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SUMMARY OF THESIS 
Background: Wastewater-based epidemiology (WBE) is a novel approach in drug use 

epidemiology, which may provide more objective estimates of illicit drug use in a 

community. Simple summary statistics and specification tests have typically been used 

to analyse WBE data, comparing possible differences between weekday and weekend 

loads. Such standard statistical methods may, however, overlook important nuanced 

information in the data. Functional data analysis (FDA) is a statistical framework 

specifically developed for analysing curve data, and could potentially increase 

information extraction from temporal WBE data.  

Aims: The overall aim of this thesis was to explore the possibility and usefulness of 

applying advanced statistical methods to WBE data to extract more information on the 

weekly temporal pattern of drug loads in European cities compared to more traditional 

statistical methods. We also compared various advanced statistical methods and 

investigated the possibility of using FDA to distinguish between what could be 

considered the proper medical use and the recreational use of prescription drugs. 

Methods: Raw sewage samples were collected from sewage treatment plants (STPs) for 

each city over the observational period. Samples were time- or volume-proportional and 

the concentrations of the investigated drugs were measured by analysing the selected 

drug excretion residues (target residues) in wastewater. In all papers, the main temporal 

features of the selected drugs were extracted using functional principal component 

(FPC) analysis. In papers I and II the individual cities’ scores on each of the temporal FPCs 

were then used as outcome variables in multiple linear regression analysis with various 

city and country characteristics as predictors. In paper III the weekly temporal patterns 

of the drug were further investigated comparing FPCA using both Fourier and B-spline 

basis functions with three different smoothing parameters, along with traditional 

principal component analysis (PCA) and wavelet-PCA (WPCA) with different mother 

wavelets and shrinkage rules. The stability of FPCA was explored through bootstrapping 

and analysis of sensitivity to missing data. In paper IV the weekly component for each 

drug over the month was extracted using generalized additive models (GAM) with 
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cyclicity modelled by trigonometric functions, before applying functional principal 

component analysis (FPCA).  

Results: The three first FPCs explained more than 99% of the temporal variation in all 

analyses. The first component (FPC1) represented the level of the drug load, while the 

second and third temporal components represented the level and the timing of the 

weekend peak/peaks. AUC was highly correlated with FPC1, but other temporal 

characteristics were not captured by simple summary measures. Functional analysis of 

variance (FANOVA) was less flexible than the FPCA-based regression, and even showed 

concordance results. The extracted temporal features using PCA, FPCA and WPCA were 

consistent, but FPCA with Fourier basis and common-optimal smoothing was the most 

stable and least sensitive method to missing data. The second FPC (FPC2) was the most 

important temporal feature when investigating the recreational use of prescription 

drugs. 

Conclusions: The findings show that using FDA on WBE data extracts detailed 

information about drug load patterns during the week which are not identified by more 

traditional statistical methods. Regression based on FPC results is a valuable addition to 

FANOVA for estimating associations between temporal patterns and covariate 

information. Moreover FPCA is a flexible and analytically tractable method for analysing 

temporal changes in WBE data, and is robust to missing data, but FPCA with Fourier 

basis functions and common-optimal smoothing parameter is the most accurate 

approach when analysing WBE data. 
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SAMMENDRAG [Norwegian] 
Backgrunn: Epidemiologi basert på avløpsvann (EBA) er en ny metode innen forskning 

på bruk av narkotiske stoffer, og kan bidra til mer objektive beregninger av mengden 

rusmidler som benyttes i et område. Enkel deskriptiv statistikk og signifikanstester har 

vanligvis blitt brukt til å analysere data fra EBA, f.eks. gjennom å sammenligne mengder 

målt i avløpsvannet på henholdsvis ukedager og i helgene. Slike enkle statistiske 

metoder kan imidlertid overse viktig nyanser i dataene. Funksjonell dataanalyse (FDA) er 

et statistisk rammeverk spesielt utviklet for å analysere kurvedata, og kan potensielt øke 

informasjonsmengden fra EBA-data. 

Formål: Det overordnede målet med avhandlingen var å undersøke hvorvidt mer 

avanserte statistiske metoder, spesielt FDA, kunne hente ut mer informasjon fra EBA-

data. Vi brukte FDA for å avdekke mønstre i de ukentlige data  for mengden narkotiske 

stoffer målt i avfallsanlegg ulike steder i Europa, og sammenlignet dette med resultatene 

fra mer tradisjonelle statistiske metoder. Ulike avanserte statistiske metoder for 

temporale data ble også sammenlignet. Til sist har vi brukt FDA for å undersøke om vi 

kan påvise rekreasjonsbruk (misbruk) av reseptbelagte legemidler. 

Metode: Prøver fra kloakken ble samlet inn fra kloakkrenseanlegg for ulike byer i løpet 

av en observasjonsperiode. Prøvene var tids- eller volumproporsjonale, og 

konsentrasjonene av de undersøkte medikamentene ble målt ved å analysere utskilte 

rester eller metabolitter av utvalgte medikamenter i avløpsvannet. I alle artiklene har de 

viktigste tidsmessige trekkene ved de utvalgte legemidlene blitt hentet ut ved hjelp av 

funksjonell prinsipalkomponentanalyse (FPCA). I artikkel I og II ble de enkelte byenes 

skårer på hver av de temporale hovedkomponentene, de funksjonelle 

prinsipalkomponentene (FPCene) brukt som avhengig variabel i multippel lineær 

regresjonsanalyse med diverse by- og nasjonsegenskaper som forklaringsvariabler. I 

artikkel III ble de temporale ukemønstrene i bruken av stoffene undersøkt videre ved å 

sammenligne resultatene fra FPCA ved å benytte både Fourier og B-spline 

basisfunksjoner med tre forskjellige glattingsparametere, sammen med tradisjonell 

prinsipal komponentanalyse (PCA) og wavelet-PCA (WPCA) med ulike mor-wavelets og 

krympingsregler. Stabiliteten til FPCA på avsløpsvanndata ble utforsket ved hjelp av 
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bootstrapping og sensitivitetsanalyse for missing. I artikkel IV ble den gjennomsnittlige 

ukekomponenten for flere legemidler i løpet av en måned hentet ut ved hjelp av en 

generalisert additive modell (GAM) med ukemønsteret modellert ved hjelp av 

trigonometriske funksjoner, og FPCA benyttet videre på dette. 

Resultater: I alle artiklene forklarte de tre første FPCene mer enn 99% av den temporale 

variasjonen mellom de ulike byene i dataene. Den første komponenten (FPC1) 

representerte i hovedsak nivået av medikamentbelastningen, mens den andre og tredje 

komponenten representerte nivået for og tidspunktet til en topp i løpet av helgen. 

Arealet under kurven (AUC) var sterkt korrelert med FPC1, mens andre temporale 

karakteristika (FPC2 og 3) ble ikke fanget opp av enkle statistiske analyser. FPC2 var det 

viktigste temporale karaktertrekket når man undersøkte rekreasjonsbruk av 

reseptbelagte legemidler. Funksjonell analyse av varians (FANOVA) var mindre fleksibel 

enn den benyttede FPCA-baserte regresjonsanalysen, men viste ellers tilsvarende 

resultater. De temporale mønstrene hentet ut ved hjelp av PCA, FPCA og WPCA var i 

overenstemmelse med hverandre, men FPCA med Fourier basis og felles glatting var den 

mest stabile metoden.  

Konklusjon: Arbeidene viser at ved å bruke FDA på data fra EBA henter man ut langt mer 

detaljert informasjon om bruk av rusmidler i løpet av en uke enn det som kan 

identifiseres med mer tradisjonelle statistiske metoder. Resultatene viser videre at 

regresjonanalyser basert på FPC-komponenter gir verdifullt tilleggsinformasjon utover 

det FANOVA kan gi for beregning av assosiasjoner mellom tidsmønstre og 

forklaringsvariable. FPCA er en fleksibel og analytisk metode for å analysere temporale 

variasjoner i data fra EBA, og er robust ved missing. FPCA med Fourier basisfunksjoner 

og felles optimal glattingsparameter anbefales når man skal analysere data fra EBA. 
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1. INTRODUCTION 

1.1 Background 

According to the EMCDDA’s latest report on the trends and developments of illicit drugs 

in Europe [1], approximately a quarter of the adult European population has, at some 

point in their lives, tried an illicit drug. It has been estimated that 78.9 million Europeans 

have tried cannabis at least once during their lifetime, 15.6 million cocaine, 12.3 million 

MDMA and 12.0 million amphetamines. The use of heroin and other opioids is relatively 

rare, but these drugs continue to be associated with most of the morbidity and mortality 

in Europe.  

However, drug use is also characterized by different patterns of consumption associated 

with different types of harm; from single experimental use to habitual and dependent 

use. Some of today’s illicit drugs were used as medicines for their therapeutic potential 

when first discovered and introduced on the market [2]. This may be one of the reasons 

why medicinal drugs are also a public health concern and are monitored by 

epidemiologists to identify any abuse potential in addition to their therapeutic effect.  

1.2 The epidemiology of illicit drug use 

In the European Union and in Norway, cannabis is the most used illicit drug and is the 

most frequently reported drug among patients who enter into drug treatment for the 

first time [1]. The high level of use, especially in south Europe [3] may be a direct 

consequence of the more liberal view in recent years on the drug in some European 

countries. Cannabis is mostly associated by users with feelings of mild euphoria, 

relaxation and intensification of ordinary experiences such as engaging in sex, eating, 

watching movies and listening to music [4], making it the preferred drug among 

adolescents and young adults for recreational purposes [5]. The drug is associated with 

increased risk of psychiatric disorders, such as schizophrenia [6] and psychotic symptoms 

[7], creates anxiety and panic among naïve users and dependence over time for chronic 

users [5].  



- 2 - 

 

Cocaine is the second most used illicit drug in Europe and the first among stimulants, 

followed by amphetamines (amphetamine and methamphetamine) and ecstasy. While 

cocaine is produced from the leaves of the coca bush in Bolivia, Columbia and Peru, and 

imported in Europe mainly as cocaine powder, amphetamines are synthetic stimulants 

mainly produced in small laboratories in Belgium, the Netherlands and the Baltic States. 

Ecstasy in Europe has been mainly MDMA which is chemically related to amphetamine 

and is produced almost exclusively in the Netherlands and Belgium. Cocaine, 

amphetamines and MDMA are central nervous system drugs that cause euphoria, 

increase confidence, sociability and energy, making them appealing for abuse especially 

in night life-settings [8-10]. These drugs are associated with a wide range of adverse 

effects such as depression, panic attack, mood swing, feelings of paranoia and anxiety 

problems. Moreover, stimulant drug users are more likely to combine the use of these 

drugs with anti-depressants such as opiates or benzodiazepines due to the sleeping and 

eating problems which they usually suffer as consequence of stimulant use [11, 12].  

