, a, z, k, u) → H(t, x, y, a, z, k, u, p̂(t), q̂(t), r̂(t), λ̂(t))

are concave (11)
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• For all t the following holds,

(The conditional maximum principle)

ess sup
v∈U

E[H(t, X̂(t), Ŷ (t), Â(t), Ẑ(t), K̂ (t, ·), v, λ̂(t), p̂(t), q̂(t), r̂(t, ·)) | Gt ]

= E[H(t, X̂(t), Ŷ (t), Â(t), Ẑ(t), K̂ (t, ·), û(t), λ̂(t), p̂(t), q̂(t), r̂(t, ·)) | Gt ] ; t ∈ [0, T ]

(12)

•
∥

∥

∥

∥

∥

d∇k Ĥ(t, .)

dν

∥

∥

∥

∥

∥

< ∞ for all t ∈ [0, T ]. (13)

Then û is an optimal control for the problem (5).

Proof By replacing the terminal time T by an increasing sequence of stopping times

τn converging to T as n goes to infinity, and arguing as in [6] we see that we may

assume that all the local martingales appearing in the calculations below are martin-

gales.

Much of the proof is similar to the proof of Theorem 3.1 in [6], but due to the

predictive mean-field feature of the BSDE (1)–(3), there are also essential differences.

Therefore, for the convenience of the reader, we sketch the whole proof:

Choose u ∈ A and consider

J (u) − J (û) = I1 + I2 + I3, (14)

with

I1 := E

[∫ T

0
{ f (t) − f̂ (t)}

]

dt, I2 := E[ϕ(X (T ))−ϕ(X̂(T ))], I3 := ψ(Y (0))−ψ(Ŷ (0)),

(15)

where f̂ (t) = f (t, Ŷ (t), Â(t), û(t)) etc., and Ŷ (t) = Y û(t) is the solution of (1)–(3)

when u = û, and Â(t) = E[Ŷ (t) | Ft ].

By the definition of H we have

I1 = E

[∫ T

0
{H(t) − Ĥ(t) − p̂(t)b̃(t) − q̂(t)σ̃ (t)

−

∫

R

r̂(t, ζ )γ̃ (t, ζ )ν(dζ ) − λ̂(t)g̃(t)

]

, (16)

where we from now on use the abbreviated notation

H(t) = H(t, X (t), Y (t), A(t), Z(t), K (t, ·), u(t), λ̂(t))

Ĥ(t) = H(t, X̂(t), Ŷ (t), Â(t), Ẑ(t), K̂ (t, ·), û(t), λ̂(t))
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and we put

b̃(t) := b(t) − b̂(t),

and similarly with X̃(t) := X (t)− X̂(t), Ỹ (t) := Y (t)− Ŷ (t), Ã(t) := A(t)− Â(t),

etc.

By concavity of ϕ, (9) and the Itô formula,

I2 ≤ E[ϕ′(X̂(T ))X̃(T )]

= E[ p̂(T )X̃(T )] − E[λ̂(T )h′(X̂(T ))X̃(T )]

=

(

E

[∫ T

0
p̂(t−)d X̃(t) +

∫ T

0
X̃(t−)d p̂(t) +

∫ T

0
q̂(t)σ̃ (t)dt

+

∫ T

0

∫

R

r̂(t, ζ )γ̃ (t, ζ )ν(dζ )dt

])

− E[λ̂(T )h′(X̂(T ))X̃(T )]

= E

[

∫ T

0
p̂(t)b̃(t)dt +

∫ T

0
X̃(t)

(

−
∂ Ĥ

∂x
(t)

)

dt

+

∫ T

0
q̂(t)σ̃ (t)dt +

∫ T

0

∫

R

r̂(t, ζ )γ̃ (t, ζ )ν(dζ )dt

]

− E[λ̂(T )h′(X̂(T ))X̃(T )]. (17)

By concavity of ψ and h, (10) and the Itô formula we have

I3 ≤ E
[

ψ ′(Y (0))Ỹ (0)

