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Abstract

The aim of this thesis is to study the convergence and smoothness of certain nonlinear
interpolatory curve subdivision schemes. The emphasis will be on the iterated geometric
schemes, which are extensions of the nonlinear four-point scheme of [I] by Dyn, Floater
and Hormann, based on iterated chordal and centripetal parameterizations. In [I] con-
vergence of the scheme is shown for uniform, centripetal and chordal parameterizations,
ie. a = 0,1/2,1, but we here consider the entire interval o € [0, 1], and derive new
results concerning convergence. In particular, we show that the scheme of [1] is C° for
all a € [1/2,1], but that there always exist control points such that the limit curve is
not well defined for all & € (0,1/2). We also show that a scheme based on the iterated
geometric schemes and the six-point scheme with tension parameter, is C° for a range
of parameters.

We show that the aforementioned schemes fit into a recent framework by Ewald et al.
n [13], for studying smoothness criteria, and propose modified refinement rules based
on [12] to better fit this framework. Lastly, numerical experiments are carried out to
measure the smoothness of the schemes, and a new way to generate the multilevel grid
based on the geometry of the points, is proposed.
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Introduction

Subdivision is a powerful method to generate smooth curves and surfaces from initial
points through iterated refinement. Historically, subdivision was first used in corner
cutting algorithms and to generate splines and Bézier curves. Throughout the end of
the 20th century and the last decades, subdivision has been one of the leading methods
in computer graphics, and especially for generating smooth surfaces in Computer Aided
Geometric Design (CAGD). The theory of subdivision curves is important as much of the
analysis of subdivision surfaces builds upon the concepts in the analysis of subdivision
curves. Subdivision has also proved to be useful in other mathematical fields such as
wavelet and multi-resolution theory, and in the study of partial differential equations.
Most of the subdivision schemes studied before year 2000 were of a linear nature, meaning
that the subdivision refinement rules are based on linear combinations. In recent years
however, there has been a shift in focus over to nonlinear schemes. The nonlinearity of
a subdivision scheme can allow it to have different properties than what is possible with
a linear scheme, but often leads to a more difficult analysis, and new ideas are needed
in order to understand these schemes better.

Note on notation

We write sets of numbers with subscripts to impose restrictions on these sets, e.g. Z>g =
{0,1,2,...}, to avoid ambiguity when discussing sets of numbers. Whenever we talk
about R?, we let d be a finite positive integer. For a vector a = [ag, a1, ...,aq-1] € R,
we let (a); = a; be the i-th coordinate component of that vector, with indexation starting
at 0.

Structure of the thesis

The reader is strongly encouraged to follow the chapters in order as new concepts are
introduced along the way. In chapter 1, we in particular discuss basic polynomial in-
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terpolation theory, and introduce linear interpolatory subdivision schemes. Chapter 2
deals with fundamental analysis of these linear schemes. In chapter 3, we look at two
nonlinear schemes as examples of how we in some cases can adapt the analysis of linear
schemes to analyze nonlinear schemes. In chapter 4, which in many respects is the main
chapter of this thesis, we deal with the iterated geometric schemes based on [I], which
require further thought. Chapters 1 — 3 can therefore be regarded as being introductory,
while the main focus of this thesis starts at chapter 4. In chapter 5, we discuss some
aspects of the recent framework by Ewald et al., and look at how this may be used to
analyze the smoothness of the iterated geometric schemes. In the last chapter, chapter
6, we discuss some ideas which may be useful for further studies of the smoothness of
the iterated geometric schemes, and do numerical experiments.



Chapter One

Methods of interpolation

1.1 Polynomial interpolation

The perhaps most fundamental way to smoothly interpolate a sequence of points {y;}1",
where y; € R? for i = 0,1,...,n, and d € Z>1, is to fit a polynomial p : R — R? € II,,,
where II,, is the space of all polynomials of degree < n spanned by the monomial basis
{1,2,2% ...,2"}. Thus,

p(z;)=vy;, i=0,1,...,n,

where {x;}!", are distinct parameter values, or nodes, which are either given or calcu-
lated. The polynomial interpolant p may therefore be expressed

n
p(z) => ¢l
7=0

where the {c;}]_, are coefficient vectors that need to be determined. This leads to d
linear systems V¢ = y for each dimensional component, where the k-th system with
ke€{0,1,...,d — 1}, becomes

1 xg 22 ... af (co)k (Yo)k

1 x 22 ... af (c1)k (Y1)
V = . . . . . ) Cc= . ) Y=

1z, 22 Ty (en)k (Yn )k

The collocation matrix V is known as a Vandermonde matrix, and it can be shown that
the determinant for a square Vandermonde matrix is given by

det(V) = H (xj — ),
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which is nonzero for distinct x;, and thus the matrix is nonsingular and the system has

a unique solution.

With respect to the analysis of the resulting interpolating polynomial, it is however
often preferable to choose the Lagrangian basis to represent the polynomials of degree
< n. In this setting, the basis functions {L; }?:0 are written

T — T .
Lj(a;):H , j=0,...,n.

=0 i i
i#j

Consequently, the basis functions equal the Kronecker delta at the parameter values, i.e.
1 if i=j
Lj(xi) =055 = 7
0 if i#j,

and hence the left hand matrix V' in the matrix-vector form of the polynomial interpo-
lation problem is the identity matrix in this case, so there is no linear system to solve.
Therefore, p can simply be written as

p(x) => y;L;(x).
=0

An often used property of the Lagrange basis functions is that they form a partition of
unity, meaning that Y7 ; L;(x) = 1 for all x.

Another important form of the interpolation problem often utilized in analysis and
error bounds is Newton’s interpolation formula, which is given by

p(x) =Y ¢;®; 1(x),
§=0

where ¢; = [zg,...,z;]f with f(x;) := y; is the divided difference, and the ®; are
defined
J
O _i(x)=1, Pj(x)= 1_[(x793j)7 j=0,1,...,n—1.

k=0
An r-th divided difference [z, ..., x;1,|f on the parameters o, ..., xj is defined by the
recurrence relation
[.’ITH_l, s 7xi+r]f — [LUi, s 7$i+’r‘—1]

[:ci,...,xi+r]f: y
Litr — T4

ie€{0,....k—r}re{l,....k},
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where [z;]f := f(x;) for i = 0,...,k. An important property of Newton’s interpolation
formula, which we will use later, is that the ordering of the parameters does not matter
since the divided differences are symmetric in their arguments.

For actual implementation, the Newton form or the iterative Neville-Aitken algorithm
are often used. However, the Lagrange form can also be adapted to be more efficient
with the barycentric Lagrange form. For more details about polynomial interpolation,
see e.g. chapter 4 of [6].

An obvious drawback of polynomial interpolation is that the degree of the polyno-
mial is directly tied to the number of points, which leads to instability when n grows.
Furthermore, we have to be careful when choosing the nodes as oscillations in the in-
terpolant between the data points, known as Runge’s phenomenon, may occur for large
n. While this effect is minimized by choosing Chebyshev nodes, using direct polynomial
interpolation for a large amount of points is generally ill-advised.

By instead utilizing the theory of splines, which are a family of piecewise polynomials
with multitudes of valuable properties such as controllable smoothness at the joints, we
can obtain much better results. In fact, the common choice of cubic spline interpolation
with natural boundary conditions yields the interpolant that minimizes bending energyﬂ

1.2 Spline interpolation

Given a non-decreasing knot vector T = (Tj)gi?—ﬂ, a polynomial degree p € Z>q, and
control points {¢;}"; € R? then a spline curve s in the spline space Sgﬂ_, is a linear

combination of the B-spline basis functions Bj, » defined

1 if Tj§$<7—j+1a

Bjor(z) = _ for p=0,
0 otherwise,
Tr — Tj Tj4p+1 — T
Bjpr(r) = —L-Bj, 1+(2) + —L——Bj1p 1-(x) V p>1
Ti+p — Tj Tj+p+1 — Tj+1

Ie.

If 7 satisfies the Schoenberg-Whitney conditions, i.e. that the positivity of the main
n,n

i=1,j=1
where x; are the parameters or data abscissae, then there exists a unique spline curve

diagonal of the B-spline collocation matrix with elements (B;,(x;)) is guaranteed,

!See e.g chapter 5 of [22]
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interpolant. This is only a very brief look at the theory of splines, and a much more
comprehensive study may be found in e.g. [22].

While splines are a powerful tool for many purposes, both the simplicity of the con-
struction and implementation, and intuition behind subdivision is appealing. In fact, it
has been shown that certain types of approximating splines can be computed by choos-
ing the subdivision masks carefully. In particular, Chaikin’s algorithm can compute
quadratic cardinal splines, i.e. quadratic splines with uniformly spaced knots, and the
procedure can be generalized to any polynomial degree with the Lane-Riesenfeld algo-
rithms, where the weights, or mask coefficients, are chosen from the rows of Pascal’s
triangle.

1.3 Linear interpolatory subdivision schemes

Let the initial control points {pgx}rez where pgj € R? be available, and where only
a finite number of points {por}7_, are the points we are typically interested in, and
are the ones given in an actual implementation. The role of the points {po i }rez\{0,n}
will be discussed later, but may be thought of as boundary points. A linear subdivision
scheme on the data is then defined by the refinement process

Djr1k = ij,kfaipj,ia ke Za ] = 07 17 27 ey (11)
)

where m; = {mj}rez is called the subdivision mask of the scheme, and {p;}rez are
the refined points generated by the subdivision scheme at level j. If the mask changes for
each level j, then the scheme is called nonstationary, and otherwise the scheme is called
stationary. Similarly, if the mask is dependent on the index k, then the scheme is called
nonuniform, and thus called uniform if the mask does not depend on k. The number
a € Z>1 is called the arity of the scheme and is related to the number of points at any
given level j + 1 compared to the number of points at level j. Likewise, the arity of the
scheme may be viewed as the number of stencils in the mask, so that the computation of
may be split into a parts. A common choice of arity is a = 2, leading to a binary
subdivision scheme, in which case may be written

Pj+1,2k = Z Mj2k—2i Pjis ke Za j = 07 1) 2) CEE)

1

Pjt12k41 = D Mjokt1-2Pji» k€Z, j=0,1,2,...,
i

for the even and odd refined points. The term linear subdivision refers to the fact that
the generated points at each level j + 1 are linear combinations of those at the previous
level j. Moreover, if the subdivision mask is constructed such that p;ii . = pji is
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satisfied, then the scheme is called interpolatory, as both the original control points
and the points generated at each level are kept, and otherwise the scheme is called
approximating. Chaikin’s algorithm is an example of an approximating subdivision
scheme.

Binary interpolatory subdivision schemes will be the main type of schemes studied in
this thesis and all results in this and the next chapter apply to these unless otherwise
stated. By letting Pj; = [(pjk)ilkez for each spatial component i € {0,...,d — 1}, we
can componentwise let a subdivision step be written as a matrix-vector product

Pji1 = S;Pji,

where S is a bi-infinite matrix, with rows based on the stencils of the subdivision mask,
and is called the subdivision matrix of the scheme at level j, and P;; is an infinite
vector of the i-th coordinate component of the control points. The subdivision matrix
is an important tool for studying linear subdivision schemes, but we will in this thesis
instead consider alternative techniques, which in essence are based on many of the same
principles as studying the subdivision matrix.

Since a linear subdivision scheme treats each coordinate component independently, it
does not matter if we use vectors or scalars for the points when we define these schemes.

The two-point scheme

For completeness we will first discuss the two-point scheme, which essentially just con-
nects the control points by straight lines, and thus is of little practical use. The scheme
is defined as

Pj+1,2k = Djks (1.2)
Pjk t Pjk+1
Dj+1,2k+1 = %7 (1.3)
such that p;1 9r41 is the midpoint of the neighboring two points at the previous level,
and its mask is thus given as m = %(1, 2,1). Tt is trivial that this leads to a curve that
cannot be smooth at the joints, as is apparent in The resulting limit curvdﬂ
is in fact the linear spline interpolant with knots of multiplicity one.

The four-point scheme and the Dubuc-Deslauriers schemes

One of the earliest and most studied interpolatory subdivision schemes, first devised by
Dubuc in 1986 [3], is called the four-point scheme. In its most basic form, the mask of

2Loosely defined as the limit of curves as the number of iterations of the subdivision scheme ap-
proaches infinity. We will define this in detail later.
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Pjk = DPj+1,2k

Pj+1,2k—1
Pj+1,2k+1

Pj k-1 Pjk+1

Figure 1.1: Two-point scheme construction after one subdivision step.

the four-point scheme is given as m = %6(—1, 0,9,16,9,0,—1) such that the even stencil
is (0,1,0) and the odd stencil is %6(—1, 9,9,—1). Therefore, the scheme may be written

Dj+1.2k = Pjk> (1.4)
1 9
Pi+12k+1 = ~ 16 (Pj k-1 + Pjk+2) + 6 (Pjk + Pjk+1) - (1.5)

It turns out that the scheme reproduces cubic polynomials. This follows from the fact
that the elements of the odd stencil are chosen from the Lagrange basis functions with
uniform parameters {z;}3 o = {—1,0,1,2}, evaluated at z = (z1 + 22)/2 = 1/2. A
slightly different and more general variation of the scheme, introduced by Dyn, Gregory
and Levin in [5], independently and almost simultaneously as the work by Dubuc, can
be written as follows

Pj+1,2k = Pj k> (1.6)

1
Pj+1,2k+1 = —W (Pjk—1 + Pjkt2) + (2 + w) (Djk + Pjk+1) - (1.7)

The parameter w € R can be regarded as a tension parameter, where a lower absolute

value reflects a limit curve closer to the control polygo Observe that the choice w = %
results in a scheme equivalent to the Dubuc four-point scheme (1.4)-(1.5)), and thus for

w # %6, this scheme in fact only reproduces linear polynomials.

If we do not restrict Dubuc’s four-point scheme to uniformly spaced parameters, we
can write

Pj+1.2k = Pjk (1.8)

Dj1,2k+1 = Tj k(T j41,2k+1), (1.9)

where 7; 1 is the cubic Lagrange interpolant to the data {p”}fi,? , at the parameters

{xﬂ}f;r,il, evaluated at * = x;412x11. The role of these parameters will be discussed

3The piecewise linear interpolant to the control points.
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in the next sections. This generalization of Dubuc’s four-point scheme was studied by
Daubechies, Guskov and Sweldens in [1T].

An extension of the four-point scheme f to an even number m points was
studied by Dubuc and Deslauriers in [4], where the odd stencil entries come from the
Lagrange basis functions with parameters {z;}7;! = {~m/2 +1,-m/2+2,...,m/2}
evaluated at x = 1/2. By this fact it follows that an m-point Dubuc-Deslauriers scheme
has polynomial precision m — 1. Thus, the four-point Dubuc-Deslauriers scheme is the
four-point scheme 7, and the six-point Dubuc-Deslauriers scheme is for example
given by

Dj+1,2k = Dj k> (1.10)

3 25 75
. — - . _ . ) ) . (111
Pi+12k+1 = e (Pjk—2 + Djk+3) T (Pjk—1+ Pjk+2) + 198 (Pjk + Pjk+1) . (1.11)

Properties of the limit curve of a general subdivision scheme such as C* continuity and
shape preservation is of great interest as this guarantees certain behaviors of the limit
curve when applied to a given sequence of control points. Thus, in the next chapter, we
will review a few of the existing methods for analyzing linear subdivision schemes and
discuss the difficulties in extending these to nonlinear schemes.

1.4 Parameterization and multilevel grids

We begin our analysis of limit curves by introducing a concept known as multilevel grids,
which is in a sense the foundation or support on which the limit curve of a subdivision
scheme is defined. Most of the principles discussed here are based on [11] and [§], in
particular. Suppose we are given a sequence of control points, which are thought to be
samples { f (xy) }kez, where f is some real valued function f : R — R, and X := {xy }rez
is the sequence of strictly increasing real valued parameter values, or grid points such
that
KT o<r 1 <xg<zaTI<T2< .Mn, lim zp = —o00, lim xz; = co.
k——o0 k—o00

By requiring that we are given only a finite sequence of control points, we can impose the
restriction that f has compact support, i.e. that f is non-zero only at a finite number
of the z. We concentrate here on the case for binary subdivision, but the case for
higher arities follows similarly. With each new level of subdivision, new refined grid
points X411 = {x11 1 }rez are generated from the previous level of coarse grid points
X; = {z;1}, using a rule satisfying

Tjr1,2k = Tj ks

Tjr1,2k41 € (Tjks Tjhr1),
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where xg j, := x}, for all indices k. We denote the full multilevel grid, i.e. the grid that
incorporates all levels, by X. There are a few main types of grids on which subdivision
schemes typically are defined

Definition 1.4.1. Common types of multilevel grids

1. Regular grid:
A regular grid, or a uniform grid, is a multilevel grid where the grid points are
equidistantly spaced at each level. This means that Xo = qZ for some positive real
number q, and the X; for j > 0 are generated according to xji1 241 = (Tjk +
Zjkt1)/2, 5 =0,1,.... A common choice for binary subdivision is to set {x; 1} :=
{277k} for j =0,1,2,..., and k € Z. These are called the dyadic points.

2. Semi-reqular grid:
A semi-reqular grid is a multilevel grid such that the initial {x ;} may be irreqularly
or non-uniformly spaced, but then x; 1 ox+1 = x]’ﬁ?& for j > 0.

3. Irregular grid:
An irregular grid is a multilevel grid where the grid points may be irreqularly spaced
at every level.

4. Dyadically balanced grid:
A dyadically balanced grid is an irreqular multilevel grid type with constraints on
the generation of grid points at each level. Given

A = sup max hjyiok hjv12k41
- b )
jk hij hij e

hjk == Zj k41 — Zjk,

then it follows that 1/2 < X < 1, and the grid is called dyadically balanced if X < 1.

T
T

T
T

regular

|
w
1
%
1

| | |

[ [ [

0 2 3
1111}1111111%1 %%%%%% Semi—regular

0 2 3

Figure 1.2: Examples of X5 for different types of multilevel grids.

Note in particular that both a general regular grid and a semi-regular grid is dyadically
balanced with A = 1/2. To shorten notation we from now on let the four-point scheme
with tension parameter on a regular grid be called the FPTS, and let the standard
corresponding four-point scheme with w = 1/16 on a regular grid be called the FPSﬂ

“1.e. Dubuc’s four-point scheme on a regular grid.
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Parametric subdivision schemes

The above definition of multilevel grids assumed that the data was given together with
corresponding parameter values. However, if the data {pj }}_, is thought of as geometric
points, and there are no given parameter values, which is often the case in CAGD, then
it is possible to determine the initial parameters Xy as functions of the control points.
Typically, this is done as follows

Zo = 07
$k+1:$k+”pk+1—pk||a, k:()?l?"'an_lv
where « € [0, 1] is a constant parameter, and || - || commonly is chosen as the Euclidean

lo-norm. For a = 0,1/2,1, this is known as uniform, centripetal, and chordal parame-
terizations, respectively. Observe that e = 0 implies that the grid is independent of the
geometry of the points, while for @ = 1, we get an initial grid spacing that approximates
the chord length, and hence the name. The centripetal parameterization, introduced by
Lee, has been shown to yield cubic spline interpolants close to the control polygon, and
will turn out to be important in the later chapters of this thesis. It has been shown
for Dubuc’s four-point scheme that the chord length parameterization yields degree four
approximation order, while the uniform- and centripetal parameterizations only yield
degree two approximation order.