Even though heroin is less prevalent than other drugs in Europe, harmful consequences 

follow its use [13]. Heroin remains the most commonly used opiate and the most 

addictive substance currently available on the illicit market [14]. In the European Union 

the number of heroin users was estimated at approximately 1.3 million in 2013 [1]. 

Injection remains the preferred route of administration of this drug leading to the 

greatest share of drug-related morbidity and mortality in Europe [1]. Injecting heroin 

users are among those at highest risk of overdose, violence and infections such as HIV 

and hepatitis C [15].  

1.3 The epidemiology of medicinal drug use 

Many medicinal drugs can also be abused and used for recreational purposes. The 

increasing use of prescription drugs for diseases like non-malignant pain [16, 17], anxiety 

disorders [18] and attention deficit hyperactive disorders (ADHD) [19] lead to the 

increase of the abuse of such drugs. The abuse of prescription drugs can roughly be 

divided into therapeutic overuse of the drugs by patients, or use by others than patients 

for recreational purposes.  
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Methadone is a synthetic opioid medication used to treat chronic pain [20]. First 

synthesized before World War II [21], today, methadone is mostly known as affective 

medication for the treatment of opioid dependence [22]. However, a number of studies 

have shown that methadone can also be abused [23, 24]. There are patients who try to 

forge prescriptions in order to sustain their dependence and abusers without a 

prescription who buy the drug on the black market or have direct access to a patient’s 

prescriptions.   

Benzodiazepines are sedative drugs introduced in the late 1950s to treat anxiety and 

related disorders [25]. However, benzodiazepines have different potency, and the 

dosage can impact on the use of such drugs as anxiolytics, hypnotics or antiepileptics [2]. 

Benzodiazepines are popular among drug users to prolong intoxication, to prevent 

withdrawals [26], to help with sleep, to counteract feelings of anxiety, and to limit the 

quantity of their main substance of abuse [27]. 

Prescription stimulants are also abused. Individuals may use stimulants to increase 

cognitive abilities and performances, eg, at work or studying [28]. Among those drugs, 

methylphenidate is the mostly known central nervous system stimulant within the 

amphetamine-like drugs [29], used to treat patients with ADHD and narcolepsy [19, 30].  

There are several reasons which may explain the abuse of prescription drugs. 

Prescription drugs may be perceived as being more socially acceptable and safer than 

illicit drugs [31], they avoid the stigma associated with the use of illegal substances, and 

they are easier to obtain especially for those who are uncomfortable with the risks of 

obtaining illicit substances from a drug dealer [32]. 

1.4 Epidemiological methods for drug use research 

Drug use epidemiology is a challenging area of epidemiology. The main challenge for 

epidemiological research is that substance use is a stigmatised and hidden activity, some 

individuals do not like to report their use of drugs and even if they do, the extent of the 

use may be inaccurate. Others are unwilling to report their use because of possible 

negative consequences and illegal implications associated with the use of illegal drugs. A 
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drug-related offence can lead to significant time in prison, probation and a number of 

legal implications that can follow the users for the rest of their life. 

There may also be some definition and terminological challenges. The distinction 

between licit and illicit substances could be problematic when comparing different 

countries; some substances are illegal world-wide, while others are illegal only in some 

countries. The boundaries between use and abuse may also be difficult to define; a drug 

may not be recognised as a substance of abuse until it is shown to create levels of abuse 

and dependence similar to other substances of abuse [33].  

When it comes to epidemiological or health-related research, population-based surveys 

have been considered the principal method of investigation, against which other 

methods are compared [34, 35]. They have the advantage of using generally 

standardised methodology, and can provide information on large populations. However 

population surveys targeting different population i.e. general population, students, 

young people, drug users, and surveys carried out in different settings such as 

communities, schools, prisons, drug-related treatment centres and on the street, have a 

number of limitations. They may have poor response rates due to the illegal nature of 

illicit drug use and the social stigma often associated with it. Many respondents may 

have motivations to under-report deliberately, or deny use of these substances and 

withdraw consent for further studies [36]. Privacy, face-saving and possible legal 

implications are also major causes of reporting bias and low response rate. Survey 

questions are prone to recall bias, due to inaccuracies related to users’ memory on the 

frequency of substance use or on their ability to distinguish between different 

substances available on the illicit market. Furthermore, questionnaires often used in 

surveys data may use different wordings when referring to a specific drug compared to 

those in common use in the local community [37] causing bias of unknown direction and 

magnitude. Lastly, population surveys can be expensive, time-consuming, since the 

results can be available only after several years the survey is conducted and may miss 

marginal groups of drug users such as patients in hospitals and prisoners [34]. Therefore 

they may miss information on the extent of drug use problems in particular communities 
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including the type of substances and the population groups where more harm is being 

produced or is likely to be produced.  

Routinely collected data from different agencies including hospital emergency 

departments, social agencies, treatment programmes, general and psychiatric hospitals, 

health services and law enforcement data [38-42] are also widely used in drug use 

epidemiology. These data give essential information on more problematic groups of 

drug users, but are not always easy to access since they usually require ethical approval 

from dedicated agencies, may be expensive, may be based on routine questions and 

may differ considerably from country to country making geographical comparisons 

difficult. They may also be highly subject to policy changes, for example, an increase in 

the law enforcement on drug-related offences in a city may yield an increasing number 

of reported drug-related crimes which may not necessarily indicate an increase in drug 

use. Further, such surveys are not population-based since they are targeted towards 

selected groups, leading to selection bias. Prevalence rates of drug use for those groups 

are likely to be higher than those for the general population. Also they may include 

persons who may have used the drug once or they could have multiple records for the 

same person as result of multiple crimes or multiple visits to emergency departments. 

Furthermore data gathered from treatment facilities and drug-related programmes may 

also underestimate prevalence because of limited places in treatment and the fact that 

results depend on the existence of the treatment programme itself [34, 35].  

Crime statistics such as drug-related offences, drug production and seizures data are 

also used in drug use epidemiology [42-44], but in the same way as data gathered from 

treatment facilities, these data are targeted toward selected populations, they are prone 

to selection bias and may overestimate prevalence of use [35].  

When conducting epidemiological research it is important to consider that the use of a 

drug is not spread evenly across a population. There are individuals who take the drug 

on a regular basis, while others may only use the drug on particular occasions. For this 

reason, a single epidemiological method may not be appropriate to investigate the 

extent of the drug use in a community, while a combination of several methods may 
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provide a more complete picture of the extent of the drug problem [34]. In the light of 

the above, there is need for new epidemiological methods in drug-related research 

which can overcome problems related to traditional methods and may be objective, less 

expensive, easy to access and available in a short-time. 

1.5 Wastewater based epidemiology 

The term “wastewater-based epidemiology” (WBE) was coined in recent years following 

the use of wastewater analysis (WWA) to identify the collective drug use in a specific 

community [45, 46]. WWA is based on the chemical analysis through mass spectrometry 

of wastewater samples typically collected from the inlet of sewage treatment plants 

(STPs), looking at the presence of drugs or their metabolites in those samples [47, 48]. 

Mass spectrometry is a powerful analytical chemistry tool, used to identify compounds 

and their concentration in a specific sample, and has played  an important role in 

environmental forensics to identify previously unknown pollutants in the environment 

[49]. However as in many other research fields, the real potential of mass spectrometry 

as a basic tool to be used in other research areas was not entirely understood. The idea 

of ‘wastewater analysis’ using mass spectrometry derived from Daughton’s research on 

monitoring the environmental pollution of surface and sewage water caused by the use 

of pharmaceutical products and therapeutic drugs by humans. The idea was that most of 

the chemicals we swallow daily are metabolized by our body and are excreted 

unchanged or as a mixture of metabolites in urine and faeces, thus ending up in the STP 

(Sewage treatment plant). Daughton hypothesized the possibility of screening sewage 

samples collected from an STP for estimating the collective drug consumption in a 

specific community by measuring the concentration of drug metabolites found in those 

samples [49, 50].  

In 2005 Zuccato and his group in Italy [45] implemented the approach using cocaine as a 

model drug. They measured the amount of cocaine and its main metabolite, i.e. 

benzoylecgonine, in the largest Italian river (the Po) in Pavia and found that an average 

of 4 kg of cocaine per day was found during the sampling period. Later the methodology 

was extended to other drugs such as opiates, cannabis and amphetamines [46, 47], 
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comparing the concentration of the drugs in three different cities located in three 

different countries i.e. Milan (Italy), Lugano (Switzerland) and London (United Kingdom). 

In 2007 the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) held 

the first European meeting on WWA opening up to this new and challenging approach 

for drug use epidemiology. The WBE era had just started and the approach had been 

quickly implemented not just for illicit drugs [45, 46, 51-60], but also licit substances [61-

64] and prescription drugs [65-69] with promising results at local, national and 

international levels. Reviews of the methodology and the analytical challenges have also 

been addressed [48, 70-72]. Several efforts have been made to improve the reliability of 

the method by addressing all the uncertainty factors [73, 74]; the sampling procedure, 

the frequency of sampling and the sampling mode [70, 75, 76]; the stability of drugs and 

their metabolites in the wastewater during their way to the place of sampling and during 

the storage of the collected samples [77-79]; the back-calculation of drug use [73, 80], 

the estimated population contributing to the wastewater treatment plant (WWTP) [81, 

82] and the issues related to the chemical analyses such as the estimation of the limit of 

detection (LOD), the limit of quantification (LOQ) and the excretion rate of each 

substance [73]. 

WBE has been viewed by researchers as a potentially valuable alternative to standard 

epidemiological methods to evaluate the extent of drug problems in a specific 

community. By measuring the target drugs or metabolites in wastewater it is possible to 

estimate the amount of drug consumed by the population served by the WWTP [46-48]. 

WWA provides close to real-time estimates, in the 24 hours before the sampling is 

carried out, overcoming the costs and long times often associated with standard 

surveys. Moreover, as the use of illicit drugs is linked with a high-risk lifestyle and is 

perceived by the general population as socially unacceptable, users tend to underreport 

their use or decline to answer truthfully [83, 84]. Self-report bias and low response rate, 

which are the main flaws of standard surveys, are overcome by the objectivity of WWA.  

WBE also allows for spatial comparisons at national or international level. In Europe, 

WBE has been applied to compare the use of illicit drugs such as cannabis, cocaine, 

amphetamine, methamphetamine and ecstasy (MDMA) in different European cities 
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simultaneously [85, 86]. The first monitoring campaign conducted in 2012 included 19 

European cities in 11 countries [85] and two years later a monitoring campaign of about 

42 European cities from 21 countries was carried out [86]. These comparisons have 

provided a whole picture of drug use problems in Europe. However, standard 

specification tests and simple summary measures which are often the preferred 

statistical methods when analysing WBE data are rather simplistic and, since they do not 

take the intra-correlation structure of the data sets into account, may lead to wrong 

conclusions. As in many other research fields [87], there is a need for statistical methods 

able to use the data properly, and extract underling features which may be lost with 

traditional statistical methods. 

