
Application of plasma lenses to the

AWAKE interstage

Study of nonlinear effects

Rune Sivertsen

Thesis submitted for the degree of

Master of science in Physics

60 credits

Department of Physics

Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2017





Application of plasma lenses to the

AWAKE interstage

Study of nonlinear effects

Rune Sivertsen



c© 2017 Rune Sivertsen

Application of plasma lenses to the AWAKE interstage

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo



ABSTRACT

A future possible acceleration technique for linear colliders is plasma wakefield accel-

eration. One of the questions unanswered today is whether we can use this technology

to achieve TeV-scale acceleration with a good enough beam quality. The AWAKE-

experiment at CERN has as goal to demonstrate the feasibility of TeV acceleration using

an SPS proton beam as a plasma driver. For Run 2 of AWAKE we need to self-modulate

the proton beam before we inject an electron witness beam in the acceleration stage. This

creates a interstage between the two plasma cells, where the proton beam needs to be

refocused in a limited space.

We have looked at plasma lenses as a solution to this problem, since they both deliver

stronger magnetic fields and have axisymmetric focusing compared to conventional mag-

netic quadrupoles. We have in particular studied nonlinear effects; nonlinear magnetic

field due to non-uniform current distribution, and wakefields originating from the charged

beam being focused. In a relation to a pre-study of plasma lenses at the CLEAR-facility

at CERN, we have studied where the wakefield is significant, in preparation for further

experimental verification at CLEAR.

We have then studied whether plasma lenses can be used for an AWAKE interstage.

The results with and without nonlinear effects are the same: to use plasma lenses we

need improved plasma lenses with respect to today’s state of the art. However, assuming

higher current and longer lenses than available today, plasma lenses could potentially be

interesting for the AWAKE interstage.
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I. INTRODUCTION

The goal of a particle accelerator is rather simple; accelerate a particle beam to a

specific energy while preserving the beam quality as much as possible. Particle colliders

smash two beams of particles of high energy together with the aim of studying fundamen-

tal particles and interactions of nature. Particle colliders collide either hadrons (protons,

anti-protons) which are heavy, composite particles, or leptons (electrons, positrons) which

are fundamental particles.

Hadron colliders are often called discovery machines due to their larger energy range,

while lepton colliders may often provide more accurate physics . The most effective way

to accelerate particles is by circular orbits such that we reuse the accelerating cavities

each turn. For electron and positron acceleration, there is an upper limit on the collision

energy due to synchrotron radiation loss, which scales as the fourth power of the particle

energy.

The highest energy lepton collider to date, to the author′s knowledge, is Large Electron

Positron collider (LEP) at CERN, which had a maximum collision energy of 209 GeV.

In order to achieve this energy, the tunnel had to be filled with RF cavities as much

as possible to compensate for the synchrotron radiation loss. A future electron-positron

collider, aiming to reach TeV-scale energies, would be prohibitively large and expensive

because of this loss. Even the proposed FCC-ee (Future Circular Collider[1]) at 350 GeV

would need to a ring circumference of 80-100 km.

For TeV-scale lepton collisions, linear colliders such as ILC[2] and CLIC[3] are there-

fore currently proposed. These machines also needs to be somewhat large, with proposed

length of 30 km and 50 km respectively, due to limits of accelerating gradient in regular

RF-based accelerating cavities. To reach the luminosity targets, the colliding beams in

linear colliders also has to be as compact as possible.

Plasma wakefield acceleration is novel acceleration technique where one studies whether

the very strong fields that can be set up in plasmas can be used to accelerate particle

beams of good quality. If strong enough oscillations in the plasma occur, creating a

sufficient local excess of electrons or ions within the plasma, strong electric fields along
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the beam axis may be set up. The corresponding accelerating gradients in plasma have

been shown to be 10-100 times stronger than for RF-based cavities.

Oscillations like these are called wakes, and corresponding electromagnetic fields are

denoted as wakefields. A short, intense laser pulse, or a high energy particle beam, may

be used to drive such plasma wakes. The witness beam can then be placed in the wake

of the driver, and ”ride” the accelerating field.

If the oscillations are small, the plasma wake is in the linear regime, meaning that

the fields set up are proportional to the drive beam current. If the drive beam current is

stronger, all the plasma electrons trailing a drive beam may be expelled from the beam

axis, and the wake is said to be in the blow-out regime, sometimes called the bubble

regime.

The idea to accelerate particles with plasmas was proposed already in 1979[4]. At that

time with a laser pulse method, where the acceleration was calculated to be of several

orders higher than conventional radio-frequency acceleration used today. In 2014 FACET

at SLAC published proof of principle[5] of accelerating particle beams with very high

gradients, for a small plasma stage and with an electron beam as both the driver and

witness of the wakefield.

Future lepton colliders should ideally collide particles at the TeV-scale. In order for an

electron beam driven (or laser driven) plasma accelerator to achieve this, many electron

drive beams (or laser drive pulses) would be needed, each driving a single plasma stage,

because the total energy in existing electron bunches is much less than what is needed to

produce a high-charge TeV-bunch.

Another approach is to use the available high-energy proton bunches at CERN, the

SPS beam and the LHC beam, to drive the plasma instead. With an LHC-beam, a high-

charge electron bunch could in principle be accelerated to TeV-scale in a single plasma

acceleration stage[6][7]. The objective of the AWAKE experiment at CERN is to study

such a proton beam driven plasma wakefield acceleration.
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FIG. 1: Map over different accelerators and experiments as CERN, the

AWAKE-experiment is to the right in a side tunnel from the SPS (Super Proton

Synchrotron). Copyright CERN.

The AWAKE experiment is installed at the same beam line as the former CNGS

experiment, as shown in FIG. 1. It uses the SPS-beam with 400 GeV to create plasma

wakefields in a 10 meter long plasma cell. The goal is to demonstrate a long acceleration

stage without ruining the quality of the accelerated electron beam. The first phase of the

experiment, which started in 2016, is to prove that self-modulation instability (SMI) of

protons in the plasma will happen as predicted.

In the second phase of the AWAKE experiment, Run 2, the goal is to accelerate a

beam of electrons in the proton driven. Two plasma cells are needed for this phase: one

to self-modulate the proton beam, and one into which the electron beam to be accelerated

will be injected. It is foreseen that we will have a vacuum gap between the two plasma

cells, where the electron beam will be injected by steering it parallel to the proton beam.

Such a two cell design however, presents a problem since the proton beam will expand

radially in vacuum gap. After this vacuum expansion, and the corresponding reduced

charge density, the beam may become unusable as a plasma drive, depending on the

length of the gap. It is therefore necessary to refocus the proton beam in this gap , before

entering the accelerating plasma cell.
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Using conventional quadrupole magnets to refocus the beam will require a significant

amount of beam line, perhaps more than what is available even upstream. An alternative

solution, studied in more detail in this thesis, is to use plasma lenses for the plasma

interstage focusing instead.

The concept of using plasma as a lens to focus a particle beam was first discussed

in a paper from Berkeley in 1950[8]. It has been used recently for laser-driven plasma

wakefield acceleration[9], in a plasma interstage setup similar to that of AWAKE. The

plasma lens sizes are on the scale of centimeters, while quadrupole magnets usually are in

the meter range. The plasma lens also have another advantage in that it can focus both

transversal planes in one stage. In order to focus in both planes, several regular magnetic

quadrupoles usually need to coupled together with empty space in between, which further

increases the spatial requirements for quadrupoles with respect to plasma lenses.

In this thesis we study so-called active plasma lenses. These consists of gas (could be

for example hydrogen, helium or nitrogen) confined inside cylinders. The gas is ionized

by an external discharge current, achieved by setting up a voltage of up to 20 kV across

the gas cylinder. Such a plasma lens is shown in Fig. 2. A main goal in this work is to

evaluate whether plasma lenses can be applied to AWAKE Run 2, i.e. whether we can

focus the proton beam in order to inject electron beams while still maintaining the beam

quality. As plasma lenses are a new and relatively unstudied technology, a main part of

this work is to study the beam-plasma parameters where plasma lenses are expected to

cleanly focus a beam.

