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Abstract

The main goal of this thesis is to reproduce the article [SW16] by Sims and
Williams, categorising the primitive ideal space of the class of Deaconu-
Renault groupoid C∗-algebras generated by Nk

0-actions. We go through
the required groupoid prerequisites, from the definition of a groupoid to
the construction of covariance C∗-algebras. We apply what we learn from
[SW16] to study simplicity of the covariance C∗-algebras, and give an
explicit application to the rotation algebra.
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CHAPTER 1

Introduction

A dynamical system is, intuitively, a space in which the position of each
point changes over time, and this change can be described by a function.
There are numerous mathematical formulations of this umbrella term, and
their applications extend widely. Chaos theory, fluid mechanics and statistical
mechanics are a few examples of fields that have benefited from, or indeed
have their foundations built on, the theory of dynamical systems. There are
also real-life applications to engineering, biology and medicine (among others).
Needless to say, dynamical systems are important. In this thesis, we will
study dynamical systems by looking at C∗-algebras associated to groupoids.
Explicitly, dynamical systems coming from Nk0-actions of commuting local
homeomorphisms on a locally compact Hausdorff space. Let (X,T ) denote such
a dynamical system, where T is a function describing the position of points
in the space X over time (as in our intuitive definition above). Then one can
associate to (X,T ) a groupoid GT , called a Deaconu-Renault groupoid, and
thereafter a C∗-algebra C∗(GT ). The C∗-algebra C∗(GT ) is a much larger
object than the original dynamical system. Indeed, the groupoid GT itself can
be viewed as mashing the space X and the function (or action) T together to
form a single object containing all information of both X and T . Afterwards, we
form C∗(GT ), which contains among other things the set of certain continuous
functions on GT . The fact that C∗(GT ) is larger than the original dynamical
system has both positive and negative aspects. On one hand, one loses some
intuition and “hands-on” properties of the system. On the other hand, the
added structure gives us more to work with, and in particular, it enables us to
apply the machinery that is developed in both groupoid and C∗-algebra theory.

To get some hands-on experience with dynamical systems, we go through
part of the paper [Pol12] in Appendix A. That article is about the growth rate of
fixed points of hyperbolic toral automorphisms. The dynamical systems built out
of commuting toral automorphisms are closely connected to Deaconu-Renault
groupoids.

We build the theory of groupoid C∗-algebras by following the first few
chapters of [Pat99]. The construction is very similar to the construction of group
C∗-algebras; their difference lies in generalising known notions of the group case
(such as locally compactness, the Haar measure, representations and so on) to
the groupoid case. After these basics are completed, we move on to the so-called
covariance C∗-algebras, which are basically a way to characterise groupoid
C∗-algebras. The construction of these are more similar to that of crossed
products, of which the groupoid C∗-algebras are also a generalisation. About



1. Introduction

half the thesis is devoted to reproducing [SW16]. The goal is to characterise
the primitive ideal space of Deaconu-Renault groupoid C∗-algebras. We first
do this in the easier case of when T is an irreducible action, and then generalise
to non-irreducible actions. Finally, we apply the result from [SW16] to say
something about simplicity for Deaconu-Renault C∗-algebras. As an application
of what we arrive at, we give an alternative proof that the rotation algebra Aθ
is simple if and only if θ is irrational.

The theory in [Pat99] is very general: Nice properties such as étale and
Hausdorff are mostly not assumed. Deaconu-Renault groupoids are both Haus-
dorff and étale, so I have spent some time dechiphering the general results of
[Pat99] to the easier case. This has not always been successful, so some of the
proofs may be more technical than needed. We also go quite a lot into the
details in our proofs. In particular, [SW16] sketches (or skips entirely) parts of
the proofs that are clear to someone who is already well versed with this field
of research. I have spent quite a lot of time writing those arguments out fully.
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CHAPTER 2

Preliminaries

General Topology

As one might expect, we will need various results from general topology through-
out the thesis. This subsection will be the point of reference for those results.

Definition 2.0.1. A function f : X → Y between topological spaces is called
proper if, for every compact set K ⊆ Y , the preimage f−1(K) is compact.

Lemma 2.0.2. Let f : X → Y be a bijective function between topological spaces
X and Y . If for all S ⊆ X we have

x ∈ S ⇐⇒ f(x) ∈ f(S),

then f is a homeomorphism.

Proof. If S ⊆ X is closed, then x ∈ S if and only if f(x) ∈ f(S), so f(S) is
closed. If S is not closed, then f(S) 6= f(S) so f(S) is not closed. Hence S is
closed if and only if f(S) is closed, and f is a homeomorphism. �

Lemma 2.0.3. Let (aλ)λ∈Λ be a net in a topological space A, and let a ∈ A.
Then limλ→∞ aλ = a if every subnet of (aλ)λ has a subnet converging to a.

Proof. Suppose (contrapositively) that aλ 6→ a. Then for every neighbourhood
U of b and every λ ∈ Λ, there is some βU,λ ≥ λ with aβU,λ 6∈ U . Let U vary
over all neighbourhoods of b, and let λ vary over Λ. Define a partial order by
setting βU,α � βU ′,α′ if α ≤ α′ and U ′ ⊆ U . Then (aβU,λ) is a subnet of (aλ)
with no subnet converging to b. �

Proposition 2.0.4. If f : K → B is a continuous bijection, where K is compact
and B is Hausdorff, then f is a homeomorphism.

