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Abstract. We construct a new 20-dimensional family of projective six-dimensional ir-
reducible holomorphic symplectic manifolds. The elements of this family are deformation
equivalent with the Hilbert scheme of three points on a K3 surface and are constructed as
natural double covers of special codimension-three subvarieties of the Grassmannian G.3; 6/.
These codimension-three subvarieties are defined as Lagrangian degeneracy loci and their con-
struction is parallel to that of EPW sextics, we call them the EPW cubes. As a consequence
we prove that the moduli space of polarized IHS sixfolds of K3-type, Beauville–Bogomolov
degree 4 and divisibility 2 is unirational.

1. Introduction

By an irreducible holomorphic symplectic (IHS) 2n-fold we mean a 2n-dimensional sim-
ply connected compact Kähler manifold with trivial canonical bundle that admits a unique (up
to a constant) closed non-degenerate holomorphic two-form and is not a product of two man-
ifolds (see [3]). The IHS manifolds are also known as hyperkähler and irreducible symplectic
manifolds, in dimension 2 they are called K3 surface.

Moduli spaces of polarizedK3 surfaces are a historically old subject, studied by the clas-
sical Italian geometers. Mukai extended the classical constructions and proved unirationality
results for the moduli spaces M2d parametrising polarizedK3 surfaces of degree 2d for many
cases with d � 19 (see [19, 21, 23]). On the other hand it was proven in [8] that M2d is of
general type for d > 61 and some smaller values. Note that when the Kodaria dimension
of such moduli space is positive, the generic element of such moduli space is believed to be
non-constructible.

There are only five known descriptions of the moduli space of higher dimensional IHS
manifolds (all these examples are deformations equivalent to K3Œn�). In dimension four we
have the following unirational moduli spaces:
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2 Iliev, Kapustka, Kapustka and Ranestad, EPW cubes

� double EPW sextics with Beauville–Bogomolov degree q D 2 (see [24]),

� Fano scheme of lines on four-dimensional cubic hypersurfaces with q D 6 (see [4]),

� VSP.F; 10/ where F define a cubic hypersurface of dimension 4 with q D 38 (see [13]),

� zero locus of a section of a vector bundle on G.6; 10/ with q D 22 described in [6].

Moreover, there is only one more known family in dimension 8 with q D 2 studied in [17].
Analogously to the case of K3 surfaces there are results in [9] about the Kodaira dimension of
the moduli spaces of polarized IHS fourfolds ofK3Œ2�-type: In particular, it is proven that such
moduli spaces with split polarization of Beauville–Bogomolov degree q � 24 are of general
type (and for q D 18 or 22 are of positive Kodaira dimension). We expect that the number of
constructible families in higher dimension becomes small.

According to O’Grady [24], the 20-dimensional family of natural double covers of spe-
cial sextic hypersurfaces in P5 (called EPW sextics) gives a maximal dimensional family of
polarized IHS fourfold deformation equivalent to the Hilbert scheme of two points on aK3 sur-
face (this is a maximal dimensional family since b2.S Œ2�/ D 23 for S a K3 surface). Our aim
is to perform a construction parallel to that of O’Grady to obtain a unirational 20-dimensional
family (also of maximal dimension) of polarized IHS sixfolds deformation equivalent to the
Hilbert scheme of three points on a K3 surface (i.e. of K3Œ3� type). The elements of this fam-
ily are natural double covers of special codimension-three subvarieties of the Grassmannian
G.3; 6/ that we call EPW cubes.

Let us be more precise. Let W be a complex six-dimensional vector space. We fix an
isomorphism j W ^6W ! C and the skew symmetric form

(1.1) � W ^3W � ^3W ! C; .u; v/ 7! j.u ^ v/:

We denote by LG�.10;^3W / the variety of ten-dimensional Lagrangian subspaces of ^3W
with respect to �. For any three-dimensional subspace U � W , the ten-dimensional subspace

TU WD ^
2U ^W � ^3W

belongs to LG�.10;^3W /, and P .TU / is the projective tangent space toG.3;W / � P .^3W /
at ŒU �.

For any ŒA� 2 LG�.10;^3W / and k 2 N, we consider the following Lagrangian degen-
eracy locus, with natural scheme structure (see [28]):

DAk D
®
ŒU � 2 G.3;W / j dimA \ TU � k

¯
� G.3;W /:

For the fixed ŒA� 2 LG�.10;^3W / we call the scheme DA2 an EPW cube. We prove that
if A is generic then DA2 is a sixfold singular only along the threefold DA3 and that DA4 is
empty. Moreover, DA3 is smooth such that the singularities of DA2 are transversal 1

2
.1; 1; 1/

singularities along DA3 .
Before we state our main theorem we shall need some more notation. The projectivized

representation ^3 of PGL.W / on ^3W splits P19 D P .^3W / into a disjoint union of four
orbits:

P19 D .P19 nW / [ .F n�/ [ .� nG.3;W // [G.3;W /;

where G.3;W / � � � F � P19, dim.�/ D 14, Sing.�/ D G.3;W /, dim.F / D 18,
Sing.F / D �, see [7]. We call the invariant sets G;�;F and P19 the (projective) orbits of
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Iliev, Kapustka, Kapustka and Ranestad, EPW cubes 3

^3 for PGL.6/. See [16, Appendix] for some results about the geometry of � and its relations
with EPW sextics. For any nonzero vector w 2 W , denote by

FŒw� D hwi ^ .^
2W /

the ten-dimensional subspace of ^3W , such that[
Œw�2P.W /

P .FŒw�/ D � � P .^3W /:

We follow the notation of O’Grady [26]:

† D
®
ŒA� 2 LG�.10;^

3W / j P .A/ \G.3;W / 6D ;
¯
;

� D
®
ŒA� 2 LG�.10;^

3W / j 9w 2 W W dimA \ FŒw� � 3
¯
:

We also consider a third subset

� D
®
A 2 LG�.10;^

3W / j 9 ŒU � 2 G.3;W /W dimA \ TU � 4
¯
:

All three subsets †, �, � are divisors (see [26] and Lemma 3.6). Hence,

LG1�.10;^
3W / WD LG�.10;^

3W / n .† [ �/

is a dense open subset of LG�.10;^3W /. Our main result is the following.

Theorem 1.1. If ŒA� 2 LG1�.10;^
3W /, then there exists a natural double cover YA

of the EPW cube DA2 branched along its singular locus DA3 such that YA is an IHS sixfold
of K3Œ3�-type with polarization of Beauville–Bogomolov degree q D 4 and divisibility 2. In
particular, the moduli space of polarized IHS sixfolds of K3Œ3�-type, Beauville–Bogomolov
degree 4 and divisibility 2 is unirational.

We prove the theorem in Section 5 at the very end of the paper. The plan of the proof is
the following: In Proposition 3.1 we prove that for ŒA� 2 LG1�.10;^

3W /, the variety DA2 is
singular only along the locusDA3 , and that it admits a smooth double cover YA ! DA2 branched
alongDA3 with a trivial canonical class. The proof of the Proposition is based on a general study
of Lagrangian degeneracy loci contained in Section 2. By globalizing the construction of the
double cover to the whole affine variety LG1�.10;^

3W /, we obtain a smooth family

Y ! LG1�.10;^
3W /

with fibers YŒA� D YA. Note that the family Y is naturally a family of polarized varieties with
the polarization given by the divisors defining the double cover.

In Lemma 3.7 we prove that � n .� [ †/ is nonempty. Following [26, Section 4.1],
we associate to a general ŒA0� 2 � n .� [ †/ a K3 surface SA0 . Then, in Proposition 4.1,
we prove that there exists a rational two-to-one map from the Hilbert scheme S Œ3�A0 of length-3
subschemes on SA0 to the EPW cube DA02 . We infer in Section 5 that in this case the sixfold
YA0 is birational to S Œ3�A0 . Together with the fact that YA0 is smooth, irreducible and has trivial
canonical class, this proves that YA0 is IHS.

Since flat deformations of IHS manifolds are still IHS, the family Y is a family of smooth
IHS sixfolds. The fact that the obtained IHS manifolds are of K3Œ3�-type is a straightforward
consequence of Huybrechts theorem [12, Thm. 4.6].
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4 Iliev, Kapustka, Kapustka and Ranestad, EPW cubes

During the proof of Theorem 1.1 we retrieve also some information on the constructed
varieties. We prove in Section 2.3 that the polarization � giving the double cover YA ! DA2
has Beauville–Bogomolov degree q.�/ D 4 and is primitive. Moreover, the degree of an EPW
cube DA2 � G.3; 6/ � P19 is 480.

Let us recall that the coarse moduli space M of polarized IHS sixfolds ofK3Œ3�-type and
Beauville–Bogomolov degree 4 has two components distinguished by divisibility. We conclude
the paper by proving that the image of the moduli map LG1�.10;^

3W /!M defined by Y is
a 20-dimensional open and dense subset of the component of M corresponding to divisibility 2
(see Proposition 5.3).

Acknowledgement. The authors wish to thank Olivier Debarre, Alexander Kuznetsov
and Kieran O’Grady for useful comments, O’Grady in particular for pointing out a proof of
Proposition 5.3.

2. Lagrangian degeneracy loci

In this section we study resolutions of Lagrangian degeneracy loci. Let us start with fixing
some notation and definitions. We fix a vector space W2n of dimension 2n and a symplectic
form ! 2 ^2W �2n. Let X be a smooth manifold and let W D W2n � OX be the trivial bundle
with fiberW2n on X equipped with a non-degenerate symplectic form Q! induced on each fiber
by !. Consider a Lagrangian vector subbundle J � W , i.e. a subbundle of rank n whose fibers
are isotropic with respect to Q!. Let A � W2n be a Lagrangian vector subspace inducing a
trivial subbundle A � W . For each k 2 N we define the set

DAk D
®
x 2 X j dim.Jx \Ax/ � k

¯
� X;

where Jx and Ax denote the fibers of the bundles J and A as subspaces in the fiber Wx . Let
us now define LG!.n;W2n/ to be the Lagrangian Grassmannian parameterizing all subspaces
of W2n which are Lagrangian with respect to !. Then J defines a map � W X ! LG!.n;W2n/

in such a way that J D ��L, where L denotes the tautological bundle on the Lagrangian
Grassmannian LG!.n;W2n/. Moreover, similarly as on X , we can define

DAk D
®
ŒL� 2 LG!.n;W2n/ j dim.L \ A/ � k

¯
� LG!.n;W2n/;

which admits a natural scheme structure as a degeneracy locus. We then have

DAk D �
�1DAk ;

i.e. the scheme structure on DA
k

is defined by the inverse image of the ideal sheaf of DA
k

; see
[11, p.163].

