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Abstract

Computations in general insurance are often based on models such as the
collective risk model, which uses a compound distribution to describe the
aggregated losses. A critical part of this model is the uncertainty of claim
sizes. The claim sizes are typically modeled through simple two-parameter
distributions where their fit are assessed by Q-Q plots. Another approach
is to use more flexible distributions which can be fitted to different samples,
everything between light-tailed and heavy-tailed distributions.

We will use an extended Pareto model with three parameters and a
4-parameter model with some of the standard two-parameter families as
special cases. We use Monte Carlo-simulations to analyze how well the
3- and 4-parameter models estimate the reserve compared to the special
cases Gamma, Weibull and Pareto distribution. More parameters provide a
more flexible model, but it also means that the uncertainty becomes larger
in the reserve estimate. We use error analysis to determine how well the
models performs for the different distributions and for varying sample sizes.
Finally, we find that the 3- and 4-parameter models provide a good fit for
sample sizes n = 5 000 and n = 500, and partly for n = 50. We find
that the 4-parameter model is superior to the 3-parameter model. Also,
the 4-parameter model is slightly overestimating the reserve which makes
the 4-parameter model a safe and conservative choice for the claim size
distribution.
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Chapter 1

Introduction

Ever since Filip Lundberg introduced collective risk theory in 1909, the
collective risk model has become the dominant model used in actuarial risk
theory [Ramsay, 2008, p. 2]. It is a model for the aggregated losses, i.e.
the total amount paid on all claims occurring in a fixed time period on a
defined set of insurance contracts. The aggregated loss has a compound
distribution with two main components. One characterizing the claim fre-
quency and another describing the claim sizes. The claim sizes are taken
to be independent, identically distributed random variables. They are also
independent of the number of claims produced [Kaas et al., 2008, p. viii].
Hence, the total claims is the sum of a random number of iid individual
claim amounts.

Claim sizes in non-life insurance are typically modeled through well
known two-parameter distributions, such as Gamma, Weibull or Pareto,
that have the best possible fit of the claim data. The goodness of fit of
a distribution can be determined by statistical tests and probability plots
[Arik and Umbleja, 2010, p. 28]. An alternative to this is to use richer
classes of distributions with the well known models as special cases. An
example is the extended Pareto model with three parameters, where the
choice of parameter values can distinguish between the heavy-tailed, ordi-
nary Pareto, the light-tailed Gamma, or something in between. In order to
make a distribution more flexible, we can increase the number of parameters
in the distribution. On the other hand, the uncertainty will also become
larger when we estimate the aggregated loss, and furthermore the reserve.
Regulators demand sufficient funds to cover losses with a high probability.
The reserve, also called solvency capital, is an upper percentile qε of the
aggregated losses. The simplicity of a model is typically measured in terms
of the number of parameters, and the conformity to data is measured in
terms of the discrepancy between the data and the model. Hence, a prop-
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2 CHAPTER 1. INTRODUCTION

erly constructed loss model should reflect a balance between simplicity and
conformity to the data [Panjer et al., 2008, p. 3]. To examine this closer
we will assess the fit of 3- and 4-parameter distributions and study their
performance relative to the two-parameter special cases. We will use error
analysis to evaluate how well they estimate the reserve compared to the
true distributions. In addition we try different sample sizes to evaluate if
these distributions are more or less desirable when data are limited.

In chapter 2, we introduce some theory and models. We will present all
of the distributions used in this thesis along with their mean, standard de-
viation and maximum likelihood. Thereafter, the reserve will be introduced
followed by an explanation of the Monte Carlo-simulation method.

In chapter 3, the model for the total loss will be constructed by uti-
lizing theory from chapter 2. We will compute the reserves by the use of
a simulation study, which includes generating random variables, estimate
parameters and calculate the reserve. At the end of the chapter, a summary
of the parameter setting will be given.

In chapter 4, we will perform an error analysis of the computed reserves
from the simulation study. The bias and root mean square error measures
will be presented and used to describe and interpret how well the 3- and
4-parameter models fits to the different distributed samples.

In chapter 5, a conclusion will be given with a discussion on how the 3-
and 4-parameter models performed and what this implies.



Chapter 2

Notation and Theory

In the collective risk model, the aggregated losses depend on two random
variables. The first describes the number of claims that will occur in a spec-
ified period. This is referred to as the frequency of claim and its probability
distribution is called the frequency distribution. The second describes the
amount (or size) of the claims, given that a claim has occurred. This is re-
ferred to as the severity and the probability distribution for the amount of
claims is called the severity distribution. We model these quantities as ran-
dom variables with appropriate probability distributions, and by combining
these two distributions we can determine the overall loss distribution.

In this chapter, we will first present some methods for estimating the
parameters. Then, we present some of the most common probability distri-
butions. Finally, the reserve will be elaborated followed by an explanation
of the Monte Carlo simulation method.

2.1 Parameter Estimation

To fit a model, we need to know how the unknown parameters of the prob-
ability distribution are estimated. This can for instance be done by the
method of moments or the maximum likelihood method. The method of
moments is an ancient and simple procedure, but may not always find the
best estimator, i.e. the minimum variance unbiased estimator. Another
weakness of the method of moments is that there must be as many equa-
tions as there are unknown parameters, and solutions are not necessarily
unique, they may be hard to find or may not exist at all. By the maxi-
mum likelihood method, elementary differentiating can sometimes be used
to derive explicit estimates of the parameters, otherwise the optimize() or
optim() functions in R can be used. Theoretical properties hold the max-
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4 CHAPTER 2. NOTATION AND THEORY

imum likelihood estimates to be about the best possible [Bølviken, 2014,
p. 237]. Therefore we will use the maximum likelihood method in this the-
sis. However, we will use the method of moments to provide starting values
for the optim() functions.

2.1.1 The Method of Moments

The method of moments generates parameter estimates by simply match-
ing the moments of the model, E(Z), E(Z2), E(Z3), ..., in turn to the re-
quired number of corresponding sample moments calculated from the data
z1, ..., zn, where n is the number of observations. The sample moments are

1

n

n∑
i=1

zi,
1

n

n∑
i=1

z2i ,
1

n

n∑
i=1

z3i , ... (2.1)

The equations are then solved for the parameters of interest, using the
sample moments in place of the unknown moments. This will result in
estimates of the parameters.

The estimates θ̃ of θ produced are called MMEs. The method of moment
approach is usually easy to implement, but may have high standard errors
and in some cases the MME can be very poor and unreliable [Gray and
Pitts, 2012, p. 58]. In this thesis we will use the method to provide start
values for numerical optimizers that may require them.

2.1.2 Maximum Likelihood

The method of maximum likelihood is the most popular technique for de-
riving estimators. Let Z1, ..., Zn have joint pdf f(z1, ..., zn|θ1, ..., θm) where
the parameters θ1, ..., θm have unknown values. When z1, ..., zn are some ob-
served historical data, f(z1, ..., zn|θ1, ..., θm) is called the likelihood function.
The idea of maximum likelihood is to adjust θ1, ..., θm, while z1, ..., zn are
kept fixed, to maximize the joint probability density function (pdf). For an
independent and identically distributed sample, the likelihood function is
defined by

L(θ1, ..., θm; z1, ..., zn) = f(z1, ..., zn|θ1, ..., θm) =
n∏
i=1

f(zi|θ1, ..., θm). (2.2)

We find the maximum likelihood estimate (MLE) by differentiating the
above, L(θ1, ..., θm; z1, ..., zn), and setting the result equal to zero. It is
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often much easier to differentiate the logarithm of the likelihood function.
Therefore, we find the maximum likelihood estimate, θ̂i, by,

∂

∂θi
logL(θ1, ..., θm; z1, ..., zn)|θi=θ̂i =

n∑
k=1

∂

∂θi
log f(zk|θ1, ..., θm) = 0, (2.3)

where i = 1, ...,m. If there is no analytical expression for the maximum
likelihood estimate the optimization with respect to the parameters must
be done numerically, for instance using statistical software such as R.

Maximizing the likelihood gives us parameter values for which the ob-
served sample is most likely to have been generated. When the sample size
is large, the maximum likelihood estimator θ̂ is close to θ. The estimator
is consitent which means that the estimate converges to the true value as
the sample size increases. Furthermore, the MLE is often approximately
unbiased, E[θ̂] ≈ θ, and has variance that is nearly as small as can be
achieved by any unbiased estimator. That is, the MLE θ̂ is approximately
the minimum variance unbiased estimator (MVUE) of θ [Devore and Berk,
2011, p. 357].

2.2 Collective Risk Model
The collective risk model is a model for the aggregated loss of an insurance
portfolio. We regard a portfolio as a collective that produces a claim at
random points in time. Assume there are J policies with losses X1, ..., XJ ,
and denote the claim severities by Zji. Then,

X = X1 +X2 + · · ·+XJ where Xj = Zj1 + Zj2 + · · ·+ ZjNj , (2.4)

where claim numbers Nj and the losses Zji may have models depending on
j. In addition, one assumes that the Zji’s are stochastically independent
of N , i.e. that the number of claims do not influence the severity of the
claims. Although this is not always true, it is crucial for the simplicity
of the model. Since we add up all losses Zij, the large and small losses
will eventually even out, and we can assume that they all have a common
distribution. Then the aggregated loss is

X = Z1 + Z2 + · · ·+ ZN . (2.5)

where N = N1 + · · · + NJ is the claim number at a portfolio level. The
classic collective risk model turns out to be both computationally efficient
and rather close to reality [Kaas et al., 2008, p. 357].
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2.3 Claim Frequency Modeling

A critical part of risk evaluation in general insurance is the uncertainty
of the claim numbers. These are well described by counting distributions,
that is distributions of discrete random variables that can assume some
or all values in N. Most models for claim frequency are related to the
Poisson distribution in some way. The Poisson distribution, having only
one parameter to be estimated, is therefore a good choice. The parameteres
are λ = µT (for single policies) and λ = JµT (for portfolios) where J is
the number of policies, µ the claim intensity and T the time of exposure.
If there is an over-dispersion, V ar[N ]/E[N ] > 1, we may use the negative
binomial distribution instead. In this thesis our main interest is how to
model the claim sizes. Therefore, we will stick to the Poisson model when
modeling claim frequency.

2.3.1 The Poisson Distribution

The Poisson distribution is a popular choice when modeling the counts of
events that occur randomly in a given interval of time T . In order to apply
the Poisson distribution, the events must be independent and occur with a
known intensity.

The probability mass function (pmf) is

Pr(N = n) =
(µT )n

n!
e−µT , (2.6)

The mean and standard deviation are [Hogg and Tanis, 2010, p. 100]

E(N) = λ and sd(N) =
√
λ. (2.7)

We assume that the number of occurrences from each policy j, Nj ∼
Poisson(λ) with parameter λ = µT and T = 1 year. Then the convolution
property [Bølviken, 2014, p. 283] tells us if N1, ..., NJ are independent and
Poisson distributed with parameters λ1, ..., λJ , then

N = N1 +N2 + · · ·+NJ ∼ Poisson(λ1 + · · ·+ λJ), (2.8)

We need to look at the historical data to determine the claim intensities.
We let n1, ..., nm be claim numbers from m policies exposed to risk during
time T1, ..., Tm. µ can be estimated for all Nj’s simultaneously if we assume
that A = T1+· · ·+Tm is the total risk exposure. Then we use the maximum
likelihood estimation to find the estimate for µ,
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L(µ) =
m∏
i=1

Pr(N = n|µ) =
(µA)

∑m
i=1 ni∏m

i=1 ni!
e−µA. (2.9)

The log-likelihood function is

logL(µ) =
m∑
i=1

ni log(µA)−
m∑
i=1

log(ni!)− µA

=
m∑
i=1

ni log(µ) +
m∑
i=1

ni log(A)−
m∑
i=1

log(ni!)− µA.
(2.10)

Differentiating with respect to µ, we obtain the maximum likelihood esti-
mate,

∂ logL(µ)

∂µ
=

∑m
i=1 ni
µ

− A = 0,

which gives

µ̂ =
n1 + · · ·+ nm

A
. (2.11)

The mean and standard deviation of µ̂ is [Bølviken, 2014, p. 284]

E(µ̂) = µ and sd(µ̂) =

√
µ

A
. (2.12)

We can simulate a random sample of size m from N ∼ Poisson(λ)
in R using the command N = rpois(m, JµT), which will create a vector of
observations of length m called N .

In Figure 2.1 the pmf of the Poisson distribution is plotted for different
values of λ. When λ is small the probability mass function indicates a small
number of occurrences with little variation. As λ becomes larger the curve
is more spread out. That is, as claim intensity increases, the number of
occurrences increases and they gets more uncertain.
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Figure 2.1: The probability mass function of the Poisson distribution as λ
varies.

2.4 Claim Size Modeling
Claim severity modeling is about describing the variation in claim sizes. An
insurance company’s individual loss for a policy is not only non-negative,
but can also be potentially very high. Probability distributions with heavy
tails are often preferable, that is distributions which allow for occasional
occurrences of very large values. The traditional approach is to assign a
suitable family of probability distributions and estimate their parameters
from historical claims z1, ..., zn. Lack of historical data where it matters
most financially is a challenge, and we should pay special attention to the
tail which in some cases can be extreme.

2.4.1 Parametric Distributions

All sensible parametric models for claim sizes are of the form

Z = βZ0, (2.13)

where β > 0 is known as a parameter of scale and Z0 is a standardized
random variable corresponding to β = 1. By expressing Z on this form β
can take up any external effects such as currency or inflation. Then the
shape of the density function can remain as it was. The proportionality
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is inherited by expectation and standard deviation, i.e. ξ0 and σ0, for Z0.
Then the same quantities for Z are [Bølviken, 2014, p. 315],

ξ = βξ0, σ = βσ0. (2.14)

2.4.1.1 The Gamma Distribution

The Gamma family is an important family for which the density function
is

f(z) =
(α/ξ)α

Γ(α)
zα−1e−αz/ξ, (2.15)

where Γ(α) =
∫∞
0
zα−1e−zdz, α is the shape parameter and ξ is the scale

parameter.
The mean and the standard deviation of the Gamma variables are

[Bølviken, 2014, p. 41]

E(Z) = ξ and sd(Z) =
ξ√
α
. (2.16)

We define the standard Gamma distribution as the Gamma distribution
with mean one, i.e. ξ = 1, and shape α. The density function of the
standard Gamma simplifies to

f(z) =
αα

Γ(α)
zα−1e−αz, z > 0 where Γ(α) =

∫ ∞
0

zα−1e−zdz. (2.17)

Then Z ∼ Gamma(α, ξ) is obtained by Z = ξZ0, where Z0 ∼ Gamma(α).
From historical data z1, ..., zn we can estimate the Gamma parameters

ξ and α by the maximum likelihood method. The likelihood of the density
function of the standard Gamma is

L(ξ, α) =
n∏
i=1

f(zi|ξ, α) =

(
(α/ξ)α

Γ(α)

)n n∏
i=1

zα−1i e−αzi . (2.18)

Then, the log-likelihood function is

logL(ξ, α) = nα log
(
α

ξ

)
− n log{Γ(α)}+ (α− 1)

n∑
i=1

log(zi)−
α

ξ

n∑
i=1

zi.