Lemma 2.0.5. Let X be a topological space, Y ⊆ X a subspace and χY : X →
{0, 1} the indicator function of Y . Then χY is continuous if and only if Y is
closed in X as well as open.

Definition 2.0.6. A topological space X is called a Baire space if, given a
countable collection of open dense subsets {Un}n∈N, their intersection

⋂
n∈N Un

is also dense. If every locally closed subset of X has the Baire property, X is
called totally Baire. (A locally closed subset of X is any intersection C ∩ U
where C is closed and U is open.)
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Proposition 2.0.7. If X is a totally Baire space, Y is a topological space and
p : X → Y is an open continuous map, then p(X) is totally Baire.

Theorem 2.0.8 (Baire category theorem). Every locally compact Hausdorff
space is Baire.

Remark 2.0.9. If X is locally compact Hausdorff, then every closed subspace
C ⊆ Xis also locally compact Hausdorff, and therefore Baire. If U ⊆ X is open,
then C ∩ U is open in U . Since open subsets of Baire spaces are Baire, C ∩ U
is Baire. Hence X is totally Baire.

Group Theory and Algebra

In this thesis, we generalise the notion of a group C∗-algebra to a groupoid
C∗-algebra. It is therefore appropriate to recall some basic definitions in group
theory.

Definition 2.0.10. A group is a set G together with an associative binary
operation G×G→ G, denoted (g, h) 7→ gh for g, h ∈ G, such that the following
hold:

(i) G has a unit e, such that ge = eg = g for all g ∈ G, and

(ii) every element g has an inverse g−1 such that gg−1 = g−1g = e.

If we skip requirement (ii), G is called a monoid. If G is a group in which the
multiplication map and inversion map are continuous, G is called a topological
group. Similarly, if G is a monoid in which the multiplication map is continuous,
it is called a topological monoid.

For example, Z is a groupoid (and a monoid) under addition. The subset
N0 ⊆ Z is a monoid, but not a group. The set N (without the unit 0) is neither
a group nor a monoid under addition. Any group (monoid) can be looked upon
as a topological group when endowed with the discrete topology. The set R
under addition and with the standard topology is an example of a topological
group that is not discrete.

The notion of an action will be central when working with Deaconu-Renault
groupoids. The definition of group actions is given below, and we will generalise
it to groupoid actions in a later chapter.

Definition 2.0.11. Let G be a group (monoid) with unit e and let X be any
set. A left group (monoid) action of G on X is a function G×X → X, denoted
(g, x) 7→ g · x for g ∈ G, x ∈ X, such that

(i) e · x = x for all x ∈ X, and

(ii) (gh) · x = g · (h · x) for all x ∈ X and g ∈ G.

The action is called

• free if g · x = x for some x ∈ X and g ∈ G, then g = e.

If G is a topological group (monoid), then the action is called
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• proper if the map G×X → X ×X given by (g, x) 7→ (g · x, x) is proper,
and

• strongly continuous if, for all g ∈ G, the map (g, x) 7→ g · x is continuous.

Definition 2.0.12. Suppose (g, x) 7→ g · x is a left group (monoid) action of G
on a set X. A subset A ⊆ X is called G-invariant if G ·A ⊆ A, and it is called
G-irreducible if it cannot be written as the union of two proper closed invariant
subsets.

Definition 2.0.13. Suppose R is a ring (i.e. a group with a distributive
multiplication operator) with multiplicative identity 1. A left R-module is an
abelian group (M,+) with a multiplication operator · : R×M →M such that
for all r, s ∈ R and x, y ∈M , we have

(i) r · (x+ y) = r · x+ r · y,

(ii) (r + s) · x = r · x+ s · x,

(iii) (rs) · x = r · (s · x), and

(iv) 1 · x = x.

C∗-algebras

The reader is assumed to have basic knowledge of C∗-algebras: Properties of
positive elements, representation theory, characters and so on. It will be an
advantage to be familiar with the construction of group C∗-algebras and crossed-
product C∗-algebras. We also assume knowledge in various themes in functional
analysis, such as the Radon-Nikodym derivative and Riesz’ representation
theorem. Certain additional C∗-algebra related notions are needed, in particular
that of a primitive ideal.

Definition 2.0.14. Let A be a C∗-algebra. A primitive ideal in A is the
kernel of any irreducible representation of A. We let Prim(A) denote the set of
primitive ideals in A.

Definition 2.0.15. Let A be a C∗-algebra. If the ideal {0} is primitive, then
A is called primitive. This is the same as saying that A has a faithful irreducible
representation.

Definition 2.0.16. Let A be a C∗-algebra with associated primitive ideal space
Prim(A). Let J be a collection of ideals i A. The kernel of J is the ideal

kerJ :=
⋂
J∈J

J.

The hull of an ideal J ⊆ A is the set

hull(J) := {I ∈ Prim(A) : J ⊆ I}.