2.1. Resolution of DA
k

. For each k 2 N, letG.k;A/ be the Grassmannian of k-dimen-
sional subspaces of A and let

QDAk D
®
.ŒL�; ŒU �/ 2 LG!.n;W2n/ �G.k;A/ j L � U

¯
:

By [28], QDA
k

is a resolution of DA
k

. We shall describe the above variety more precisely. First of
all we have the following incidence described more generally in [28]:
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QDA
k

�

~~

�

##

DA
k

G.k;A/:

The projection � is clearly birational, whereas � is a fibration with fibers isomorphic to a
Lagrangian Grassmannian LG.n � k; 2n � 2k/. In particular, QDA

k
is a smooth manifold of

Picard number two with Picard group generated by H , the pullback of the hyperplane sec-
tion of LG.n;W2n/ in its Plücker embedding, and R, the pullback of the hyperplane sec-
tion of G.k;A/ in its Plücker embedding. Denote by Q the tautological bundle on G.k;A/
seen as a subbundle of the trivial symplectic bundle W2n ˝ OG.k;A/. Consider the subbundle
Q? � W2n ˝ OG.k;A/ perpendicular to Q with respect the symplectic form. The following
was observed in [28].

Lemma 2.1. The variety QDA
k

is isomorphic to the Lagrangian bundle

F WD LG.n � k;Q?=Q/:

Of course the tautological Lagrangian subbundle on LG.n�k;Q?=Q/ can be identified
with the bundle ��L=��Q DW W . In particular, we have

c1.W/ D ��c1.L/ � �
�c1.Q/ D R �H:

Lemma 2.2. The relative tangent bundle T� of � WF ! G.k;A/ is the bundle S2.W_/.

Proof. This can be seen by globalizing the construction of the tangent space of the
Lagrangian Grassmannian described for example in [22].

Lemma 2.3. The canonical class of QDA
k

is �.nC 1 � k/H � .k � 1/R.

Proof. We use the exact sequence

0! T� ! TF ! ��TG.k;A/ ! 0:

Now W_ has rank n � k, so

c1.T�/ D c1.S
2.W_// D .nC 1 � k/c1.W

_/ D .nC 1 � k/.H �R/

while ��c1.TG.k;A// D nR. Hence

KF D �c1.TF / D �.nC 1 � k/H � .k � 1/R:

Lemma 2.4. The variety DA1 is a hyperplane section of LG!.n;W2n/.

Proof. Indeed DA1 is the intersection of the codimension-one Schubert cycle on the
Grassmannian G.n; 2n/ with the Lagrangian Grassmannian, hence a hyperplane section of
the Lagrangian Grassmannian.
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6 Iliev, Kapustka, Kapustka and Ranestad, EPW cubes

Let us denote by E the exceptional divisor of �.

Lemma 2.5. For k D 2 we have ŒE� D ŒH � � 2ŒR�.

Proof. It is clear that ŒE� D aŒH�C bŒR� for some a; b 2 Z. Let us now consider the
restriction of E to a fiber of � , i.e. we fix a vector space V2 � A of dimension 2 and consider
LG.n � 2; V ?2 =V2/. Since E D ��1DA3 , we have

E \ ��1ŒV2� D
®
ŒL� 2 LG.n � 2; V ?2 =V2/ j dim.L=V2 \ A=V2/ � 1

¯
:

It is hence a divisor of type DA=V21 which is a hyperplane section of the fiber by Lemma 2.4. It
follows that a D 1.

To compute the coefficient at ŒR� we fix a subspace Vn�2 of dimension n � 2 in A and
consider the Schubert cycle

�Vn�2 D
®
ŒU � 2 G.2;A/ j dim.U \ Vn�2/ � 1

¯
:

The class Œ�Vn�2 � in the Chow group of G.2;A/ is then the class of a hyperplane section. We
now describe ����.�Vn�2/ as the class of the Schubert cycle �n�2;n on LG.n; 2n/ defined by

�n�2;n D
®
ŒL� 2 LG.n; 2n/ j dim.L \ Vn�2/ � 1; dim.L \ A/ � 2

¯
:

By [28, Theorem 2.1] we have

Œ�n�2;n� D c1.L
_/c3.L

_/ � 2c4.L
_/

and
ŒDA2 � D c1.L

_/c2.L
_/ � 2c3.L

_/:

In terms of intersection on QDA2 the two equations give

H
n.nC1/
2
�3
\ Œ QDA2 � D c1.L

_/
n.nC1/
2
�2c2.L

_/ � 2c1.L
_/

n.nC1/
2
�3c3.L

_/

and

H
n.nC1/
2
�4
�R \ Œ QDA2 � D c1.L

_/
n.nC1/
2
�3c3.L

_/ � 2c1.L
_/

n.nC1/
2
�4c4.L

_/:

Since we know that E is contracted by the resolution to DA3 , we also have

E �H
n.nC1/
2
�4
D 0:

We can now compute b:

0 D E �H
n.nC1/
2
�4(2.1)

D .H C bR/ �H
n.nC1/
2
�4

D H
n.nC1/
2
�3
C bH

n.nC1/
2
�4
�R

D c1.L
_/

n.nC1/
2
�4
�
c1.L

_/2c2.L
_/C .b � 2/c1.L

_/c3.L
_/ � 2bc4.L

_/
�
:
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Using the theorem of Hiller and Boe on relations in the Chow ring of the Lagrangian Grass-
mannian (see [27, Theorem 6.4]), we get

c1.L
_/2 D 2c2.L

_/ and c2.L
_/2 D 2

�
c3.L

_/c1.L
_/ � c4.L

_/
�
:

Substituting in (2.1), we get

0 D .b C 2/ deg
�
c1.L

_/c3.L
_/ � 2c4.L

_/
�
D .b C 2/ deg �n�2;n:

It follows that b D �2.

2.2. The embedding of G.3; W / into LG�.10; ^3W /. Let W be a six-dimensional
vector space. Let G D G.3;W / � P .^3W / be the Grassmannian of three-dimensional sub-
spaces in W in its Plücker embedding. Now, recall for each ŒU � 2 G,

TU D ^
2U ^W � ^3W:

The projective space P .TU / is tangent to G.3;W / at ŒU �. Let T be the corresponding vector
subbundle of ^3W ˝OG . Let A be a ten-dimensional subspace of ^3W isotropic with respect
to the symplectic form � defined by (1.1) and such that P .A/ \ G.3;W / D ;. Recall that for
k D 1; 2; 3; 4 we defined

DAk D
®
ŒU � 2 G j dim.TU \ A/ � k

¯
� G:

Observe that T is a Lagrangian subbundle of ^3W ˝OG with respect to the two-form �.
It follows that we are in the general situation described at the beginning of Section 2, with
n D 10, W20 D ^3W , X D G, J D T and A D A. Then T defines a map

� W G.3;W /! LG�.10;^
3W /; ŒU � 7! ŒTU �:

We denote by CU WD P .TU /\G.3;W / the intersection ofG.3;W / with its projective tangent
space ŒU �. Then CU is linearly isomorphic to a cone over P2 � P2 with vertex ŒU �. The
quadrics containing the cone CU plays in this situation a similar role in the local analysis of the
singularities of DA

k
as the Plücker quadrics containing the Grassmannian P .FŒw�/ \ G.3;W /

in [26]; this will be made more precise in Lemma 2.7.
We aim at proving the following result.

Proposition 2.6. Let A 2 LG�.10;^3W / such that P .A/ \ G.3;W / D ;. The map
� is an embedding and �.G.3;W // meets transversely all loci DA

k
nDA

kC1
for k D 1; 2; 3. In

particular, each DA
k

is of expected dimension.

For the proof we shall adapt the idea of [26] to our context. Let us first describe � more
precisely locally around a chosen point ŒU0� 2 G.3;W /. For this, we choose a basis v1; : : : ; v6
for W such that U0 D hv1; v2; v3i and define U1 D hv4; v5; v6i. For any ŒU � 2 G.3;W /
we have TU D ^2U ^ W , so TU0 , TU1 are two Lagrangian spaces that intersect only at 0:
TU0 \ TU1 D 0. By appropriate choice of v4; v5; v6 we can also assume that TU1 \ A D 0.

Let
V D

®
ŒL� 2 LG�.10;^

3W / j L \ TU1 D 0
¯
:
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8 Iliev, Kapustka, Kapustka and Ranestad, EPW cubes

The decomposition ^3W D TU0 ˚ TU1 into Lagrangian subspaces and the isomorphism
TU1 ! T _U0 induced by � allow us to view a Lagrangian space L in V as the graph of a
symmetric linear map QL W TU0 ! TU1 D T

_
U0

. Let qL 2 Sym2T _U0 be the quadratic form
corresponding to QL. The map ŒL� 7! qL defines an isomorphism V ! Sym2T _U0 .

Consider the open neighborhood

U D
®
ŒU � 2 G.3;W / j TU \ TU1 D 0

¯
of ŒU0� in G.3;W /. For ŒU � 2 U we denote by QU WD QTU and qU WD qTU the symmetric
linear map and the quadratic form corresponding to the Lagrangian space TU .

We shall describe qU in local coordinates. Observe that for any ŒU � 2 G.3;W /,

TU \ TU1 D 0 $ U \ U1 D 0

and that any such subspace U is the graph of a linear map ˇU W U0 ! U1. In particular, there
is an isomorphism

� W U! Hom.U0; U1/; ŒU � 7! ˇU

whose inverse is the map

˛ 7! ŒU˛� WD
�
.v1 C ˛.v1// ^ .v2 C ˛.v2// ^ .v3 C ˛.v3//

�
:

In the given basis .v1; v2; v3/; .v4; v5; v6/ for U0 and U1 we let BU D .bi;j /i;j2¹1;2;3º be the
matrix of the linear map ˇU . In the dual basis we let .m0;M/, with M D .mi;j /i;j2¹1;2;3º, be
the coordinates in

T _U0 D .^
3U0 ˚^

2U0 ˝ U1/
_
D .^3U0 ˚ Hom.U0; U1//_:

Note, that under our identification the map � W G.3;W /! LG.10;^3W / restricted to U is the
map ŒU � 7! qU , which justifies our slight abuse of notation in the following lemma.