In this thesis I will first study a key constraints of active plasma lenses: the defocusing

effect of wakefields in the lens, competing with the desired linear focusing fields of the

discharge current. I do this by implementing a linear plasma wakefield model, and vary

parameters (the gas pressure, i.e. the plasma density, and the beam charge and size), to

see where the undesired wakes start to have an significant effect. This will be checked

against with numerical simulations done with QuickPIC, an open source particle-in-cell

code. The results from linear theory will furthermore be tested experimentally at the

CLEAR test facility at CERN.
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FIG. 2: A picture of a discharge capillary plasma lens, from the Berkely Lab. We see

that gas tubes in the bottom, and the high-voltage electrodes at the top. Copyright

LBL[10].

The results of the previous analysis will be applied in order to help assess the use of

plasma lenses for AWAKE. Is it possible to use a single plasma lens to focus the proton

beam between the two cells, so that the wake is mostly unaffected in the entrance to

the second plasma cell? Will the the beam quality and degree of self-modulation still be

good? We will work with both ideal Gaussian beams as well as realistic proton beams

provided by partners from the AWAKE collaboration, after the four meter long plasma.
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II. THEORY

A. Beam optics and conventional focusing

To ease some calculations, we shall assume a cylindrical model for the beamline and

plasma lens, and use a bivariate gaussian as the theoretical beam. The charge distribution

of the beam will in other words be defined as

Ψ =
Q

(2π)3/2 σξσ2
r

exp

[
− (ξ − µξ)2

2σ2
ξ

+
− (r − µr)2

2σ2
r

]
(1)

where ξ is the direction along the beam line, Q the total charge and r the transversal

direction. The beam momentum in r has also a Gaussian distribution, with variance σ2
r′.

We are also going to include a distribution of momenta, which can be used to define

β =
< r2 >

ε
(2)

α = −< rr′ >

ε
(3)

γ =
1 + α2

β
(4)

where r′ is the transverse momenta, and ε the normalized emittance. α and β are

the Twiss parameters[11], and are used for calculation on focusing of a beam. They are

connected via the covariance matrix of the transverse position and momentum.

Σ = cov (r, r′) = ε

 β −α

−α γ

 (5)

To focus a charged beam we usually use magnetic quadrupoles. From multipole ex-

pansion for the magnetic field, the first order will be Bx = −gx. Here x here is one of

the transversal direction, and g the field gradient. The quadrupole strength, normalized

to the beam momentum, is defined as
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FIG. 3: How a particle with positive transverse position and momenta will evolve

through a triplet. Here the first and third magnet are focusing quadrupoles with positive

focal length, while the defocusing quadrupole in the middle have a negative focal length.

k =
eg

p
(6)

where e is the elementary charge and p the particle momentum. A quadrupole will

focus in one transversal direction while defocusing at the same time in the other direction.

We need in other words several quadrupoles after each other to get a complete focusing

effect, usually in triplets. A sketch of the evolution in a triplet is shown in Fig. 3, where

we observe that a divergent beam will become convergent.

Beam optics is defined in the same manner as conventional optics, the focal length for

the quadrupoles is f = 1/kL, where L is the length of the quadrupole. If the focal length

is smaller than the lens width, we can use a thin lens approximation:

MThin =

 1 0

−1/f 1

 (7)

Here M refer to a transfer matrix of the particle in the phase space[12], which will

rotate the particles such that

~x1 = M~x0 (8)
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where ~x is the phase space (x, x′).

If we want to defocus the beam instead, we substitute −1/f → 1/f . If the focal length

is not smaller than the lens width, we use a thick lens approximation. Such a transfer

matrix is defined as

MThick =

 cos
(
lp
√
k
)

sin
(
lp
√
k
)
/
√
k

−
√
k sin

(
lp
√
k
)

cos
(
lp
√
k
)
 (9)

for a focusing quadrupole, and hyperbolic functions in the defocusing case. Evolution

of all beam particles can then be calculated as a transformation through each element of

the beam lattice.

~x1 = MQ �MD �MQ �MD · · · ~x0 = M~x0 (10)

where ~x is the ensemble of particles and MD the vacuum drift of length L between the

different quadrupoles,

MD =

1 L

0 1

 . (11)

You can similarly do the same with the Twiss parameters for the whole beam, B, with

Σ from Eq. 5[12],

B = Σ/ε (12)

B1 = MB0M
T (13)

9



B. Plasma lenses

FIG. 4: A sketch of the plasma lens. Electrodes are mounted at the ends of the plasma

lens. Applying a high voltage across the electrodes will result in a uniform current in

negative longitdunal direction compared to the incoming particle beam. The current

create a azimuth magnetic field, which will give a radial force component on the

particles in the beam. Copyright Tilleborg[9].

With the framework above for quadrupoles in mind, let’s then look at plasma lenses.

We start with a cylindrical capillaries in which we inject gas.

Applying a high voltage (order of 10 kV) across the capillary ends the gas will be

ionized - a plasma will be created inside the capillary - and a strong discharge current

(order of several 100 A) will flow through the capillary. A beam sent into the capillary,

propagating parallel to the beam direction will be focused (or defocused) by this current.

This focusing device is called an active plasma lens[9]. Such a plasma lens is shown in

Fig. 4. Using Amperer′s Law, we find the corresponding azimuth magnetic field

∂Bφ

∂r
=

µ0I0
2πR2

, (14)

where R is the capillary radius of the lens, and I0 is the current flowing through the lens.

From Eq. 14 we see that if the current is uniform radially inside the capillary, the

strength of the magnetic field will increase proportionally to r, just as for a regular mag-
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netic quadrupole magnet. In this text we discuss both such ideal, linear plasma lenses

and more realistic lenses where the r-dependence of the field is non-linear.

Similarly to Eq. 14 for quadrupoles we express the normalized strength of the plasma

lens as

k =
e

m0γc

∂Bφ

∂r
, (15)

where e,m0 are the electron charge and rest mass respectively.

1. Sources of nonlinearities

An ideal plasma lens would have a radially uniform current. Deviations from a radially

uniform current, leading to a non-linear focusing force may lead to emittance growth

when a beam is focused. It has recently been shown in magneto-hydrodynamics plasma

simulations [13] that due to small radial variations in the temperature of the plasma, the

conductivity is however not radially independent. The plasma furthest from the center

will be cooled down by the lower temperature outside. This is predicted to result in a

current flow that is non-uniform radially, and therefore a focusing force that is non-linear.

In this text we will use the model of the non-uniformity from [13]

J(r)αTe(r)
3/2 (16)

to evaluate the effect of non-uniformity of plasma lenses for AWAKE.

Another source of nonlinearities in active plasma lenses is the plasma wakefield set

up by the charged particle beam. The longitudinal fields of wakefields are beneficial

for accelerating trailing bunches at high gradients[5]. However, the nonlinear transverse

fields of such wakefields will be superimposed on the field from the discharge current of

the plasma lens. The effect will be studied in some detail in the following section, and

the parameter space for when the effects of the wakefields are negligible will be discussed.

11



C. Linear plasma wakefield theory

We therefore define a linear plasma wakefield model to check if wakes are a significant

effect in the plasma lens. As mentioned before, plasma can be seen as a ionized gas and

globally neutral. However, due to free electrons, you will have internal oscillations due

to electrostatic forces[14]. Such oscillations for electrons are characterized by the plasma

(electron) frequency:

ωp =

√
n0e2

ε0m0

(17)

where n0 is the plasma density, e the elementary charge and m0 the electron mass.

When we send a charged beam through the plasma, it will perturb the electromagnetic

fields in the plasma. If the beam has a lower density than the plasma, the wake fields

from the beam will be linear. The opposite case is the blow-out regime, where the plasma

break down creating charged bubbles, with strong longitudinal electric fields. That regime

is used for the plasma wakefield acceleration.

In the linear regime, plasma wakefields can be calculated analytically. We will in the

following develop the equations for linear plasma wakefields, and use these to estimate

the focusing field contribution from the wakefields in a plasma lens. We will see that for

the parameters we are interested in, the fields become significant before the beam density

approaches the plasma density. This means that the assumption of the linear regime is a

good one. We follow the same procedure as Blumenfeld[15], starting with the continuity

equation and the Lorentz force for the electrons in the plasma.