The hull-kernel topology on Prim(A) is the topology in which the closure of a
set J ⊆ Prim(A) is J = hull(ker(J )).

5
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Another notion we will need is that of a hereditary subalgebra of a C∗-
algebra.

Definition 2.0.17. Let A be a C∗-algebra. A C∗-subalgebra B ⊆ A is called
hereditary if, given two positive elements a ∈ A and b ∈ B, the inequality a ≤ b
implies a ∈ B.

We have a nice characterisation of hereditary C∗-subalgebras found in
[Mur90, Theorem 3.2.2].

Theorem 2.0.18. Let B be a C∗-subalgebra of a C∗-algebra A. Then B is
hereditary if and only if bab′ ∈ B for all b, b′ ∈ B and a ∈ A.

Definition 2.0.19. Suppose J , A and B are C∗-algebras. We say that the
sequence

0 −→ J
j−→ A

π−→ B −→ 0

is a short exact sequence if j : J → A is an injective ∗-homomorphism, π : A→ B
is a surjective ∗-homomorphism, and that the image of j equals the kernel of π.

Remark 2.0.20. Let A,B and C be C∗-algebras, and let ϕ : A→ B and ψ : A→
C be linear functions (homomorphisms) with kerψ ⊆ kerϕ. Then there is an
induced linear function (homomorphism) γ : C → B (defined by c 7→ ϕ(ψ−1(c)))
such that the following diagram commutes.

A B

C

ϕ

ψ
γ

Indeed, to see that γ is well-defined, we must show that elements a, a′ ∈ A with
ψ(a) = ψ(a′) also has ϕ(a) = ϕ(a′). Since ψ and ϕ are linear, this is the same
as saying that a− a′ ∈ kerψ =⇒ a− a′ ∈ kerϕ, which we know is the case.
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CHAPTER 3

Introduction to Groupoids

3.1 Definition and Basic Properties

This thesis is about groupoid C∗-algebras, so we will of course need to know
what a groupoid is and what their basic properties are. Our construction of
the theory follows that of [Pat99], but with certain additions having [SW16] in
mind.

In essence, a groupoid is just like a group, except that it is not necessarily
possible to multiply two arbitrary elements. This will imply, for instance, that
groupoids have several unit elements. In fact, a groupoid is a group if and only
if it has precisely one unit. In many ways, the increased complexity we gain
from multiple unit elements is mirrored in the ensuing theory. For instance,
while we represent groups on unitary operators on some Hilbert space, we will
need one Hilbert space per unit to represent a groupoid. But we are getting
ahead of ourselves; let us first give a proper definition of groupoids.

Definition 3.1.1. A groupoid is a set G together with a subset G2 ⊆ G×G
of composable pairs, a product map (a, b) 7→ ab from G2 to G, and an inverse
map a 7→ a−1 from G to itself such that

(i) (a−1)−1 = a,

(ii) if (a, b), (b, c) ∈ G2, then (ab, c), (a, bc) ∈ G2 and

(ab)c = a(bc), (3.1)

(iii) (b, b−1) ∈ G2 for all b ∈ G, and

(iv) if (a, b) ∈ G2 then

a−1(ab) = b and (ab)b−1 = a. (3.2)

We will denote the groupoid simply by G. If G is equipped with a topology for
which products and inversion are continuous, we call it a topological groupoid.

In Proposition 3.1.7, we reformulate the definition of a groupoid in terms of
categories, which in many ways is more intuitive. The reader will not necessarily
benefit from scrutinising the above definition too much before reading that
reformulation. Before we state it, however, it will be benefitial to introduce
some more basic concepts. For instance, every groupoid is tightly connected to
its range and domain maps, together with its its unit space.



3. Introduction to Groupoids

Definition 3.1.2. Let G be a groupoid. Then the maps d, r : G→ G defined
by

d(x) := x−1x,

r(x) := xx−1

are called the domain map (sometimes called the source map) and range map
of G, respectively. For any subset A ⊆ G, we let rA and dA denote their
restrictions to A, respectively. Their (common) image r(G) = d(G) is called
the unit space of G and is denoted G0. The elements of G0 are called units.
For every unit u ∈ G0, we denote

Gu := d−1(u),
Gu := r−1(u), and
Guu := Gu ∩Gu.

The set Guu is in fact a group, and is called the isotropy group at u.

Groupoids “stick together” to form new groupoids in a very natural way.
Spesifically, every disjoint union of groupoids is a groupoid with the natural
inherited maps. We give an example of this which we will be interested in later
on.

Example 3.1.3. Let G be a groupoid. We define the isotropy subgroupoid of
G as

Iso(G) = {x ∈ G : r(x) = d(x)} =
⋃
u∈G0

Guu.

This is a disjoint union of groups in G, and is therefore a subgroupoid of G.

Another useful subgroupoid of a groupoid is obtained by removing elements
connected to certain units.

Example 3.1.4. Let G be a groupoid, and suppose K ⊆ G0. We can restrict
G to a subgroupoid G|K , defined by

G|K := {x ∈ G : r(x), d(x) ∈ K}.

As mentioned, one can also define a groupoid (quite elegantly) in terms of
categories, making certain parts of the theory more straightforward.