]

= E[λ̂(0)Ỹ (0)]

= E[λ̂(T )Ỹ (T )] − E

[∫ T

0
λ̂(t)dỸ (t) +

∫ T

0
Ỹ (t)dλ̂(t) +

∫ T

0
d[Ỹ , λ̂](t)

]

= E[λ̂(T )(h(X (T )) − h(X̂(T )))]

− E

[∫ T

0
λ̂(t)dỸ (t) +

∫ T

0
Ỹ (t)dλ̂(t) +

∫ T

0
d[Ỹ , λ̂](t)

]

≤ E[λ̂(T )h′(X̂(T ))X̃(T )]

+ E

[

∫ T

0
λ̂(t)g̃(t)dt +

∫ T

0
Ỹ (t)

[

−
∂ Ĥ

∂y
(t) −

∂ Ĥ

∂a
(t − δ)χ[δ,T ](t)

]

dt

+

∫ T

0

∂ Ĥ

∂z
(t)Z̃(t)dt +

∫ T

0

∫

R

d∇k Ĥ

dν
(t, ζ )K̃ (t, ζ )ν(dζ )dt

]

(18)
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Adding (16), (17) and (18) we get, by (9),

J (u) − J (û) = I1 + I2 + I3

≤ E

[

∫ T

0

{

H(t) − Ĥ(t) −
∂ Ĥ

∂x
X̃(t) −

∂ Ĥ

∂y
Ỹ (t)

−
∂ H

∂a
(t − δ)χ[δ,T ](t)Ỹ (t) −

∂ H

∂z
(t)Z̃(t) −〈∇k Ĥ(t, ·), K̃ (t, ·)〉

}

dt

]

.

(19)

Note that, since Y (s) = Ŷ (s) = L for s ∈ (T, T + δ] by (1), we get

E

[

∫ T

0

∂ Ĥ

∂a
(t − δ)Ỹ (t)χ[δ,T ](t)dt

]

= E

[

∫ T −δ

0

∂ Ĥ

∂a
(s)Ỹ (s + δ)ds

]

= E

[

∫ T −δ

0
E

[

∂ Ĥ

∂a
(s)Ỹ (s + δ) | Fs

]

dt

]

= E

[

∫ T −δ

0

∂ Ĥ

∂a
(s)E

[

Ỹ (s + δ) | Fs

]

ds

]

= E

[

∫ T

0

∂ Ĥ

∂a
(s) Ã(s)ds

]

. (20)

Substituted into (19) this gives, by concavity of H ,

J (u) − J (û) = I1 + I2 + I3

≤ E

[

∫ T

0

{

H(t) − Ĥ(t) −
∂ Ĥ

∂x
(X (t) − X̂(t)) −

∂ Ĥ

∂y
(Y (t) − Ŷ (t))

−
∂ H

∂a
(t)(A(t) − Â(t)) −

∂ H

∂z
(t)(Z(t) − Ẑ(t))

−〈∇k Ĥ(t, ·), (K (t, ·) − K̂ (t, ·)〉

}

dt

]

≤ E

[

∫ T

0

∂ Ĥ

∂u
(t)(u(t) − û(t))dt

]

= E

[

∫ T

0
E[

∂ Ĥ

∂u
(t)|Gt ](u(t) − û(t))dt

]

≤ 0, (21)

since u = û(t) maximizes E[Ĥ(t)|Gt ]. �
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3.2 A Necessary Maximum Principle

We proceed to prove a partial converse of Theorem 1, in the sense that we give

necessary conditions for a control û to be optimal. In this case we can only conclude

that û(t) is a critical point for the Hamiltonian, not necessarily a maximum point.

On the other hand, we do not need any concavity assumptions, but instead we need

some properties of the set A of admissible controls, as described below.