Subsequent levels of the multilevel grid can then be chosen from these values in a
way such that the satisfactory type of grid is achieved. When plotting the output of a
subdivision scheme applied to vector valued control points, we only consider the vector
values, while the parameters are used solely in the computation of each new level of
subdivision. All the examples in this thesis will be of a parametric nature.

1.5 Convergence and smoothness of a subdivision scheme

In order to precisely define what we mean by the convergence of a subdivision scheme,
we first define the co-norm, or sup-norm, | - [|e of a function f(z): I — R%, where I is
a closed interval in R, as

[ £l == sup | (2)]]oo; (1.12)
zel

where ||v]|oo := max; |(v);], v € R is the vector co-norm. We usually set I = [z, z,]. In
the analysis, we use the property that a linear subdivision scheme treats each coordinate
component independently, and thus only need to look at the one dimensional case f(z) :
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I — R, and hence simply consider
[flloo := sup |f ()]
zel

Definition 1.5.1. We say that a subdivision scheme has a continuous limit function (or
curve) g(z) € C(I,RY), if for any bounded initial data {po j }rez and constant € € Rxy,
there exists an index N € Z>q such that

||gz_g]||00 <e V Za]ZNa

where g;(x) is the piecewise linear interpolant interpolating the data (i, Pjk)kez in
sequence, such that gj(xjr) = pjr and g; is affine on [, Tjky1]. gj is sometimes
referred to as the polygon at level j. For j = 0 this polygon is called the control polygon.
If such a function g(x) = lim;_ g;j(x) exists, we say that the corresponding subdivision
scheme converges (converges uniformly) with respect to the multilevel grid X, or that the
subdivision scheme is CO(I,R?) with respect to X. We say that a subdivision scheme is
C* if its limit curve g has continuous derivatives g(? (x) forq=10,1,...,k, and x € I.
We remark that if a specific multi level grid is not specified in a convergence context, it

is understood that a reqular grid is used.

In this thesis, we use the convention that the control polygon is marked by dots
connected by dashed lines, in the plotsﬂ For a linear subdivision scheme it is more
convenient to analyze each coordinate component independently with respect to ,
and thus using absolute values. We remark that in [Definition 1.5.1| we implicitly demand

uniform convergence, and although weaker conditions are available, uniform convergence
shall be the focus in this thesis. This condition comes from the uniform convergence
theorem. A convenient way to show that a sequence of polygons is a Cauchy sequence
is presented in the following lemma.

Lemma 1.5.1. [7] Given constants C, A € R where A < 1. If

is satisfied, then the sequence {g;}j=0,1,2,.. is a Cauchy sequence.

Proof. Using the condition (1.13), we get that for i > j > N,

lgi — gl < llgj+1 —gill + lgjr2 — gjall + -+ [lgi — gi-1|
’i—j—l .. . .
. 1N NN
< CON Ne = oM =
<O¥ ) T el
k=0
M\ AN

< <
_Cl—)\_cl—)\ N—oo0 0

5Not necessarily always in the illustrations of various subdivision refinement rules.
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Thus the result follows by choosing N large enough so that CAY /(1 — \) < e. O

Although some subdivision schemes are limited to a set degree of smoothness, they
can sometimes be shown to be close to being the next degree of smoothness. Il.e. there
are cases where a subdivision scheme that is e.g. C' can be shown to be almost C2, or
somewhere between being C!' and C2. This concept can be studied using the notion of
Hoélder continuity.

Definition 1.5.2. A function f : [a,b] — R is called Holder continuous with Hélder
exponent B € (0,1), if there exists a real constant C > 0 such that

fy) = f@) <Cly—2” ¥V a<a<y<b,

for some parameter interval [a,b], in which case say that f € CP([a,b]), or f € CP. If
f9 e C8 forq =1,2,....k, we write f € C**P or f € CHP. In cases where j is
allowed to be arbitrarily close but not equal to 1, we sometimes write f € C*t1=¢ to
indicate that f is almost C*t1. Alternatively we can write f € C*'. This notion of
Hélder continuity extends naturally to subdivision schemes by applying it componentwise
to the limit curve of a subdivision scheme.

Boundary conditions for subdivision schemes

If we start with a finite sequence of control points {pg 1 }}_, and an m-point subdivision
scheme, where m > 4 is an even number, we need in total m /2 extra points at the indices
—m/2,...,—land n+1,...,n+m/2 in order for the limit curve to be defined for the
whole of x € I. Two-point schemes do by nature not require boundary conditions. The
way the boundary problem is handled influences the geometry of the final limit curve.
For closed control polygons, where the first and last control points are equal, then the
natural choice of boundary conditions is to use a cyclical boundary. As this choice does
not require any additional data points to be extrapolated in a not necessarily intuitive
way at each end, we use closed control polygons and cyclical boundaries in almost every
example in this thesis, and use simple linear extrapolation otherwise.

Some established results

It was shown in [I0] that the FPTS is C?~¢ for w € (0, 1+8\/5). Moreover, it was proven
in [9] that the limit curve is C! if and only if w € (0, w*), w* ~ 0.19278. In [I1] it was
proven that the four-point scheme is C! for a dyadically balanced grid, as well as being
C?7¢ Hélder continuous for A < 2/3. Floater later improved this bound in [§], using an

approach based on piecewise polynomials, and showed that the Holder continuity holds
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— w=1/16| j=1 — w=1/16]j=2

— w=1/16 | Limit curve — w=1/32| Limit curve

Figure 1.3: Different values of w for the FPTS with tension parameter w applied to a
closed control polygon with control points in R?. The control points are based on one
of the figures in [1].

for A < Ag =~ 0.7142. In fact, the converse has also been shown, i.e. that loss of regularity
may follow as a result of choosing too large of a deviation between new points and the
midpoints of the previous level. Thus the four point scheme is implicitly also shown to
be C?~¢ for the regular and semi-regular case. Below we will review some of the existing
techniques for establishing some of the results stated above for the four-point scheme,
but we will restrict the analysis to regular grids.



Chapter Two

Analysis of linear subdivision
schemes

There have been developed many techniques for studying linear subdivision schemes.
We shall in this chapter review the method of using divided differences for convergence
analysis, but also a method based on Laurent polynomials. The analysis is here restricted
to regular grids, but techniques also exist for generalizing these methods to other types
of multilevel grids.

2.1 Convergence analysis using divided differences

We shall first investigate the smoothness of the four-point scheme defined on a regular
grid, i.e. the FPS, using the formalism of divided differences as our approach. Let g;
be the linear interpolant at level j that interpolates all points in sequence, using the
dyadic points as parameters. As these functions live on the prescribed grids X, and
(x4, %5i+1]g; resembles their discrete first derivatives at a point x;;, it is perhaps not
too surprising that our first method of analysis will be based on this concept. We begin
by proving that the four-point scheme converges to a continuous function, i.e. a function
in C°, and then establish using divided differences that this function is also in C1.

In preparation of the theorem showing C' of the FPS, we will prove the following
auxiliary lemma, which will be useful in our analysis.

Lemma 2.1.1. Given a Bernstein basis function

BN(t) = (7) (Z:Z)z (S:DNZ 0<i<N, (2.1)

19
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on a real interval [a,b], and defining n := b — a, we have that

SN0 =" (B0 - BY ). (2.9

()00
v () (0-3) )

) 711{ (i ivg(f_vl—)!n! (;)1 (1 - Z)N _
v ) (0

(BN - BN ().

s|=

O

The proof of the following theorem is based on [7] and [5]. This proof concentrates on
a finite number of initial control points {pg;};, where it is assumed that the required
boundary points also are assigned, and we here use the convention that zgo = 0 and
xo, = n, such that I = [0,n]. This means that we use a regular grid with dyadic grid
points.

Theorem 2.1.1. The FPS is C'([0,n], RY).

Proof. As discussed, we can work componentwise and thus analyze the one dimensional
case. Let g(x) := lim;_, g;(x) be the limit function of the FPS, where the g; are the
piecewise linear interpolants described above D We observe that the difference g;11 — g;
is also a polygon, and that it must attain its maximum at an odd grid point ;11 2x+1,
since the scheme is binary and interpolatory. Hence,

Djk + Djk+1

||9j+1 - 9j|| = ml?x Pj+1,2k+1 — 5

g, is the piecewise linear interpolant to the data (z;,pjx) = (277k, pjk)-
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However, by defining the forward difference Apjq := pjq+1 — pjq V¢, then we obtain

from the subdivision scheme (|1.4)—(1.5)) that

Pik +Pjk+1 1 1
Pj+1,2k+1 — % = EApj,k—l - EApj,k—H
1
= llgs+1 — g5l < g max|Apjp

Moreover, by taking differences in the subdivision scheme, we can obtain the forward
difference variant of the scheme
Apj+1,2k = Pj+1,2k+1 — Pj+1,2k

1
= {16 (—Pjk—1+ Ik + IDj k1 — pj,k+2)} — Pjk

1 1 1
= —Apip_ —Apir — —Ap;
16 Djk—1 + 5 Pj.k 16 Pjk+1,
A10g‘+1,2k+1 = Pj+1,2(k+1) — Pj+1,2k+1

1
= Djkt+1 — {16 (=pjk—1 + ik + ) kt1 — pj,k+2)}

1 1 1
= ——Ap;p_ —Ap; —Ap; .
16 Pj k-1t 9 Djk + 16 Djk+1

Thus,

5
max |Apji1k| < g max |Apjkl;

and consequently [Lemma 1.5.1|is satisfied with A = 5/8 and C' = maxy, |Apg x|/8. There-
fore, we have established that the limit curve is C?, and our next goal will be to investi-

gate whether the C! criteria is fulfilled. To this end we will utilize the divided differences
on the form
Ap; Ap;
p['ll — J:k _ 2Pjk

k — ],ka
I Tjkt1 — Tje 277

and we introduce gj[l] as the piecewise linear interpolant to the data (z; , pgl;c). In order

to guarantee that g € C'!, we must ensure that the following two requirements are met:

(i) The sequence of polygons {gj[l]} has a continuous limit gl (z) := lim; g]m (x),
z € [0,n].
(i) ¢'(z) =gM(x) ¥V wel0,n],

where n := max x( is the grid point of the rightmost control point. To prove (i), we

need in a similar fashion to the C case, to establish that {gjm} is a Cauchy sequence in
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the max norm. From the forward difference scheme established above, we may as a result
of the dyadic parameter values, easily extract a scheme for the first divided differences,

namely
1 1 1
Pﬂl 2% T g %71 + pﬁ L - gpg ]]c+1v (2.3)
1 I n 1 1
Piti2ket = ~gPhko Dokt 8p§ b (2.4)

Moreover, since 93[‘1+]1 — gj[l] is also a polygon, then clearly it must take on its maximum

value at one of the parameter values ;11 2% Or 41 2k+1, S0 we have that

161, = oI < max(Bar, Boks1),

1 1
ok = max )pﬂmk - PE' k|’

1 1
Bokt1 = m}?X p;j_172k+1 3 (pg ;C +p£ }H—l) .

Now, by using (2.3)—(2.4), it follows that

1n 1n 1 1
Pak = max gpLL Lt (Spﬂ 8p£ ;L) SPE-,;LH
1 1
:mkax —fA H —gApgl]c 1
n , 3 o 3 1] 1 o

ﬁ2k+1:ml?xgjk+8 gk glik+1 T 8]k1

1
= m]?x gAp;;ﬂfl - gApg-’;v .

Furthermore, this implies that

1 1 1
gty — gVl < 5m,§X)APE~,H-

Thus in order to use [Lemma 1.5.1| on the sequence {gjm}, we now need to show that
there exist new constants C' and A < 1 such that

mix ’Ap] ] <CN VY je€Zs.
From ({2.3)—(2.4), we get the following difference scheme

1 1 1
Apﬂlzk A [l]~c 1t APE]

1 1 1 1, n
APHL%H = —gAPHﬂ 1+ Ap[ } 8Ap£ 1]€+1
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However, this leads to an upper bound with A = 1, which does not imply Cauchy.
One way to remedy this is to take a second subdivision step. After some calculations,
involving the techniques employed above, we find that

Ap[‘lj-QAk —2 16 2 0] [Ap
Ap['l+2,4k+1 RS T I S A N AV
Aply | 6410 2 16 2| | Apl)
Apﬁﬂwﬁ 0 -8 32 —8| |Apl)

which implies that

1] 3 i
max ‘Apj+27k‘ < 1 max ‘Apj,k

and thus

i V3 i
m,?X‘Apj—H,k‘ < —5 max ‘Apj,k .

Therefore, (i) is satisfied as [Lemma 1.5.1] holds for the sequence {gj[-l]} with C =

maxy |Ap([)1}k|/2 and A = v/3/2. Now, let ¢;(z) be the Bernstein polynomial to the
{pjr} on the interval [0,n]. We can then write

N
oj(x) = ZBffV(fU)pj,i, N = 27n.
=0

Note that the ¢; are in fact the functions used in the famous constructive proof of the
Weierstrass approximation theorem based on Bernstein polynomials. By [Lemma 2.1.1]
we have that

N N—-1 N N—-1
Pi(x) == BN &) {pjit1 —piit=— > B '(x)Apj,
L L
N—1 ) N-—1
= BN @)2 Apji = Y BN @)l
1=0 1=0

which is exactly the Bernstein polynomial to the {pgll]c} We have that as g; — ¢

uniformly and gj[-l]

convergence of the Bernstein polynomials, it follows that f = ¢/, and we conclude that
g (x) = g (z) for all z € [0,n]. Thus (ii) holds and the result follows. O

— f uniformly for some function f € C(]0,n]), then by the uniform

Alternatively, it is possible to show that g(z) — g(0) = [ gl (u) du for = € [0,n] by
constructing a Riemann type sum based on the (z;, g][lllg) that converges to the given
integral, which is equivalent to (ii) by the fundamental theorem of calculus. Similar
conditions are required for higher order continuity.
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2.2 Convergence analysis using Laurent polynomials

An alternative while related method of analysis is the method of analyzing the Laurent
polynomials generated from the masks of subdivision schemes. The results in this section
are mainly based on [14].

For a stationary subdivision scheme with mask m = (myg)rez, we define the z-
transform m of the mask, or the symbol of the scheme, as the series

m(z) = Z myz".
kEZ
We also define the z-transform Fj of the data {p;} at level j as
F](Z) = ij,izi.
1EL

This allows us to write the subdivision process as

Fia(2) = m(2)Fy(22).
Since the insertion rule of most subdivision schemes is connected to the points on either
side of the insertion point, then the above series expansions involve polynomial powers
of positive and negative degrees, and thus can be viewed as Laurent polynomials. In
light of the four-point scheme with tension parameter w (FPTS) and mask

1 1
m—(—w,O,w+2, 1,w—|—5, 0, —w),

we find that its symbol can be written

1 1
m(z):—w23+(w+2)z1+1+(w+2>z—wz3

= (2—2’—;)2 {1 — 2wz (1 - 2)2(2* + 1)} . (2.5)

For some subdivision mask m, we denote its corresponding subdivision scheme as Sy,.

Definition 2.2.1. [Tj] A subdivision scheme Sy, with mask b and symbol b(z), is called
contractive if there exists an { € Z>1 such that

||5’£||Oo ‘= max {Z

JEZ

(€]
Ay

;0§z‘<24}<1,

where the bgf] are the coefficients of the Laurent polynomial

bl (2) = ﬁ (=2 ).

j=1



2.2. CONVERGENCE ANALYSIS USING LAURENT POLYNOMIALS 25

Theorem 2.2.1. [T]] Let m(z) = (Z+21,)Ln+1b(z) with Sy contractive. Then the limit curve
of Sy, is C™.

Although the above theorem may seem somewhat complicated to use, it is in fact fairly
easy to apply to a general uniform binary subdivision scheme. Increasing ¢ typically
produces better contractive bounds when applied to a scheme with some parameter, e.g.
the tension parameter w of FPTS. However, this may lead to more complicated Laurent
polynomials, which makes analysis harder. It is also worth noting that for high ¢, then
a high number of subdivision steps is required for the corresponding smoothness to be
visible, which means that one should consider a maximum Z.

Theorem 2.2.2. The FPTS is

3 V13-1
CO for we (—8, \/>8> ~ (—0.375, 0.325),
V-1

Ct for we (0, > ~ (0, 0.154).

8

Proof. Using [Theorem 2.2.1|and (2.5, and looking at the n = 0 case for C” analysis, we

find that for FPTS we clearly have

b (2) = b(z) = (Z;l) {1 —2wz2(1 - 2)2(22 + 1)} ,
b2 (2) = b(2)b(22) = (Z;Zl) {1 — 2wz (1 — 2)%(2 + 1)} X
(ZZ;U {1- 20711 - 222" + 1)}

Thus,
158 loe = 20| +1/2 < 1
which holds for w € (—1/4,1/4). Increasing ¢ to £ = 2 yields
15 lloe = max (|w? — w/2| + |~w? +w/2 +1/4] + 202,
‘wQ + w‘ + ‘wQ + w/2‘ + ‘w2 —w/2+ 1/4‘ —|—w2).