1.6 The use of advanced statistical tools 

Case-control, cross-sectional, time-series or longitudinal studies are among the most 

common study designs in epidemiological research. Nowadays researchers have access 

to multiple sources of data, building up data sets with complex correlation structures. 

How to analyse such types of data best is, however, not always clear and several 

comparisons between traditional statistical methods and more advanced statistical 

approaches, as well as improvements of the latter, have been published [87-96].   

Even though statistical methods are continuously evolving, their application into medical 

research is often slow. This may be because in many medical research fields the analyses 

are performed by researchers whose primary field of expertise is outside of statistics. 

While simple statistical methods may, in some cases, work well and have the advantage 

that they are easily understood and used by most quantitative scientists, such methods 

are problematic if they do not interpret the data properly or, worse, lead to the wrong 

conclusions. Inappropriate statistical methods are often chosen for the complex 

correlation structures of many data sets. 

The advantage of using more advanced, and more adequate, statistical methods has 

recently been shown in the analysis of 2-h glucose test data [87, 88] and foetal 

movement chart data [89-91]. A study on pregnant women demonstrated that more 

advanced statistical methods, such as functional data analysis (FDA), of glucose curves in 
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early pregnancy was superior to traditional analyses of oral glucose tolerance test data, 

in providing important temporal information in terms of differentiating between women 

who did and did not develop gestational diabetes mellitus later in pregnancy [87]. In a 

following study, the authors demonstrated that the glucose curve characteristics 

extracted by FDA, and interpreted clinically as general glucose level during pregnancy, 

postprandial glucose peak, and third trimester glucose level, were found to have 

significant impact on birth weight, neonatal percentage of fat and C-peptide in cord 

blood, whereas this important information would be lost in traditional simple summary 

measures [88]. Another study on a cohort of pregnant women aimed to identify the 

main individual temporal patterns in foetal movement counting data using FDA. FDA 

successfully captured clinically meaningful individual temporal patterns between women 

and indicated that a decrease in foetal movement data was a potential marker of risk for 

the baby [89]. In two following studies the authors explored the temporally more 

flexible wavelet principal component analysis (WPCA) on the same data set, and were 

able to detect the presence of spikes around the time of decreased foetal movement 

data which were missed by functional principal component analysis (FPCA) [90, 91]. 

These studies have demonstrated how appropriate statistical analysis is crucial for 

extracting important clinical information from temporal data that would be lost when 

using traditional statistical methods. Standard statistical methods were not able to 

differentiate between women who did and did not develop gestational diabetes mellitus 

later in pregnancy, were not able to show that general glucose level during pregnancy, 

postprandial glucose peak, and third trimester glucose level had significant impact on 

birth weight, neonatal percentage of fat and C-peptide in cord blood or identify that a 

decrease in foetal movement data during pregnancy was a potential marker of risk for 

the baby.   

FDA is a statistical framework developed for analysing data representing curves [97-

100]. Introduced by Ramsay, FDA has since been applied in different research fields with 

promising results. When applying FDA, instead of single data points, the entire temporal 

curve i.e. the observed time period of each drug, is considered as a single unit of 

observation allowing for feature extraction from a continuous process. Within the 
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medical research field FDA has given novel insights of clinical relevance in the analysis of 

magnetic resonance imaging [101], renal anaemia [102], human movement [103], foetal 

movement [89], glucose regulation [87, 88] and behavioural processes [104] data. A 

review on the advantages of this statistical approach has been published [105].  

Thus, we decided to explore the suitability of FDA for investigating temporal patterns of 

drug use detected from WWA. We hypothesized that while some information, such as 

the general level of a drug in the wastewater, can be extracted using traditional 

statistical measures such as the area under the curve (AUC) and the mean load 

throughout the observed period, they cannot help to identify temporal features of the 

use of the drugs throughout the time period so those features may be lost when using 

standard statistical approaches.  

Within the FDA framework several advanced statistical methods, such as FPCA and 

functional analysis of variance (FANOVA) [97-99], are available and the best FDA method 

to analyse WBE data is unclear. Technical aspects of the FDA approach, such as the 

choice of the basis functions to model the underlying process properly, the choice of the 

smoothing parameter to remove random noise and the robustness of the approach to 

missing data might have an impact on the analytical results and thus needs to be 

investigated. 
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2. AIMS OF THE THESIS  

2.1 General aim 

The overall aim of this thesis was to explore the possible usefulness of using advanced 

statistical methods on WBE data, in order to extract more information on the weekly 

temporal pattern of daily drug loads in Europe. 

2.2 Specific aims 

Specifically, the aims of the studies included in this thesis were: 

1. To study the suitability of FDA in the analysis of WBE data, by comparing results 

obtained using FDA with those obtained using more traditional statistical 

methods. [Paper I] 

2. Use FDA to uncover the main temporal features of the pattern of use of drugs 

throughout the course of the observed period, looking at the concentration of 

the parent compounds or metabolites ending up in the wastewater treatment 

plant. [Paper I, Paper II, Paper IV] 

3. To compare different potentially suitable statistical methods for the analysis of 

WBE data. Further, to investigate the stability of FPCA regarding choice of basis 

functions and missing data. [Papers I and III] 

4. To apply the FPCA approach to prescription drugs, particularly to see if the 

method could distinguish between what could be considered the proper medical 

use and the recreational use of those drugs. [Paper IV]  
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3. MATERIAL AND METHODS 

3.1 Source of data 

The papers presented in this thesis are all based on wastewater data sets.  

3.1.1 Paper I 

The paper was based on a WBE data set from 42 European cities [86]. Raw sewage was 

collected from the inlet of 47 STPs in 42 cities from 21 European countries, servicing a 

combined population of approximately 24.7 million inhabitants. Samples were collected 

from each location over seven consecutive days, in March 2013. For the purpose of the 

study only the concentrations of ecstasy (MDMA) and amphetamine in wastewater were 

considered. The daily mass loads were expressed in mg/10 000 

people/day.  Concentrations for each drug below the LOQ were replaced by LOQ/2 [70] 

if at least one day in the week had a concentration value above the LOQ. Cities with no 

measurements above LOQ were excluded. Four cities (9.5%) were excluded for MDMA 

and nine cities (21.4%) were excluded for amphetamine. The chemical analyses were 

conducted at each lab location.  

3.1.2 Paper II 

The study was based on wastewater data from 17 Italian cities collected during a one 

week monitoring campaign. Raw sewage was collected from the inlet of 17 STPs in 17 

Italian cities. Samples were collected repeatedly from each location over seven 

consecutive days, in November 2013. The concentration of cannabis, cocaine, heroin, 

MDMA, methamphetamine and ketamine were measured by analysing the selected drug 

excretion residues (target residues) in wastewater. The daily mass load was based on the 

original concentration (ng/L), and normalized by flow rate (L/day) and the population 

size of the catchment area (mg/10 000 people/day). The daily mass load over one week, 

of a specific drug, in a specific city i.e. 17 cities per six drugs, constituted the 102 

separate temporal data sets for the analysis. Cities with drug concentrations below the 

LOQ were excluded from the analysis. This resulted in a study sample of 92 separate 

temporal data sets for the study. All the chemical analyses were conducted at the Mario 

Negri Institute in Milan.  
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3.1.3 Paper III 

The paper was based on a WBE data set from 42 European cities [86]. Raw sewage was 

collected from the inlet of 47 STPs in 42 cities from 21 European countries, servicing a 

combined population of approximately 24.7 million inhabitants. Samples were collected 

from each location over seven consecutive days in March 2013. For the purpose of the 

study only the concentration of MDMA in wastewater was considered. The daily mass 

loads were expressed in mg/10 000 people/day. Four cities (9.5%) had no values above 

the LOQ and were excluded from the analysis. The resulting study sample for further 

statistical analysis consisted of 38 cities. The chemical analyses were conducted at each 

lab location.  

3.1.4 Paper IV 

The sewage samples were collected from an STP in Oslo, Norway. This STP processes 

sewage from a metropolitan and suburban population of approximately 580 000 people. 

An automatic wastewater sampler was used to collect 8-h composite samples during 

weekdays (Mon-Thu) and 6-h composite samples during weekends (Fri-Sun), starting on 

Monday 3rd February 2014 and ending on Sunday 2nd March 2014, resulting in a total of 

97 samples. The concentration of cocaine, amphetamine, methamphetamine, heroin, 

atenolol, paracetamol, metoprolol, citalopram, carbamazepine, methadone, oxazepam 

and methylphenidate was estimated by analysing the selected drug excretion residues 

(target residues) in wastewater [46, 71]. The calculation of the mass load was based on 

the original concentration (ng/L), and normalized by flow rate (L/day). The mass load 

over one month of a specific drug constituted the 12 separate temporal data sets for the 

analysis. All the chemical analyses were conducted at the Norwegian Institute for Water 

Research (NIVA) in Oslo. 

3.2 Ethical considerations 

This study did not require any specific permission. The use of wastewater data to 

estimate the use and abuse of licit and illicit drugs in a specific community does not raise 

any major ethical issues [106, 107]. Even though wastewater samples are collected from 

STPs without the consent of the individuals living in that particular area and contributing 
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to the STPs, the samples collected are composite samples, and individuals cannot be 

identified. The STPs used for monitoring purposes usually include 10 000 or more people 

and the risk of harm is negligible. Moreover, it would not be possible to request 

informed consent from all individuals, residents and visitors who contributed to the 

wastewater samples.   

However, WWA can also be performed in different setting such as prisons, schools, 

entertainment venues (festivals, dance parties or pubs) and work places. In these 

scenarios the results of the research findings could stigmatize all individuals belonging to 

that particular institution or taking part at that specific event and therefore ethical 

concerns could arise. In such cases, researchers could avoid those risks by not disclosing 

the location and details of study sites when publishing results [107].  

3.3 Funding 

This study was funded by the European Union-International Training Network SEWPROF 

(Marie Curie-FP7-PEOPLE Grant #317205) and the Norwegian Centre for Addiction 

Research (SERAF), University of Oslo. The analytical campaign in Italy ("Aqua Drugs" 

Project) was supported by Dipartimento Politiche Antidroga (Presidenza del Consiglio dei 

Ministri, Rome, Italy). The analytical campaign in Oslo was supported by the Norwegian 

Institute for Water Research (NIVA, Oslo, Norway). 