Theorem 2 (Necessary maximum principle) Suppose û ∈ A with associated solu-

tions X̂ , Ŷ , Ẑ , K̂ , p̂, q̂, r̂ , λ̂ of (1)–(3) and (8) and (9). Suppose that for all processes

β(t) of the form

β(t) := χ[t0,T ](t)α, (22)

where t0 ∈ [0, T ) and α = α(ω) is a bounded Gt0 -measurable random variable,

there exists δ > 0 such that the process

û(t) + rβ(t) ∈ A for all r ∈ [−δ, δ].

We assume that the derivative processes defined by

x(t) = xβ(t) =
d

dr
X û+rβ(t) |r=0, (23)

y(t) = yβ(t) =
d

dr
Y û+rβ(t) |r=0, (24)

a(t) = aβ(t) =
d

dr
Aû+rβ(t) |r=0, (25)

z(t) = zβ(t) =
d

dr
Z û+rβ(t) |r=0, (26)

k(t) = kβ(t) =
d

dr
K û+rβ(t) |r=0, (27)

exist and belong to L2(m × P), L2(m × P), L2(m × P), and L2(m × P × ν),

respectively.

Moreover, we assume that x(t) satisfies the equation
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





















































































dx(t) =

{

∂b

∂x
(t)x(t) +

∂b

∂y
(t)y(t) +

∂b

∂a
(t)a(t) +

∂b

∂z
(t)z(t) + 〈∇kb, k(t, ·)〉

+
∂b

∂u
(t)β(t)

}

dt

+

{

∂σ

∂x
(t)x(t) +

∂σ

∂y
(t)y(t) +

∂σ

∂a
(t)a(t) +

∂σ

∂z
(t)z(t) + 〈∇kσ, k(t, ·)〉

+
∂σ

∂u
(t)β(t)

}

d B(t)

+

∫

R

{

∂γ

∂x
(t, ζ )x(t) +

∂γ

∂y
(t, ζ )y(t) +

∂γ

∂a
(t, ζ )a(t) +

∂γ

∂z
(t, ζ )z(t)

+〈∇kγ (t, ζ ), k(t, ·)〉 +
∂γ

∂u
(t, ζ )β(t)

}

Ñ (dt, dζ ) ; t ∈ [0, T ]

x(0) = 0

(28)

and that y(t) satisfies the equation



































dy(t) = −
{

∂g
∂x

(t)x(t) +
∂g
∂y

(t)y(t) +
∂g
∂a

(t)a(t) +
∂g
∂z

(t)z(t)

+〈∇k g(t), k(t, ·)〉 +
∂g
∂u

(t)β(t)
}

dt

+z(t)d B(t) +
∫

R
k(t, ζ )Ñ (dt, dζ ) ; 0 ≤ t < T

y(T ) = h′(X (T ))x(T )

y(t) = 0 ; T < t ≤ T + δ,

(29)

where we have used the abbreviated notation

∂g

∂x
(t) =

∂

∂x
g(t, x, y, a, z, k, u)x=X (t),y=Y (t),a=A(t),z=Z(t),k=K (t),u=u(t) etc.

Then the following, (i) and (ii), are equivalent:

(i)
d

dr
J (û + rβ)r=0 = 0 for all β of the form (22)

(ii)
d

du
E[H(t, Ŷ (t), Â(t), Ẑ(t), K̂ (t), u, λ̂(t))u=û(t)|Gt ] = 0,

where (Ŷ , Â, Ẑ , K̂ , λ̂) is the solution of (1), (3) and (9) corresponding to u = û.

Proof As in Theorem 1, by replacing the terminal time T by an increasing sequence

of stopping times τn converging to T as n goes to infinity, we obtain as in [6] that

we may assume that all the local martingales appearing in the calculations below are

martingales. The proof has many similarities with the proof of Theorem 3.2 in [6],

but since there are some essential differences due to the predictive mean-field term,

we sketch the whole proof. For simplicity of notation we drop the hats in the sequel,

i.e. we write u instead of û etc.
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(i) ⇒ (ii): We can write
d

dr
J (u + rβ) |r=0= I1 + I2 + I3, where

I1 =
d

dr
E

[

∫ T

0
f (t, Y u+rβ (t), Au+rβ (t), Zu+rβ (t), K u+rβ (t), u(t) + rβ(t))dt

]

r=0

I2 =
d

dr
[ϕ(Xu+rβ (T ))]r=0

I3 =
d

dr
[ψ(Y u+rβ (0))]r=0.