Definition 3.1.5. A small category C consists of

(i) a set of objects, ob(C);

(ii) a set of morphisms or arrows, hom(C), such that if f ∈ hom(C) then f
has a source object and range object in ob(C). We let hom(a, b) be the set
of morphisms with source a and range b; and

(iii) for every three objects a, b and c, there is a binary operation from
◦ : hom(a, b)× hom(b, c) to hom(a, c).

Furthermore, we require that the following holds:

8
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(iv) the binary operation above is associative, and

(iiv) for every x ∈ ob(C), there exists an identity morphism idx ∈ hom(x, x),
such that for every morphism f ∈ hom(a, x) and g ∈ hom(x, b) for
a, b ∈ ob(C), we have

idx ◦ f = f and g ◦ idx = g.

If f ∈ hom(a, b) for some a, b ∈ ob(C), then g ∈ hom(b, a) is the inverse of f if
f ◦ g = ida.

Proposition 3.1.6. A set G is a groupoid if and only if has the structure of a
small gategory where every morphism has an inverse.

Proof. We prove one direction; the construction should be clear enough to
make the proof of the converse redundant. Suppose therefore that G is a
groupoid. Define obG := G0, and identify homG with G in the natural way,
in the sense that x ∈ G is a morphism from d(x) to r(x). Thus we may also
identify hom(u, v) with Gu ∩Gv for u, v ∈ obG. For u, v, w ∈ obG, we let the
required binary operation hom(u, v)× hom(v, w)→ hom(u,w) be the groupoid
multiplication. By part (ii) of Definition 3.1.1, this operation is associative and
is defined on the entire set hom(u, v)× hom(v, w). Parts (iii) and (iv) ensures
that every x ∈ obG has a left identity r(x) and a right identity d(x). Thus G
has the structure of a small category, and parts (i) and (iii) of Definition 3.1.1
makes sure that every morphism has an inverse. �

The advantage of the category approach to groupoids is that many basic
facts become more intuitive. The following properties will be seen as obvious
when thinking of a groupoid as a category, while using the set theoretic definition
requires nontrivial proofs. As illustration, we have included proofs of the first
statement from both viewpoints.

Proposition 3.1.7. Let G be a groupoid, and x, y, z ∈ G. Then the following
statements hold:

(i) (x, y) ∈ G2 if and only if d(x) = r(y),

(ii) xd(x) = x = r(x)x,

(iii) d(x−1) = r(x) and r(x−1) = d(x),

(iv) x−1 = x if x is a unit,

(v) if both x and y are units and (x, y) ∈ G2, then x = y,

(vi) x2 = x if and only if x is a unit, and

(vii) if z = xy, then (y−1, x−1) ∈ G2, z−1 = y−1x−1, r(x) = r(z) and d(y) =
d(z).

Proof. We will prove (i). Suppose first that (x, y) ∈ G2. By (iii) of Defini-
tion 3.1.1, we have x−1(xy) = y. By (ii) of the definition, we have (x−1(xy))y−1 =
yy−1 = r(y). Similarly, we have x−1((xy)y−1) = x−1x = d(x). By (i) of the

9
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definition, we may change the placement of the parentheses for these expressions
and write

r(y) = (x−1(xy))y−1 = (x−1x)(yy−1) = x−1((xy)y−1) = d(x),

as we wanted.
Suppose next that r(y) = d(x). By (ii), we have (x, x−1), (x−1, x) ∈ G2.

Thus (x, x−1x) ∈ G2 by (i). But then (x, yy−1) ∈ G2 by assumption. We have
(yy−1, y) ∈ G2, so by (i) we have (x, yy−1y) ∈ G2. We have that yy−1y = y by
(iii), and hence (x, y) ∈ G2.

To prove (i) using the category approach, just note that (x, y) ∈ G2 if and
only if the (category) range of y is equal to the (category) source of x, in other
words r(y) = d(x). �

10
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3.2 Locally Compact Groupoids

When constructing a group C∗-algebra from a group G, one requires G to have
a locally compact topology; then one defines C∗(G) as the completion of Cc(G).
The same is the case for groupoid C∗-algebras. For non-Hausdorff groupoids,
the definition of locally compact groupoid differs from the purely topological
one. We will also require our locally compact groupoids to have a left Haar
system, which is a generalisation of the Haar measure.

Local Compactness

Definition 3.2.1. A locally compact groupoid is a topological groupoid G such
that

(i) G0 is locally compact and Hausdorff in the relative topology from G,

(ii) there is a countable family C of subsets of G which are compact and
Hausdorff, and whose interiors {C◦ : C ∈ C} form a basis for the topology
on G,

(iii) the sets Gu are locally compact and Hausdorff in the relative topology
from G for every u, and

(iv) G admits a left Haar system {λu} as defined below.

We will only be interested in locally compact groupoids which are Hausdorff.
Under this assumption, note that part (ii) in the above definition reduces to
the existence of a countable basis of relatively compact sets. In other words,
condition (ii) means that G is a second-countable, locally compact set. Note
also that parts (i) and (iii) then becomes implicit. We summarise this in the
following remark.
Remark 3.2.2. A Hausdorff locally compact groupoid is a topological groupoid,
which is second countable and locally compact in the usual sense, and which
admits a left Haar system.

