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Abstract. We discuss the internal structure of graph products of right LCM semi-
groups and prove that there is an abundance of examples without property (AR).
Thereby we provide the first examples of right LCM semigroups lacking this seemingly
common feature. The results are particularly sharp for right-angled Artin monoids.

1. Introduction

The starting point of a number of recent breakthroughs in the theory of semigroup
C∗-algebras is the seminal work [Li12, Li13], in which a universal C∗-algebra C∗(S) is
associated to every left cancellative monoid S. In the last years, a particular line of
research focused on left cancellative monoids for which the intersection of two principal
right ideals is either empty, or another principal right ideal again. Such monoids are
called right LCM semigroups, and they form an intriguing and tractable class of examples
in between positive cones in quasi-lattice ordered groups and general left cancellative
monoids, see [BLS17, Lemma 3.3 and Corollary 3.6] for details.

Inspired by the treatment of the quasi-lattice ordered case in [CL07], a boundary
quotient Q(S) of C∗(S) was introduced for right LCM semigroups S in [BRRW14]. Soon
thereafter, Starling provided an in-depth analysis of Q(S) in [Star15], relying on major
advances in the understanding of the connections between inverse semigroups, groupoids,
and C∗-algebras stemming from [EP17, EP16, Ste16]. In [BS16], it was shown that the
boundary quotient has a more accessible presentation if the right LCM semigroup has
the so-called accurate refinement property, henceforth abbreviated property (AR). This
property is an analogue of 0-dimensionality for topological spaces in the context of
semigroups, and is enjoyed by various examples, see [BS16, Section 2 and Corollary 3.11].

The presence of property (AR) was found to be useful in the construction of a bound-
ary quotient diagram for right LCM semigroups in the spirit of [BaHLR12], see [Sta].
This diagram sets the grounds for a unifying approach to the study of equilibrium states
on C∗-algebras in [ABLS], where remarkable results on the structure of KMS-states on
C∗(S) were obtained for right LCM semigroups satisfying an admissibility condition
which implies property (AR), see Subsection 2.1. Working with abstract right LCM
semigroups as opposed to explicit classes of examples allowed for a unification of the in-
spiring case studies [LR10,BaHLR12,LRR11,LRRW14,CaHR16], and also for coverage
of a substantial amount of new examples, most notably, algebraic dynamical systems.
Moreover, the techniques in [BS16, Sta, ABLS] raise several questions on the structure
of right LCM semigroups, perhaps most notably:
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(a) Are there right LCM semigroups without property (AR)?
(b) Which right LCM semigroups are admissible?

The aim of the present work is to investigate in how far graph products of right LCM
semigroups as considered in [VdC01,FK09] provide answers to these two questions. In
addition, we also address structural aspects related to the distinguished subsemigroups
S∗, Sc and Sci. We apply our results to the classical case of right-angled Artin monoids
A+

Γ given by an undirected graph Γ since many graph related phenomena can already
be witnessed here. Indeed, the explicit presentation of the boundary quotient in [CL07,
Corollary 8.5] involving only the vertex sets of the finite coconnected components of
the graph Γ may be regarded as an indication for a particularly accessible structure of
foundation sets. Another motivation comes from the elegant solution to the isomorphism
problem for C∗(A+

Γ ), see [ELR16].
Since property (AR) is known for various kinds of right LCM semigroups, we were

struck by surprise to find that a right-angled Artin monoid A+
Γ has property (AR) if and

only if all of its finitely generated direct summands are free, see Corollary 4.6. In terms
of the Γ, this means that all finite coconnected components Γi do not contain any edges.
The result follows from more general graph product considerations in Corollary 4.5 that
rely on Theorem 4.3, where we show that graph products over infinite coconnected
graphs have no foundation set other than the obvious ones containing an invertible
element, while the analogous statement holds in the finite case for accurate foundation
sets.

The characterisation of property (AR) for right-angled Artin monoids A+
Γ in Corol-

lary 4.6 allows us to determine when A+
Γ is admissible in the sense of [ABLS]. It turns

out that admissibility and the existence of a generalised scale coincide for right-angled
Artin monoids, see Corollary 4.9 and Corollary 4.10. If existent, the generalised scale on
A+

Γ is unique and arises as the product of the unique generalised scales on its non-abelian
direct summands A+

Γi
, see Proposition 4.8 and Corollary 4.9.

Thus we are lead to the conclusion that graph products of right LCM semigroups
mostly lack property (AR), and are therefore not admissible in the sense of [ABLS].
While this rules out the possibility of applying [ABLS] to graph products of right LCM
semigroups in great generality, we obtain a fairly detailed description of the behaviour
of graph products with respect to the subsemigroups Sc and Sci, see Theorem 3.4.
These result show that the graph product represents a useful tool to construct new, and
potentially very interesting examples of right LCM semigroups that are well-behaved
to some degree, but demand more sophisticated techniques then those applicable to
right LCM semigroups that have property (AR) or even a generalised scale. That is
why we feel that this work might stimulate further research in the direction of inverse
semigroups and groupoids related to (right LCM) semigroups and their C∗-algebras.

Acknowledgements: The author thanks Nathan Brownlowe, Nadia Larsen, and Adam
Sørensen for helpful conversations.