Lemma 2.7. In the above coordinates, the map

� W U 3 ŒU � 7! qU WD qTU 2 Sym2T _U0

is defined by

qU .m0;M/ D
X

i;j2¹1;2;3º

bi;jM
i;j
Cm0

X
i;j2¹1;2;3º

B
i;j
U mi;j Cm

2
0 detBU ;

where M i;j , B i;jU are the entries of the matrices adjoint to M and BU .

Proof. We write in coordinates the map

^
3U0 ˚^

2U0 ˝ U1 ! ^
3U1 ˚^

2U1 ˝ U0

whose graph is ^3U ˚ ^2U ˝ U1 where U is the graph of the map U0 ! U1 given by the
matrix BU .
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Let now QA be the symmetric map TU0 ! TU1 D T
_
U0

whose graph is A and let qA be
the corresponding quadratic form. In this way

DAl \ U D
®
ŒU � 2 U j dimTU \ A/ � l

¯
D
®
ŒU � 2 U j rk.QU �QA/ � 10 � l

¯
;

hence DA
l

is locally defined by the vanishing of the .11 � l/ � .11 � l/ minors of the 10 � 10
matrix with entries being polynomials in bi;j .

First we show that the space of quadrics that define CU surjects onto the space of quadrics
on linear subspaces in P .TU /.

Lemma 2.8. If P � P .TU / nG.3; 6/ is a linear subspace of dimension at most 2, then
the restriction map rP W H

0.P .TU /; ICU .2//! H 0.P;OP .2// is surjective.

Proof. We may restrict to the case when P is a plane. Since CU � P .TU / \G.3; 6/ is
projectively equivalent to the cone over P2�P2 in its Segre embedding, it suffices to show that
if P � P8 is a plane that does not intersect P2 � P2 � P8, then the Cremona transformation
Cr on P8 defined by the quadrics containing P2 � P2 maps P to a linearly normal Veronese
surface. Note that the ideal of P2 � P2 � P8 is defined by 2 � 2 minors of a 3 � 3 matrix
with linear forms in P8, whereas the secant of P2 � P2 is defined by the determinant of
this matrix. Since the first syzygies between the generators of this ideal are generated by
linear ones we infer from [1, Proposition 3.1] that they define a birational map. Moreover,
this Cremona transformation contracts the secant determinantal cubic hypersurface V3 to a
to a variety linearly isomorphic to P2 � P2, so the inverse Cremona is of the same kind.
Furthermore, the fibers of the map V3 ! P2�P2 are three-dimensional linear spaces spanned
by quadric surfaces in P2 � P2. Now, by assumption, P does not intersect P2 � P2, so
the restriction CrjP is a regular, hence finite, morphism. Since the fibers of the Cremona
transformation are linear, P intersects each fiber in at most a single point, so the restriction
CrjP is an isomorphism. Thus, if Cr.P / is not linearly normal, the linear span hCr.P /i is
a P4, being a smooth projected Veronese surface. Assume this is the case. Then Cr.P / is not
contained in any quadric. Since the quadrics that define the inverse Cremona map Cr.P / to the
plane P , these quadrics form only a net when restricted to the four-dimensional space hCr.P /i.
In fact, the complement of P2 � P2 \ hCr.P /i in hCr.P /i is mapped to P by the inverse
Cremona transformation. Therefore hCr.P /i must be contained in the cubic hypersurface that
is contracted by this inverse Cremona. Since this hypersurface is contracted to the original
P2 � P2, we infer that P is contained in P2 � P2. This contradicts our assumption and
concludes our proof.

Lemma 2.9. Let K D A \ TU0 D kerQA � TU0 and assume that k D dimK � 3.
Then for any l � k the tangent cone ClA;U0 of DA

l
\ U at U0 is linearly isomorphic to a cone

over the corank-l locus of quadrics in P .H 0.P .K/;OP.K/.2///.

Proof. We follow the idea of [25, Proposition 1.9]. If we choose a basis ƒ of T _U0 ,
the symmetric linear map QU is defined by a symmetric matrix Mƒ.BU / with entries being
polynomials in .bi;j /i;j2¹1;2;3º.

The linear summands of each entry in Mƒ.BU / form a matrix that we denote by
Nƒ.BU /. Since Q0 D 0, the entries of Mƒ.BU / have no nonzero constant terms. Moreover,
by using Lemma 2.7 and ƒ0 D .m0;M/, we see that the map U 3 U 7! q0U 2 Sym2T _U0 ,
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10 Iliev, Kapustka, Kapustka and Ranestad, EPW cubes

where q0U is the quadratic form corresponding to the symmetric map defined by the matrix
Nƒ0.BU /, maps U linearly onto the linear system of quadrics containing the cone CU0 . Of
course, this surjection is independent of the choice of the basis.

We now choose a basis ƒ in TU0 in which QA is represented by a diagonal matrix
Rk D diag¹0; : : : ; 0; 1; : : : ; 1º with k zeros in the diagonal. Then

DAl \ U D
®
ŒU � 2 U j dim.TU \ A/ � l

¯
D
®
ŒU � 2 U j dim ker.QU �QA/ � l

¯
D
®
ŒU � 2 U j rk.Mƒ.BU / �Rk/ � 10 � l

¯
:

HenceDA
l

is defined in coordinates .bi;j /i;j2¹1;2;3º on U by .11�l/�.11�l/minors of the ma-
trix Mƒ.BU /�Rk . Furthermore, since ŒU0� is the point 0 in our coordinates .bi;j /i;j2¹1;2;3º,
the tangent cone to DA

l
\ U at ŒU0� is defined by the initial terms of the .11 � l/ � .11 � l/

minors of Mƒ.BU / �Rk . Note that we can write

Mƒ.BU / �Rk D �Rk CN
ƒ.BU /CZ.BU /;

where the entries of the matrix Z.BU / are polynomials with no linear or constant terms. We
illustrate this decomposition as follows:0BBBBBBB@

Nƒk CZk

Nƒ
1;kC1

CZƒ
1;kC1

: : : Nƒ1;10 CZ
ƒ
1;10

:
:
:

: : :
:
:
:

Nƒ
k;kC1

CZƒ
k;kC1

: : : Nƒ
k;10
CZƒ

k;10

Nƒ
kC1;1

CZƒ
kC1;1

: : : Nƒ
kC1;k

CZƒ
kC1;k

:
:
:

: : :
:
:
:

Nƒ10;1 CZ
ƒ
10;1 : : : Nƒ

10;k
CZƒ

10;k

�1CNƒ
kC1;kC1

CZƒ
kC1;kC1

: : : Nƒ
kC1;10

CZƒ
kC1;10

:
:
:

: : :
:
:
:

Nƒ
10;kC1

CZƒ
10;kC1

: : : �1CNƒ10;10 CZ
ƒ
10;10

1CCCCCCCA
:

Let ˆ be an .11 � l/ � .11 � l/ minor of Mƒ.BU / � Rk and consider its decomposition
ˆ D ˆ0 C � � � C ˆr into homogeneous parts ˆd of degree d . Observe that ˆd D 0 for
d � k � l , moreover ˆk�lC1 can be nonzero only if the submatrix associated to the minor ˆ
contains all nonzero entries of Rk . In the latter case ˆk�lC1 is a .k C 1 � l/ � .k C 1 � l/
minor of the k � k upper left corner submatrix Nƒ

k .BU / of the matrix Nƒ.BU /. Let us now
denote by q0U the quadric corresponding to the matrix Nƒ.BU / and by �N the map U 7! q0U .
Then, by changing ˆ, we get that the tangent cone of DA

l
\ U is contained in

OClA;U0 WD
®
ŒU � 2 U j rk.Nƒ

k .BU // � k � l
¯
D
®
ŒU � 2 U j rk.q0U jK/ � k � l

¯
:

The latter is the preimage by rK ı �
N of the corank-l locus in the projective space of quadrics

P .H 0.P .K/;OP.K/.2///.
By Lemma 2.8, we have seen that rKı�

N is a linear surjection. So we conclude that OClA;U0
is a cone over the corank-l locus of quadrics in P .H 0.P .K/;OP.K/.2/// with vertex a linear
space of dimension 10 � k.k C 1/=2. It follows that OClA;U0 is an irreducible variety of codi-
mension l.l C 1/=2 equal to the codimension of DA

l
. Thus we have equality ClA;U0 D

OClA;U0
which ends the proof.

Corollary 2.10. If A is a Lagrangian space in ^3W such that P .A/ does not meet
G.3;W /, then the varietyDA

l
is smooth of the expected codimension l.lC1/=2 outsideDA

lC1
.

Moreover, if l D 2 and dimA \ TU0 D 3, i.e. ŒU0� is a point in DA3 n D
A
4 , then the tangent

cone C2A;U0 is a cone over the Veronese surface in P5 centered in the tangent space of DA3 .
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Iliev, Kapustka, Kapustka and Ranestad, EPW cubes 11

Proof of Proposition 2.6. It is clear from Lemma 2.7 that � is a local isomorphism into
its image, and by Corollary 2.10, the subscheme DkA D ��1.�.G.3;W // \ DkA/ is smooth
outside DkC1A , so �.G.3;W // meets the degeneracy loci transversally.