3.4 Statistical analyses 

The main statistical method in all papers was FDA. FPCA was used in all papers, while 

FANOVA was used in paper I only. Multiple regression analysis on the functional 

principal component (FPC) score variables was used in papers I and II. Traditional 

principal component analysis (PCA) and WPCA were used in paper III, while generalized 

additive models (GAM) with trigonometric functions to describe cyclic temporal patterns 

were used in paper IV.  
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3.4.1 Data description (papers I-IV) 

Descriptive statistics were presented as median and quartiles (Q1, Q3), because of 

heavily skewed distributions. All data were log-transformed before proceeding with 

further statistical analyses.  

The unit of observation in paper I was a seven day week starting Wednesday and ending 

Tuesday. For six (14.3%) cities, the data sampling started later in the week. Missing data 

for MDMA and amphetamine across all the 42 cities ranged from 1.7% to 2.2%. 

The unit of observation in paper II was a seven day week starting Monday and ending 

Sunday. Two out of 92 separate temporal data sets had one missing data point, 

otherwise the 92 data sets were complete. 

The unit of observation in paper III was a seven day week starting Wednesday and 

ending Tuesday. For six (14.3%) cities, the data sampling started later in the week. 

Missing data across all the 38 cities was 2.2%. 

The unit of observation in paper IV was a month, i.e. approximately four week cycles. 

Missing data for the 12 drugs under study ranged from 0% to 4%. For two of the drugs, 

i.e. amphetamine and methamphetamine, only three weeks during the sampling 

campaign were available, while for methylphenidate only two weeks were available. 

Missing data for these three drugs ranged from 2% to 4%.  

For all the studies included in this thesis, the missing data was below 5%. Due to the low 

amount of missing [108], single imputation [109, 110] was performed in each study 

before proceeding with further statistical analyses. 

3.4.2 Traditional data analysis 

In paper I, simple summary measures of WBE data included the overall mean throughout 

the week, the AUC and the difference d between weekdays and weekends. The Wilcox 

test was used to assess whether there were significant differences between the load of 

the drugs on weekdays and at the weekend. In paper II, the Kruskal-Wallis' test followed 

by Mann-Whitney tests with Holm correction were used to test differences in all 



- 16 - 

 

pairwise comparisons between the median-week load of two different drugs. The level 

of significance was set at 0.05 for all tests. 

3.4.3 Generalised additive models (paper IV) 

GAM is an extension of the generalised linear model (GLM) to allow for non-linearity 

[111]. In paper IV for each of the 12 separate temporal data sets, an optimal GAM with 

trigonometric functions to model cyclic behaviour was estimated. Instead of fitting a 

linear term of time 𝑡𝑡 for each drug to model the possible long-term change during the 

course of a month, we fitted a smooth function f(t) using splines, i.e. a set of higher-

order polynomials. The optimal spline was found using the Generalized Cross Validation 

(GCV) criterion [111]. The weekly pattern is an additional, cyclic, temporal component in 

the data, repeating every seven days. Using the Fourier series expansion theorem, we 

used linear combinations of sine and cosine functions to fit this weekly component [112, 

113]. The Gamma regression model with the natural logarithm as the link function [111] 

for the weekly drug load at time t, yt, and each drug is  

ln[𝐸𝐸(𝑦𝑦𝑡𝑡)] = 𝑐𝑐 + 𝑓𝑓(𝑡𝑡) +  ∑ [𝑎𝑎𝑘𝑘 cos �2𝜋𝜋𝜋𝜋𝜋𝜋
𝑇𝑇
� + 𝑏𝑏𝑘𝑘 sin �2𝜋𝜋𝜋𝜋𝜋𝜋

𝑇𝑇
�] 𝐾𝐾

𝑘𝑘=1 , 

with period T=7, c a constant, and f(t) the long-term non-linear trend. Note that a 

further cyclic within-day component could also be added if of interest. From the above 

model, the estimated weekly temporal component, based on the four week sampling 

period, was extracted for further statistical analyses. 

3.4.4 Functional data analysis (papers I-IV) 

FDA is a mathematical framework especially developed for analysing curves. Instead of 

single time points, each function, estimated from a series of consecutive observations, is 

considered as a single unit of observation allowing for extraction of information from a 

temporal process as a whole. 

The first step in FDA is to fit a mathematical function to each set of temporal data. 

Among all the possible choice of basis functions, Fourier and B-spline basis functions are 

the most commonly used [98]. Each individual WBE temporal data set in each study was 

converted into a continuous smoothed curve, forming the basis for the subsequent FDA 
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[98, 99]. The optimal smoothing of the functions, for removing the random day-to-day 

variation, e.g. non-systematic error, measurement error, was estimated using the GCV 

criterion [114]. In paper I, B-splines basis function with common-optimal smoothing 

parameter was used. In paper II Fourier basis function with common-optimal smoothing 

parameter was used. In paper III both B-splines and Fourier basis functions with no 

smoothing, individual-optimal smoothing and common-optimal smoothing were 

investigated. In paper IV, Fourier basis with seven basis functions and no smoothing 

parameter was used.  

3.4.4.1 Functional principal component analysis  

Traditional PCA is used to reveal the internal structure of the data in order to explain 

variability [115]. FPCA is the functional extension of PCA to curve data [98] and was used 

to explore the temporal variation in the fitted WBE curves. FPCA leads to FPC curves, 

which are new functional curve variables uncorrelated by construction which describe 

the main modes of the temporal variation in the sample of WBE curves [98]. A common 

practice before applying the FPCA is to normalize the data in order to remove the 

temporal mean. However in our study we did not subtract the mean before performing 

FPCA, since we were also interested in the shape of this main temporal mode. The first 

FPC thus took almost all the variability as it to some extent represented the 

normalization of the data. The percentage of explained variation for each FPCs thus 

cannot be interpreted in the same way as for FPCA on normalized data. FPCA also leads 

to FPC scores for each WBE curve showing the degree to which that particular pattern is 

represented in that specific WBE curve. By applying FPCA it is thus possible to study how 

WBE curves for different drugs vary between different cities. Further, an important step 

in FPCA is to find a meaningful interpretation of each FPC accordingly to the pattern it 

exhibits. 

In paper I, the association between the traditional statistical measures of wastewater 

drug loads and the FPCA was assessed by calculating the Pearson correlation coefficient 

(r) between the FPC scores, the overall mean of the log-transformed data, AUC and the 

difference d between weekdays and weekend means. 
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FPCA was used in all four papers, while traditional PCA was used only in paper III as a 

comparison with FPCA. 

3.4.4.2 Functional analysis of variance (paper I) 

FANOVA is the extension of traditional analysis of variance (ANOVA) to functional data 

[98]. We used FANOVA in paper I to analyse the effect of five possible predictors on the 

shape of the wastewater drug load curves: latitude; longitude; gross domestic product 

(GDP) of country; relative size of the city and density of the city [99]. We dichotomized 

each of the continuous explanatory variables and compared the mean curves in the two 

groups. The impact of choice of cut-off point was explored by selecting cut-off points 

across the whole observed range of the covariates. Functional confidence intervals 

(95%) and p-value curves, as well as an overall p-value, were calculated for each 

covariate using a functional permutation F-test [99]. 

3.4.4.3 Multiple regression analyses (papers I and II) 

In paper I, in order to explore multiple predictors such as latitude; longitude; GDP of 

country; relative size of the city and density of the city simultaneously, without the need 

for dichotomization, we used the cities' scores for the estimated FPCs as outcome 

variables in multiple linear regression models. The optimal sub-model was chosen using 

Akaike's Information Criterion (AIC) [116]. The results were compared with those from 

FANOVA analysis. 

In paper II, the multiple linear regression was conducted considering five covariates: 

location (north, centre or south Italy); size of the city (large: >350 000 inhabitants, 

medium: 120 000-350 000 inhabitants, or small: <120 000 inhabitants); migration rate 

(the difference between the number of people coming into the city minus the number of 

people leaving the city, measured per 100 000 inhabitants), gender ratio (female/male) 

and drug type. We fitted both univariate regression models and a full multiple regression 

model including all covariates. The optimal sub-model was then chosen using AIC.  

3.4.4.4 Wavelet-based principal component analysis (paper III) 

WPCA is an extension of traditional PCA to the wavelet domain [91]. Wavelets is a 

mathematical framework developed for analysing high-dimensional data [117]. Wavelet 
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basis functions are localized in both time and space, allowing for proper modelling of 

less smooth temporal data, even spikes [118, 119] and therefore they can be an 

alternative to Fourier or B-splines basis functions. WPCA leads to new variables in 

wavelet domain, and these variables back-transformed to time domain become the 

wavelet principal components (WPCs). Also, each WBE curve is provided with a score on 

each WPC indicating the intensity with which the WPC pattern is present in that specific 

temporal curve. Similarly to FPCA each WPC is interpreted according to the temporal 

pattern it exhibits.  

3.4.4.5 Robustness analyses 

In paper I, to explore whether the FDA results of temporal patterns would emerge 

purely by chance due to the nature of the curve fitting process, we also performed the 

FDA on a dataset obtained by randomly sorting of the original data.  

In paper II, supplementary analyses were performed on standardized data, where 

standardization of each separate temporal data set was done by subtracting the mean 

and dividing by the standard deviation.  

In paper III, the sensitivity of FDA to the choice of basis functions, to missing data and to 

the imputation of the values below the LOQ was explored. A non-parametric 

bootstrapping procedure was used to construct confidence intervals (CIs) [120, 121] in 

order to compare the results from the different FDA approaches. The 1000 re-samples 

obtained by random sampling with repetition from the original 38 temporal data sets, 

was used to calculate the 95% CI for each FPC. The CIs were calculated for both Fourier 

and B-splines basis functions, and both no smoothing, individual-optimal smoothing and 

common-optimal smoothing parameter. The sensitivity to missing data was evaluated 

for both Fourier and B-splines basis functions and for the three choices of smoothing 

parameters by randomly deleting an increasing number of observations; 5, 10, 15 and 

20% of original values. Finally two approaches for imputing values below the LOQ were 

compared; the common practice of replacing the values below the LOQ with LOQ/2 [86], 

and replacing those values by a random draw from a uniform distribution on the interval 

[0, LOQ] [122].    
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In paper IV, supplementary analyses were performed for all possible pairwise 

combinations of the three groups of drugs; prescription and illicit drugs, prescription and 

licit drugs, illicit and licit drugs.  

3.5 Software 

The analyses in all papers were performed in R [123]. The imputation was performed 

using Amelia II and the amelia package [124], and FDA, FPCA and FANOVA using the fda 

package [99]. Since no R package for WPCA currently exists the WPCA in paper III was 

performed by building on features of package wavethresh [119]. The GAM model in 

paper IV was fitted using the mgcv package [111].   
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4. RESULTS 

4.1 Paper I: Wastewater-Based Epidemiology of Stimulant Drugs: 
Functional Data Analysis Compared to Traditional Statistical Methods.    