2. Preliminaries

Here we provide the prerequisites we shall need concerning right LCM semigroups
and graph products.
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2.1. Right LCM semigroups. A left cancellative semigroup S is called right LCM if
the intersection of two principal right ideals in S is either empty or a principal right
ideal. For s, t ∈ S, we say that s and t are orthogonal and write s ⊥ t if sS ∩ tS = ∅.
Unless specified otherwise, we will always assume that a right LCM semigroup S has an
identity, i.e. S is a monoid.

Let us first discuss property (AR). A finite subset F ⊂ S is called a foundation set for
S if for every s ∈ S there is f ∈ F such that f 6⊥ s, see [BRRW14, Section 5]. A subset
F ⊂ S is accurate if f ⊥ f ′ for all f, f ′ ∈ F, f 6= f ′, see [BS16, Definition 2.1]. If F, F ′

are foundation sets such that F ′ ⊂ FS, then F ′ is called a refinement of F . We then
say that S has the accurate refinement property, or property (AR), if every foundation
set for S has an accurate refinement, see [BS16, Definition 2.3].

For a right LCM semigroup S, its subgroup of invertible elements shall be denoted
by S∗. This subgroup lies inside the core subsemigroup Sc := {a ∈ S | a 6⊥ s for all s ∈
S}, which was first considered for right LCM semigroups in [Star15], but stems from
[CL07, Definition 5.4]. We remark that Sc is again a right LCM semigroup. Furthermore,
it induces an equivalence relation s ∼ t :⇔ sa = tb for some a, b ∈ Sc called the core
relation. In contrast to Sc, we also consider the subsemigroup Sci of core irreducible
elements, that is, the collection of all elements s ∈ S \ Sc for which every factorization
s = ta with t ∈ S, a ∈ Sc satisfies a ∈ S∗. While Sci does not have an identity by
construction, its unitisation S1

ci := Sci ∪ {1} and S ′ci := Sci ∪ S∗ do.
A right LCM semigroup S is called core factorable if S = S1

ciSc. We say that Sci ⊂ S is
∩-closed if sS ∩ tS = rS implies r ∈ Sci whenever s, t ∈ Sci. To provide some indication
why this property is of interest, let us mention that Sci ⊂ S is ∩-closed if and only if S ′ci
is right LCM and its inclusion into S is a homomorphism of right LCM semigroups, i.e. it
preserves intersections of principal right ideals, see [ABLS, Proposition 3.3]. Finally, a
nontrivial homomorphism N : S → N× is called a generalised scale if |N−1(n)/∼| = n
and every minimal complete set of representatives for N−1(n)/∼ forms an accurate
foundation set for S for all n ∈ N(S). Every generalised scale N satisfies kerN = Sc

by [ABLS, Proposition 3.6(i)], and the existence of a generalised scale entails vital
information on the structure of S. For instance, it implies that the right LCM semigroup
has property (AR), see [ABLS, Proposition 3.6(v)].

Finally, we recall from [ABLS, Definition 3.1] that a right LCM semigroup S is called
admissible, if it is core factorable, Sci ⊂ S is ∩-closed, and S admits a generalised scale
N such that N(S) ⊂ N× is freely generated by its irreducible elements.

2.2. Graph products. Within this work, a graph will mean a countable, undirected
graph Γ = (V,E) without loops or multiple edges. The concept of a graph product of
groups emerged in [Gre90] as a generalization of graph groups, and has been transferred
to the setting of monoids in [VdC01]: For a graph Γ = (V,E) and a family of monoids
(Sv)v∈V , the graph product is the monoid SΓ obtained as the quotient of the direct sum⊕

v∈V Sv by the congruence generated by the relation (st, ts) if s ∈ Sv, t ∈ Sw with
(v, w) ∈ E, see [VdC01, Section 2] and [FK09, Section 1]. Given a graph Γ, its right-
angled Artin monoid A+

Γ is the graph product with Sv = N for all v ∈ V . These monoids
have also been studied under the names of graph monoids, free partially commutative
monoids, and trace monoids, see for instance [Die90]. If one switches the vertex monoids
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from the natural numbers to the integers, the resulting graph product is the right-angled
Artin group AΓ associated to Γ, see [Cha07] for more.

It was shown in [CL02] that the graph product is well-behaved with respect to quasi-
lattice orders. Invoking a characterization of the right LCM property via the inverse hull
semigroup, Fountain and Kambites showed that this can be generalised to right LCM
semigroups, see [FK09, Theorem 2.6], where we note that we can move back and forth
between right cancellative, left LCM semigroups (used in [FK09]) and left cancellative,
right LCM semigroups by passing to the opposite semigroup.

According to [FK09, Theorem 1.1], which is an adaptation of the corresponding result
in [Gre90], every element s in a graph product SΓ is represented by an essentially unique
reduced expression sv(1)sv(2) · · · sv(n), that is, sv(k) ∈ Sv(k), v(k) 6= v(k+ 1), and whenever
there are 1 ≤ k < m ≤ n such that v(k) = v(m), then there exists k < ` < m such
that (v(k), v(`)) /∈ E. The analogous result had been proven in the quasi-lattice ordered
case before, see [CL02, Theorem 2]. The reduced expression is unique in the sense that
any two reduced expressions for the same element are shuffle equivalent, i.e. we can
move from one to the other by a finte number of switches of neighbouring factors whose
vertices are adjacent in Γ. Thus there exists a subadditive function ` : SΓ → N that
assigns the length of any reduced expression to the element in question.

