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Preface

Time series analysis is important in modern day statistical research. The use of regression

models to obtain underlying trends and complicated periodic patterns in time series is no longer

su�cient. The decomposition of a time series into unobserved components leads to a classy

and more e�cient way of analysing time series data. The use of state space models otherwise

called dynamical linear models to treat any linear model makes the ease of interpretation of the

structural time series models, together with the associated information produced by the Kalman

Filter and Smoother, a desired choice for handling time series data. Periodic seasonal patterns

can be treated as exogenous variables in the observation equation. Presence of outliers and

breaks are easily obtained by the use of intervention e�ect in the state space model. Forecasting

a structural temperature data with state space model can be improved upon by �ne tuning the

Linear trend model.

Oslo, Norway

May 29, 2017

Ejike Obinna Okoye
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1 Introduction

Modeling of temperature data is a very interesting topic, one which this thesis will be focused on.

Over the past years and even in recent times, scientist have continuously modeled temperature

series as a trend, which many believe is of more interest than particular periodicities. Modern

research is focused on the use of state space models to treat time series analysis. Structural time

series models are (linear Gaussian) state-space models for (univariate) time series based on a

decomposition of the series into a number of components. They are speci�ed by a set of error

variances, some of which may be zero.

In sight of this thesis, State space model will be used to analyse the global temperature

series. This thesis will focus on reviewing the results in the paper by T.C Mills(2010) "skinning

a cat: alternative models of representing temperature trends". Here, he compares the models

used by Gay-Garcia et al(2009) which is about broken trend model with stationary disturbances

and the work of Kaufmann et al(2010) which compares the in-sample forecast performance of

the breaking trend model with that of an error correction model including a co-integrating

relationship between temperature and radiative forcing. Mills starts o� by compelling the use

of structural time series models, where the observed time series (yt) is decomposed into several

unobserved components which include the trend (µt), seasonal (St), cycle (Ct), an Auotregressive

process (ψt) and an irregularity(disturbance)(vt),

yt = µt + St + Ct + ψt + vt (1.0.1)

citing the work of Harvey & Trimbur (2003) and Trimbur (2006) who proposed structural models

that allow for more �exible stochastic trends and cycle. Inclusion of additional components such

as seasonal and an auto regressive process is an extension to his previous work Mills(2004). In

state space models which will be introduced in section 2, the observed series yt is referred to as

the observation vector and the unobserved components are referred to as the state vector xt.

The seasonal term is taken to be deterministic where the variance of the noise term is zero i.e

σ2
s = 0, which then evolves as a regular cycle with annual period. Hence the season is treated as

a �xed component. An AR(1) process is speci�ed in the structural model with noise term that is

not correlated with the disturbances of the observed series and the other unobserved components.

The Kalman �lter algorithm which is available in the package STAMP is used to estimate the

parameters and components , and also provide standard errors and con�dence intervals for these

estimated parameters.
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The trend and cycle component in the structural model is treated by generating a weighting

pattern. The introduction of weights to the observations is to make predictions and smoothing

of the unobserved components at di�erent points in time. According to the paper by Koopman

& Harvey (2003), �ltered estimator of the state vector based on information available at time

t− 1, can be written as

x̂t|t−1 =

t−1∑
j=1

wj(x̂t|t−1)yj (1.0.2)

where the weight vectors wj(x̂t|t−1) can be computed by a backward recursion . While the

smoothed estimates of the state vector x̂t|T is given as a weighted sum of all observations,

x̂t|T =

T∑
j=1

wj(x̂t|T )yj (1.0.3)

where the weight matrices wj(x̂t|T ) are calculated in the two opposite directions: (a) back-

wards in time (j = t â�� 1; ...., 1); (b) forward in time (j = t, t + 1, ...., T ).

The patterns of the weights, helps the user to understand what a model actually does, and

it enables comparison to be made with other methods.

In further discussion by Mills, he �ts a broken trend model of the monthly global temperature

series from 1850 to 2007.which gave similar estimated results to that of Gay Garcia et al (2009).

The result of this linear regression trend suggested a near non-stationarity in the �tted model.

Another Observation by Mills with the �tting of the breaking trend model is that the value of the

estimated slope, when used to calculate for temperature increase for a forecasted year of 2100,

did not give a close result to that obtained by the coupled atmospheric-ocean general circulation

models.

Mills later goes on to discuss a �tted structural model to the time series data, which included

a driftless random walk trend with zero variance for the slope and the slope itself, a deterministic

seasonal component with zero variance for the noise term hence a constant periodic pattern from

year to year, a �rst order cycle and an AR(1) component with estimated θ̂ parameter. The

result obtained for the trend component was not very smooth, which was expected for a driftless

random walk model and by analysing the trend weight, Mills records a sharp decline in its pattern

which he attributes to the random walk nature of the trend.

The result of Mills shows that a driftless random walk trend produces a constant forecast on

the global temperature series, hence eliminating a possibility of future global warming/cooling
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from the forecast which is in contradiction to the projection from the coupled atmospheric-ocean

general circulation models and also from the models of Gay-Garcia et al (2009) and Kaufmann

et al (2010). A move to increase the order of the trend component with no restrictions on

the variances in other to obtain estimated slopes which will match the projections of the general

circulation models(i.e increased temperature of about 3.550C for the forecast period) only resulted

in a model with an inferior �t as compared to the structural model with the value of the slope

as zero.

In conclusion, Mills states that the �tting of the structural model to the global temperature

series provides a driftless trend component which does not give any increase in forecasted tem-

perature and it will be impossible to obtain an increase in trend temperatures that is consistent

with that projected by conventional coupled atmospheric-ocean general circulation models. And

if one tries to get a consistent result, it require using a model which has poor statistical �t,

simpler speci�cations and imposing a value on the slope parameter.

In any case the idea of this thesis is to review the results obtained by Mills, also to address the

issue of treating a deterministic seasonal component in a state space model and the behaviour

of the residual. Also further behaviour of the structural model is discussed with regards to

correlated disturbances. More information about the global temperature series is obtained by

close examination of the outliers and structural breaks. Forecasts on the monthly and annual

temperature data will be carried out to cross examine the results obtained by Mills(2010).

To begin with, let us take a quick look at the global temperature data plot obtained from the

Hadley Centre(data is available from the Hadley Centre; HADCRUT 4).
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Figure 1.1: Annual temperature data from the Hadley centre

From the global temperature series record(1850-2016) shown in Figure (1.1), The temperature

data obtained from the Hadley centre is taken from the HadCRUT4 dataset which is a combina-

tion of the CRUTEM4 land-surface air temperature and the HadSST3 sea-surface temperature

(SST) Anomalies. The values are temperature anomalies, i.e. deviations from the corresponding

1961-1990 means. The time series we use is composed of the median global annual and monthly

values.

So �rst o�, a plot of the monthly and annual global temperature series respectively is shown

below, that way we can see the underlying trend in our data and possible seasonal and cyclic

pattern as well.
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Figure 1.2: Comparison between the time series plot of the monthly global temperature data
(left) and Annual global temperature data (right)

We note an upward trend in the series during the later part of the 1900's and a steady

horizontal trend from period 1950 up until the latter part of the twentieth century where we see

an upward trend again, which according to the book by Shumway & Sto�e (2011) has been used

as an argument for the global warming hypothesis.

The issue of seasonality in a time series data is of high importance, as one would like to

know if a series has constant seasonal pattern or if the seasonality varies over time. This will be

discussed extensively. The deterministic annual pattern of seasonality is shown below to get an

overview of the behaviour of our data. This is done by regressing seasonally centered averages

over the monthly temperature series. By creating dummy variables of 1's and 0's for 11 states,

and regressing these states over the temperature data, we obtain the �gure below.
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Figure 1.3: Annual seasonal pattern for monthly global temperatures

From the �gure above, we can see the annual pattern of seasonality which is in line with what

is expected. The �rst month is the intercept, hence the second month is actually the month of

January and it goes on to the month of November.

In this thesis, my �rst task will be to replicate the result using developed procedures with the

software R, discussed in the paper by T.C. Mills where he used the commercial software package

STAMP. One approach to model a time series data is to treat it using a regression model in

which the explanatory variables are functions of time and the coe�cients are allowed to vary

over time.

1.1 Fitting a broken trend by Linear regression

Now we take a look at the temperature series with �tted trend displayed below, with a break at

the year 1977.
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Figure 1.4: Monthly (left) and Annual(right) global temperature series 1850-2016 with �tted
trend with break at 1977.

Within a regression framework, a trend would be modeled in terms of a constant and time

together with a random disturbance, which is given as

xt = α+ βt+ wt, t = 1, ..., T. (1.1.1)

Where the model can be estimated using the ordinary least squares but with a disadvantage

of a deterministic trend. This is explained by taking a practical case below. A simple linear

regression has been used to estimate the trend by �tting the global temperature series.

xt = µt + wt , t = 1850,..., 2016.

where µt is the �tted model which is obtained by regressing on

t1 = t× I[t ≤ 1977] and

t2 = t× I[t > 1977]

wt is the residual. Table 1 below shows the �tted linear segmented trend xt with break at

1977 for the monthly global temperature data.
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Table 1.1: Fitted breaking trend model for monthly global temperatures 1850 - 2016

xt = −0.0833(0.007775) + 0.003253(0.00011)t1 + 0.017539(0.0004584)t2 + residual(x̃t)

t1 and t2 are the time before and after the breaking point respectively.

The �gure above(Figure 1.4) shows the monthly and annual global temperature series from

1850 to 2016, with the estimated trend µt, superimposed, which according to the description

by T.C Mills(2010),can be seen to be characterised by a slow moving trend buried in relatively

volatile seasonal and high frequency components. For the purpose of comparison, a �tted trend

with break at year 1977 has been superimposed. A simple date for the break point was chosen

since we are not really concerned for now about that. At a later stage of this thesis, structural

breaks will be discussed for the temperature series. Also from Figure (1.4), an observed slope

of 0.0029oC before the break and 0.018oC post-break for the monthly global temperature series,

which is similar to those estimated by T.C Mills(2010) and Gay-Garcia et al(2009), using monthly

and annual data respectively. It is also interesting to see that the annual temperature gives similar

slopes before and after the breaks.

It is apparent that the estimated trend line obtained via simple linear regression does not

quite capture the trend of the data.

It has been shown that classical regression is often insu�cient for explaining all of the in-

teresting dynamics of a time series. An example is the case of our temperature series, The

autocorrelation function(ACF) of the residuals from the �tted monthly and annual global tem-

perature data, reveals additional structure in the data that the regression did not capture, as

can be seen in Figure (1.5) below.
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Figure 1.5: Residuals and autocorrelation function(ACF) of the residuals, of the �tted monthly
global temperature series

Because this is a time series data, it is important to look at the autocorrelation function(ACF)

of the residuals to see if there is any information not accounted for by the model. In the �tted

monthly global temperature series, there is some remaining autocorrelation in the residuals.

The autocorrelation function(ACF) of the monthly global temperature residual shows signi�cant

spikes between lag 0 and lag 1.

Also an observation from Figure 1.5, shows an increasing variance in the �rst half of the data

than in the second half of the data. And, it appears from visual inspection that a trend is still

present in the residual. For this, we will treat the residuals using the ARMA model.

Table 1.2: Fitted breaking trend model with ARMA residual

xt = −0.0833(0.007775) + 0.003253(0.00011)t1 + 0.017539(0.0004584)t2 + x̃t

x̃t = 0.914(0.4488)x̃t−1 + 0.140(0.6380)x̃t−2 − 0.110(0.2471)x̃t−3 + w̃t − 0.443(0.4492)w̃t−1 − 0.190w̃t−2 − 0.025w̃t−3

t1 and t2 are the time, before and after the breaking point respectively and the values in parenthesis are

the standard error of the estimates.