(2.19)
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Differentiating logL(ξ, α) with respect to ξ and setting the result equal to
zero, we obtain the maximum likelihood estimate of ξ,

∂ logL(ξ, α)

∂ξ
= −nα

ξ
+
α

ξ2

n∑
i=1

zi = 0 ⇒ ξ̂ =
1

n

n∑
i=1

zi = z̄. (2.20)

This result can be inserted into the log-likelihood function, i.e. log L(z̄, α),
such that we get a log-likelihood that only depends on α,

logL(α) = nα log
(α
z̄

)
− n log{Γ(α)}+ (α− 1)

n∑
i=1

log(zi)−
α

z̄

n∑
i=1

zi

= nα(log
(α
z̄

)
− 1)− n log{Γ(α)}+ (α− 1)

n∑
i=1

log(zi).

(2.21)

If we differentiate logL(α) with respect to α and setting the result equal
to zero we will not obtain an explicit solution for α̂. Therefore the opti-
mization with respect to α must be done numerically in R.

In R, we can generate Gamma variables from the computer command
Z = ξ ∗ rgamma(m, α, α). Here the Gamma variables are defined as Z = ξG
where G has mean 1 and shape α.

0 2 4 6 8 10 12 140.
00

0.
10

0.
20

0.
30

Gamma PDF

alpha=2, xi=3
alpha=4, xi=3
alpha=4, xi=5

Figure 2.2: The pdf of the Gamma distribution as α and ξ vary.
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In Figure 2.2 the Gamma pdf for several pairs of α and ξ is plotted.
With fixed α, the graph is more right skewed as ξ becomes larger. With
fixed ξ, the Gamma pdf is less spread-out as α increases.

2.4.1.2 The Weibull Distribution

The Weibull distribution is a widely used distribution because of its versa-
tility. The density function is

f(z) =
α

β

(
z

β

)α−1
e−(z/β)

α

, z > 0. (2.22)

The mean and the standard deviation are [Bølviken, 2014, p. 43]

E(Z) = βΓ(1 + 1/α) and sd(Z) = β
√

Γ(1 + 2/α)− Γ(1 + 1/α)2.
(2.23)

Estimates of the parameters α and β can be obtained by the maximum
likelihood method. The likelihood function is

L(α, β) =
n∏
i=1

f(zi|α, β)

=
αn

βnα
e−

∑n
i=1(zi/β)

α
n∏
i=1

zα−1i .

(2.24)

The log-likelihood function is

logL(α, β) = n log(α)−nα log(β) + (α− 1)
n∑
i=1

log(zi)−
1

βα

n∑
i=1

zαi . (2.25)

Differentiating logL(α, β) with respect to β and setting the result equal to
zero we obtain the maximum likelihood estimate of β,

∂ logL(α, β)

∂β
= −nα

β
+

α

βα+1

n∑
i=1

zαi = 0 ⇒ β̂α =

(
1

n

n∑
i=1

zαi

)1/α

.

(2.26)
This result can be inserted into the log-likelihood function in (2.25) such

that we get a log-likelihood that only depends on α,
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logL(α) = n log(α)− nα log

( 1

n

n∑
i=1

zαi

)1/α
+ (α− 1)

n∑
i=1

log(zi)

− 1

(((1/n)
∑n

i=1 z
α
i )1/α)α

n∑
i=1

zαi

= n[log(α) + log(n)− log(
n∑
i=1

zαi )− 1] + (α− 1)
n∑
i=1

log(zi),

(2.27)

where the optimization with respect to α can be done numerically in R.
Furthermore, the computer commands for generating Weibull variables are
Z = rweibull(m, α, β).

In Figure 2.3 the Weibull pdf for several pairs of α and β is plotted. The
Weibull density extends over the positive axis and is skewed to the right
when α < 3.3, to the left when α > 3.3 and when α = 3.3 it is similar to
the normal distribution.

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

Weibull PDF

alpha=2, beta=0.8
alpha=3, beta=0.8
alpha=3, beta=1.5

Figure 2.3: The pdf of the Weibull distribution as α and β vary.

2.4.1.3 The Pareto Distribution

The Pareto distribution is among the most heavy-tailed of all models in
practical use and is essential for modeling extreme losses, especially in the
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more risky types of insurance. Hence it is a conservative choice when model-
ing the claim size. Generally, the density function of the Pareto distribution
is

g(x) =
αxαm
x1+α

, x ≥ xm, (2.28)

where xm is the (necessarily positive) minimum possible value of X, and α
is a positive parameter. We assume that the smallest possible value of x is
1, and the density is

g(x) =
α

x1+α
, x ≥ 1. (2.29)

In order to make the density support values from zero we let Z = β(x−1)
such that x(z) = 1 + (z/β) by inversion. The probability density function
of Z is

f(z) = g(x(z))

∣∣∣∣∂x(z)

∂z

∣∣∣∣ =
α/β

(1 + z/β)1+α
, z > 0. (2.30)

Here α > 0 is the shape parameter and β > 0 is the scale parameter.
This distribution is often called the Lomax distribution and is essentially a
Pareto distribution that has been shifted so that its support begins at zero.

The mean and the standard deviation of Pareto variables are [Bølviken,
2014, p. 43]

E(Z) =
β

α− 1
and sd(Z) = E(Z)

√
α

α− 2
, (2.31)

where α > 1 and α > 2 for the mean and standard deviation to be defined,
respectively.

From historical data z1, ..., zn we can estimate the Pareto parameters α
and β by the maximum likelihood method. The likelihood of the density
function is

L(α, β) =
n∏
i=1

f(zi|α, β) =
(α/β)n∏n

i=1(1 + zi/β)1+α
. (2.32)

The log-likelihood function is

logL(α, β) = n log(α)− n log(β)− (1 + α)
n∑
i=1

log
(

1 +
zi
β

)
. (2.33)
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Differentiating with respect to α, we obtain the maximum likelihood esti-
mate,

∂ logL(α, β)

∂α
=
n

α
−

n∑
i=1

log
(

1 +
zi
β

)
= 0,

which gives

α̂β =
n∑n

i=1 log(1 + zi/β)
. (2.34)

This can be inserted into the log-likelihood function in 2.33 such that we
get a log-likelihood that only depends on β,

logL(β) = n log
(

n∑n
i=1 log(1 + zi/β)

)
− n log(β)

−
(

1 +
n∑n

i=1 log(1 + zi/β)

) n∑
i=1

log
(

1 +
zi
β

)

= n

[
log(n)− log

(
n∑
i=1

log
(

1 +
zi
β

))
− log(β)− 1

]

−
n∑
i=1

log
(

1 +
zi
β

)
.

(2.35)

The optimization with respect to β can be done numerically in R.
We can use the inverse of the Pareto distribution function in Algorithm 1

as a Pareto sampler. This is given more thoroughly in Appendix A.2.

Algorithm 1 Pareto generator
1: Input: α, β
2: Generate U∗ ∼ uniform
3: Return X∗ ← β((U∗)−1/α − 1)

Figure 2.4 illustrates the pdf of the Pareto distribution when α and β
vary. When α is fixed and β increases, the pdf becomes less right skewed.
However, when β is fixed and α increases, the pdf becomes more right
skewed.
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Figure 2.4: The pdf of the Pareto distribution as α and β vary.

2.4.1.4 The Extended Pareto Distribution

The extended Pareto distribution is a generalization of the ordinary Pareto
distribution with density function

f(z) =
Γ(α + θ)

Γ(α)Γ(θ)

1

β

(z/β)θ−1

(1 + z/β)α+θ
, z > 0, (2.36)

where α, β, θ > 0. In the extended Pareto distribution theres is an ad-
ditional parameter, θ, which creates useful flexibility for the shape. The
extended Pareto distribution is often called the Beta prime distribution.

The mean and the standard deviation of the extended Pareto distribu-
tion are [Bølviken, 2014, p. 324]

E(Z) =
θβ

α− 1
and sd(Z) = E(Z)

√
α + θ − 1

θ(α− 2)
, (2.37)

for α > 1 and α > 2, respectively. This distribution reduces to the ordinary
Pareto distribution when θ = 1.

Sampling from the extended Pareto distribution can be complicated,
but this can be simplified by utilizing that the extended Pareto variable, Z,
with parameters (α, β, θ) can be written as

Z =
θβ

α

Gθ

Gα

, (2.38)
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where Gθ ∼ Gamma(θ), Gα ∼ Gamma(α) are two independent Gamma
variables with mean 1. The representation is proven in Appendix A.3.

By the maximum likelihood method we can estimate the parameters α,
θ and β of the extended Pareto from the historical losses z1, ..., zn. The
likelihood is

L(α, θ, β) =
n∏
i=1

f(zi|α, θ, β)

=
Γ(α + θ)n

Γ(α)nΓ(θ)n
1

βn

∏n
i=1(zi/β)θ−1∏n

i=1(1 + zi/β)α+θ

=
Γ(α + θ)n

Γ(α)nΓ(θ)n
1

βnθ

∏n
i=1 z

θ−1
i∏n

i=1(1 + zi/β)α+θ
.

(2.39)

The log-likelihood function is

log L(α, θ, β) = n[log(Γ(α + θ))− log(Γ(α))− log(Γ(θ))− θlog(β)]

+ (θ − 1)
n∑
i=1

log(zi)− (α + θ)
n∑
i=1

(1 + zi/β).
(2.40)

The optimization of the parameters α, θ and β can be done numerically
in R by the optim() function. The computer commands for generating ex-
tended Pareto variables are Z = β ∗ θ/α ∗ rgamma(m, θ, θ)/rgamma(m, α, α).
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Figure 2.5: The pdf of the extended Pareto distribution as α, θ and β vary.
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In Figure 2.5 the pdf of the extended Pareto distribution for several
values of α, θ and β is plotted. With fixed θ and β, the graph is slightly
less right skewed as α becomes larger. With fixed α and β, an increase in
θ yields a les flat graph. As β increases with fixed α and θ, there is an
increase in the degree of right skewness.

2.4.1.5 4-parameter Distribution

Assume that

Z = βXη, where X =
Gθ

Gα

. (2.41)

Here Z is a positive variable with β > 0 and η > 0, and Gθ and Gα are
standard Gamma distributions with mean one and shape θ > 0 and α > 0,
respectively.
By equation (2.38) we know that the variable X can be written as an
extended Pareto variable with β = α/θ and pdf

g(x) =
Γ(α + θ)

Γ(α)Γ(θ)

θ

α

(θx/α)θ−1

(1 + θx/α)α+θ

=
Γ(α + θ)

Γ(α)Γ(θ)

θ

α

(θx/α)θ−1(α/θ)α+θ

(1 + θx/α)α+θ(α/θ)α+θ

=
Γ(α + θ)

Γ(α)Γ(θ)

(α
θ

)α xθ−1

(α/θ + x)α+θ
, x > 0.

(2.42)

By inversion, we get from Z = βXη, that x(z) = (z/β)
1
η . Moreover, the

probability density function of Z is given by

f(z) = g(x(z))

∣∣∣∣∂x(z)

∂z

∣∣∣∣
=

Γ(α + θ)

Γ(α)Γ(θ)

(α
θ

)α ((z/β)
1
η )θ−1

(α/θ + z/β)
1
η )α+θ

(z/β)
1
η

zη

=
Γ(α + θ)

Γ(α)Γ(θ)

(α
θ

)α (z/β)
θ
η (θ/α)α+θ

zη(α/θ + (z/β)
1
η )α+θ(θ/α)α+θ

=
Γ(α + θ)

Γ(α)Γ(θ)

(
θ

α

)θ
(z/β)

θ
η

zη(1 + (θ/α)(z/β)
1
η )α+θ

, z > 0.

(2.43)

By the result in [Bølviken, 2014, p. 334] we know that the expectation
for the extended Pareto random variable X is
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E(X i) =
(α
θ

)i Γ(α− i)Γ(θ + i)

Γ(α)Γ(θ)
, (2.44)

Then for Z = βXη we get the expectation

E(Z) = E(βXη) = βE(Xη) = β
(α
θ

)η Γ(α− η)Γ(θ + η)

Γ(α)Γ(θ)
. (2.45)

For the standard deviation we use var(Z) = E(Z2)− (E(Z))2 and simplify.
This gives

sd(Z) =

√
β2
(α
θ

)2η Γ(α− 2η)Γ(θ + 2η)

Γ(α)Γ(θ)
−
(
β
(α
θ

)η Γ(α− η)Γ(θ + η)

Γ(α)Γ(θ)

)2

= β
(α
θ

)η√Γ(α− 2η)Γ(θ + 2η)

Γ(α)Γ(θ)
−
(

Γ(α− η)Γ(θ + η)

Γ(α)Γ(θ)

)2

.

(2.46)

By the maximum likelihood method we can estimate the parameters
α, θ, β and η of the 4-parameter from the historical losses z1, ..., zn. The
likelihood function is

L(α, θ, β, η) =
n∏
i=1

f(zi|α, θ, β, η)

=
Γ(α + θ)n

Γ(α)nΓ(θ)n

(
θ

α

)nθ ∏n
i=1(zi/β)

θ
η∏n

i=1 ziη(1 + (θ/α)(zi/β)
1
η )α+θ

.

(2.47)

The log-likelihood function is

log L(α, θ, β, η) = n[log(Γ(α + θ))− log(Γ(α))− log(Γ(θ))

+ θlog(θ)− θlog(α)− θ

η
log(β)− log(η)]

+

(
θ

η
− 1

) n∑
i=1

log(zi)− (α + θ)
n∑
i=1

log

(
1 +

θ

α

(
zi
β

) 1
η

)
.

(2.48)
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Again, the optimization of the parameters α, θ, β and η can be done
numerically in R by the optim() function. Furthermore, the computer com-
mand in order to generate samples from the 4-parameter distribution is
Z = β ∗ (rgamma(m, θ, θ)/rgamma(m, α, α))̂ η.

In Figure 2.6 the pdf of the 4 parameter distribution for several values
of α, θ, β and η is plotted. With fixed θ, β and η, the graph is slightly less
right skewed as α becomes larger. With fixed α, β and η, an increase in
θ yields a less flat graph. With fixed α, θ and η, the graph is more right
skewed as β becomes larger. As η increases with fixed α, θ and β, the graph
becomes more spread-out.
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Figure 2.6: The pdf of the 4 parameter distribution as α, θ, β and η vary.