The smoothed WBE curves for both drugs i.e. MDMA and amphetamine showed large 

variation between the 42 European cities. The first three FPCs explained in total more 

than 99% of the temporal variation between these cities and were interpreted as 

“general level” (FPC1, 91.8%-98.9%), “weekend peak” (FPC2, 1%-6.2%) and “weekend 

peak timing” (FPC3, 0.1%-1.5%). Curves with a negative FPC1 score had a lower general 

level of drug than the overall mean, while curves with a positive FPC1 score had a higher 

general level of drug than the overall mean. Curves with negative FPC2 scores had a 

lower difference between the weekend peak and the midweek level, while curves with 

positive scores on FPC2 had a large difference between the weekend peak and the 

midweek level with high load of the drug at the weekend. Finally curves with negative 

FPC3 scores showed an early peak moved towards Saturday, while curves with positive 

FPC3 scores showed a late peak moved towards Monday.  

The simple summary measures led to similar interpretation of the FPCs. The mean week 

load and the AUC statistics were almost perfectly correlated with FPC1 (r = 0.999, for 

both drugs), while the difference between weekday and weekend loads was moderately 

correlated with FPC2 (r = 0.762 for MDMA) and FPC3 (r = -0.497 and r = -0.760 for 

MDMA and amphetamine respectively).  

The standard statistical analysis found the level of amphetamine in the wastewater to be 

higher compared to MDMA. While for MDMA the median load increased significantly at 

the weekend (p<0.001) as compared to weekdays. This increase did not occur for 

amphetamine (p = 0.369). 

The FANOVA and the multiple linear regression using FPC scores as outcome showed 

similar results. From the multiple regression results, latitude and longitude were 

associated with MDMA load curve patterns throughout the week, while only latitude 

was associated with the load curve patterns for amphetamine. However the FANOVA 

results showed that for some of the predictors, choice of cut-off value for the 
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dichotomization had a major impact on the estimated significance of the difference 

between the mean of the corresponding groups. 

4.2 Paper II: A nuanced picture of illicit drug use in 17 Italian cities through 
functional principal component analysis of temporal wastewater data. 

The smoothed 92 temporal WBE curves showed large variation across different drugs in 

the Italian peninsula. The first three FPCs explained 99.5%, 0.4% and 0.1% of the 

temporal variation respectively and were labelled “general level”, “weekend-midweek 

discrepancy” and “weekend peak timing”. Similarly to FPC2 and FPC3, the first and 

second FPC of the supplementary analyses (SFPC1, 61.7% and SFPC2, 37.7%) were 

labelled “weekend-midweek discrepancy” and “weekend peak timing” respectively. 

Moreover, in this analysis, the third FPC distinguished between curves with a peak 

moved towards Saturday, and curves with a late peak moved towards Tuesday.   

The multiple linear regression using the FPC1 scores as outcome showed that the 

“general level” of the drugs in the Italian wastewater was significantly related to the 

type of drug, location and size of the city. Cannabis was the drug with the highest 

general level during the observed week in the Italian wastewater followed by cocaine 

and heroin, while higher level of the drugs were found in central and larger cities.  

The multiple linear regression on the FPC2 and SFPC1 scores (“weekend-midweek 

discrepancy”), showed that higher temporal peak of the drug, i.e. high discrepancy 

between weekend peak and midweek level, were associated with the type of drug, the 

size of the city and the migration rate. MDMA was the drug with the highest discrepancy 

between the weekend peak and the midweek level, followed by cocaine and ketamine. 

Large-size cities were associated with higher discrepancy between the weekend peak 

and the midweek level compared to medium-size cities, while high number of 

immigrants to the city was associated with low discrepancy between the weekend peak 

and the midweek level. 

The results of multiple regression analysis on the FPC3 and SFPC2 (“weekend peak 

timing”) scores’ indicated that in small cities, the peak shifted towards Saturday, that is, 
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earlier in the week when compared to larger cities. A similar pattern occurred in cities 

with high immigration rate and in northern and southern Italy compared to central Italy. 

4.3 Paper III: Exploring functional data analysis and wavelet principal 
component analysis on ecstasy (MDMA) wastewater data. 

The first PC, FPC and WPC resulting from traditional PCA, FPCA and WPCA analysis, 

explained 86.9%, 87.5-92.1% and 81.5-82.6% of the total variation between cities, 

respectively. The second and third PCs, FPCs and WPCs explained 7.0%, 5.8-6.9% and 

7.3-12.8%, and 2.4%, 1.7-2.9% and 1.9-3.2% of the total variation, respectively. 

The temporal patterns extracted by the first three PCs, FPCs and WPCs were consistent. 

Their interpretation was drawn from the FPCA results by plotting the mean of the fitted 

curves together with how the shape of an individual curve differed from the mean curve 

if a multiple of the functional principal component curve was added to, or subtracted 

from, the mean curve. The first three FPCs were labelled as “general level in 

wastewater”, “discrepancy between the weekend peak and midweek level”, and 

“weekend peak timing” respectively.   

The bootstrapping procedure showed that the FPCs were quite stable for each choice of 

smoothing parameter, while the common-optimal smoothing was the best choice both 

when Fourier and B-splines basis functions. Moreover, when using Fourier basis 

functions the FPCs were stable up to 15% of missing data, while using B-splines basis 

functions the FPCs were stable up to 10% of missing data. Overall, Fourier basis 

functions with common-optimal smoothing parameter was the most suitable approach 

for this type of data. 

4.4 Paper IV: Assessing medicinal drug abuse using functional principal 
component analysis (FPCA) of wastewater data. 

The 12 smoothed temporal WBE curves showed large variation in the Norwegian city of 

Oslo’s wastewater. The dominating FPC (FPC1) explained 99.7% of the temporal 

variation between temporal curves and was labelled “general level”, while the second 

and third FPCs accounted for a small amount of the temporal variability and were 

labelled “weekend-midweek discrepancy” and “timing of peaks” respectively.     



- 24 - 

 

In this paper, the third FPC (FPC3) was labelled “timing of peaks”. All temporal curves 

showed two peaks on this component; one peak around Monday/Tuesday, and one 

peak around Friday. For curves with a positive score on FPC3 the first peak was shifted 

towards Monday and the second peak shifted towards Thursday – Friday, while for 

curves with a negative score on FPC3 the first peak was shifted towards Tuesday and the 

second towards Friday – Saturday. 

FPC1 scores indicate that among the licit drugs paracetamol had the highest general 

level in the wastewater, while methamphetamine and oxazepam had the highest 

general level among illicit and prescription drugs, respectively. The FPC2 scores showed 

that cocaine followed by methylphenidate were the two drugs with the strongest 

weekend peak, that is, the largest difference between weekend peak and midweek level, 

with a high load of the drug at the weekend, while oxazepam followed by heroin (using 

morphine as target residue) were the two drugs with the strongest opposite pattern that 

is the strongest weekend low with two high loads of the drugs during the week.   

The patterns shown by the first three FPCs of the analyses when considering only two 

out of three groups of drugs were in agreement with results from the analyses on all the 

fitted curves. The only exceptions were the patterns shown by the second and third FPCs 

when the FPCA was carried out on prescription and licit drugs only. In this analysis the 

second FPC did not show a strong weekend peak as for the other two analyses, while the 

third FPC captured an opposite pattern between Monday and Friday. 
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5. DISCUSSION 

5.1 Discussion of main findings 

By using FDA on the WWA data we were able to extract more detailed information 

about drug load patterns during the week. These data would to a lesser extent be 

identified by more traditional statistical methods. General level of drug load, weekend-

midweek discrepancy and weekend peak timing were the three most important 

temporal features extracted by the use of FPCA. Contrary to our initial worry that FPCA 

would cause over-smoothing of the data, the analysis did not smooth away essential 

information in the temporal wastewater data which were captured by the temporally 

more flexible WPCA. On the contrary, the FPCA approach was robust and not particularly 

sensitive to the choice of basis function or to missing data. The second FPC (FPC2) 

resulting from the FPCA was interpreted as the weekend-midweek discrepancy. This 

component was the most striking temporal feature extracted from WBE data and 

because of its close connection with drugs of abuse, was interpreted as a sign of 

weekend recreational use. The appearance of this phenomenon for some prescription 

drugs as well indicated to us that WWA followed by FPCA could be used to identify 

recreational use of medicinal drugs with an abuse potential.   

5.1.1 FDA vs standard statistical methods  

Using FDA, and in particular FPCA, we were able to extract valuable, nuanced temporal 

information on the use of ecstasy (MDMA) and amphetamine throughout the week that 

simpler statistical methods missed. Using traditional statistical methods and 

specification tests we were not able to identify any weekend pattern for amphetamine 

throughout the week, but using FPCA we were able to demonstrate this. The AUC 

statistics, however, carried both valuable and precise information about the level of the 

drug, which was supported by the almost perfect correlation between the AUC and the 

scores on the first FPC interpreted as the level of drug in wastewater. 

A number of studies conducted on WBE data have shown an increasing use of illicit 

drugs at the weekend [53, 55, 56, 85]. However, to assess whether the use of those 

drugs was significantly higher at the weekend when compared to weekdays, standard 
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statistical tests have been used. When using statistical tests, is important to define 

which days of the week constitute the “weekend”. Defying the “weekend” a priori, 

before running the statistical tests, may introduce bias in the analysis and may 

significantly impact the results. Different drugs are characterized by different elimination 

half-life. There are drugs excreted from the human body within hours and drugs with 

long elimination half-life which can be excreted in several days [125-127]. The 

elimination half-life of a drug will therefore affect when the drug load peak is visible in 

wastewater. The first paper demonstrated that the “weekend” is a somewhat less well 

defined time period than the traditional cultural understanding of it. Using FPCA one 

may estimate what constitutes the “weekend” for each city and each drug, without 

having to define it a priori, as is needed when applying standard statistical tests.    

5.1.2 Temporal information in wastewater curves  

FPCA decomposes the variation between curves into a set of uncorrelated temporal 

features [98], but the usefulness of this analysis depends on how the FPCs are 

interpreted. For all papers, the first FPC represented mainly the general drug level in the 

wastewater, accounting alone for more than 80% of the variability between individual 

temporal curves. The level of the drugs in the wastewater was in accordance with 

previous studies on the same material [86, 128]. The second and third FPCs roughly 

represented how pronounced a weekend peak was and the timing of such a peak, while 

only in paper IV, the third FPC was interpreted as the timing of a two-peak pattern 

throughout the week.  

5.1.2.1 Temporal pattern: level of drug in wastewater (FPC1) 

In paper I, performing multiple regression analyses using FPC scores as outcome 

variables, we found that the level of drug in wastewater was associated with the 

geographical position of the city; in line with previous findings [129, 130], the load of 

ecstasy increased significantly in north-west Europe, while the load of amphetamine 

increased in a northerly direction.  