By our assumptions on f and ψ we have

I1 =

[∫ T

0

{

∂ f

∂x
(t)x(t) +

∂ f

∂y
(t)y(t) +

∂ f

∂a
(t)a(t) +

∂ f

∂z
(t)z(t)

+〈∇k f (t, ·), k(t, ·)〉 +
∂ f

∂u
(t)β(t)

}

dt

]

(30)

I2 = E[ϕ′(X (T )x(T )] = E[p(T )x(T )] (31)

I3 = ψ ′(Y (0))y(0) = λ(0)y(0). (32)

By the Itô formula and (28)

I2 = E[p(T )x(T )] = E

[∫ T

0
p(t)dx(t) +

∫ T

0
x(t)dp(t) +

∫ T

0
d[p, x](t)

]

= E

[∫ T

0
p(t)

{

∂b

∂x
(t)x(t) +

∂b

∂y
(t)y(t) +

∂b

∂a
(t)a(t) +

∂b

∂z
(t)z(t)

+〈∇kb(t), k(t, ·)〉 +
∂b

∂u
(t)β(t)

}

dt +

∫ τn

0
x(t)

(

−
∂ H

∂x
(t)

)

dt

+

∫ τn

0
q(t)

{

∂σ

∂x
(t)x(t) +

∂σ

∂y
(t)y(t) +

∂σ

∂a
(t)a(t) +

∂σ

∂z
(t)z(t)

+〈∇kσ(t), k(t, ·)〉 +
∂σ

∂u
(t)β(t)

}

dt

+

∫ T

0

∫

R

r(t, ζ )

{

∂γ

∂x
(t, ζ )x(t) +

∂γ

∂y
(t, ζ )y(t) +

∂γ

∂a
(t, ζ )a(t) +

∂γ

∂z
(t, ζ )z(t)

+ < ∇kγ (t, ζ ), k(t, ·) > +
∂γ

∂u
(t, ζ )β(t)

}

ν(dζ )dt

]

= E

[∫ T

0
x(t)

{

∂b

∂x
(t)p(t) +

∂σ

∂x
(t)q(t) +

∫

R

∂γ

∂x
(t, ζ )r(t, ζ )ν(dζ ) −

∂ H

∂x
(t)

}

dt

+

∫ T

0
y(t)

{

∂b

∂y
(t)p(t) +

∂σ

∂y
(t)q(t) +

∫

R

∂γ

∂y
(t, ζ )r(t, ζ )ν(dζ )

}

dt

+

∫ T

0
a(t)

{

∂b

∂a
(t)p(t) +

∂σ

∂a
(t)q(t) +

∫

R

∂γ

∂a
(t, ζ )r(t, ζ )ν(dζ )

}

dt
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+

∫ T

0
z(t)

{

∂b

∂z
(t)p(t) +

∂σ

∂z
(t)q(t) +

∫

R

∂γ

∂z
(t, ζ )r(t, ζ )ν(dζ )

}

dt

+

∫ T

0

∫

R

〈k(t, ·), ∇kb(t)p(t) + ∇kσ(t)q(t)

+

∫

R

∇kγ (t, ζ )r(t, ζ )ν(dζ )〉ν(dζ )dt

]

= E

[∫ T

0
x(t)

{

−
∂ f

∂x
(t) − λ(t)

∂g

∂x
(t)

}

dt

+

∫ T

0
y(t)

{

∂ H

∂y
(t) −

∂ f

∂y
(t) − λ(t)

∂g

∂y
(t)