2.4.2 Non-parametric Model

Claim sizes can also be modeled non-parametrically, where each claim zi of
the past is assigned a probability 1/n of reappearing in the future. Each
claim is regarded as a random variable Ẑ for which

Pr(Ẑ = zi) =
1

n
, i = 1, ..., n. (2.49)

Then the cumulative distribution function is a step function that jumps 1/n
at each of the n data points. Note that these weights are positive and sum
to 1, and the distribution is called the empirical distribution. The mean
and standard deviation of the empirical distribution are
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E(Ẑ) =
n∑
i=1

1

n
zi = z̄ and sd(Ẑ) =

√√√√ n∑
i=1

1

n
(zi − z̄)2. (2.50)

The empirical distribution is easy to set up and to simulate from, and we
only need to assume that the historical data are independent and identically
distributed. However, skewness tends to be small, and no simulated claim
can be larger than what we know from the historical data. Hence, we need
a large number of observations in order for the empirical distribution to be
a good choice.

2.5 Reserve
The reserve (solvency capital) is the funds an insurance company is obli-
gated to set aside to cover future obligations. Hence, the reserve ensures
regulators that the insurance company is able to cover significant losses
[Bølviken, 2014, p. 5]. The mathematical formulation is

Pr(X > qε) = ε (2.51)

where X is the the total claim at portfolio level and ε is a small number
(for example 1%). Then the reserve, qε, should be large enough such that
the probability that the total loss X exceeds the amount of the reserve is
very small.

2.5.1 Monte Carlo Simulation

Calculating the reserve is essential in general insurance and theMonte Carlo
method is the general tool for the job since the underlying processes can
be too complex for analytic manipulation. The technique was first devel-
oped by three scientists who worked on a nuclear weapon project called the
Manhattan Project. They named the method after the gambling hot spot
in Monaco, since chance and random outcomes are central to the model-
ing technique, similar to games like roulette, dice and slot machines [Tho-
mopoulos, 2012, p. 1].

The Monte Carlo method rely on repeated random sampling to study
properties of a statistic’s sampling distribution and its behavior. The results
of these numerous scenarios can give us a "most likely" case , along with
a statistical distribution to understand the risk and uncertainty involved.
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In actuarial applications the Monte Carlo method is used to estimate an
upper percentile of the loss distribution.

Theorem 2.5.1. Strong Law of Large Numbers.

Let X1, ..., XN be a sequence of independent an identically distributed ran-
dom variables. Assume that E(X1) <∞. For N ≥ 1, denote the empirical
mean of X1, ..., XN by

X̄N :=
1

N

N∑
i=1

Xi. (2.52)

Then, the Strong Law of Large Numbers (SLLN) states that [Graham and
Talay, 2013, p. 13]

lim
N→∞

X̄N = E(X1), P − a.s. (2.53)

The accuracy of the estimate depends on the number of simulation used
in the Monte Carlo method. Hence, the Strong Law of Large Numbers is
at the core of the Monte Carlo method used below.

2.5.2 Estimation of the Reserve

Suppose we use Monte Carlo simulation to generate a sample of m =
1 000 000 values of the total loss X , and order them from smallest to largest.
With solvency levels of ε1 = 0.05 and ε2 = 0.01, we are interested in the
upper percentiles q0.95 and q0.99 of the portfolio liability X . A Monte Carlo
simulation with m = 1 000 000 should give a good estimate of the true
underlying distribution of X ∗.

First, we draw X ∗1 , ...,X ∗m and sort them in rising order as X ∗(1) ≤ ... ≤
X ∗(m). Then, we let q̂∗ε = X ∗((1−ε)m). By Theorem 2.5.1 it can be shown that
q̂∗ε −−−→

m→∞
q̂ε. A more detailed procedure is given in the algorithm below.
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Algorithm 2 Computing the reserve with Monte Carlo
1: Input: m, JµT , ξ̂, α̂, ε
2: X ∗ ← 0
3: for j = 1, ...,m do
4: Generate N ∗j ∼ Poisson(JµT )
5: for i = 1, ...,N ∗j do
6: Draw Z∗i ∼ Gamma(α̂, ξ̂)

7: X ∗j ← Z∗1 , ..., Z
∗
N ∗
j

8: Sort X ∗1 , ...,X ∗m as X ∗(1) ≤ ... ≤ X ∗(m)

9: Return q̂∗ε ← X ∗((1−ε)m)

In Algorithm 2 we have used a Poisson/Gamma portfolio where JµT
is the expected number of claims and m is the number of simulations
used. The parameters α̂ and ξ̂ are estimated from the maximum likeli-
hood method. Line 1 and 6 can be replaced by another set of estimated
parameters and claim size distribution, respectively.
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Simulation

Today computers have sufficient power to run complex simulations that
allow for the analysis of models that are not suitable for analytic approaches.
We want to compare the reserve from the different true distributions using
measures such as bias and root mean squared error, with special attention
to the performance of the 3- and 4-parameter distributions relative to the
two-parameter distributions. In this way we can determine if the 3- and
4-parameter models provide a good fit when the sample are from a two-
parameter distribution. To assess this we will perform a simulation study.

3.1 Plan for the Simulation Study

The simulation involves specific steps in order for the simulation study to
be successful. These can be summarized in three steps, where the goal is
to determine values relating to the distribution of the aggregated loss X
[Panjer et al., 2008, p. 612].

1. Build a model for X which depends on random the variables N and
Z1, Z2, ..., ZN with known distributions and independencies.

2. For j = 1, ...,m generate random values forN and Z1, Z2, ..., ZN using
the model from step 1, and then compute X̂ ∗j .

3. Estimate quantiles of interest which in our case is the upper percentiles
q̂∗0.95 and q̂∗0.99 as described in Algorithm 2.

23
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3.2 The model
The model used to compute the aggregated loss, and furthermore the re-
serve, is a combination of the model for the number of claims N and claim
sizes Z = Z1, ..., ZN . We will only use the Poisson model for modeling claim
frequency. For the claim sizes, however, we will use either the Gamma,
Weibull, Pareto, extended Pareto or the 4-parameter distribution as the
true distribution, and thereafter estimate the parameters for all five distri-
butions and compute the corresponding reserve. We rerun the simulation
for each of the five distributions as the true distribution. Hence, for the
steps in section 3.1, we will

• Try three different sample sizes.

• Use each of the five distributions as the true distribution with suitable
parameters.

For each scenario we will first simulate a certain number of samples
n from the true distribution. Thereafter the parameters of each of the
five distributions will be estimated using maximum likelihood, where the
starting values are determined by the method of moments. Finally we
compute the corresponding reserves, with the estimated parameters, by m
Monte Carlo simulations as specified in Algorithm 2.

Hence, if we use Gamma as the true distribution, the entire process
becomes

n claims z1, ..., zn −→ µ̂, α̂, ξ̂ −→ X̂ ∗1 , ..., X̂ ∗m −→ q̂∗(1−ε)m = X̂ ∗(1−ε)m
where the R functions parEstimate_gamma() and reserve_gamma() esti-
mate the parameters and reserve, respectively (sse Appendix B.2). That
is, if we use Gamma as the true distribution we want to compute the re-
serve for all the five distributions. First we need to sample n random
variables by the R-command Z = ξ ∗ rgamma(m, α, α). Then the functions
parEstimate_gamma(), ..., parEstimate_fourPar() take the Z values as
input and estimate the parameters for each of the distributions by the max-
imum likelihood method. For the extended Pareto and 4-parameter distri-
butions we use the method of moments estimates as starting values for the
optim() function. The maximum likelihood estimated parameters are sent
to some other functions, reserve_gamma(), ..., reserve_fourPar(), which
calculate the corresponding reserves as stated in Algorithm 2. This is re-
peated N times for each distribution as the true distribution and for three
different sample sizes n.
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In order to generate continuous random variables from the distributions we
will use the following R-commands.

Table 3.1: Generating continuous random variables

Distribution Random variables

Gamma Z = ξ ∗ rgamma(m, α, α)
Weibull Z = rweibull(m, α, β)
Pareto Z = β((U)−1/α − 1), U ∼ uniform
extended Pareto Z = β ∗ θ/α ∗ rgamma(m, θ, θ)/rgamma(m, α, α)
4 Parameter Z = β ∗ (rgamma(m, θ, θ)/rgamma(m, α, α))̂ η

3.3 Parameter Setting

For each of the five distributions, we need to find suitable parameter values.
The claim size distributions we are considering are skewed to the right, non-
negative and unimodal. The Gamma(α, ξ) and Weibull(α, β) distributions
can be used when the tail of the probability density function is not too
heavy. On the other hand, the Pareto(α, β) distribution is very heavy-
tailed and is a popular choice in branches with high probability of large
claims. To gain more flexibility we can add parameters to the models. The
extended Pareto(α, θ, β) and 4-parameter(α, θ, β, η) are such models, with
three and four parameters, respectively. Keeping these characteristics in
mind, we can find suitable parameter values presented in the table and plot
below. For simplicity reasons we will choose the parameters such that the
mean of the distributions is close to one. This can easily be scaled up to
any desired expectation.

Table 3.2: Parameter values

Distribution Parameter values

Gamma α = 3.4, ξ = 1
Weibull α = 3.4, β = 1.1
Pareto α = 3.4, β = 2.4
extended Pareto α = 3.4, θ = 2.0, β = 1.2
4 parameter α = 3.4, θ = 2.9, β = 0.6, η = 1.2
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Figure 3.1: Probability density function for all five distributions used in the
simulation study

Moreover, the following settings will be used.

• Number of simulations in each experiment: N = 500

• Sample sizes: n = 5 000, 500, 50

• Expected number of occurrences: JµT = 50

• Number of MC-simulations: m = 1 000 000

We know that when the sample size decreases, the uncertainty in the
estimate of the reserve becomes larger. Despite this, we want to know if it is
still possible to use the 3- and 4-parameter distributions for all sample sizes.
Therefore we use three different sample sizes. The Monte Carlo method will
usem = 1 000 000 simulations to provide an accurate assessment of the total
risk. The simulation models specified in the R-code in Appendix B.2 are
now ready to be executed.



Chapter 4

Reserve

In this chapter, the reserves q0.95 and q0.99 will be estimated for each of
the five distributions. When using more than one model for computing
the reserve, we are faced with the task of choosing between the models.
Quantities such as the bias and root mean squared error can help us assess
the fit of these models. We will present the bias and root mean squared
error (RMSE) for each of the five distributions and evaluate their fit relative
to the true distribution.

4.1 Error Analysis
The bias of an estimator is the difference between the estimator’s expected
value and the true value of the parameter being estimated. An estimator
with bias equal to zero is called unbiased [Casella and Berger, 2002, p. 330].
We can calculate the bias of the reserve from

b̂ = E(q̂ε − qε) '
1

N

N∑
j=1

(q̂∗ε,j − q∗ε ), (4.1)

where q̂∗ε,j is the estimated reserve and q∗ε is the true reserve estimated
with MC methods. A negative bias indicates that the estimated reserve is
underestimated and a positive bias indicates that we have an overestimated
reserve.

The root mean squared error is a commonly used measures of the differ-
ences between the sample and population values estimated by a model. The
value is computed by taking the average of the squared differences between
each estimated value and its corresponding true value [Ranka et al., 2010,
p. 430]. Hence, the RMSE is the standard deviation of the residuals (pre-
diction errors). The RMSE is simply the square root of the mean squared

27
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error, and therefore the RMSE amplifies and severely punishes outliers. The
RMSE for the reserve can be calculated from

R̂MSE =
√
E(q̂ε − qε)2 '

√√√√ 1

N

N∑
j=1

(q̂∗ε,j − q∗ε )2. (4.2)

The true reserves, q∗ε , are calculated by Algorithm 2 with the true pa-
rameter values specified in Table 3.2, where we use m = 10 000 000 MC-
simulations. Using ten million simulations will make Monte Carlo uncer-
tainty very small indeed [Bølviken, 2014, p. 356]. The true reserves are
given in Table 4.1 below.

Table 4.1: True reserve for m = 10 000 000 MC-simulations

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05 63.670 61.825 72.983 69.788 72.997
ε = 0.01 69.852 67.348 87.431 81.430 89.714

4.1.1 Sample Size: 5 000

First, we check the sample size n = 5 000. From the Law of Large Numbers,
in Theroem 2.5.1, we know that as the number of observations becomes
large, the variance approaches zero. When the sample size is n = 5 000
the maximum likelihood method tends to produce more or less the same
estimated parameters for each run j = 1, ..., N , which again produces more
precise reserve estimates.

Table 4.2: True distribution: Gamma (n = 5 000)

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ -0.011 0.119 14.222 3.965 1.143
R̂MSE 0.502 0.515 14.288 7.197 4.106

ε = 0.01
b̂ -0.012 0.087 20.188 6.202 1.449
R̂MSE 0.553 0.556 20.286 11.209 4.741
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When Gamma is the true distribution we get the biases and root mean
squared errors as presented in Table 4.2. The Gamma distribution obviously
has the best fit with lowest bias and RMSE for both the q0.95 and q0.99
reserves. The resembling Weibull distribution is not far behind, providing a
good fit to the Gamma distributed data. The Pareto distribution, however,
fits poorly. This is as expected given that the Pareto distribution is a very
heavy-tailed distribution and the Gamma distribution is a moderate-tailed
distribution. Furthermore, the extended Pareto distribution, with three
parameters, has a better fit than the Pareto, but not as good as the 4-
parameter distribution. Even though the four parameters has weakened
the simplicity, the bias and RMSE is quite low and the model provides a
good fit to the Gamma distributed sample. It is also worth noting that the
4-parameter is slightly overestimating the reserve. In general insurance it
is a good idea to rather risk overestimation than to risk underestimation.
This welcomes a conservative risk strategy.

Table 4.3: True distribution: Weibull (n = 5 000)

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ 2.101 0.017 36.705 2.721 1.053
R̂MSE 2.126 0.295 36.768 2.863 2.674

ε = 0.01
b̂ 3.219 0.018 58.639 3.403 1.272
R̂MSE 3.241 0.323 58.788 3.569 3.009

In Table 4.3, the biases and root mean squared errors are given when
Weibull is the true distribution. The results are very much similar to the
results in Table 4.2, where Gamma was the true distribution. The Gamma
distribution fits the data well, but not as well as the Weibull distribution
fitted the Gamma data in Table 4.2. This could be explained by the slightly
smaller tails in the Weibull distribution than in the Gamma distribution (see
Figure 3.1). Using the same logic, we can see that the Pareto distribution
provides an even worse fit than earlier. The extended Pareto distribution
still has a good fit where the extra parameter does not seem to make a big
difference for the RMSE. The 4-parameter distribution provides the best
fit of all, except the true distribution, with the lowest bias. Again, the
4-parameter model is slightly overestimating the reserve.
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Table 4.4: True distribution: Pareto (n = 5 000)

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ -4.386 -4.333 0.025 0.027 0.058
R̂MSE 4.638 4.571 1.941 1.949 2.062

ε = 0.01
b̂ -9.932 -9.416 0.071 0.095 0.243
R̂MSE 10.082 9.570 3.060 3.148 3.768

When Pareto is the true distribution, as in Table 4.4, we can see that
the more light-tailed distributions Gamma and Weibull do not fit the data
very well. They are both underestimating the reserve which can have a
major impact on the company’s financial situation. At the same time, this
is as expected because of the different tails. The extended Pareto and the
4-parameter distributions, however, fit the data exceptionally well. Hence,
the 3- and 4-parameter model is a very good choice when we have a large
heavy-tailed sample. Also, their RMSE is not that large, justifying the use
of the extra parameters.