Where Table 1.2 shows the �tted model with ARMA residual. The Sarima procedure using the

astsa (applied statistical time series analysis) Package in R is used to obtain autoregressive and

moving average components of the residual. Above we can see the �tted model which requires a

complicated noise structure to model the high frequency components. The largest autoregressive

root of the noise structure is 0.667 and the autocovariance function of the process depends only
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on the time di�erence between s and t, (the lag h) and not on the actual time , which suggests

stationarity in the residuals of the monthly global temperature series and persistence.

In Summary, the use of a regression model to analyse a time series is important but not a �nal

approach. It raises the question for a better way of dealing with time series data. Diagnostic

check on a model is very important. This investigation includes the analysis of the residuals

as well as model comparisons. It can be seen from the �tted model that the check for breaks

is also relevant since this is an important knowledge to know the exact periods when major

events shaped the movement of the series. The residuals from a model �t will not quite have the

properties of a white noise sequence. Hence this part of diagnostics can be viewed as a visual

inspection of the residual autocorrelation with the main concern of detecting obvious departures

from the independence assumption of a white noise series.
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2 State space models

In other to account for the misleading information obtained from �tting using a linear regression

model, we introduce a more general model that seems to comprise of a whole class of special

cases of interest in much the same way as the linear regression performs, this is the state space

model. The current (or �ltered) estimate of the trend is estimated by putting the model in state

space form and applying the Kalman �lter. Predictions and smoothing is also carried out using

related algorithms. Hence the best estimate of the trend is computed at all points in the sample

using the full set of observations.

The state space model in its simple form is written as

xt = Φxt−1 + wt (2.0.2)

Where xt of an order one vector autoregression is referred to as the state equation, which is

unobserved and determines the rule for the generation of the p x 1 vector xt from the past p x 1

state xt−1, for the time points t = 1, ....., n. But because xt cannot be observed directly, but only

a linear transformed version of it with added noise term which is called the observation yt, hence

the observed variables are presumed to be related to the state vector xt through the observation

equation of the system,

yt = Atxt + vt (2.0.3)

where At is a q x p observation or measurement matrix and yt is a q × 1 vector matrix. The

above equation(2.0.2) is referred to as the observation equation. The noise term wt and vt take

the following assumption:

(i) wt is p x 1 independent and identically distributed, zero mean normal vectors with covari-

ance matrix Q.

(ii)The state process starts with a normal vector x0 that has mean µ0 and p x p covariance

matrix Σ0.

(iii)The additive observation noise vt is white and Gaussian with qxq covariance matrix R.

(iv)For simplicity, x0, wt and vt are uncorrelated. This is an assumption that helps in the

explanation of early concepts.

A common way to handle the state equation is to model it as a trend plus random walk,

where Φ = 1.
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The Kalman �lter and smoother for a simple case of the state space model using monthly

temperature data described in equation (2.0.2) and (2.0.3), is examined below. The initial state

is normal, say, x0 ∼ N(µ0,Σ0), where µ0 and Σ0 are the initial mean and covariance respectively.

We assume for simplicity, {wt} and {vt} are uncorrelated.

A plot of the smoothed and �ltered series with the following assumed starting values values

for the parameters , A = 1, Φ = 1, Q = 1 and R = 1 is shown below. This assumption is used

for the purpose of understanding the concept.

Figure 2.6: Kalman Filter(up) and Kalman Smoother(down), showing the trend of the monthly
global temperatures series 1850 - 2016

The real advantages of the state-space formulation, however, does not really come through in

the assumptions leading to Figure 2.6. Basic assumptions where used to achieve the results for

the �lter and smoothing. The �ne tuning that can be achieved for various forms of the matrix

At and the transition matrix Φ allow for a better �ltering and smoothing of the trend. This will

lead us to the discussion about structural models.

We also note that �xed inputs may enter into the states or observations, In this case, an r x

1 vector of inputs ut is introduced into the model(1) and (2), thus the model can be written as
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yt = Atxt + Γut + vt (2.0.4)

xt = Φxt−1 + Υut + wt (2.0.5)

Where Γ and Υ are q x r and p x r vectors respectively.

The question of interest for the state space model relates to �rst predicting, �ltering and

smoothing of known parameters and afterwards a more interesting aspect will be estimating the

unknown parameters Φ, Q,R,Υ,Γ that de�ne the particular model and, estimating the values of

the underlying unobserved process xt given the data Ys = y1, ..., ys, to time s. The use of the

Kalman �lter and smoother gives the desired solutions to the problem mentioned above.

To begin with, a simple explanation as to how the Kalman �lter and smoother works is given

but for a more comprehensive study on this, I recommend taking a look at the book by Shumway

& Sto�e(2011).

The Kalman �lter xst = E(xt | ys), s = 1, ..., t speci�es how to update the �lter from xt−1t−1

to xtt once a new observation yt is obtained. The Kalman smoother on the other hand estimates

xt based on the the entire data sample y1, ...., yn, where t ≤ n, xst = E(xt | ys), s = 1, ..., n.

Smoothing implies that each estimated value is a function of all the observation, whereas the

�ltered estimator depends on the present and past. Also P st which is mean squared error also

called the conditional error covariance and is expressed as

P st = P st1,t2 = E{(xt1 − xst1)(xt2 − xst2)
′
|Ys} t1 = t2 = t

The Kalman �lter property for the state space model speci�ed in (2.0.3) and (2.0.4) with

initial conditions x00 = µ0 and P 0
0 = Σ0, for t = 1, ..., n, can be written below as

xt−1t = Φxt−1t−1 + Υut

P t−1t = ΦP t−1t−1 Φ
′
+Q

xtt = xt−1t + P t−1t A
′

t(AtP
t−1
t A

′

t +R)−1(yt −Atxt−1t − Γut) (2.0.6)

whereKt = P t−1t A
′

t(AtP
t−1
t A

′

t+R)−1 is called the Kalman gain. xt−1t and xtt are the predictor

and �lter state respectively. Important By products of the �lter are the innovations(prediction

13



errors)

εt = yt − E(yt | Yt−1) = yt −Atxt−1t − Γut (2.0.7)

Where εt is referred to as the innovation(prediction error), and its variance covariance matrices

is

Σt = var(εt) = var[yt −Atxt−1t − Γut]

= var[At(xt − xt−1t ) + vt] = AtP
t−1
t A

′

t +R (2.0.8)

for t = 1, ...., n. The proof of this property can be seen in the appendix.

Remark:

(i) The recursions xt−1t and P t−1t can be used for prediction when t > n, with xnn, P
n
n as

starting values.

(ii) Time dependent parameters Φt,Υt,Γt, Qt, Rt, can be allowed.

(iii) Simultaneous density of x0, x1, ...., xn, y1, y2, ...., yn is

f(x0) =
∏n
t=1 fw(xt − φxt−1)fv(yt −Atxt).

The Kalman smoother xnt property is given as for t = n, n− 1, ....., 1

xnt−1 = xt−1t−1 + Jt−1(xnt − xt−1t ) (2.0.9)

Pnt−1 = P t−1t−1 + Jt−1(Pnt − P t−1t ) (2.0.10)

Jt−1 = P t−1t−1 Φ
′
+ [P t−1t−1 ]−1 (2.0.11)

The derivation for the smoother is given in the appendix, but the summary of the property of

the Kalman smoother and the prediction error is given above. where is the predicting error.

How to choose the initial values

x̃t = φx̃t−1 + w̃t, t = 1, ....., n

• if xt is stationary, the distribution of x0 can be taken to be the stationary distribution.

• Condition on the initial observation by solving

y1 = Ax̃1

14



x̃1 = φx0, , if possible.

Structural time series models is one in which the trend, seasonal, cycle and error terms, plus

other relevant components, are modelled explicitly.

2.1 Maximum likelihood estimation in state space model

Parameter estimation that specify the state space model (3) and (4) is very important in analysing

various components of the time series model. The idea is that, Θ = {µ0,Σ0,Φ, Q,R,Υ,Γ} used

to represent the vector of unknown parameters containing the elements of the initial mean µ0,the

covariance Σ0, the transition matrix Φ, the state and observation covariance matrices Q and R

and the inputs Υ and Γ is estimated using the maximum likelihood estimation. The maximum

likelihood, for a time series model where the observations y1, ...., yn are not independent, is

de�ned using a conditional probability density function to write the joint density function

L(y; Θ) =

n∏
t=1

p(yt|Yt−1) (2.1.1)

where p(yt|Yt−1) denotes the distribution of yt conditional on the information set at time t− 1,

that is Yt−1 = {yt−1, yt−2, ..., y1}. The maximum likelihood is used under the assumption that

the initial state is normal x0 ∼ N(µ0,Σ0) and the errors v1, v2, ...vn and w1, w2, ..., wn are jointly

normal and uncorrelated vector variables. wt ∼ N(0, Q) and vt ∼ N(0, σ2
v)

The likelihood is computed using the innovations

εt = yt −Atxt−1t − Γut,

which are independent normal where E(εt) = 0 and the covariance matrix

Σt = AtP
t−1
t A

′

t +R

The log likelihood − logL(y; Θ) is proportional to

1

2

n∑
t=1

log | Σt(Θ) | +1

2

n∑
t=1

εt(Θ)
′
Σt(Θ)−1εt(Θ) (2.1.2)

where the dependence of the innovations on the parameter Θ has been emphasized. Using the

Kalman �lter for given Θ, this can be calculated.

Procedure

• select initial and starting values for the parameters (Θ0)
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• For Θ0, compute the likelihood L(y; Θ0) using the Kalman �lter(kf)

• Apply a numerical optimization algorithm to L(y; Θ0)

• Repeat this process for n steps until the value of Θ corresponding to the maximum Likeli-

hood is found.

2.2 Structural models with Annual Temperature Series

An introduction to structural models can be better understood by reading the book by Har-

vey(1989), .... The idea of using structural models is very essential in the sense that it gives

one the opportunity to better analyse time series data combining various components, i.e Trend,

season, cycles, auto regressiveness, e.t.c. Structural models can be extended into state space by

rede�ning the observation equation to include all the components one needs to model.

2.2.1 Trend

The question of de�ning a trend is one which has troubled the minds of statisticians and

economists for many years. A trend is conceived of as that part of a series which changes

relatively slowly over time. In other words, the properties of smoothing plays a big role in the

de�nition. A trend, viewed in terms of prediction,is that part of the series which when extrap-

olated gives the clearest indication of the future long term movements in the series. A simple

case of the structural model is one in which the underlying level of the series changes over time.

This level is de�ned by a random walk which includes a random disturbance term(white noise).

This can be written as

yt = µt + vt vt ∼ NID(0, σ2
v), t = 1, ..., T

µt = µt−1 + ωt ωt ∼ NID(0, σ2
ω) (2.2.1)

where µt is the local level and vt is a white noise disturbance term. NID denotes normally and

independently distributed, and two disturbances are mutually uncorrelated. This leads us the

Local linear trend model which replaces the deterministic trend in (1.0.1) by a stochastic trend.
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It can also be modeled as a random walk with slope βt.

yt = µt + vt vt ∼ NID(0, σ2
v)

µt = µt−1 + βt−1 + ωt ωt ∼ NID(0, σ2
ω)

βt = βt−1 + ηt ηt ∼ NID(0, σ2
η) (2.2.2)

where βt is the slope term, ηt is it's noise term. The level and slope disturbances are mutually

uncorrelated and uncorrelated with vt. When σ2
η = 0, we have a case of a trend as a random

walk plus drift. To express this model in state space form, equation (2.2.2) is written as

yt =
(

1 0
) µt

βt

+ vt

And the state equation written as

xt =

µt
βt

 =

1 1

0 1

 µt−1
βt−1

+

ωt
ηt


Where R = var(vt) = r11 = σ2

v and

Q =

σ2
ω 0

0 σ2
η


Where At is a 1 x 2 matrix, Φt is 2 x 2 matrix and the state noise terms are uncorrelated

with mean zero and a 2 x 2 covariance matrix Q.