}

dt

+

∫ T

0
a(t)

{

∂ H

∂a
(t) −

∂ f

∂a
(t) − λ(t)

∂g

∂a
(t)

}

dt

+

∫ T

0
z(t)

{

∂ H

∂z
(t) −

∂ f

∂z
(t) − λ(t)

∂g

∂z
(t)

}

dt

+

∫ T

0

∫

R

k(t, ζ ){∇k H(t) − ∇k f (t) − λ(t)∇k g(t)}ν(dζ )dt

+

∫ T

0
β(t)

{

∂ H

∂u
(t) −

∂ f

∂u
(t) − λ(t)

∂g

∂u
(t)

}

dt

]

= −I1 − E

[∫ T

0
λ(t)

{

∂g

∂x
(t)x(t) +

∂g

∂y
(t)y(t) +

∂g

∂z
(t)z(t)

+〈∇k g(t), k(t, ·)〉 +
∂g

∂u
(t)β(t)

}

dt

]

+ E

[∫ T

0

{

∂ H

∂y
(t)y(t) +

∂ H

∂z
(t)z(t) + 〈∇k H(t), k(t, ·)〉 +

∂ H

∂u
(t)β(t)

}

dt

]

(33)

By the Itô formula and (29),

I3 = λ(0)y(0) = E

[

λ(T )y(T ) −

(∫ T

0
λ(t)dy(t) +

∫ T

0
y(t)dλ(t) +

∫ T

0
d[λ, y](t)

)]

= E[λ(T )y(T )]

−

(

E

[∫ T

0
λ(t)

{

−
∂g

∂y
(t)y(t) −

∂g

∂a
(t)a(t) −

∂g

∂z
(t)z(t)

−〈∇k g(t), k(t, ·)〉 −
∂g

∂u
(t)β(t)

}

dt

+

∫ T

0
y(t)

∂ H

∂y
(t)dt + y(t)

∂ H

∂a
(t − δ)χ[δ,T ](t)dt +

∫ T

0
z(t)

∂ H

∂z
(t)dt

+

∫ T

0

∫

R

k(t, ζ )∇k H(t, ζ )ν(dζ )dt

])

. (34)
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Adding (30), (33) and (34) and using that

E[

∫ T

0
y(t)

∂ H

∂a
(t − δ)χ[δ,T ]dt] = E[

∫ T −δ

0
y(s + δ)

∂ H

∂a
(s)ds]

= E[

∫ T

0

∂ H

∂a
(s)E[y(s + δ)|Fs]ds] = E[

∫ T

0
y(t)

∂ H

∂a
(s)a(s)ds], (35)

we get

d

dr
J (u + rβ) |r=0= I1 + I2 = E

[∫ T

0

∂ H

∂u
(t)β(t)dt

]

.

We conclude that
d

dr
J (û + rβ) |r=0= 0

if and only if

E

[

∫ T

0

∂ Ĥ

∂u
(t)β(t)dt

]

= 0 for all bounded β ∈ AG of the form (12.3.17).

Since this holds for all such β, we obtain that if (i) holds, then

∫ T

t0

E

[

∂ Ĥ

∂u
(t) | Gt0

]

dt = 0 for all t0 ∈ [0, T ). (36)

Differentiating with respect to t0 and using continuity of
∂ Ĥ

∂u
(t), we conclude that

(ii) holds.

(ii) ⇒ (i): This is proved by reversing the above argument. We omit the details. �

4 Existence and Uniqueness of Predictive Mean-Field
Equations

In this section we study the existence and uniqueness of predictive mean-field BSDEs

in the unknowns Y (t), Z(t), K (t, ζ ) of the form











dY (t) = −g(t, Y (t), A(t), Z(t), K (t, ·), ω)dt + Z(t)d B(t)

+
∫

R
K (t, ζ )Ñ (dt, dζ ) ; t ∈ [0, T )