Table 4.5: True distribution: extended Pareto (n = 5 000)

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ -3.325 -2.709 -1.720 0.090 0.062
R̂MSE 3.548 2.984 2.122 1.469 1.583

ε = 0.01
b̂ -7.282 -6.407 -4.489 0.162 0.140
R̂MSE 7.417 6.569 4.732 2.188 2.641

In Table 4.5 the biases and root mean squared errors are given when
extended Pareto is the true distribution. The Gamma and Weibull distri-
butions do not fit these data very well and are both underestimating the
reserve. The Weibull distribution fits the data to some degree better than
the Gamma distribution. The Pareto distribution is also underestimat-
ing the reserve, but is preferable to the Gamma and Weibull distributions.
Moreover, the 4-parameter distribution provides a really good fit of the true
distribution, for both the q0.95 and q0.99 reserves.



4.1. ERROR ANALYSIS 31

Table 4.6: True distribution: 4 parameter (n = 5 000)

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ -5.930 -5.571 -4.203 1.551 -0.043
R̂MSE 6.201 5.814 4.502 2.807 2.422

ε = 0.01
b̂ -14.622 -13.881 -10.710 4.748 0.091
R̂MSE 14.769 14.019 10.919 6.586 5.071

When the 4-parameter is the true distribution we get the quantities as
in Table 4.6. Gamma, Weibull, Pareto and extended Pareto are special
cases of the 4 parameter distribution. These special cases have less pa-
rameters, and consequently less flexibility. We can see that they do not fit
the true distribution as well as the 4-parameter model fit the true distri-
bution. The extended Pareto provides a reasonably good fit with a slightly
overestimating of the reserve. The two-parameter models, however, are all
underestimating the reserve and do not fit the true distributed data very
well. This underestimation can make it tough to cover the liabilities for
losses.

4.1.2 Sample Size: 500
For a sample size n = 500, we still have a substantial amount of observa-
tions, but the variation can be slightly larger when calculating the maximum
likelihood estimated parameters. This can further lead to more varying re-
serves, and greater bias and RMSE.

Table 4.7: True distribution: Gamma (n = 500)

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ 0.077 0.116 17.666 5.289 0.970
R̂MSE 1.542 1.572 17.911 8.867 3.265

ε = 0.01
b̂ 0.146 0.104 25.610 8.506 1.261
R̂MSE 1.694 1.729 25.961 14.495 3.770

When Gamma is the true distribution we get the biases and root mean
squared errors as presented in Table 4.7. The results are very much com-
parable with the results in Table 4.2, although the bias and RMSE are a
bit larger for Gamma, Weibull, Pareto and extended Pareto. This is as
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expected since we have a smaller sample size. For the 4-parameter model,
however, the bias and RMSE are smaller than for n = 5 000. This could
simply be a coincidence or an effect of the true distribution being more un-
certain, which the added flexibility of the 4-parameter distribution handles
well.

Table 4.8: True distribution: Weibull (n = 500)

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ 2.254 -0.048 41.390 1.864 0.551
R̂MSE 2.433 0.877 41.559 2.396 2.274

ε = 0.01
b̂ 3.493 -0.052 68.521 2.357 0.677
R̂MSE 3.639 0.950 68.915 2.972 2.526

In Table 4.8, Weibull is the true distribution. The biases and root mean
squared errors are approximately the same as in Table 4.3 when n = 5 000.
And again, the extended Pareto and 4-parameter model provide an even
better fit when the sample is n = 500. We especially notice how well the
4-parameter model fits the Weibull distributed samples.

Table 4.9: True distribution: Pareto (n = 500)

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ -4.680 -4.649 0.008 0.013 0.383
R̂MSE 6.746 6.607 6.524 6.543 7.280

ε = 0.01
b̂ -10.252 -9.778 0.647 0.753 2.557
R̂MSE 11.679 11.229 10.948 11.281 15.412

When Pareto is the true distribution we get the biases and root mean
squared errors presented in Table 4.9. The Gamma and Weibull distri-
butions underestimates the reserve and do not produce a good fit of the
data. On the other hand, the extended Pareto and 4-parameter distribu-
tion fit the data well, but not as well as for the n = 5 000 case. We know
that the Pareto distribution is a very heavy-tailed distribution, and with
an even lower sample size, the greatness of the tail is tough to determine.
We can clearly see this from in the 4-parameter case. The bias and RMSE
jumps from b̂4P = 0.383 to b̂4P = 2.557 and from R̂MSE4P = 7.280 to
R̂MSE4P = 15.412, respectively, when we consider the 95% percentile and
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the 99% percentile. Hence, we could say that the 4-parameter model fits
reasonably well up to some threshold.

Table 4.10: True distribution: extended Pareto (n = 500)

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ -3.447 -2.895 -1.369 0.038 0.244
R̂MSE 5.126 4.782 3.854 4.770 5.170

ε = 0.01
b̂ -7.414 -6.620 -3.872 0.389 1.319
R̂MSE 8.576 7.941 5.759 7.414 9.575

In Table 4.10 the biases and root mean squared errors are presented
when extended Pareto is the true distribution. Now, the Gamma and
Weibull distributions fit the data a little bit better than they did when the
two parameter model, Pareto, was the true distribution in Table 4.9. The
Pareto distribution gives a reasonably good fit for ε = 0.05 and ε = 0.01.
Moreover, the 4-parameter model has a very low bias, but because of the
added uncertainty coming as a result of the smaller sample size, the RMSEs
is not that good. However, it produces the best fit of all the models, except
the true distribution.

Table 4.11: True distribution: 4 parameter (n = 500)

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ -6.031 -5.763 -4.148 1.918 0.704
R̂MSE 7.864 7.458 6.523 7.742 8.190

ε = 0.01
b̂ -14.778 -14.166 -10.537 6.089 3.380
R̂MSE 15.872 15.214 12.514 16.382 19.707

When the 4-parameter is the true distribution we get the quantities
presented in Table 4.11. Other than the 4-parameter model, none of the
distributions seems to provide a good fit when the sample comes from a 4-
parameter distribution. All the two-parameter models are underestimating
the reserve. It is the 4-parameter model which has the best fit, with the
extended Pareto model not that far behind. It is interesting that the RMSEs
are smaller for the 3-parameter model than for the 4-parameter model.
Again, this could be a result of the lesser sample size, making it harder to,
especially, determine the tail of the distribution.
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4.1.3 Sample Size: 50
For a sample size of just n = 50 it is very difficult to find the maximum
likelihood estimates in the five models. The variability could be enormous
and the shape parameters can be overestimated. Furthermore this will
create large uncertainty in the reserve estimates, and corresponding large
values of root mean squared errors since it is especially sensitive to large
values.

Table 4.12: True distribution: Gamma (n = 50)

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ 0.628 0.153 25.390 8.348 0.943
R̂MSE 4.977 5.090 26.848 15.975 5.513

ε = 0.01
b̂ 0.951 0.111 39.080 15.160 1.325
R̂MSE 5.452 5.593 41.139 32.230 6.382

In Table 4.12, the biases and root mean squared errors are presented
for the five distributions when Gamma is the true distribution. Obviously,
from b̂W = 0.176 and b̂W = 0.147 the Weibull model fits very well in the
whole tail. At the same time we observe that the corresponding RMSEs
are quite large. This probably means that we have more uncertainty than
earlier when the sample size was larger. The Pareto model produces a really
poor fit of the Gamma distributed sample. This means that the extreme
right tail is exposed to overestimation as this model assumes more large
claims than reasonable. The extended Pareto distribution has a bit better
fit, but it is still not an adequate model to use. Finally, the 4-parameter
distribution provides a good fit bearing in mind the small sample size.

Table 4.13: True distribution: Weibull (n = 50)

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ 2.693 -0.003 51.544 1.218 -0.270
R̂MSE 3.953 2.787 52.443 3.682 6.214

ε = 0.01
b̂ 4.138 -0.016 91.498 1.645 -0.248
R̂MSE 5.222 3.016 93.463 5.493 6.688

In Table 4.13, the biases and root mean squared errors have been calcu-
lated with Weibull as the true distribution. The results are very much like
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the results in Table 4.12. The biggest difference is that the Pareto model
has an even worse fit than when the sample was Gamma distributed. At
the same time, the extended Pareto model has a better fit. The Weibull
distribution has a more concentrated shape than Gamma which makes the
Pareto model a poor choice of model (see Figure 3.1). The 4-parameter
distribution produces a really good fit based on the bias b̂4P = −0.270 and
b̂4P = −0.248. Because of the small sample size, the RMSEs tells us that we
must use this model with caution. Still, the 4-parameter is a good choice,
at least for the more light-tailed distributions.

Table 4.14: True distribution: Pareto (n = 50)

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ -4.183 -4.195 5.532 19.388 7.580
R̂MSE 14.934 14.621 25.335 98.322 31.564

ε = 0.01
b̂ -9.759 -9.331 15.830 94.475 26.474
R̂MSE 19.110 18.813 59.691 577.862 102.008

Table 4.15: True distribution: Pareto (n = 50) without extreme reserve
estimates

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ -4.367 -4.346 4.672 7.702 5.665
R̂MSE 14.709 14.415 23.642 33.448 26.519

ε = 0.01
b̂ -9.967 -9.511 13.364 27.118 19.034
R̂MSE 18.924 18.621 53.025 102.328 76.839

When Pareto is the true distribution, we get the biases and root mean
squared errors presented in Table 4.14. The moderate-tailed distributions,
Gamma and Weibull, does not fit the data very well. This underestimation
has been consistent for all sample sizes, although the RMSEs are a bit
larger. For the more heavy-tailed distributions, the small sample size seems
to create some complications. Even though the sample follows a Pareto
distribution, the Pareto model struggles to fit the data. The extended
Pareto model encounters the same problem. The issue is most noticeable far
out in the right tail with a bias and RMSE of b̂EP = 94.475 and R̂MSEEP =
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577.862. There is also a large overestimation in the 4-parameter model, but
much better than for the extended Pareto model.

There are a few extreme reserve estimates which pulls up the biases
and RMSEs. When there are few data available, the optim() function
is struggling to find the maximum likelihood estimates. This can make
extreme reserve estimates. If we ignore the 20−30 largest reserve estimates
we get the quantities as in Table 4.15. All models are still providing great
uncertainty in cases of heavy tails and few sample data. One can hardly
expect anything better.

Table 4.16: True distribution: extended Pareto (n = 50)

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ -2.860 -3.104 2.590 69.116 5.193
R̂MSE 25.252 16.192 14.597 184.707 25.928

ε = 0.01
b̂ -6.737 -6.886 2.719 320.522 17.722
R̂MSE 30.048 20.122 22.469 1004.811 77.565

Table 4.17: True distribution: extended Pareto (n = 50) without extreme
reserve estimates

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ -2.834 -3.036 2.027 22.700 4.676
R̂MSE 25.032 15.849 14.040 53.024 23.747

ε = 0.01
b̂ -6.681 -6.757 1.937 75.968 15.459
R̂MSE 29.806 19.740 21.929 186.961 66.756

In Table 4.16 and Table 4.17, the biases and root mean squared errors
are presented for extended Pareto as the true distributions. The results
have many similarities to the results in Table 4.14 and Table 4.15. The
Gamma and Weibull distributions are underestimating the reserve, while
the Pareto and 4-parameter distributions are overestimating the reserve.
The 4-parameter model produces a slightly better fit of the sample distri-
bution than in the previous tables. The heavy tails and few available data
makes it hard to fit a model to the true distribution.
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Table 4.18: True distribution: 4-parameter (n = 50)

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ -6.599 -6.742 -1.618 55.640 9.357
R̂MSE 16.910 15.809 16.749 161.694 40.313

ε = 0.01
b̂ -15.392 -15.291 -4.763 266.878 39.305
R̂MSE 23.575 22.614 28.930 937.720 149.955

Table 4.19: True distribution: 4-parameter (n = 50) without extreme re-
serve estimates

Gamma Weibull Pareto extPareto 4-parameter

ε = 0.05
b̂ -7.045 -7.005 -2.518 23.337 5.935
R̂MSE 15.166 14.509 13.985 54.746 27.935

ε = 0.01
b̂ -15.915 -15.615 -6.835 85.994 24.486
R̂MSE 22.110 21.458 20.972 202.773 90.516

Finally, in Table 4.18 and Table 4.19 the biases and root mean squared
errors are given when the 4-parameter distribution is the true distribution.
Because of their moderate tails, the Gamma and Weibull distributions un-
derestimate the reserve. The Pareto model has the lowest bias, but it is
also underestimating the reserve. The extended Pareto model has a really
poor fit. With a sample of only n = 50, the maximum likelihood method
could overestimate the parameters, which can produces extreme values of
the reserve. Even the 4-parameter model is struggling to fit the true distri-
bution.

4.2 Summary
In this chapter, we have presented the biases and root mean squared er-
rors for each of the five distributions as the true distribution and for three
different sample sizes. The most interesting part of the results is how well
the 3- and 4-parameter distributions fit to the two parameter special cases.
We add parameters to the distributions to make the model more flexible.
At the same time, this weakens the simplicity of the model. However, the
4-parameter model fits the data very well indeed, both for the light-tailed
and heavy-tailed distributions.
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The 4-parameter even provides a better fit than the three parameter
extended Pareto distribution which is struggling to fit the more light-tailed
distributions. When the sample size decreases, the uncertainty in the re-
serve estimates increases. The 4-parameter model has a reasonable good fit
all over for sample size n = 5 000 and n = 500. When n = 500 the extended
Pareto model provides a slightly better fit for the heavy-tailed Pareto dis-
tribution. This is, however, not enough to exclude the 4-parameter model.

When the sample size is as low as n = 50, the tail becomes especially
hard to capture. The parameters estimated by the maximum likelihood
method can be overestimated, which creates reserve estimates that are far
away from the true reserve. For the moderate-tailed distributions, the 4-
parameter model is still very much applicable. When we have a more heavy-
tailed sample, the 4-parameter model overestimates the reserve and hence
does not fit the data that well. Be that as it may, perhaps our risk strategy
is to be on the cautious side, which welcomes overestimation. It is a good
idea to rather risk overestimation than to risk underestimation. At the
same time, one should not overestimate too much as this binds capital.