We find that [|SZ||o < 1 holds for w € (—=3/8, (/13 —1)/8), in which case we have thus
shown that the scheme has a C? limit.
Likewise, for n = 1, i.e. C! analysis,

b)) =b(z) = 27 — 2wz3(1 — 2)2(2% + 1),

b(2) = (271 = 2wz 3(1 — 2)2(22 + 1)) (272 — 2wz"0(1 — 22)%(z* 4+ 1)).
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The case ¢ = 1 is inconclusive, but for £ = 2 we get
1S3 lloc = max (2[4w? — 2w + 8w?, 4fw| + 1602, [$w — 1] + 4juw]) < 1
V5 — 1)

€0
uefo

And hence, the limit curve is C! for w € (0, (v/5 — 1)/8). Note that duplicate inequal-
ities, due to symmetries in the Laurent polynomial coefficients, have been intentionally
omitted as they do not influence the results. Note also that the approximations in the
approximate intervals are chosen such that the numbers are not rounded outside the
permissible values. O

Programmatic Laurent analysis

It is actually possible, and not overly difficult using symbolic computing, to write a
program that takes the symbol m(z), or mask m, of a general stationary and uniform
linear subdivision scheme Sy, with some parameter w and outputs the bounds on w for
Sm to be C", for some chosen n and ¢. Using this program, it is then easy to analyze
convergence of linear schemes, needing only to find their mask, and avoiding all the
tedious details of the previous divided difference proof method. Take for example the
approximating four-point scheme [24], by the same authors as [I], given as

3 1
Pj+12k = —TWpPjk—1 + <4 + 9w) Djk T <4 + 3w) Djk+1 — dWPj k12,

1 3
Djt1,2k+1 = —OWPj—1 + <4 + 3w) Djk + <4 + 9w) Djk+1 — (WDj k42

We find that its symbol is
1 3
m(z) = —bw(z 2 4+ 24) — Tw(z72 + 23) + (4 + 3w> (z7 4+ 2%) + (4 + Qw) (z+1)

Using the symbol m directly as input into a program laur, which just implements the
symbolic details of the Laurent analysis and solves the resulting inequalities, we get

>>laur (m, ell=2, n=2)

0<w< 67(1/2)/80 — 1/80

This is exactly the interval w € (0, (v/6 — 1)/80) for C? found by the authors in [24],
and demonstrates just how simple the Laurent polynomial analysis of linear stationary
subdivision schemes on regular grids really can be. In chapter 4 we will use this method
on a linear subfamily of a family of nonlinear schemes to prove smoothness bounds.
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2.3 Application to nonlinear subdivision

We finally note that the entire linear subdivision analysis machinery relies on the sim-
plicity of the concept of subdivision masks, and if we cannot access such a mask nor
a subdivision matrix that holds in general, then little of the analysis of this chapter is
applicable. This is also true for the other main methods of linear subdivision such as
eigenanalysis and Fourier analysis.

Some techniques exist for studying the proximity of a nonlinear subdivision scheme
to a linear subdivision scheme. If the nonlinear scheme is in a sense sufficiently close to
the linear scheme then properties such as smoothness can be inherited by the nonlinear
scheme. See e.g. the paper [26] by Wallner and Dyn for more information about this.
The main nonlinear schemes we will discuss in this thesis are however not compliant
with these proximity conditions.

We remark that it is possible to construct basis functions from linear subdivision
schemes and write the limit function as a linear combination of these and the control
points, which also means that proving convergence and smoothness for tensor product
linear subdivision schemes becomes trivial. As such basis functions do not necessarily
exist for nonlinear subdivision, we shall not review it here.



Chapter Three

Nonlinear interpolatory
subdivision schemes

A nonlinear subdivision scheme is characterized by the fact that the linear combination in
the rule is replaced by nonlinear operations on the data, and does not necessarily
abide by the concept of subdivision masks, which the divided difference and Laurent
polynomial analysis, among others, strongly rely on. As several of the nonlinear schemes
we consider in this thesis are defined such that the coordinate component of a new point
is dependent on not just the same coordinate at the previous level, it makes more sense
to use an alternative to to study these schemes. We in some instances instead
define

1 flloo := sup [|£(2)]]5, (3.1)
zeR

where || - ||2 is the Euclidean norm, and we use vectors in our arguments. By the
equivalence of norms in finite dimensional vector spaces, and in particular that ||v]|e <
|v]|2 for v € R?, this is well founded. Note that we here have omitted I and just write
x € R as this interval is in many respects arbitrary, and we can select it as large as we
want when given an infinite sequence of control points.

As we saw in the previous chapters, linear interpolatory subdivision schemes pose a
powerful method for generating smooth interpolants to data. In this chapter, we show
two nonlinear schemes as examples of how the analysis of nonlinear schemes may differ
from that of linear schemes.

28
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3.1 Fractal subdivision (Koch snowflake)

The purpose of subdivision schemes is not always to generate limit curves of high smooth-
ness. In fact, it is possible to construct schemes that yield fractal limit curves, i.e. curves
of a self-similar nature that are nowhere smooth. One such scheme, which in fact also
is interpolatory, for the Koch snowflake fractal, discovered in 1904 by Helge von Koch
[16] and regarded as one of the earliest discovered fractals, can be written as follows for
planar control points,

Dj+1,4k = Pjks (3.2)
1
Dji14k+1 = Djk + g(pj,k:—i-l —pjk) = b, (3.3)
Pj+14k+2 = b+ Rz (b—pjp), (3.4)
2
Dj14k+3 = Pjk + g(pj,kﬂ —Djk), (3.5)
cos(%) —sin(%) 111 =3
here Rx := 3 3/ == . 3.6
where ftg sin(g) cos(%) 21v3 1 (3.6)

We note that the scheme has arity 4EL and that it is a type of two-point scheme as only
pj.i and p; ;41 are used for computing the points {pj+174k+i}§:0. However, as the points
Pj+1,4k+2 are formed by a matrix-vector product using the rotation matrix R%, which
is not a linear combination in each of the coordinates, then the scheme is nonlinear.
In the process at each level of subdivision is evident, and the self-similarity
aspects of the fractal limit curve are clearly visible in the zoomed region. Interestingly
and somewhat counterintuitively, the shape of the limit curve of the scheme applied to
initial data amounting to the corners of an equilateral triangle, as in can
be shown to have an infinite perimeter while having finite area. Furthermore, this last
observation is in fact related to many features in nature, such as the measurement of
geographical coastlines, where the accuracy of physical measurements always can be
increased, leading to a fractal-like scenario.

Theorem 3.1.1. The Koch scheme is C°.

Proof. Note that as the scheme is nonlinear in the sense that the rule makes the
spatial coordinates not independent at each subdivision step, then it is necessary to
work with the vectors p; i € R? in our arguments. Let g;j be the piecewise linear inter-
polant to the data (z;k, Pjk)kez, Where x;x := 477k. Note that these {z;} constitute
a regular grid for a subdivision scheme of arity ¢« = 4. The maximum difference be-
tween g;+1 and g; is determined by the rule (3.4) with the difference being largest at

"Which means that the scheme is quaternary.
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Figure 3.1: Koch snowflake curve at various stages of subdivision. The bottom right
plot is a zoomed in view of the curve near the uppermost control polygon at level j = 7.

the maximum of the distances between the apex pji1ary2 of the equilateral triangle
Dj+1,4k+1> Pj+1,4k+2, Pj+1,4k+3, and its orthogonal projection onto the line between p; 1
and pj 11, i.e. simply the point (pj i + pjr+1)/2. It thus follows that

V3
lgs+1 = gl = 2 5up | APy
keZ

where Ap; . = pjx+1 — Pjr and we used Pythagoras’ theorem to find the relative height
of the triangle. Moreover, we have that

1 1\/
sup |Apjkll2 < = sup [Ap_1klla < -+ < () sup | Apoxa.
keZ 3 kez 3/ kez

Therefore,

V3 /1
i1~ gyl < 27 (

J
3> sup || Apo, k|2
keZ
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which implies C° as the sequence {gj : j € Z>o} is a Cauchy sequence in the co-norm

by [Cemma 15,1 O

We note that the ordering of the control points influences which way the rotation
matrix Rg places the new insertion point about the previous edge. However, we could
just as easily have used R_=, as no assumption about this was used the proof of [Theo-

3
[rem 3.1.1 In|Figure 3.2} the points control points are sampled outward, and we observe

that the fractals segments are oriented inwards. We remark that even though the proof
would be analogous for an R? extension of the scheme, the two-point nature of the
scheme does not allow for an unique axis of rotation to be determined at each insertion,
without further modifications. Although the Koch scheme is inherently nonlinear, we
have seen that the proof for its C” convergence if fairly similar in principle to that of the
regular four-point scheme, even though the subdivision mask is not obtainable. This is
due to the very simple nature of the nonlinearity in the insertion rules, but we shall see
in the following chapters that this very mild case is not characteristic for all nonlinear
schemes.

In [19] a more general class of p-ary subdivision schemes based on normal vectors is
presented, where a vast family of known and new fractals, including the Koch curve and
the Sierpinski gasket, are possible limit curves. However, the proofs for C° of many of
these schemes will be similar to the one above, as simple geometrical constructs are used
to insert every new point.

3.2 Adaptive tension parameter

Before moving on to the highly nonlinear schemes of the next chapter, we shall here
briefly look at a nonlinear scheme that is based on the FPTS. Although the tension
parameter w of the FPTS may be lowered from w = 1/16 to mitigate the visual artifacts
of the limit curve, especially when used on control points of significantly uneven spacing,
this causes the limit curve to appear less smooth with a finite number of subdivision
steps. This apparent loss of smoothness is particularly visible at the original control

points, even though the limit curve is shown to be C! in [Theorem 2.2.2| This can be

seen in [Figure 1.3|and [Figure 3.3] Furthermore, there is no clear strategy for choosing a

global tension parameter w that works well in general for some given sequence of control
points. A way around this problem, introduced in [I7] by Marinov et al., is to use
geometrically controlled tension parameters wj;, dependent on j and k, which means
that the scheme is both nonstationary and nonuniform. The standard nonuniform and
nonstationary four-point scheme with variable tension parameters {w; ;} can be written
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Figure 3.2: Koch scheme applied to control points sampled from a spiral.

as follows,

Dj+1,2k = Pj k> (3.7)
1
Pi12k1 = —Wik (Pjge—1 + Pikr2) + ( 5+ Wik ) (Pjk +Pjk+)- (3.8)
It turns out that one can adapt the Laurent analysis of the previous chapter to work

with schemes of this type, as done in [I8] by Levin. We paraphrase the following useful
theorem from that paper.

Theorem 3.2.1. [18] If {w;;} are the tension parameters of the scheme (3.7)-(3.8)),
and wjy € (0,1/8)Vk € Z, j € Z>o, then the scheme is C1.

We define e, 1, := pj x+1 —Pjk, and let the w; ;, be defined as the composition f o g of two
specialized functions f and g. The function g(j, k) is called a characterizing function,
which measures the regularity of the edge e;, and the function f(z), which is called a
selecting function, maps the range of g into the range of possible tension parameters. In
[17], the following rule for generating the {wj} is proposed,

(3.9)

’ lejn—1ll + llejkll + leskll” W, 1<z<3,
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where W € R is a constant, and ¢(j, k) := 0 if |e;r—1] + ||ejx|| + |lejx|| = 0. This
means that w; = f(g(j,k)). Typically W := 1/16 is chosen such that for an edge of
high regularity, the canonical four-point scheme is used for that insertion. Since the
tension parameters depend nonlinearly on the points, then the scheme is therefore also
nonlinear. Clearly, using W = 1/16, then w;; < 1/8 is satisfied. To guarantee that the
limit curve using this rule will be C!, we have to ensure that the {w;} are bounded
away from zero. A strategy from [I7] to achieve this, is to first complete a set amount
of subdivision steps with the adaptive rule above, and then for each subsequent step let

Witk = MAX(Wjt1,2k, Wik), Wit12k+1 = MAX(Wji1 2641, Wik), (3.10)

where the ;1 2541 and w412 are computed without this modification, i.e. using the

adaptive rules. By [Theorem 3.2.1] the scheme (3.7) — (3.10) is C'. In [Figure 3.3 the

advantage of the adaptive scheme for a control polygon of highly varying edge lengths,
versus the standard FPS and the FPTS with lowered tension parameter, is apparent.

P N
4 e -0 Control polygon :@)
N
B —m - mm e m m o mm o ———— - - - - o
— w=1/16
— w=1/90
— Adaptive w;

Figure 3.3: Effect of the adaptive tension parameter scheme using (3.9) compared to the
FPTS with different w.



Chapter Four

Iterated geometric schemes

The nonlinear schemes we saw in chapter 3 had properties outside what is possible with
linear schemes. They were however analyzable with techniques adapted from the analysis
of linear subdivision schemes. The schemes we now present, based on the paper [I] by
Dyn, Floater and Hormann, are in a sense more nonlinear and thus outside the scope of
most types of analysis.

4.1 The iterated geometric schemes

Let Py = {pox : k € Z} such that po # Pok+1, be the set of initial control points with
Pok € R? d e Z>y. As usual, we are only interested in a finite number of P for actual
applications. Let then P; = {p; : k € Z}, with p;;, € R?, be the set of refined points
at level j. Generally, we can define the class of binary iterated geometric schemes in the
following manner. At each level j € Z>(, we define the parameterization

tikrr —tik = |Pjr+1 — Piklls, tjo=0, keZ, (4.1)

where the parameterization process at each level j will from now on be referred to as an
a-parameterization. Likewise, we define an a—interpolant as the polynomial interpolant
to data using an a-parameterization. Importantly, the a-parameterization is recomputed
at each level, and is not the same as the grid points {x;} we assign to g;. Given an
even integer m > 2, the subdivision refinement rules for the iterated geometric m-point
schemes (IGm-schemes), are defined as

Dj+1,2k = Pj ks (4.2)
Pj12k+1 = 71 5(te),
tig+t

N 72%’”1, (4.4)

34
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k+m /2
i=k—m/2+1 &

and t, := (tj % + t;k+1)/2 is the evaluation point.

where 777} is the odd degree m — 1 Lagrange interpolant to the data {pj.i} t
k+m/2
i=k—m/2+1°

For m = 4, we get the scheme in the original article [I], and for m = 6 we get the

the parameter values {¢;;}

corresponding six-point scheme, both of which shall be discussed in particular in this
thesis. For convenience, we will from now on refer to the iterated geometric scheme for
m = 4 as the IG4-scheme, the scheme for m = 6 as the IG6-scheme, and in general the
m-point scheme as the IGm-scheme. Observe that for o = 0, the IGm-schemes coincide
with the linear m-point Dubuc-Deslauriers schemes, but for a # 0, the IGm-schemes are
inherently nonlinear.

As in chapter 3, we let e := pjry1 — Pjk- It is often enough to look at a local
insertion when considering subdivision schemes of this type, where the cumbersome
indexation i = k—m/2+1,...,k+m/2 is replaced with i = 0,...,m — 1, and the level
J may be left out as the same process happens at each level. To this end, we introduce
a list of definitions to simplify notation in these cases,

€ =ALp, =piy1 —Pi, L= |eill2, u =1,

. (4.5)
Ula,b] = (Ug + -+ + wp), Ly = Li(tx),

where the L; are the Lagrangian basis functions, and it is understood that the above
notation also applies analogously to cases where we use the standard indexation k —
m/2+1,...,k+m/2. The e; can be thought of as edge vectors, and are not to be
confused with the Cartesian unit vectors. Sometimes we also write py, = Pji12k+1
to denote the new point at each insertion where the m-point scheme was used. If the
degree is obvious we may also simply write p*. Using , we in particular have from
the a-parameterization that ¢;11 —t; = ||e;||* = ¥ = u;, so that we may use telescoping
sums and upqp to greatly simplify notation in cases such as for example

t3 —to = (t3 — t2) + (t2 — t1) + (t1 — to) = uo + w1 + uz = ujo g

This means that we can write the Lagrange basis functions, evaluated at ¢, only based
on the u;. For example the first cubic Lagrange basis function evaluated at t,, in the
context of the IG4-scheme, can be written as

. [ttt prte—te (t—t1)(te — to) (B — t3)
0= Lolt) = Lo ( 2 ) B ,,I;I[)to —t,  (to—t1)(to — t2)(to — t3)
r#0
({tl + tQ} — 2t1)({t1 + tg} — 2t2)({t1 + tg} — 2t3)
(2{to — t1})(2{to — t2})(2{to — t3})

. (tQ — tl)(tl — t2)(t1 + t2 — 2t3) _ (ul)(—ul)(—{ul + 2UQ})
S(t(] — tl)(t() — tz)(to — tg) 8(—UO)(—{U0 + ’Uq})(—{’d(] + (75} + UQ})
u? (ug + 2us) B u? (ug + 2us)

8ug(up + u1)(ug + u1 + ug) 8ugu[n,1)U[o,2] (46)
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Rd
pj7k72 p],k+3
R Ljk—1 i k+2
tjk—2 tik by tjkt1 by k+3

Figure 4.1: Ilustration of the six-point iterated geometric subdivision refinement rule.

A key ingredient in many of the following proofs will be studying the vector

Pjk + Pjk+1
djr = Pjyioet1 — L 5 2, (4.7)
which may be viewed as a displacement vector between the new point p; 1 k41 and
the center of the middle edge e;;. Note that this vector is different for each 1Gm-

scheme, since p;i1ox+1 is not defined equally for all IGm-schemes. See |[Figure 4.1| for
an illustration of this vector for the IG6-scheme, based on Figure 1 of [IJ.

4.2 Convergence of the IG4-scheme

It is readily apparent that the method of analysis used on the standard four-point scheme
will not work for this family of nonlinear schemes, as the insertion rule is data-dependent
and the parameterization itself is recomputed at each level based on the previous ge-
ometry. In [I], a more geometric approach is utilized to prove CY convergence of the
IG4-scheme for certain values of o, which we shall review here. Many of the proofs of
this section will therefore be based on [I]. Furthermore, we will later investigate the
IG4- and IG6-schemes for values of « in the entire interval o € [0, 1]. In preparation of
the convergence proof, the following lemma on polynomial interpolation is proved.

Lemma 4.2.1. [I] Consider cubic polynomial interpolation, with data points y; = f(t;),
and parameter values t;, i = 0,1,2,3. Let g be the cubic polynomial that satisfies g(t;) =
yi, © = 0,1,2,3, and let h be the linear polynomial that satisfies h(t;) = y;, i = 1,2.



4.2. CONVERGENCE OF THE 1G4-SCHEME 37

Then,

(t—1t1)(t —t2)

a(t) = h(t) = =1

((t3 — t)[to, t1, ta] f + (t — to)[t1, Lo, 3] f) Vit € R.

Proof. Let {to,t1,t2,t3} be an ordering of the parameters {to, t1, t2,¢3}. Then by writing
out the Newton forms of g and h, we get

9(t) = f(to) + (t — to)[to, ta] f + (t — o) (t — t1)[t0, t1, 2] f
(t —to)(t — t1)(t — t2)[to, t1, 2, 3] f,
h(t) = f(to) + (t — to)[to, 1] f-
= d(t) := g(t) — h(t) = (t — to)(t — t1)[to, 11, t2] f
—to)(t — t1)(t — t2)[to, t1, t2, t3] f-

+

+

So fixing {fo, 1, 2,3} — {t1,t2,t0, t3} yields

d(t) = (t — t1)(t — to)[to, t1,ta] f + (t — to)(t — t1)(t — t2)[to, t1, ta, 3] f

= (t —t1)(t — t2)[to. tr, ta] f + (£ —to) (t — t1)(t — t2) [tl’t2’t3]t€ _ Zo’tlvtz]f

= CZ0C =8 (4 it b0, tal f + (¢ — to)[tr, s a1 )

t3 — 1o
O
At the evaluation point t, = (1 + t2)/2 for the IG4-scheme, [Lemma 4.2.1| reads
te —t1)(Tx — 1
att) = B0 (b, 1) 4 (8 — o)1, 82, 1))

t3 — to

, (4.8)
1(ta —t1)

— _ZW ((ts — to)[to, tr, to] f + (tx — to)[t1, t2, 3] f)

It is now convenient to introduce the following definition of divided differences of the
vector data and the corresponding parameters.