At a national level (paper II), the predominant drug in the Italian wastewater was 

cannabis, which is consistent with previous reports on the use of illicit drugs in south 
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Europe [3] and also in Italy [131]. The level of such drugs was lower in southern Italy, 

where the underground economy connected to illicit drug demand has been shown to 

be lower [132]. High levels of drugs have been found in large cities, which might indicate 

a higher use of illicit drugs. The European market sees an estimated consumption of 

cannabis reaching 2500 tonnes annually [133]. The high level of use may be explained by 

a shift in public opinion towards a more liberal view on the drug, but cannabis has also 

become the most prominent drug among those who entered into drug treatment for the 

first time in Europe. While cocaine and heroin are less prevalent than cannabis in the 

Italian wastewater, harmful consequences follow their use and they are often involved 

in drug related deaths [13, 134, 135]. Monitoring the level of such drugs in the 

wastewater could be helpful in detecting levels and changes in the illicit drug market, 

thus permitting preventive actions. Historically Italy does not have high use of 

methamphetamine [51], but because it is relatively cheap and available it can be an 

alternative to cocaine or heroin [136].  

In paper IV, the first FPC revealed that paracetamol was the predominant drug in the 

Oslo wastewater, followed by methamphetamine and oxazepam for illicit and 

prescription drugs respectively. A high level of paracetamol could be related to high 

over-the-counter sales worldwide [137] and how those drugs are perceived by the 

general population [138]. A high methamphetamine result could possibly also be in line 

with what found previously [85] and with our knowledge of the high levels of use of this 

drug in western Europe [130]. 

5.1.2.2 Temporal patterns: weekend high (FPC2) & weekend timing (FPC3) 

Besides the general level of the drug load extracted from FPC1, the most nuanced result 

from our study was the information captured by the second and third FPCs interpreted 

as weekend-midweek discrepancy and weekend peak timing respectively. Particularly, 

the second FPC was the most important temporal feature extracted from WBE data and 

because of its ability t identify possible weekend recreational use was also the most 

important finding of this work. This information is lost when using traditional statistical 

methods, as demonstrated by our first paper; using traditional statistical methods and 
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specification tests, we were not able to identify any weekend pattern for amphetamine 

throughout the week, but we were able to detect this using FPCA.  

In the Italian study (paper II), the second FPC showed that MDMA was the drug with the 

most prominent weekend-midweek discrepancy and all the Italian cities were clustered 

by their FPC2 score on MDMA, which suggested that MDMA may be a drug preferred in 

night-life settings. The weekend-midweek discrepancy was lower in medium-size cities 

than in larger cities, while different night life settings between small and large cities 

have been also shown by the third FPC. The third FPC showed an interesting reversed 

pattern in the two major tourist cities of Rome and Florence. Rome appeared to be a 

Friday-Saturday party city regardless of the drug in focus, while Florence showed a peak 

moved toward Tuesday which could indicate different night life settings. 

The ultimate goal of this investigation was to see whether applying FPCA to wastewater 

data would improve WBE. More specifically, we wanted to see whether a weekend peak 

could demonstrate recreational use of medicinal drugs. In paper IV, the second FPC was 

interpreted as a sign of weekend recreational use and distinguished between drugs with 

a high peak at the weekend; cocaine, methylphenidate and carbamazepine, and drugs 

without such a peak like heroin, oxazepam and methadone. Drugs with a negative score 

on the second FPC showed a lower level than the mean during weekdays and a higher 

level at the weekend, while drugs with a positive score on the second FPC showed no 

weekend peak, but two peaks during the week, a first stronger peak of the drug at the 

beginning of the week followed by a second peak midweek and a drop at the weekend. 

Beside the weekend high for cocaine, which has been reported from previous studies 

[85], FPC2 showed, unexpectedly, a weekend peak for the medicinal drug 

methylphenidate, which may indicate possible recreational use of the drug. 

5.1.3 Comparing advanced statistical methods  

With paper I, we showed that performing multiple regression analyses using FPC scores 

as outcome variables to explore whether the various temporal patterns of wastewater 

drug loads throughout a week were associated with basic characteristics of the city, 

could be a better approach as compared to FANOVA. Usually, FANOVA is the suggested 
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way to analyse the association between functional data and covariates [98]. However, 

FANOVA needs dichotomous explanatory variables, and most of the predictors that we 

investigated were continuous. Categorizing continuous predictors in regression models 

has been thoroughly examined in the statistical literature, and repeatedly argued 

against, as it reduces power and introduces bias of unknown direction and magnitude 

[139-141]. In our study applying FANOVA would introduce bias in the analysis, due to the 

arbitrary choice of cut-off points and resulting number of cities in the groups [139]. The 

significance of the F-test strongly depended on the chosen cut-off level of the 

explanatory variable. Moreover, FANOVA cannot adjust for further covariates and it only 

looks at the mean temporal pattern. While this will verify differences between cities, it 

will not identify the mode of the difference. Even though our suggested multiple 

regression is not part of the original FDA framework, it opens for more flexibility. It has 

been proposed previously for the analysis of 2-h glucose test data and foetal movement 

data [87, 89]. 

In paper III, we compared traditional PCA, FPCA with different basis functions and 

smoothing parameters, and WPCA with different mother wavelets and shrinkage rules. 

FPCA extracted all temporal features discovered by the temporally more flexible wavelet 

approach, overcoming the initial concern of over-smoothing. Even though the patterns 

extracted by PCA, FPCA and WPCA were qualitatively consistent, the interpretation of 

the PCs and WPCs can be difficult to compare to the FPCs. In PCA, individual days are 

assumed to be independent variables, and the method does not take the temporal 

nature of the data into account. In this sense the method is fundamentally wrong for this 

type of data. Further, WPCA is an extension of traditional PCA, but less direct than FPCA. 

In the version of WPCA applied here, PCA is performed on the smoothed wavelet 

coefficients in wavelet domain, where the wavelet coefficients constitute independent 

variables for subsequent PCA in wavelet domain, before back calculating each WPC to 

time domain. As a result the patterns of the WPCs do not have the same scale as the PCs 

and FPCs, making direct comparison between the methods difficult. 

Using Fourier basis functions, the patterns shown by each FPC were consistent 

regardless of the choice of smoothing. A common optimal smoothing parameter did 



- 30 - 

 

however lead to an increase in the total variation explained by the first FPC. Using B-

splines, the extracted temporal patterns were mainly the same as those found using a 

Fourier basis. However, the third FPC appears less capable of modelling the difference 

between weekday and weekend loads, and there were larger differences between the 

different choices of smoothing parameter. Overall common-optimal smoothing seemed 

to perform better than no smoothing or individual-optimal smoothing, where some 

spurious variability was detected. Moreover, epidemiological interpretation of the FPCs 

is often easier as the FPC curves can be illustrated by plots showing how an individual 

curve differs from the mean curve if the FPC scores are high or low, rather than mere 

plotting of the FPC curves [99]. 

In paper III, we also investigated the stability of the FPCA results to the choice of the 

basis functions and the smoothing techniques by a bootstrapping procedure, and 

sensitivity of FPCA to missing data, and compared two methods for imputing values 

below the LOQ. However, we found that using FPCA with Fourier basis functions and 

common optimal smoothing is a precise, flexible and stable method for analysing WWA 

data.  

Through bootstrapping we found that using Fourier basis may be a better approach 

when investigating patterns in WWA data since the empirical CIs are narrower than all 

the other cases, and when exploring sensitivity to missing data, results are stable even 

with 15% missing data. 

5.1.4 Proper vs recreational use of prescription drugs  

In paper IV, the second FPC was the most important temporal feature extracted by FPCA 

and was also able to identify a weekend peak for some prescription drugs with known 

potential for abuse. This pointed to actual recreational use of these drugs, especially 

methylphenidate, because of its high weekend peak, as shown by its high negative score 

on FPC2. Earlier studies have shown that drugs of abuse may have a weekend high 

indicating recreational use [57]. In this paper, the second FPC distinguished between 

drugs with a high peak at the weekend; cocaine, methylphenidate and carbamazepine, 

and drugs without such a peak like heroin, oxazepam and methadone. The weekend 
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high for methylphenidate was unexpected. Methylphenidate is a central nervous system 

prescription stimulant within the amphetamine-like drugs that is mainly used for 

treating ADHD and narcolepsy. For this reason, if any difference between weekdays and 

weekend were to be expected for methylphenidate it would be that less 

methylphenidate would be used at the weekend because of weekend holidays in the 

treatment of ADHD [142]. However the high negative score of this drug on the second 

FPC indicated that it may be used recreationally at the weekends, confirming previous 

concerns [131, 132].  

While a “weekend high” may be an indicator of non-medical recreational use of a drug, 

one cannot immediately conclude that the absence of such a peak excludes the abuse of 

the drug. Some of the drugs investigated in this study with known abuse potential lacked 

this weekend high. Some drugs even had a positive score on the second FPC 

characterising no weekend peak, but rather two peaks during the week, a first stronger 

peak of the drug at the beginning of the week followed by a second peak at the 

midweek and a drop at the weekend. Oxazepam, followed by heroin, was the drug with 

the strongest positive pattern on the second FPC. A possible explanation is that 

oxazepam, which is the metabolite of several benzodiazepines, may be used for sedation 

and sleeping disorders right after the weekend, when the use of simulants may be 

preferred especially during night life settings [80]. The high level of heroin during the 

weekdays may be explained by the use of morphine as heroin metabolite in wastewater 

[48], which also comes from other sources such as surgery. 

5.2 Challenges of interdisciplinary research  

WBE is an interdisciplinary research field which integrates information, data, concept, 

tools and theories for an advanced understanding of the drug use problem in a specific 

community. The first conference on WBE namely ‘Testing the waters’ was held in 2013 

by the EMCDDA uniting diverse disciplines [74]. It brought together experts from 

different fields i.e. analytical chemistries, health science, epidemiology and statistics, 

speaking different discipline languages [143]. In this way, WBE is an example of much of 

modern science. Conducting interdisciplinary research is challenging. One researcher 
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cannot master all these fields, but all involved researchers need to have a basic 

understanding of adjacent fields, filling the gap between their own expertise and that of 

other scientists in the network. All these types of knowledge are important since data 

can be misunderstood, underused or even over-interpreted. In WBE, the combination of 

experts, knowledge and tools from different fields has overcome problems of a single 

method and opened up for new ideas and new challenges in drug use epidemiology. A 

practical example is the use of mass spectrometry in WBE research. Mass spectrometry 

is a powerful tool, which has been used in analytical chemistry to identify compounds 

and their concentration in a specific sample, and used among others in environmental 

forensics to identify the identity of previously unknown pollutants in the environment 

[49]. The idea of using mass spectrometry as a basic tool for drug use epidemiological 

research has given new insight into the problem and opened up for new ways of 

thinking. 