A graph Γ is said to be coconnected if there exists no partition V = V1 t V2 with
Vi 6= ∅ and V1 × V2 ⊂ E. Equivalently, Γ is coconnected if the opposite graph Γopp :=
(V, V × V \ (E ∪ {(v, v) | v ∈ V })) is connected. The decomposition of Γ into its
coconnected components is the initial step in the analysis of SΓ, see for instance [ELR16],
where the synonym co-irreducible is used. Every graph Γ has a unique decomposition
into coconnected components, which we denote by (Γi)i∈I with Γi = (Vi, Ei). The
original graph can be recovered from (Γi)i∈I as V =

⊔
i∈I Vi and E = {(v, w) ∈ V × V |

(v, w) ∈ Ei or w /∈ Vi 3 v for some i ∈ I}. It follows from this observation that
SΓ coincides with the direct sum

⊕
i∈I SΓi

over the graph products obtained from its
coconnected components.

A vertex v ∈ V is called isolated if v does not emit any edge, and universal if v is
connected to every other vertex in Γ. We note that the only coconnected graph with
a universal vertex v is V = {v}, and that any graph containing an isolated edge is
necessarily coconnected. For convenience, we let Vu denote the set of universal vertices,
and I2 := {i ∈ I | |Vi| ≥ 2}.

We will make use of the following notion of a blocking path, that is actually a path
in the opposite graph.

Definition 2.1. Let Γ = (V,E) be a graph and C ⊂ V . A blocking path for C is a finite
sequence of vertices w(1), . . . , w(n) ∈ V such that

(a) w(1) /∈ C, (w(k), w(k + 1)) /∈ E for all 1 ≤ k ≤ n− 1, and
(b) for every u ∈ C there exists 1 ≤ k ≤ n such that (w(k), u) /∈ E.

It turns out that blocking paths are almost always available whenever the graph is
coconnected, and we will frequently make use of this elementary observation in the
course of this work.

Lemma 2.2. If Γ is a coconnected graph with at least two vertices, then every finite
proper subset C of V admits a blocking path ending in any prescribed vertex.
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Proof. Let C = {v(1), . . . , v(m)} ⊂ V be finite and proper, that is, V \C 6= ∅. If (v, u) ∈
E for all v ∈ C, u ∈ V \ C, then we would get a contradiction to Γ being coconnected.
Thus there exists w(1) ∈ V \ C such that (v(k), w(1)) /∈ E for some 1 ≤ k ≤ m.
Without loss of generality, we can assume k = 1. Since Γ is coconnected, we can choose
w′(k) ∈ V for 2 ≤ k ≤ m such that (v(k), w′(k)) /∈ E. Again by coconnectedness, there
exists a finite path w(1), . . . , w(n) in Γopp that visits every w′(k), 2 ≤ k ≤ n. This is a
blocking path for C, and since Γopp is connected, we can attach to this blocking path a
path leading to any prescribed vertex without loosing the blocking property for C. �

Remark 2.3. Let Γ = (V,E) be a graph and (Sv)v∈V a family of right LCM semi-
groups. Suppose w(1), . . . , w(n) is a blocking path for some nonempty C, and we can
choose sn, tn ∈ Sw(n) \ S∗w(n). Then for all s0, t0 whose reduced expressions only contain
parts from vertex semigroups of vertices in C, and all sk, tk ∈ Sw(k), 1 ≤ k < n, we
have `(s0s1 · · · sn) = `(s0) + n and s0s1 · · · sn ⊥ t0t1 · · · tn, unless sk = tk for 0 ≤ k <
n and sn 6⊥ tn. Thus blocking paths allow for the construction of shuffle inert elements
in graph products, which turns out to be quite useful.

3. The internal structure of graph products

In this section we show that many of the properties of SΓ that are of interest to
us, e.g. in connection with [ABLS], can be understood from a study of the corre-
sponding graph products for the coconnected components (Γi)i∈I of Γ. The reason
is SΓ =

⊕
i∈I SΓi

and the following list of straightforward observations, where we write
s = ⊕i∈Isi for s ∈

⊕
i∈I Si:

Proposition 3.1. Let (Si)i∈I be a family of right LCM semigroups. Then S :=
⊕

i∈I Si

has the following features:

(i) S∗ =
⊕

i∈I S
∗
i , Sc =

⊕
i∈I(Si)c, and S ′ci =

⊕
i∈I(Si)

′
ci.

(ii) s, t ∈ S are core related if and only if si and ti are core related in Si for all i ∈ I.
(iii) The following statements hold for S if and only if their analogues hold for all Si:

S is core factorable, Sci ⊂ S is ∩-closed, α : Sc y S/∼, a.[s] := [as] is faithful,
and S has finite propagation.

(iv) The action α : Sc y S/∼, a.[s] := [as] is almost free if and only if one of the
following conditions holds:
(a) Si is left reversible for all i ∈ I, that is, S = Sc so that S/ ∼ is a singleton.
(b) There exists a unique i ∈ I such that Si is not left reversible, αi : (Si)c y

Si/∼ is almost free, and Sj is left reversible for all j ∈ I \ {i}.