Definition 4.2.1. Let

p[r_l] p[r—l]

el — Py 0
e A T
’ tj7k+7' - t]vk ’

denote the r-th divided difference at the vector points P; with respect to the parameters
{tj,k}kez-
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Combined with the subdivision rule for the 1G4-scheme, this allows us to write the
following lemma, containing two convenient forms of the vector d;, in (4.7)).

Lemma 4.2.2. [1] For the IG}-scheme,

(ke — i)’ 2 2
djjo = — P (0t 1/2)p + (0 1/2p) ) (4.9)

Lk =tk [1] [1] .
djy = "1 atbrl (A(pj,k-H —pji) + B — pj,k—l)) ) (4.10)

where

. th{; — tj7k_1 bo— tj7k+2 — tj7k+1 A= a—+ 1/2 B .= b + 1/2

tier1 —tik Gk —tie o b+l T a+1l

Proof. This follows easily by using the definition of d; for the IG4-scheme, and using
(4.8) in vector form. O

It shall now be our aim to prove the following lemma, showing that the norm of the

d; 1. vector is bounded by a constant less than one times the max of a selection of the

norms of the surrounding edge lengths {|le;[}:L .
Lemma 4.2.3. [1] For the IG4-scheme,
1
ldjell < g max (llejp—ll, llejurall)  for a=0, (4.11)
1 1
il < Jllejwll for a=3, (4.12)
3
ldjll < g max (leje-1ll, lesell, lejr+all) Vo €[0,1], (4.13)
1
d; k]l < §Hej,k’ for a=1. (4.14)

The estimate (4.13)) only holds if the points P; and Pji; are well defined.

Proof. For a = 0 (uniform parameterization),

1
il = e;u/(lejxl®) = ejx. Therefore,

(1] (1] (1] (1]

2 _ Pik+1 " Pjk _ Pik+1 “Pjk _ €ik+1 ~ €k
PR ke — ik 2 2
We have that a = b =1 in (4.9)), so (4.9) reduces to

1

i =~ 1 (€h+1 — €jg-1),
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which implies that

1
il < ¢ max (lleje—1ll; llejm+ll) -

For o = 1/2 (centripetal parameterization),

1 1 1 1
ISkl + RS RSRll+ IPTA el + sl _

tiwrz —tie  llejrenl? + leirl™?  llejraall/? + llejelt/?

2
Pyl <
By using (4.9)), the required result (4.12)) follows immediately, i.e.

1
sl < {llesal

: 1
since (tjk+1 —tj0)° = (llejull2)? = llejell-
For a € [0, 1] (general a-parameterization),

0y _ 1Pikrr —piwll _ el 1—a
Pl = = = |lejx
I 1 tikt1 — tik €kl les
Thus, using (4.10)),
1 [lejkl® - - -
il < 320 {Allesanll™ + 14 ~ Blllegul* + Bllessl' ™}

We now first look at the case a > b, which implies A > B and |[A — B| = A — B.
Therefore,

1 [lejell*T;5"A

d: .|| < 20 5k 0
Idjal < 5 th

gk = max (el

Furthermore, by using the definition of A, and that a,b > 0,

2a +1 2a +1

d. < . alﬂlfa < =T . alﬂllfa
|| ]JﬂH = 4(a+b+ 1)(b+ 1)He]7k” Lk = 4(CL+ 1)He]7kH 7.k (4 15)
2a +1 '
_ . 1— L
= C(a)lley,kH“Tj,k“a Cla) == 4(a+1)
Letting a < 1 implies
3 _ 3 _ 3
Ikl < gHej,kH“F},k“ < T3 = gLk

where we have used that C(a) has a positive derivative for a € (0,1], and therefore
attains its maximum 3/8 at a = 1. By instead looking at a > 1, and using the fact that

a = ([lejr-1[%)/(lejxl%), then

2a +1
d: .l <
” ]:kH = da

_ 3
eyl TR < T

8
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where we used that the function D(a) := (2a + 1)/(4afa + 1]) has a negative derivative
for a > 1, and therefore attains its maximum 3/8 at a = 1.

We now look at the opposite case b > a, which implies that B > A and that |[A — B| =
B — A. It then follows that

ejr||°T B
ol < ST B WAL e jertge
’ 2 a+b+1 4la+b+1)(a+1)" " % (4.16)
2+ 1

22T e ullertal

It is now evident that the bound ||d; || < (3/8)I';x also holds for the case b > a, as
we can simply apply analogous arguments as above for b < 1 and b > 1 where we
use ||e; p+1| instead of |le;r—1], since b = (||le;jr+1/%)/(||€jx]|*). Thus holds in
general for all a € [0,1], assuming that the points P; and Pj1; are well defined.

For a =1 (chordal parameterization),

ek |“FJ1-7;°‘ = Hej,kHFg{k = |le;ll, so the bound follows from for a > b,
since (2a + 1)/(4(a + 1)) < 1/2 for a > 0, and similarly from for b > a, since
(2b+1)/(4(b+ 1)) < 1/2 for b > 0. This completes the proof. O

We will now use to prove the following result, stating that the edge
lengths ||e;j11 x| and ||ej11 2k41]| on each side of the inserted point p; i1 2x+1 indeed get
shorter as the subdivision level j increases.

Lemma 4.2.4. [1] For the IG}-scheme, the following bounds hold.
For aa =0,

5

max (||ej 1,2k, [lej1,2k41]) < gmaX(Hey;kle, lejklls llejkrll) -
For o =1/2,
3
max (||ejy12kl]; [lej+12e+1l) < ~llejkll-
For a € ]0,1],
7
max (|lej 1,2kl [[ejr1,2e41]l) < gmaX(Hej,kfllh lejkll, llejrrall) - (4.17)
Fora=1,

max ([lej1,26[l; lej+1om41ll) < llejrll-

Similarly to|Lemma 4.2.5, (4.17)) only holds if the points P; and Pji1 are well defined.
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Proof. The results easily follow by the definitions of e; ; and d; ; and using|Lemma 4.2.3
so we here only show the case (4.17). Assuming that the points P; and Pjy; are well
defined, we have that

€j1+1,2k = Pj+1,2k+1 — Pj+1,2k = Pj+12k+1 — Pjk
Pjk +Pjk+1 | Pjk+1 —Pjk _ €5k

— Tk g,
2 + 2 o T ik

€j+1,2k+1 = Pj+1,2(k+1) — Pj+1,k+1 = Pjk+1 — Pj+1,2k+1
_ Djk+1 — Pjk Pjk+1 T Pik\ _ €jk
== 9 ~ Dj+1,2k+1 — T 9 )T 5 TGk

Therefore, by [Lemma 4.2.3| with « € [0, 1],

= DPj+12k+1 —

IN

1 1 3
lejri2ell < sllejell + lldjell < Sllejll + 5 (Ilesall)
2 8

7
< - (lesall)

max
8 i=k—1,k,k+1

max
i=k—1,k,k+1

1 7
lej+12e+1]l < §||6j,k:!| + skl < 3 i, 8 (legall) -

X
i=k—1,k,k+1
Thus the result follows by taking the maximum of ||ej;1 2| and |lej11 2k+41]|- O

Lemma 4.2.5. For the IG4-scheme, the points P; at any level j are well defined for
a =1/2 and « = 1. Thus, (4.13)) and (4.17) hold unconditionally for « = 1/2 and

a=1.

Proof. This follows from [Lemma 4.2.3| as ||d;x|| < (1/2)|e;k| for both o = 1/2 and

a = 1, which means that p; # pjx+1 always holds and pj; 1 2x4+1 is well defined. O

We have now developed the tools needed to prove the C° convergence of the IG4-
scheme for certain values of «, namely the centripetal and chordal choices.
Theorem 4.2.1. [1] The IGj-scheme is C° for a = 1/2 and for a = 1.

Proof. By the points P; at every level of subdivision are well defined
for both &« = 1/2 and o« = 1. Let g; be the piecewise linear interpolant to the data

(277k,pjx). We have that

19j+1 = gillo = sup llgj+1(2) — g ()| = sup [dx
z€eR keZ
For both cases of o € {1/2,1}, it follows from [Lemma 4.2.3| that

3
i1 — il < 5 SUp ||€j k|-
1gj+1 — 95l 8k€ZH ikl
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Therefore, by lemma, we get
sup [lejk | < nsupllej_1 il < - <1 sup el (4.18)
keZ keZ keZ

where 1 < 1 is a positive constant. Thus the sequence {g; }jEZZO is a Cauchy sequence
in the sup norm, which implies that the scheme is C° in both cases, and the proof is
complete. ]

As mentioned by the authors in [I], the estimates and hold for all o €
[0,1], assuming that the points P; and Pj; are well defined, and one would thus expect
the scheme to produce a C limit curve for the entire range [0, 1] of a. However, there
may be cases where the points after subdivision are not consecutively distinct, which
implies that points on the subsequent level are not well defined. This is not further
investigated in [I], but will be a fairly large topic in this thesis.

4.3 Validity of the iterated geometric schemes

The only scenario where P; 1 for an iterated geometric scheme is not defined for a new
level 5 + 1 of subdivision, is if the points at the previous level j are not consecutively
distinct, such that two parameters ¢;,t; x+1 become equal, and a division by zero ap-
pears in the evaluation of the Lagrangian basis functions. It was stated in [I] that the
authors had found examples for o = [0, 1/2) where this occurred, but no proof that such
examples exist for every o € [0,1/2) is given in [I]. The aim in this section is to formally
prove that consecutive distinctness is not guaranteed for any « € [0,1/2), for both the
IG4- and IG6-schemes. Contrarily, we show that consecutive distinctness is guaranteed
for all a € [1/2, 1] for the IG4-scheme, which will also lead to a more general C° result.
To this end we introduce the following definition.

Definition 4.3.1. Let the control point data {pok},c;, d € Z>1, satisfy

Dok # Pok+1 V kEZ,

then this data is called consecutively distinct. If

Pik #DPjkt1 ¥V k€L, jels, (4.19)

where {pji};c, are the points generated by a subdivision scheme applied to consecutively
distinct initial data, i.e. that consecutive distinctness of the data is guaranteed at all
levels j of subdivision, then the scheme is called safe. On the other hand, if it can be

shown that (4.19)) does not hold, then the scheme is called unsafe.
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To prove that a binary interpolatory subdivision scheme is unsafe, it it suffices to show
that there exists a solution to the invalidity problem for the scheme, given by

Dj12k+1 = Pjk O  Djy12k+1 = Djk+1s (4.20)

for some level 7 > 0 and index k& € Z, where the initial points are assumed to be
consecutively distinct. Remark that not being able to prove that a scheme is safe is not
the same as the scheme being unsafe, because it is required that the invalidity problem for
the scheme is shown to have a solution. For some schemes, such as the iterated geometric
m-point schemes, the two cases of become equivalent by symmetry, so we only
need to show that p;i12k4+1 = Pjk, and it also suffices to look at the first subdivision
step. In the proof of the following theorem, we show the existence of solutions to the
invalidity problem for the I1G4- and IG6-schemes by analyzing the algebraic expressions
arising from choosing variable control points.

Theorem 4.3.1. The IG/- and IG6-schemes are unsafe for all a € [0,1/2).

Proof. Our general strategy for this proof, for both the IG4- and 1G6-schemes, will be to
write the problem as a nonlinear equation in one variable x, where « is a parameter that
controls the behavior of the equation, and show that this equation must have a solution
for all @ € [0,1/2). We start with the IG4-scheme, and construct dynamic control points
as follows,

D1 :()7 p2:17 Po =, p3:$+1, (421)

where we without loss of dimensional generality choose control points in R, and moreover
we assume that x > 0 and x € R. Note in particular that the control points {pi}?zo are
not in order by index on the line, and note also that x is just a variable here and is not
related to the = of g and g;. In the general R? case, we can simply let e.g. p; = pito,
iy € RY d € Z>q, for some fixed v € {0,1,...,d—1}, where i, is the v-th Cartesian unit
vector, such that the points are located on a straight line along one of the coordinate
axe in RZ. See for a basic illustration. In general we have that the 1G4
invalidity problem is

3

> pili =p1 = (po—p1)L§+ (p2— p1)L5 + (ps — p1)L5 =0,
i=0

where we used the Lagrange form of the a-interpolant, and the partition of unity property
of the Lagrange basis functions. Rewriting this in terms of differences of control points,

€; = Piy+1 — Pi, yields

—eoL[’; + eng + (61 + 62)L§ = 0, (4.22)

!For example the y-axis.
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where

2up + u1)(u1 + 2u2) o uf(2up + uy)
) 3=—5

L = :
’ Buotfo,1)[0,2] Bujg,1ju2

. (4.23)
8u2u(1,2)Y[0,2)
and we used the local notation (4.5) and the strategy from (4.6)). By using the control
point construction (4.21)), and observing that only the v-th equation of the nonlinear
system (4.22)) is nontrivial, i.e. all the other equations in the system hold for all x, we
get

€ —x e1 1 €9 €T
l[) = xT y ll =11 y lg = (x|,
() % (5} 1 u9 %
1 (22% + 1)?
b=Li=ganaryy L=

C8x(z@+1)" 2T 8xo(ze + 1)

where we let e; be the nonzero v-th element of e; for all indices i. Thus, the one

dimensional caseE| of (4.22) becomes

*eoLB + 61L§ + (61 + 62)L§ =

22 +1)2 2z +1)
2 1)Ly + Ls = ( — =0.
Qe+ 1)L5+ L 8ra(xz+1) 8x(x*+1)

By factoring out the common denominator D = 8x%(x® + 1), we get

% {20 41— (20 + 1)} = %{a(az) —b(z)} =0, (4.24)

where

a(r) = (20 + 1)% = 42> 4+ 42 + 1,
b(x) =2z + 1.

By looking at the interior equation a(z) = b(z) of (#.24), we observe that since a(z) =
O(22), b(z) = 2z +o(x), for @ > 0 as x — oo, then we get the exponent inequality 2a <
1 = a < 1/2. Here, O and o denote the Big-O and little-o notations, respectivelyﬂ
Thus, for a € [0,1/2), b(z) is a linear polynomial function that will dominate the strictly
sublinear function a(x) = o(z) as = grows. It is now sufficient to show that there exists
an Z € (0,00) such that a(Z) > b(Z). For simplicity, we choose = 1. So the inequality
a(Z) > b(Z) becomes

2+1)2>2+1 = 9>3,

2Meaning that we only consider the control points ([#.21)) in R, and do not need to consider the
general R case.
3We use the little-o notation here to more precisely write 7+ lower order terms”.
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which clearly holds, and the result follows as there then exists a solution x € (1,00)
to a(z) = b(z) for all a € [0,1/2), since a,b are continuous in the interval in question.
Hence a solution exists to the invalidity problem . This proves that the IG4-scheme
is unsafe for all o € [0,1/2), as claimed.

Consider next the invalidity problem for the IG6-scheme,

5
> pil} = po.
i=0
This can be written as
—(60 + el)LS — elLT + €2L§ + (82 + eg)LZ + (62 +e3 + 64)L§ =0, (4.25)
where

*

(2uy + ug)u3(ug + 2us)(uz + 2ugz 4)

" 32uou[o,1)U[0,2)U[0,3]U[0,4]
L= (2uj0,1) + u2)u3 (us + 2uz) (us + 2%3,4})’
32UQU1U[071}U[173}U[1741
L= (2ujo1) + u2)(2u1 + uz)(u2 + 2u3)(uz + 2u3.4))
32ugu[o 2)U1,2]U[3 4] ’
L= - (2ug 1] + u2)(2u1 + ug)uj(ug + 2u[3’4})’
32uguqug 3u[r 3)U2,3]
- (2ug1] + u2)(2u1 + uz)uj(ug + 2us)

32uqupo a1, 4)U[2,41Y 3,4
We now construct control points as follows,
p2=0, ps=1, pp==z, pr=po=z+1, ps=z+2 (4.26)

where similar dimensional simplifications are applied as for the 1G4-scheme, and we
assume that x > 0. It follows that

€0 -1 €1 —XT €2 1 €3 i €4 1
lO = ) ll = T |, 12 =11 ) l3 AR l4 =1 3
U 1 Ul @ U9 1 us z® Uy 1
Lr = [* (21.04 + 1)2 x _ 7x (2360‘ + 3)2
0

ST B +1)2@e 12 AT NT Tgpee
. (2274 3)%(22% 4+ 1)?
37 32(x + 2) (2@ + 1)2z0
Thus becomes
(22 +3)L5+ (2x + 1)L} + L =
(22 + 3)(22% + 1)? (2% +3)2(2z* + 1) (22 + 1)(2z* + 3)*

— =0.
64(x® +1)2(z>+2)  32(x™ + 2) (x> + 1)2z 64x(x™ + 1)2
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Factoring out the common denominator D = 64x%(z® + 1)%(2% + 2) yields

11){(2.@ +3)(22% 4+ 1)%2% + 2(22% 4 3)%(22% +1)% — (22 + 1)(22° + 3)%(2® + 2)}

1
_D{CL(;L‘) + b(x) — C($)} =0,

where
a(x) := (2z + 3)(22° + 1)z,
b(z) := 2(22 + 3)*(22* + 1),
c(x) := 2z +1)(22 + 3)%*(z® + 2).
We further observe that
a(x) _ 8$3a+1 + 8x2a+1 + 0(x2a+1)’

b(z) = O(a™),

81:304—4—1 +40$2a+1 —I—O(.’L‘2a+1),

@)
—~
8
~
I

with a > 0 as © — oco. Thus we get the exponent inequality 4da < 2a+1 = a < 1/2,

3a+l are the same for a and ¢, but the coefficient of z2¢+!

since the coefficients of =
is higher in ¢ than a. Therefore, ¢(z) is a generalized polynomial function that will
dominate a(x) + b(z) as x increases for all a € [0,1/2), and it remains to show that
there exists an & € (0, 00) such that a(z) 4+ b(Z) > ¢(Z). We again select £ = 1, and get

the inequality
2+3)2+1)2+22+3)22+1)2> 2+ 1)(2+3)%(1 +2) = 495 > 225,

which clearly holds. This implies that there exists a solution to the IG6 invalidity
problem for all @ € [0,1/2) and thus the IG6-scheme is unsafe for all « € [0,1/2), which
completes the proof. O

In [Figure 4.4] and [Figure 4.5 numerical solutions = to the IG4- and IG6-scheme in-

validity problems are plotted in a semi-log plot against a. Observe that the solutions
increase exponentially as o approaches 1/2. Due to numerical limitations, it is difficult
to produce numerical solutions closer to & = 1/2 than shown, but we have proved that
it is possible mathematically. In it is verified numerically that the auxiliary
nonlinear equations used in the proof of are indeed correct within machine

precision.
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m =4 (IG4) m =6 (IG6)
o T P — P12 T lp5 — P22
0 4 0 67/22 0

0.1 5.128743597847651  7.63-10717 | 3.637865697752739  3.47-10"17
0.2 7.456301281688527  2.78-10717 | 4.685167284088005 1.39 10716
0.3 | 14.321485381618711  6.94-10~'7 | 6.981503534063591 7.63-10~'7
0.4 | 73.100374044718293  3.47-10~'7 | 15.217902823720854 2.78 - 1016
0.45 | 1479.076451257438748 1.67 - 10716 | 36.512587690056584 1.53-1016

Figure 4.2: Numerical solutions z for different values of « to the nonlinear equations
(229 +1)%2 = (2z+1) and (22 +3)(22% +1)20* +2(22% + 3)2(22% +1)? = (22 + 1) (22 +
3)2(z + 2) for the IG4- and IG6- invalidity problems, respectively. The errors are also
measured for the differences pji1 or+1 —pj i after subdivision, using the dynamic control
points and the numerical solutions .