2.3. Invariants. We shall compute the classes of the Lagrangian degeneracy loci
DA
k
� G.3;W / in the Chow ring of G.3;W /. We consider the embedding

� W G.3;W /! LG�.10;^
3W /

defined by the bundle of Lagrangian subspaces T on G.3;W /. According to [28, Theorem
2.1] the fundamental classes of the Lagrangian degeneracy loci DA

k
are

ŒDA1 � D Œc1.T
_/ \G.3;W /�; ŒDA2 � D Œ.c2c1 � 2c3/.T

_/ \G.3;W /�

and
ŒDA3 � D Œ.c1c2c3 � 2c

2
1c4 C 2c2c4 C 2c1c5 � 2c

2
3/.T

_/ \G.3;W /�:

The P9-bundle P .T / is the projective tangent bundle on G.3;W /. So T _ fits into an exact
sequence

0! �G.3;W /.1/! T _ ! OG.3;W /.1/! 0

and we get
degDA1 D 168; degDA2 D 480; degDA3 D 720:

Remark 2.11. This may be compared with the degree of the line bundle 2H � 3E on
S Œ3�, where S is a K3 surface of degree 10, H is the pullback of the line bundle of degree
10 on S , and E is the unique divisor class such that the divisor of non-reduced subschemes
in S Œ3� is equivalent to 2E. The degree, i.e. the value of the Beauville–Bogomolov form, is
q.2H � 3E/ D 4, and the degree and the Euler–Poincaré characteristic of the line bundle are

.2H � 3E/6 D 15q.2H � 3E/3 D 960 and �.2H � 3E/ D 10:

So if the map defined by j2H � 3Ej is a morphism of degree 2, the image would have degree
480, like DA2 .

In Section 4, we show that S Œ3� for a generalK3 surface S of degree 10 admits a rational
double cover of a degeneracy locus DA2 . However that double cover is not a morphism.

3. The double cover of an EPW cube

Proposition 3.1. Let ŒA� 2 LG�.10;^3W /. If P .A/\G.3;W / D ; andDA4 D ;, then
DA2 admits a double cover f W YA ! DA2 branched over DA3 with YA a smooth irreducible
manifold having trivial canonical class.

Before we pass to the construction of the double cover let us observe the following.

Lemma 3.2. Under the assumptions of Proposition 3.1 the variety DA2 is integral.
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12 Iliev, Kapustka, Kapustka and Ranestad, EPW cubes

Proof. We know thatDA2 is of expected dimension. Observe now that by Corollary 2.10
the varietyDA2 is irreducible if and only if it is connected. To prove connectedness we perform
a computation in the Chow ring of the Grassmannian G.3;W / showing that the class ŒDA2 �
does not decompose into a sum of nontrivial effective classes in the Chow group A3.G.3;W //
whose intersection is the zero class in A6.G.3;W //. More precisely we compute

ŒDA2 � D 16h
3
� 12hs2 C 12s3;

where h is the hyperplane class on G.3;W /, s2 and s3 are the Chern classes of the tautological
bundle on G.3;W /. We then solve in integer coordinates a; b; c 2 Z the equation

.ah3 � bs2 C cs3/
�
.16 � a/h3 � .12 � b/s2 C .12 � c/s3

�
D 0

in the Chow group A6.G.3;W // which is generated by s32 , h3s1s2, s23 . Multiplying out the
equation in the Chow ring and extracting coefficients at the generators, we get a system of
three quadratic diophantine equations in a; b; c:

(3.1)

8̂<̂
:
�5a2 C 4ab � b2 C 56a � 20b D 0;

�6a2 C 8ab � 2b2 � 4ac C 2bc C 72a � 52b C 20c D 0;

6a2 � 6ab C b2 C 2ac � c2 � 72aC 36b � 4c D 0:

The only integer solutions are .0; 0; 0/ and .16; 12; 12/. This ends the proof.

The plan of the construction of the double cover in Proposition 3.1 is the following. We
consider the resolution QDA2 ! DA2 with exceptional divisor E. We prove that E is a smooth
even divisor, and hence that there is a smooth double cover QY ! QDA2 branched overE. Finally,
we contract the branch divisor of the double cover using a suitable multiple of the pullback of
a hyperplane class on DA2 by the resolution and the double cover.

Thus, we start by defining the incidences

QDA2 D
®
.ŒU �; ŒU 0�/ 2 G.3;W / �G.2;A/ j TU � U

0
¯

and
QDA2 D

®
.ŒL�; ŒU 0�/ 2 LG�.10;^

3W / �G.2;A/ j L � U 0
¯
:

They fit in the following diagram:

G.3;W /
� // LG!.10;^

3W /

DA2

�j
DA
2 //

�

DA2

�

QDA2

˛

OO

Q� // QDA2 :

�

OO

Lemma 3.3. Under the assumptions of Proposition 3.1 the variety QDA2 as well as the
exceptional locus E of the map ˛ are smooth. In particular, ˛ is a resolution of singularities
of DA2 .
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Iliev, Kapustka, Kapustka and Ranestad, EPW cubes 13

Proof. Since we know that DA4 D ;, the resolution ˛ W QDA2 ! DA2 is just the blow-up
of DA2 along DA3 . Now, QDA2 nE is isomorphic to DA2 nD

A
3 , so, by Corollary 2.10, we deduce

that QDA2 is smooth outside E. Let p 2 E � QDA2 . Then ˛.p/ 2 DA3 . Take P1;P2;P3 to be
three general hyperplanes passing through ˛.p/. Consider ZP D D

A
2 \ P1 \ P2 \ P3 and its

strict transform QZP �
QDA2 . We have the following diagram:

QZP

˛P

��

// QDA2

˛

��

ZP
// DA2 :

The map ˛P W
QZP ! ZP is the blow-up of ZP in DA3 \ P1 \ P2 \ P3, which by Corollary

2.10 is a finite set of isolated points. By the assumption on P1;P2;P3 the strict transform
QZP contains the whole fiber ˛�1.p/ and hence also p 2 QZP . Let QPi be the strict transform

of Pi for i D 1; 2; 3. Then QPi is a Cartier divisor on QDA2 and QZP D
QP1 \ QP2 \ QP3 is a

complete intersection of Cartier divisors on QDA2 . Now, from Corollary 2.10, the exceptional
divisor EP D E\ QZP of ˛P is isomorphic to a finite union of disjoint .P2/, one for each point
in DA3 \ P1 \ P2 \ P3. But EP is itself a Cartier divisor on QZP by general properties of the
blow-up. Therefore QZP is smooth. We conclude that QDA2 is smooth at p and similarly, that E
is smooth at p.

We compute the first Chern class of the normal bundle of the embedding Q� W QDA2 ! QD
A
2 .

Lemma 3.4. One has

c1.Q�
�N
Q�. QDA2 /j

QDA2
/ D c1.˛

���N�.G.3;W //jLG�.10;^3W // D 38h;

where h is the pullback via the resolution ˛ of the restriction of the hyperplane class on
G.3;W / to DA2 .

Proof. From the transversality (Proposition 2.6) we have

Q��N
Q�. QDA2 /j

QDA2
D ˛���N�.G.3;W //jLG�.10;^3W /;

which gives the first equality.
To get the second, consider the exact sequence

0! TG.3;W / ! ��.TLG�.10;^3W //! ��.N�.G.3;W //jLG�.10;^3W //! 0;

and observe that

��.TLG�.10;^3W // D �
�.S2L_/ D S2.��L_/ D S2T _;

where L denotes, as before, the tautological bundle on the Lagrangian Grassmannian
LG�.10;^

3W /. We obtain

c1.˛
���N�.G.3;W //jLG�.10;^3W // D �11˛

�c1.T / � 6h:

Now, from
0! OG.3;W /.�1/! T ! TG.3;W /.�1/! 0

we obtain ˛�c1.T / D �4h, which proves the lemma.
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14 Iliev, Kapustka, Kapustka and Ranestad, EPW cubes

Note that in our notation we have

Q��H D Q����c1.L
_/ D ˛���c1.L

_/ D ˛�c1.T
_/ D 4h:

We aim now at constructing a double covering of QDA2 branched along E. It is enough to prove
that E is an even divisor. This follows from the exact sequence

0! T QDA2
! Q��T QDA2

! Q��N
Q�. QDA2 /j

QDA2
! 0

and Lemma 2.3. Indeed, from them we infer

c1.T QDA2
/ D Q��.9H CR/ � 38h D Q��.R/ � 2h;

which, by Lemma 2.5, means

E D E \ QDA2 D Q�
�.H � 2R/ D 2K QDA2

:

By Lemma 3.3 there hence exists a smooth double cover Qf W QY ! QDA2 branched along the
exceptional locus E of the resolution ˛. Moreover, from the adjunction formula for double
covers we get K QY D

Qf �1.E/ DW QE.
We now need to contract QE D Qf �1.E/ on QY . For that, with slight abuse of notation, we

denote by h the class of the hyperplane section onDA2 � G.3;W /. Then j Qf �˛�hj is a globally
generated linear system whose associated morphism defines ˛ ı Qf and hence contracts E to
a threefold and is two-to-one on QY n Qf �1.E/. It follows by standard arguments (for example
applying Stein factorization and [10, Proposition 4.4]) that there exists a number n such that the
system jn Qf �˛�hj defines a morphism Q̨ W QY ! Y which is a birational morphism contracting
exactly QE to a threefold Z and such that its image Y is normal. We then have the following
diagram:

QY

Q̨

��

Qf
// QDA2

˛

��

Y
f
// DA2 ;

in which Y admits a two-to-one map f W Y ! DA2 branched along DA3 .

Proof of Proposition 3.1. We have constructed Y , a normal variety admitting a two-to-
one map f W Y ! DA2 branched along DA3 . Clearly K QY D QE implies KY D 0. It hence
remains to prove that Y is smooth. Since Q̨ is a contraction that contracts only QE, it is clear
that Y is smooth outside of Z D Q̨ . QE/. Let now p 2 Z and let p0 D f .p/. We then choose
three general hypersurfaces P1;P2;P3 of degree n in P .^3W / passing through p0. Consider

ZP D D
A
2 \ P1 \ P2 \ P3 and Z0P D D

A
3 \ P1 \ P2 \ P3:

Then Z0P is a finite set of points that includes p0. Consider the following natural restriction of
the above diagram:

QYP

Q̨P

��

QfP // QZP

˛P

��

YP
fP // ZP :

Brought to you by | University of Oslo Norway
Authenticated

Download Date | 9/5/17 4:24 PM



Iliev, Kapustka, Kapustka and Ranestad, EPW cubes 15

Here ˛P D ˛j˛�1.ZP /
W QZP ! ZP is just the blow-up of ZP along Z0P . The exceptional

divisorEP is then, by Corollary 2.10, isomorphic to a finite set of disjoint planes that each have
normal bundle OP2.�2/ in QZP . Taking the double cover of QZP branched along the exceptional
divisor EP , the preimages of these .P2/ are the components of QEP �

QYP , each component a
P2 with normal bundle OP2.�1/. The contraction Q̨P contracts the divisor QEP to a finite set
of points in YP . It contracts one of its .P2/, denote it by QEpP , to the point p. Note also that
from the construction, YP is the intersection of three Cartier divisors on Y which is smooth
outside the finite set of points Z0P . Thus, since we constructed Y to be normal, we deduce that
YP is also normal. We claim that p must be a smooth point of YP . Indeed, we know that Q̨P
is a birational morphism onto the normal variety YP . Moreover, all lines l � QE

p
P D P2 are

numerically equivalent on QYP and satisfy

l �K QYP
D �1 < 0:

It follows from [18, Corollary 3.6] that there exists an extremal ray r for QYP whose associated
contraction contr W QYP !