The focus will be on estimating the variance of the white noise disturbance term in the

observation equations R = var(vt) and state equation Q respectively.

Using the Kalman �lter property, the K�lter0 and Ksmooth0 script in the astsa package in

R, uses the cholesky decomposition of Q and R. They are denoted cQ and cR. Practically, the

scripts only require that Q or R may be reconstructed as t(cQ)% ∗ %(cQ) or t(cR)% ∗ %(cR)

respectively. Hence for the sake of clarity, the state covariance matrix can written as

cQ =

q11 0

0 q22


Parameters to be estimated are the standard deviation of the error terms; σv =

√
r11, σω =
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√
q11 and ση =

√
q22 . The initial assumptions: the initial mean µ0 = −0.35, the covariance

Σ0 =diag(0.01, 2), the initial measurement and state covariance values was started at σv = 0.01

and σω = 0.01, ση = 0.01 respectively.

After about 10 iterations of a Newton - Raphson, the observation uncertainty together with

it's standard error is σv = 0.080580.00902, compared with the state uncertainties together with

their standard error σ̂ω = 0.046280.01369 and σ̂η = 0.001190.00203. It can be seen here that the

slope is insigni�cant to the model. The Figure below shows the smoothed trend estimate, this

uses the K�lter0 and Ksmooth0 scripts of the astsa package in R, developed by Shumway &

Sto�e (2011)

Figure 2.7: Smoothed trend estimate

Where the black line is the smoothed trend and the blue dotted line is the initial observation.

Next will be to take a look at a more inclusive structural model, that is considering the time

series to be the sum of the trend component, a cycle component and a white noise.

2.2.2 Checking for periodicity in the residuals

The notion that a time series exhibits repetitive behaviour over time is important in the �eld of

statistics. The modeling of the global temperature data as a trend plus irregular (noise term)
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is obviously not su�cient for analysis. Since we know that for temperature data, it is likely

for periodicity to occur, thus has led to the investigation of the residuals obtained from �tting

the model. This investigation is carried out by the use of the spectral analysis. A fundamental

objective of spectral analysis is to identify the dominant frequencies in a series. Therefore the

idea that a time series is composed of periodic components, appearing in proportion to their

underlying variances gives rise to the study of spectral density. If the residual is an autoregressive

moving average process(ARMA), its spectral density can be obtained using the fact that it is a

linear process, i.e., rest =
∑∞
j=0 ψjwt−j , where

∑∞
j=0 |ψj | <∞.

The spectral density of a general ARMA(p,q) process, φ(D)xt = θ(D)wt is given by

fx(ω) = σ2
w

|θ(e−2πiω)|2

|φ(e−2πiω)|2
(2.2.3)

where φ(z) = 1−
∑p
k=1 φkz

k and θ(z) = 1−
∑q
k=1 θkz

k.

Since the main idea here is to check for periodicity in the residuals, a parametric spec-

tral estimator is obtained by �tting an autoregressive AR(p)to the residual obtained from two

cases(yt −Axnt and yt −Axt−1t ) (a) �tting the smoothed trend to the observation (b) �tting the

�ltered value to the observation, where the order p is determined by one of the model selection

criteria, such as, AIC, AICc and BIC by choosing the value of p at the lowest AIC and BIC.

If φ̂1, φ̂2, ..., φ̂p and σ̂2
w are the estimates from an AR(p) �t to the rest, a parametric spectral

estimate of fres(w) is obtained by substituting these estimates into equation(7), that is,

f̂res(ω) =
σ̂2
w

|φ̂(e−2πiω)|2
, (2.2.4)

where

φ̂(z) = 1− φ̂1z − φ̂2z2 − ...− φ̂pzp (2.2.5)

ω is the frequency with condition that 0 ≤ ω ≤ 1
2 . The use of the arma.spec script in R is

used to obtain the plot of the spectrum f̂res(ω) against its frequency(ω).
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Figure 2.8: Autoregressive spectral estimators for the residuals obtained by �tting annual
smoothed trend(left) and for the residuals obtained by �tting annual �ltered value (right).

Figure 2.9: Autoregressive spectral estimators for the residuals obtained by �tting monthly
smoothed trend(left) and for the residuals obtained by �tting monthly �ltered value (right).

The �gures above show that there exists an underlying periodic component in the residuals

obtained by �tting the smoothed and �ltered data to the observation. Comparing the results

obtained for the parametric spectral estimates of the residual using �ltered and smoothed data

for both the annual and monthly case, shows a higher order of p for the smoothed data and a

lower order of p for the �ltered data. That been said, we can see that the �rst peak looking at

the monthly series corresponding to the �tted �ltered data is at a frequency ω = 1/50 = 0.02,

corresponding to a period of 50 months which is similar to the result obtained for the Southern

Oscillation index(SOI) series by Shumway & Sto�e (2011) corresponding to the El Nino period.

And the second peak is at a frequency of ω = 1/12.3 = 0.081, with a period of approximately 12

months.

Therefore the need to extend the structural model to contain a Seasonal and cycle component
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is important.

2.2.3 Trend + cycle Component

Treatment of time series as a trend plus cycle is a good deal for analysing temperature data.

The model presented in Harvey and Koopman (1997), which was generalized by Harvey and

Trimbur(2003) in such a way that it can produce smoother extracted cycles considering higher

order stochastic cycles. A simple case will be to consider a �rst order stochastic cycle.

yt = µt + Ct + vt, (2.2.6)

Where the unobserved components are the trend µt, cycle Ct and the noise term vt. The trend

is given as in equation (2.2.1), since the slope term is insigni�cant to the model. A cycle can be

expressed either as a sine or cosine wave. In its simplest form, Ct is written as a mixture of the

sine and cosine waves.

Ct = C̄ cosλct+ C̄∗ sinλct (2.2.7)

Where λc is the frequency of the cycle measured in radians and its period is 2π/λc. Just like

the seasonal, the cycle can be allowed to change stochastically over time.

Ct = Ct−1 cosλc + C∗t−1 sinλc + κt

C∗t = −Ct−1 sinλc + C∗t−1 cosλc + κ∗t

(2.2.8)

Where κt and κ∗t are the two white noise disturbances which are assumed to be uncorrelated

with each other and with the noise term in the observation. The property of the cyclic noise

term is expressed in Carvalho et al(2007) as

E(κtκt) = E(κ∗tκ
∗
t ) = σκ, E(κtκ

∗
t ) = 0

where σκ is the covariance matrix.

The cycle model can be stretched further by introducing the damping factor ρ, to give

Ct
C∗t

 = ρ

 cosλc sinλc

− sinλc cosλc

 Ct−1
C∗t−1

+

κt
κ∗t

 (2.2.9)

21



κt
κ∗t

 ∼WN

0

0

 ,
σ2

κ 0

0 σ2
κ


where ρ ∈ [0, 1] is a damping factor required to ensure the stationarity of Ct. If it is equal to

one, the cycle is non stationary . Cycles of this form �t naturally into the structural time series

model framework.

Hence, the observation equation can be written as

yt =
(

1 1 0
) 

µt

Ct

C∗t

+ vt

And the state equation written as

xt =


µt

Ct

C∗t

 =


1 0 0

0 ρ cos(λ) ρ sin(λ)

0 −ρ sin(λ) ρ cos(λ)



µt−1

Ct−1

C∗t−1

+


ωt

κt

κ∗t


Where R = var(vt) = r11 = σ2

v and

Q =


σ2
ω 0 0

0 σ2
κ 0

0 0 σ2
κ


Where At is a 1 x 3 matrix, Φt is 3 x 3 matrix and the state noise terms are uncorrelated

with mean zero and a 3 x 3 covariance matrix Q.

The parameters which are to be estimated are the three variance parameters and two cyclical

parameters. σ2
ω, σ

2
v , σ

2
κ, ρ, λ. Taking starting values for the parameters and writing the scripts

using the Kalman �lter and Kalman smoother, the smoothed component is displayed below.
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Figure 2.10: Estimated trend component, Tnt (Top) and the estimated cycle component, Cnt
(bottom).

The �nal estimated parameters after 25 iterations for the �rst order cycle are:σω = 0.0593, σv =

0.0414, σκ = 0.0301, ρ = 0.6136, λ = 1.1966 and also the period is given as 2∗π
λ = 5.2508. The

assumptions(speci�cation) were chosen on the basis of parsimony, i.e that the noise terms are

uncorrelated. Estimation of the parameters is done using the k�lter0 and ksmoother0 script in

the Astsa package.

The trend component is a Local level model (simple driftless random walk model). There

is a �rst order cycle having a period of about 5 years with a standard error of approximately

one year. The variance of the stochastic cycle is computed as 0.0042, which clearly shows how

the cycle component evolve over time(vary over time). It seems fairly regular atleast after 1900.

Between 1850 and 1900 the cycle component looks volatile.
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2.2.4 Cyclical Trend Component

The concept of this model is di�erent from the trend plus cycle model. Cyclical components can

be combined with other components such as the trend which is de�ned by (2.2.1). A cyclical

trend component model de�nes a cyclic pattern embedded in the trend and not in the observation

series hence the cyclical variations are also included in the long-term trend. This is put into the

state space form by amending the measurement equation and the �rst row of the transition

equation.

The unobserved state equation and observed equation can be written as:

µt = µt−1 + Ct−1 + ωt,

Ct = ρ(Ct−1 cosλc + C∗t−1 sinλc) + κt

C∗t = ρ(−Ct−1 sinλc + C∗t−1 cosλc) + κ∗t

(2.2.10)

yt = µt + vt (2.2.11)

The state equation in state space form is written as

xt =


µt

Ct

C∗t

 =


1 1 0

0 ρ cos(λ) ρ sin(λ)

0 −ρ sin(λ) ρ cos(λ)



µt−1

Ct−1

C∗t−1

+


ωt

κt

κ∗t

 ωt ∼ N(0, σ2
ω), κt ∼ N(0, σ2

κ), κ∗t ∼ N(0, σ2
κ)

And the measurement equation is

yt =
(

1 0 0
)

µt

Ct

C∗t

+ vt

yt = µt + vt, vt ∼ N(0, σ2
v)

Where At is a 1 x 3 matrix, Φt is 3 x 3 matrix and the disturbance terms uncorrelated with

mean zero and a covariance 3 x 3 matrix Qt.

The concept of the cyclical trend is that the cycle is incorporated into the trend. Hence the
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smoothed trend of the series is expected to have cyclical e�ects. We can compare this model to

the previous case where the cycle was not a part of the trend in a later section. Below is a plot

of cyclical trend.

Figure 2.11: Cyclical trend of the annual temperature data

Using the same initial values Σ0 = 0.001, µ0 = −0.3 as in the case of the trend plus cycle, and

starting values; σω = 0.1, σv = 0.1, σκ = 0.1, ρ = 0.4, λ = 0.3, The �nal estimated parameters

after 45 iterations are: σ2
ω = 0.00055, σ2

ε = 0.06096, σ2
κ = 0.06857, ρ = 0.6755, λ = 1.3727 and

also the period is given as 2∗π
λ = 4.5772. The assumptions(speci�cation) were chosen on the

basis of parsimony, i.e that the noise terms are uncorrelated. Estimation of the parameters is

done using the k�lter0 and ksmoother0 script.

Next we take a look at an overall comparison between the various model already discussed.

i.e Trend, Trend plus cycle model and the Cyclical trend model.