Chapter 5

Conclusion

The total loss X depends on two random variables, the claim frequency N
and the claim sizes Z1, ..., ZN . Claim sizes are typically modeled through
simple two parameter distributions such as the Gamma, Weibull and Pareto
distributions. An alternative is to use more flexible models which can be
fitted to both light-tailed and heavy-tailed samples. An idea is to use the
4-parameter model, introduced in Chapter 2, with the previous mentioned
distributions as special cases. In this way we can use only one model for
different samples which can save us a lot of time, and more importantly,
we can avoid choosing the wrong model that can have major consequences
such as over- or underestimation.

We have used a simulation study to review how well the 3- and 4-
parameter models estimate the reserve compared to the special cases Gamma,
Weibull or Pareto distribution. The performance of the models was evalu-
ated on the basis of the bias and root mean squared error of their reserve
estimates.

We would like a model that is both simple, and at the same time pro-
vides a good fit of the true distribution. The moderate-tailed two-parameter
models, Gamma and Weibull, tend to underestimate when fitted to a heavy-
tailed sample. In the opposite case the heavy-tailed two parameter Pareto
distribution overestimates the reserve when the sample follows a distribu-
tion with lighter tails. The added flexibility in the 3- and 4-parameter
model handles the different shape and tails of the distributions much bet-
ter. Even though the simplicity of the model is weakened when using the
4-parameter model instead of the extended Pareto model, it provides an
even better fit in cases where the 3-parameter model is struggling to fit the
more light-tailed distributions.

In general insurance it is crucial for the companies to set aside enough
funds to cover future obligations. Therefore, when it comes to reserve es-
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timation it is important not to underestimate the reserve. If the reserves
prove to be inadequate in the future, we would have to increase reserves,
which would reduce earnings and could have a material adverse effect on the
insurance companies results of operations and financial condition. There-
fore, it is a good idea to rather risk overestimation than to risk under-
estimation. At the same time, one should not overestimate too much as
this may affect the affordability of insurance policies. Also, unnecessarily
large reserve binds capital that may be better used to boost productivity
and create employment [UNS, 2015]. From the results presented in tables
in Chapter 4 the 4-parameter model is always slightly overestimating the
reserve. Hence, the 4-parameter model is a conservative choice.

Combining the fact that the 4-parameter model has a good fit of the
different types of samples and that it is a somewhat conservative choice, we
can conclude that the ideas originally motivated for this thesis indeed has
its justification. That is, that we can use the flexible 4-parameter model
as a "standard model" to estimate the reserve when samples have different
shape and tails. However, we must be cautious when handling small sample
sizes.

When it comes to further work on the error analysis, it could be inter-
esting to test another model for the claim frequency. The claim frequency
N , in this thesis, are assumed to follow a Poisson distribution. We could
instead use a negative binomial distribution and investigate if the results
differ. Also, we could check if a model with five or six parameters provide
an even better fit than the 4-parameter model, and how well this model
perform for small sample sizes.
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Appendix A

Mathematical Elaborations

A.1 Probability

We start with some notation and definitions for basic quantities related to
a random variable X. The cumulative distribution function (or just distri-
bution function) FX of X, is the probability that X will take a value less
than or equal to x. Hence, it is given by

FX(x) = Pr(X ≤ x), x ∈ R. (A.1)

The function FX is non-decreasing and right-continuous [Gray and Pitts,
2012, p. 2]. Also, 0 ≤ FX(x) ≤ 1 for all x ∈ R, limx→∞ FX(x) = 1 and
limx→−∞ FX(x) = 0.

A continuous random variableX has a probability density function (pdf)
fX , which is a non-negative function with

∫∞
−∞ fX(t)dt = 1, such that the

distribution function of X is [Gray and Pitts, 2012, p. 2]

FX(x) =

∫ x

−∞
fX(t)dt, x ∈ R, (A.2)

Hence, fX(x) = ∂FX(x)/∂x. The probability that X takes on a value in
the interval [a, b] is the area in this interval and under the density curve.

If we let X be a discrete random variable that takes values in N, then
Pr(X = x), x ∈ R, is the probability mass function of X. Since the pmf is
a function that gives the probability that a discrete random variable X is
exactly equal to some value x, we see that Pr(X = x) = 0 for x /∈ N. So for
a discrete random variable concentrated on N, the probability mass function
is specified by

∑∞
k=0 Pr(N = k) = 1. Then, the distribution function of X

is [Gray and Pitts, 2012, p. 3]

45



46 APPENDIX A. MATHEMATICAL ELABORATIONS

FX(x) =
∑
k≤x

Pr(X = k), x ∈ R. (A.3)

A.2 Inversion

Assume that we can draw uniform random variables U for which all values
between zero and one are equally likely to occur. By manipulating these
uniforms we can generate other random variables X for a desired distri-
bution with a cumulative distribution function Pr(X ≤ x) = F (x). F (x)
must be a strictly increasing and continuous distribution function. Then
F (x) = u has the inverse solution x = F−1(u), and we define

X = F−1(U) or X = F−1(1− U), U ∼ uniform. (A.4)

First, we notice that

Pr(U ≤ F (x)) = F (x)

for each x such that F (x) ∈ [0, 1]. Since F (X) is strictly increasing we
have that

U ≤ F (x)⇔ F−1(U) ≤ x.

Hence the event U ≤ F (x) occurs if and only if F−1(U) ≤ x and we conclude
that [Scholtes, 2001]

Pr(F−1(U) ≤ x) = Pr(U ≤ F (x)) = F (x).

Thus, we have a simple general sampling technique. However, it requires
that we are able to calculate F−1(·).

The cumulative distribution function of the Pareto distribution is

F (x) = 1− (1 + x/β)−α, x > 0. (A.5)

By solving the equation F (x) = u for x we get the inverse of the cdf

F−1(u) = β((1− u)−1/α − 1), (A.6)

which is the simple Pareto sampler.



A.3. EXTENDED PARETO: A REPRESENTATION 47

A.3 Extended Pareto: A Representation
Sampling from the extended Pareto distribution can be simplified by rep-
resenting the extended Pareto variable Z as

Z =
θβ

α

Gθ

Gα

.

This can be shown by transformation. If we let Z = X/Y where X and Y
are independent and positive random variables with density functions gθ(x)
and gα(y), respectively. Then, we have

F (z) = Pr(Z ≤ z) = Pr(X ≤ zY ) =

∫ ∞
0

Pr(X ≤ zy)gα(y)dy.

Differentiating with respect to z, we get the density function of Z

f(z) = F ′(z) =
∂

∂z

∫ ∞
0

Pr(X ≤ zy)gα(y)dy

=

∫ ∞
0

∂

∂z
Pr(X ≤ zy)gα(y)dy

=

∫ ∞
0

ygθ(zy)gα(y)dy,

(A.7)

since

∂

∂z
Pr(X ≤ zy) =

∂

∂z
FX(zy) = yF ′X(zy) = ygθ(zy).

Let X = θGθ and Y = αGα, where Gθ and Gα are standard Gamma
distributions with mean one and shape θ > 0 and α > 0, respectively. Then,
with gθ(x) = xθ−1e−x/Γ(θ) and gα(y) = yα−1e−y/Γ(α),

f(z) =
zθ−1

Γ(θ)Γ(α)

∫ ∞
0

yα+θ−1e−y(1+z)dy =
zθ−1

Γ(θ)Γ(α)

1

(1 + z)α+θ

∫ ∞
0

wα+θ−1e−wdw

after substituting w = y(1 + z) in the integral. Utilizing that Γ(s) =∫∞
0
ts−1e−tdt we obtain

f(z) =
Γ(α + θ)

Γ(θ)Γ(α)

zθ−1

(1 + z)α+θ
, (A.8)

which is the extended Pareto density (2.36) when β = 1.





Appendix B

R codes

B.1 R code - Chapter 2

1
2 # ====================== Poisson D i s t r i bu t i on =======================
3 # The p r obab i l i t y mass f unc t i on s are p l o t t ed
4
5 n=seq (0 , 40 , 1 )
6 lambda=c (2 , 6 , 12 )
7
8 p lo t (0 , 0 , xl im=c (0 ,30 ) , yl im=c ( 0 , 0 . 3 ) ,main="Poisson PMF" , "p" , xlab="" ,

ylab="" , xaxs=" i " , yaxs=" i " , cex . ax i s =1.5 , cex . main=2)
9 l egend ( " top r i gh t " , l egend=c ( "lambda=2" , "lambda=6" , "lambda=12" ) , pch=c

(0 , 1 , 2 ) , l t y=NA, lwd=1.5 , box . l t y =0, cex =1.5)
10 l i n e s (n , dpo i s (n , lambda [ 1 ] ) , type="p" , lwd=1.5 , pch=0)
11 l i n e s (n , dpo i s (n , lambda [ 2 ] ) , type="p" , lwd=1.5 , pch=1)
12 l i n e s (n , dpo i s (n , lambda [ 3 ] ) , type="p" , lwd=1.5 , pch=2)
13 ab l i n e (h=0)
14
15
16 # ======================= Gamma Di s t r i bu t i on ========================
17 dens i ty_gamma=func t i on (m, alpha , x i ) {
18
19 # m s imu la t i on s from the Gamma model with shape alpha and mean x i are

generated and p lo t t ed .
20
21 p lo t (0 , 0 , xl im=c (0 ,15 ) , yl im=c ( 0 , 0 . 3 5 ) ,main="Gamma PDF" , " l " , x lab="" ,

ylab="" , xaxs=" i " , yaxs=" i " , cex . ax i s =1.5 , cex . main=2)
22 l egend ( " top r i gh t " , l egend=c ( " alpha=2, x i=3" , " alpha=4, x i=3" , " alpha

=4, x i=5" ) , l t y=c (1 , 2 , 3 , 4 ) , lwd=1.5 , box . l t y =0, cex =1.5)
23
24 f o r ( i in 1 : l ength ( alpha ) ) {
25 G=rgamma(m, alpha [ i ] , a lpha [ i ] )
26 Z=xi [ i ] ∗G
27 d=dens i ty (Z , from=0, ad jus t=2)
28 l i n e s (d$x , d$y , l t y=i , type=" l " , lwd=1.5)
29 }
30 }
31
32 dens i ty_gamma(m=1000000 , alpha=c (2 , 4 , 4 ) , x i=c (3 , 3 , 5 ) )

49
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33
34
35 # ====================== Weibull D i s t r i bu t i on =======================
36 dens i ty_we ibu l l=func t i on (m, alpha , beta ) {
37
38 # The Weibull dens i ty parameters shape alpha and s c a l e beta are

est imated from m s imu la t i on s and p lo t t ed .
39
40 p lo t (0 , 0 , xl im=c (0 , 5 ) , yl im=c ( 0 , 1 . 6 ) ,main="Weibull PDF" , " l " , xlab="" ,

ylab="" , xaxs=" i " , yaxs=" i " , cex . ax i s =1.5 , cex . main=2)
41 l egend ( " top r i gh t " , l egend=c ( " alpha=2, beta =0.8" , " alpha=3, beta =0.8" ,

" alpha=3, beta =1.5" ) , l t y=c (1 , 2 , 3 , 4 ) , lwd=1.5 , box . l t y =0, cex =1.5)
42
43 f o r ( i in 1 : l ength ( alpha ) ) {
44 Z=rwe ibu l l (m, alpha [ i ] , beta [ i ] )
45 d=dens i ty (Z , from=0, ad jus t=2)
46 l i n e s (d$x , d$y , l t y=i , type=" l " , lwd=1.5)
47 }
48 }
49
50 dens i ty_we ibu l l (m=1000000 , alpha=c (2 , 3 , 3 ) , beta=c ( 0 . 8 , 0 . 8 , 1 . 5 ) )
51
52
53 # ======================= Pareto D i s t r i bu t i on =======================
54 dens i ty_pareto=func t i on (m, alpha , beta ) {
55
56 # The Pareto dens i ty parameters shape alpha and s c a l e beta are

est imated from m s imu la t i on s and p lo t t ed .
57
58 p lo t (0 , 0 , xl im=c ( 0 , 1 . 7 ) , yl im=c ( 0 , 4 . 2 ) ,main="Pareto PDF" , " l " , x lab="" ,

ylab="" , xaxs=" i " , yaxs=" i " , cex . ax i s =1.5 , cex . main=2)
59 l egend ( " top r i gh t " , l egend=c ( " alpha=10, beta=3" , " alpha=15, beta=3" , "

alpha=15, beta=6" ) , l t y=c (1 , 2 , 3 ) , lwd=1.5 , box . l t y =0, cex =1.5)
60
61 f o r ( i in 1 : l ength ( alpha ) ) {
62 U=run i f (m, 0 , 1 )
63 Z=beta [ i ] ∗ (U^(−1/ alpha [ i ] ) −1)
64 d=dens i ty (Z , from=0, ad jus t=2)
65 l i n e s (d$x , d$y , l t y=i , type=" l " , lwd=1.5)
66 }
67 }
68
69 dens i ty_pareto (m=1000000 , alpha=c (10 ,15 ,15) , beta=c (3 , 3 , 6 ) )
70
71
72 # ================== Extended Pareto D i s t r i bu t i on ===================
73 dens i ty_extPareto=func t i on (m, alpha , theta , beta ) {
74
75 # m s imu la t i on s o f the Extended Pareto model with shape parameters

alpha and theta , and s c a l e parameter beta are generated and
p lo t t ed .