In the non-Hausdorff cases of locally compact groupoids, the usual definition
of Cc(G) as the set of complex-valued, compactly supported continuous functions
on G will no longer be adequate. The space will simply not be large enough to
have the desired properties. Instead, for a general locally compact groupoid
G, one defines Ĉc(G) to be the span of those complex-valued functions f that
are continuous with compact support on an open Hausdorff subset, each of the
functions f being defined to be zero outside of that set. This set will take the
place of Cc(G). In the Hausdorff case, however, Ĉc(G) = Cc(G), as we prove
below. The requirement of a left Haar system is irrelevant in the following
proposition.

Proposition 3.2.3. Suppose G is a Hausdorff locally compact groupoid. Then
Ĉc(G) = Cc(G).

Proof. We clearly have Cc(G) ⊆ Ĉc(G). To prove the other inclusion, suppose
first that f ∈ Ĉc(G) has compact support in the open Hausdorff subset U ⊆ G,
with f zero outside U . Since U is open, we have that open covers of supp f in
U corresponds to open covers in G. Thus f has compact support. To show that

11



3. Introduction to Groupoids

f is continuous, let V ⊆ C be open. If 0 6∈ V , then f−1(V ) is open in U and
hence in G. If 0 ∈ V , then

f−1(V ) = f−1(V \ {0}) ∪Kc.

The set V \ {0} is open in C, so the first part of the above union is open in
G. Since G is Hausdorff and K is compact, K is closed, so Kc is open. Thus
f−1(V ) is open and f is continuous.

Next, let f ∈ Ĉc(G) be any element, so that f =
∑n
i=1 αifi for nonzero

constants {αi}ni=1 ⊆ C ⊆ {0}, and each fi has compact support Ki. Then
supp f ⊆ ∪ni=1Ki, which is compact – hence supp f is compact. Furthermore, f
is the composition of continuous functions

x 7→ (f1(x), . . . , fn(x)) 7→
n∑
i=1

αifi(x),

so it is continuous with compact support. Thus Ĉc(G) ⊆ Cc(G). �

From here on we will assume that all groupoids are Hausdorff. For
the definition of left Haar systems, recall that if µ is a measure on the measure
space (X, τ), then we define supp(µ) to be the set of all elements x ∈ X which
have the property that if U is an open neighbourhood of x, then µ(U) > 0.

Definition 3.2.4. A left Haar system for a locally compact groupoid G is a
family {λu : u ∈ G0} where each λu is a positive regular Borel measure on the
locally compact Hausdorff space Gu, such that the following holds:

(i) the support of λu is precisely Gu,

(ii) for every g ∈ Cc(G) we have g0 ∈ Cc(G0), where

g0(u) =
∫
Gu

gdλu,

and

(iii) for every x ∈ G and f ∈ Cc(G), we have∫
Gd(x)

f(xz)dλd(x)(z) =
∫
Gr(x)

f(y)dλr(x)(y).

A left Haar system gives us measures on the sets Gu. However, to each set
Gu, there is also a canonical positive regular Borel measure λu.

Proposition 3.2.5. If {λu : u ∈ G0} is a left Haar system for a locally compact
groupoid G, then for each λu we can associate a positive regular Borel measure
λu defined by

λu(E) := λu(E−1)

for all Borel subsets E ⊆ Gu.

12



3.2. Locally Compact Groupoids

Proof. For the definition of λu to make sense, we must have that E−1 is a
Borel subset of Gu whenever E is a Borel subset of Gu. This is indeed the
case; suppose E ⊆ Gu is Borel. Since G−1

u = Gu, we have E−1 ⊆ Gu, and since
x 7→ x−1 is a homeomorphism, E−1 is indeed a Borel set.

To see that λu is regular, let E ⊆ Gu be Borel. Since λu is regular, there
is a sequence {(On,Kn)}∞n=1 of pairs of sets such that On and Kn are Borel
subsets of Gu, On is open and Kn is compact with Kn ⊆ E−1 ⊆ On, and

lim
n→∞

λu(On \Kn) = 0.

Since inversion is a homeomorphism, O−1
n is open and K−1

n is compact with
K−1
n ⊆ E ⊆ O−1

n , and we have

lim
n→∞

λu(O−1
n \K−1

n ) = lim
n→∞

λu(On \Kn) = 0.

Thus λu is regular. �

The study of general locally compact groupoids is of course very interesting,
but for understanding [SW16], it will suffice to restrict to the so-called étale
case. We will define this below. Recall that if G is a locally compact groupoid
and A ⊆ G is any subset, then we let rA, dA denote the restrictions of r and d
to A, respectively.

Definition 3.2.6. Suppose G is a locally compact groupoid, and let Gop denote
the family of open subsets A of G such that rA and dA are homeomorphisms
onto open subsets of G. The groupoid G is called étale (sometimes referred to
as r-discrete) if Gop is a basis for the topology on G.