5.3 Methodological considerations 

5.3.1 Wastewater analysis 

In WBE research the sample collection has a central role. There are currently two 

different types of sampling techniques; active sampling, on which the present work is 

based, and passive sampling. Active samples are collected at a specific point in time and 

are usually time- or volume- proportional [70, 71, 75]. Active samples give snapshots of 

the drug use problem in a specific community usually based on a short-time monitoring 

campaign. They are time dependent and usually more expensive than passive sampling 

devices. Passive sampling devices also called polar organic chemical integrative sampler 

(POCIS) are devices which consist of a semi-permeable membrane and a solvent. The set 

of POCIS are deployed in the wastewater over a defined period of time and left to 

accumulate target compounds [144-146]. The advantage of POCIS over active sampling 

devices are: lower detection limits, less fluctuating concentrations due to the integration 

over time and higher stability for the target compounds.  

However, unlike active sampling devices, POCIS are not able to detect rapid changes in 

the concentration of drugs in wastewater from one day to another since they provide an 
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integrated average of the drug concentration in the wastewater over the deployed time-

period in wastewater (usually two weeks). Moreover, they are affected by saturation 

problems and need to be calibrated prior to usage [145]. Thus different sampling 

method can give information with different resolutions. In our study we looked at a 

weekly series of 24h composite samples, enabling us to investigate weekly temporal 

variability for each drug of interest.     

The occurrence of specific events such as festivals during a monitoring campaign can 

impact the results drawn from wastewater analysis, as it is known from the literature 

that the use of drugs is likely to increase during such events [147-149]. WBE campaigns 

are usually carried out during a time period in which no particular events are known to 

take place in order to give as true a picture as possible of the community under study. 

On the other hand, those events need to be monitored and used as a first screening for 

new drugs, which are constantly synthesized and sold on the illicit market, the so-called 

new psychoactive substances (NPS) [150-153]. The great advantage of WBE compared to 

traditional epidemiological methods is its almost real-time monitoring and cost-

effectiveness. After the occurrence of a particular event WBE can provide results within 

24 hours allowing for immediate intervention.   

5.3.1.1 Level of drug use (FPC1) estimates’ bias 

The estimation of drug use in a community by measurements of drug residues in 

wastewater requires several steps. The general approach for the back-calculation of 

drug consumption is performed by calculating the daily loads of target residues (g/day) 

by multiplying the daily concentrations of the measured residues (ng/l) by the daily flow 

rate of sewage (m3/day); then the total consumption is estimated by applying a specific 

correction factor that takes into account the excretion rate of the target residue of the 

drug and the molecular mass ratio of the parent drug to its metabolite. By dividing the 

daily loads by the estimated number of people served by the STP (mg/day/1 000 

inhabitants) is possible also to compare results between different cities [46, 71, 74]. All 

these parameters may be influenced by external factors, and together with those can 
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affect directly or indirectly the drug consumption estimates from the back-calculation. 

Therefore WBE results need to be interpreted with caution [154].  

Low potency drugs may require higher doses to give the same pharmacological effect 

compared to high potency drugs. Low potency drugs may therefore be present in higher 

concentrations in wastewater. Also drugs that are metabolized to a lesser degree, and 

thus excreted unchanged for detection, may be present in higher concentrations. To 

overcome these difficulties, correction factors have been introduced in the back-

calculation of the estimates of drug consumed in a population by looking at the 

concentration of their metabolites or parent compounds in wastewater [46, 61, 155]. 

The correction factors are based on published urinary excretion kinetic variables for 

each drug. Also, the route of drug administration is important, since it may also 

influence the excretion of some drugs. Knowledge on the preferred route of 

administration of a particular drug in a specific community is therefore important for the 

choice of the excretion rate in the back-calculation of drug use estimates. Such 

information needs to be supplied by using traditional epidemiological methods before 

proceeding with the use of WBE. A minor point is that poly-drug use is common in drug-

using communities and therefore the interaction of different drugs to some extent 

impacts on the excretion of the considered drugs and thus on the estimated level of 

drug use in a specific community.  

The daily fluid flow rate in the wastewater is another important parameter which 

influences the concentration of drugs and metabolites, and needs to be provided from 

each STP for each day of the monitoring campaign. For example, during rainy days the 

concentration of drugs and their metabolites in wastewater is likely to be lower due to 

an increase in the volume of water coming to the STP, therefore the low concentration 

does not necessary correspond to a decrease in drug use. By contrast, the concentration 

of drugs and their metabolites in sewage is likely to be higher during dry days when the 

volume of wastewater in each STP is lower. 

Furthermore, the stability and the choice of the most appropriate metabolite or parent 

drug in the wastewater of the drug of interest plays an important role in the estimation 
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of the level of use [47, 156-158]. Some drugs or metabolites are more stable than others 

in wastewater [159]. For example, cannabis’ metabolite (TCH-COOH) is a sticky 

compound and tends to stick on the surface of the pipes in the WWTP leading to an 

underestimation of the actual use. On the other hand, estimates of drugs like 

amphetamine, methamphetamine and MDMA based on the parent drugs in the 

wastewater may lead to an overestimation of the actual use, since they may result from 

disposal of unused drugs [74]. While it is reassuring that these compounds are stable in 

wastewater, it introduces the challenge that it is difficult to differentiate between drugs 

actually consumed in the population and drugs just discarded in wastewater. To 

overcome this problem, enantiomeric profiling of sewage samples need to be taken 

[160, 161]. An example of this effect was striking in the results of the first monitoring 

campaign on the use of illicit drugs across Europe [85]. The levels of amphetamine and 

MDMA in Belgium and the Netherlands were found to be extremely high as result of the 

manufacture of these substances in clandestine laboratories in the catchment area and a 

raid by the police on one of such laboratory during the sampling period. 

However, by simply measuring the amount of drug metabolites in wastewater just 

normalised by flow rate over time without the effort of back-calculating the drug-use 

estimates, WBE still provides good insight into the patterns of drug use in a specific 

community, monitoring possible change over time and capturing information on 

emerging substances. Spatial differences within and between countries can be drawn by 

normalising the drug loads for the estimated population served by each STP. 

5.3.1.2 Height and timing of the weekend peak (FPC2 and FPC3) bias 

The second and third FPCs resulting from the FPCA, represented two of the most 

important weekly temporal features of the use of drugs detected from wastewater 

analysis in our studies.  

The second FPC labelled a “weekend-midweek discrepancy”, i.e. the discrepancy 

between the weekend peak and the midweek level of the drug, may be influenced by 

changes in the structure of the population served by the WWTP. During the weekends 

there may be more people coming to the city from neighbour towns leading to an 
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increase of the affluent population to the STP, rather than merely the increasing use of 

drug by the local community. 

The third FPC was labelled “weekend peak timing”, representing the timing of the 

weekend peak of the drug. This component may be influenced by two main factors, one 

related with the characteristics of the WWTP and the second related to the 

characteristics of the specific drug. Differences in the timing of the weekend peak may 

reflect not only dissimilarities in drug use pattern, but may result from different 

retention time of the drug into the sewer system as a result of diverse structure of 

WWTPs and pipe’s length between different cities. Moreover each drug has a distinctive 

elimination half-life, there are drugs like cocaine which are excreted from the human 

body after a short time and other drugs such as cannabis characterised by long 

elimination half-life [125-127]. 

5.3.1.3 Spatial comparisons’ bias 

As in standard epidemiological research where the main assumption is that the study 

sample is representative of the entire population under study, also in WBE research the 

sample collection has a central role and the major assumption is that the wastewater 

sample collected is composed by a pooled urine sample representative of the entire 

population served by the WWTP. This aspect is even more important when comparing 

wastewater results between different countries or even between cities served by 

different WWTPs in the same country. Understanding the dynamics of the wastewater 

flow, catchment size, population served by the WWTP and sewer type, is important 

when choosing the appropriate sampling setup and collecting representative samples 

which allowing for spatial comparison. Choosing an inappropriate sampling setup can 

lead to over-interpretation of data and totally wrong conclusions [70]. However, in our 

studies from different European cities (papers I and III) all the included cities had to 

provide information on the WWTP, such as sampling procedure, flow rate, estimated 

population served by the WWTP and its variability (commuters), and structural state of 

sewers, filling out a specific tailored questionnaire [85]. The cities which did not comply 

with the minimal requirements were excluded from the studies.     
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The estimation of the population served by each WWTP is also a source of bias when it 

comes to spatial comparisons between populations with different sizes. Currently each 

WWTP provides an estimation of the population served by the plant by using census 

data or variables such as chemical oxygen demand (COD), biological oxygen demand 

(BOD), total nitrogen and phosphorus or ammonium [162-164]. However these factors 

are strongly influenced by the composition of the wastewater, i.e. industrial, domestic or 

mixed and researchers are currently trying to identify more suitable biomarkers which 

only account for human metabolism. An ideal biomarker should be unique to human 

metabolism and have no or minimal exogenous sources, have a stable excretion ratio 

with minimal variability, be stable in wastewater and be easily determined in 

environmental samples. Nicotine and caffeine have been explored for this in Italy, and 

nicotine seemed to be a good candidate for this purpose because of the agreement 

between the census population and the results obtained by using it as human biomarker 

[62]. However, while the use of nicotine as a population biomarker may work well in 

Italy since most of nicotine in wastewater comes from smoking cigarettes, in west 

Europe the high use of “snus” at least in Nordic countries, makes nicotine an unsuitable 

biomarker.   

5.3.1.4 Comparison between WBE and standard data sources 

A number of comparisons between WBE data and standard data sources have been 

investigated in recent years. Sales data have been used to investigate the most suitable 

alcohol biomarker from wastewater analysis, looking at agreement between the two 

data sources [165]; comparison between prescription data and WWA results have been 

drawn on for pharmaceuticals [166-168] as well as comparing survey data or crime 

statistics and WWA data for illicit drugs [169-171], while in other cases WBE data have 

been used as complementary source of information to traditional data sources [172, 

173].  

These comparisons are also challenging. The comparison needs to be made on the same 

population in the same time period, and while WBE gives results within 24 hours, a 

population survey needs longer before the results are available. However, wastewater 

samples have the advantage that they can be stored in huge databases and investigated 
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retrospectively when new research questions arise. A study comparing WBE and 

population survey on the same population was carried out in a small Belgian city [174, 

175], but unfortunately, the response rate for the survey was very low and the 

comparison between the two data sources was inconclusive.  