Y (t) = L ; t ∈ [T, T + δ] ; δ > 0 fixed,

(37)
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where L ∈ L2(P) is a given FT -measurable random variable, and the process A(t)

as before is defined by

A(t) = E[Y (t + δ) | Ft ] ; t ∈ [0, T ]. (38)

To this end, we can use the same argument which was used to handle a similar, but

different, time-advanced BSDE in [7]. For completeness we give the details:

Theorem 3 Suppose the following holds

E[

∫ T

0
g2(t, 0, 0, 0, 0)dt] < ∞ (39)

There exists a constant C such that

|g(t, y1, a1, z1, k1) − g(t, y2, a2, z2, k2)| ≤ C(|y1 − y2| + |z1 − z2|+

(

∫

R

|k1(ζ ) − k2(ζ )|2ν(dζ ))
1
2 ) (40)

for all t ∈ [0, T ], a.s. Then there exists a unique solution triple (Y (t), Z(t), K (t, ζ ))

of (37) such that the following holds:

{

Y is cadlag and E[supt∈[0,T ] Y 2(t)] < ∞,

Z , K are predictable and E[
∫ T

0 {Z2(t) +
∫

R
K 2(t, ζ )ν(dζ )}dt] < ∞.

Proof We argue backwards, starting with the interval [T − δ, T ]:

Step 1. In this interval we have A(t) = E[L|Ft ] and hence we know from the theory

of classical BSDEs (see e.g. [8, 9] and the references therein), that there exists a

unique solution triple (Y (t), Z(t), K (t, ζ )) such that the following holds:

{

Y is cadlag and E[supt∈[T −δ,T ] Y 2(t)] < ∞,

Z , K are predictable and E[
∫ T

T −δ
{Z2(t) +

∫

R
K 2(t, ζ )ν(dζ )}dt] < ∞.

Step 2. Next, we continue with the interval [T − 2δ, T − δ]. For t in this interval, the

value of Y (t +δ) is known from the previous step and hence A(t) = E[Y (t +δ)|Ft ]

is known. Moreover, by Step1 the terminal value for this interval, Y (T −δ), is known

and in L2(P). Hence we can again refer to the theory of classical BSDEs and get a

unique solution in this interval.

Step n. We continue this iteration until we have reached the interval [0, T − nδ],

where n is a natural number such that

T − (n + 1)δ ≤ 0 < T − nδ.

Combining the solutions from each of the subintervals, we get a solution for the

whole interval. �
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5 Applications

In this section we illustrate the results of the previous sections by looking at two

examples.

5.1 Optimal Portfolio in an Insider Influenced Market

In the seminal papers by Kyle [4] and Back [2] it is proved that in a financial market

consisting of

• noise traders (where noise is modeled by Brownian motion),

• an insider who knows the value L of the price of the risky asset at the terminal

time t = T and

• a market maker who at any time t clears the market and sets the market price,

the corresponding equilibrium price process (resulting from the insider’s portfolio

which maximizes her expected profit), will be a Brownian bridge terminating at the

value L at time t = T . In view of this we see that a predictive mean-field equation

can be a natural model of the risky asset price in an insider influenced market.

Accordingly, suppose we have a market with the following two investment pos-

sibilities:

• A risk free asset, with unit price S0(t) := 1 for all t

• A risky asset with unit price S(t) := Y (t) at time t , given by the predictive mean-

field equation

{

dY (t) = −A(t)µ(t)dt + Z(t)d B(t); t ∈ [0, T )

Y (t) = L(ω); t ∈ [T, T + δ],
(41)

where µ(t) = µ(t, ω) is a given bounded adapted process and L is a given bounded

FT -measurable random variable, being the terminal state of the process Y at time

T .