In view of the direct sum decomposition for graph products over the coconnected
components, we need to understand the behaviour of the graph product in the case of
a coconnected graph with at least two vertices. To do this, we will need to consider a
variant of the action α for S∗, i.e. α∗ : S∗ y S/S∗, x.[s] := [xs]. Also, we will assume
that all vertex semigroups Sv, v ∈ V are nontrivial in order to avoid pathological cases.
For instance, if Γ is the union of a complete graph and an isolated vertex v, and Sv

is trivial, then the graph product will be the direct sum of the right LCM semigroups
attached to the vertices of the complete graph, even though the original graph was larger
and coconnected.
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Theorem 3.2. If Γ = (V,E) is coconnected, |V | ≥ 2, and (Sv)v∈V is a family of
nontrivial right LCM semigroups, then the following assertions hold:

(i) S∗Γ is the graph product of (S∗v)v∈V , (SΓ)c = S∗Γ, and (SΓ)ci = SΓ \ S∗Γ.
(ii) For s, t ∈ SΓ, s ∼ t is equivalent to s ∈ tS∗Γ.

(iii) SΓ is core factorable and (SΓ)ci ⊂ SΓ is ∩-closed.
(iv) The action α : S∗Γ y SΓ/∼ is faithful if and only if SΓ is not a group.
(v) The action α is almost free if and only if

(a) α∗v : S∗v y Sv/S
∗
v is almost free for every isolated vertex v ∈ V , and

(b) for every connected component U ⊂ V with |U | ≥ 2, either Su is a group
for all u ∈ U or S∗u is trivial for all u ∈ U .

Proof. For (i), let sv(1)sv(2) · · · sv(n) be a reduced expression for s ∈ SΓ. Clearly, s is
invertible in SΓ if and only if sv(k) ∈ S∗v(k) for all k. The homomorphism from the graph

product of (S∗v)v∈V to SΓ (resulting from the universal property) is bijective, so that S∗Γ is
the graph product with respect to Γ and (S∗v)v∈V . Now assume that there is 1 ≤ m ≤ n
such that sv(k) ∈ S∗v(k) for 1 ≤ k < m but sv(m) /∈ S∗v(m). Since Γ is coconnected,

there is w ∈ V with w 6= v(m) and (v(m), w) /∈ E. For every t ∈ Sw \ {1}, we
thus have sv(m)sv(m+1) · · · sv(n) ⊥ tsv(m)sv(m+1) · · · sv(n). By left cancellation, this yields
s ⊥ sv(1)sv(2) · · · sv(m−1)tsv(m)sv(m+1) · · · sv(n), so that s /∈ (SΓ)c. This proves (SΓ)c = S∗Γ,
and the claims (SΓ)ci = SΓ \ S∗Γ, (ii), and (iii) are immediate consequences of this.

For (iv), we note that α is not faithful if Sv is a group for all v ∈ V because then
SΓ/∼ is a singleton while S∗Γ = SΓ is nontrivial. So let us assume that there exists v ∈ V
with Sv 6= S∗v . Every x ∈ S∗Γ \ {1} has a reduced expression xu(1)xu(2) · · · xu(m) with
xu(k) ∈ S∗u(k) \ {1}. Since Γ is coconnected and |V | ≥ 2, there exists a blocking path

w(1), . . . , w(n) for {u(m)} with w(n) = v, see Lemma 2.2. Choose sw(k) ∈ Sw(k)\{1} for
1 ≤ k < n and sw(n) ∈ Sw(n) \S∗w(n). Then s := sw(1)sw(2) · · · sw(n) ∈ SΓ satisfies xu(m)s ⊥
s. If 1 ≤ k ≤ m− 1 satisfies (u(k), u(`)) ∈ E for all k < ` ≤ m, then (u(k), u(m)) ∈ E
in particular implies u(k) 6= v(1). For the same reason, (u(k), v(1)) ∈ E implies u(k) 6=
v(2), and so on. Thus xu(1)xu(2) · · ·xu(m)sw(1)sw(2) · · · sw(n) is a reduced expression for xs
and we conclude that orthogonality is not destroyed by xu(1)xu(2) · · ·xu(m−1), i.e. xs ⊥ s.
In particular, [xs] 6= [s] and therefore α is faithful.

To prove (v), we first observe that (a) is necessary for α to be almost free: If v ∈ V is
isolated, then [xs] = [s] for x ∈ S∗v \ {1} and [s] ∈ SΓ implies s ∈ Sv. Suppose next that
(b) does not hold, i.e. there exists a connected component U ⊂ V of Γ with |U | ≥ 2
such that there are u, v ∈ U with Sv 6= S∗v and S∗u 6= {1}. If u = v, then we can pick
w ∈ U \ {v} with (v, w) ∈ E. If there is x ∈ S∗w 6= {1}, then [xs] = [sx] = [s] for all
s ∈ Sv, and since Sv/S

∗
v is infinite, α fails to be almost free for x. On the other hand,

Sw is nontrivial, so S∗w = {1} implies that Sw/S
∗
w is infinite, and then almost freeness

fails for every x ∈ S∗v 6= {1}.
Now suppose u 6= v. As U is connected, we can find a path v(0) := u, v(1), . . . , v(n) :=

v from u to v inside U , i.e. (v(k), v(k + 1)) ∈ E for all 0 ≤ k < n. Then there exists
0 ≤ k < n such that S∗v(k) 6= {1} and Sv(k+1) 6= S∗v(k+1), and we can apply the above
argument to deduce that α is not almost free. We have thus proven that almost freeness
of α implies (a) and (b).
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Conversely, assume that (a) and (b) hold. If SΓ is a group, then there is nothing to
show, so we may suppose that SΓ 6= S∗Γ. Let x ∈ S∗Γ \ {1} be presented by a reduced
expression xu(1)xu(2) · · ·xu(m) with xu(k) ∈ S∗u(k) \ {1}. Fix s ∈ SΓ \ S∗Γ with reduced
expression sv(1) · · · sv(n), sv(k) ∈ Sv(k). Let 1 ≤ j ≤ n be the smallest number such that
sv(j) /∈ S∗v(j). By (b), j is invariant under shuffling and we know that v(j) does not

belong to the connected component of any u(k) that emits an edge. Therefore, xs ⊥ s
and then [xs] 6= [s], unless j = m = 1 and u(1) = v(1) = v for some isolated vertex
v ∈ V . In this case, (a) says that there are only finitely many fixed points for x in
Sv/S