2.2.5 Comparison between the various structural components

An appropriate way will be to compare the structural models which includes a look at the

likelihood and AIC values, residuals and goodness of �t of the various models.
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Parameters Trend Trend + Cycle Cyclical trend

ρ̂ 0.6136 0.7117

(0.2222) (0.0765)

λ̂c 1.1966 1.4725

(0.2505) (0.1262)

σ̂w 0.04628 0.0593 0.00055

(0.01369) (0.0101) (0.1508)

σ̂v 0.08058 0.0325 0.06096

(0.00902) (0.0414) (0.0082)

σ̂κ 0.0651 0.06857

(0.0301) (0.0103)
2∗π
λ 5.2508 4.5772

Likelihood -285.3353 -283.5029 -282.7258

AIC 576.6706 577.0058 575.4516

Table 2.3: Table showing the various models and the estimated value of there parameters

The AIC is given as −2l+ 2p, where l is the maximized likelihood value and p is the number

of estimated parameters.

The table above shows the parameter estimates obtained by decomposing the observed An-

nual global temperature series into a set of unobserved components(trend, cycle, cyclical trend),

together with their standard errors in parenthesis .

A look at the above table shows that the standard deviation of the noise term in the trend

plus cycle component is higher than that of the cyclical trend component. A logical conclusion

from this is that when the cycle is embedded in the trend, since the disturbances are uncorrelated,

we get a trend that is dominated by a cyclic pattern. The AIC between the three models shows

that an appropriate choice is the cyclical trend model with the lowest AIC value of 575.4516 but

we know that the model with lowest AIC value does not always represent the best �t and from

the model trends in the above plots we can see that an appropriate model choice will be the

trend plus cycle which gives a smoother trend and investigation of the residuals shows that the

model is a good �t.
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2.3 Structural models with Monthly Temperature Series

The point of decomposing the structural model to the monthly temperature series is to �nd some

sort of disparity with the results obtained by decomposing the structural model to the annual

temperature series. First we take a look at the trend components for the monthly temperature

data. Of course there will be similarities with the results obtained from the smoothed trend of

the annual temperature data and that of the trend of the monthly temperature data.

2.3.1 Trend

So here we have a Local linear trend model with a noise term. This model is referred to as a

random walk model.

The state space form of the trend is the same as in subsection 2.2.1. With the variance of

its disturbance insigni�cant from zero and thus a deterministic(constant) slope, with the same

initial value used for the annual temperature data, the result obtained after about 9 iterations

of a Newton - Raphson, the observation uncertainty was σ̂v = 0.09383, compared with the state

uncertainty σ̂ω = 0.05729. Figure(2.12) below shows the smoothed trend estimate, this uses the

K�lter0 and Ksmooth0 scripts of the astsa package in R, developed by Shumway & Sto�e (2011)

Figure 2.12: Smoothed trend estimate

Comparing the smoothed trend of the monthly global temperature to that of smoothed trend

of the annual global temperature, we can deduce that the Kalman �lter and smoother algorithm

does not perform very well for the Linear trend model with very large data.

Next a look at a more inclusive structural model, that is considering the time series to be the
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sum of the trend component, a seasonal component, and a white noise.

2.3.2 Trend + Seasonal Component

As with a trend, a seasonal component is de�ned in terms of the predictions it yields. The

estimated seasonal is that part of the series which, when extrapolated, repeats itself over any

one-year time period and averages out to zero over such a time period(Harvey(1989). In a

structural model, the seasonal part satis�es the conditions below.

The observed series is expressed as

Yt = µt + St + vt, (2.3.1)

where µt is the trend and St is the seasonal component. Let the trend be a local linear trend

model as given in (2.2.2), with φ = 1, that is ,

µt = µt−1 + βt−1 + ωt

β = βt−1 + ηt (2.3.2)

and let the seasonal component be modeled as

St+1 = −
s−1∑
j=1

St+1−j + γt, γt ∼ N(0, σ2
γ) (2.3.3)

for t = 1, .., n, for monthly data s = 12.

Durbin and Koopman (2001) showed that there are other alternatives under which the sea-

sonal component can be modeled.

For constant seasonal pattern over time, the seasonal values for month 1 to s can be modelled

by constants S∗1 , ...., S
∗
s where

∑s
i=1 S

∗
i = 0. Which follows that

∑s−1
j=0 St+1−j = 0 and thus,

St+1 = −
s−1∑
j=1

St+1−j t = s− 1, s, .... (2.3.4)

An alternative is express the the seasonal in a trigonometric form, which can be done for two

versions of the seasonal, i.e one version for a constant seasonal and the other version for a time

varying seasonal which is made stochastic by replacing the constant seasonal by random walks
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Durbin and Koopman (2001)

St =

[s/2]∑
j=1

Sj,t

Where each Sj,t, j = 1, ..., 6 is generated by

Sj,t
S∗j,t

 =

 cosλj sinλj

− sinλj cosλj

 Sj,t−1
S∗j,t−1

+

γj,t
γ∗j,t

λj =
2πj

s
, j = 1, ..., [s/2] (2.3.5)

Where λj is the frequency (in radians) and γj,t ∼ NID (0, σ2
γ) and γ∗j,t ∼ NID (0, σ2

γ) are mutually

uncorrelated noise having a common variance. The component S∗j,t simply allows the seasonal

to be modelled as a stochastic combination of sine and cosine waves. This is similar to the cycle

component.

The paper by T.C Mills(2010) focused on using the trigonometric form which is referred to

as the quasi random walk model, where the stochastic terms were assumed to be zero i.e σ2
γ = 0,

thus leading to the conclusion that the seasonal component has a deterministic pattern (being

constant from year to year). Equation (2.3.5) is referred to as the main time domain model for

the seasonal component in structural time series analysis.

In our discussion, we will try to see if modeling the seasonal component will give a determin-

istic pattern (i.e., if the variance of the noise term is close to zero).

Equation (2.3.3) can also be written as

St = −St−1−St−2−St−3−St−4−St−5−St−6−St−7−St−8−St−9−St−10−St−11 +γt (2.3.6)

Which corresponds to the assumption that the seasonal component is expected to sum to

zero over a complete period. We can express equations(2.3.1),(2.3.2) and (2.3.6) in state space

form. The observation equation can be written as
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yt =
(

1 0 1 0 0 0 0 0 0 0 0 0 0
)



µt

βt

St

St−1

St−2

St−3

St−4

St−5

St−6

St−7

St−8

St−9

St−10



+ vt (2.3.7)

And the state equation written as

xt =



µt

βt

St

St−1

St−2

St−3

St−4

St−5

St−6

St−7

St−8

St−9

St−10



=



1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 −1 −1 −1 −1 −1 −1 −1 − 1 − 1 − 1

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0





µt−1

βt−1

St−1

St−2

St−3

St−4

St−5

St−6

St−7

St−8

St−9

St−10

St−11



+



ωt

ηt

γt

0

0

0

0

0

0

0

0

0

0


Where R = r11 = var(vt) and
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Q =



q11 0 0 0 . . . 0

0 q22 0 0 . . . 0

0 0 0 q33 . . . 0

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

0 0 0 0 0 0 0


The parameters to be estimated just like we did with the trend component, are σv the

standard deviation of the white noise term in the observation equation, σω, σβ and σγ , the state

standard deviation corresponding to the level, slope and the seasonal component respectively.

The assumption for the initial mean and the diagonal covariance matrix with Σ0ii , for i =

1, ..., 12 is the same as in the previous trend component. The initial observation and state

covariance values were taken as σv = 0.01, and σω = 0.01, ση = 0.01, σγ = 0.01, respectively.

Just like in the trend case, we use the K�lter0 and Ksmooth0 scripts to obtain a smoothed trend

and seasonal estimate which is shown below.

Figure 2.13: Estimated trend component, Tnt for monthly temperature data.

The �gure above shows the smoothed trend. After 16 iterations of the Newton - Raphson

iteration, the observation uncertainty reduces to σv = 0.09271 and the state uncertainties are

σω = 0.05286 and σγ = 1.7048 x 10−7 for the trend and seasonal respectively. where the standard

deviation for the slope is insigni�cant from zero, thus a deterministic(constant) slope is obtained.

Thus it can be seen that the variance of the noise term in the seasonal component σ̂2
γ = (1.7048

x 10−7)2 is zero i.e the seasonal component has a zero innovation variance so that it has a
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deterministic pattern, thus near constant from year to year. The likelihood value is given as (K

= -3106.0408)

The question of modelling the �xed seasonal pattern in the state space can be dealt with by

considering the seasons as explanatory variables or input(exogenous variables) in the state or

observation equation,

µt = µt−1 + Υut + ωt

yt = µt + Γut + vt (2.3.8)

where ut is the input which will be speci�ed as a seasonal variable i.e the regression e�ect of the

time series model is placed in Υut.

ut =
[
S1 S2 S3 . . . . . S11 constant

]T
A centered seasonal average is employed which is used to obtain the annual pattern plus a

constant term(intercept). The Γ or Υ is the amplitude that speci�es the measure of change over

a speci�c period, this variable will be estimated.
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This method gives a di�erent approach to handling the seasonal e�ect by assuming it as an

exogenous variable in the state space model. The result obtained from this shows an estimated

amplitude of (Υ = 0.2) which shows the height of the period.

A look at the autocorrelation function of the residuals for both cases where we have seasonal

modeled in the unobserved component and when the seasonal is treated as an exogenous variable

in the observation equation, this will show that there is very little correlation between the

residuals when we introduce the seasonal as an exogenous variable.

Figure 2.14: Autocorrelation function for irregular residual without inputs(exogenous variable)
(Left), Autocorrelation function for irregular residual with inputs(exogenous variable)(Right)

In conclusion to the introduction of the seasonal component as an input in the state space

is that this helps as an intervention variable to reduce the dependence on correlation in the

residuals. In the next chapter we will see how the use of intervention variables will be used to

handle outliers and structural breaks.

2.3.3 Trend + cycle Component

The state space form of the trend plus cycle model is the same as in subsection 2.2.3. With the

initial mean and covariance set at µ0 = −0.35 and Σ0 = 0.01, starting values of ρ = 0.7, λ =

0.6, σw = 0.1, σκ = 0.1, and σv = 0.1. β = 0 which implies that the trend model is a local level

model.

After 30 iterations of a Newton - Raphson, the result is given as ρ = 0.8045, λc = 0.0179, σω =

0.0116, σv = 0.0811, σκ = 0.0746. The Figure below shows the smoothed trend estimate and cycle

component, this uses the K�lter0 and Ksmooth0 scripts of the astsa package in R, developed by

Shumway & Sto�e (2011)
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Figure 2.15: Estimated trend component, Tnt (Left) and the estimated cycle component, Snt
(Right) for monthly temperature data.

A summary to this is that a cyclic period of 2π/λ̂c = 351.0159, which is about 29 years for

the �rst order cycle. The trend component is by no means smooth but the warming trends for

the last 30 years of the twentieth century are clearly apparent.

2.3.4 Cyclical Trend Component

The model is the same as in section 2.2.4. Initial values remain the same as in the case of trend

plus cycle. We use the K�lter0 and Ksmooth0 script to obtain the �lters and smoothers for the

estimated parameters. The �gure below shows the cyclical trend for the monthly temperature

data.

Figure 2.16: Cyclical trend component

The result obtained after 33 iterations where the uncertainty of the trend disturbance is given

as σw = 0.00033 which is insigni�cant from zero, thus we can see a dominant cyclic behaviour
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and a deterministic trend. The values for the parameter estimation is shown in the table 2.4

2.3.5 Trend + Cycle + Autoregressive AR(1)

The structural model can be enhanced further by introducing an Autoregressive component.