Let u(t) be a portfolio, representing the number of risky assets held at time t . We

assume that G = F. If we assume that the portfolio is self-financing, the correspond-

ing wealth process X (t) = Xu(t) is given by

{

d X (t) = u(t)dY (t) = u(t)A(t)µ(t)dt + u(t)Z(t)d B(t); t ∈ [0, T )

X (0) = x > 0.
(42)

Let U : [0,∞) �→ [−∞,∞) be a given utility function, assumed to be increasing,

concave and C1 on (0,∞). We study the following portfolio optimization problem:
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Problem 1 Find u∗ ∈ A such that

sup
u∈A

E[U (Xu(T ))] = E[U (Xu∗
(T ))]. (43)

This is a problem of the type discussed in the previous sections, with f = ψ =

N = 0, ϕ = U and h(x, ω) = L(ω), and we can apply the maximum principles

from Sect. 3 to study it.

By (6) the Hamiltonian gets the form

H(t, x, y, a, z, k, u, p, q, r, λ) = uaµ(t)p + uzq + aµ(t)λ. (44)

The associated backward-forward system of equations in the adjoint processes

p(t), q(t), λ(t) becomes

• BSDE in p(t), q(t):

{

dp(t) = q(t)d B(t) ; 0 ≤ t ≤ T

p(T ) = U ′(X (T )),
(45)

• SDE in λ(t):











dλ(t) = µ(t − δ)[u(t − δ)p(t − δ) + λ(t − δ)]χ[δ,T ](t)dt

+u(t)q(t)d B(t) ; 0 ≤ t ≤ T

λ(0) = 0.

(46)

The Hamiltonian can only have a maximum with respect u if

A(t)µ(t)p(t) + Z(t)q(t) = 0. (47)

Substituting this into (45) we get

{

dp(t) = −θ(t)p(t)d B(t); 0 ≤ t ≤ T

p(T ) = U ′(X (T )),
(48)

where

θ(t) :=
A(t)µ(t)

Z(t)
. (49)

From this we get

p(t) = c exp(−

∫ t

0
θ(s)d B(s) −

1

2

∫ t

0
(θ(s))2ds); 0 ≤ t ≤ T (50)
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where the constant

c = p(0) = E[U ′(X (T )] (51)

remains to be determined.

In particular, putting t = T in (50) we get

U ′(X (T )) = p(T ) = c exp(−

∫ T

0
θ(s)d B(s) −

1

2

∫ T

0
(θ(s))2ds) (52)

or

X (T ) = (U ′)−1(c exp(−

∫ T

0
θ(s)d B(s) −

1

2

∫ T

0
(θ(s))2ds)). (53)

Define

Ŵ(T ) = exp(

∫ T

0
θ(s)d B(s) −

1

2

∫ T

0
(θ(s))2ds). (54)

Then by the Girsanov theorem the measure Q defined on FT by

d Q(ω) = Ŵ(T )d P(ω) (55)

is an equivalent martingale measure for the market (41). Therefore, by (53),

x = EQ[X (T )] = E[(U ′)−1(c exp(−

∫ T

0
θ(s)d B(s) −

1

2

∫ T

0
(θ(s))2ds))Ŵ(T )].

(56)

This equation determines implicitly the value of the constant c and hence by (53)

the optimal terminal wealth X (T ) = Xu∗
(T ). To find the corresponding optimal

portfolio u∗ we proceed as follows:

Define

Z0(t) := u∗(t)Z(t). (57)

Then (Xu∗
(t), Z0(t)) is found by solving the linear BSDE

{

d Xu∗
(t) = A(t)µ(t)Z0(t)

Z(t)
dt + Z0(t)d B(t); 0 ≤ t ≤ T

Xu∗
(T ) = E[(U ′)−1(c exp(−

∫ T

0 θ(s)d B(s) − 1
2

∫ T

0 (θ(s))2ds))Ŵ(T )].
(58)

We have proved:
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Theorem 4 (Optimal portfolio in an insider influenced market) The optimal port-

folio u∗ for the problem (43) is given by

u∗(t) =
Z0(t)

Z(t)
, (59)

where Z0(t), Z(t) are the solutions of the BSDEs (41), (58), respectively, and c and

θ are given by (56) and (49), respectively.