∗
v . Thus α is almost free if (and only if) (a) and (b) hold. �

Remark 3.3. The graph product SΓ for a coconnected graph Γ with |V | ≥ 2 has finite
propagation if S∗v is a finite group for all v ∈ V .

Let us now summarise what Proposition 3.1 and Theorem 3.2 imply for graph products
of right LCM semigroups.

Theorem 3.4. Let Γ = (V,E) be a graph and (Sv)v∈V a family of nontrivial right LCM
semigroups. Then:

(i) S∗Γ =
⊕

v∈Vu
S∗v ⊕

⊕
i∈I2

S∗Γi
.

(ii) (SΓ)c =
⊕

v∈Vu
(Sv)c ⊕

⊕
i∈I2

S∗Γi
.

(iii) (SΓ)′ci =
⊕

v∈Vu
(Sv)

′
ci ⊕

⊕
i∈I2

SΓi
.

(iv) Two elements s, t ∈ SΓ are core related if and only if sv ∼v tv for all v ∈ Vu and
si ∈ tiS∗Γi

for all i ∈ I2.
(v) SΓ is core factorable if and only if Sv is core factorable for every v ∈ Vu.

(vi) (SΓ)ci ⊂ SΓ is ∩-closed if and only if (Sv)ci ⊂ Sv is ∩-closed for every v ∈ Vu.
(vii) The action α : (SΓ)c y SΓ/∼ is faithful if and only if αv : (Sv)c y Sv/∼ is faithful

for every v ∈ Vu, and for every i ∈ I2 there exists w ∈ Vi such that Sw is not a
group.

(viii) The action α : (SΓ)c y SΓ/∼ is almost free if and only if one of the following
conditions holds:
(a) (Sv)c = {1} for all v ∈ Vu and S∗w = {1} for all w ∈ V \ Vu.
(b) (Sv)c 6= {1} for a unique v ∈ Vu with αv : (Sv)c → Sv/∼ almost free, while

Sw = (Sw)c for all w ∈ Vu \ {v} and Sw′ = S∗w′ for all w′ ∈ V \ Vu.
(c) S∗Γi

6= {1} for a unique i ∈ I2 with αi : S
∗
Γi
→ SΓi

/∼ almost free, while
Sw = (Sw)c for all w ∈ Vu and SΓj

= S∗Γj
for all j ∈ I2 \ {i}.

(ix) SΓ has finite propagation if Sv has finite propagation for every v ∈ Vu and S∗w is
a finite group for all w ∈ V \ Vu.

The conditions for almost freeness in Theorem 3.4 correspond to (SΓ)c = {1}, (SΓ)c =
(Sv)c, and SΓ/∼

∼== SΓi
/∼, respectively. Hence they are quite restrictive, and we

view this as an indication that finite propagation might be much more useful for graph
products than almost freeness of α, see [ABLS, Theorem 4.2(2)] for details.

When applied to right-angled Artin monoids, Theorem 3.4 takes a simpler form:

Corollary 3.5. For a graph Γ = (V,E), the right-angled Artin monid A+
Γ satisfies:

(i) (A+
Γ )∗ = {1}, (A+

Γ )c =
⊕

v∈Vu
N, and (A+

Γ )1
ci =

⊕
i∈I2

A+
Γi

.

(ii) Two elements s, t ∈ A+
Γ are core related if and only if si = ti for all i ∈ I2.
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(iii) A+
Γ is core factorable, (A+

Γ )ci ⊂ A+
Γ is ∩-closed, and A+

Γ has finite propagation.
(iv) The action α : (A+

Γ )c y A+
Γ /∼ is faithful if and only if Γ has no universal vertex.

(v) The action α : (A+
Γ )c y A+

Γ /∼ is almost free if and only if Vu ∈ {∅, V }, i.e. the
core of A+

Γ is trivial or A+
Γ is the free abelian monoid in V .

4. The absence of property (AR)

In this section, we will prove that for many graph products of right LCM semigroups
SΓ, the only accurate foundation sets are given by elements of S∗Γ. In particular, we
obtain the an abundance of right LCM semigroups that lack property (AR). Again, the
starting point is a basic observation for direct sums of right LCM semigroups, which
allows us to boil the analysis down to the coconnected case:

Proposition 4.1. Let (Si)i∈I be a family of right LCM semigroups. If
⊕

i∈I Si has
property (AR), then Si has property (AR) for all i ∈ I.

Proof. Fix i ∈ I and let S :=
⊕

i∈I Si. Every foundation set F for Si is a foundation set
for S. Suppose that F has an accurate refinement Fa in S. For s ∈ SΓ, we let s = si + ŝi
with si ∈ Si and ŝi ∈

⊕
j∈I\{i} Sj. If s ∈ Fa, then {fi ∈ Si | f ∈ Fa : f̂i 6⊥ ŝi} is an

accurate refinement for F inside Si. �

Corollary 4.2. If a graph product SΓ has property (AR), then SΓi
has property (AR)

for each coconnected component Γi of Γ.