The autoregressive component can be speci�ed as an AR(1) process

ψt = φ1ψt−1 + ξt, ξt ∼ N(0, σ2
ξ )

Thus the structural components are:

µt = µt−1 + ωt,

Ct = ρ(Ct−1 cosλc + C∗t−1 sinλc) + κt

C∗t = ρ(−Ct−1 sinλc + C∗t−1 cosλc) + κ∗t

ψt = φ1ψt−1 + ξt

(2.3.9)

And the observed equation is written as

yt = µt + Ct + ψt + vt (2.3.10)

The state space form of this model is written as

yt =
(

1 0 1
)


µt

βt

Ct

C∗t

ψt


+ vt

vt ∼ N(0, σ2
v)

And the state equation is written as

xt =


µt

Ct

C∗t

ψt

 =


1 0 0 0

0 ρ cos(λ) ρ sin(λ) 0

0 −ρ sin(λ) ρ cos(λ) 0

0 0 0 θ1




µt−1

Ct−1

C∗t−1

ψt−1

+


ωt

κt

κ∗t

ξt


35



ωt ∼ N(0, σ2
ω), κt ∼ N(0, σ2

κ), κ∗t ∼ N(0, σ2
κ)

Where R = var(vt) = r11 = σ2
v and

Q =


σ2
ω 0 0 0

0 σ2
κ 0 0

0 0 σ2
κ 0

0 0 0 σ2
ξ


Where At is a 1 x 4 matrix, Φt is 4 x 4 matrix and the state noise terms are uncorrelated

with mean zero and a 4 x 4 covariance matrix Q.

The parameters which are to be estimated are the four standard deviation parameters and two

cyclical parameters. σω, σv, σκ, σξ, ρ, λ. Taking starting values for the parameters and writing

the scripts using the Kalman �lter and Kalman smoother, the smoothed component is displayed

below, together with the cycle, AR(1) process.

Figure 2.17: trend + cycle + AR(1)+ irregular component

The values of the estimated parameters are given in table 2.4. The autoregressive process
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as seen above is a non stationary process with φ1 = 1. Harvey (1989) introduced the autore-

gressive component into the structural model by generalising the irregular term to a stationary

autoregressive process which results to the trend and irregular component being subject to the

autoregressive e�ect. The equation below shows the structural model by Harvey (1989).

yt = µt + ψt

µt = µt−1 + ωt,

ψt = φ1ψt−1 + φ2ψt−2 +−−−−−−+φpψt−p + vt

(2.3.11)

where vt is the irregular term, ψt is the AR process of order p.

2.3.6 Trend + Season + cycle Component

Another exciting model to discuss is a structural model that decomposes the data into a trend,

season and cycle component.

µt = µt−1 + βt + ωt,

St = −St−1 − St−2 − St−3 − St−4 − St−5 − St−6 − St−7 − St−8 − St−9 − St−10 − St−11 + γt

Ct = ρ(Ct−1 cosλc + C∗t−1 sinλc) + κt

C∗t = ρ(−Ct−1 sinλc + C∗t−1 cosλc) + κ∗t

(2.3.12)

yt = µt + St + Ct + vt (2.3.13)

The state space form of this model is written as
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yt =
(

1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
)



µt

βt

St

.

.

St−10

Ct

C∗t



+ vt

vt ∼ N(0, σ2
v)

And the state equation is written as

xt =



µt

βt

St

.

.

St−10

Ct

C∗t



=


1 1 0 0

0 1 0 0

0 0 seasonal 0

0 0 0 Cycle





µt−1

βt−1

St−1

.

.

St−11

Ct−1

C∗t−1



+



ωt

ηt

γt

.

.

.

κt

κ∗t


ωt ∼ N(0, σ2

ω), γt ∼ N(0, σ2
γ), κt ∼ N(0, σ2

κ), κ∗t ∼ N(0, σ2
κ)

The variance term is described as

R = var(vt) = r11 = σ2
v

and
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Q =



σ2
ω 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 σ2
η 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 σ2
γ 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 0 0 0 0 0 0 0 0 0 0 0 0 σ2
κ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 σ2
κ


Where At is a 1 x 14 matrix, Φt is 14 x 14 matrix and the state noise terms are uncorrelated

with mean zero and a covariance 14 x 14 matrix Q.

Next will be to estimate the parameters in the state space model which are: σω, ση, σγ , σκ, ρ, λc, σv

, with initial values µ0,Σ0 and starting values for the parameters, the Kalman �lter and smoother

script K�lter0 a Ksmooth0 are used for prediction, �ltering and smoothing based on the Kalman

�lter and Smoother property.

The result of the estimated parameters obtained after 26 iterations of a Newton - Raphson, is

shown in table 2.4., with the variance of the slope equal to zero , thus a deterministic(constant)

slope is obtained. The plots of the trend , seasonal and cycle component is shown below
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Figure 2.18: Estimated trend component, Tnt (Top left) and the estimated seasonal component,
Snt (Top Right) and the cyclic component(bottom) for monthly temperature data.

The result obtained shows a deterministic seasonal pattern with zero innovation variance. A

look at the autocorrelation function of the residual shows very high correlation, an introduction

of intervention variables i.e the use of the seasonal as an exogenous variable solves this problem.

2.3.7 Comparison between the various structural components

An appropriate way will be to compare the structural models which includes a look at the

likelihood and AIC values, residuals and goodness of �t of the various models.
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Parameters Trend T + S T + C Cyclical trend T + S + C T + C + AR(1)

θ̂1 0.5846∗

(0.0859)

ρ̂ 0.8045∗ 0.7365∗ 0.8256∗ 0.9474∗

(0.0302) (0.0345) (0.0524) (0.0236)

λ̂c 0.0179 0.7333∗ 0.2041∗ 0.1303∗

(0.0836) (0.1008) (0.1277) (0.023)

σ̂ω 0.05729∗ 0.05286∗ 0.0116∗ 0.00033 0.03646∗ 0.0121∗

(0.00332) (0.003) (0.0023) (0.0151) (0.00389) (0.0022)

σ̂γ 0.00111 0.0003

(0.0015) (0.0011)

σ̂v 0.09383∗ 0.09271∗ 0.0811∗ 0.09286∗ 0.04329∗ 0.0705∗

(0.00259) (0.0024) (0.0036) (0.0025) (0.0261) (0.0073)

σ̂κ 0.0746∗ 0.0406∗ 0.09426∗ 0.0385∗

( 0.0047) (0.0052) (0.0068) ( 0.0168)

σξ 0.0857∗

(0.0074)

Likelihood -3177.202 -3160.703 -3150.06 -3156.003 -3131.3201 -3130.285

AIC 6358.404 6327.406 6310.12 6322.006 6274.64 6274.57

Table 2.4: Comparing the estimated parameters of the component of the structural model
1

The AIC is given as −2l+ 2p, where l is the maximized likelihood value and p is the number

of estimated parameters.

The table above shows the parameter estimates obtained by decomposing the observed

monthly global temperature series into a set of unobserved components(trend,seasonal, cycle,

cyclical trend, AR(1) process), together with their standard errors in parenthesis . All the

parameters of the model are estimated with a good degree of precision.

There are several insigni�cant parameters in the above table but the signi�cant parameters

which are marked with ∗ are bigger than the 95% con�dence level hence, a 5% signi�cance level.

It is important to state that, obtaining signi�cant maximum likelihood estimate, comes from

choosing appropriate initial values and starting values which can be very di�cult when we have
1∗Estimated value that represents the 5% signi�cance level
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several parameters to be estimated. Thus the e�ect of increased number of parameters is penal-

ized by the AIC.

Since the models might be considered to be nested, it is expected that the likelihood value

should increase as the number of parameters increases but that could be a�ected by the com-

plexity of the models and appropriate initial and starting values.

Model selection by the use of the lowest AIC value will tend to favour the structural model

that includes the trend, cycle and AR(1) process. Looking across all �ve models, one consistent

thing that can be clearly spotted is the smoothness of the trend, thus one can deduce that the

more structure the models get the smoother the trend becomes, and the higher the number of

signi�cant parameters estimated.

The cycle, although clearly stochastic, is fairly regular. High volatility can be seen in the

cycle in the �rst 50 years but thereafter displays a homogeneous behaviour.

2.4 Models with correlated errors

From the state space model equation given in section 2.3, the state space model is written with

a slight adjustment to the state equation. The idea behind this modi�cation is that the state

noise process starts at t = 0. This is done due to alignment of the covariance between wt and vt.

xt+1 = Φxt + Υut+1 + Θωt t = 0, 1, 2, ...., n (2.4.1)

yt = Atxt + Γut + vt t = 0, 1, 2, ...., n (2.4.2)

In the state equation, x0 ∼ Np(µ0,Σ0), Φ is p x p, Υ is p x r , Θ is p x m and ωt ∼ iid

Nm(0, Q). The inclusion of the matrix Θ is to allow us avoid the use of singular state noise

process Shumway & Sto�er (2011). In the observation equation, At is q x p , Γ is q x r and

vt ∼ iid Nq(0, R). In this model, we allow for correlation between the state noise ωt and the

observation noise vt at time t. i.e.

cov(ωs, vt) =

S, if s = t,

0, if s 6= t

(2.4.3)

Where S is an m x q matrix. Thus, from equation (2.4.1) and (2.4.2), and with the condition

of correlation between the noise term, together with the innovations εt = yt −Atxt−1t − Γut and
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the innovation variance Σt = AtP
t−1
t A

′

t +R, we obtain the one step ahead prediction xtt+1, and

the �lter values xtt together with the prediction errors P tt+1, P
t
t respectively.

The proof to the Kalman �lter and smoother with correlated errors is shown here. A two

step equation may be obviously combined into a one step update which computes xtt+1 from xtt

or xt−1t+1 from xt−1t .

Hence the one step ahead prediction xtt+1 is obtained by carrying out the following compu-

tation.

xt+1 = Φxt + Υut+1 + Θωt t = 0, 1, 2, ...., n

xt−1t+1 = E(xt+1|Yt−1) = E(Φxt + Υut+1 + Θωt|Yt−1)

= Φxt−1t + Υut+1 (2.4.4)

and thus

P t−1t+1 = E[(xt+1 − xt−1t+1)(xt+1 − xt−1t+1)
′
|Yt−1]

= E[(Φxt + Υut+1 + Θωt − Φxt−1t −Υut+1)(Φxt + Υut+1 + Θωt − Φxt−1t −Υut+1)
′
|Yt−1]

= [Φ(xt − xt−1t ) + Θωt][Φ(xt − xt−1t ) + Θωt]
′

= ΦP t−1t Φ
′
+ ΘQΘ

′
(2.4.5)

Next we obtain the conditional covariance between xt+1 and εt given Yt−1 is

cov(xt+1, εt|Yt−1) = cov(xt+1, yt −Atxt−1t − Γut|Yt−1)

= cov(xt+1 − xt−1t+1, yt −Atx
t−1
t − Γut|Yt−1)

= cov(Φ(xt − xt−1t ) + Θωt, At(xt − xt−1t ) + vt)

= ΦP t−1t A
′

t + Θcov(ωt, vt)

= ΦP t−1t A
′

t + ΘS (2.4.6)

Using these results, we have that the joint conditional distribution of xt+1 and εt given Yt−1
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is normal

=

xt+1

εt

 | Yt−1 ∼ N
xt−1t+1

0

 ,

 P t−1t+1 ΦP t−1t A
′

t + ΘS

AtP
t−1
t Φ

′
+ ΘS AtP

t−1
t A

′

t +R


And thus , using the property of a multivariate normal distribution, we can write

xtt+1 = E[xt+1|y1, y2, ..., yt−1, yt] = E[xt+1|Yt−1, εt]

= xt−1t+1 + (ΦP t−1t A
′

t + ΘS)Σ−1t εt

= Φxt−1t + Υut+1 +Ktεt (2.4.7)

where Kt = (ΦP t−1t A
′

t + ΘS)(AtP
t−1
t A

′

t +R) is the Kalman gain.