When stating that some groupoid G is étale, we will implicitly mean that G
is a locally compact groupoid. If G is étale, then every r-fibre Gu for u ∈ G0 is
discrete (hence the terminology r-discrete). Indeed, suppose x ∈ Gu. Sice Gop

is a basis, there is some U ∈ Gop with x ∈ U . The set U ∩Gu is open in the
subspace topology of Gu, but since r is injective on U , we have U ∩Gu = {x}.
Thus every subset of Gu is open.

Note also that the multiplication map and the maps r and d are open for
étale groupoids. The fact that r and d are open follows from the fact that the
image of every basis element (in Gop) is open; the prior requires some more
argumentation.

Proposition 3.2.7. If G is étale, then the multiplication map on G is open.

Proof. Recall that r and d are open maps when G is étale. Let A and B be
open subsets of G, and suppose (a, b) ∈ A × B is a composable pair. (If no
such pair exists, then AB = ∅ is open.) Suppose further that {xλ}λ∈Λ is a net
converging to ab. Then r(xλ)→ r(ab) = r(a), and since r is an open map, r(xλ)
is eventually in r(A). Suppose therefore that we eventually have r(xλ) = r(aλ)
for aλ ∈ A. In fact, since Gop is a basis for the topology on G, we may assume
also that aλ is eventually in some fixed basis element U ⊆ A. Since r is a
homeomorphism on U , we have aλ → a. Thus a−1

λ xλ → a−1ab = b. Since B is
open, a−1

λ xλ eventually belongs to B, so xλ = aλ(a−1
λ xλ) eventually belongs to

AB. Thus AB is open. �

13



3. Introduction to Groupoids

Remark 3.2.8. If G is étale, then G0 is closed as well as open. Indeed, G0 ∈ Gop,
so it is clearly open. In fact, one can take this to be the definition of an étale
groupoid, and this is the approach taken by [Ren80]. To see that it is closed, it
suffices to observe that G0 = r(G) is precisely the set of fixed points for the
continuous function r. The set of fixed points of a continuous function on a
Hausdorff space is always closed.

Quite a few things are simplified when restricting to the étale case. For
instance, one can relatively easily characterise the left Haar systems of such a
groupoid.

Proposition 3.2.9. Let G be an étale groupoid, and set P+(G) to be the set
of continuous functions α : G0 → (0,∞). Every α ∈ P+(G) defines a left Haar
system {Γu(α)} where for each u ∈ G0,

Γu(α) =
∑
x∈Gu

α(d(x))δx.

Conversely, every left Haar system {λu} is of the form {Γu(α)} for some
α ∈ P+(G).

Proof. First, let α ∈ P+(G) and λu = Γu(α). We must check the properties of
Definition 3.2.4. We start with (i). If U ⊆ Gu is open, then (Γu(α))(U) > 0
since α is strictly positive. Thus Gu ⊆ supp(Γu(α)). Similarly, (Γu(α))(V ) = 0
if V ∩Gu = ∅ and V is measurable, since Γu(α) is a sum of Dirac measures of
elements in Gu. Thus supp(Γu(α)) = Gu.

For (ii), let g ∈ Cc(G). Since Gop and {C◦ : c ∈ C} from part (ii) of
Definition 3.2.1 are bases for the topology on G, the family {V ∩ C◦ : V ∈
Gop, C ∈ C} is an open cover of supp g, which has a finite subcover {Ai}ni=1.
(Note that each Ai has compact closure and is in Gop.) Let {ϕi}ni=1 be a
partition of unity for the cover; such a partition of unity exists since G is locally
compact and supp g is compact. Then each fi := ϕig has compact support
inside Ai for i = 1, . . . , n. We will prove that f0

i ∈ Cc(G0) for all i, and hence
their sum

∑n
i=1(ϕig)0 = g0 is. For any u ∈ G0, we have

f0
i (u) =

∫
Gu

fi dλ
u =

∑
x∈Gu

fi(x)α(d(x)).

However, fi is zero outside Ai, so the only term in the above sum that is
potentially nonzero, is the one coming from the point r−1

i (u) ∈ Gu, where ri is
the range map restricted to Ai. Thus

f0
i (u) = fi(r−1

i (u))α(d(r−1
i (u))).

This is a composition of continuous functions, so f0
i ∈ C(G0). Furthermore, f0

i

is nonzero only inside r(Ai) ⊆ r(Ai). We have that r(Ai) is compact (hence
closed) since Ai is compact and r is continuous, so supp f0

i is a closed subset of
a compact set and therefore compact.

For (iii), let x ∈ G and f ∈ Cc(G). We want∫
Gd(x)

f(xz)dλd(x)(z) =
∫
Gr(x)

f(y)dλr(x)(y).

14



3.2. Locally Compact Groupoids

By definition, we have∫
Gr(x)

f(y)dλr(x)(y) =
∑

y∈Gr(x)

f(y)α(d(y));

on the other hand, letting y = xz yields∫
Gd(x)

f(xz)dλd(x)(z) =
∑

z∈Gd(x)

f(xz)α(d(z))

=
∑

z∈Gd(x)

f(y)α(d(y))

=
∑

y∈Gr(x)

f(y)α(d(y)),

which is precisely what we wanted. It might seem as if we sum over more
elements in the last sum than in the previous one. This is not the case. Indeed,
if y ∈ Gr(x), then z ∈ Gd(x) defined by z = x−1y is such that y = xz, so every
term in the last sum occurs in the prior.