Remarks on the constructions (4.21)) and (4.20)

These control point constructions may seem somewhat arbitrary, but there is an under-
lying structure that makes the analysis much more approachable. Primarily, the points
are chosen such that all the points {po}, 4 are located on one side of pg 1, which makes
the a-interpolant resemble a cusp near pgj as z — oo. Experiments indicate that this
is necessary for a solution to the invalidity problem for o € [1/3,1/2). Thus it is con-
ceivable that it might be possible to define restrictions on the control polygon for the
limit curve to be well defined for a € [1/3,1/2) in general, but we will not pursue this
further here. Furthermore, the exact differences between the control points are chosen
such that we get a symmetry in the u;, which make pairs of the LY become equal, and
algebraically simple. The differences are also chosen such that the x does not breach the
requirement that the points at the previous level need to be consecutively distinct.

Thoughts on the general case m > 4

Although the above technique of analyzing the algebraic equations directly proved to be
fruitful for m = 4 and m = 6, and may even be possible for slightly higher degrees m, the
expressions rapidly grow out of hand with m. Therefore, it would be beneficial if we could
use the already established basis case for m = 4 to extrapolate higher degree results by
induction. Luckily, the concept of building higher degree polynomial interpolants from
lower degree polynomial interpolants is exactly what the Newton polynomials are about.
Assume for induction that the invalidity problem has a solution for even m € Z>4, and
we want to show that it holds for the next case m + 2. We have already shown that the
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basis case m = 4 holds. By using the fact that we can reorder the points and parameters
as we want for the Newton interpolant, we get

Puya =(te = t)PY + (te — 1) (b — t2)pY) + -+ (b — 1) -+ (e — tm1)p)" "
F(te—t1) (b= tm)DI™ 4 (b — 1)+ (b — timgr) "
=Py, + X(Po, -+, Pmt1) = Ppy2 + X (PO, - -+ Pmt1),
[m] [m+1]

X(pOa cee 7pm+1) = (t* - tl) e (t* - tm)pl + (t* - tl) e (t* - thrl)p() 5

where we used the shift commutativity of the IGm-schemes, and the induction hypothesis
to obtain pf, = p,, /2. We have not actually shown that the IGm-schemes commute with
linear shifts yet, although this is evident from the fact that we can build the Lagrange
basis function solely from the w;, but we will prove this formally in If we
can show that x = 0 in general for some choice of control points py, ..., DPm+1, Where
Pi,--.,Pm need to be fixed, and we can alter pg, p,+1 in accordance to the other control
points, then the general proof follows. However, the exact analytical procedure is not
obvious, so we here simply conjecture the statement.

Conjecture 4.3.1. The IGm-schemes are unsafe for o € [0,1/2) for all even m > 4.

1G4-scheme
pP1 P2 Do D3
—O0— 00— 00— 00— 1,
0 1 T r+1
IG6-scheme
D2 D3 D1 b4 = Do D5
—O0— 00— 00— 00— 00— 1,
0 1 T r+1 T+ 2

Figure 4.3: Dynamic control point constructions used in the proof of

The special case a =0

Even though the 1Gm-schemes are unsafe for m = 4 and m = 6 with a = 0, this will
not necessarily lead to the subdivision algorithm stopping. If two consecutive points are
equal, then e; = 0 for the corresponding index i, but since ;11 —t; = |le;|| = 0 = 0° for
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Figure 4.4: Numerical solutions to (4.22)). Figure 4.5: Numerical solutions to (4.25)).

a =0, and 0° := 1 in many implementations of basic arithmetic operations in computer
systems, then the program will continue without crashing. It is especially therefore for
the interval a € (0,1/2) where one should be careful.

Safety of the 1G4-scheme

From experiments, it seems that for a € [1/2,1], and consecutively distinct control
points, the IG4-scheme always generates consecutively distinct points. In order to show
this, we first describe a condition, adapted from [I7], that implies the safety of a binary
interpolatory subdivision scheme.

Definition 4.3.2. If
1 .
I ll < 5llejkll ¥ keZ,j=0,

where {dj ;. }rez and {e;}rez are the displacement vectors and edge vectors of a subdi-
vision scheme at level j, respectively, then the subdivision scheme is called displacement-
safe. It is assumed that the control points are consecutively distinct.

Clearly, a displacement-safe subdivision scheme is safe as the displacement vector d;
cannot stretch all the way to any of its neighboring points p;; or p;r,1. This is what
we used to prove that the limit curve of the IG4-scheme is well defined and C° for
a =1/2,1. We now turn to the more general case o € [1/2, 1].

Theorem 4.3.2. The IGj-scheme is displacement-safe for all o € [1/2,1].
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Proof. E| Working with simplified notation and letting d = p* — (p1 + p2)/2 be the
displacement vector for some insertion point p* based on pg, p1, P2, P3, we find that

3

+ 1

d=>"rp -2 . P2 _ Lies— <L5+L{— 2> e1 + Lies,
i=0

where the {e;}3_, are the local edge vectors satisfying e; = p;1 — p;. Thus,
]l < [Lgllo +

1
6+ Li = 3|h + | L3,

where we again used the partition of unity property of the Lagrange basis functions. We
already found L§, L3 in (4.23)), and in addition we find by symmetry in the indices that

(2u0 + ul)(ul + 2U2)

Ly = ,
' Buoup g
| uf(uy +2ug)  (2ug + up)(ug + 2uz) 1
otLi—5=- + -5
2 Buoupyup, Buoup g 2

~up(ug — ug)(2ug + 3uy + 2uz)
8ujo,11u[1,2)U0,2)

Therefore,

u%(ul + 2ug) o + u(up + uz)(2ug + 3u; + 2u2)l1 n u%(Quo +uqp)

ld| <
Buouo,1)U[0,2] 8uo,1)U[1,2]U[0,2] 8uo,2)U[1,2]U2

la.

Thus by using u; = [§¥, we get

M < lé_al%a_l(ul + 2ug) n up(ug + u2)(2ug + 3ug + 2uz) n l%a_ll%_a(QUQ + uy)
I~ 8u[o,1]U[0,2] 8ujo,1]U[1,2]U[0,2] Bupy 2]U[0,2]

By symmetry we can without loss of generality assume that lo > lp. We now first
consider the case [; < lg. Then I; <[5, so the inequalities

ll 2a—1
ly Bt =15 (lo> < 1§ = o,

2a0—1711—« « ll 2ot [
ll l2 = 12 E S l2 = ug.

4This proof builds upon unpublished notes by Chongyang Deng of Hangzhou Dianzi University from
2016, with permission.
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hold for @ > 1/2. Thus, in this case,
||d|| < uo(u1 + 2u2) n ul(uo + UQ)(QUO + 3uq + 2U2) n U2(2U0 + ’LL1)
™ Bupupz 8i[o,17U[1,21U[0,2] 8u[1,21U[0,2]
ug(u1 + 2u2)up g + u1(uo + u2)(2uo + 3ur + 2u2) + uz(2ug + u1)u

Bujo,1)U[1,2]%[0,2)

_ dugu? + 2uduy + 2ugud + 2udus + 2uiud + 4udus + 10uguug < 1
~ 2(8ugu? + quduy + dupui + dudug + dugud + 8uiug + 12uguqug) + 8ui 27
(4.27)

where we compared the coefficients of terms in the numerator and denominator to obtain
the bound, since only greater coefficients appear in the denominator. We then turn to
the outstanding case I; > Iy, and discover that

l 11—«
zgaﬁalzﬁ§<£> <l =w Va<l

Since I1 > Iy, ls > Iy does not directly create a bound between [; and Iy, we consider
each of the subcases [1 > [y and [1 < ly. Let first 1 > I, which implies that

I l1—a

Then,
dll  wi(ug 4+ 2u2)  wi(ug 4+ u2)(2up + 3ug + 2u2)  uy(2ug + uy)
< + +

li ™ 8Bupoup2 8upo,1]U[1,2]U[0,2] 8upy 21U[0,2]
U1 (u1 + 21@)7”1’2] + u1 (UQ + U,())(QUO + 3u; + 271,2) + u1(2u0 + ul)u[o’l}
8ufo,1)Up,2)U .2
2u£{’ + 6u%u2 + 4u1u§ + duguiug + 4u%u1 + 6u0u% 1

<3
2(4u$ + Budug + 4ugud + 12uguiug + 4uduy + Bugu?) +2 2

where z > 0 are the remaining terms of the denominator, and we used the triangle
inequality and the same coefficient comparison process as in (4.27). On the other hand,
for the last possible case ;7 < I, we have

l 2a—1

Then,
M < ui(uy + 2ug) " ug(up + uz)(2up + 3ug + 2us2) n uz(2ug + u1)
i ™ Supyup Bujo, 11,2 (0,2 Bu1, 20,2
up(uy + 2u2)up 9 + u1(uo + uz)(2uo + 3ur + 2u2) + ua(2uo + u)up )
Bujo, 11,21 U[0,2
3u0u% + 2u3u1 + 2u(2)uz + 4u1u% + 7u%u2 + u:f + Tuguiuo 1
- 2(8ugu? + 4uduy + dudug + 4ugud + 8udug + 4ud + 12upuus) + 2 < 2’
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where 2 > 0 are the remaining terms of the denominator, and we use the same argument
as before. As the only assumption is that a € [1/2,1], and we considered an arbitrary
insertion point, then |d; x| < (1/2)|/e;x

in general for all a € [1/2,1], and the proof is
complete. O

Corollary 4.3.1. The IG4-scheme is safe and C° for all o € [1/2,1].

Proof. The safety of IG4-scheme for a € [1/2, 1] follows directly from the displacement-

safe property [Theorem 4.3.2l This means that (4.13) and (4.17)) hold unconditionally
for all @ € [1/2,1]. The proof of [Theorem 4.2.1| thus also applies to all cases a € [1/2,1],

and the result follows. O

The definitions of a safe and displacement-safe subdivision scheme are adapted from
the article [17].

4.4 Distance bounds for the 1G4-scheme

In order to measure the distance between the control polygon and the limit curve, we use
what is known as the Hausdorff distance dy to bound the difference between the part
of the limit curve {g(z) : x € [k,k + 1]} and the line segment [pg 1, Po r+1]. This was
also done in [I], but with the aid of (4.3.1)), we will here be able to bound the Hausdorff
distance not only for @ = 0,1/2, 1, but also for all « € (1/2,1). We closely follow the
discussion of [1], and first introduce the following local variants of (4.18).

Lemma 4.4.1. [1] For a =0,

J
2jk—2g?glgjx(k+1)+1”ej’i < (Z) k_gg?gkﬂ”eo,e ) (4.28)
for a=1/2,
3\J
i leaill < <4) leo.rll; (4.29)
for a € [1/2,1],
7\ 7
27k -2<1<2) (k1) 41 lesall < (8) panax  lleol (4.30)

Proof. By the fact that all points at level j between pox = pj i and pok+1 = Pj2i(k41)

depend only on the six control point {pg; fi,f_Q, then (4.28) and (4.30) follow by
and induction on j. We also used that the IG4-scheme is displacement-safe
for a € [1/2,1], which means that the points at level j are well defined for these a.

(4.29) also follows by induction on j and [Lemma 4.2.4 O
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— a=0 — a=1/4

— a=1/2

Figure 4.6: 1G4 limit curves for various choices of a. The control points are based on
the perimeter of a 2D projection of the famous Stanford Bunny by Stanford Univer-
sity Computer Graphics Laboratory, modified to contain regions of highly varying edge
lengths. The limit curves of the lower four plots have now been shown be be C°.

We note that here holds for o € [1/2,1], and not just & = 1 as in [1]. This allows
us to prove Hausdorff bounds for all the o for which we have shown the 1G4-scheme to
be C°. The Hausdorff distance between two sets is informally defined as the largest of
all distances from a point in one set to the closest point in the other set. Below is a
more formal definition usable in this setting.
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Definition 4.4.1. Given two functions a : X — R%, b:Y — R%, where X, Y C R, we
define the Hausdorff distance dy(a(X),b(Y)) between a(X) and b(Y) as

dp(a(X),b(Y)) = max (jg inf d(a(@), b(y)), sup inf d(a(a), b(:u))) :

where

d(a(z),b(y)) == [la(z) = b(y)l2, z€ X, yeY.

In the current context, we are looking at functions with domain [k, k + 1], as we are
only interested at a section of the limit curve and the corresponding segment of the
control polygon.

Theorem 4.4.1. [1] For a =0,

3

< — .
dr (g([k, k + 1), [Pok, Poje+1]) < 75 poal2% L lleo.ell; (4.31)

for ao=1/2,

5
du (g([k, k +1]), [Pk Pok+1]) < =lleokl, (4.32)

fora €]1/2,1],

11
< — . .
di(g([k.k+1]), [Pok, Porial) < = max o] (4.33)

Proof. Let zj; = 277i be the dyadic grid points. Consider first the difference between

gj+2 and g;. Let hj(z) := gj4o(x) — gj(z), « € [k, k + 1]. We need to investigate h; at

the grid points {xj+2,w}iiii‘- The only nontrivial values of h; to find are hj(z;42.4i+1)

and hj ($j+2,4i+3)- We find that

hj(zji24) = (4.34)
hi( G PR TP g0 d 4.35
Tj42, 41-1—1) Pj+2,4i+1 — | Pj,i + f - j,z/ + 741,215 ( . )
h; ($J+2 42+2) dj X (4'36)
hj(2j424i43) = Dj+2,4i+3 — (pj,i—H - W) =d;ji/2+ dji12i41 (4.37)
Thus,
sup  [lhj(z)| < max (||d;; i+1,2i 0l 1l [1dy,i j+1,2i+1]]) -

xj,i SEST 641
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Using [Lemma 4.2.3| and [Lemma 4.2.4] we get

& max;_g<p<it2 lejell, =0,
max (||dj41,2: ], [|dj+1,21111) < § 15 llejall, a=1/2,
smax;_oce<ivo lejell, o€ [1/2,1].

Therefore, by (4.34)—(4.37) and [Lemma 4.2.3] it follows that

S max;_s<p<ito lejel, a=0,
sup [ (@)l < { =lejll, a=1/2,

i ST<Tj i1
&1 max;_oce<ivo lejell, o€ [1/2,1].

Consequently, by considering all intervals [z;;, x;+1] between k and k + 1, which is

27k <i < 2/(k+1)— 1, and using [Lemma 4.4.1) we get

J
& () maxi—acechrz leoel, a=0,
J
sup By (@)l < 4 % (2) lleasl, a=1/2, (4.38)
k<z<k+1 j
2 (1) maxya<e<kiolleoel, o€ [1/2,1]
Clearly,
o
d (g([k, k + 1)), [Po x> Poxs1]) < sup [g(x) — go(@)| Y sup [lho;()]-

Thus, the result follows by using (4.38) and the fact that

9 §:<5)2f_ 305 (3)21_ 5 33L& <7>2ﬂ'_ 11
644—~\8) 130 164—~\4) 17 644~\8) 5°
7=0 7=0 7=0

O

Theorem 4.4.1| suggests that the IG4-scheme with o = 1/2 yields the limit curve

that is in a sense the closest to the control polygon out of the choices of o € [0,1],
as the distance is only bounded by the middle edge, which also supports the idea that
the centripetal limit curve is free of artifacts. This phenomenon can also be seen in
We further point out the known properties of the limit curve for a = 0, that
it tends to overshoot at short edges while being very close to the control polygon for
long edges, which means that unwanted loops and cusps may occur. The loop artifact
can be seen in[Figure 1.3 and the cusp-like artifact is more visible in [Figure 4.60 On the
other hand, for o« = 1, the limit curve overshoots at long edges while being close to the
control polygon at short edges, which may cause the limit curve to travel relatively far
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away from the control polygon. This can be seen in Interestingly, as pointed
out in [I], these findings comply with the theory for cubic splines, as shown by Floater
n [I5]. Very recently, in [25], new and slightly better Hausdorff bounds were shown for
the IG4-scheme for the select cases o = 0,1/2. It was shown that the coefficient 3/13 in
can be replaced with 2/9, and the coefficient 5/7 in can be replaced with
2/3.

4.5 Smoothness of the iterated geometric schemes

The smoothness of the limit curve is many respects the most important property of a
subdivision scheme. For the iterated geometric schemes, the problem of showing their
smoothness is difficult to resolve. A few years after the 2009 paper [I] on the IG4-
scheme was published, Dyn and Hormann attempted in [2] to show that the IG4-scheme
is G' continuous for planar control points by studying the summability of signed angles,
but succeeded only for other geometric nonlinear schemes. G'! continuity is different
from C' continuity in the fact that the analysis is geometric and not parametric. A
difficult obstacle to overcome in the parametric C'! analysis of the IGm-schemes is that
as a geometrically based reparameterization is carried out at each level, then it is not
obvious as to which parameterization or grid we should study smoothness. Showing that
the IG4-scheme is C is still an unsolved problem. We will return to this topic in chapter
5 and show that the schemes fit into a newly presented framework by Ewald, Reif and
Sabin for studying certain nonlinear schemes, and in chapter 6 where we do numerical
experiments to support our theories.

Before moving on to the 1G6-scheme, we briefly remark on the relation between the
smoothness of the IGm-schemes and the m-point Dubuc-Deslauriers schemes mentioned
in [I]. One may think that the IG4-scheme cannot be C? as the limit curve of the scheme
applied to a regular polygon is independent of o and thus equal to the limit curve of the
FPS, which is known to be at most C?~¢. However, for this fact to be true then the points
in the polygon at level j would need to be equidistant for all j > 0. Starting with the
control points Do, = (17 0)7 Po1 = (Oa 1)7 DPo2 = (_170)a Po,3 = (07 _1)7 Do,4 = Po,0, ie.
a square which is a regular 4-gon, we however get that |es1| /€20l = v617//505 # 1,
so the point p3; depends on «, and the limit curve is dependent on «. Since this

difference happens at the third subdivision step, the limit curves for a € (0,1] will
visually appear almost indistinguishable to the FPS limit curve, but strict equivalence
does not hold in general. Nevertheless, the smoothness of the IGm-schemes are probably
still bounded above by the smoothness of the corresponding Dubuc-Deslauriers schemes.
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4.6 Convergence of the IG6-scheme

Although the IG6-scheme is similar in nature to the IG4-scheme, the technical details
of proving its C° convergence are significantly more involved, due to the local quintic
polynomial interpolation. Admittedly, we will not here be able to show the C? conver-
gence of the IG6-scheme, but we will supply some preliminary analytical findings, and
derive a bound for the d;; vector for this scheme with a centripetal parameterization.