5.2 Predictive Recursive Utility Maximization

Consider a cash flow X (t) = X c(t) given by











d X (t) = X (t)[µ(t)dt + σ(t)d B(t)

+
∫

R
γ (t, ζ )Ñ (dt, dζ )] − c(t)X (t)dt; t ∈ [0, T )

X (0) = x > 0.

(60)

Here µ(t), σ (t), γ (t, ζ ) are given bounded adapted processes, while u(t) := c(t) is

our control, interpreted as our relative consumption rate from the cash flow. We say

that c is admissible if c is F-adapted, c(t) > 0 and X c(t) > 0 for all t ∈ [0, T ). We

put G = F.

Let Y (t) = Y c(t), Z(t) = Z c(t), K (t, ζ ) = K c(t, ζ ) be the solution of the

predictive mean-field BSDE defined by











dY (t) = −{α(t)A(t) + ln(c(t)X (t))}dt + Z(t)d B(t)

+
∫

R
K (t, ζ )Ñ (dt, dζ ); t ∈ [0, T )

Y (T ) = 0,

(61)

where α(t) > 0 is a given bounded F-adapted process. Then, inspired by classical

definition of recursive utility in [3], we define Y c(0) to be the predictive recursive

utility of the relative consumption rate c.

We now study the following predictive recursive utility maximization problem:

Problem 2 Find c∗ ∈ A such that

sup
c∈A

Y c(0) = Y c∗(0). (62)

We apply the maximum principle to study this problem. In this case we have
f = ϕ = h = 0, ψ(x) = x , and the Hamiltonian becomes

H(t, x, y, a, z, k, u, p, q, r, λ) = x[(µ(t) − c)p + σ(t)q +

∫

R

γ (t, ζ )r(ζ )ν(dt, dζ )]

+ [aα(t) + ln c + ln x]λ. (63)
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The associated backward-forward system of equations in the adjoint processes

p(t), q(t), λ(t) becomes

• BSDE in p(t), q(t):











dp(t) = −[(µ(t) − c(t))p(t) + σ(t)q(t) +
∫

R
γ (t, ζ )ν(dt, dζ ) + λ(t)

X (t)
]dt

+q(t)d B(t) +
∫

R
r(t, ζ )Ñ (dt, dζ ) ; 0 ≤ t ≤ T

p(T ) = 0,

(64)

• SDE in λ(t):

{

dλ(t) = α(t − δ)λ(t − δ)]χ[δ,T ](t)dt ; 0 ≤ t ≤ T

λ(0) = 1.
(65)

The delay SDE (65) does not contain any unknown parameters, and it is easily seen

that it has a unique continuous solution λ(t) > 1, which we may consider known.

We can now proceed along the same lines as in Sect. 5.2 of [1]: Maximizing H

with respect to c gives the first order condition

c(t) =
λ(t)

X (t)p(t)
. (66)

The solution of the linear BSDE (64) is given by

Ŵ(t)p(t) = E[

∫ T

t

λ(s)Ŵ(s)

X (s)
ds|Ft ], (67)

where

{

dŴ(t) = Ŵ(t−)[(µ(t) − c(t))dt + σ(t)d B(t) +
∫

R
γ (t, ζ )Ñ (dt, dζ )] ; 0 ≤ t ≤ T

Ŵ(0) = 1.

(68)

Comparing with (60) we see that

X (t) = xŴ(t) ; 0 ≤ t ≤ T . (69)

Substituting this into (67) we obtain

p(t)X (t) = E[

∫ T

t

λ(s)ds|Ft ] ; 0 ≤ t ≤ T . (70)
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Substituting this into (66) we get the following conclusion:

Theorem 5 The optimal relative consumption rate c∗(t) for the predictive recursive

utility consumption problem (62) is given by

c∗(t) =
λ(t)

E[
∫ T

t
λ(s)ds|Ft ]

; 0 ≤ t < T, (71)

where λ(t) is the solution of the delay SDE (65).
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