Theorem 4.3. Let Γ = (V,E) be a coconnected graph with at least two vertices and
suppose (Sv)v∈V is a family of nontrivial right LCM semigroups.

(i) If Γ is infinite, then every foundation set for SΓ contains an invertible element.
In particular, SΓ has property (AR) and C∗(SΓ) = Q(SΓ).

(ii) If Γ is finite and E 6= ∅, then the accurate foundation sets for SΓ correspond
to S∗Γ. In particular, SΓ has property (AR) if and only if SΓ does not admit a
foundation set without invertible elements.

Proof. Both (i) and (ii) hold for trivial reasons if SΓ is a group, so we can assume that
there exists w ∈ V with Sw 6= S∗w. Let F ⊂ SΓ be a finite subset without invertible
elements. For every f ∈ F , we choose a reduced expression f = fv(1) · · · fv(mf ) with
mf ∈ N× and fv(k) ∈ Sv(k).

Suppose first that Γ is infinite. As f ∈ SΓ \S∗Γ, there is a least 1 ≤ kf ≤ mf such that
fv(kf ) /∈ S∗v(kf ). Then C := {v ∈ V | fv(k) ∈ Sv for some f ∈ F, 1 ≤ k ≤ kf}. Then C is

a finite set of vertices so that Lemma 2.2 grants us a blocking path w(1), . . . , w(n) for
C ending in w. If we choose any sk ∈ Sw(k) \ {1} for 1 ≤ k < n and sn ∈ Sw \ S∗w, then
s1 · · · sn ⊥ f for all f ∈ F as s1 · · · sn ⊥ fv(1) · · · fv(kf ) by construction, see Remark 2.3.
Therefore F is not a foundation set. We conclude that every foundation set for SΓ

contains an invertible element x, which clearly gives an accurate refinement {x}. So
SΓ has property (AR), but if the only accurate foundation sets come from invertible
elements, then the boundary relation

∑
f∈F efSΓ

= 1 becomes trivial so that C∗(S) =

Q(S).
Now let Γ be finite, E 6= ∅, and assume F to be accurate as well. We need to show

that F is not a foundation set. Without loss of generality, we can require that fv(mf ) is
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not invertible for all f ∈ F because invertible ends do not play a role when it comes to
intersections of right ideals. Since F does not contain any invertibles, we have `(f) ≥ 1
for all f ∈ F . Let L := maxf∈F `(F ), and choose f ∈ F with `(f) = L. Then we have
f = stv for some v ∈ V, tv ∈ Sv \ {1}, and s ∈ SΓ with `(s) = L− 1. We will first show
that v is isolated, and then use this together with E 6= ∅ to conclude that F cannot be
a foundation set.

If (v, u) ∈ E for some u ∈ V , we employ Lemma 2.2 to obtain a blocking path
w(1), . . . , w(n) for C := {u} ∪ Nu, and set w(0) := u. Next, choose bk ∈ Sw(k) \ S∗w(k)

for each 1 ≤ k ≤ n, and let r ∈ Su \ {1}. It then follows that srb ⊥ f for b := b1 · · · bn.
Moreover, we have `(srb) ≥ m + 1. This could be assumed by extending the path
w(0), . . . , w(n) in Γopp, but actually holds true in any case. It then follows that whenever
f ′ ∈ F satisfies f ′ 6⊥ srb, we have srb ∈ f ′SΓ. If sr ∈ f ′Γ, then f ′ 6⊥ f 6= f ′ so that
F would not be accurate. The blocking path then forces f ′ = srb1 · · · bk for some
1 ≤ k ≤ n. However, we then get f ′ ⊥ sr′b for every r′ ∈ Su \ {r}. Since Su is a left
cancellative semigroup that is not a group, it is infinite. Thus there is r ∈ Su \ {1} such
that srb ⊥ f ′ for all f ′ ∈ F .

We deduce from this that F cannot be a foundation set if there exists f ∈ F with
`(f) = L that does not end in a part from an isolated vertex. In particular, if Γ does
not have any isolated vertices, no accurate finite subset F without invertible elements
is a foundation set. Now suppose Γ has an isolated vertex ṽ, and let

F ′ := {f ∈ F | fv(k) ∈ Sv for some k ⇒ v is not isolated.},
that is, the subset of F consisting of those elements whose reduced expressions do not
contain any part coming from an isolated vertex. As E 6= ∅ and the vertex semigroups
are all nontrivial, the finite accurate set F ′ is also non-empty.

Suppose first that there is f̃ ∈ F ′ with f̃ ∈ Sv \ S∗v for some v ∈ V . Since F ′ is
accurate and (v, u) ∈ E for some u ∈ V , we have s /∈ f ′SΓ for all s ∈ Su and f ′ ∈ F ′.
Thus we get str ⊥ f ′ for all f ′ ∈ F ′ whenever s ∈ Su, t ∈ Sṽ, and r ∈ Sw \ S∗w, compare
Remark 2.3. For f ∈ F \ F ′, we have strtr ⊥ f unless f ∈ strtSΓ because ṽ is isolated
and r is not invertible. Since F is finite while Sw \S∗w is infinite, we conclude that there
are s ∈ Su, t ∈ Sṽ, and r ∈ Sw \ S∗w such that strtr ⊥ f for all f ∈ F . So F is not a
foundation set.