∂ne
∂t

+∇ · (ne~ve) = 0 (18)

and

d~pe
dt

= −e

(
~E +

~ve × ~B

c

)
, (19)

12



where ne is the plasma electron density, ~ve the plasma electron density and ~pe the

plasma electron momentum respectively. We then assume that the variation of the plasma

density due to the wakes from the beam is much smaller than the plasma density for the

whole plasma, n0. We also assume small velocity and variation, giving

ne = n0 + δn (20)

~ve = v0 + δ~v (21)

We insert this into Eq. 18, neglecting second order terms.

∂δn

∂t
+ n0∇ · (δ~v) = 0 (22)

Similarly, assuming that the variation of the velocity depend only on time and that

electric fields will dominate, for Eq. 19.

m
∂δ~v

∂t
= −e ~E (23)

We can combine them by taking a time derivative of Eq. 22.

∂2δn

∂t2
+ n0∇ ·

∂

∂t
(δ~v) = 0 (24)

⇒ ∂2δn

∂t2
− n0e

m
∇ · ~E = 0 (25)

We calculate the divergence of the electric field by Gauss′ Law, and set the full charge

density to be

ρ = e (ni − ne − nb) (26)

13



where nb is the beam density, and ni the ion density. Since globally plasma is neutral,

this must equal the plasma electron density, ni = n0. The divergence can then be written

as

∇ · ~E = − e

ε0
(δn+ nb) (27)

Which we insert to 25.

∂2δn

∂t2
+
n0e

2

ε0m
δn = −n0e

2

ε0m
nb (28)

We observe that the terms infront equals the plasma frequency from Eq. 17. Replacing

to get

∂2δn

∂t2
+ ω2

pδn = −ω2
pnb (29)

In accelerator physics we usually work a longitudinal coordinates co-moving with the

beam, ξ. Transforming the equations using ξ = z − ct, we get

∂2δn

∂ξ2
+ k2pδn = −k2pnb (30)

where kp is the inverse of the plasma skindepth

k−1p =
ωp
c
. (31)

We can find an equation for the plasma electron variation with a Green′s function on

Eq. 30. We then get finally:

14



δn (ξ, ~r) = −kp
∫ ∞
r

nb (ξ′, r) cos [kp (ξ − ξ′)] dξ′ (32)

We shall use this to find the two-dimensional electric field for linear plasma wakefield.

Let us first define the wave equation, with a source term from the electric field in Lorentz

gauge:

1

c2
∂2 ~E

∂t2
−∇2 ~E = −µ0

∂ ~J

∂t
−∇

(
∇ · ~E

)
(33)

Where ~J is the current density vector. We insert Eq. 27 and expand:

1

c2
∂2 ~E

∂t2
−∇2 ~E = eµ0

∂
(
n0δ~v + nbcξ̂

)
∂t

+
e

ε0
∇ (δn+ nb) (34)

We co-cordinate transform again with ξ = z − ct, using the definition skindepth from

Eq. 31 again.

−∇2
⊥
~E = −k2p ~E +

e

ε0
(∇δn+∇⊥nb) (35)

where ∇⊥ is defined as

∇⊥ = ∇− ∂

∂ξ
ẑ (36)

We do not want to look at the wakefields inside the beam, and remove therefore all

terms with the beam density. We end up with two equations for the radial and longitudinal

electric field:

15



(
∇2
⊥ − k2p

)
Ez = − e

ε0

∂δn

∂ξ
(37)(

∇2
⊥ − k2p

)
Er = − e

ε0

∂δn

∂r
(38)

Writing out the left hand side with r, with two dimensions, we will end up with modified

Bessel equations of zeroth and first order respectively. This will in turn give, via Green′s

functions, the linear wake fields to be defined as:

Ez = 4πe

∫ ∞
0

∂δn

∂ξ
K0 (kpr>) I0 (kpr<) r′dr′ (39)

Er = −4πe

∫ ∞
0

∂δn

∂r
K1 (kpr>) I1 (kpr<) r′dr′ (40)

where Iν , Kν are the modified Bessel function of first and second kind, and r> is the

greater of r and r′ and reversed for r<.
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III. WAKEFIELD SIGNIFICANCE IN PLASMA LENSES

When a charged beam enters the plasma lens, the interactions will create a wakefield.

While you in theory should have a linear transverse focusing effect due to azimuth mag-

netic field from the uniform current, the wakes can give a nonlinear contribution. If the

nonlinear components are too strong the plasma lens may be unusable for focusing.

In this section we shall calculate the maximal transverse gradient of the wakefield,

using two dimensional linear wakefield, as calculated in Section II C. This effect will be

quantified, and compared with the focusing from the plasma lens. We define here that the

nonlinear component is significant if the maximal transverse gradient from the wakefield

is at or above 1% of the plasma lens gradient.

Using the definitions for the wakefields in Eq. 39 and Eq. 40, we can see that the

fields will depend on the plasma density n0, bunch charge Qe, length σz and transverse

size σr. The result should therefore be linear for the bunch charge, while not the case for

the other parameters.

At the CLEAR test facility at CERN[16], the University of Oslo will study plasma

lenses to be possibly used in the second phase of AWAKE. Part of the experiments is to

check for constraints on active plasma lenses to maintain a good beam quality. Such a

constraint could be problem with ionization of the plasma from a large capillary radius,

nonlinear current contributions or wakes. We shall here look at the theoretical impact of

wakefields in this experiments, to be checked against in reality.

Since this calculation is under a assumption of linear regime, and therefore linear

wakefield theory, we will simulate the same situation with a particle-in-cell code to verify

the validity of the linear regime calculations.
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A. CLEAR test-facility at CERN

FIG. 5: Current proposal for the CLEAR test facility that will in July 2017 start with

experiments with plasma lenses. It has replaced CTF3 (Clic Test Facility 3) at CERN.

To the right, outside the figure, the linear accelerator for the electron beam is placed.

The beam is finally focused by a triplet of quadrupoles before it is sent through the

plasma lens. The plasma lens is the second element from the left. The beam is then

measured with a OTR-screen, shown to the far left afterwards. Copyright CERN.

The current proposal for the CLEAR test facility is shown in Fig. 5[16]. The linear

accelerator from the CTF3 ”main beam” is still kept here, and CLEAR beam will have

similar properties. The plasma lens is installed in such a way that we can change it

between runs, to a new copy or to a different plasma lens.

Assuming we have room temperature in our experiment, the following parameters in

Table I are possible at the CLEAR test facility.

For our simulations we shall keep all of the values of the beam constant, except for the

bunch length σz and charge Qe. In the CLEAR experiment we want to study cases where

both the effect of the wakefields are estimated to be negligible, and where the effect is

significant. For this we study two different beams:

• A short and compressed beam, with a small bunch size

• And a longer beam with a larger bunch size
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TABLE I: The CLEAR test facility have the following range of the values the beam can

have after the linear accelerator[16]. Shown below are the beam energy, bunch charge,

emittance and length; as well as the energy spread. Lower bound for emittance is the

lowest bunch charge, and opposite for the upper bound.

Beam parameter Range of values

Beam Energy E 130- 220 MeV

Bunch charge Qe 0.01 - 0.5 nC

Normalized emittance εN 3.0 - 20 mm mrad

Bunch length σz 0.5 - 1.2 mm

Relative energy spread ∆E <0.2% rms (<1 MeV FWHM)

TABLE II: Our assumed values for the gaussian beams used to check for the significance

of wakes. They are defined from Table I. We assume a constant beam energy, emittance

and beam size, while changing either the bunch charge or length logarithmically.

Simulation parameter Value

Beam Energy E 200 MeV

Bunch charge Qe 3.0 - 500 pC

Normalized emittance εN 3.0 mm mrad

Bunch length σz 0.5, 1.5 mm

Bunch size σx = σy 25, 100 µm

We define a Gaussian beam in cylindrical coordinates, using Eq. 1 and the values

given from Table II, to be used in the following. These are ours electron beams in this

section. The only significant difference from the realistic values in Table I is the normal-

ized emittance, which we have for this study chosen to be kept constant even for high

bunch charge beams.
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B. Plasma wakefields in CLEAR

TABLE III: The simulation values for the plasma lens, using parameters from recent

papers[17] as a basis The plasma lenses will use nitrogen gas, which gives the domain of

pressures. Using Eq. 14, we then found the corresponding uniform gradient in the

plasma lens. The azimuth gradient from the wakefield will be compared to this.