The corresponding covariance vector P tt+1 is given as

P tt+1 = cov(xt+1|Yt−1, εt)

= P t−1t+1 − (ΦP t−1t A
′

t + ΘS)Σ−1t (Φ
′
P t−1t A

′

t + ΘS)

= ΦP t−1t Φ
′
+ ΘQΘ

′
−KtΣtKt (2.4.8)

The �lter equations is the same as the previous �lter property given in subsection 2.1

xtt = E[xt|y1, ..., yt−1, yt] = E[xt|Yt−1, εt]

= xt−1t + P t−1t A
′

t[AtP
t−1
t A

′

t +R]−1εt

P tt = P t−1t − P t−1t A
′

t+1Σ−1t AtP
t−1
t (2.4.9)

It can be seen from the proof above that the covariance cov(ωt, vt) is only used in the one step

ahead prediction i.e the predictor xtt+1 is generated from the past predictor xt−1t when the noise

terms are correlated, And this leads to the �lter update.

The structure of the covariance matrix is given as

Σ =

 Q cov(ωt, vt)

cov(ωt, vt) R


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cov(ωt, vt) = β σω σv

Where β is the correlation coe�cient between the noise term of the state and the observation and

σw and σv are the standard deviation of the noise terms. The correlation coe�cient provides

additional information by telling us the degree to which both variables move together. The

correlation will always have a measurement value between -1 and 1, and adds a strength value

on how the noise term move together. If the correlation is 1, they move perfectly together, and

if the correlation is -1, the noise term move perfectly in opposite directions. If the correlation is

0, then the two noise term move in random directions from each other.

2.4.1 Trend with correlated error

Applying the idea of correlated error to a simple case of random walk trend component for

equations (2.4.1) and (2.4.2), ignoring any inputs, the only values to be estimated are the standard

deviation of the state equation Q, and that of the observation equation R and the covariance

between the two noise terms S.

This said, we look at two simple scenarios;

• when ωt = vt, hence cov(ωt, vt) = var(vt) = R

• when ωt 6= vt, hence cov(ωt, vt) = σωv

Next we take a trend model for the �rst case where the noise term is equal to that of the

observation disturbance ωt = vt. For this case, At is an array of 1's with dimension of nrow =1,

ncol=1, for each value of the length of the given data. Inputs = 0, initial mean(µ0) = -0.2, Σ0 =

0.001 and Phi(Φ)= 1. The parameter to be estimated is the standard deviation of the observation

noise. the correlation coe�cient (β = 1). starting values for σv = 0.1. The estimation process

uses the "L-BFGS-B" method when using the optim function in R.

After the optimization process, the estimated value for the observation uncertainty σv =

0.1151, and standard error = 0.00633. The Kalman smoother property fails in this condition

owing to the choice of singularity placed on the correlated noise term. This can be corrected by

de�ning v = Θω, where Θ is not singular, hence we can obtain an identi�able model assuming

perfectly correlated disturbances.

For the case 2 where the noise terms are not equal ωt 6= vt. matching the non zero auto-

covariances of 4yt yields a (nonlinear) system of two equations in three unknowns(σ2
ω, σ

2
v , σωv)
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which has in�nite solutions. Imposing σωv = 0 gives a unique solution. Tommaso Proietti(1991)

A more interesting aspect of the use of correlated error term will be for a structural time

series model.

2.4.2 Trend plus Cycle with correlated error

So a basic univariate representation of the output series, yt , deals with the decomposition into

a Local level model component, µt and a stochastic cycle Ct

yt = µt + Ct + vt, t = 1, 2, ..., T

µt = µt−1 + ωt

Ct = ρ(Ct−1 cosλc + C∗t−1 sinλc) + κt

C∗t = ρ(−Ct−1 sinλc + C∗t−1 cosλc) + κ∗t

where κt and κ∗t are independent N(0, σ
2
κ) variables.

The property of this model is similar to the property of the previous model but with some

adjustment to the issue of correlation between the observation noise and the component of the

state equation noise terms at time t, which is in this case de�ned as

S = E

vt ∗

wt

κt

κ∗t


 , (2.4.10)

where S is the covariance between the noise term in the trend and cycle equation and the

observation equation. S is an m x q matrix which in this case will be a 1 x 3 matrix since q is

the number of noise term in the state equation. The correlation between the noise terms can be

brie�y summarized as

S =


(0, σvκ, σvκ) No correlation between the trend and the observation noise terms

(σvω, 0, 0), No correlation between the cycle and the observation noise terms

(σvω, σvκ, σvκ) Correlation between the trend, Cycle and the observation noise terms

46



where σvκ = βσvσκ, σvω = βσvσω

The variance structure of the state equation is given below as


ωt

κt

κ∗t

 ∼ NID



0

0

0

 ,


σ2
ω 0 0

0 σ2
κ 0

0 0 σ2
κ




where

Q =


σ2
ω 0 0

0 σ2
κ 0

0 0 σ2
κ


Q is the variance structure of the state noise and R = σ2

v is the variance of the observation

noise. The result obtained by considering only the correlation between the state disturbances

and the observation disturbance did not show any useful information as regards to the modi�ed

Kalman �lter property. This is simply due to the issue of the uniqueness of the solution. Pa-

rameter estimation on this basis tends to be obscured or returning results without accurate or

non computable standard errors.

Alternatively, will be to assume correlation between the noise terms of the state components

only which is indeed very practical as is done in the articles of Manuel & John(2016) and Shigeru

& Han (2015). Thus the variance structure can be written as the upper half of the covariance

matrix.


ωt

κt

κ∗t

 ∼ NID



0

0

0

 ,


σ2
ω σωκ σωκ

σ2
κ σωκ

σ2
κ




Where σωκ = βσωσκ

The trend and cycle disturbances are allowed to be correlated, with β being the correla-

tion coe�cient. Although this might be more complex to model, it de�nitely will have useful

information as to the dependence of the model on correlation.
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3 Structural breaks and Outliers

An outlier is an observation which is inconsistent with a model which is seen to be appropriate

for a large number of the observations. It can be captured by the use of a dummy explanatory

variable which is given the value one, at the time of the outlier and zero elsewhere. Meanwhile a

structural break is said to take place when the level of the time series changes in either upward

or downward direction usually due to some speci�c event. It is modeled using a step process

whereby the input(explanatory variable), is given the value zero before the time of the event

and one after the time of the event. From the article by Koopman(1993), additive outlier and

structural change interventions are modelled by using Γut and Υut respectively from the state

and observation equation given below, Whereby explanatory variables can be brought into the

model so as to capture exogenous e�ects and various types of interventions.

xt = Φxt−1 + Υut + wt

yt = xt + Γut + εt (3.0.11)

Thus the observation yt can be written as a regression model with a stochastic local linear trend

component µt as

yt = µt + Γut + εt, t = 1, ...., T.

µt = µt−1 + βt−1 + ωt

βt = βt−1 + ςt (3.0.12)

with the trend having a slope βt, where ωt and ςt are mutually uncorrelated white noise processes

with variances σ2
ω and σ2

ς . ut is a k x 1 vector of observed explanatory variables and Γ is

a corresponding vector of parameters which may be known or unknown(and so will have to be

estimated). A regression model using these explanatory variables(inputs), shows signi�cant serial

correlation in the residuals and this yields a good �t.

ut may include deterministic and/or stochastic inputs.

S0t =

1 if t = T0,

0 elsewhere

(3.0.13)
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S1t =

0 if t < T0,

1 if t ≥ T0
(3.0.14)

S2t =

1, 2, 3, ...n if t ≥ T0, n = number of observation after T0

0 if t < T0

(3.0.15)

This is a time dependent process where S1t, S2t and S0t are used as the deterministic inputs.

T0 is the time of break and S1t, S2t are the step intervention variable and staircase intervention

variable respectively and S0t is the outlier intervention variable. They can be made stochastic

by introducing a random noise term. Just as was stated earlier, the inputs can be extended to

the observation or to the state equation. For structural breaks, the focus is on the level and

slope. Hence it is referred to as level breaks and slope breaks. The inputs are thus applied to

the stochastic level and slope equations of the model in (3.0.12). For outliers, the input S0t is

introduced into the observation equation as a linear regression. A level break can be thought

of as a large disturbance to the trend component resulting in a level shift. In an econometric

model, exogenous variables(interventions) are usually regarded as stochastic because they are

more �exible.

3.1 Detection of Outliers and Structural breaks

Diagnostic or testing of a time series model for irregularities is normally carried out using the

residuals at the �nal estimates, which are the innovations (εt). In unobserved components model,

other residuals such as the residuals for the level, slope, cycle etc, are available. Auxiliary resid-

uals as described by Harvey & Koopman (1992) is usually preferred to test for an outlier or a

structural break at any point in time. The auxiliary residuals are the estimators of the distur-

bances. The disadvantage of the use of the auxiliary residual as noted by Harvey & Koopman

() (1992), is that they are serially correlated, even in a correctly speci�ed model with known

parameters. Using the state space model given by the Kalman �lter property,

yt = µt + εt, t = 1, ..., T (3.1.1)
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var(εt) = σ2
εI, var(y) = σ2V , and E(µtεt) = 0 . If y is a multivariate normal, then the covariance

matrix of (y, εt) is given as

ε̃ = E(ε | y) = (σ2
ε/σ

2)V −1y (3.1.2)

and the unconditional covariance matrix is given as

V ar(ε̃) = (σ4
ε/σ

2)V −1

The covariance matrix of y is obtained by

V ar(y) = E[(µ+ ε)(µ+ ε)
′
] = V

where ε̃ is referred to as the auxiliary residual which is equivalent to the smoothing error

obtained by subtracting the smoothed trend from the observation i.e (ε̃ = y − µ̃s), using the

Kalman smoother property. ε̃ is the expectation of the residual ε conditioned on the whole

observation and not at time t.

The process of obtaining the covariance of the observation can be very time consuming but

this has been implemented in the STAMP package by Harvey & Koopman.

A structural break which results from a shift in the level of the series that is of greater

magnitude than might reasonably be expected given the model speci�cation, can be best detected

by an outlying value of ω̃t.

Now we look at the annual temperature series from 1850 - 2015. A driftless random walk

plus noise model(Local level model) with σ̂ε = 0.0776 and σ̂ω = 0.0532 �ts the data, where the

variance of the slope is insigni�cantly di�erent from zero and and the slope has a constant value

close to zero. The auxiliary residuals for the irregular is plotted in �gures (3.19) alongside the

observation series. Large irregular auxiliary residuals in 1963 and 1973 indicate outlying value

and possible break respectively.
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Figure 3.19: (a) Annual temperature series with stochastic trend (b) Irregular auxiliary residual
(c) Irregular auxiliary residual with outlier intervention(bottom)

Re�tting the model with intervention e�ect (3.0.14) for outliers in 1963 and a level shift in

1973. The e�ect of an outlier intervention in �gure 3.19(c) for the irregular auxiliary residual

shows a strong presence of an outlier in 1963. This can be attributed to the period of extreme

cold temperature drop in the northern hemisphere, particularly the regions of Europe and North

America. The resulting e�ect of this local level intervention is seen in the trend plot of �gure

(3.20), where a large level shift is seen from observed series. This conclusion seems reasonable. A

recommendation will be to look closely at the standardized irregular and level auxiliary residuals

respectively. As highlighted by Harvey & Koopman (1992), the standardized residuals may

indicate outliers and structural change but will not normally give a clear indication as to the

source of the problem. Hence certain tests are required as formal procedure to detect unusual

large residuals i.e test for excess kurtosis and a test for skewness.
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Figure 3.20: Annual temperature series with stochastic trend(local level) having �tted interven-
tions.
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4 Forecasting Structural time series

When we talk about forecasting, the goal is to predict future values of a time series yn+m, m =

1, 2, ....., which is based on the data collected to the present y = {yn, yn−1,−−−−−, y1}.

In economic research, the focus has been on forecasting techniques such as the use of regression

methods i.e ordinary least squares(OLS).