OYP contracts QEpP to a point Op and that Q̨P factorizes through contr .
By [18, Theorem 3.3] we have that contr is the blow-down of QEpP and Op is a smooth point of
OYP . Let us now denote by � W OYP ! YP the morphism satisfying Q̨P D � ı contr . Consider

the restriction �o of � to small open neighborhoods of Op and p. Then �o is a birational proper
morphism which is bijective to an open subset of the normal variety YP . It follows by Zariski’s
main theorem that �o is an isomorphism and in consequence, p is a smooth point on YP .

The latter implies that Y must also be smooth at p as it admits a smooth complete inter-
section subvariety which is smooth at p.

Corollary 3.5. Let ŒA� 2 LG�.10;^3W / be a general Lagrangian subspace with a
three-dimensional intersection with some space FŒw� D ¹w^˛ j ˛ 2 ^2W º. Then there exists
a double cover fA W YA ! DA2 branched over DA3 , where YA is a smooth irreducible sixfold
with trivial canonical class.

Proof. It is enough to make a dimension count to prove that the general Lagrangian
space A satisfying the assumptions of the corollary also satisfies the assumptions of Proposi-
tion 3.1. Indeed, as in the introduction, let

� D
®
ŒA� 2 LG�.10;^

3W / j 9w 2 W W dim.A \ FŒw�/ � 3
¯
;

� D
®
ŒA� 2 LG�.10;^

3W / j 9U 2 G.3;W /W dim.A \ TU / � 4
¯
:

Lemma 3.6. The set � � LG�.10;^3W / is a divisor.

Proof. Let us consider the incidence

„ D
®
.ŒU �; ŒA�/ 2 G.3;W / � LG�.10;^

3W / j dim.TU \ A/ � 4
¯
:

The dimension of „ can be computed by looking at the projection „ ! G.3; 6/. For a fixed
tangent plane we choose first a P3 inside: this choice has 24 parameters. Then for a fixed P3

we have dim.LG.6; 12// D 21 parameters for the choice of A. Thus the dimension of „ is
9C24C21 D 54. It remains to observe that the projection„! LG�.10;^

3W / is finite, and
that dim.LG�.10;^3W // D 55.

Brought to you by | University of Oslo Norway
Authenticated

Download Date | 9/5/17 4:24 PM



16 Iliev, Kapustka, Kapustka and Ranestad, EPW cubes

Note that in [26, Proposition 2.2] it is proven that � is irreducible and not contained in
† D ¹ŒA� 2 LG.10; 20/ j P .A/ \ G.3;W / ¤ ;º. Our corollary is now a consequence of
Proposition 3.1 and the following lemma.

Lemma 3.7. The divisors �, � � LG�.10;^3W / have no common components.

Proof. We need to prove dim.� \ �/ < 54 which, by the fact that � is irreducible
and not contained in †, is equivalent to dim..� \ �/ n †/ < 54. For this, observe that if
ŒA� 2 .� \ �/ n † then there exist ŒU � 2 G.3;W / and Œw� 2 P .W / with dim.A \ TU / D 4

and dim.A \ FŒw�/ D 3. We can hence consider the incidence

‚ D
®
.ŒA�; ŒW3�; ŒW4�; Œw�; ŒU �/ j W3 D A \ FŒw�; W4 D A \ TU

¯
� LG�.10;^

3W / �G.3;^3W / �G.4;^3W / � P .W / �G.3;W /

such that its projection to LG�.10;^3W / contains .� \ �/ n †. Note also that if we take
.ŒA�; ŒW3�; ŒW4�; Œw�; ŒU �/ 2 ‚ then W4 \W3 D W4 \ FŒw� D W3 \ TU .

We shall now compute the dimension of ‚ by considering fibers under subsequent pro-
jections:

LG�.10;^
3W / �G.3;^3W / �G.4;^3W / � P .W / �G.3;W /

�1
�! G.3;^3W / �G.4;^3W / � P .W / �G.3;W /
�2
�! G.4;^3W / � P .W / �G.3;W /
�3
�! P .W / �G.3;W /:

We have two possibilities for pairs .Œw�; ŒU �/ which give us two types of points to consider:

(i) If w 62 U , then dimTU \ FŒw� D 3.

(ii) If w 2 U , then dimTU \ FŒw� D 7.

We then have different types of elements in the intersection ��13 .Œw�; ŒU �/ \ �2.�1.‚//, de-
pending on the number

d1 WD dim.W4 \ FŒw�/ D dim.W4 \W3/ � 3:

IfW ?4 denotes the orthogonal toW4 with respect to � in ^3W , then dimW ?4 \FŒw� D 6Cd1.
Now, in order for ŒW3� to be an element of ��12 .ŒW4�; Œw�; ŒU �/ \ �1.‚/ we must have

W3 � W
?
4 \ FŒw�:

The fiber ��11 .ŒW3�; ŒW4�; Œw�; ŒU �/\‚ is of dimension .3Cd1/.4Cd1/=2. Hence to compute
the dimension of each component of ‚ it is enough to compute the dimensions of the spaces
Fi;d1 of elements .ŒW3�; ŒW4�; Œw�; ŒU �/ of types .i; d1/, where i D 1 if w 62 U and i D 2 if
w 2 U .

(i) For i D 1 we start with a choice of ŒU � 2 G.3;W /. Then Œw� belongs to an open subset
of P5. We have d1 � 3 and ŒW4� belongs to the Schubert cycle consisting of four-spaces
in the ten-dimensional space TU that meet the fixed three-space TU \ FŒw� in dimension
d1. And ŒW3� belongs to the Schubert cycle of three-spaces in the .6C d1/-dimensional
space W ?4 \ FŒw� that contains the space W4 \ FŒw� of dimension d1
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(ii) For i D 2 we again start with a choice of ŒU � 2 G.3;W /. In this case Œw� belongs to
P .U /. We have d1 � 3 and ŒW4� belongs to the Schubert cycle of four-spaces in the
ten-dimensional space TU that meet the fixed seven-space TU \ FŒw� in dimension d1.
Then ŒW3� belongs to the Schubert cycle of three-spaces in the .6 C d1/-dimensional
space W ?4 \ FŒw� that contains the space W4 \ FŒw� of dimension d1.

We have

dimFi;d1 D

8̂̂̂̂
<̂
ˆ̂̂:
9C 5C d1.3 � d1/C .4 � d1/6C .d1 C 3/.3 � d1/

D 47 � 3d1 � 2d
2
1 for i D 1;

9C 2C d1.7 � d1/C .4 � d1/6C .d1 C 3/.3 � d1/

D 44C d1 � 2d
2
1 for i D 2:

In each case we have

dimFi;d1 C
.3C d1/.4C d1/

2
� 53:

It follows that dim‚ � 53 which implies dim.�\�/ � 53. Hence� and � have no common
components.

This also concludes the proof of Corollary 3.5.

4. Special A

Let us recall from [26] the following construction. Let V and V0 be two vector spaces of
dimensions 5 and 1 respectively. Let W D V ˚ V0. Consider the space ^3W equipped with
the symplectic form � given by the wedge product as above. Let v0 2 V0, choose a general
Lagrangian subspace A of ^3W such that A\FŒv0� is a vector space of dimension 3, i.e. ŒA� is
a general element of the divisor � � LG�.10;^3W /. In particular, we assume ŒA� 2 � n †.
Note that, by [26, Proposition 2.2 (2)], for a general ŒA� 2 � there is a unique Œv0� such that
FŒv0� \ A is of dimension 3.

Let QK D A \ FŒv0� and denote by K � ^2V the three-dimensional subspace such that
QK D v0 ^ K. Observe that there is a natural isomorphism ^2V ! FŒv0� given by wedge

product with v0. The latter induces an isomorphism ^3V ! F _Œv0�.
Let ŒB� 2 LG�.10;^3W / be a Lagrangian space such that

B \ FŒv0� D ¹0º and B \ A D ¹0º:

Then the symplectic form � defines a canonical isomorphism B ! F _Œv0� by which A appears
as the graph of a symmetric map QQA W FŒv0� ! B D F _Œv0�. Composed with the isomorphisms
^2V ! FŒv0� and ^3V ! F _Œv0� we get a symmetric map

QA W ^
2V ! ^3V Š .^2V /_:

Clearly kerQA D K. Let qA be the quadric on ^2V given by QA, then qA is a quadric
of rank 7; it is a cone overK. The mapQA defines an isomorphism ^2V=K ! K? and hence
the quadric qA defines a quadric K? � ^3V :

q�A W ˇ 7! vol.˛ ^ ˇ/; where QA.˛/ D ˇ:
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18 Iliev, Kapustka, Kapustka and Ranestad, EPW cubes

Moreover, to each v� 2 V _ we associate the quadric

qv� W ^
3V 3 ! 7! vol.!.v�/ ^ !/ 2 C:

The quadrics qv� are the Plücker quadrics defining the GrassmannianG.3; V / � P .^3V /. We
denote by SA the smoothK3 surface (see [26, Corollary 4.9]) of genus 6 defined on P .K?/ by
the restrictions of the quadrics qv� and the quadric q�A. Let S Œ2�A and S Œ3�A denote the appropriate
Hilbert schemes of points on SA. Observe that we have a natural isomorphism

W _ D V _ ˚ V _0 2 v
�
C cv�0 7! qv� C cq

�
A 2 H

0.ISA.2//:

We then have a rational two-to-one map:

' W S
Œ2�
A Ü P .W /;

well defined on the open subset consisting of reduced subschemes whose span is not contained
in G.3; V /, by associating to ¹ˇ1; ˇ2º � SA the hyperplane in W _ D H 0.IS .2// consist-
ing of quadrics containing the line hˇ1; ˇ2i. Let us describe this map more precisely. Since
¹ˇ1; ˇ2º � K? � ^3V � ^3W , we have ˇi ^ � D 0 for i D 1; 2 and � 2 K, and hence
also for � 2 QK. Thus ˇi 2 ^3W is contained in the space spanned by A and FŒv0�. It follows
that there exists ˛i 2 ^2V such that ˇi C v0 ^ ˛i 2 A. Let us fix such ˛i (determined up to
elements in K). Then QA.˛i / D ˇi and

q�A.�1ˇ1 C �2ˇ2/ D vol
�
.�1˛1 C �2˛2/ ^ .�1ˇ1 C �2ˇ2/

�
D �1�2 vol.˛1 ^ ˇ2 C ˛2 ^ ˇ1/

since q�A.ˇ1/ D q
�
A.ˇ2/ D 0. But A is Lagrangian, so we have

˛i ^ ˇi D 0 for i D 1; 2;

and
vol.˛1 ^ ˇ2/ D vol.˛2 ^ ˇ1/ WD c12:

Now, ˇ1 and ˇ2 are decomposable, i.e. qv�.ˇi / D 0, and their linear span is not contained in
G.3; V /. We may therefore choose a basis ¹v1; : : : ; v5º for V such that ˇ1 D v1^ v2^ v3 and
ˇ2 D v1 ^ v4 ^ v5. A direct computation now shows�

t0q
�
A C

5X
iD1

tiqv�
i

�
.�1ˇ1 C �2ˇ2/ D 2t0c12�1�2 C 2t1�1�2

so

(4.1) '.¹ˇ1; ˇ2º/ D Œc12v0 C v1� 2 P .W /:

It is proven in [26] that '.¹ˇ1; ˇ2º/ lies on the EPW sextic associated to A. Let us present
the proof in a way that we will be able to further generalize. It suffices to show that there are
nonzero scalars x1; x2 and an element � 2 K such that�

x1.ˇ1 C v0 ^ ˛1/C x2.ˇ2 C v0 ^ ˛2/C v0 ^ �
�
^ .c12v0 C v1/ D 0:

Indeed, this implies�
x1.ˇ1 C v0 ^ ˛1/C x2.ˇ2 C v0 ^ ˛2/C v0 ^ �

�
2 P .FŒc12v0Cv1�/ \ P .A/:
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Iliev, Kapustka, Kapustka and Ranestad, EPW cubes 19

Let us now denote by �1, �2, �3 a basis of K, then we consider the equation�
x1.ˇ1 C v0 ^ ˛1/C x2.ˇ2 C v0 ^ ˛2/C

3X
jD1

yj v0 ^ �j

�
^ .c12v0 C v1/ D 0;

i.e.�
�x1c12v0^ˇ1�x2c12v0^ˇ2Cx1v0^˛1^v1Cx2v0^˛2^v1C

3X
jD1

yj v0^�j ^v1

�
D 0:

To make this equation into a system of linear equations we multiply with the elements of basis
in ^2V and compose with the volume map vol W ^6W ! C.

We obtain trivial equations when multiplying by v1^ vi ; i D 2; 3; 4; 5. Multiplying with
v2 ^ v3, we get

�i ^ v1 ^ v2 ^ v3 D �i ^ ˇ1 D 0; i D 1; 2; 3;

ˇ1 ^ v2 ^ v3 D 0;

˛1 ^ v1 ^ v2 ^ v3 D ˛1 ^ ˇ1 D 0;

˛2 ^ v1 ^ v2 ^ v3 D ˛2 ^ ˇ1 D c12 D c12 vol.v0 ^ ˇ2 ^ v2 ^ v3/:

So the equation multiplied with v2 ^ v3 is also trivial. Similarly, the equation multiplied
with v4 ^ v5 is trivial. So the only nontrivial linear equations are obtained by multiplying by
forms in hv2 ^ v4; v2 ^ v5; v3 ^ v4; v3 ^ v5i. Each of these 2-vectors annihilates ˇ1 and ˇ2,
so we get the following four independent equations in five variables, with a unique solution up
to scalars: �

x1˛1 C x2˛2 C

3X
jD1

yj �j

�
^ v0 ^ v1 ^ v2 ^ v4 D 0;

�
x1˛1 C x2˛2 C

3X
jD1

yj �j

�
^ v0 ^ v1 ^ v2 ^ v5 D 0;

�
x1˛1 C x2˛2 C

3X
jD1

yj �j

�
^ v0 ^ v1 ^ v3 ^ v4 D 0;

�
x1˛1 C x2˛2 C

3X
jD1

yj �j

�
^ v0 ^ v1 ^ v3 ^ v5 D 0:

Let us now consider the rational map  W S Œ3�A ! G.3;W / defined on general sub-
schemes s � SA of length 3 as the codimensional-three space inW _ D H 0.IS .2// consisting
of those quadrics which contain the plane spanned by s. It is clear that for a subscheme corre-
sponding to a general triple of points ¹ˇ1; ˇ2; ˇ3º we have

(4.2)  .¹ˇ1; ˇ2; ˇ3º/ D
�
h'.¹ˇ1; ˇ2º/ ^ '.¹ˇ1; ˇ3º/ ^ '.¹ˇ2; ˇ3º/i

�
:

Proposition 4.1. The map  is a generically two-to-one rational map onto D2A.
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20 Iliev, Kapustka, Kapustka and Ranestad, EPW cubes

Proof. Let ˇ1, ˇ2, ˇ3 be three general points on SA. The proof then amounts to two
lemmas:

Lemma 4.2. The fiber of  ,

 �1. .¹ˇ1; ˇ2; ˇ3º// D
®
¹ˇ1; ˇ2; ˇ3º; ¹
1; 
2; 
3º

¯
is two triples of points on SA whose union is a set of six distinct points on a twisted cubic
contained in G.3; V /.

Proof. Let Uˇ1 ; Uˇ2 ; Uˇ3 � V be the subspaces corresponding to ˇ1, ˇ2, ˇ3. Then
there exists a unique three-dimensional subspace Uˇ1;ˇ2;ˇ3 meeting each Uˇi in a two-dimen-
sional space. It follows that Uˇ1 ; Uˇ2 ; Uˇ3 are contained in the intersection Cˇ1;ˇ2;ˇ3 of P6

with the Schubert cycle Sˇ1;ˇ2;ˇ3 in G.3; V / of three-spaces meeting Uˇ1;ˇ2;ˇ3 in a two-
dimensional space. Since Sˇ1;ˇ2;ˇ3 is a cone over P1 � P2, the considered intersection
Cˇ1;ˇ2;ˇ3 is, in general, a twisted cubic. Moreover, under the generality assumption,

Cˇ1;ˇ2;ˇ3 \ SA D Cˇ1;ˇ2;ˇ3 \ q
�
A

consists of six points. Three of them are ˇ1; ˇ2; ˇ3 and the residual three will be denoted
by 
1; 
2; 
3. The linear span of Cˇ1;ˇ2;ˇ3 is a P3, we denote it by P , and its intersection
with G.3; V / is P \ G.3; V / D Cˇ1;ˇ2;ˇ3 . We denote by … the plane hˇ1; ˇ2; ˇ3i. Now,
every quadric containing SA and …, when restricted to P , decomposes into … and another
plane…0. Since, in general, … does not pass through 
i for i D 1; 2; 3, the plane…0 must pass
through the points 
i for i D 1; 2; 3. This means that …0 D h
1; 
2; 
3i. It is then clear that
 .¹ˇ1; ˇ2; ˇ3º/ D  .¹
1; 
2; 
3º/.

Assume on the other hand that  .¹ˇ1; ˇ2; ˇ3º/ D  .¹
 01; 

0
2; 

0
3º/. Then, by (4.2) and

(4.1), we deduce that Uˇ1;ˇ2;ˇ3 D U
 01;

0
2;

0
3

hence Cˇ1;ˇ2;ˇ3 D C
 01;

0
2;

0
3
. It follows that

h
 01; 

0
2; 

0
3i � P . But the net of quadrics corresponding to  .¹ˇ1; ˇ2; ˇ3º/ D  .¹
 01; 


0
2; 

0
3º/

defines on P two planes h
1; 
2; 
3i and hˇ1; ˇ2; ˇ3i. It follows that

¹
 01; 

0
2; 

0
3º D ¹ˇ1; ˇ2; ˇ3º or ¹
 01; 


0
2; 

0
3º D ¹
1; 
2; 
3º;

which ends the proof.

Lemma 4.3. dim.T .¹ˇ1;ˇ2;ˇ3º/ \ A/ D 2.