Simulation parameter Value

Peak current I 500 A

Capillary radius R 500 µm

Corresponding lens gradient g 400 T/m

Gas pressure p 0.3 - 30 millibar

Temperature T 300 K

We define an active plasma lens with nitrogen gas, given the values in Table III. Here

the current is defined from 20 kV voltage source, which will in turn give a lower bound

around a sub-millibar. The temperature is the assumed to be room temperature. The

gas pressure and the temperature give us a corresponding plasma density after ionization,

using ideal gas law, giving

n0 =
p

kbT
(41)

Here the pressure p is defined in Pascal, 1 millibar corresponding to 100 Pascal, and kb

the Bolztmann constant. The pressures in Table III will therefore give a plasma density

n0 between 1015 to 1017 particles/cm3.

We then did the following: Defined the perturbation of the plasma density due to the

wake, δn (r, z) from Eq. 32, and inserted to the field equations from the wakes in Eq.

39 and Eq. 40. Differentiating the fields gave in turn the gradient of the magnetic field

along the radial axis.

The plasma density scale linearly with the pressure, as seen in the definition of the

pressure in Eq. 41. This in turn have a linear relation to the density perturbation in
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TABLE IV: The upper bounds for the bunch charges, such that the maximal gradient

of the wakefield on the longitudinal axis is 1% of the focusing gradient of the plasma

lens. If we have a larger bunch charge for a given pressure and bunch length, the effect

of the wakefield is then significant and must be taken into account.

Bunch length σz

Pressure p
0.3 millibar 1 millibar 3 millibar 10 millibar

0.5 mm [1% wake] 0.12 pC 0.16 pC 0.23 pC 0.46 pC

1.5 mm [1% wake] 14 pC 31 pC 76 pC 0.23 nC

Eq. 32, so we should see some linearity. The bunch charge Qe can be shown to be fully

linear in comparison. We then calculated for two different bunch lengths σz: 0.5 and 1.5

millimeters respectively. For these beam we used a logarithmic increase the pressure p

and the bunch charge Qe, increasing by a factor of
√

10. We will find the domain where

the wakefields are significant.

For the short beam we get the maximal transverse gradient on the axis as shown in

Fig. 6. Here the transverse gradients are scaling linearly with the bunch charge, while

this is not for the different pressures. We can clearly see why this is the case; while we

do have a linear factor of the skindepth in the definitions for the wakefields, similarly as

for the bunch charge, they are also part of the modified Bessel functions.

In all cases the maximal gradient from the wakefields is larger than 1% of the plasma

lens gradient. We must in other words either increase the pressure or decrease the bunch

charge. However lower bunch charges will limit the beam diagnostics, at CLEAR the

sensitivity is around 1 pC. Increasing the pressure could also lead to gas leakage, which

is not optimal when other elements along the beam line have some demands regarding

vacuum.

This is however not the case with the longer beam with a much larger bunch size of

σz = 100µm, and a wider bunch size. From Fig. 7 we can see that more than half of the

values will be below 1%. From the second figure you can even find bunch charges that

will never give a nonsignificant result for all plasma densities in this domain.
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If we assume the result will depend linearly with the bunch charge, we can calculate

the upper bound of the bunch charges for which the wakefields should be taken into

account. Doing this for 1% of transverse gradient due to the plasma lens current, 4 T/m,

we get the result shown in Table IV. We see that for the short beam a 1% constraint is

not possible to achieve within our range of values, and we are above 5% even with the

highest density and lowest bunch charge. Using the short beam, the wakefields are thus

not expected to be negligible.
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FIG. 6: Plots of the maximal transverse gradient on the longitudinal axis, either when

increasing plasma density or pressure, while keeping the other constant. The short

beam, with a bunch length of 0.5 millimeters, is assumed here. Also shown in the figures

is the line for 1% of axially symmetric focusing gradient, 400 T/m from Table III. We

want to find some paramterer space below this line. The pressures are in a decreasing

order, higher pressure give a lower line. The opposite is the case for the bunch charges.
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FIG. 7: Maximal transverse gradient for a long beam. Similar to the result in Fig. 6,

but here the beam is longer with σz = 1.5 millimeters, and wider. The pressures are in a

decreasing order, higher pressure give a lower line. The opposite is yet again the case for

the bunch charges. Also shown is the 1%-line of the focusing gradient.
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C. Numerical simulation with QuickPIC

FIG. 8: The result of the calculation of the wakefields using the definitions in Eq. 39

and 40. Shown here are the plot of the beam and plasma density, the fields in both

planes and the transverse magnetic field gradient along the z-axis. All are in the

XZ-plane, with a maximal field value around 4 GeV/m. We also observe that the

gradient has it’s maxima in the beam center. We have here assumed a beam with 25µm

transverse size, 0.5 millimeters length and a total charge of 5 pC going through plasma,

originally from gas with a pressure of 1 millibar

Was the linear wakefield theory valid as an assumption? We used QuickPIC, an open-

source particle-in-cell code from UCLA[18], to check exactly that. The PIC simulation

calculates the dynamics of the plasma electrons, and simulate the interaction with the

beam. The simulation assume that the plasma ions are immobile and that we can neglect

radiative effects. It is enough to check for a specific case, since the beam density will not

change much in our domain of values. We define thus a short beam with

• p = 1 millibar

• Q = 5 pC

• σz = 0.5 mm

• σr = 25 µm,
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which gives the fields in Fig. 8. The fields should look like this if the linear wakefield

theory is valid. Also in the figure we have the gradient along the longitudinal axis, with

a maximal theoretic value of

gmax,theory = 125 T/m (42)

We then simulated a similar radial symmetric Gaussian charged beam with a trans-

verse radius of 25 micrometers, and a bunch length of 0.5 millimeters in QuickPIC. We

also used at normalized transverse emittance of 3 microns. The beam is then assumed to

travel along z, parallel to the plasma with a plasma density of n0 = 2.4 ×1016/cm3. Our

simulation box here will be [250 µm, 250 µm, 5.0 mm] in x, y, z respectively. The beam

is placed in the middle of the simulation box, similar to the beam placement in Fig. 8.

We then divide the simulation box in 512 × 512 × 4096 cells. This will correspond to a

transverse cell width of 0.488 µm, and 1.22 µm in along the beam line.

For QuickPIC the result for the fields, shown in Fig. 10, looks similar to that of the

theoretical linear regime, shown in Fig. 8. We also observe that the gradient has the

same outline as for the linear regime. We do however have some boundary issues in some

of the plots, this is especially the case for the radial gradient. This could not be reduced;

we could not increase the resolution or the bunch charge without the simulation breaking

apart.

Since we have a even number of cells, the maximal gradient on axis have two values,

the maximal gradients of 191 and 140 T/m, giving a mean maximal gradient of

gmax,numerical = 167 T/m (43)

Which is not far away from the theoretical value from the linear wakefield theory for

the linear regime. If we were to increase the resolution without problems, the difference

would probably decrease.
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FIG. 9: Evolution of the beam with several steps in QuickPIC. We have here used a

time scale that corresponds to the maximal length we shall use for plasma lenses in later

sections. Shown are both βx and βy as a function of s, where βx is the uppermost.