Conversely, let {λu} be a left Haar system for G and let u ∈ G0. We first
prove that every point x ∈ Gu has strictly positive λu-measure. Indeed, since
suppλu = Gu, every open neighbourhood of x has positive λu-measure, and
every measurable set outside Gu has λu-measure zero. Since Gu is discrete in
the subspace topology, there is some neighborhood U of x with U ∩Gu = {x};
thus λu({x}) = λu(U) > 0.

Now we define α : G0 → R by α = χ0
G0 , so that

α(u) =
∫
Gu

χG0 dλu =
∫
{u}

1 dλu = λu({u}).

This function is positive by the discussion above. We want to show that it
is continuous. If K ⊆ G0 is compact, then by Urysohn’s lemma there exists
some ϕK ∈ Cc(G0) with ϕK = 1 on K. Since G0 is clopen by Remark 3.2.8,
the function χG0 is continuous by Lemma 2.0.5, so ϕkχG0 ∈ Cc(G0). By the
definition of a left Haar system, the function

αK(u) :=
∫
Gu

ϕKχG0 dλu

is continuous (with compact support). We have αK(u) = α(u) if u ∈ K.
Suppose now that (uλ)λ∈Λ is a net in G0 converging to u ∈ G0, and let K be a
compact neighborhood of u. Since αK is continuous, αK(uλ)→ αK(u). Since
uλ is eventually in K, the sequences αK(uλ) and α(uλ) must eventually agree,
so α(uλ)→ α(λ). Hence α is continuous, and we have α ∈ P+(G). Finally, for
any measurable E ⊆ G, we have

λu(E) =
∑

x∈E∩Gu
λ({x}) =

∑
x∈Gu

α(x)δx(E),

so λu = Γu(α).
�

Taking α to be identically equal to 1 on G0, we obtain the left Haar system
{λu} where λu is the counting measure. We will always take this to be
the canonical left Haar system for an étale groupoid.
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3. Introduction to Groupoids

The boldmath∗-Algebra Structure of Cc(G)
We would like to construct a C∗-algebra out of Cc(G). To do so, we will first
see that Cc(G) is a ∗-algebra, so we must first define a suitable norm, involution
and multiplication (convolution). These are defined analogously to the group
case.

Definition 3.2.10. For f, g ∈ Cc(G), define their convolution product as

(f ∗ g)(x) :=
∫
Gr(x)

f(y)g(y−1x)dλr(x)(y). (3.3)

For étale groupoids, the required discussion of involution and convolution is
greatly simplified. The reason is that by the proof of Proposition 3.2.9, each
f ∈ Cc(G) is a linear combination of functions g ∈ Cc(A) for some A ∈ Gop.
We illustrate how this works in the next proposition.

Proposition 3.2.11. Suppose that f ∈ Cc(A) and g ∈ Cc(B) for A,B ∈ Gop,
extended to be zero outside of A and B respectively. Then f ∗ g is zero outside
AB, and for each x ∈ AB there are unique a ∈ A and b ∈ B with x = ab such
that

(f ∗ g)(x) = f(a)g(b). (3.4)
Thus the set Cc(G) is closed under convolution.

Proof. Let x ∈ G; we will calculate (f ∗ g)(x). Since f is zero outside A and g
is zero outside B, it suffices to integrate over the set of y’s such that y ∈ A and
y−1x ∈ B – in other words y ∈ Gr(x) ∩A ∩ xB−1. (Note that this implies that
f ∗ g is zero outside AB.) We calculate that

(f ∗ g)(x) =
∫
Gr(x)

f(y)g(y−1x)dλr(x)(y)

=
∫
Gr(x)∩A∩xB−1

f(y)g(y−1x)dλr(x)(y).

Since r is injective on A, the set Gr(x) ∩A∩ xB−1 is either the empty set, or it
consists of a single point a. Suppose the latter is the case, which it is if and only
if x ∈ AB. Note that there must be a unique b ∈ B such that a = xb−1 – in
other words, x = ab. Since the left Haar system on G is just counting measures,
we get

(f ∗ g)(x) = f(a)g(a−1x) = f(a)g(b).
Each step in the sequence of functions

x = ab 7→ (a, b) 7→ (f(a), g(b)) 7→ f(a)g(b)

is continuous, so f ∗ g is continuous; lastly, the multiplication at the end ensures
that f ∗g is compactly supported. The last assertion in the proposition follows by
splitting f, g ∈ Cc(G) into a sum of compactly supported, continuous functions
on sets in Gop, and then using that the convolution is bilinear. �

Remark 3.2.12. Let f ∈ Cc(G0) and g ∈ Cc(A) for some A ∈ Gop, and let
x = r(x)x ∈ G0A = A. Then by Proposition 3.2.11,

(f ∗ g)(x) = f(r(x))g(x).

16



3.2. Locally Compact Groupoids

This identity holds for general elements g ∈ Cc(G). In particular, for functions
in Cc(G0), the convolution takes the even nicer form of pointwise multiplication.

We continue our quest of finding a suitable ∗-algebra structure on Cc(G).