5.3.1.5 Confounding (papers I and II)  

Confounding is a bias of the estimated effect of an independent variable on an outcome 

of interest due to the presence of a confounding factor which associates with both the 

outcome and the independent variable [176]. Confounders may lead to 

underestimation, overestimation or changes in the sign of the estimated effects of the 

exposure on the outcome, and thus need to be accounted for by proper adjustments 

[177].  

In paper I, we estimated the effect of longitude, latitude, density, relative size of the city 

and GDP on the FPC’s scores in multiple regression analyses, as well as on the mean 

temporal wastewater curve by FANOVA. In the FANOVA analyses we did not adjust for 

covariates. Dimension of the WWTP, retention type of the drug into the sewage, area 

covered by the WWTP and population variation may have influenced the results, but 

could not be adjusted for due to the lack of information and the sample size of the data 

sets. These and other unknown potential confounders may have biased the results. 

In paper II, we estimated the effect of location (north, centre and south), size of the city 

(large, medium and small), migration rate, gender ratio, and type of drug on the FPC’s 

scores in multiple regression analyses. Also in this case, characteristics of the WWTP and 

population variation during the week period may have influenced the results as possible 

confounders. We did not adjust for the pharmacokinetics and elimination half-life of the 

drugs due to collinearity problems in the analyses.  

5.3.2 Statistical analysis 

WBE studies on the use of drugs throughout a specific time period are usually presented 

as mean and standard deviation (SD) and the comparisons between the drug loads are 

usually carried out using specification tests [3, 46, 51-57, 61, 62, 85]. We were 
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concerned that these traditional statistics were insufficient for optimal, or even proper, 

analysis for WWA data, and wanted to explore more advanced statistical methods 

specifically developed for analysing curve data. 

5.3.2.1 Functional data analysis (papers I-IV)  

FDA is extra beneficial when large amounts of data are available. In papers I and III we 

only had seven measurements per each temporal data set. This is quite few, but still 

enough to extract interesting temporal features. More detailed temporal features could 

be detected by each FPC when more measurements per day are available. In paper III, 

besides the low number of measurements per day, also the number of cities in the study 

was relatively small. Larger sample size would have allowed us to use more explanatory 

variables in the subsequent multiple regression analysis carried on the FPC’s scores, 

allowing for a better understanding of possible predictors of patterns of drug use.    

The choice of basis functions in the FDA may also affect the results. The most commonly 

used basis functions in FDA are Fourier and B-spline basis functions, for cyclic and non-

cyclic data, respectively, even though other alternatives also exist [97-99]. Choosing 

Fourier basis functions is suitable when the process under study is periodic and thus 

repeats over time, while B-spline basis functions are primarily used for non-periodic 

data, thanks to their great flexibility. Papers I-III were based on a one-week-period 

temporal data set, where the week was the cyclic component of interest. Since we did 

not have repeated weeks, the temporal process under study was on the boundary 

between a periodic and non-periodic temporal process. A concern with FDA is that 

Fourier and B-spline basis functions may over-smooth the underling temporal process if 

there are rapid changes from one day to another. Wavelet bases may thus represent a 

useful alternative. Wavelet functions are localized in both time and space, allowing for 

modelling of less smooth temporal data, even spikes [117-119], and has recently been 

applied successfully to analysis of foetal movement data [90, 91]. We investigated the 

effect of three choices of basis function on the WBE results of FPCA in paper III, as well 

as the impact of the choice of different mother wavelets in the WPCA.     
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The choice of the smoothing parameter used for removing the random day-to-day 

variation may also affect results. In papers I and II we used a common-optimal 

smoothing, estimated using the GCV criterion [114, 178], while in paper III we 

investigated the results when using different choices of smoothing parameter; common-

optimal smoothing, individual-optimal smoothing and no smoothing for FDA, and Bayes, 

universal and no shrinkage for the wavelets [179-181]. In paper IV no smoothing was 

used, as smoothing is implicit in the GAM fitting procedure preceding the FPCA.    

A simpler alternative to the FPCA may be traditional PCA using each day of the week as 

independent separate explanatory variables. As the measurements were taken at the 

same time point for each drug or city, this method would be expected to extract similar 

information to the FPCA. However, as pointed out in paper III, the interpretation of the 

results would be difficult since the temporal nature of the underlying process is not 

taken into account, and the results thus rely on an assumption that is most likely 

violated.    

5.3.2.2 Interpretation of FPCs 

FPCA decomposes the variation between curves into a set of uncorrelated temporal 

features called FPCs, but the usefulness of this analysis depends on how the FPCs can be 

interpreted. This interpretation is usually drawn by plotting the mean curve and seeing 

how the shape of an individual curve differs from the mean curve if a multiple of the 

principal component curve is added to or subtracted from the mean curve [99]. 

However, this interpretation may be challenging and requires a priori knowledge of the 

temporal process under study. In all papers, the first FPC mainly represented the general 

level of drug load in the wastewater, while the second and third FPCs roughly 

represented the high of the weekend peak and timing of such a peak, respectively.    

5.3.2.3 Categorisation of continuous variables (papers I and IV)  

In paper I, to compare the results between FANOVA and the regression analysis on the 

scores of the FPCs we dichotomised the explanatory variables, i.e. longitude, latitude, 

density, relative size of the city and gross domestic product (GDP), in the FANOVA 

analysis, as FANOVA can only take categorical covariates. Such dichotomisation is 
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generally not recommended as it may introduce bias of unknown direction and 

magnitude [139-141, 182]. Problems with dichotomization were supported by the 

results of our exploratory analyses. In paper II, to ease the presentation of the results, to 

be consistent with publications on the same material [128, 183] and to be able to 

compare with previous studies in the same area [3, 51] we chose to categorise the 

variables location and size of the city. 

5.3.2.4 FANOVA vs multiple regression on FPCs’ scores (papers I)  

Usually, FANOVA is the suggested way to analyse the association between functional 

data and covariates [98]. However, FANOVA needs dichotomous explanatory variables, 

and most of the predictors that we investigated were continuous. In our study applying 

FANOVA would thus introduce bias in the analysis, due to the arbitrary choice of the 

number of cities in the various groups [139]. The significance of the F-test was strongly 

dependent on the chosen cut-off level of the explanatory variable. Moreover, FANOVA 

cannot adjust for other covariates in a multiple regression model and it only looks at the 

mean temporal pattern. While this will verify differences between cities, it will not 

identify the mode of the difference. The suggested multiple regression on the FPCs’ 

scores is not part of the original FDA framework, but opens for more flexibility. It has 

been proposed previously for the analysis of glucose and foetal movement data [87, 89] 

with promising results.  

5.4 External validity 

The generalisability of our study is limited to the cities and countries investigated and 

needs to be discussed. In paper I, the study was conducted in 42 European cities, 

covering a total of 21 European countries [86]. In paper II, 17 Italian cities were 

investigated [128] while in paper IV we looked only at the Norwegian capital, Oslo. 

However, these analyses may still not represent the total inhabitants of each city we 

looked at, since the interpretation is limited to the population served by each of the 

WWTPs.     

The findings are limited to the community under investigation and to the observed time-

period, and therefore some of our results may be different in other studies. Structural 
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changes of the population covered by the WWTP or changes in social life, life style 

factors or economy of a country may have an influence on the resulting drug use 

patterns throughout the course of a week.   

However, the use of standardised methods such as FPCA as a main methodology to 

investigate those patterns, make it possible to compare results and monitor the extent 

of the use. In particular the methodology was extended to different areas of interest and 

was generalizable to different groups of drugs. The investigation of patterns of use of 

illicit drugs as well as prescription drugs and medicinal drugs enriched the data set and 

opened up for the generalisability of the statistical methodology to different settings.  
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6. CONCLUSIONS 
In this thesis, we have used FDA to gain insight into the temporal patterns of drug use in 

a specific community by looking at drug metabolites and parent compounds ending up in 

the wastewater system. FDA represented a novel statistical approach for analysing WBE 

data and has shown promising results. The detailed conclusions from our work are the 

following: 

• FDA of WBE data was superior to traditional statistical methods. FDA and in 

particular FPCA identified important temporal features of the patterns of 

drug use throughout the week period which was lost when using traditional 

statistical approaches. 

• The first three most important FPC’s resulting from the FPCA provided 

epidemiological interpretation of the extracted WBE temporal patterns on 

general level of drug load, weekend-midweek discrepancy and weekend peak 

timing respectively. 

• Regression based on FPC results was superior to FANOVA for estimating 

associations between temporal patterns and covariate information. FPCA 

extracted all temporal features discovered by the temporally more flexible 

wavelet approach and the traditional PCA. The FPCA approach was robust 

and not particularly sensitive to the choice of basis function or to missing 

data. However Fourier basis functions with common-optimal smoothing 

parameter generally performed better.  

• The second FPC, resulting from the FPCA pointed to possible recreational use 

of some prescription drugs with known abuse potential.   
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7. IMPLICATIONS AND FUTURE RESEARCH 
WBE is a novel approach in drug use epidemiology which has shown promising results as 

an alternative to traditional epidemiological methods for investigating the extent of drug 

use in specific communities. WBE is widely used and provides researchers with large 

amount of data each year. However there is still a lack of advanced statistical 

approaches applied to these data and FDA is a new tool for WBE research.  

The results from paper I imply that there is a need in this field for statistical methods 

which can extract information from curves rather than single time points. Currently too 

many studies restrict the analysis to traditional statistics and specification tests [45-58, 

61-68] losing important information about the temporal pattern of drug use, throughout 

a week period. We thus recommend using FDA for further analysis on WBE data and in 

particular FPCA.  

Moreover the FDA results also demonstrated that the “weekend” is a somewhat less 

well defined time period than the traditional cultural understanding of it. Using FDA we 

could estimate what constitutes the “weekend” for each city and each drug, without 

having to define it a priori, as is needed when applying standard statistical tests. Defining 

the weekend a priori may introduce bias in the results, since each drug has different 

elimination half-life [125-127] and each WWTP may have different dimension and pipe 

length [70, 75].   

When the research question is limited to the level of drug use detected from WWA, we 

found that the AUC is a good statistical indicator because of the high correlation 

between the AUC and the scores of the first FPC i.e. general level of drug load in the 

wastewater. 

Even though the patterns shown by the most important FPCs were consistent when 

using different basis functions and smoothing techniques, we recommend using Fourier 

basis function with common-optimal smoothing parameter, when fitting the curves for 

the subsequent FPCA. Fourier basis function with common-optimal smoothing 

parameter showed stable results up to 15% of missing data and narrower empirical CIs 

for each FPC. 
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The current methodology has shown promising results also when investigating the abuse 

potential of prescription drugs. Understanding temporal drug use patterns is a key 

element in evaluating whether a drug may be abused. The methodology should be 

explored on a wider range of drugs and the results should be combined with those from 

other data sources in order to provide epidemiologists, health professionals and policy 

makers with the knowledge needed for immediate or long-term interventions. 
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