We also performed a time-evolved simulation of the system, calculating the forces in

each cell and let them interact on the system for 20 centimeters (many time steps ), to

verify whether the beam density remains relatively inside the plasma cell. The evolution

of the Twiss-parameters in this multistep simulation is shown in Fig. 9. How do this

increase compare to for example drift in vacuum over the same distance? In vacuum the

increase can be expressed as[12]

β (s) = β0

[
1 +

(
s

β0

)2
]

(44)

Which for this case gives that a initial beta of β0= 0.31 meters will increase to 0.44

meters. This is clearly not the case here, and neither the opposite: that the beam will

implode inwards. This implies that the usage of a single wakefield calculation for the

whole plasma cell is good enough.
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FIG. 10: The same situation as in Fig. 8, but from a simulation with QuickPIC. Shown

here are the beam density, the longitudinal and transverse fields and the field gradient,

all in the XZ-plane. We also observe here that we have 4 GeV/m for the transverse

field, while the longitudinal field seems to be reduced. This is similar to the field values

in the theoretical linear regime. All figures also have numerical noise, especially for in

the figure for the field gradient, along the edges. Since this does not seem to affect the

beam core itself to much, we have not looked further into it.
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IV. THE AWAKE PLASMA INTERSTAGE

FIG. 11: Current design for the second run of the AWAKE-experiment[19]. To the left

the SPS proton-beam is injected to a four meter long plasma cell. This plasma cell will

self-modulate the proton beam such that it is bunched in units of the plasma wavelength

λp. After this process we have a beam pipe where we will focus the proton beam again,

while injecting the electron beam at the end. Finally, we have a 10 meter long plasma

cell, where the proton beam will be a driver for plasma wakefield acceleration. The focus

here will be the portion between the two plasma cells, denoted as the interstage.

One of the main goal of AWAKE Run 2 is to inject and accelerate an electron witness

beam.[19][20]. In order to inject an electron witness bunch while preserving its beam

quality the proton beam must have fully self-modulated so that wakefield phase and am-

plitude are quasi-stable in time[21][22]. Two separate plasma cells are therefore foreseen

for Run 2, the first cell will modulate the proton beam, while the electron beam will be

injected between the first and the second cell.

A sketch of the Run 2 layout is depicted in Figure 11. A main challenge with this

approach is to preserve the characteristics of the proton beam in the vacuum gap between

the two plasma cells[19]. Simulations show that if the proton beam is propagating more

than a few tens of cm in vacuum without refocusing, it may not drive a strong enough

wake in the second cell. In this chapter we study the problem of staging the two plasma

cells, and in particular whether plasma lenses can be used to provide an interstage design

fulfilling the AWAKE requirements.

In the beamline currently used for AWAKE, the maximum distance available for the

interstage will be around the order of ten meters. We will have problems expanding

further both up- and downstream. Is it therefore possible to use a focusing lattice with
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plasma lenses in the plasma interstage, while also leaving enough room for an injection of

electron beam right before the final plasma cell? We shall compare the result to regular

quadrupoles, as well as include the nonlinearity of the magnetic field due to non-uniform

current density in the plasma lenses.

A. The proton beam after extraction

As shown in Fig. 11, the SPS proton beam, which has a mean energy of 400 GeV

and a full bunch length of σz = 12 centimeters (2 ns)[20], will traverse about 4 m of

plasma in order to self-modulate. Four meter is an estimate of the length required for the

self-modulation instability to saturate and the micro-bunching of the beam to fully de-

velop. As input for our AWAKE interstage studies we use a simulated beam distribution

where SPS beam has passed through 4 m of plasma, simulated with the particle-in-cell

code LCODE[23]. The LCODE simulation output has been kindly provided by Alexey

Petrenko (CERN, the AWAKE project). The resulting proton beam transverse and lon-

gitudinal phase space is then shown in Fig. 13

However, the only parts of the beams that we need are particles that are within a skin

depth in the transversal plane, as only these protons will contribute to the creation of

the wakefields in the plasma cell. We therefore apply a transverse cut of the beam, using

only one of the transversal planes from here, x from the simulation. The plasma density

for the AWAKE plasma cells[20] is

n0 = 7× 1014 particles/cm3, (45)

which, if we apply to Eq. 31 gives a plasma skindepth of

k−1p = 201 µm. (46)

The new result for phase space and longitudinal distribution are then shown in Fig.

14. Most of the beam here is within 0.2 millirads. We can calculate the initial geometric
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FIG. 12: Simulation data for the SPS-beam after 4 meters of plasma, i.e. after the

beam has been self-modulated. Data kindly provided by Alexey Petrenko (CERN, the

AWAKE project). To the left we have the initial phase space in the transverse plane x,

and to the right the longitudinal distribution along the same plane. We see evidence of

SMI by the lines in the longitudinal distribution, and observe that the rear part of the

beam is destroyed as well. Only half of the beam is included here, the part that will be

self-modulated.

FIG. 13: Same beam as in Fig. 13, where we have removed all particles outside

|x| = k−1p . This corresponds to 43% of all the original particles. We see that the

particles with high transverse momenta are removed as a result.
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emittance, standard deviation along x and the Twiss parameters for it as well. This shall

be the initial beam properties we will refer to later, and which we want to get back to at

the end of the interstage. Using the definitions from Eq. 2 to Eq. 5, we have then the

following initial values:

σx,0 = 104 µm (47)

εx,0 = 0.0149 mm mrad (48)

αx,0 = 0.321 m (49)

βx,0 = 0.726 m (50)

Another aspect we should look at after refocusing the beam is what amount of the beam

is still self-modulated. This is crucial to keep if we want to use the proton beam as a

driver beam for the next plasma cell. If we fourier transform the longitudinal distribution

for both the full and plasma skindepth-cut beam, we can see which wavelengths are

dominating. The result is shown in Fig. 12, where we can see a peak at exactly the

plasma wavelength, λp = 1.26 millimeters, with a corresponding amplitude:

A0 = 43.2 (51)

For the final beam we then fourier transform and study the change of the amplitude

for same peak. We denote the amount of protons still self-modulated as N ,

N = Afinal/A0 (52)

where Af inal is the amplitude for the final beam.

1. Wake significance for the AWAKE interstage

The proton beam from SPS could possible be ruined by wakefields in the plasma lenses,

as was discussed in previous Section III A for the CLEAR pre-study. Using linear plasma
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FIG. 14: The fourier transform of the initial particle distribution along the beam pipe,

where we should see a peak for the plasma wavelength as an indication of

self-modulation. We clearly can see such a peak if we only include particles within one

plasma skindepth, in the figure to the right. We denote the value of the peak as N =

100% of the initial self-modulation.

wakefield theory for the full beam, as defined in Table 1 from Gschwendtner[20] , we then

have as a maximal destructive gradient:

gmax = 6.30 T/m (53)

where we have also assumed a plasma density of 1017 particles/cm3 (10 millibars) for

the plasma lenses. We assume we still are above the linear domain, and the result is

valid. The nonlinearity due to wakefields are therefore nonsignificant for plasma lens with

a radius of 0.5 millimeters; this will be within 1% if we use a current of 1 kA. If we then

increase the radius to 1 millimeter, the gradient due to the wakefield will have increased

to 3% of the focusing gradient, and up to 7% if we have 1.5 millimeters instead. We

should therefore try to limit most the plasma lenses to within 1 millimeter.
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B. Interstage lattice designs

FIG. 15: We shall here look at four different case: 1) plasma lenses of today, with 1

meter of initial gap; 2) a case with longer plasma lenses and less initial gap, 3) a single

long high current plasma lens, and finally 4) a line of focusing quadrupoles instead. The

beam is here going from the left, and the amount of elements in each lattice are

arbitrary.

With the proton beam in mind, we start looking at different options to focus the proton

beam in the interstage. If we have around one meters of gap the last lattice element, we

will have enough space in the beam line to insert a dipole, for injection of the electron

beam. To get symmetric designs we then also define the gap to the first element to be the

same. This shall be a constraint for most of the designs. Currently we have two possible

options to refocus the beam:

• Axisymmetric plasma lens focusing

• Conventional quadrupole focusing

For plasma lenses we shall look at three different possible design: an initial design,

with current available technology; a possible shorter design in the future, with better

34



plasma lenses, and a single high current plasma lens instead. The nominal current is set

to 1 kiloampere, which is the upper bound of what is achievable today. Finally we shall

use conventional quadrupoles to see if the distance will be significant shorter. Here we

only focus in one plane, to get a lower boundary estimate. The lattice designs will look

like the ones sketched in Fig. 15, where the number of lenses for the plasma lenses are

arbitrary.