On the other hand, if we have `(f) ≥ 2 for every f ∈ F ′, we pick a vertex v that
emits an edge. Then s /∈ fSΓ for all s ∈ Sv, f ∈ F ′, and thus str ⊥ f for all f ∈ F ′
whenever s ∈ Sv, t ∈ Sṽ, and r ∈ Sw \ S∗w. As in the previous case, there are s, t, r such
that strtr ⊥ f for all f ∈ F , and thus F is not a foundation set.

Finally, if F is a foundation set for SΓ with F ∩ S∗Γ = ∅, then every refinement F ′ of
F satisfies F ′ ∩ S∗Γ = ∅ as well, and thus can never be accurate. On the other hand,
every foundation set F with x ∈ F ∩ S∗Γ has an accurate refinement {x}. �

We point out that the assumptions in Theorem 4.3 are modest means to avoid the
somewhat pathological cases: SΓ = Sv, the free product SΓ = ∗v∈V Sv, and the graph
product of groups.

Remark 4.4. By Theorem 4.3 (i), foundation sets of SΓ are governed by parts from
the finite coconnected components in the following sense: Let F be a foundation set
for SΓ such that no propert subset of F is a foundation set. If s = sv(1) · · · sv(n) ∈ F
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with sv(k) ∈ Sv(k), then sv(k) /∈ S∗v(k) implies that v(k) ∈ Vi for some finite coconnected

component Γi = (Vi, Ei) of Γ.

Corollary 4.5. Let Γ be a graph and (Sv)v∈V a family of nontrivial right LCM semi-
groups. If there is i ∈ I2 for which Γi = (Vi, Ei) is finite with Ei 6= ∅, Sv is not a group
for some v ∈ Vi, and there exists a foundation set F for SΓi

without invertible elements,
then SΓ does not have property (AR).

Proof. The claim follows from combining Theorem 4.3 with Corollary 4.2. �

The previous results apply nicely to right-angled Artin monoids.

Corollary 4.6. For graph Γ, the following conditions are equivalent:

(1) Every finite coconnected component Γi of Γ is edge-free.
(2) Every finitely generated direct summand of A+

Γ is free.
(3) The right-angled Artin monoid A+

Γ has property (AR).

Proof. The equivalence of (1) and (2) is clear from the direct sum description of A+
Γ in

Subsection 2.2. From Remark 4.4 we infer that it suffices to obtain accurate refinements
of foundation sets F for A+

Γ with F ⊂
⊕

v∈Vu
Sv ⊕

⊕
i∈I2:|Vi|<∞A

+
Γi

. But if (2) holds,
then the latter is just a direct sum of finitely generated free monoids, and clearly admits
accurate refinements. So (2) implies (3). Finally, if (3) is valid and Γi = (Vi, Ei) is a
coconnected component of Γ with 2 ≤ |Vi| < ∞, then {av | v ∈ Vi} is a foundation set
for A+

Γi
without invertible elements, so Corollary 4.5 forces Ei = ∅, that is, (1) holds. �

By Corollary 4.6, there exist countably many mutually non-isomorphic, finitely gen-
erated right LCM semigroups without property (AR). As a final part of this section, we
address the existence of a generalised scale for right-angled Artin monoids associated
to finite graphs. The existence of a generalised scale turned out to be relevant for a
standardised approach to study KMS-states on the semigroup C∗-algebra C∗(A+

Γ ), see
[ABLS]. We first note that free monoids have a generalised scale only if they are finitely
generated and nonabelian, in which case it is unique:

Proposition 4.7. The free monoid F+
m in 2 ≤ m < ∞ generators admits a unique

generalised scale N : F+
m → N× given by N(w) = m`(w), where ` denotes the word length

of w ∈ F+
m.

Proof. The map N is a generalised scale. On the other hand, let Ñ be a generalised
scale on F+

m = 〈a1, . . . , am〉, and fix 1 ≤ i ≤ m. Then Ñ(ai) > 1 as ai is not part of
(F+

m)c = {1}. By definition of Ñ and since ∼ is trivial, the set Ñ−1(Ñ(ai)) is an accurate
foundation set for F+

m of cardinality Ñ(ai) that contains ai. If there was 1 ≤ j ≤ m, j 6= i
such that Ñ(aj) 6= Ñ(ai), then the foundation set property would give a w ∈ Ñ−1(Ñ(ai))

such that w ∈ ajaiF+
m. As this forces Ñ(w) ≥ Ñ(ai)Ñ(aj) > Ñ(ai) = Ñ(w), we arrive

at a contradiction. Thus Ñ(aj) = Ñ(ai) for all j 6= i. But as {a1, . . . , am} is an accurate

foundation set for F+
m, we conclude that Ñ(ai) = m for all 1 ≤ i ≤ m. �

We call m ∈
⊕

i∈I{k ∈ N | 2 ≤ k < ∞} rationally independent if for all distinct

k, k′ ∈
⊕

i∈I N, the supernatural numbers
∏

i∈I m
ki
i and

∏
i∈I m

k′i
i are distinct.
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Proposition 4.8. Let M be a free abelian monoid, m ∈
⊕

i∈I{k ∈ N | 2 ≤ k <∞} for
some nonempty set I. Then S := M⊕

⊕
i∈I F+

mi
admits a generalised scale N : S → N× if

and only if m is rationally independent. In this case, N restricts to the unique generalised
scales Ni on F+

mi
, and is therefore unique.