76
77 p lo t (0 , 0 , xl im=c (0 , 5 ) , yl im=c ( 0 , 2 . 1 ) ,main="Extended Pareto PDF" , " l " ,

x lab="" , ylab="" , xaxs=" i " , yaxs=" i " , cex . ax i s =1.5 , cex . main=2)
78 l egend ( " top r i gh t " , l egend=c ( " alpha=10, theta =3, beta=4" , " alpha=30,

theta =3, beta=4" , " alpha=30, theta =5, beta=4" , " alpha=30, theta
=5, beta=7" ) , l t y=c (1 , 2 , 3 , 4 ) , lwd=1.5 , box . l t y =0, cex =1.5)

79
80 f o r ( i in 1 : l ength ( alpha ) ) {
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81 X=theta [ i ] / alpha [ i ] ∗rgamma(m, theta [ i ] , theta [ i ] ) /rgamma(m, alpha [ i
] , a lpha [ i ] )

82 Z=beta [ i ] ∗X
83 d=dens i ty (Z , from=0, ad jus t=2)
84 l i n e s (d$x , d$y , l t y=i , type=" l " , lwd=1.5)
85 }
86 }
87
88 dens i ty_extPareto (m=1000000 , alpha=c (10 ,30 ,30 ,30) , theta=c (3 , 3 , 5 , 5 ) ,

beta=c (4 , 4 , 4 , 7 ) )
89
90
91 # ==================== 4−parameter D i s t r i bu t i on =====================
92 dens i ty_4par=func t i on (m, alpha , theta , beta , eta ) {
93
94 # m s imu la t i on s from the 4−parameter model where the parameters alpha

, theta , beta and eta are generated and p lo t t ed .
95
96 p lo t (0 , 0 , xl im=c (0 ,25 ) , yl im=c ( 0 , 0 . 3 ) ,main="4−parameter PDF" , " l " , x lab

="" , ylab="" , xaxs=" i " , yaxs=" i " , cex . ax i s =1.5 , cex . main=2)
97 l egend ( " top r i gh t " , l egend=c ( " alpha=10, theta =3, beta=4, eta =0.8" , "

alpha=30, theta =3, beta=4, eta =0.8" , " alpha=30, theta =5, beta=4,
eta =0.8" , " alpha=30, theta =5, beta=7, eta =0.8" , " alpha=30, theta

=5, beta=7, eta =1.2" ) , l t y=c (1 , 2 , 3 , 4 , 5 ) , lwd=1.5 , box . l t y =0, cex
=1.5)

98
99 f o r ( i in 1 : l ength ( alpha ) ) {

100 X=rgamma(m, theta [ i ] , theta [ i ] ) /rgamma(m, alpha [ i ] , a lpha [ i ] )
101 Z=beta [ i ] ∗X^eta [ i ]
102 d=dens i ty (Z , from=0, ad jus t=2)
103 l i n e s (d$x , d$y , l t y=i , type=" l " , lwd=1.5)
104 }
105 }
106
107 dens i ty_4par (m=1000000 , alpha=c (10 ,30 ,30 ,30 ,30) , theta=c (3 , 3 , 5 , 5 , 5 ) ,

beta=c (4 , 4 , 4 , 7 , 7 ) , eta=c ( 0 . 8 , 0 . 8 , 0 . 8 , 0 . 8 , 1 . 2 ) )

R_code/R_code_chapter2.R

B.2 R code - Chapter 3

1
2 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 # Finding s u i t a b l e parameter va lue s
4 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5
6 # We p lo t the pdf f o r Gamma, Weibull , Pareto , extended Pareto and 4−

parameter , and use t h e i r c h a r a c t e r i s t i c s to f i nd s u i t a b l e
parameters :

7
8 m=5000
9 p lo t (0 , 0 , xl im=c (0 , 6 ) , yl im=c ( 0 , 1 . 3 ) ,main=" Al l pdf ’ s " , " l " , x lab="" , ylab=

"" , xaxs=" i " , yaxs=" i " , cex . ax i s =1.5 , cex . main=2)
10 l egend ( " top r i gh t " , l egend=c ( "Gamma" , "Weibull " , "Pareto " , " ext Pareto "

, "4 Parameter" ) , l t y=c (1 , 2 , 3 , 4 , 5 ) , lwd=1.5 , box . l t y =0, cex =1.5)
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11
12 # Gamma:
13 alpha_g=3.4
14 x i_g=1
15 Z_g=xi_g∗rgamma(m, alpha_g , alpha_g )
16 d=dens i ty (Z_g , from=0)
17 l i n e s (d$x , d$y , l t y =1, type=" l " , lwd=1.5)
18
19 # Weibull :
20 alpha_w=3.4
21 beta_w=1.1
22 Z_w=rwe ibu l l (m, alpha_w, beta_w)
23 d=dens i ty (Z_w, from=0)
24 l i n e s (d$x , d$y , l t y =2, type=" l " , lwd=1.5)
25
26 # Pareto :
27 alpha_p=3.4
28 beta_p=2.4
29 U=run i f (m, 0 , 1 )
30 Z_p=beta_p∗ (U^(−1/ alpha_p)−1)
31 d=dens i ty (Z_p , from=0)
32 l i n e s (d$x , d$y , l t y =3, type=" l " , lwd=1.5)
33
34 # Extended Pareto :
35 alpha_ep=3.4
36 theta_ep=2.0
37 beta_ep=1.2
38 Z_ep=beta_ep∗ theta_ep/alpha_ep∗rgamma(m, theta_ep , theta_ep ) /rgamma(m,

alpha_ep , alpha_ep )
39 d=dens i ty (Z_ep , from=0)
40 l i n e s (d$x , d$y , l t y =4, type=" l " , lwd=1.5)
41
42 # 4−parameter :
43 alpha_4p=3.4
44 theta_4p=2.9
45 beta_4p=0.6
46 eta_4p=1.2
47 Z_4p=beta_4p∗ (rgamma(m, theta_4p , theta_4p) /rgamma(m, alpha_4p , alpha_4p)

)^eta_4p
48 d=dens i ty (Z_4p , from=0)
49 l i n e s (d$x , d$y , l t y =5, type=" l " , lwd=1.5)
50
51
52 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
53 # Estimating the parameters
54 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55
56 # ======================= Gamma Di s t r i bu t i on ========================
57 nlogL_gamma=func t i on ( alpha , z ) {
58
59 # Function "nlogL_gamma" re tu rn s the negat ive o f the log−l i k e l i h o o d :
60
61 −alpha ∗ ( l og ( alpha )−1)+lgamma( alpha )+alpha ∗ ( l og (mean( z ) )−mean( log ( z )

) )
62 }
63
64 parEstimate_gamma=func t i on ( z ) {
65
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66 # The parameters alpha and x i are est imated where alpha i s minimized
by the opt imize ( ) func t i on . The est imated parameters are returned
by the parEstimate_gamma( ) func t i on :

67
68 x i_hat=mean( z )
69 o=opt imize ( nlogL_gamma, c (0 . 0001 ,max( z ) ) , z=z )
70 alpha_hat=o [ [ 1 ] ]
71 r e s u l t s=matrix ( c ( alpha_hat , x i_hat ) , 1 , 2 )
72 re turn ( r e s u l t s )
73 }
74
75
76 # ====================== Weibull D i s t r i bu t i on =======================
77 nlogL_we ibu l l=func t i on ( alpha , z ) {
78
79 # Function "nlogL_we ibu l l " r e tu rn s the negat ive o f the log−l i k e l i h o o d

:
80
81 beta_alpha=mean( z∗∗ alpha ) ∗∗ (1 / alpha )
82 −sum( dwe ibu l l ( z , alpha , beta_alpha , l og=T) )
83 }
84
85 parEstimate_we ibu l l=func t i on ( z ) {
86
87 # The parameters alpha and beta are est imated where alpha i s

minimized by the opt imize ( ) func t i on . The est imated parameters
are returned by the parEstimate_we ibu l l ( ) f unc t i on :

88
89 o=opt imize ( nlogL_weibu l l , c ( 0 . 0001 , 50 ) , z=z )
90 alpha_hat=o [ [ 1 ] ]
91 beta_hat=mean( z∗∗ alpha_hat ) ∗∗ (1 / alpha_hat )
92 r e s u l t s=matrix ( c ( alpha_hat , beta_hat ) , 1 , 2 )
93 re turn ( r e s u l t s )
94 }
95
96
97 # ======================= Pareto D i s t r i bu t i on =======================
98 nlogL_pareto=func t i on ( beta , z ) {
99

100 # Function "nlogL_pareto " r e tu rn s the negat ive o f the log−l i k e l i h o o d :
101
102 alpha_beta=1/mean( l og (1+z/beta ) )
103 −l og ( alpha_beta /beta )+(1+1/alpha_beta )
104 }
105
106 parEstimate_pareto=func t i on ( z ) {
107
108 # The parameters alpha and beta are est imated where beta i s minimized

by the opt imize ( ) func t i on . The est imated parameters are
returned by the parEstimate_pareto ( ) func t i on :

109
110 o=opt imize ( nlogL_pareto , c ( 0 . 0001 ,max( z ) ) , z=z )
111 beta_hat=o [ [ 1 ] ]
112 alpha_hat=1/mean( log (1+z/beta_hat ) )
113 r e s u l t s=matrix ( c ( alpha_hat , beta_hat ) , 1 , 2 )
114 re turn ( r e s u l t s )
115 }
116
117
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118 # ================== Extended Pareto D i s t r i bu t i on ===================
119 nlogL_extPareto=func t i on ( s , z ) {
120
121 # Function "nlogL_extPareto " r e tu rn s the negat ive o f the log−

l i k e l i h o o d :
122
123 t=exp ( s )
124 −lgamma( t [1 ]+ t [ 2 ] )+lgamma( t [ 1 ] )+lgamma( t [ 2 ] )+t [ 2 ] ∗ l og ( t [ 3 ] ) −(t

[2 ] −1) ∗mean( log ( z ) )+(t [1 ]+ t [ 2 ] ) ∗mean( log (1+z/ t [ 3 ] ) )
125 }
126
127 f indAlpha=func t i on ( alpha , zBar , s2 , skewZ ) {
128
129 theta=zBar^2∗ ( alpha −1)/ ( s2 ∗ ( alpha −2)−zBar^2)
130 2∗ s q r t ( ( alpha −2)/ ( theta ∗ ( alpha+theta −1) ) ) ∗ ( alpha+2∗ theta −1)/ ( alpha

−3)−skewZ
131 }
132
133 parEstimate_extPareto=func t i on ( z ) {
134
135 # Fi r s t we use the method o f moments to f i nd s t a r t i n g va lue s f o r

the optim ( ) func t i on :
136
137 zBar=mean( z )
138 s2=var ( z )
139 skewZ=mean ( ( z−zBar ) ^3)/ s2 ^1.5
140
141 tmp=try ( un i root ( f indAlpha , i n t e r v a l=c (3 .0000001 ,500) , extendInt="yes "

, zBar=zBar , s2=s2 , skewZ=skewZ ) $ root , s i l e n t=TRUE)
142 i f ( i s . numeric (tmp) ) {
143 alpha . s t a r t=tmp
144 } e l s e {
145 alpha . s t a r t =3.00001
146 }
147 i f ( s2 ∗ ( alpha . s ta r t −2)−zBar^2<=0){
148 alpha . s t a r t =2+(0.1+zBar^2)/ s2
149 }
150 theta . s t a r t=zBar^2∗ ( alpha . s ta r t −1)/ ( s2 ∗ ( alpha . s ta r t −2)−zBar^2)
151 beta . s t a r t=zBar∗ ( alpha . s ta r t −1)/ theta . s t a r t
152
153 # The parameters alpha , theta and beta are est imated by the optim ( )

func t i on which minimizes the nlogL_extPareto ( ) func t i on . We
use alpha . s ta r t , theta . s t a r t and beta . s t a r t a s s t a r t i n g va lue s .
The est imated parameters are returned by the parEstimate_
extPareto ( ) func t i on :

154
155 o=optim ( log ( c ( alpha . s ta r t , theta . s t a r t , beta . s t a r t ) ) , nlogL_extPareto ,

z=z )
156 alpha_hat=exp ( o$par [ 1 ] )
157 theta_hat=exp ( o$par [ 2 ] )
158 beta_hat=exp ( o$par [ 3 ] )
159 r e s u l t s=matrix ( c ( alpha_hat , theta_hat , beta_hat ) , 1 , 3 )
160 re turn ( r e s u l t s )
161 }
162
163
164
165
166
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167 # ==================== 4−parameter D i s t r i bu t i on =====================
168 nlogL_fourPar=func t i on ( s , z ) {
169
170 # Function "nlogL_fourPar " r e tu rn s the negat ive o f the log−l i k e l i h o o d

:
171
172 t=exp ( s )
173 −lgamma( t [1 ]+ t [ 2 ] )+lgamma( t [ 1 ] )+lgamma( t [ 2 ] )−t [ 2 ] ∗ l og ( t [ 2 ] )+t [ 2 ] ∗

l og ( t [ 1 ] ) +(t [ 2 ] / t [ 4 ] ) ∗ l og ( t [ 3 ] )+log ( t [ 4 ] ) −(( t [ 2 ] / t [ 4 ] ) −1)∗mean(
log ( z ) )+(t [1 ]+ t [ 2 ] ) ∗mean( log (1+( t [ 2 ] / t [ 1 ] ) ∗ ( z/ t [ 3 ] ) ^(1/ t [ 4 ] ) ) )

174 }
175
176 parEstimate_fourPar=func t i on ( z ) {
177
178 # Fi r s t we use the method o f moments to f i nd s t a r t i n g va lue s f o r

the optim ( ) func t i on :
179
180 zBar=mean( z )
181 s2=var ( z )
182 skewZ=mean ( ( z−zBar ) ^3)/ s2 ^1.5
183
184 tmp=try ( un i root ( f indAlpha , i n t e r v a l=c (3 .0000001 ,100) , extendInt="yes "

, zBar=zBar , s2=s2 , skewZ=skewZ ) $ root , s i l e n t=TRUE)
185 i f ( i s . numeric (tmp) ) {
186 alpha . s t a r t=tmp
187 } e l s e {
188 alpha . s t a r t =3.00001
189 }
190 i f ( s2 ∗ ( alpha . s ta r t −2)−zBar^2<=0){
191 alpha . s t a r t =2+(0.1+zBar^2)/ s2
192 }
193 theta . s t a r t=zBar^2∗ ( alpha . s ta r t −1)/ ( s2 ∗ ( alpha . s ta r t −2)−zBar^2)
194 beta . s t a r t=zBar∗ ( alpha . s ta r t −1)/ alpha . s t a r t
195 eta . s t a r t=1
196
197 # The parameters alpha , theta , beta and eta are est imated by the

optim ( ) func t i on which minimizes the nlogL_fourPar ( ) func t i on .
The est imated parameters are returned by the parEstimate_fourPar
( ) func t i on :

198
199 o=optim ( log ( c ( alpha . s ta r t , theta . s t a r t , beta . s t a r t , eta . s t a r t ) ) , nlogL_

fourPar , z=z )
200 alpha_hat=exp ( o$par [ 1 ] )
201 theta_hat=exp ( o$par [ 2 ] )
202 beta_hat=exp ( o$par [ 3 ] )
203 eta_hat=exp ( o$par [ 4 ] )
204 r e s u l t s=matrix ( c ( alpha_hat , theta_hat , beta_hat , eta_hat ) , 1 , 4 )
205 re turn ( r e s u l t s )
206 }
207
208
209
210
211
212
213
214
215
216



56 APPENDIX B. R CODES

217 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
218 # Estimating the r e s e r v e
219 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
220
221 # ======================= Gamma Di s t r i bu t i on ========================
222 r e s e r v e_gamma=func t i on (m, JuT , alpha , xi , e p s i l o n ) {
223
224 # The r e s e r v e with so lvency l e v e l e p s i l o n i s est imated f o r a Poisson /

Gamma p o r t f o l i o with JuT as the expected number o f c la ims , and m
i s the number o f s imu la t i on s used . The parameters alpha and x i
are the est imated parameters when a c e r t a i n d i s t r u b i t i o n i s
f i t t e d . The est imated r e s e r v e q−ep s i l o n i s returned by the
func t i on r e s e r v e_gamma( ) :