In order to compare the different interstage designs, we shall calculate:

• The fraction of core particles surviving the interstage transport

• The Twiss parameters, α and β, for the final beam after the transport. These are

defined in Eq. 3 and Eq. 2 respectively, and define the transverse characteristics of

the beam. The more they change after the transport, the more the proton beam

will be away from equilibrium with the plasma[24].

• The degree of self-modulation remaining after the transport, N , which depends on

the longitudinal distribution of the core of the beam.

1. Initial plasma lens design

Recent papers from Berkley[13] imply that a lens of the order of ten centimeters and half

a millimeter radius is available as of today. A longer plasma cell will have problem with

ionization, while a larger plasma lens radius will just reduce the plasma lens gradient.

The distance between each plasma cell must also be larger than the length of plasma

lenses themselves. The initial parameters for the first design are therefore defined as the

following:

L0 = 1.0 m (54)

Lgap = 0.2 m (55)

lp = 0.1 m (56)

Ip = 1.0 kA, (57)
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where Lo denote the gap between the plasma lens lattice and the two plasma cells,

Lgap the distance between the plasma lenses, lp the length of the lens and Ip the current

in each plasma lens.

The following was then done to achieve symmetric matching of the Twiss parameters

in the interstage. We calculated the covariance matrix for the beam in the x-plane before

each plasma lens, and updated the current beam properties. We then defined the new

plasma lens with a radius such that 3 standard deviations of the beam survives, i.e.

Rp = 3σx,left (58)

All particles outside this range was removed, and the beam transported to the next

plasma lens. When the sign of αx flipped for the particles left, the radius of the last

lens calculated was adjusted such that |αx| < 10−5 halfway to the next plasma lens. We

then repeated the same plasma lenses in reverse, such that we have a symmetric point

in the middle between the two lenses here. We could have achieved similar result with

symmetry point in the middle of a plasma lens instead, which will only shorten the result

with one lens.

If we do not change any of the initial values above, we get perfect alpha-matching

when we use 58 plasma lenses, resulting in total beam line of 19.2 meters. While the

first plasma lens is of the same size as current plasma lenses, the plasma lens radius in

the middle is thrice the size. This plasma lens radius will however cut the beam in the

middle, since it is smaller than its neighbours. We fixed the problem by increasing the

current up by 12%, i.e. Ip = 1.01 kA, such that the radius follow the same contour.

The resulting beam evolution and the plasma lens radius as a function of the interstage

position s are then shown in Fig. 16. The new design will keep 94.2% of the initial cut

beam. We observe that the maximal envelope at the middle for β is 28.7 meters as well.
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FIG. 16: The resulting beam line, if we do not change any of the initial parameters, will

demand a beam lattice of 58 plasma lenses. Shown here are the evolution of the

Twiss-parameters in meters through such a lattice, to the left, and radius of each plasma

lens in millimeters to the right. β is the line most uppermost. The method of only

tweaking the lens in the middle result in a smaller radius here, which will cut away parts

of the beam. Changing the current by a little for all plasma lenses will increase the

radius of the middle lenses such that no particles will be unnecessary cut.

For this configuration, with an initial drift of 1 meters, lens distance of 20 centimeters

and a lens length of 10 centimeter, we then find the acceptance map. This is a parameters

scan of all possible transverse position and momenta a particle can have, and survive the

lattice. The result is shown in Fig. 17, where the surviving particles are in the middle.

We observe a boundary that is the same around a symmetry axis along the diagonal.

We should also look at the final beam, to see if it still looks good. The corresponding

phase space and longitudinal distribution are shown in Fig. 18, where we have used the

same limits as the initial beam. The beam has collapsed along the middle the beam,

while this effect is less clear in the front. The phase space also seems to be the same for

small transverse momenta and in the beam center, while all particles with high transverse

momenta has again died. For the final beam we have then, using the definitions in Eq. 3,

2, 52;
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σx,ID = 115 µm (59)

εx,ID = 0.0149 mm mrad (60)

αx,D = 0.645 m (61)

βx,ID = 0.895 m (62)

NID = 100 % (63)

2. Shorter design with future technology

Ideally we want to achieve a beam lattice design that has a total length of ten meters,

a factor two in reduction of the length from the initial design. The number of lenses

should also be decreased to a more reasonable amount. Can this be achieved by either

decreasing the end lengths, or increasing the plasma lens length and the current used in

each plasma lens to a future possible value?

The parameters were changed by a factor two for both the two first cases. When

increasing the length of the plasma lens, the gap length was similarly increased. The

shorter initial gap is possible today as well, but to the authors knowledge less than 1

meter of gap to the injection of the electron beam will be difficult. A plasma lens of 20

centimeters with uniform field could also be possible in the future. We then have the new

parameters defined as:

L∗0 = 0.5 m (64)

l∗p = 0.2 m (65)

L∗gap = 0.3 m (66)

If we just decrease the initial gap, L∗0, keeping the parameters defined in Eq. 55

to 57, we can decrease the total length of 30% to 13.4 meters. Such a beam line will

keep 93.8% of the initial particles and end up using 42 plasma lenses of 10 centimeters.

Similarly if we change the plasma lens length and the gap between them, l∗p and L∗gap re-

spectively, we then decrease the total length with 28.7% to 13.7 meters. Such a beam will
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FIG. 17: The acceptance map for initial design, as defined in Eq. 54 to Eq. 57, where

the sketched part is the parameter configurations that will survive the lattice. We

observe that the longest transverse position is around 550 millimeters, while the highest

transverse momenta is around 330 millirad.

FIG. 18: The final beam after the initial design, as defined in Eq. 54 to Eq. 57, with

19.2 meters of beam line. On the left the phase space is plotted, while on the left we see

the final longitudinal distribution. The axes are fixed to the same values of millimeters

and millirad as the initial beam, shown in Fig. 14.
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also keep 94.3% of the initial particles, but will only need 24 plasma lenses compared to 42.

If we combine both of these changes, we should achieve what we want: a reduction by

a factor of two in total length while reducing the number of plasma lenses needed. This

seems to be the case, the total length end up at 10.7 meters, a reduction of 55.7%. We

will similarly keep 94.0% of the beam and the number of plasma lenses reduced to measly

20.

The evolution of the Twiss parameters through the beam line, when we use the shorter

design, are shown in Fig. 19 together with all plasma lens radius. We see that the

beam does not diverge as much as in the first case before it is focused; β is at it’s most

10 meters compared to 29 meters for the initial design. The plasma lens radiuses will

also sink as a result, becoming less than 1 millimeters. We can therefore neglect wake-

field contributions for this design. The phase space and longitudinal distribution of the

beam are indistinguishable to that of the beam from the initial design, as shown in Fig. 18.

The acceptance map for the final beam in this case are shown in Fig. 20. While

the maximal transverse momenta is still around 330 millirads, the maximal transverse

position to survive the beam as decreased to 400 millimeters, from 550 millimeters in the

initial design. We can also for this final improved lattice, denoted as Short Design from

here, calculate the final beam properties and the preservation of the self-modulation.

σx,SD = 111 µm (67)

εx,SD = 0.0149 mm mrad (68)

αx,SD = 0.558 m (69)

βx,SD = 0.824 m (70)

NSD = 100 % (71)

All the result for all the four different configurations are finally compiled in Table V.

All the maximal plasma lens radii are here larger than the plasma lens radius used to the

author knowledge[13], as much as thrice the radius for the initial design. The current is

also double of the same lenses used.
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FIG. 19: The matched Twiss evolution with a shorter design, where the current has

been tweaked such that the middle plasma lens radius, shown to the left, follows the

implied curve. We see that the highest value of the β is at 10 meters , compared to 29

meters in Fig. 16. The largest plasma lens radius is also around 1 millimeters in this

design.

TABLE V: All the configurations for the AWAKE interstage with multiple plasma

lenses. We look at the current Ip used in all the plasma lenses for that configuration,

maximal radius Rp of a plasma lens needed, and the total number of lenses M and the

corresponding full length s. We also include how much of the initial cut beam will

survive the lattice, as well as the relative difference of α and β from the initial beam cut.