Lemma 4.6.1. For the IG6-scheme with simplified local notation,
ld|| < Lo(t«)lo + |Lo(ts) + Li(ts)|l1 + |Lo(ts) + Li(ts) + La(ts) — 1/2]l2
+ |La(ts) + Ls(t)lls + Ls(te)la,

where d is the displacement vector.

Proof. The result follows by letting

5
+
d=) Li(t)pi - 252,
1=0

rewriting to differences of control points, taking norms, and using the fact that Lg(t.)
and L5(t,) are positive. Moreover, the partition of unity property of the Lagrange basis
function is used to simplify the expression. O

Using Monte Carlo numerical experiments suggest the following bound,
for a select range of «, but a formal proof will not be given.

Conjecture 4.6.1. For the IG6-scheme with o € [0,1/2],
1
lall < 5 max {lo, 1, 12, 13, la} -

For the 1G4-scheme, we noticed that for « = 1, the new point can get significantly
far away from the middle edge. This phenomenon seems to be accentuated for the
[G6-scheme, and even worse for higher m for the IGm-schemes in general.

For completeness, although it will not be used further, we will below derive an explicit
expression for d;; for the IG6-scheme.

Quintic Lagrange interpolation

Let the parameter values t, = {t;}7_, be defined, as well as functional data fs = {f;}>_,.
We now define the auxiliary parameters £; = {t;}?_, and fo= {fi}5_o, which are order-
ings of t5 and fs respectively. Moreover, we let g be the quintic Lagrange interpolant to
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the data fs at ¢, and h be the linear Lagrange interpolant to fo, fi at fo, ;. By writing
out the Newton forms, we have that

5
IZCiwi(t), ¢i = [to, ..., ti)f, wi=(t—to) - (t—ti_1), wo=1,
=0

ht) = £(f0) + (¢ — o)l L.

So,
g(t) = f(to) + (t — to)[to, 1] f
+ (t —to) (t — t1)[to, t1, t2] f
+ (t —to)(t — t1)(t — £2)[to, t1, t2, t3] f
+ (t —to)(t — t1)(t — t2)(t — t3)[to, t1, L2, t3, La] f
+ (t —to)(t — t1)(t — £2)(t — £3)(t — ta)[to, 11, t2, 3, L4, t5)
And thus
g(t) = h(t) = (t — to)(t — t1)[to, 1, 2] f
+ (t —to)(t — t1)(t — t2)[to, t1, 1o, t3]f
+ (t —to)(t — t1)(t — t2)(t — t3)[to, t1, to, t3, T f
+ (t —to)(t — t1)(t — f2) (t — £3)(t — La)[to, 1, b2, E3, fa, E5] .

With this formulation, we are in theory free to choose the ordering in t,, although
the case where ty = t9, t; = t3 is of interest in this case. If we choose the ordering
ts = {to, 3,11, 0, t4,t5}, then it follows that

d(t) := g(t) = h(t) = (t — t2)(t — t3)[t1, ..., ta]f + (£ —t1) -~ (¢ = t3)[to, ..., ts]f
+(t—to) - (t —t3)[to, ..., tal f + (t —to) -+ - (T — ta)[to, .., t5]

Furthermore, in this setting we have that ¢, = (t2 + ¢3)/2, which implies that

d(ty) = —~(ts — )2t .. talf

4
1
— é(tQ +t3 — 2t1)(t3 — tg)Q[to, - ,tg]f
1
— E(tQ +t3 — 2to)(ta + t3 — 2t1)(ts — t2)?[to, . . ., ta] f

1
- 3—2(t2 + tg — 2tg) (Lo + t3 — 2t1)(t3 — t2)?(ty + t3 — 2t4)[to, . . . , 5] f.
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So,
1 9 1
d(t*) = —Z(tg — tg) [tl, - ,tg]f + §(t2 +t3 — 21‘51)[750, - ,tg]f
1
+ (25 = 200)(t2 + 85 — 2t1)[to, ..., tal f
1
+ g(tg +t3 — 2t0)(7f2 + i3 — 2t1)(t2 +t3 — 2t4)[t0, - ,t5]f}.
By using
Pjk + Pjk+1
€jk = Pjk+1 — Pjk» djr = Djr12k+1 — %,

it follows that

1 2 1 3
djj =~ tpr1 = tj,k)Q{pB,;cl + 5 G + e — 2tj,k-1>p£-}€,2+

1 4
7tk + tiken = 2t50-2) (b + ks — Qtj,kfl)PE,;f_er

1 5]
g Wik tikrr = 2typ-2)(tin + tinrr = 250-1) (G + Giker = 25042)Pj 5 (-

Interestingly, as for » = 2, we can bound the r-th divided differences also for r = 3,
with a certain choice of a.

Lemma 4.6.2. Given an a-parameterization, where o = 1/3, with corresponding con-
secutively distinct control points, then

3
Pkl < 2
Proof. For a general o, we have that
€jkt+2 _ _ €jk+1l
p[‘3] _ llejetall® llejetall®
PR (llegperall + llejpea 1) (Nlejprall® + llejpell® + lejxl®)
€jk+1 €5k
. llejetall* lleswll®
(lejrsill* + llejell®)(llej el + llejrrall™ + [lejkll®)
If we now let I; = ||e; ;|| Vi, to simplify notation, then it follows that
1- 1— 1- 1—
1P| < (Upyo L DU +0) + G+ 4 ) U + 1)
gkl = )

Uen + ) W + G ) (o + 1y + 1)
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Then by imposing o = 1/3, we get

9/3 1/3 . 2/31/3 . 2/3 /3 . 2/3 1/3  2/3.1/3  12/3,1/3
1% < 2t + Lol + Gl + AR + B GL + G0 + 0Pl
SRE ¢
1/3,2/3  2/3 1/3 1/3,1/3 11/3
s n ¢— [lk/ lk:{i-l + lk{&-llk{ﬂ + 3lk/ lkﬁ-llkﬁa] <9
< ¢ -
2/3 1/3 . 12/3 11/3 2/3 11/3 2/3 1/3 . 2/3,1/3 | 12/3,1/3
_ U1 + lk/+2lk/+1 +lk42lk/ + 2lkillk/ + 2lk/+1[k/+2 +lk/ lk/+2 +lk/ lk/+1
e
since ¢ > lllc/gllz/jl + lifllifz + 3lllc/3lllcfllllcf? D

It is in fact possible to prove a general bound for Hpﬂ,“ for @« = 1/r, but as this will
lead to an unsafe IG6-scheme for r > 2, as we showed in there will be

no general IG6-scheme C° proof resulting from this idea.

We will now instead consider a different way of bounding d;j for the IG6-scheme,
which as we shall see will allow as us prove C° of a new family of related nonlinear
schemes.

Cubic subtraction

Instead of bounding the distance d;; between the center of the middle edge and the
inserted point directly, we shall now aim to bound the distance g;; between the new
point 7§ = 77?7k(t*), residing on the quintic a-interpolant at t, = (t2 + t3)/2, and the
point 7wj = 71';»1’ j41(t+) which is the cubic a-interpolant to the inner four points evaluated
at t, = (t2 +1t3)/2. We may then, together with the already established bounds for r;,
being defined as the d; ;. vector for the IG4-scheme, use the triangle inequality to obtain
a bound for the IG6 d;j vector. This idea is illustrated in but note that the
proportions are exaggerated for illustrative purposes.

Definition 4.6.1. For an m-point subdivision scheme with m > 4, we define

dji = Pj+12k+1 — %, (4.39)
@ = 7(te) — 7w (L), (4.40)
ik =0 () — W’ (4.41)
where w]f?k(t*) s the full degree m — 1 a-interpolant to the data {pj,i}fiﬁéi/2+l, and
ﬂ;?k__fl(t*) is the degree m — 3 a-interpolant to the inner m — 2 points {paz}fi£ﬁ7§+2

using the inner m — 2 parameters, both evaluated at t, = (tj +1tjr+1)/2, and pji12641
is the new point defined by the subdivision scheme refinement rules.
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Pj+12k+1 = TG
0 ~

Figure 4.7: Alternative way of bounding d;; for the IG6-scheme.

Lemma 4.6.3. For the IG6-scheme with a centripetal parameterization (o =1/2),

1
< S llesll. (4.42)

.k

Proof. For simplicity, we index k —2,...,k+ 3 as 0,...,5. Let mg(¢t) and m4(t) be the
a-interpolants to {p;}?_, and {p;}~_;, respectively, where we can use scalar quantities
as they act independently on each coordinate after the a-parameterization. Let further
f: R — R satisfy f(t;) = (pi)v, @ = 0,...,5 for every v € {0,1,...,d — 1}. Using the
Newton form of the interpolating polynomials, we find that

q(ty) : = me(ts) — ma(ty)
= (t* — tl) oo (t* — t4){t0, ... ,t4]f + (t* — to) oo (t* — t4){t0, ... ,t5]f
(te —t1) - (tx — t4)

== te — ¢t {(tO_t*)[tla---at5]f+(t*—t5)[t0,...,t4]f}.
5 0

By rewriting to vector form, it follows that

u3(2uy + ug)(ug + 2us)

o _ [4] _ (4]
gjk = T {(tO t)py + (t — t5)Pg }
2
B _u2(2u1 + Ug)(ug + QU,g) {to — s 3] . (3] te — t5 [3] [3] }
N 161”0’4] ts — 11 (p P ) + ty (p ~Po )
to—t, (P —pl  pl -
u3(2uy + uz)(uz + 2ug) | s — 1 t5 — 12 ty — t1

16uj,q te — 15 p[22} — p[lz] B 2]
t4—t0 t4—t1 S_tO
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[r]

where we used the local indexation p, * also for the r-th divided difference starting at

p;. For a centripetal parameterization, i.e. o = 1/2, then u3/ly = 151 =1, so

2ug + 2u1 + uy <upm|| e (s + ||p[fH|> .
ikl o (2ur + ug)(uz + 2us) U4 Uj2,4 U[L3]
N 32ujp 4 uz + 2ug + 2uy (up[‘”n Sl O ||p[02}u)
U[o,3] U[L,3] Ulo,2]
2u0+2u1+u2( 1 + 1 >+
< (2uy + u2)(u2 + 2ug3) U[1,4] U[2,4]  U[1,3]
= 16w 41 us + 2us + 2uy < 1 N 1 ) ’
Ufo,3) U,z Yo,

since || p?] | <1Vi|a =1/2, as shown before. Furthermore, by rewriting to a common
denominator, we get

2ug 4+ 2u1 + us <U[1,3] + U[2,4]> i

gl (2ur + u2)(uz + 2us) U4 Uj2,4)U[1.3)
la  — 16U[OA] ug + 2uz + 2uy [ Ujo,2] T U[1,3)
Uo,3] U11,3]%[0,2]

_ (2uy + u2)(u2 + 2ug3) { o 3)U0,2) (2u0,1) + U2

upy 3] + U2, 4})+}
160,471,471 U[2,41U[1,3] U[0,2] U[0,3]

)(
upy 412,41 (U2 + 2u3.47) (U[0,2] + Up13])
v(ug, ..., uq) v 1
— e < =,
Clugy...,uq) 2v+4C(ug,...,uqg) 2

where

Ul 21U 2u + u9)(u +u +
V::(2u1+u2)(u2+2u3){ 0,31%[0,2 (2upo,1) + u2) (up 3 + up.4)) }’

upy aup2,4 (U2 + 2u3 4) (Uj0,2) + Up1,3))

¢ 1= 16ujg g)u,41U[2,4 U[1,3]U[0,2]%[0,3]
C:=(—2v,

and we used that C' > 0, since  contains terms which are not found in v. Defining
the full numerator as the function v and the full common denominator as the function
¢, as above, and using a computer algebra system, namely Matlab’s Symbolic Math
Toolbox, to compute the coefficients of the unique expanded terms in the numerator
and denominator, we find that all the terms of v occur in { with at least double the
coefficient. In fact only ten of the common terms in ¢ have a coefficient twice as high
as the corresponding coefficient in v. The rest have even higher coefficients in (. The
complete list of the coefficient in ¢ divided by the corresponding coefficient in v can be
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found below.

Listing 4.1: Complete list of sorted coefficient ratios

2222222222 16/7 16/7 16/7 16/7 5/2 5/2 68/27 68/27

8/3 8/3 8/3 8/3 36/13 36/13 44/15 44/15 3 55/18 59/19 59/19

16/5 16/5 114/35 114/35 64/19 64/19 24/7 100/29 100/29 168/47
168/47 18/5 18/5 80/21 80/21 80/21 80/21 96/25 96/25 144/37
144/37 160/41 160/41 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 56/13
56/13 192/43 192/43 24/5 24/5 24/5 24/5 216/43 216/43 88/17
88/17 16/3 16/3 52/9 52/9 6 6 6 6 7 7 120/17 120/17 352/47
352/47 15/2 15/2 8 8 10 10 57/5 57/5 12 12 12 12 12 12 12 12
124/9 124/9 432/29 432/29 16 16 16 16 16 33/2 33/2 17 17 52/3
52/3 18 18 112/5 112/5 68/3 68/3 76/3 76/3 28 28 28 28 68 68

This is the same type of coefficient comparison process as in the proof of [Theorem 4.3.2]
just on a grander scale. Therefore, we conclude that we at least have the bound

1 1
gkl < Sl = 5 llejell
2 2

Corollary 4.6.1. For the IG6-scheme with o = 1/2,
3
1 ll < Zllenll-

Proof. By using the centripetal bound (4.12)) on 7;j, since this is the d;, vector for the
1G4-scheme, we get ||r; .|| < |le;x|l/4, and thus

3
1sell < llgzell + lIrsell < 7 llejn

O

This is admittedly not sufficient for C° convergence of the IG6-scheme, as we need
lld; k|l < llejkll/2, but it is a step in the right direction.

The proof of is perhaps not the most elegant, but as we exhaustively
go through every relevant coefficient in the coefficient comparison process, it is valid.

Alternatively, to show that ||g;x||/l2 < 1/2, one could use that we can assume without
loss of generality that us > ug. By symmetry, it is perhaps enough to show that
(2u1 + u2)(ug + 2ug)uj 31uj0,21(2up 1) + u2) (U1 3] + Up2.q)

= <
160,47 U[1,4U[2,4]U[1,3] U[0,2] U[0,3]

e
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Then, by letting ¢ = (a + b)/(c + d), where

a = (2uy + ug)(uz + 2us)up 30,2 (2u)0,1) + u2)u[ 3,
b:.= (2’U,1 + UQ)(UQ + 2U3)U[073]U[0,Q](2’U,[071] + UQ)'U/[QA],
¢ := 16ug 4 U1 4 U2, 4 U[1,3] 0,2 U0,1], @ = 16U 41Ut 4)U[2,41U[1,3]%[0,2] U[2,3]

we can use that in general (a + b)/(c + d) < max{a/c,b/d} for positive real numbers

a,b,c,d. For the case a/c, we for example find that

g< 8“[1,2}“[2,3}”[0,3](U[o,z])QU[l,:ﬂ _ U[1,2]U[2,3]U[0,3]%[0,2]

¢ = 16upqupaupaup g Uo2vo,]  2U[04]U[14 U [24]Y0,1]

By letting ug > uo, u1 > us, we find that

o _ U Upaun ey _ U2y _  Upy 1
¢ T 2upqup a4ty 2uj4  dupg tus 4

This is only an outline of an alternative strategy since we only considered one configura-
tion of edge lengths and only a/c, but it is evident that the same general principle also
goes for the other cases. Showing this for every possible case would however require a
lot of writing without yielding any significant additional insights.

Numerical Monte Carlo experiments, where the [; are randomized, indicate that the
sharpest possible bound on ||g; ||, using this cubic subtraction strategy, is very close to
the bound in Thus, we cannot hope to show that the IG6-scheme is C°
for o = 1/2 using this approach. Based on the idea of bounding g;j, we can however
introduce a new family of nonlinear schemes and prove C for a subset of these schemes.

4.7 The iterated geometric blending schemes

Using an a—parameterizationlﬂ and given an even number m > 4, we define the sub-
division refinement rules for the iterated geometric blending m-point schemes (IGBm-
schemes) as follows

Dj+1,2k = Pjk; (4.43)
Dj+12k+1 = (1- /\)7";‘71;_21 (ts) + A‘“’Tk(t*)a
t; t;
t, = Lok T Liktl +2 gkl (4.45)

where A € R is a blending parameter, and 77} (¢+) and ﬂzlk_—i-Ql (t,) are defined in
Thus the scheme is a binary nonlinear m-point scheme, where in a sense the

SWhich is recomputed at each level, as for the IGm-schemes.
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influence of the outer two points at each insertion is determined by A. Note that for an
IGBm-scheme with an even number m > 4, and A € R, we have

Tk = 7"37k+1(t*) (Pjx +Pjrs1)/2,
Djt12k+1 = (1 A)er’Jk  (t) + AT (L)
(
(

m—2
J.k+ lt*

m—2
7. k+ lt*

)+ A (7 () — w8
) + Agji ks
djr =Pjt12k+1 — (Pjk + Pjk+1)/2
=7k + Aqjk.
It is natural to think that there may be some kind of correlation between the 1GB4-
scheme for & = 0 and the FPTS.

Lemma 4.7.1. The IGB4-scheme for a = 0 is equivalent to the FPTS with w = \/16.