In the state space model, for t > n, the predictor or forecast giving by the Kalman �lter

property xt−1t is updated, assuming we have the complete history of the process. State space

models for forecasting is until date the most preferred method because unlike the other tech-

niques, if the observed data is a�ected by measurement error or displays a seasonal pattern, In

this case, state-space models allow the separation of the true underlying signal from the mea-

surement noise. As only the signal is relevant for prediction, this can considerably improve the

quality of the forecast.

Hence, given {x1,−−−−−, xn}, we want to forecast the value of the time series at the next

time point xn+1. This process is called the one step ahead prediction and this is obtained from

the Kalman �lter property.

For t > n

xnn+1 = Φxnn + Υun+1 (4.0.3)

and the mean square one step ahead prediction error is given as

pnn+1 = ΦpnnΦ
′
+Q (4.0.4)

with initial conditions xnn & pnn, which is the �ltered values at t = n.

Durbin & Koopman (2001), demonstrates that the forecasts for the observation value yn+j ,

for j = 2,− − − − −−, J is generated by treating yn+1,− − − − −, yn+J as missing values,

which results in the similar one step ahead state prediction given above but under the condition

that the innovation and its covariance are zero, i.e εn+j = 0 and Σn+j = var(εt) = 0 for

j = 1,−−−−−, J − 1. These are the conditions used by Durbin & Koopman (2001) to handle

missing observations in a time series.

Long run monthly forecasts using Local level model produces constant predicted values for the

observation data set. The reason is, for a forecasted series, the level is constant, thus repeating

the value of past predicted state, which in turn removes the possibility of future global warming
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from the forecast. Thus agreeing with the conclusion of Mills(2010).

ŷt = µ̂t

µ̂t = µ̂t−1 + ωt (4.0.5)

where ωt= 0

An improvement to this is considering the Local linear trend model. Although the estimated

slope is constant and has very small value close to zero , the model can still be seen as imposing

a near linear forecast on the monthly global temperature series, hence a future global warming

trend might be deduced from this. as will be shown in �gure 4.21(b) .

For t > n,

ŷt = Atµ̂t

µ̂t = µ̂t−1 + β̂t−1 + ωt

β̂t = β̂t−1 + ηt (4.0.6)

where ωt= 0, ηt = 0

Using a local linear trend model, we compare the forecast for the annual and monthly tem-

perature series with n ahead steps = 32 years(i.e forecast between 2016 - 2050)

Figure 4.21: (a) Annual Forecast temperature series (left) (b) Monthly Forecast temperature
series(right). The forecasts are shown as a continuation of the data. The dashed lines indicate
the upper and lower 95 % prediction intervals

Since the estimated slope is none zero and constant, we get a random walk model with drift

which does not impose a constant forecast on the annual global temperature series with signi�cant
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estimated slope β̂ = 0.00601 , root mean squared error of 0.0038 and likelihood L = −285.8525 of

the model compared to the random walk with drift trend model with an insigni�cant estimated

slope of β̂ = 0.00061, the root mean square error of 0.0012 and likelihood L = −3133.864, which

also imposes a near linear forecast on the monthly global temperature series. The forecasts can

be extended to the structural models for both the annual and monthly global temperatures.

The results obtained from this can be compared to that of Mills(2010) and the Hadley centre's

HadCM2 and HadCM3 models.

4.1 Monthly local level trend , cycle plus AR model

As we seen before there is a major di�erence that exists in forecasting between the annual global

temperature series and the monthly global temperature series. A signi�cant di�erence present is

contained in the trend component where the slope estimate shows an increasing temperature for

the forecast period for the annual temperature series and a near constant temperature forecast for

monthly temperature series. Either way, for forecasts using a structural model, the main attention

is on the trend since an increase in the temperature is only indicated here. A structural time

series model with the trend, cycle and an autoregressive component as the unobserved component

is �tted to the observed annual global temperature data. The focus is on predicting future data

based on the Kalman �lter property of the state space model. Speci�cations of the trend, cycle

and autoregressive components remains the same as given in previous section, hence a plot of

the forecast for the year 2050 is given below.

Figure 4.22: Monthly Forecast temperature series. The forecasts are shown as a continuation of
the data. The dashed lines indicate the upper and lower 95 % prediction intervals
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The Long run forecast as seen for the monthly temperature data, still shows that the random

walk trend with drift imposes a linear forecast on the monthly temperature series. Describing an

increase in the temperature forecast can be captured by the use of estimated slopes in the trend

component, since the estimated slope will only show an increasing temperature forecast which

although is what so many researchers hope for, but is not necessarily the case. Hence the use of

this class of structural model for predicting future temperature increase for monthly temperature

series seems unrealistic and the same conclusion was also arrived at by Mills(2010).

For very large data, the Kalman �lter and smoother tends to give unsatisfactory results ,

which is due to high possibility of correlation in the data and also the presence of In�uential

points which are more likely to occur in clusters in large samples and therefore more di�cult to

identify.
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5 Conclusion

This work spans the use of breaking trend regression model to �t a global temperature data

with the purposes of estimating the slopes which show how much increase in temperature has

been recorded from the initial time of data collection until present. Investigations and diagnostic

is carried out by checking for correlations in the residuals and also checking for periodicity in

the residuals. The results of this investigation shows signi�cant autocorrelation in the residuals

indicating the presence of underlying noise terms which is not accounted for. By treating the

residual as an autoregressive moving average (ARMA) process whereby we can obtain its spectral

density, the result from the parametric spectral estimate shows underlying periodic patterns for

both annual and monthly data, thus, leads to a discussion on the need to treat global temperature

data as a structural time series model. Structural time series models are set up as a regression

model where explanatory variables are functions of time. They o�er a generalized and useful

approach to the estimation of unobserved components in an observed time series. We select

appropriate models by considering the goodness of �t of the model by comparing the AIC values.

Parameters are estimated and accompanied with some measures of precision.

An important aspect of �tting structural models, is the underlying changes of the unobserved

trend component. Unobserved components are made stochastic by introducing a random noise

process which are Gaussian distributed with zero mean and variance σ2. The noise terms(error

terms) are assumed to be independent and uncorrelated of one another and also with the error

term in the observation . The current/or �ltered estimate of the trend is obtained by putting the

model in state space form and applying the Kalman �lter algorithm. Predictions and Smooth-

ing of the estimated trend is also done by applying the Kalman �lter and smoother algorithm

respectively for t > n and t = n, where t = 1, ......, n. This assures computing the best estimate

of the trend at all points in the sample using the full observations. Of importance is also the un-

observed components such as seasonality, cyclical pattern and autoregressive process. Although

seasonality is usually treated as deterministic, allowing the seasonal pattern to evolve over time

by the use of stochastic seasonality is another way to treat the seasonal component although not

very e�ective since the noise uncertainty of the seasonal component goes to zero hence making

it deterministic. Another e�ective way of treating the seasonal component was to introduce it

(centered seasonal average) as an exogenous variable or intervention e�ect into the state space

model. The e�ect is seen in the autocorrelation function of the residual, where the dependence

on serial correlation is reduced. Treating the error terms by assuming correlation between them
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is another way to estimate unobserved components using state space model. Although Shumway

& Sto�er(2011) used this concept for �tting ARMAX models and regression(multivariate series)

models with autocorrelated errors, this can also be applied to �tting a univariate series. The

shortcoming encountered when we allowed for correlation of the state and observation error is

that for structural models, correlation between unobserved components was not taken into ac-

count. Tests for outliers and structural breaks are very important for a structural time series

framework. visible unusual large values were detected in the irregular noise term, which repre-

sents the presence of outliers in the stochastic trend(local level) model considered. An extension

of this would be to do the same for models with more unobserved components. We saw that

introducing intervention e�ects to the model helps in inducing the presence of an outlier or

structural break.

A number of of interesting features of the annual and monthly global temperature series has

been uncovered by �tting structural models, of most interest is the trend component, since this

features in debate over global warming. The use of structural models where the Local linear trend

component is characterized by a random walk for predicting future temperature increase only

shows positive result on the annual global temperature series but retains a near linear forecast on

the monthly global temperature series which for large n.ahead steps will only produce constant

forecasts. The reason for this is seen as the estimated slope for the annual global temperature

series has signi�cantly non zero value as compared to the estimated slope for the monthly global

temperature series which is insigni�cantly close to zero.
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6 Recommendation

For the case of state space models with correlated errors, further work can be done here by

taking into consideration correlation between error terms in the state equation when considering

structural models of the form trend , seasonal, cycle and an autoregressive process. This type of

result are important since they show how well the Kalman �lter property for correlated errors

carries out �ltering of the unobserved component as compared to the case when the errors are

not correlated.

Bootstrapping is also of interest for state space models. Since the Maximum likelihood

estimators of the parameters of the state space models are asymptotically normal, comparing

the di�erence of the standard errors obtained by bootstrap method and that of the asymptotic

methods might help give insight into the data i.e presence of outliers in the data. The bootstrap,

however, is used to check the accuracy of the estimates by examining the bootstrap interval.
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7 Appendix

The Kalman Filter

xt−1t = E(xt|Yt−1) = E(Φxt−1t−1 + Υut + ωt|Yt−1) = Φxt−1t−1 + Υut (7.0.1)

and

P t−1t =E{(xt − xt−1t )(xt − xt−1t )
′
}

=E{[Φ(xt−1 − xt−1t−1) + ωt][Φ(xt−1 − xt−1t−1) + ωt]
′
}

=ΦP t−1t−1 Φ
′
+Q

The by products of the �lter are the innovation(prediction error) εt and its variance-covariance

matrices Σt

εt =yt − E(yt|Yt−1) = yt −Atxt−1t − Γut

Σt = var(εt) = var[yt −Atxt−1t − Γut]

= var[At(xt − xt−1t ) + vt] = AtP
t−1
t A

′

t +R, t = 1, ..., n

Where xt−1t and P t−1t are the one step ahead state prediction/forecast and covariance error

respectively. To obtain the �lter state, we note that E(εty
′

s) = 0 for s < t, which implies that

the innovations are independent of the past observations.

The conditional covariance between xt and εt given Yt−1 is

cov(xt, εt|Yt−1) =cov(xt, yt −Atxt−1t − Γut|Yt−1)

=cov(xt − xt−1t , yt −Atxt−1t − Γut|Yt−1)

=cov[xt − xt−1t , At(xt − xt−1t ) + vt]

=P t−1t A
′

t

Thus we can write down the joint distribution of xt and εt given Yt−1 is normal.
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xt
εt

 | Yt−1 ∼ N
xt−1t

0

 ,
 P t−1t P t−1t A

′

t

AtP
t−1
t Σt


We arrive the expression for the Kalman �lter for the state equation, by applying the property

of the a normal distribution

E(x|z) = µx + ΣxzΣ
−1
zz (z − µz)

xtt = E(xt|y1, ......., yt−1, yt) =E(xt|Yt−1, εt)

=xt−1t +Ktεt

where Kt = P t−1t A
′

tΣ
−1
t = P t−1t A

′

t(AtP
t−1
t A

′

t +R)−1

Using the property of the normal distribution, the covariance error is given as

Σy|x = Σyy − ΣyxΣ−1xxΣxy

P tt = cov(xt|Yt−1, εt) = P t−1t − P t−1t A
′

tΣ
−1
t AtP

t−1
t

Note that this �lter property is for time invariant parameters.