Configuration Ip [A] max Rp [mm] M s [m] Survival Rel. diff. β Rel. diff. α

Initial design 1.01 kA 1.64 mm 58 19.2 m 94.0% 23.3% 101%

Change to L∗0 1.05 kA 1.15 mm 42 13.4 m 93.8% 15.4% 82.3%

Change to L∗gap & l∗p 1.06 kA 1.30 mm 24 13.7 m 94.3% 24.7% 98.7%

Short design 1.01 kA 0.976 mm 20 10.7 m 94.0% 13.6% 73.7%
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The possibility of a nonlinear effect should therefore be looked at. All of the designs

have also a high relative difference of αx to the initial αx from the skindepth-cut beam,

this could be a consequence of some of the beam not surviving the lattice. The beam

emittance is however conserved in all cases, as well as the degree of self-modulation are

in all cases 100%.

3. Single high current plasma lens

What if we used a plasma lens with an increased lens length of say lp,SL = 0.5 meters,

with a radius of Rp = 3σx of the skin depth cut beam after one meter. This will give a

plasma lens radius of Rp,SL = 0.622 millimeters. Which current is needed to only need

one such plasma lens? We want in other words to find a transfer matrix M such that:

M

x
x′

 =

 x

−x′

 (72)

Where we assumed that the transversal position x is so small that we can just assume

a flip in the angle similar to light rays, i.e. from divergent to convergent momenta. Let

us first assume we can use a thin lens approximation, using the matrices as defined in Eq.

11 and 7 to get the total transfer matrix M.

M =

1 1

0 1

 1 0

−1/f 1

1 1

0 1

 (73)

=

1− 1/f 2− 1/f

−1/f 1− 1/f

 (74)
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FIG. 20: The acceptance map for short design, where the sketched part is the

parameter configurations that will survive the lattice. This figure is to be compared to

the acceptance map of the initial design, in Fig. 17.

FIG. 21: The acceptance map for the single lens design, where the sketched part is the

parameter configurations that will survive the lattice. This figure should be compared to

the acceptance maps for the multiple lens configurations, as shown in Fig. 17 and Fig.

20. We see that while the other configurations had a maximal limit on the transverse

position and momentum; for a single lens we only need a transverse momenta such that

the particle will be within |x| < 0.621 millimeters right before the lens, since the

momenta will just be swapped.

43



We can achieve −x′ by looking at the bottom line, setting x << x′:

(1− 1/f)x′ = −x′

→ f = 0.5 m (75)

We get a focal length of half a meter. However thin lens approximation is only valid

if the focal length is much longer than the plasma length, this is clearly not the case

here. Let us however still solve the theoretical result for the thin lens for the initial beam,

inserting into beam matrix from Eq. 13 and the focal length from Eq. 75,

M =

−1 0

−2 −1

 (76)

~B1 =M

 β −α

−α (1 + α2)/β

MT (77)

~B1 =

 β 2β − α

2β − α 4α− 4β + (1 + α2)/β

 (78)

We see from Eq. 78 that β will be conserved, while α will only be conserved in value,

but shifted, if β is much less than α In other words our assumption that x << x′. For

the initial beam this not true; β is larger than α. The core should still be valid, which we

check with the full focusing matrix instead, using thick lenses from Eq. 9.

M =

1 1

0 1

 cos
(
lp,SL
√
k
)

sin
(
lp,SL
√
k
)
/
√
k

−
√
k sin

(
lp,SL
√
k
)

cos
(
lp,SL
√
k
)
1 1

0 1

 (79)

=

cos
(
lp,SL
√
k
)
−
√
k sin

(
lp,SL
√
k
) [

1√
k
−
√
k
]

sin
(
lp,SL
√
k
)

+ 2 cos
(
lp,SL
√
k
)

−
√
k sin

(
lp,SL
√
k
)

cos
(
lp,SL
√
k
)
−
√
k sin

(
lp,SL
√
k
)


(80)
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We can do the same again, letting the elements on the diagonal equal to −1. Inserting

the plasma lens radius lp,SL, we get the plasma lens strength to be

k = 3.69 1/m2 (81)

We see that the plasma lens strength here is similar to the thin lens approximation,

4/m2, which is a good sign. We insert the calculated lens strength in the formula for the

plasma lens strength, Eq. 15, and solve for the corresponding current Ip for such a lens.

Ip =
2EπR2

pk

ecµ0

(82)

⇒ Ip,SL = 9.50 kA (83)

The current for the thin lens approximation, will similarly be 10.3 kA. We have in

other words a relative difference of 8.5%. We can look at the Acceptance map and final

phase space, if we use this single lens compared to the multiple lens configurations above.

We should get a mirror of the initial phase space, as long as x << x′.

This seems to not be the case if we look at both the Acceptance map and the final

beam in Fig. 21 and Fig. 22 respectively. We see that the Acceptance Map seems to only

depend on a given α, while we observe the same phase space as in Fig. 18 in the phase

space, only rotated by an angle.

It seems our theoretical results for thin lenses are similar to that with the thick lenses.

We will not manage to refocus α with this design, since the transverse positions can not

be said to be from a point source. If we then calculate the final beam values, we see

exactly this
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σx,SL = 104 µm (84)

εx,SL = 0.0149 mm mrad (85)

αx,SL = −1.46 m (86)

βx,SL = 0.725 m (87)

NSL = 100% (88)

The thick lens have kept the deviations of the particle positions, but not for the trans-

verse momenta. The core would still be focused correctly, since we have a small difference

of transverse position here. We can see this in Fig. 22; the core is only rotated by an

angle, and have not changed form.

4. Conventional quadrupoles

For comparison, we should also look at the case with conventional quadrupole instead

of plasma lenses. Here we shall only focus only in one transversal dimension. Since

quadrupoles has no axzially symmetric focusing effect, as the plasma lens has, the total

length for a quadrupole lattice will necessarily be longer than the result here. It is there-

fore only a lower limit, an indication of the amount of space we definitely need.

We use the quadrupoles of similar order as used in the CLIC test-facility [25], letting

the gap between each quadrupole to be as long as the quadrupoles themself. Resulting

parameters to find the lower limit for conventional quadrupoles are then:

Lq = 1 m (89)

gq = 100 T/m (90)

Rq = 10 cm (91)

We do the same trick again for the two quadrupoles in the middle, change the length

such that we have α = 0 between them. We end up needing 8 quadrupoles, where the

two quadrupoles in the middle will have a length of around 62 centimeters. This will give
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FIG. 22: The final beam after a single high current lens, s = 1.5 meters of beam line.

On the left the phase space is plotted, while on the left we see the final longitudinal

distribution. The limits on the axes are from the initial beam in Fig. 14. We observe a

rotated phase space compared to the initial phase space, but the longitudinal

distribution seems to be similar.

FIG. 23: The final beam when we used quadrupoles instead of plasma lenses, resulting

in total a beamline of length s = 17 meters. On the left the phase space is plotted, while

on the right we see the final longitudinal distribution. The limits on the axes are again

from the initial beam in Fig. 14.
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in total 17 meters, and a phase space as shown in Fig. 23.

If we instead had calculated to get α = 0 in the middle of a quadrupole, we could

probably reduce this length by a few meters. We can for this design also calculate how the

beam has evolved right before we enter the plasma cell for plasma wakefield acceleration.

We have here

σx,q = 105 µm (92)

εx,q = 0.0149 mm mrad (93)

αx,q = −0.420 m (94)

βx,q = 0.744 m (95)

Nq = 100 % (96)

The only difference from the designs with multiple lenses is a very different α, while

other numbers are very similar to that of the initial cut beam.
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C. Nonlinearity considerations

As dicussed in Section II B 1, magneto-hydrodynamics simulations [13] show that active

plasma lenses are expected to have a nonlinear component of the magnetic field due to

nonuniform current density. In this section we investigate how the expected nonlinearities

are affecting the performance of the interstage discussed previously (where linear fields

were used).