Proof. By appropriate choice of the basis of V we can assume, without loss of general-
ity, that ˇ1 D v1 ^ v2 ^ v3, ˇ2 D v1 ^ v4 ^ v5, and ˇ3 D v2 ^ v4 ^ .v3 C v5/. Observe as
above that ˇi ^ � D 0 for i D 1; 2 and � 2 K, hence ˇi is contained in the space spanned by
A and FŒv0�. It follows that there exist ˛i 2 ^2V such that ˇi C v0 ^ ˛i 2 A. We fix such ˛i
(determined modulo K). Since A is Lagrangian, we have

˛i ^ ˇi D 0; i D 1; 2; 3;

˛1 ^ ˇ2 D ˛2 ^ ˇ1 WD c12;

˛1 ^ ˇ3 D ˛3 ^ ˇ1 WD c13;

˛2 ^ ˇ3 D ˛3 ^ ˇ2 WD c23:
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As above, a direct computation gives

'.¹ˇ1; ˇ2º/ D c12v0 C v1;

'.¹ˇ1; ˇ3º/ D c13v0 C v2;

'.¹ˇ2; ˇ3º/ D �c23v0 C v4:

It follows that

T .¹ˇ1;ˇ2;ˇ3º/ D
®
! 2 ^3W j ! ^ .c12v0 C v1/ ^ .c13v0 C v2/

D ! ^ .c12v0 C v1/ ^ .�c23v0 C v4/

D ! ^ .c13v0 C v2/ ^ .�c23v0 C v4/ D 0
¯
:

Again we denote by �1, �2, �3 a basis of K. Now, ˇi C v0 ^ ˛i 2 A and K ^ v0 � A, so to
prove the lemma it is enough to prove that the system of equations8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

� 3X
iD1

xi .ˇi C v0 ^ ˛i /C

3X
jD1

yj v0 ^ �j

�
^ .c12v0 C v1/ ^ .c13v0 C v2/ D 0;

� 3X
iD1

xi .ˇi C v0 ^ ˛i /C

3X
jD1

yj v0 ^ �j

�
^ .c12v0 C v1/ ^ .�c23v0 C v4/ D 0;

� 3X
iD1

xi .ˇi C v0 ^ ˛i /C

3X
jD1

yj v0 ^ �j

�
^ .c13v0 C v2/ ^ .�c23v0 C v4/ D 0

in variables x D .x1; x2; x3/, y D .y1; y2; y3/ has a two-dimensional set of solutions satisfy-
ing x D .x1; x2; x3/ ¤ 0. By reductions as above and rearranging, we get the system

(4.3)

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

v0^

�
�c12x2ˇ2^v2Cc13x3ˇ3^v1C

� 3X
iD1

xi˛iCyi�i

�
^v1^v2

�
D 0;

v0^

�
�c12x1ˇ1^v4 � c23x3ˇ3^v1C

� 3X
iD1

xi˛iCyi�i

�
^v1^v4

�
D 0;

v0^

�
�c13x1ˇ1^v4 � c23x2ˇ2^v2C

� 3X
iD1

xi˛iCyi�i

�
^v2^v4

�
D 0:

To make the system of equations (4.3) into a system of linear equations we multiply each
of the equations by the coordinate vectors and obtain a system of 18 linear equations in six
coordinates. If we now denote the three left-hand side expressions dependent on .x; y/ in the
equations from (4.3) by u1.x; y/, u2.x; y/, u3.x; y/ 2 ^5W , a straightforward computation,
as above, shows that the following equations are trivial:

u1.x; y/ ^ v0 D u1.x; y/ ^ v1 D u1.x; y/ ^ v2 D u1.x; y/ ^ v3 D 0;

u2.x; y/ ^ v0 D u2.x; y/ ^ v1 D u2.x; y/ ^ v4 D u2.x; y/ ^ v5 D 0;

u3.x; y/ ^ v0 D u3.x; y/ ^ v2 D u3.x; y/ ^ v4 D u3.x; y/ ^ .v3 C v5/ D 0:
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22 Iliev, Kapustka, Kapustka and Ranestad, EPW cubes

The following products are equal:

u1.x; y/ ^ v4 D �u2.x; y/ ^ v2 D u3.x; y/ ^ v1

D

� 3X
iD1

xi˛i C yi�i

�
^ v0 ^ v1 ^ v2 ^ v4;

while

u1.x; y/ ^ v5 D c13x3v0 ^ : : : ^ v5 C

� 3X
iD1

xi˛i C yi�i

�
^ v0 ^ v1 ^ v2 ^ v5;

u2.x; y/ ^ v3 D c23x3v0 ^ : : : ^ v5 �

� 3X
iD1

xi˛i C yi�i

�
^ v0 ^ v1 ^ v3 ^ v4;

u3.x; y/ ^ .v3 � v5/ D .c13x1 � c23x2/v0 ^ : : : ^ v5

�

� 3X
iD1

xi˛i C yi�i

�
^ v0 ^ v2 ^ v4 ^ .v3 � v5/:

So the 18 linear equations are reduced to the following four independent ones:

u1.x; y/ ^ v4 D 0; u1.x; y/ ^ v5 D 0;

u2.x; y/ ^ v3 D 0; u3.x; y/ ^ .v3 � v5/ D 0:

It follows that the system of linear equations admits a two-dimensional system of solu-
tions. To prove that nonzero solutions satisfy x ¤ 0 it is enough to observe that a solution with
x D 0 is a 3-vector v0 ^ � with � 2 K such that

� ^ v1 ^ v2 D � ^ v1 ^ v4 D � ^ v2 ^ v4 D 0:

But any such � lies in the space hv1 ^ v2; v1 ^ v4; v2 ^ v4i D ^2hv1; v2; v4i. By assumption,
P .v0 ^ K/ � P .A/ does not intersect G.3;W /, so this is impossible. Therefore the only
solution of system (4.3) satisfying x D 0 is .x; y/ D .0; 0/.

Proposition 4.1 follows immediately from Lemmas 4.2 and 4.3.

Remark 4.4. There is an alternative approach to Proposition 4.1. We consider the inter-
section F of the quadrics containing SA together with a generic plane B D hˇ1; ˇ2; ˇ3i. This
is a complete intersection of degree 8 with six ordinary double points that span a three-space.
Three of them are the points of intersection of B \ SA and the residual three points span an-
other plane B 0 contained in our Fano threefold F . Since SA does not contain any plane curve,
if a plane passes through three points of SA, these points are isolated in the intersection. If
the plane is contained in F , the three points must therefore be three of the six ordinary double
points. Since the three-space spanned by B and B 0 cuts F along the sum of B [B 0, it follows
that the degree of  is 2 at the point corresponding to F . On the other hand the generic com-
plete intersection of three quadrics containing SA has also six ordinary double points. The six
ordinary double points then span a P3. In this context, a complete intersection that contains
SA corresponds to a point of the EPW cube exactly when the intersection of this P3 with F is
a reducible quadric.
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Next, we compute the codimension of the indeterminacy locus and the ramification locus
of  .

Proposition 4.5. The rational map  is well defined outside a set of codimension 2.
Moreover, the ramification locus of  is of codimension � 2.

Before we pass to the proof of the proposition we introduce some more notation. Recall
first that, by the assumption on generality of A, we know that SA does not contain any line,
conic or twisted cubic. Let FA be the Fano threefold obtained as the intersection
G.3; V / \ hSAi. By the generality of A, it follows that FA is smooth. Let ŒU � 2 G.3; V /.
Consider the Schubert cycle SU D ¹U

0 2 G.3; V / j dim.U \ U 0/ � 2º. It is clear that in
the Plücker embedding of G.3; V / � P .^3V / the variety SU is the tangent cone of G.3; V /
in ŒU �. It spans the projective tangent space and is a cone over P1 � P2 with vertex ŒU �. We
are interested in intersections SU \ FA. Note that FA is of degree 5 and has Picard group of
rank 1 generated by the hyperplane class. Hence FA does not contain any surface of degree
� 4. It follows that P6A \SU D FA\SU is a cubic curve, a possibly reducible or non-reduced
degeneration of a twisted cubic curve. We denote the corresponding subscheme of the Hilbert
scheme of twisted cubics in FA by HA.

Let B1 be the subset of S Œ3�A consisting of those subschemes that are contained in a conic
in FA � G.3; V /. Since FA is a linear section of G.3; V / and contains no planes, the Hilbert
scheme of conics in FA admits a birational map to P .V / associating to a conic c the intersection
of three-spaces parametrized by points on c. It is hence of dimension 4 and we get that B1 is
of dimension 4. Let B2 be the subset of S Œ3�A consisting of those subschemes that meet some
line contained in G.3; V / in a scheme of length 2. Then B2 is also of dimension 4, since the
Hilbert scheme of lines in FA is isomorphic to P2 (cf. [26, Proposition 5.2] and [14]).

Lemma 4.6. Let s be a subscheme of length 3 in SA corresponding to a point from
S Œ3�A n .B1 [ B2/. Then there is a unique, possibly degenerate, twisted cubic from HA that
contains s. Furthermore, the induced map S Œ3�A n .B1 [B2/! HA is dominant.

Proof. Since SA � G.3; V / Š G.2; V _/, we may characterize the elements of � 2 S Œ3�A
via the incidence of curves C� of degree 3 in P .V _/ supported on lines. For a general � , the
curve C� is the union of three lines and has a unique transversal line, a line that meets all three
lines. If � 2 S Œ3�A n .B1 [B2/, then curve C� spans P .V _/ and contains no conic. It follows
that C� admits a unique transversal line hence s� is contained in SU for a unique U . We
conclude by the definition of HA. For dominancy of the map we observe that if c 2 HA, then
c \ q�A is contained in SA and clearly contains a subscheme in S Œ3�A n .B1 [B2/.

We can now pass to the proof of Proposition 4.5

Proof of Proposition 4.5. Any subscheme s of length 3 in SA spans a plane …s. The
map  associates to s the space V qs of quadrics containing SA[…s. For general s the latter is
a space of dimension 3. Now,  is well defined exactly on those s for which dimV

q
s D 3. But

V
q

s is the kernel of the restriction map H 0.SA; ISA.2// ! H 0.…s; ISA\…s
.2//: The latter

kernel is three-dimensional unless dimH 0.…s; ISA\…s
.2// � 2. Hence  is not defined only

if SA \ …s has length at least 4. Then the intersection …s \ G.3; V / contains a scheme of
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length 4. As SA contains no conics, …s cannot be contained in G.3; V /. We infer by the proof
of [20, Lemma 2.2] that …s \ G.3; V / contains a line or a unique conic. If …s \ G.3; V /

contains a line, then it is either a reducible conic or the union of this line with a point. In the
latter case, since SA contains no lines, the intersection…s\SA does not contain any subscheme
of length 4. It follows that there is a map with finite fibers from the indeterminacy locus of  
to the Hilbert scheme of conics inG.3; V /\P6 which is of dimension 4. We conclude that the
indeterminacy locus is of dimension at most 4. In fact, it is equal to 4 since a general V4 � V
defines a conic in G.3; V / \ P6 which meets SA in four points.

Finally, to bound the dimension of the ramification locus, we again let s be a subscheme
of length 3 in SA corresponding to a point from S Œ3�A n .B1 [ B2/. Then by Lemma 4.6
there is a possibly degenerate twisted cubic from HA spanning a P3 and containing s. Now,
from the proof of Proposition 4.1 we know that a point from S Œ3�A n .B1 [ B2/ can be in the
ramification locus of  only if the quadric QA is totally tangent to the twisted cubic. The
latter is a codimension-three condition on twisted cubics in G.3; V / \ P6, hence by Lemma
4.6 a codimension-three condition for the ramification locus. To be more precise we have an
incidence:

X D
®
.C;Q/ 2 HA �H

0.OP6.2// j QjC is totally non-reduced
¯
:

We compute its dimension from the projection onto HA. Indeed, fixing C , we get a codimen-
sion-three space of quadrics totally tangent to it. The dimension of the general fiber of the
second projection follows giving codimension 3 in HA.