The Kalman Smoother

Yt−1 = {y1, ......, yt−1} and ηt = {vt, ....., vn, ωt+1, ...., ωn}, t = n, n− 1, ....., 1

where Y0 is empty, let

qt−1 = E{xt−1|Yt−1, xt − xt−1t , ηt}

Since Yt−1, xt − xt−1t , ηt are mutually independent, and xt−1 and ηt are independent, by

applying the property of the a normal distribution, we get

qt−1 = xt−1t−1 + Jt−1(xt − xt−1t )

where,

Jt−1 = cov(xt−1, xt − xt−1)[P t−1t ]−1 = P t−1t−1 Φ
′
[P t−1t ]−1

Since Yt−1, xt − xt−1t , ηt generate Yn = y1, ...., yn,

xnt−1 = E{xt−1|Yn} = E{qt−1|Yn} = xt−1t−1 + Jt−1(xnt − xt−1t ) (7.0.2)
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The error covariance Pnt−1 is obtained by a straight forward calculation. Moving both sides of

equation (7.0.2),and adding xt−1 to both sides,

xt−1 − xnt−1 = xt−1 − xt−1t−1 − Jt−1(xnt − Φxt−1t−1)

(xt−1 − xnt−1) + Jt−1x
n
t = (xt−1 − xt−1t−1) + Jt−1Φxt−1t−1)

Next we multiply each side by the transpose of itself and take the expectation,

Pnt−1 + Jt−1E(xnt x
n
′

t )J
′

t−1 = P t−1t−1 + Jt−1ΦE(xt−1t−1x
t−1

′

t−1 )Φ
′
J

′

t−1 (7.0.3)

Noting that from the expression of P t−1t the cross product E[xtx
t−1
t ] = 0

E[xnt x
n
′

t ] = E[xtx
′

t]− Pnt = ΦE(xt−1x
′

t−1)Φ
′
+Q− Pnt

and

E(xt−1t−1x
t−1

′

t−1 ) = E(xt−1x
′

t−1)− P t−1t−1 Hence substituting into (7.0.3), we get

Pnt−1 = P t−1t−1 + Jt−1(Pnt − P t−1t )J
′

t−1 (7.0.4)
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8 Source Code

> Kf i l t e r 0

function (num, y , A, mu0 , Sigma0 , Phi , cQ , cR)

{

Q = t (cQ) %∗% cQ

R = t (cR) %∗% cR

Phi = as .matrix ( Phi )

pdim = nrow( Phi )

y = as .matrix ( y )

qdim = ncol ( y )

xp = array (NA, dim = c (pdim , 1 , num) )

Pp = array (NA, dim = c (pdim , pdim , num) )

x f = array (NA, dim = c (pdim , 1 , num) )

Pf = array (NA, dim = c (pdim , pdim , num) )

innov = array (NA, dim = c ( qdim , 1 , num) )

s i g = array (NA, dim = c ( qdim , qdim , num) )

x00 = as .matrix (mu0 , nrow = pdim , ncol = 1)

P00 = as .matrix ( Sigma0 , nrow = pdim , ncol = pdim)

xp [ , , 1 ] = Phi %∗% x00

Pp [ , , 1 ] = Phi %∗% P00 %∗% t ( Phi ) + Q

s igtemp = A %∗% Pp [ , , 1 ] %∗% t (A) + R

s i g [ , , 1 ] = ( t ( s igtemp ) + sigtemp )/2

s i g i n v = solve ( s i g [ , , 1 ] )

K = Pp [ , , 1 ] %∗% t (A) %∗% s i g i n v

innov [ , , 1 ] = y [ 1 , ] − A %∗% xp [ , , 1 ]

x f [ , , 1 ] = xp [ , , 1 ] + K %∗% innov [ , , 1 ]

Pf [ , , 1 ] = Pp [ , , 1 ] − K %∗% A %∗% Pp [ , , 1 ]

s igmat = as .matrix ( s i g [ , , 1 ] , nrow = qdim , ncol = qdim)

l i k e = log ( det ( sigmat ) ) + t ( innov [ , , 1 ] ) %∗% s i g i n v %∗%

innov [ , , 1 ]

for ( i in 2 :num) {

i f (num < 2)
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break

xp [ , , i ] = Phi %∗% xf [ , , i − 1 ]

Pp [ , , i ] = Phi %∗% Pf [ , , i − 1 ] %∗% t ( Phi ) + Q

s igtemp = A %∗% Pp [ , , i ] %∗% t (A) + R

s i g [ , , i ] = ( t ( s igtemp ) + sigtemp )/2

s i g i n v = solve ( s i g [ , , i ] )

K = Pp [ , , i ] %∗% t (A) %∗% s i g i n v

innov [ , , i ] = y [ i , ] − A %∗% xp [ , , i ]

x f [ , , i ] = xp [ , , i ] + K %∗% innov [ , , i ]

Pf [ , , i ] = Pp [ , , i ] − K %∗% A %∗% Pp [ , , i ]

s igmat = as .matrix ( s i g [ , , i ] , nrow = qdim , ncol = qdim)

l i k e = l i k e + log ( det ( sigmat ) ) + t ( innov [ , , i ] ) %∗%

s i g i n v %∗% innov [ , , i ]

}

l i k e = 0 .5 ∗ l i k e

l i s t ( xp = xp , Pp = Pp , x f = xf , Pf = Pf , l i k e = l i k e , innov = innov ,

s i g = s ig , Kn = K)

}

<environment : namespace : astsa>

> Ksmooth0

function (num, y , A, mu0 , Sigma0 , Phi , cQ , cR)

{

kf = as t s a : : K f i l t e r 0 (num, y , A, mu0 , Sigma0 , Phi , cQ , cR)

pdim = nrow( as .matrix ( Phi ) )

xs = array (NA, dim = c (pdim , 1 , num) )

Ps = array (NA, dim = c (pdim , pdim , num) )

J = array (NA, dim = c (pdim , pdim , num) )

xs [ , , num] = kf$xf [ , , num]

Ps [ , , num] = kf$Pf [ , , num]

for ( k in num: 2 ) {

J [ , , k − 1 ] = ( k f$Pf [ , , k − 1 ] %∗% t ( Phi ) ) %∗% solve ( k f$Pp [ ,

, k ] )
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xs [ , , k − 1 ] = kf$xf [ , , k − 1 ] + J [ , , k − 1 ] %∗% ( xs [ ,

, k ] − kf$xp [ , , k ] )

Ps [ , , k − 1 ] = kf$Pf [ , , k − 1 ] + J [ , , k − 1 ] %∗% (Ps [ ,

, k ] − kf$Pp [ , , k ] ) %∗% t ( J [ , , k − 1 ] )

}

x00 = mu0

P00 = Sigma0

J0 = as .matrix ( ( P00 %∗% t ( Phi ) ) %∗% solve ( k f$Pp [ , , 1 ] ) ,

nrow = pdim , ncol = pdim)

x0n = as .matrix ( x00 + J0 %∗% ( xs [ , , 1 ] − kf$xp [ , , 1 ] ) ,

nrow = pdim , ncol = 1)

P0n = P00 + J0 %∗% (Ps [ , , k ] − kf$Pp [ , , k ] ) %∗% t ( J0 )

l i s t ( xs = xs , Ps = Ps , x0n = x0n , P0n = P0n , J0 = J0 , J = J ,

xp = kf$xp , Pp = kf$Pp , x f = kf$xf , Pf = kf$Pf , l i k e = kf$ l i k e ,

Kn = kf$K)

}

<environment : namespace : astsa>

> K f i l t e r 2

function (num, y , A, mu0 , Sigma0 , Phi , Ups , Gam, Theta , cQ , cR ,

S , input )

{

Q = t (cQ) %∗% cQ

R = t (cR) %∗% cR

Phi = as .matrix ( Phi )

pdim = nrow( Phi )

y = as .matrix ( y )

qdim = ncol ( y )

rdim = ncol ( as .matrix ( input ) )

i f (max(abs (Ups ) ) == 0)

Ups = matrix (0 , pdim , rdim )

i f (max(abs (Gam) ) == 0)

Gam = matrix (0 , qdim , rdim )

65



ut = matrix ( input , num, rdim )

xp = array (NA, dim = c (pdim , 1 , num) )

Pp = array (NA, dim = c (pdim , pdim , num) )

x f = array (NA, dim = c (pdim , 1 , num) )

Pf = array (NA, dim = c (pdim , pdim , num) )

Gain = array (NA, dim = c (pdim , qdim , num) )

innov = array (NA, dim = c ( qdim , 1 , num) )

s i g = array (NA, dim = c ( qdim , qdim , num) )

l i k e = 0

xp [ , , 1 ] = Phi %∗% mu0 + Ups %∗% as .matrix ( ut [ 1 , ] , rdim )

Pp [ , , 1 ] = Phi %∗% Sigma0 %∗% t ( Phi ) + Theta %∗% Q %∗% t ( Theta )

for ( i in 1 :num) {

B = matrix (A[ , , i ] , nrow = qdim , ncol = pdim)

innov [ , , i ] = y [ i , ] − B %∗% xp [ , , i ] − Gam %∗% as .matrix ( ut [ i ,

] , rdim )

sigma = B %∗% Pp [ , , i ] %∗% t (B) + R

sigma = ( t ( sigma ) + sigma )/2

s i g [ , , i ] = sigma

s i g i n v = solve ( sigma )

Gain [ , , i ] = ( Phi %∗% Pp [ , , i ] %∗% t (B) + Theta %∗%

S) %∗% s i g i n v

K = as .matrix (Gain [ , , i ] , nrow = qdim , ncol = pdim)

xf [ , , i ] = xp [ , , i ] + Pp [ , , i ] %∗% t (B) %∗% s i g i n v %∗%

innov [ , , i ]

Pf [ , , i ] = Pp [ , , i ] − Pp [ , , i ] %∗% t (B) %∗% s i g i n v %∗%

B %∗% Pp [ , , i ]

sigma = matrix ( sigma , nrow = qdim , ncol = qdim)

l i k e = l i k e + log ( det ( sigma ) ) + t ( innov [ , , i ] ) %∗% s i g i n v %∗%

innov [ , , i ]

i f ( i == num)

break

xp [ , , i + 1 ] = Phi %∗% xp [ , , i ] + Ups %∗% as .matrix ( ut [ i +

1 , ] , rdim ) + K %∗% innov [ , , i ]
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Pp [ , , i + 1 ] = Phi %∗% Pp [ , , i ] %∗% t ( Phi ) + Theta %∗%

Q %∗% t ( Theta ) − K %∗% s i g [ , , i ] %∗% t (K)

}

l i k e = 0 .5 ∗ l i k e

l i s t ( xp = xp , Pp = Pp , x f = xf , Pf = Pf , K = Gain , l i k e = l i k e ,

innov = innov , s i g = s i g )

}

<environment : namespace : astsa>

> Ksmooth2

function (num, y , A, mu0 , Sigma0 , Phi , Ups , Gam, Theta , cQ , cR ,

S , input )

{

k f = as t s a : : K f i l t e r 2 (num, y , A, mu0 , Sigma0 , Phi , Ups , Gam,

Theta , cQ , cR , S , input )

pdim = nrow( as .matrix ( Phi ) )

xs = array (NA, dim = c (pdim , 1 , num) )

Ps = array (NA, dim = c (pdim , pdim , num) )

J = array (NA, dim = c (pdim , pdim , num) )

xs [ , , num] = kf$xf [ , , num]

Ps [ , , num] = kf$Pf [ , , num]

for ( k in num: 2 ) {

J [ , , k − 1 ] = ( k f$Pf [ , , k − 1 ] %∗% t ( Phi ) ) %∗% solve ( k f$Pp [ ,

, k ] )

xs [ , , k − 1 ] = kf$xf [ , , k − 1 ] + J [ , , k − 1 ] %∗% ( xs [ ,

, k ] − kf$xp [ , , k ] )

Ps [ , , k − 1 ] = kf$Pf [ , , k − 1 ] + J [ , , k − 1 ] %∗% (Ps [ ,

, k ] − kf$Pp [ , , k ] ) %∗% t ( J [ , , k − 1 ] )

}

l i s t ( xs = xs , Ps = Ps , J = J , xp = kf$xp , Pp = kf$Pp , x f = kf$xf ,

Pf = kf$Pf , l i k e = kf$ l i k e , Kn = kf$K)

}

<environment : namespace : astsa>
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