Proof. As M = Sc = kerN for any generalised scale N on S, see [ABLS, Proposi-
tion 3.6(i)], we can focus on (F+

mi
)i∈I . Recall that F+

mi
is the free monoid in mi generators,

which we denote by ai,1, . . . , ai,mi
. The strategy is to prove that

(a) any generalised scale N on S restricts to Ni on F+
mi

, and
(b) the homomorphism N : S → N× arising from (Ni)i∈I is a generalised scale if and

only if m is rationally independent.

For (a), suppose S admits a generalised scale N and fix i ∈ I, 1 ≤ k ≤ mi. Then
N(ai,k) > 1 and there are w1, . . . , wN(ai,k)−1 ∈ S such that {ai,k, w1, . . . , wN(ai,k)−1}
is an accurate foundation set for S contained in N−1(N(ai,k)). Let us decompose w`

as w` = ŵ` ⊕ w̌` ∈ F+
mi
⊕
(
Mn ⊕

⊕
j∈I\{i} F+

mj

)
. Then {ai,k, ŵ1, . . . , ŵN(ai,k)−1} is a

foundation set for F+
mi

with ai,k ⊥ ŵ` and N(ŵ`) ≤ N(ai,k) for all `. This forces
{ai,k, ŵ1, . . . , ŵN(ai,k)−1} ⊃ {ai,1, . . . , ai,mi

}, and thus N(ai,`) ≤ N(ai,k) for all 1 ≤ ` ≤
mi, just like in the proof of Proposition 4.7. As k was arbitrary, we deduce N(ai,k) =
mi = Ni(ai,k) for all i, k.

In view of (a), the question behing the main claim becomes: Under which condition
is the homomorphism N : S → N× arising from the family of generalised scales (Ni)i∈I
itself a generalised scale? If m is rationally independent, then every k ∈ N(S) has a
factorization k =

∏
i∈I m

ki
i with uniquely determined ki ∈ N. This implies that

N−1(k) = {t⊕
⊕
i∈I
wi | t ∈M,wi ∈ F+

mi
with `i(wi) = ki}.

Therefore, |N−1(k)/∼| = k, and any transversal of N−1(k)/∼ is an accurate foundation
set for S, that is, N is a generalised scale. On the other hand, if there are k, k′ ∈⊕

i∈I N, k 6= k′ such that K :=
∏

i∈I m
ki
i =

∏
i∈I m

k′i
i , then both k and k′ yield a set of

K mutually orthogonal elements s1, . . . , sK ∈ S and t1, . . . , tK ∈ S, respectively, with
N(sj) = K = N(tj) for all j. Since there is i ∈ I with ki 6= k′i, the i-th components
of sj and tj′ have different length for all j, j′. Thus sj 6∼ tj′ for all j, j′, and we get
|N−1(K)/∼| ≥ 2K. Therefore N is not a generalised scale in this case. �

We can now state our conclusions for right-angled Artin monoids.

Corollary 4.9. For every graph Γ, the right-angled Artin monoid A+
Γ admits a gener-

alised scale N if and only if Vu 6= V , all coconnected components Γi = (Vi, Ei) are finite
and edge-free, and

⊕
i∈I2
|Vi| is rationally independent. In this case, N is unique.

Proof. The condition Vu 6= V is equivalent to saying that A+
Γ is non-abelian, i.e.I2 6= ∅.

So if all coconnected components Γi = (Vi, Ei) are finite and edge-free, then A+
Γ
∼=⊕

v∈Vu
N⊕

⊕
i∈I2

F+
|Vi|. Hence, Proposition 4.8 implies that A+

Γ has a (unique) generalised

scale N if and only if
⊕

i∈I2
|Vi| is rationally independent.

Conversely, suppose A+
Γ admits a generalised scale N . Since N is a nontrivial ho-

momorphism with ker N =
⊕

v∈Vu
N, we need to have Vu 6= V so that the set I2 is
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non-empty. Moreover, A+
Γ has property (AR) by [ABLS, Proposition 3.6], so Corol-

lary 4.6 implies that all finite coconnected components Γi of Γ are edge-free. If there
was an infinite coconnected component Γi = (Vi, Ei), then 1 < N(av) <∞ for all v ∈ Vi,
and the defining property of a generalised scale would yield an accurate foundation set
of the form {av, f1, . . . , fN(av)−1} for suitable fk ∈ A+

Γ . However, this contradicts Re-
mark 4.4, and we conclude that Γi is finite for all i ∈ I2. But then A+

Γ is covered by
Proposition 4.8, and it follows that

⊕
i∈I2
|Vi| is rationally independent. �

Corollary 4.10. For every graph Γ, the right-angled Artin monoid A+
Γ is admissible if

and only if it admits a generalised scale.

Proof. According to Corollary 3.5 (iii), A+
Γ is core factorable and (A+

Γ )ci ⊂ A+
Γ is ∩-

closed, no matter what Γ is. By Corollary 4.9, the conditions characterising the existence
of a generalised scale N include rational independence of

⊕
i∈I2
|Vi|. This feature implies

Irr(N(A+
Γ )) = {|Vi| | i ∈ I2} and that this set freely generates N(A+

Γ ), which is the last
extra condition for admissibility. �
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