225
226 N=rpo i s (m, JuT)
227 Z=array (0 ,m)
228
229 f o r ( i in 1 :m) {
230 Z [ i ]=sum( x i ∗rgamma(N[ i ] , alpha , alpha ) )
231 }
232
233 q_ep s i l o n=array (0 , l ength ( ep s i l o n ) )
234 f o r ( i in 1 : l ength ( ep s i l o n ) ) {
235 q_ep s i l o n [ i ]= so r t (Z) [(1− ep s i l o n [ i ] ) ∗m]
236 }
237 re turn (q_ep s i l o n )
238 }
239
240
241 # ====================== Weibull D i s t r i bu t i on =======================
242 r e s e r v e_we ibu l l=func t i on (m, JuT , alpha , beta , e p s i l o n ) {
243
244 # The r e s e r v e with so lvency l e v e l e p s i l o n i s est imated f o r a Poisson /

Weibull p o r t f o l i o with JuT as the expected number o f c la ims , and
m i s the number o f s imu la t i on s used . The parameters alpha and
beta are the est imated parameters when a c e r t a i n d i s t r u b i t i o n i s
f i t t e d . The est imated r e s e r v e q−ep s i l o n i s returned by the
func t i on r e s e r v e_we ibu l l ( ) :

245
246 N=rpo i s (m, JuT)
247 Z=array (0 ,m)
248
249 f o r ( i in 1 :m) {
250 Z [ i ]=sum( rwe i bu l l (N[ i ] , alpha , beta ) )
251 }
252
253 q_ep s i l o n=array (0 , l ength ( ep s i l o n ) )
254 f o r ( i in 1 : l ength ( ep s i l o n ) ) {
255 q_ep s i l o n [ i ]= so r t (Z) [(1− ep s i l o n [ i ] ) ∗m]
256 }
257 re turn (q_ep s i l o n )
258 }
259
260
261 # ======================= Pareto D i s t r i bu t i on =======================
262 r e s e r v e_pareto=func t i on (m, JuT , alpha , beta , e p s i l o n ) {
263
264 # The r e s e r v e with so lvency l e v e l e p s i l o n i s est imated f o r a Poisson /

Pareto p o r t f o l i o with JuT as the expected number o f c la ims , and m
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i s the number o f s imu la t i on s used . The parameters alpha and beta
are the est imated parameters when a c e r t a i n d i s t r u b i t i o n i s

f i t t e d . The est imated r e s e r v e q−ep s i l o n i s returned by the
func t i on r e s e r v e_pareto ( ) :

265
266 N=rpo i s (m, JuT)
267 Z=array (0 ,m)
268
269 f o r ( i in 1 :m) {
270 Z [ i ]=sum( beta ∗ ( r un i f (N[ i ] ) ∗∗(−1/ alpha )−1) )
271 }
272
273 q_ep s i l o n=array (0 , l ength ( ep s i l o n ) )
274 f o r ( i in 1 : l ength ( ep s i l o n ) ) {
275 q_ep s i l o n [ i ]= so r t (Z) [(1− ep s i l o n [ i ] ) ∗m]
276 }
277 re turn (q_ep s i l o n )
278 }
279
280
281 # ================== Extended Pareto D i s t r i bu t i on ===================
282 r e s e r v e_extPareto=func t i on (m, JuT , alpha , theta , beta , e p s i l o n ) {
283
284 # The r e s e r v e with so lvency l e v e l e p s i l o n i s est imated f o r a Poisson /

extended Pareto p o r t f o l i o with JuT as the expected number o f
c la ims , and m i s the number o f s imu la t i on s used . The parameters
alpha , theta and beta are the est imated parameters when a c e r t a i n

d i s t r u b i t i o n i s f i t t e d . The est imated r e s e r v e q−ep s i l o n i s
returned by the func t i on r e s e r v e_extPareto ( ) :

285
286 N=rpo i s (m, JuT)
287 Z=array (0 ,m)
288
289 f o r ( i in 1 :m) {
290 Z [ i ]=sum( beta ∗ theta / alpha ∗rgamma(N[ i ] , theta , theta ) /rgamma(N[ i ] ,

alpha , alpha ) )
291 }
292
293 q_ep s i l o n=array (0 , l ength ( ep s i l o n ) )
294 f o r ( i in 1 : l ength ( ep s i l o n ) ) {
295 q_ep s i l o n [ i ]= so r t (Z) [(1− ep s i l o n [ i ] ) ∗m]
296 }
297 re turn (q_ep s i l o n )
298 }
299
300
301 # ==================== 4−parameter D i s t r i bu t i on =====================
302 r e s e r v e_fourPar=func t i on (m, JuT , alpha , theta , beta , eta , e p s i l o n ) {
303
304 # The r e s e r v e with so lvency l e v e l e p s i l o n i s est imated f o r a Poisson /

4−parameter p o r t f o l i o with JuT as the expected number o f c la ims ,
and m i s the number o f s imu la t i on s used . The parameters alpha ,
theta , beta and eta are the est imated parameters when a c e r t a i n
d i s t r u b i t i o n i s f i t t e d . The est imated r e s e r v e q−ep s i l o n i s
returned by the func t i on r e s e r v e_fourPar ( ) :

305
306 N=rpo i s (m, JuT)
307 Z=array (0 ,m)
308
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309 f o r ( i in 1 :m) {
310 Z [ i ]=sum( beta ∗ (rgamma(N[ i ] , theta , theta ) /rgamma(N[ i ] , alpha , alpha ) )

^eta )
311 }
312
313 q_ep s i l o n=array (0 , l ength ( ep s i l o n ) )
314 f o r ( i in 1 : l ength ( ep s i l o n ) ) {
315 q_ep s i l o n [ i ]= so r t (Z) [(1− ep s i l o n [ i ] ) ∗m]
316 }
317 re turn (q_ep s i l o n )
318 }
319
320
321 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
322 # Simulat ion study
323 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
324
325 r e s e r v e_a l l=func t i on ( z ) {
326
327 # Function " r e s e r v e_a l l " r e tu rn s the est imated r e s e r v e o f a l l

d i s t r i b u t i o n s Gamma, Weibull , Pareto , extended Pareto and 4−
parameter , when z f o l l ow s the t rue d i s t r i b u t i o n :

328
329 gamma_est imate=parEstimate_gamma( z )
330 r e s_gamma=re s e r v e_gamma(m=1000000 ,JuT=50, alpha=gamma_est imate [ 1 ] , x i

=gamma_est imate [ 2 ] , e p s i l o n=c ( 0 . 0 5 , 0 . 0 1 ) )
331
332 we ibu l l_est imate=parEstimate_we ibu l l ( z )
333 r e s_we ibu l l=r e s e r v e_we ibu l l (m=1000000 ,JuT=50, alpha=we ibu l l_es t imate

[ 1 ] , beta=we ibu l l_est imate [ 2 ] , e p s i l o n=c ( 0 . 0 5 , 0 . 0 1 ) )
334
335 pareto_est imate=parEstimate_pareto ( z )
336 r e s_pareto=r e s e r v e_pareto (m=1000000 ,JuT=50, alpha=pareto_est imate

[ 1 ] , beta=pareto_est imate [ 2 ] , e p s i l o n=c ( 0 . 0 5 , 0 . 0 1 ) )
337
338 extPareto_est imate=parEstimate_extPareto ( z )
339 r e s_extPareto=r e s e r v e_extPareto (m=1000000 ,JuT=50, alpha=extPareto_

est imate [ 1 ] , theta=extPareto_est imate [ 2 ] , beta=extPareto_
est imate [ 3 ] , e p s i l o n=c ( 0 . 0 5 , 0 . 0 1 ) )

340
341 fourPar_est imate=parEstimate_fourPar ( z )
342 r e s_fourPar=r e s e r v e_fourPar (m=1000000 ,JuT=50, alpha=fourPar_est imate

[ 1 ] , theta=fourPar_est imate [ 2 ] , beta=fourPar_est imate [ 3 ] , e ta=
fourPar_est imate [ 4 ] , e p s i l o n=c ( 0 . 0 5 , 0 . 0 1 ) )

343
344 re turn ( c ( r e s_gamma [ 1 ] , r e s_we ibu l l [ 1 ] , r e s_pareto [ 1 ] , r e s_extPareto

[ 1 ] , r e s_fourPar [ 1 ] , r e s_gamma [ 2 ] , r e s_we ibu l l [ 2 ] , r e s_pareto [ 2 ] ,
r e s_extPareto [ 2 ] , r e s_fourPar [ 2 ] ) )

345 }
346
347
348 # ==================== Gamma − True D i s t r i bu t i on ====================
349 N=500
350 n=5000 # n=500 , n=50, number o f h i s t o r i c a l data
351 alpha =3.4
352 x i=1
353
354 r e s e r v e_trueGamma=matrix (NA, nrow=N, nco l =10)
355
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356 f o r ( i in 1 :N) {
357 z=x i ∗rgamma(n , alpha , alpha )
358 r e s e r v e_trueGamma [ i , ]= r e s e r v e_a l l ( z )
359 }
360
361 # Creates a f i l e "Reserve_trueGamma_5000 . txt " conta in ing the

est imated r e s e r v e when Gamma i s the t rue d i s t r i b u t i o n :
362 wr i t e . t ab l e ( r e s e r v e_trueGamma , f i l e="Reserve_trueGamma_5000 . txt " , row .

names=FALSE, c o l . names=c ( "Gamma.05 " , "Weibull . 05 " , "Pareto . 05 " , "
extPar . 05 " , "4Par .05 " , "Gamma.01 " , "Weibull . 01 " , "Pareto . 01 " , " extPar
. 01 " , "4Par . 01 " ) )

363
364
365 # =================== Weibull − True D i s t r i bu t i on ===================
366 N=500
367 n=5000 # n=500 , n=50, number o f h i s t o r i c a l data
368 alpha =3.4
369 beta =1.1
370
371 r e s e r v e_trueWeibul l=matrix (NA, nrow=N, nco l =10)
372
373 f o r ( i in 1 :N) {
374 z=rwe i bu l l (n , alpha , beta )
375 r e s e r v e_trueWeibul l [ i , ]= r e s e r v e_a l l ( z )
376 }
377
378 # Creates a f i l e "Reserve_trueWeibul l_5000 . txt " conta in ing the

est imated r e s e r v e when Weibull i s the t rue d i s t r i b u t i o n :
379 wr i t e . t ab l e ( r e s e r v e_trueWeibul l , f i l e="Reserve_trueWeibul l_5000 . txt " ,

row . names=FALSE, c o l . names=c ( "Gamma.05 " , "Weibull . 05 " , "Pareto . 05 " , "
extPar . 05 " , "4Par .05 " , "Gamma.01 " , "Weibull . 01 " , "Pareto . 01 " , " extPar
. 01 " , "4Par . 01 " ) )

380
381
382 # =================== Pareto − True D i s t r i bu t i on ====================
383 N=500
384 n=5000 # n=500 , n=50, number o f h i s t o r i c a l data
385 alpha =3.4
386 beta =2.4
387
388 r e s e r v e_truePareto=matrix (NA, nrow=N, nco l =10)
389
390 f o r ( i in 1 :N) {
391 z=beta ∗ ( r un i f (n) ∗∗(−1/ alpha )−1)
392 r e s e r v e_truePareto [ i , ]= r e s e r v e_a l l ( z )
393 }
394
395 # Creates a f i l e "Reserve_truePareto_5000 . txt " conta in ing the

est imated r e s e r v e when Pareto i s the t rue d i s t r i b u t i o n :
396 wr i t e . t ab l e ( r e s e r v e_truePareto , f i l e="Reserve_truePareto_5000 . txt " , row

. names=FALSE, c o l . names=c ( "Gamma.05 " , "Weibull . 05 " , "Pareto . 05 " , "
extPar . 05 " , "4Par .05 " , "Gamma.01 " , "Weibull . 01 " , "Pareto . 01 " , " extPar
. 01 " , "4Par . 01 " ) )

397
398
399 # =============== Extended Pareto − True D i s t r i bu t i on ===============
400 N=500
401 n=5000 # n=500 , n=50, number o f h i s t o r i c a l data
402 alpha =3.4



60 APPENDIX B. R CODES

403 theta =2.0
404 beta =1.2
405
406 r e s e r v e_trueExtPareto=matrix (NA, nrow=N, nco l =10)
407
408 f o r ( i in 1 :N) {
409 z=beta ∗ theta / alpha ∗rgamma(n , theta , theta ) /rgamma(n , alpha , alpha )
410 r e s e r v e_trueExtPareto [ i , ]= r e s e r v e_a l l ( z )
411 }
412
413 # Creates a f i l e "Reserve_trueExtPareto_5000 . txt " conta in ing the

est imated r e s e r v e when extended Pareto i s the t rue d i s t r i b u t i o n :
414 wr i t e . t ab l e ( r e s e r v e_trueExtPareto , f i l e="Reserve_trueExtPareto_5000 .

txt " , row . names=FALSE, c o l . names=c ( "Gamma.05 " , "Weibull . 05 " , "Pareto
. 05 " , " extPar . 05 " , "4Par .05 " , "Gamma.01 " , "Weibull . 01 " , "Pareto . 01 " , "
extPar . 01 " , "4Par .01 " ) )

415
416
417 # ================= 4 Parameter − True D i s t r i bu t i on =================
418 N=500
419 n=5000 # n=500 , n=50, number o f h i s t o r i c a l data
420 alpha =3.4
421 theta =2.9
422 beta =0.6
423 eta =1.2
424
425 r e s e r v e_trueFourPar=matrix (NA, nrow=N, nco l =10)
426
427 f o r ( i in 1 :N) {
428 z=beta ∗ (rgamma(n , theta , theta ) /rgamma(n , alpha , alpha ) )^eta
429 r e s e r v e_trueFourPar [ i , ]= r e s e r v e_a l l ( z )
430 }
431
432 # Creates a f i l e "Reserve_trueFourPar_5000 . txt " conta in ing the

est imated r e s e r v e when 4−parameter i s the t rue d i s t r i b u t i o n :
433 wr i t e . t ab l e ( r e s e r v e_trueFourPar , f i l e="Reserve_trueFourPar_5000 . txt " ,

row . names=FALSE, c o l . names=c ( "Gamma.05 " , "Weibull . 05 " , "Pareto . 05 " , "
extPar . 05 " , "4Par .05 " , "Gamma.01 " , "Weibull . 01 " , "Pareto . 01 " , " extPar
. 01 " , "4Par . 01 " ) )

R_code/R_code_chapter3.R

B.3 R code - Chapter 4

1
2 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 # Calcu la te the b i a s and root mean squared e r r o r
4 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5
6 # Functions that takes the t rue r e s e r v e and the est imated r e s e r v e s as

input and c a l c u l a t e the b i a s e s :
7
8 b ia s .05= func t i on (my_data , t rue_r e s e r v e ) { # ep s i l o n =0.05
9 b_hat=array (0 , 5 )