Proof. For m = 4, we have 7" %(t,) = (p1 + p2)/2. Furthermore, for o = 0, the cubic
Lagrange basis function values become

1 9 9 1

Therefore, p* in (4.44) for the IGB4 scheme becomes

_|_
p* = ZLpz )P12P2
__i +(9/\+1—)\> +<9)\+1—/\> A
TP\ 36 T T2 P\ T T2 ) P2 P
e e (o
~ 167" 16 Prv\qg T g)P27 6P
which is exactly (1.7) of the FPTS with w = \/16. O

Hence, the IGB4-scheme is one possible generalization of the FPTS. For A € [0, 1], the
odd insertion rule is a convex combination of the insertion points 71'%@21 (tx) and
Ly (t,) for the corresponding iterated geometric schemes, and for a general A € R, the
insertion point resides on the line prescribed by these two points. For A =0 and A =1,
the scheme is respectively equivalent to the corresponding iterated geometric schemes
of orders m — 2 and m. It is worth noting that for most practical purposes, A outside
a sensible range will produce limit curves of little use. We will first address the case
IGB6 for a@ = 0, which is a linear scheme, and hence the Laurent analysis of chapter 2
is applicable.
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Theorem 4.7.1. The IGB6-scheme with o« = 0 1s

C% for M€ (—2(5@_9), 8Ly 5853_2”) ~ (—13.75, 8.84), (4.46)
cl for e <—8(\/%_ 15), 8(3*/;’?_5)> ~ (—1.35, 5.04), (4.47)
C? for e (0, gi) = (0, 2.370) . (4.48)

Proof. The odd insertion rule for the IGB6-scheme with o = 0 becomes

3A 9N+ 16 3(A+24)
Pj+12k+1 = org (Pjk—2 + Djk+3) — “org (Pjk—1+ Pjrs2) + T (Pjk + Djks1) -

Thus its symbol is

e = 2 () - B ) 0 (o

~ 256 256 128
DBz - DY (22 + 1) —162%(22 — 42+ 1)}
B 25625 '

Starting with n = 0 (C° analysis) and £ = 1, we get

3N 1| 3|\
2‘ - ‘+||+ <1,

1
128 " 16| 128 ' 2

which holds for A\ € (—80/9,16/3). However, for ¢ = 2 we obtain

<9\)\2 3L 9z 21xn 1 9A2 15X 57
max + +

65536 © 512 ' |8102 T 2048 T 256| T |8102 2048 © 256

27 \2 N 21 )\ +177 27 \2 N 3\ 63 A2 N 39\ +i
65536 1024 256 65536 4096 65536 4096 = 256

9\)\\2+3\)\\ 9X2 3 1 |9/\2 151 71

I

65536 512 | |8102 2048 T 256| T | 8102 T 2048 T 256

‘zm2 3\ 1 27 \2 3)\‘ '63/\2 57\ 7') .

65536 1024 T 256| T |65536 T 4096| T | 65536 © 4096 256

which yields the improved interval of convergence in (4.46]).
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For n =1 (C! analysis) and £ = 2, we get the inequality

<9w2 9A2  3x 1
max +

16384 128 8

9X2 21\
8192 1024

2702 9\ 1

92 45\ 1

1006 512 T2

I

8192

9> | 9% 210 1 BN BN
4096 4096 '~ 512 ' 4| 4096 512 32
27>\2+i 45)\2+Q+i
8192 ' 512| ' [8192 ' 512 ' 32|’
_9)\2+2+1+2 9/\2+ 3\ Lo 27)\2_33)\+1)<1
4096 = 256 = 64 8192 ' 1024 8192 1024 ' 64 ’
which results in (4.47)).

We now turn to n = 2 (C? analysis). Again the case for £ = 1 is inconclusive, i.e.
[1S¢]leo > 1, so we look at ||SZ||oc, and get the inequality

max <]9A2/2048 + 69X/256 — 3/8‘ + ’45)\2/2048 — 63)/256 + 5/8‘+
[27X2 /4096 + 210/256] + [6342/4096 — 15),/256| + 9A% /1024,
[9X2/512 — 90/64 +1/16| — 3A/64 + [91/128 — 9X? /512 + 3/8|
+[9X2/512 + 91/256| + 3|A|/256 + 9X? /512 + 3/16) <1

This is the same as

4193 —7)  4(1—/7) 64
9 , 3 <A<§?

which holds for A € (0,64/27), so we get (4.48). O

0< A<

We remark that it seems that a nonzero contribution from the outer two points is
needed to produce a C? limit curve, which is expected as the FPS is not C? and no
C? binary interpolatory four-point scheme has been found. The bounds on A for C",
n = 0,1,2 are almost certainly not the best possible, but are sufficient to cover some
applications in CAGD. Note also that the IGB6 scheme with v = 0 is the same as the
six-point scheme with tension parameter 6 in [I0] with 3X/256 = 6, which is shown to
be C2 for 0 < 6 < 0.042 in [20] by considering ¢ = 10, and translates to 0 < A < 3.584.
Detailed Laurent polynomial analysis corresponding to the proof of can
be found in [2I]. More interesting and relevant is perhaps the potentially unexplored
nonlinear case for a # 0, which we will consider now.

Theorem 4.7.2. The IGB/-scheme is C° and safe for all X € (—2,2) with a = 1/2, and
A € [~1,1] for all a € (1/2,1]. The IGB6-scheme is C° and safe for all X € [-1/2,1/2]
with o = 1/2.
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Proof. We begin by proving that the IGB6-scheme is displacement-safe for the indicated

range of A. Fix a = 1/2. Using [Lemma 4.6.3] we have that

1/|e; €;
el = Wzl < 3 (10) <Lty ye oy

Thus, by (L12),

lejell , llejwll _ llejkl

4 4 2

<

Idjrll < [lrjell + IMlgjx

For the IGB4-scheme, 7;; = 0, since 7r]247k 41(t+) is simply the midpoint of the central
edge e for any a € [0,1]. Therefore,

legrl v xe(-2,2), a=1/2,

Idjell < IMllgjrll <3 e
legel v Xe[-1,1], ae(1/21).

These follow by the bound (4.12)) on ||d;|| and [Theorem 4.3.2 for the IG4-scheme,

respectively.
For both the IGB4 and IGB6 schemes, with the intervals of A, we get

max (|[ejy1,2el]; lejr126+1l) < llejrll/2 + lldjell < nllejkl,

where 7 < 1 is a positive real number. Let again g; be the piecewise linear interpolant
to the data (277k,pj ). We get

1
1gj+1 — gjlloo = sup [|dj k]| < 5 5up ekl
keZ keZ
n 7
< osuplejypl| < - < - sup[leg-
2 kez 2 kez

Since n < 1, then {g;};—0,1,.. is a Cauchy sequence in the sup-norm, and consequently
the limit curve is CY. The safety of both schemes follows immediately as they are
displacement safe by construction. O

We remark that in the proof of there is also no actual requirement on A
to be a constant, and thus the scheme can be adapted to a nonuniform or nonstationary
scheme where A is dependent on j and k, and as long as the absolute value of each A;
is sufficiently small, then the limit curve is still C°.

In figure we observe that the largest deviation between the limit curves
for ranges of A seems to occur when the outer two distances between control points
are significantly different from the inner lengths. We have shown that the curves in
Figure 4.8 for A = 0,1/2,—1/2 are C°, and we observe that they are fairly close to the
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— A=-1/2

Figure 4.8: IGB6 limit curves for a« = 1/2 and various choices of blending parameter \.

limit curve for A = 0, i.e. the centripetal IG4 limit curve. Although it is very likely
that the IG4-scheme is not C?, the same is not necessarily the case for the IGB6-scheme
with A # 0 close to 0, as for the linear scheme in Thus, it appears that
we can get limit curves close to the tight limit curve for the centripetal I1G4-scheme,
with possibly elevated smoothness. Further numerical tests on the smoothness of these

schemes will be done in chapter 6.



Chapter Five

Analysis of geometric subdivision

Although the nonlinear four-point scheme of the previous chapter has better shape pre-
serving properties than the classical four-point scheme in terms of achieving better re-
sults when it comes to certain artifacts, the nonlinear scheme does not preserve curvature
when the control polygon is sampled from a function with a simple curvature profile,
e.g. a circle. In this chapter, we look at the circle preserving scheme (CPS) in [12] by
Sabin and Dodgson in relation to a recent article by Ewald et al. [I3], where a powerful
framework for studying a certain type of nonlinear subdivision schemes is presented.
We further prove that the schemes of chapter 4 fit into this framework, and propose a
modification to the iterated geometric schemes to better control the local spacing of the
points as j increases.

5.1 Circle preserving subdivision

The circle preserving scheme (CPS), of [12], is defined as follows,

Dj+1,2k = Pj.k>
pjt12641 = C(),

where C(#) is a point on the circle C, passing through Pji and p; 41, with curvature s,
that is the arithmetic mean of the curvature ;1 of the circle C7 prescribed by the points
Djk—1:Pjk:Pjk+1 and ko of the circle Cq prescribed by pj i, pjk+1,Pjr+2. Moreover,
the specific point pji12x41 = C () on this circle C is chosen such that

1Pjt12641 = Pjkll _ [IPjks1 — Pjkll (5.1)
IPj+1,26+1 — Pjget1l] IPjk+2 — Pjkll

is satisfied. The purpose of this is to make the points asymptotically locally uniformly
spaced in the limit. The notion of curvature x chosen is the curvature axis vector, defined

70



5.2. CONVERGENCE ANALYSIS OF GLUE-SCHEMES 71

as
Ky = (Piy1 — i) X (Pi — Pi—1) Ci=1,2,
|pi+1 — pillllpi — Pi-1ll|Pi-1 — Pit1]]
at the points p;;, where we used local indexation. Thus, k. = (k1 + k2)/2. This

curvature definition uses a vector that is perpendicular to the osculating plane spanned
by the respective points, and thus allows control points in both R? and R3.

Figure 5.1: CPS construction in R?.

To analyze this scheme, the authors in [I2] considered the case after many iterations,
where consecutive points are locally almost equidistant. In this case, it can be shown
that the new point at each refinement is sufficiently close to the corresponding new point
of the FPS to also result in a C° limit curve, i.e. that the schemes are asymptotically
equivalent.

Recently, in [I3], a new method was established for analyzing the smoothness of a
selection of geometric nonlinear subdivision schemes, including the CPS. We will here
touch upon some aspects of the paper in question.

5.2 Convergence analysis of GLUE-schemes

In this section we shall review the fundamentals of [13] in order to place and adapt the
schemes of chapter 4 to fit into the framework of this paper. There will be no attempt
to go through all the technicalities of the paper, but rather to get a basic understanding
of some of the key concepts. In order to more closely follow the discussion of [13], we
use a slightly different notation in this section to avoid complications. Let E := R¢,
and let a sequence of control points be called a chain. A chain of at least n control
points is written as EZ”, and a chain of N points in denoted EV, for n, N € N. In this
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section we allow a point of a chain, i.e. a vector, to be written as lowercase nonbold
letters, write chains as uppercase bold letters, and reserve the uppercase bold letter G
for a subdivision scheme acting on chains. We let G(P) denote the chain resulting from
letting the subdivision scheme G act on the chain P, and let (P); denote the i-th point
of a chain P. Furthermore, we let # P denote the number of points of a chain P.

A similarity S = (o, @, s) : E — E is comprised of the positive scalar scaling factor
o € R, an orthogonal transformation matrix Q € R%¥? and a shift vector s € E. S
applied to a point p € E is defined as S(p) = o@Qp + s. Moreover, the norm of S is given
as ||S]| = o, and the group of similarities in E is denoted by S(E). Application of S to a
chain P € E¥ is understood as S(P) = [S(po),- .., S(pn_1)]. We let e be the first unit
vector in E, and

Ey :=le,2e,...,Ne|], e:=E,=]e2e,...,ne|.

We are now ready to properly define a GLUE-scheme, using the definition from [13].
Note that the number m in the following definition is not the same m as we are used
tdT], and the definition uses a somewhat different indexation of the points.

Definition 5.2.1. [13] Given m € N, let n := 2m + 1. The function G : E=" — E="
defines a geometric, local, uniform, equilinear subdivision scheme (or briefly GLUE-
scheme) in E with spread n if #G(P) = 2#P —n + 1 and if it satisfies the following
properties:

(G) G commutes with similarities; i.e.,

GoS=S50G, SeS(E).
(L) The points ph; and ph;,, of the chain P’ := G(P) depend only on p;,...,Ditm-
(U) There exist functions go, g1 : E™*! — E independent of i such that
Phisx = 9a(Dis-- - Di4m), AE€{0,1}, 0<i<#P—m.

These functions are CY" in a neighborhood of E,, .1 for some v > 0, called the
reqularity parameter of G.

(E) The standard linear chain e is scaled down and translated by G according to
Gle)=le/2+ (m+T)e/2,...,(n+ 1)e/2+ (m+ T)e/2]
= (Bnp1+ (m+7)e)/2,

for some T € [0,1), called the shift of G. In particular, the scheme is called primal
if =0, and dual if T =1/2.

Tt is 1 lower, corresponding to the index of the rightmost control point used at each insertion.
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The number n = 2m + 1 in [Definition 5.2.1| comes from the minimal length of a chain

such that the subdivision scheme can be applied an infinite number of times, when no
boundary data are given. If #P < n then we will run out of points and the limit curve
will not be well defined.

Lemma 5.2.1. The iterated geometric M-point schemes are GLUE-schemes for all
a € [0,1].

Proof. Geometric property (G):

Clearly, since the schemes are binary and interpolatory, we have that

(G(S(P)))2r = (S(G(P)))ar  Vk.

Let p; := S(p;) for all k be the points resulting from the similarity transform S. Fur-
thermore, let CZZ := Pi+1 — Pi- Then,

pi = 0Qp; + s,
d; = (0Qpit+1 + 5) — (0Qp; + s) = 0Qd;.

We define the transformed parameters as follows,
i1 =1 + ||di]|™,  fo = 0.
Thus,
tiv1 =t + |0Qdi||* = T; + ol|di]|*,  fo =0,
since (Q is orthogonal, i.e. it preserves lengths and angles, and we can write
1Qd; 13 = (Qd))" (Qdi) = df QT Qd; = d] Iad; = d} d; = ||d;]|3.

This implies that S just stretches the parameters uniformly, i.e., t; = ot; Vi. Therefore,
the transformed evaluation point simply becomes f, = ot,. For simplicity we number
the indices {k — M/2+1,...,k+ M/2} as {0,..., M —1}. Combining these facts yields

M-1M-1 ¢ - —1M-1 t)
*
(G(S(P)))2k+1 = Z H f Z H W(QQPH-S)
i=0 r=0 ti =0 r=0 ¢ r
r#i r#i
M—1M— 1t— M—1M—
* T‘ 7”
o> 115 e H
i=0 r=0 L =0 b
r#i 7'2
M— M—-1 M—-1
= Z t*p2+SZL ty) —QQZL te)pi + s
=0 =0 =0

= (S(G(P)))2k+1 vk,
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where we used that {Li(t*)}i]‘ial form a partition of unity. Thus GoS = SoG VS € S(E),
and we have shown the geometric property of the schemes.

Local property (L):

For the iterated geometric M-point schemes, m = M — 1, so since p, = P(m—1)/2, and
p’2i+1 is a point on the a-interpolant to the points p;, ..., pi+m, then the local property
holds.

Uniform property (U):

We have that go is just the identity in the sense that go(pi, - - -, Pitm) = P(m—1)/2- More-
over, g; is a degree m polynomial. Therefore, gg and g; are C°° in a neighborhood of
E,,+1. So in context of the definition, the regularity parameter of G is v = 1.

Equilinear property (E):
Clearly, for G applied to e, we get

tiv1 —t; = ||(€)ix1 — (e)i|* = |[1,0,...,0]|* =1, i=0,1,....n—1 VYaeR
— t;=i, i=0,1,...,n VacR,

i.e. equidistant parameters with unity spacing. This will also hold for G applied to any
linear shift of e. Letting é := [0, ¢, ..., me], we need to show that

p* = (G(€))apt1 = [m/2,0,...,0] Voddm € Zx1. (5.2)

This is sufficient since € is e shifted to start at the origin and truncated to m < n, and
we can thus apply the shift commutativity property of (G) to show (E) ﬂ Furthermore, it
suffices to look at the first element (p*)g of p*, since its other elements evidently amount
to the zero vector. We have that ¢, = [(m+1)/2—14(m+1)/2]/2 = m/2. Furthermore,
we have that

(p*)o =f(to) + (t« — to)[to, t1]f + (tx — to)(tx — t1)[to, L1, ta] f + - -

(5.3)
+ (t* - tU) o (t* - tmfl)[tov s ,tm]f,
where f(t;) .= ((é)i)o =14, 1 =0,...,m. Moreover,
[to, t1]lf = [t1,t2]f =+ = [tm—1,tm] f =1
= [to,t1, to]f = [t1,t2,t3]f = -+ = [tm—2, tm—1, ] f = O,

which further implies that every divided difference in (5.3) of order higher than one

vanishes, since the numerators become zero. This is also evident from the formula for

2Meaning that it suffices to show this for a single insertion point
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divided differences for equidistant points, [tg,t1,...,t,]f = (A" f(to))/(h"n!), where in
this case h = 1. Thus,

(7)o = F(t0) + (02— t)lto, 1l = 0+ (m/2~ )1 —g =m/2. (5.0

It remains to find 7 for these schemes. By defining m := (m + 1)/2, we get

G(e) = [me, (m+1/2)e, (" + 1)e,...,(Mm+n—(m+1))e,(Mm+n—(m+1/2))e]
= (Epq1 +me)/2,

where we used a shifted variant of (5.4)) at each insertion. Hence 7 = 0, and consequently
the schemes are primal. It is worth noting that the shift by me/2 comes from the
somewhat nonstandard choice of indexation used. O

Corollary 5.2.1. The iterated geometric blending M -point schemes are GLUE-schemes.

We note, as was done for the IG4-scheme in [I], that S(E) only contains solid body-
and isotropic transformations, since scaling one component differently using a general
affine transformation, will cause problems. The convergence analysis of GLUE-schemes
in [I3] relies on studying the decay of a quantity known as relative distortion, which is
invariant under the similarity transformations of S(E). The relative distortion measures
how far a subchain p of a chain P is from its linear component, meaning in a sense how

straight p is.

An important distinction to make about the framework in [I3], is that it is not purely
analytical, but instead show the mathematical details behind an algorithm to produce
certain constants for numerical tests. The constant v that we are interested in here, is a
bound for the straightening, or maximum local deviation from a straight line, measured
by the relative distortion, that the points at level j can be in order for the limit curve to
be smooth. These constants only need to be computed once for a given GLUE-scheme,
and are mathematically rigorous through interval arithmetic, but can be improved.

Then, whenever the GLUE scheme is applied to given control points, one can test nu-
merically whether the points at level j satisfy requirements generated by these constants,
and thus if a certain smoothness of the limit curve is guaranteed for these control points.
This implies that the method is data dependent, and there may be control points for
which the method takes many iterations, or never, falls under the requirement set by ~.
If we were to find the constant «y, we could then implement this condition in the software
for generating the subdivision curves, and display whether this condition is satisfied to
the end user in a CAGD setting.

A possible drawback of the framework in question is that it relies on the fact that
the subdivided points are in a sense asymptotically locally uniformly spaced as j — oo.
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This is a built-in feature of the CPS due to (5.1)), but we show that this is never the case
for any IGm-scheme with chordal parameterization (o = 1), when the points are placed
in order on a straight line and unevenly spaced.

Lemma 5.2.2. For an IGm-scheme and control points {po 1 }kez in order by the index
k on a straight line in the v-th coordinate, v € {0,1,...,d — 1}, then

pj+1,2k+1 - (pj,k +pj,k+l)/27 ] - 07 17 27 sy

is always the case for o = 1 (chordal parameterization).