We apply the nonlinear focusing term, expressed by Eq. 16 to the interstage designs

discussed above. We then found this current density by solving for the heat flow equation,

d2u (x)

dx2
+

1

x

du (x)

dx
= −u (x)3/7 (97)

where x is the ratio of r to Rp. This can the be inserted into Te = Au2/7, using the

same numerical constants as in the paper[13], mainly by u0 = 0.087 in the center of the

lens. We then used the current distribution to get a set of sorted bins for the azimuth

magnetic field gradient, as defined in Eq. 14.

We then sorted the beam in absolute value of r, and focused each bin by a correspond-

ing gradient in that range (from 0 to R). The current was changed such that the gradient

at the center of the plasma lens was the value from the uniform current, giving a decrease

of 35.7%.

For all interstage designs, the nonlinear situation will not change β drastic, while α

will increase in for the multiple lens design. For the single lens the opposite is the case

for α when we introduce nonlinearities, here a single high current lens will have a much

better preserved beam, as shown in Table VI.
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We can also see this effect is we look at the acceptance map for the lattice designs

for multiple plasma lenses. The nonlinear version of these are shown in Fig. 24, to be

compared to Fig. 17 and 20 respectively. It seems that the constraint on the transverse

momenta has been lowered, while the the accepted positions has increased instead. The

cross-section has however sunk, and this explain the loss of more particles when we include

the nonuniformity of the current.

We see from Table VI, that the survival as decreased by 10% if we use more than one

plasma lens. Probable are these the particles at the outer phase space, and not the core

of the beam. While the survival rate and α are not affected a lot by the nonlinearity

for both the initial and short design, this is not the case for β and the self-modulation.

Similarly for the single lens, the bunch size will increase with nonlinearity. This is easily

understood, the particles outside the core are influenced by a weaker magnetic field, and

are therefore not focused enough.

The opposite is the case for the inner core, which can explain why the degree of self-

modulation will not be preserved when we introduce nonlinearity. In both cases with

multiple lenses the degree of self-modulation is halved. This is a bit better when we uses

fewer plasma lenses in the short design, while for a single high current lens the difference

is not that drastic. It seems that an increased plasma lens length will not improve the

result by much.
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FIG. 24: The acceptance map for both designs with multiple lenses, initial and the

short design. Here we have taken into account nonlinearity. They should be compared

to the acceptance maps in Fig. 17 and 21 respectively. We observe that that accepted

transverse momenta has been reduced.
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TABLE VI: All the configurations with nonlinear consideration. The first two are the

multiple lens configurations from Table V, and the single lens from the calculation above.

Included is a focusing lattice with quadrupoles for comparison. The relative changes are

calculated in relation to the initial values in Eq. 47-50. Only the short design and the

single lens are within ten meters. We also see that when we include nonlinearities, the

designs with multiple plasma lenses will not preserve the self-modulation.

Configuration Initial Design Short design Single lens Quadrupoles

Current Ip 1.012 kA 1.005 kA 9.502 kA None

Max radius Rp 1.604 mm 0.9759 mm 0.6251 mm 10 cm

Lenses/Quads needed 58 20 1 8

Total length s 19.2 m 10.7 m 1.5 m 17 m

Survival (uniform fields) 94.2% 94.0% 99.1% 100%

Survival (nonlinear fields) 80.9% 83.0% 99.1% 100%

Relative change β 0.233 0.136 0.001 0.217

Relative change β (nonlinear) 2.37 1.59 0.185 0.217

Relative change α 1.01 0.737 -5.55 - 2.97

Relative change α (nonlinear) 1.29 0.846 -2.16 -2.97

Self-modulation N 100% 100% 100% 100%

Self-modulation N (nonlinear) 56.9% 62.2% 97.9% 100%
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V. DISCUSSION AND CONCLUSIONS

Let us the recap the problem in this thesis. Since we need to self-modulate the proton

beam before the acceleration stage, we need two separate plasma cells in the AWAKE

beam line. This creates a gap between them, the interstage, where we need to refocus the

proton beam again. The gap length should be as short as possible, due to limited space in

the experimental area. Regular magnetic quadrupoles do not give a satisfactory solution.

Is it possible to use active plasma lenses instead, while still preserving the quality of the

proton beam?

While plasma lenses do have several advantages compared to quadrupoles, mainly

axisymmetric focusing and possibilities for very high gradients, the plasma nature in

itself creates new challenges. We have looked at two different sources of nonlinearity in

this thesis:

• Nonlinearity from the induced wakefield of the charged beam itself

• Nonlinearity from a non-uniform current in the plasma lens

A. The effects of wakefield in plasma lenses

The wakefield he wakefield depends on the parameters of the charged beam passing

through the lens. The effect can be estimated using linear theory. As part of an Oslo-

experiment to further quantify the effect of wakefields at the CLEAR test-facility at

CERN, we performed extensive wakefields calculations for CLEAR.

For the experiments at CLEAR itself, we found that we will be able to both measure

the situations where wakes will have a significant effect or not on the beam.

We also verified our calculations of linear wakefield theory with a 3D particle-in-cell code,

QuickPIC. While the PIC results at towards the boundaries were not fully conclusive due

to noise that were not fully understood, the results close to the axis, which is our region

of interest, show excellent correspondence with the linear theory.

We also used QuickPIC to verify and confirm that the beam would not focus and

significantly modify the wake as the beam propagates through the plasma lens, giving
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further confidence in our linear wake calculations.

The linear wake calculations were finally applied to the case of the AWAKE proton

beam. We found that for a plasma lens within 1 millimeters, we can neglect the wakefields

entirely.

B. Lattice designs for the AWAKE interstage

We looked at different designs for the interstage to see whether the plasma lenses are

worth to use instead of quadrupoles. We ended up with four different solutions,

• A design with the lenses of today, totaling up to 19 meters

• A possible design with better, longer lenses, which reduced the beam line to 11

meters

• A single high current lens instead,

• And an estimate for how long a quadrupole design would be, to at least 17 meters

The initial design and the short design give nearly the same result when we look at

the relative change of phase space as well as the amount of particles surviving the lattice.

However there are problems with the plasma lenses that are only ten centimeters long,

we ended up with twice the length compared to a future possible design. The number of

lenses are also probably too much to be worth it, especially when many of these lenses

has a radius over 1 millimeters. We will therefore have problems with wakefields as well

for this design.

How did we fare if we only increased the current instead, by an order of magnitude?

While the plasma lens radius and the total beam line length are good, we do however have

some problems with the beam itself. While we assumed a situation where the transverse

position could be assumed smaller than the momenta, this is not the case here. We can

see this for how the relative change for α is way off compared to all other designs, even

for the quadrupole design. There are however one thing it improves from the lattice with

multiple lenses, the survival rate have increased.
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It seems that the survival rate will not change much after the first plasma lenses, and

it seems that we get a better beam quality if we increase the current than the plasma

lens. If we then increased the current for the short design with future, probably plasma

lenses, we could then decrease the total length as well as the survival rate would increase

since the number of lenses needed would decrease.

C. Nonlinearities from non-uniform current

We then replaced the model with a radially uniform current by a more realistic model

based in magneto-hydrodynamic simulations. From the acceptance map, we see that this

change will reduce the highest possible transverse momenta. The reduction seems to be

a constant relation regardless of the amount lenses or their length. So our argument

that we need to use lenses with higher values than currently available for the AWAKE

interstage seems still to hold.

When also taking the degree of self-modulation into account, this argument becomes

stronger. The only designs that are affected by the non-linearity negatively are when

we have multiple plasma lenses. In both these cases the degree of self-modulation are

halved, while it is constant for the single lens design, since it has only one lens. It does

not seem to depend strongly on the amount of plasma lenses, the difference between the

two proposals are only a few percent.

D. Conclusion

The interstage between the two plasma cells at AWAKE for the second phase can’t be

longer than around ten meters, before we get problem either upstream or downstream.

For all different options studied, only lenses based on improved technology with respect

to today’s state of the art are interesting. If we remove our assumption about uniform

current, the improved lenses would not preserve the amount of self-modulation. While we

could neglect the wakefields for the stronger plasma lenses, it seems that the only way to

use plasma lenses for a focusing lattice is if we could increase the currently available cur-

rent, as well as increasing their length. If a combination of these two improvements could

be achieved, the plasma lenses could possibly be a solution for an AWAKE interstage.
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