5. Proof of Theorem 1.1

Let us choose a generic Lagrangian space A0 satisfying

ŒA0� 2 � n .� [†/ � LG�.10;^
3W /:

Note that from Lemma 3.7, we can chooseA0 such thatK is generic in FŒv0�. From Proposition
4.1 there is a rational two-to-one map

 W S
Œ3�
A0
! D

A0
2 :

On the other hand from Proposition 3.1 there exists a double cover YA0 ! D
A0
2 such that YA0

is a smooth sixfold with trivial canonical bundle. Our aim is to construct a birational map

S
Œ3�
A0

Ü XA0 :

We consider the subset B in S Œ3�A0 , the union of the indeterminacy locus and the ramifica-
tion locus of the rational two-to-one map  WS Œ3�A0 ! D

A0
2 . Clearly the restriction of the map  

to S Œ3�A0 nB is an étale covering of degree 2 onto a smooth open subset D � D
A0
2 . In particular,

D \D
A0
3 D ;: Note that S Œ3�A0 is simply connected and that by Proposition 4.5 the subset B is

of codimension 2. This implies that S Œ3�A0 nB is also simply connected. Thus �1.D/ D Z2 and
the restriction of  to S Œ3�A0 nB is a universal covering.

Since D is disjoint from D
A0
3 , the restriction of the double cover fA0 WYA0 ! D

A0
2 to

f �1A0
.D/ is also an étale covering.
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By Proposition 3.1 the variety YA0 is smooth and irreducible. It follows that the restriction
of fA0 to f �1A0

.D/ is not trivial. We infer that it is also the universal covering. We deduce that
YA0 is birational to S Œ3�A0 and that f �1A0

.D/ is simply connected. It follows that YA0 is also
simply connected because f �1A0

.D/ is obtained from the smooth variety YA0 by removing a
subset of real codimension 2. Moreover, since both YA0 and S Œ3� have trivial canonical bundle,
by [15, Theorem 1.1] they have equal Hodge numbers. Thus

h2.OYA0 / D h
2.O

S
Œ3�
A0

/ D 1:

From the Beauville classification theorem [3, Theorem 2] we infer that YA0 is IHS.
Recall the notation

LG1�.10;^
3W / WD

®
ŒA� 2 LG�.10;^

3W / j P .A/ \G.3;W / D ; and

dim.A \ TU / � 3 for all ŒU � 2 G.3;W /
¯
:

Consider now the varieties

Dk D
®
.ŒA�; ŒU �/ 2 LG1�.10;^

3W / �G.3;W / j ŒU � 2 DAk
¯

for k D 2; 3:

By globalizing the construction in Proposition 3.1 to the affine variety LG1�.10;^
3W / we

construct a variety Y which is a double cover of D2 branched in D3. We get a smooth family

Y ! LG1�.10;^
3W /

with fibers YŒA� D YA polarized by the divisor defining the double cover. In particular, a special
fiber YŒA0� D YA0 is an IHS manifold. Since a smooth deformation of an IHS manifold is still
IHS, we obtain that YA is IHS for every A 2 LG1�.10;^

3W /. So Y ! LG1�.10;^
3W / is a

family of IHS manifolds.
In order to show that the IHS sixfolds in the family Y are of K3Œ3�-type we use the

fact proved above that S Œ3�A0 and YA0 are birational. Indeed, two birational IHS manifolds are
deformation equivalent from [12, Theorem 4.6]. The Beauville–Bogomolov degree q D 4 of
our polarization follows from our computation of degree in Section 2.3.

We end the proof of Theorem 1.1 by performing a study of the moduli map defined by
the family Y.

Proposition 5.1. Let M be the coarse moduli space of polarized IHS sixfolds of K3Œ3�-
type and Beauville–Bogomolov degree 4. Let

MY W LG
1
�.10;^

3W /!M; ŒA� 7! ŒYA�

be the map given by Y. The image of MY is a dense open subset of a component of dimen-
sion 20 in M.

For the proof we will need the following lemma.

Lemma 5.2. Let A 2 LG1�.10;^
3W /. If the linear automorphism g 2 PGL.^3W / is

such that DA2 � G.3;W / \ g.G.3;W //, then G.3;W / D g.G.3;W //.

Proof. Let us denote by G1, G2 the varieties G.3;W / and g.G.3;W // respectively.
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LetX � G1\G2 be an irreducible component of the intersection that containsD2A. Then
X has codimension at most 3 in both G1 and G2 and spans P19. Furthermore it is contained
in a complete intersection of quadric hypersurfaces on each Gi . If X has codimension 3, then
X D DA2 and it lies in a complete intersection of three quadrics. But the complete intersection
has degree 8 � 42 D 336, while DA2 has degree 480, so this is impossible.

For lower codimension of X we first note that DA2 � D
A
1 . Since

ŒDA1 � D Œc1.T
_/ \G.3;W /� and c1.T

_/ D 4h;

the divisor DA1 is a quartic hypersurface section of G1 and G2. So we may assume that DA2 is
contained in a quartic hypersurface section of X .

Consider the following subvariety in G1: Let V5 � W be a general five-dimensional
subspace, and let V1 be a general one-dimensional subspace of V5. Let

F.1; 5/ D
®
ŒU � 2 G1 j V1 � U � V5

¯
� G1

and denote by P.1; 5/ the span of F.1; 5/. Then F.1; 5/ is a four-dimensional smooth quadric
and the span P.1; 5/ is a P5.

If X has codimension 2, then X.1;5/ WD X \ F.1; 5/ is an irreducible surface. Further-
more, X.1;5/ is contained in at least two quadric sections of F.1; 5/. So X.1;5/ has degree at
most 8. On the other hand

D.1;5/ WD D
A
2 \ F.1; 5/ � X.1;5/

is a curve of degree 56, contained in a quartic hypersurface section of X.1;5/, which has degree
at most 32. Since this is absurd, we may assume that X has codimension 1, i.e. is a divisor in
the varieties Gi .

Since DA2 spans P9, the divisor X must be a quadric hypersurface section of each Gi .
Then P.1; 5/\X is a complete intersection of two quadrics, and through every point of P.1; 5/
there are infinitely many secant lines toX . The union of the spaces P.1; 5/ as V5 and V1 varies
is a variety�1 � P19, characterized in [7, Lemma 3.3] as the locus of points in P19 that lie on
more than one secant line to G1. Furthermore G1 is the singular locus of �1. Similarly, �2 is
defined with respect to G2. By the above argument each P.1; 5/ in�1 is also contained in�2.
Thus�1 � �2. But then they coincide, and since Gi D Sing.�i /, the two Grassmannians G1
and G2 coincide.

Proof. We claim that MY.ŒA1�/ D MY.ŒA2�/ if and only if there exists a linear auto-
morphism g 2 Aut.G.3;W // ' Z=2 � PGL.W / such that g.A1/ D A2. Indeed, assume that
MY.ŒA1�/ DMY.ŒA2�/. Then YA1 and YA2 , polarized by ample classes defining double cov-
ers toD2A1 andD2A2 respectively, are isomorphic. It follows that there is a linear automorphism
g 2 PGL.^3W / such that g.D2A1/ D D

2
A2

. It follows that

D2A2 � G.3;W / \ g.G.3;W //:

By Lemma 5.2, we deduce that G.3;W / D g.G.3;W //. It follows that g 2 Aut.G.3;W //.
By [24] the locusLG1�.10;^

3W / is contained in the stable locus of the natural linearized
PGL.W / action on LG�.10;^3W /. From our claim we hence infer that

dim
�
MY.LG

1
�.10;^

3W //
�
� dimLG1�.10;^

3W / � dim.PGL.W //

D 55 � 35 D 20:
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But 20 is the dimension of M, so our map is surjective onto an (also by stability) open subset
of a component of M of dimension 20.

We conclude by determining the component of the moduli space that is filled by our
family.

Recall that for v 2 H 2..K3/Œ3�;Z/ the divisibility of v is defined as the generator of the
subgroup .v;H 2..K3/Œ3�;Z// � Z where .� ; �/ is the scalar product induced by the Beauville–
Bogomolov form. Note that for Beauville–Bogomolov degree 4 there are two possible divisi-
bilities forH , either l D 1 or 2 (see [9, Proposition 3.6]). It follows from [2, Proposition 2.1 (3)
and Corollary 2.4] that there are exactly two components, distinguished by the divisibility, of
the coarse moduli space of polarized IHS sixfolds of K3Œ3�-type and Beauville–Bogomolov
degree 4. The following proposition, whose proof was pointed out to us by Kieran O’Grady,
determines which one of those two components is filled by MY .

Proposition 5.3. The image of MY is open and dense in the connected component of
the coarse moduli space of IHS sixfolds of K3Œ3�-type, Beauville–Bogomolov degree 4 and
divisibility 2.

Proof. By the above, it remains to compute the divisibility of our polarization. For
this, fix A general and denote the polarization by P . Observe that the involution of the dou-
ble cover YA ! D2A defined by the polarization is anti-symplectic. Indeed as an involution
on an IHS manifold it is either symplectic or anti-symplectic, but the fixed point locus of a
symplectic involution is a symplectic manifold (see [5, Proposition 3]) whereas the fixed locus
of our involution is of dimension 3. This means that the involution must be anti-symplectic.
Moreover, since we proved that our family is of maximal dimension, we may assume that YA
has Picard group spanned by the polarization P . It follows that the action of the involution on
H 2.YA/ has an invariant subspace spanned by the class ŒP �. Furthermore, the involution re-
spects the Beauville–Bogomolov bilinear form .� ; �/. Thus, since .ŒP �; ŒP �/ D 4, the involution
on H 2.YA/ is of the form

v 7! �v C
1

2
.v; ŒP �/ŒP �:

Since the involution must map integral cohomology to integral cohomology, it follows that
.v; ŒP �/ is even for all integral classes v. This implies that the divisibility of ŒP � is not equal
to 1. We infer that it is equal to 2.
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