Proof. 1t suffices to show that all divided differences of order 2 vanish. We find that

Pk+2—Pk+1 _ Pk+1—Pk
p[2] _ 2o b1 —te l(Pry2 — Prt1) — (Prt1 — Pr)lkt1
k tht2 — tk o1 (L 4 Ui 1) i1 ’

where we dropped the level j for convenience. Thus, by looking at the v-th coordinate

component only,

([2}) el — elign

— -0,
Pi U1 (e + L1 U1

(2]

since the points are ordered by index on a line in this coordinate. Clearly (pk ) =
1

0Vi # v, so pf] = 0 and all higher order divided differences also vanish, and the result
follows directly from the Newton form of the a-interpolant. O

A consequence of is that around a control point connecting two edges of
very different lengths, there will always be a relatively large difference in the lengths of
the edges connected by the control point in question at every level of subdivision. The
analogue also seems to hold for points not on a straight line, i.e. just unequally spaced.
This phenomenon can be observed in the lower left plot of even though the
points are not on a straight line.

One possible way to alleviate this problem for the IG4-scheme is to instead use the
rule (5.1) by Sabin and Dodgson to select ¢, at each refinement, such that

¢ Lkt otk ik =tk [ lleje—1ll® + llej el
= =y T = .
l+o tik+e = ik lejell®+ llej e+l

(5.5)

The general idea of choosing parameters based on a monotonicity preserving scheme was
also discussed in [23], and it was in fact shown there that the scheme for choosing
the evaluation point is C'', which is certainly not true for , which is just a two-point
scheme. For equidistant {tj,i}i‘jl?—p and therefore for o = 0, the new choice is just
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the midpoint between the middle two parameters, but otherwise there appears to be an
edge unevenness compensation such that p;j 1 2x41 is chosen closer to the neighboring
point p; or p; 41 of the shortest of the edges e;;_1 and e; ;1. To avoid confusion,
we from now on let SD-t, be the choice , and let MP-¢, be the usual choice (4.4)).
Moreover, we only use the SD-t, when mentioned, and one can assume that the MP-¢,
is used otherwise.

This modification to the scheme, using SD-t,, seems to result in limit curves similar
to the limit curves of the IG4-scheme with MP-t,, but with the apparent added property
that the points at level j become locally asymptotically equidistant as j — oo for all
a € [0,1]. This can clearly be seen in Of course, altering ¢, will require
new C? proofs, and moreover it is possible that there will be different requirements on
« for the IG4-scheme to be safe. Preliminary results indicate that the same results with
respect to safety and C? convergence seem to hold also for this new choice of t,. A curious
thought is whether it is possible to choose a t, such that the scheme is safe for a wider
interval of . The more involved choice of ¢, in could complicate the convergence
analysis, but if we can show the ratio property as done by Sabin and Dodgson, we could
potentially use a similar proof for C? as for the CPS, i.e. by asymptotic equivalence to
the FPS. It is not difficult to see that the IG4-scheme with this new choice of t, is also
a GLUE-scheme.

Although for a € [0,1), the edges at level j seem to shrink slowly to be locally
equidistant for the midpoint ¢, the new choice for ¢, (SD-¢,) seems to make this happen
significantly faster, which means that it is conceivable that the proximity conditions of
[26] could be used for some choice of t,. This could in turn also reduce the number of
iterations before the straightening requirement of [13] is fulfilled, and even yield curves
that visually look smoother for lower j as there are fewer abrupt changes in edge lengths.

In [13], it is shown that the CPS is C?~€ for chains in E=7 whenever the relative
distortion falls below the value of v = 0.08. It is therefore likely that similar results may
be shown for a selection of the IGm-schemes by using what we have established above.
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— MP-t, |a=1/2| — SD-t, |a:1/2|

Figure 5.2: The uppermost two pairs of plots depict the limit curves generated by the
IG4-scheme for the different choices of ¢, with a = 1/2 and o = 1, respectively. The
lower two pairs of plots are corresponding zoomed-in views at level j = 6 for these choices
of t, and the same control points, at a segment of highly varying initial edge lengths.
The hollow circles illustrate the points, or vertices, Py of the polygon gsg.



Chapter Six

Numerical results and conclusion

In this chapter we will review some ideas for starting smoothness analysis on the iterated
geometric schemes, and also provide numerical results to supplement this.

6.1 Numerical results for the iterated geometric schemes

For the IG4-scheme, we proved that the limit curve is continuous for the whole of a €
[1/2,1]. However, as strong of a result does not seem to be the case for the IGm-schemes
in general for higher m. There are two main aspects that need attention when studying
the C° convergence of the IGm-schemes, namely that the edges get smaller with j and
that the scheme is safe and thus well defined. For even m > 8 and o = 1, we can construct
controls point such that, at least numerically, the edges diverge locally. Furthermore,
these schemes do not seem to be safe for a = 1/2 with m > 8. We therefore instead
concentrate on the smoothness of the 1G4- and IG6-schemes.

All the numerical experiments of this chapter will use the control points of the upper
plot of as we require the control points to be significantly unevenly spaced
locally, in order for a to have an effect.

Smoothness
To numerically measure the C” smoothness of the schemes, the authors in [1] used
Yy
iy o= max || ApJ3| = max |pJh,, — Pyl

and numerically studied the decay and rate of convergence of this quantity as j grows.
A problem with this approach is, as discussed, with respect to which parameters, or
grid points, {z;x}rez one should calculate the v, ; for » > 1. In [I], they argued that

79
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(1]

as p; for uniform grid points {Z;x} do not seem to result in a continuous curve for
points based on centripetal and chordal parameterizations for certain initial data, which
can be observed in the left hand plots of then a better choice is to use
chordal parameters {Z;}rez for the 1, ;. The left hand plots of are very
similar to Figure 4 of [1], due to the control points being similar to the ones used in
[1]. A problem with the chordal grid approach is that the resulting grid will not be a
traditional multilevel grid satisfying ;41 2x = ¥; in general, so here we instead consider
some other ideas.

An interesting idea is to instead introduce the concept of a geometric grid based
on the iterated geometric subdivision scheme itself. In this method, we let the grid
points {z;;} = {7}, where the {7;,} are generated by the points P;_; for j > 1.
We concentrate here on the case for the IG4-scheme, but the idea extends naturally to
higher orders. Let

Dj+1,2k = Pjk> Ti+1,2k = Tj ks
k+2 k42
4
Pj+1,2k+1 = 55 (te) = Z CjiPjis  Tj+1.2k+1 = Z C5,iTj5is
i=k—1 i=k—1

where {c; ;} are the Lagrangian coefficients based locally on the points at level j, as usual,
and {79} is some initial parameterization. Consequently, we have that Zfikg_l ¢ = 1.
Although other alternatives may be possible, we focus here on the case where the initial
grid points {791} are generated by an a-parameterization based on the same « as the

subdivision scheme.

An important distinction is that the refinement of the {7 1} is not the same as treating
the grid points as data points and directly applying the subdivision scheme to this data,
but rather using the Lagrange coefficients originating from the actual points. This means
that we have a much more direct relation between the coeflicients in the numerator and
denominator of the first divided differences than we would have if we directly used an
a-parameterized grid for analysis. Using

Pl — Py
plrl = Dokt Tk

&
! Tjk+r = Tjk

[0
vr > 17 p;;g = Pjk>

we find that
k+2 ) )
f)[l} _ DPj+12k+1 — Pj+12k Zi:kfl CjiPji — Pjk
J+12k T . - k+2
Tj4+1,2k+1 — Tj4+1,2k imk—1C3,iTji — Tjk

aji—1(Pjk — Pjk—1) + @ p(Pjr+1 — Pik) + @jrs1(Pjit+2 — Pj+1)
ajk—1(Tjk — Tjk—1) + @ k(Tjpt1 — Tjk) + @1 (Tikte — Tjk+1)

~[1] ~[1] ~[1]
ajk—1(Tjk = Tjk-1)Pj 1 + Gr(Tik+1 = Tix)Pj ke + a1 (Tike2 — Tikt1)Pj

ajk—1(Tjk — Tjk—-1) + @ k(Tjk+1 — Tik) + @ k+1(Tjk+2 — Tik+1)
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_ _ _ k+1 R
where a; 1 = —Cjk—1, Qjk = Cjk+11+Cj k2, Qi1 = Cjht2s 21 @5, = 0. Therefore,
k+1
(1] S, a4,i(Tji+1 — Tji)
Pjii92r = Z bjiPjir  bii = ST BER
i=k—1 D wok—1 % (Tjwt1 — Tjw)

where Zrk 1 bji = 1. Similarly,

. k42 .

f)m _ DPj+12k+2 — Pj+1,2k+1 Py,k+1 — i1 C5iPjsi
+1,2k+1 = ‘ k42

J Tj4+1,2k+2 — Tj4+1,2k+1 Tik+1 — Ziik—l CjiTji

~ ~[1 ~ ~[1 ~ ~[1
81 (Tje = TPkt + G (Tjrt — TP + Gt (T2 = Tiea )P
k-1 (Tjk — Tjk—1) + @j(Tj k1 — Tjk) + @ k1 (Tik+2 — Tik+1)

)

_ o — S R
where @; ;1 = ¢jr—1, Qjk = Cjk—1 + Cjks Qjhtr1 = —Cjht2, 211 &ji = 0. And hence,
k+1 .
(1] L S aj,i(Tj,i+1 — Tji)
pj+1 2%k+1 — Z bJ lpj ) b]yl T k+1 ] ] )
i=k—1 D wi—1 @ (Tjwt1 — Tjw)

with Z’H'l Ngi = 1. Thus,

k1
[ 1 1 = 1]
APH1 2% = le 2k+1 le 2% = Z (bji — bji)Pj ;
i=k—1

1 1
= j,kfl,kApr_l + 5',k,k+1Ap£'7;g,

_ ; _j ; B (G _
where 0k —1k = bjk—1=bj k-1, and Gj k k41 = bjky1—bjks1, since 33775 (bji—bji) = 0.
Likewise,

k43 A k42 A
_[1] iR P — Pik4l  inh G5i(Pjit1 — D)
4+1,2(k+1 k:+3 . = k42 A
(1) = S i — Tkt R (T — Ta)
k2
_ Z b b Gil(Ti — Tia)
J’ij z’ D5t T k+2 ~ ’
2ok @ (Tjw 1 — Tjw)
with CAlng = _éj,lm &j’kJrl = éj,k+2 + éj,k+37 dj,k+2 = éj,k+3- Therefore,
) i ) =
N1 N 7
Ap]+1 2k+1 = Pjy12(k+1) — Dji1ok41 = Z bj, Zpg i Z bj, iPji

i=k—1
_ 5. ANM _|_5A A~H—|—5‘ A~[1]
- ]7k_17k pj,k*l 7k7k+1 p],k j7k+17k+2 pj,k+1’
where 0 k16 = bjr—1, Ojkk+1 = Ojk+1 — bjky1 + bjrr2, Ojkr1kt2 = bjrr2. We thus

have schemes for A{)ﬂmk and Aﬁg‘l-u,zk 41, as we have for the standard FPS over a
regular grid.
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By moving on to second divided differences, we find that

(2] 2] (2] it (T2 — Tia)
it12k = Sik—1Pjp—1 T SjkDj > Sji = ;
g ” g Tji+1 = Tji

and that

(2 N P | IS -
Dji12k+1 = Sjk—1Pj 1 T 8jkPjp T Sjk+1Pj jiq1s
5 0jiit1 (T2 — Tji)
S = P 2
2owek CiwTiw = 2pek—1 CiwTjw

A difficulty in continuing, and finding explicit schemes for Aﬁ?_}_l o and Aﬁﬂl okt1> S

can be done for the FPS, is that the {s;;} and {§;;} do not necessarily sum to simple

constants locally, which means that using similar techniques as for r = 1 will be harder.

J | Ojk—1k 0j k k41 0j k—1,k 0j ke kt1 Oj kt1,k+2
1 0.0770229 0.2820809 -0.0439309 0.8060199 -0.1211928
0.2910886 0.2910886 -0.1455443 0.7089114 -0.1455443
0.2820809 0.0770229 -0.1211928 0.8060199 -0.0439309
0.4471966 0.2602610 -0.2128083 0.6417607 -0.1364102
5 0.2715896 0.2405514 -0.1345902 0.7437918 -0.1213427
0.2601699 0.2337790 -0.1283528 0.7528498 -0.1184460
0.2696158 0.2282926 -0.1329171 0.7507560 -0.1157473
0.2740313 0.2266210 -0.1350349 0.7493312 -0.1149486
8 0.2504237 0.2496713 -0.1252591 0.7499527 -0.1247885
0.2503197 0.2497974 -0.1251962 0.7499415 -0.1248624
0.2502042 0.2497643 -0.1251328 0.7500158 -0.1248515
0.2502465 0.2497573 -0.1251531 0.7499982 -0.1248488
12 | 0.2500146 0.2499843 -0.1249938 0.7500005 -0.1250057
0.2500158 0.2499846 -0.1249944 0.7499998 -0.1250058
0.2500159 0.2499727 -0.1249950 0.7500057 -0.1249993
0.2500280 0.2499665 -0.1250019 0.7500027 -0.1249953

Figure 6.1: Randomized excerpt of consecutive values of the coefficients for the scheme
for the first divided differences with e = 1/2, for different levels j. These are deliberately
sampled around the interior points due to the difficulties at the boundaries.

By looking at it seems like the IG4-scheme is C' with respect to the
geometric grid, and the {¢1 ;} appear to decay linearly for large j. We have similar
findings for the chordal grid choice.
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Behavior as j grows

Since we have found schemes for the forward differences of the first divided differences
for a geometric grid, it would be interesting to see how the coefficients of this scheme,
which are now dependent on the {7 1} for o # 0, behave in relation to the corresponding
coeflicients for Dubuc’s four-point scheme with a regular grid. For a = 0, a geometric
grid with a regular initial grid, is the same as a regular grid. Thus, we know from
the proof of that for a = 0, d; k14 = 0j k1 = 1/4, and 3j7k_17k =
Sj,k+1,k+2 =-1/8, 3j,k,k+1 =3/4. In we see that although the coefficients for
a = 1/2 start out by being relatively far away from the uniform coefficients, it appears
that the limits are the uniform coefficients. This seems to indicate that the scheme for
the forward differences of the first divided differences of the IG4-scheme behaves like the
corresponding scheme for the FPS, over a geometric grid in the limit. However, there
seems to be an anomaly in the Sjﬂ"z‘_’_l near the boundaries of the {Tj’k}, which may be
related to the choice of boundary conditions of the {7;;}. Notably, this issue seems to be
much less severe when using the other proposed ¢, in , which is logical as the local
edge lengths approach uniformity and thus renders the boundary error less influential
for low j and approaching zero for j — oo.

Another interesting idea is to consider the divided differences for the alternative choice
of t, in , and use a regular grid since the local edge lengths seem to be locally equal
asymptotically. Plots of the divided differences for this choice can be viewed in the right
hand plots of and it appears that the discontinuities have disappeared with
the change of t,, which looks promising. We have found examples for the IG4-scheme
with @ = 1 for both the chordal grid and the geometric grid with MP-t,, where the
{#1,;} increase for the first three iterations before starting to be strictly decreasing.
This is two more iterations than for the FPS, which could make analysis difficult at
least for « = 1. However, by using SD-t,, the {¢1 ;} do not seem to have this problem,
and behave similarly like for the FPS, but has the drawback of being more analytically
complicated.

In the case of C? smoothness for the six-point schemes using 19,5, it seems to be harder
to get conclusive results. For the IG6-scheme, the geometric grid only appears to be well
defined for o € [0,1/2], while it seems to be well defined for all of o € [0,1] for the
[G4-scheme. This is of course assuming that the points at every level are consecutively
distinct, which we only have shown for the IG4-scheme for o € [1/2,1]. We will thus
restrict the analysis to a« = 1/2, and only show some preliminary findings in the form
of the figure Again, it looks like SD-t, yields better smoothness results, and
it seems like the IG6-scheme is C? for a@ = 1/2. Furthermore, although less convincing,
the plots indicate that it is possible that the IGB6-scheme is C? with SD-t, for a =

1/2,A = 1/2, as we showed for the linear case in |Theorem 4.7.1
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Figure 6.2: Numerical results on the first divided differences using different strategies
for generating the grid. The upper two plots are v ; with respect to chordal grid
parameters, and the lower two plots are v ; based on a geometric grid with the same
« for the initial parameterization as in the curves. The solid, dashed, and dotted lines
correspond to curves with v = 0,1/2, 1, respectively. Note that the rightmost plots are
semi-log plots.
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Figure 6.3: The upper six plots are point cloud plots of the {pgll]c} for the 1G4-scheme,
after j = 10 iterations using a regular grid, for curves based on different v and with
different choices of t.. The lower two plots are of the {i ;}, for the different choices of
ty, with respect to a regular grid.
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Figure 6.4: Numerical results for the second divided differences, using 5 ;, for the 1G6-
scheme and the IGB6-scheme with A = 1/2, both using a = 1/2. The plots show the
four different combinations of using SD-t, or MP-t, and a geometric grid or a regular
grid.
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6.2 Conclusion

We have in this thesis in particular looked at a class of nonlinear interpolatory curve
subdivision schemes, namely the iterated geometric schemes, and the related iterated
geometric blending schemes. We proved that the IG4-scheme is safe and C for a €
[1/2,1], and that the IG4- and IG6-schemes are unsafe for a € [0,1/2). This means that
the question about when the 1G4-scheme is C for o € [0, 1], now is fully answered.

Using a new approach for bounding the IG6 displacement vector, we managed to show
that nonlinear versions of the four-point- and six-point tension parameter schemes are C°
for select values of a blending (or tension) parameter A\. The case for the IGB6-scheme
with a = 1/2 and ) close to zero is especially interesting as this could potentially yield
a limit curve close to the tight 1G4 limit curve with possible C? smoothness.

Later on, we showed that the these schemes fit into a new framework by Ewald et
al. for analyzing geometric nonlinear schemes, which may lead to a condition for the
limit curve to be C18 that can be applied in practice. In regards to smoothness we also
discussed a new way of generating the multilevel grid, the geometric grid, which appears
to yield interesting preliminary analytic and numerical results. We also discussed an
alternative way to choose the evaluation point ¢, which appears to grant the curve
better numerical convergence and smoothness results.

This study of nonlinear interpolatory curve subdivision schemes has been an interest-
ing one, and there are still many details about these schemes waiting to be discovered.

6.3 Future work

Future work could include doing more research on the IG6-scheme, and to extend the
iterated geometric schemes to surfaces, although the problem of consecutive distinctness
is not obvious how to resolve in general for surfaces, and may require further modifica-
tions of the subdivision refinement rules. And of course is proving that the IG4-scheme
is C! still an unresolved problem and highly topical. For this reason, further work on
the geometric grid idea could be done to possibly progress in proving this. To derive nu-
merical bounds for smoothness, as in [I3], one could continue from where we left chapter
5 and actually find the constant ~.

Furthermore are the invalidity problems of chapter 4 still not resolved in general

outside the cases m = 4,6, so proving |Conjecture 4.3.1) and perhaps even generalizing

this to self-intersections, could be a possible topic. Since this in fact is a problem in
parametric polynomial interpolation, it may also be relevant in other contexts outside
subdivision.
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