10 f o r ( j in 1 : 5 ) {
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11 b_hat [ j ]=1/500∗sum(my_data [ , j ]− t rue_r e s e r v e )
12 }
13 re turn (b_hat )
14 }
15
16 b ia s .01= func t i on (my_data , t rue_r e s e r v e ) { # ep s i l o n =0.01
17 b_hat=array (0 , 5 )
18 f o r ( j in 1 : 5 ) {
19 b_hat [ j ]=1/500∗sum(my_data [ ,5+ j ]− t rue_r e s e r v e )
20 }
21 re turn (b_hat )
22 }
23
24
25 # Functions that takes the t rue r e s e r v e and the est imated r e s e r v e s as

input and c a l c u l a t e the root mean squared e r r o r s :
26
27 RMSE.05= func t i on (my_data , t rue_r e s e r v e ) { # ep s i l o n =0.05
28 RMSE_hat=array (0 , 5 )
29 f o r ( j in 1 : 5 ) {
30 RMSE_hat [ j ]= sq r t (1 /500∗sum( (my_data [ , j ]− t rue_r e s e r v e ) ^2) )
31 }
32 re turn (RMSE_hat )
33 }
34
35 RMSE.01= func t i on (my_data , t rue_r e s e r v e ) { # ep s i l o n =0.01
36 RMSE_hat=array (0 , 5 )
37 f o r ( j in 1 : 5 ) {
38 RMSE_hat [ j ]= sq r t (1 /500∗sum( (my_data [ ,5+ j ]− t rue_r e s e r v e ) ^2) )
39 }
40 re turn (RMSE_hat )
41 }
42
43
44 # ======================= Gamma Di s t r i bu t i on ========================
45 Reserve_trueGamma_5000=read . t ab l e ( "/Users / s imenho l t e r /Documents/ Skole

/MastersThes is2017 /Reserve /Reserve_trueGamma_5000 . txt " , header=T)
46
47 alpha =3.4
48 x i=1
49 t rue_r e s e r v e=r e s e r v e_gamma(m=10000000 ,JuT=50, alpha , xi , e p s i l o n=c

( 0 . 0 5 , 0 . 0 1 ) )
50 wr i t e . t ab l e ( t rue_rese rve , f i l e="True_Reserve_Gamma. txt " , row . names=

FALSE, c o l . names=FALSE)
51 #true_r e s e r v e=read . t ab l e (" /Users / s imenho l t e r /Documents/ Skole /

MastersThes is2017 /Reserve /True_Reserve_Gamma. txt " , header=F)
52
53 t rue_r e s e r v e .05= true_r e s e r v e [ 1 ]
54 t rue_r e s e r v e .01= true_r e s e r v e [ 2 ]
55
56 # Calcu la te the b i a s and RMSE when n=5000:
57 round ( b i a s . 0 5 ( Reserve_trueGamma_5000 , t rue_r e s e r v e . 0 5 ) , d i g i t s =3)
58 round ( b i a s . 0 1 ( Reserve_trueGamma_5000 , t rue_r e s e r v e . 0 1 ) , d i g i t s =3)
59
60 round (RMSE.05 ( Reserve_trueGamma_5000 , t rue_r e s e r v e . 0 5 ) , d i g i t s =3)
61 round (RMSE.01 ( Reserve_trueGamma_5000 , t rue_r e s e r v e . 0 1 ) , d i g i t s =3)
62
63
64
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65 # ====================== Weibull D i s t r i bu t i on =======================
66 Reserve_trueWeibul l_5000=read . t ab l e ( "/Users / s imenho l t e r /Documents/

Skole /MastersThes is2017 /Reserve /Reserve_trueWeibul l_5000 . txt " ,
header=T)

67
68 alpha =3.4
69 beta =1.1
70 t rue_r e s e r v e=r e s e r v e_we ibu l l (m=10000000 ,JuT=50, alpha , beta , e p s i l o n=c

( 0 . 0 5 , 0 . 0 1 ) )
71 wr i t e . t ab l e ( t rue_rese rve , f i l e="True_Reserve_Weibull . txt " , row . names=

FALSE, c o l . names=FALSE)
72 #true_r e s e r v e=read . t ab l e (" /Users / s imenho l t e r /Documents/ Skole /

MastersThes is2017 /Reserve /True_Reserve_Weibull . txt " , header=F)
73
74 t rue_r e s e r v e .05= true_r e s e r v e [ 1 ]
75 t rue_r e s e r v e .01= true_r e s e r v e [ 2 ]
76
77 # Calcu la te the b i a s and RMSE when n=5000:
78 round ( b i a s . 0 5 ( Reserve_trueWeibul l_5000 , t rue_r e s e r v e . 0 5 ) , d i g i t s =3)
79 round ( b i a s . 0 1 ( Reserve_trueWeibul l_5000 , t rue_r e s e r v e . 0 1 ) , d i g i t s =3)
80
81 round (RMSE. 05 ( Reserve_trueWeibul l_5000 , t rue_r e s e r v e . 0 5 ) , d i g i t s =3)
82 round (RMSE. 01 ( Reserve_trueWeibul l_5000 , t rue_r e s e r v e . 0 1 ) , d i g i t s =3)
83
84
85 # ======================= Pareto D i s t r i bu t i on =======================
86 Reserve_truePareto_5000=read . t ab l e ( "/Users / s imenho l t e r /Documents/

Skole /MastersThes is2017 /Reserve /Reserve_truePareto_5000 . txt " ,
header=T)

87
88 alpha =3.4
89 beta =2.4
90 t rue_r e s e r v e=r e s e r v e_pareto (m=10000000 ,JuT=50, alpha , beta , e p s i l o n=c

( 0 . 0 5 , 0 . 0 1 ) )
91 wr i t e . t ab l e ( t rue_rese rve , f i l e="True_Reserve_Pareto . txt " , row . names=

FALSE, c o l . names=FALSE)
92 #true_r e s e r v e=read . t ab l e (" /Users / s imenho l t e r /Documents/ Skole /

MastersThes is2017 /Reserve /True_Reserve_Pareto . txt " , header=F)
93
94 t rue_r e s e r v e .05= true_r e s e r v e [ 1 ]
95 t rue_r e s e r v e .01= true_r e s e r v e [ 2 ]
96
97 # Calcu la te the b i a s and RMSE when n=5000:
98 round ( b i a s . 0 5 ( Reserve_truePareto_5000 , t rue_r e s e r v e . 0 5 ) , d i g i t s =3)
99 round ( b i a s . 0 1 ( Reserve_truePareto_5000 , t rue_r e s e r v e . 0 1 ) , d i g i t s =3)

100
101 round (RMSE. 05 ( Reserve_truePareto_5000 , t rue_r e s e r v e . 0 5 ) , d i g i t s =3)
102 round (RMSE. 01 ( Reserve_truePareto_5000 , t rue_r e s e r v e . 0 1 ) , d i g i t s =3)
103
104
105 # Alt e rna t i v e l y , without extreme r e s e r v e e s t imate s :
106 Reserve_truePareto_5000_2=read . t ab l e ( "/Users / s imenho l t e r /Documents/

Skole /MastersThes is2017 /Reserve /Reserve_truePareto_5000_2 . txt " ,
header=T)

107 t rue_r e s e r v e=read . t ab l e ( "/Users / s imenho l t e r /Documents/ Skole /
MastersThes is2017 /Reserve /True_Reserve_Pareto . txt " , header=F)

108
109 t rue_r e s e r v e .05= true_r e s e r v e [ 1 , ]
110 t rue_r e s e r v e .01= true_r e s e r v e [ 2 , ]
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111
112 # Calcu la te the b i a s and RMSE when n=5000:
113 round ( b i a s . 0 5 ( Reserve_truePareto_5000_2 , t rue_r e s e r v e . 0 5 ) , d i g i t s =3)
114 round ( b i a s . 0 1 ( Reserve_truePareto_5000_2 , t rue_r e s e r v e . 0 1 ) , d i g i t s =3)
115
116 round (RMSE.05 ( Reserve_truePareto_5000_2 , t rue_r e s e r v e . 0 5 ) , d i g i t s =3)
117 round (RMSE.01 ( Reserve_truePareto_5000_2 , t rue_r e s e r v e . 0 1 ) , d i g i t s =3)
118
119
120 # ================== Extended Pareto D i s t r i bu t i on ===================
121 Reserve_trueExtPareto_5000=read . t ab l e ( "/Users / s imenho l t e r /Documents/

Skole /MastersThes is2017 /Reserve /Reserve_trueExtPareto_5000 . txt " ,
header=T)

122
123 alpha =3.4
124 theta =2.0
125 beta =1.2
126 t rue_r e s e r v e=r e s e r v e_extPareto (m=10000000 ,JuT=50, alpha , theta , beta ,

e p s i l o n=c ( 0 . 0 5 , 0 . 0 1 ) )
127 wr i t e . t ab l e ( t rue_rese rve , f i l e="True_Reserve_extPareto . txt " , row . names=

FALSE, c o l . names=FALSE)
128 #true_r e s e r v e=read . t ab l e (" /Users / s imenho l t e r /Documents/ Skole /

MastersThes is2017 /Reserve /True_Reserve_extPareto . txt " , header=F)
129
130 t rue_r e s e r v e .05= true_r e s e r v e [ 1 ]
131 t rue_r e s e r v e .01= true_r e s e r v e [ 2 ]
132
133 # Calcu la te the b i a s and RMSE when n=5000:
134 round ( b i a s . 0 5 ( Reserve_trueExtPareto_5000 , t rue_r e s e r v e . 0 5 ) , d i g i t s =3)
135 round ( b i a s . 0 1 ( Reserve_trueExtPareto_5000 , t rue_r e s e r v e . 0 1 ) , d i g i t s =3)
136
137 round (RMSE.05 ( Reserve_trueExtPareto_5000 , t rue_r e s e r v e . 0 5 ) , d i g i t s =3)
138 round (RMSE.01 ( Reserve_trueExtPareto_5000 , t rue_r e s e r v e . 0 1 ) , d i g i t s =3)
139
140
141 # Alt e rna t i v e l y , without extreme r e s e r v e e s t imate s :
142 Reserve_trueExtPareto_5000_2=read . t ab l e ( "/Users / s imenho l t e r /Documents

/ Skole /MastersThes is2017 /Reserve /Reserve_trueExtPareto_5000_2 . txt
" , header=T)

143 t rue_r e s e r v e=read . t ab l e ( "/Users / s imenho l t e r /Documents/ Skole /
MastersThes is2017 /Reserve /True_Reserve_extPareto . txt " , header=F)

144
145 t rue_r e s e r v e .05= true_r e s e r v e [ 1 , ]
146 t rue_r e s e r v e .01= true_r e s e r v e [ 2 , ]
147
148 # Calcu la te the b i a s and RMSE when n=5000:
149 round ( b i a s . 0 5 ( Reserve_trueExtPareto_5000_2 , t rue_r e s e r v e . 0 5 ) , d i g i t s =3)
150 round ( b i a s . 0 1 ( Reserve_trueExtPareto_5000_2 , t rue_r e s e r v e . 0 1 ) , d i g i t s =3)
151
152 round (RMSE.05 ( Reserve_trueExtPareto_5000_2 , t rue_r e s e r v e . 0 5 ) , d i g i t s =3)
153 round (RMSE.01 ( Reserve_trueExtPareto_5000_2 , t rue_r e s e r v e . 0 1 ) , d i g i t s =3)
154
155
156 # ==================== 4−parameter D i s t r i bu t i on =====================
157 Reserve_trueFourPar_5000=read . t ab l e ( "/Users / s imenho l t e r /Documents/

Skole /MastersThes is2017 /Reserve /Reserve_trueFourPar_5000 . txt " ,
header=T)

158
159 alpha =3.4
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160 theta =2.9
161 beta =0.6
162 eta =1.2
163 t rue_r e s e r v e=r e s e r v e_fourPar (m=10000000 ,JuT=50, alpha , theta , beta , eta ,

e p s i l o n=c ( 0 . 0 5 , 0 . 0 1 ) )
164 wr i t e . t ab l e ( t rue_rese rve , f i l e="True_Reserve_fourPar . txt " , row . names=

FALSE, c o l . names=FALSE)
165 #true_r e s e r v e=read . t ab l e (" /Users / s imenho l t e r /Documents/ Skole /

MastersThes is2017 /Reserve /True_Reserve_FourPar . txt " , header=F)
166
167 t rue_r e s e r v e .05= true_r e s e r v e [ 1 ]
168 t rue_r e s e r v e .01= true_r e s e r v e [ 2 ]
169
170 # Calcu la te the b i a s and RMSE when n=5000:
171 round ( b i a s . 0 5 ( Reserve_trueFourPar_5000 , t rue_r e s e r v e . 0 5 ) , d i g i t s =3)
172 round ( b i a s . 0 1 ( Reserve_trueFourPar_5000 , t rue_r e s e r v e . 0 1 ) , d i g i t s =3)
173
174 round (RMSE. 05 ( Reserve_trueFourPar_5000 , t rue_r e s e r v e . 0 5 ) , d i g i t s =3)
175 round (RMSE. 01 ( Reserve_trueFourPar_5000 , t rue_r e s e r v e . 0 1 ) , d i g i t s =3)
176
177
178 # Alt e rna t i v e l y , without extreme r e s e r v e e s t imate s :
179 Reserve_trueFourPar_5000_2=read . t ab l e ( "/Users / s imenho l t e r /Documents/

Skole /MastersThes is2017 /Reserve /Reserve_trueFourPar_5000_2 . txt " ,
header=T)

180 t rue_r e s e r v e=read . t ab l e ( "/Users / s imenho l t e r /Documents/ Skole /
MastersThes is2017 /Reserve /True_Reserve_FourPar . txt " , header=F)

181
182 t rue_r e s e r v e .05= true_r e s e r v e [ 1 , ]
183 t rue_r e s e r v e .01= true_r e s e r v e [ 2 , ]
184
185 # Calcu la te the b i a s and RMSE when n=5000:
186 round ( b i a s . 0 5 ( Reserve_trueFourPar_5000_2 , t rue_r e s e r v e . 0 5 ) , d i g i t s =3)
187 round ( b i a s . 0 1 ( Reserve_trueFourPar_5000_2 , t rue_r e s e r v e . 0 1 ) , d i g i t s =3)
188
189 round (RMSE. 05 ( Reserve_trueFourPar_5000_2 , t rue_r e s e r v e . 0 5 ) , d i g i t s =3)
190 round (RMSE. 01 ( Reserve_trueFourPar_5000_2 , t rue_r e s e r v e . 0 1 ) , d i g i t s =3)

R_code/R_code_chapter4.R
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