Proposition 3.2.13. Let G be an étale groupoid. For each function f : G→ C,
define f∗ : G→ C by

f∗(x) = f(x−1). (3.5)
When restricted to Cc(G), the map f 7→ f∗ is an involution.

Proof. We clearly have f∗∗ = f for all f ∈ Cc(G), and that f 7→ f∗ is linear.
To see antimultiplicativity, suppose first that f ∈ Cc(A) and g ∈ Cc(B) for
some A,B ∈ Gop, and let x = ab ∈ AB. By Proposition 3.2.11, we see that
(f ∗ g)∗(x) = (f ∗ g)((ab)−1) = f(b−1)g(a−1) = g(a−1)f(b−1) = (g∗ ∗ f∗)(x).
General antimultiplicativity then follows since the convolution is bilinear, and
each function in Cc(G) is a sum of functions f, g as above. Lastly, if f is in
Cc(G) then f∗ is too. Indeed, f∗ is a composition of continuous functions
(inversion, f and complex conjugation), so it is continuous. Further, its support
is (supp f)−1, the image of a compact set under a continuous function. �

The only thing missing in our ∗-algebra structure is a norm. We will endow
Cc(G) with the so-called I-norm ‖ ·‖I , which is associated with two other norms
‖ · ‖I,r and ‖ · ‖I,d. The latter norms are defined by

‖f‖I,r = sup
u∈G0

∫
Gu
|f(t)|dλu(t) and

‖f‖I,d = sup
u∈G0

∫
Gu

|f(t)|dλu(t),

for f ∈ Cc(G). The I-norm is then given by
‖f‖I = max{‖f‖I,r, ‖f‖I,d}.

We have done most of the work to conclude with the below theorem, so the
proof is quite short. We do not prove the separability, but refer the reader to
[Pat99, p. 40].

Theorem 3.2.14. Let G be an étale locally compact groupoid. Then Cc(G) is
a separable, normed ∗-algebra under convolution multiplication and the I-norm.
Furthermore, the involution is isometric.

Proof. Submultiplicativity of the I-norm follows from Cauchy-Schwarz’ inequal-
ity. By this and the previous results, we know that Cc(G) is a normed ∗-algebra
under convolution. We now show that the involution is isometric. If f ∈ Cc(G),
then

‖f‖I,r = sup
u∈G0

∫
Gu
|f(t)|dλu(t)

= sup
u∈G0

∫
Gu

|f(t−1)|dλu(t)

= sup
u∈G0

∫
Gu

|f∗(t)|dλu(t)

= ‖f∗‖I,d.
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3. Introduction to Groupoids

Thus we also have ‖f∗‖I,r = ‖f∗∗‖I,d = ‖f‖I,d, so

‖f‖I = max{‖f‖I,r, ‖f‖I,d} = max{‖f∗‖I,d, ‖f∗I,r‖} = ‖f∗‖I .

�
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3.3. Representation Theory for Locally Compact Groupoids

3.3 Representation Theory for Locally Compact Groupoids

In order to properly define what a representation of a groupoid is, we must
first get a few measure theoretic constructions in order. After that, it turns out
that the notion of a Hilbert bundle has the required structure to form such a
representation.

Measure Theory

Definition 3.3.1. Suppose G is a locally compact groupoid. A positive Borel
measure onG is a [0,∞]-valued measure on the Borel σ-algebra B(G). Regularity
for positive Borel measures is defined as for the locally compact Hausdorff case.

If X is a locally compact Hausdorff space, the set of probability measures
on X is denoted P (X).

Proposition 3.3.2. Suppose that G is an étale groupoid and that µ ∈ P (G0).
Then we will µ and the left Haar system for G determines a regular Borel
positive measure ν on B(G), written

ν =
∫
G0
λudµ(u). (3.6)

Proof. Let G be an étale groupoid and define a linear functional ϕ on Cc(G) by

ϕ(f) =
∫
G0

∫
Gu

f(x)dλu(x) dµ(u)

=
∫
u∈G0

∑
x∈Gu

f(x) dµ(u),

Since f ∈ Cc(G), we have |f | ∈ Cc(G) with compact support K ⊆ G. Then
we can write

|ϕ(f)| ≤
∫
G0

∫
Gu
|f(x)|χK(x)dλu(x)dµ(u)

≤ ‖f‖∞
∫
G0

∫
Gu

χK(x)dλu(x)dµ(u)

= ‖f‖∞
∫
G0
χ0
K(u)dµ(u)

= ‖f‖∞ ·M,

where M =
∫
G0 χ

0
K(u)dµ(u). Since χ0

K(u) ∈ Cc(G0), we must have that χ0
K(u)

is bounded; thus its integral must be finite since G0 has finite µ-measure. Thus
ϕ is continuous, and by the Riesz-Markov theorem, there is a unique regular
Borel measure ν on G such that∫

G

fdν =
∫
G0

∫
Gu

f(x)dλu(x)dµ(u). (3.7)

�
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3. Introduction to Groupoids

We can associate to ν two regular Borel measures ν−1 and ν2, the first one on
G and the second on G2. The first one is simply defined as ν−1(W ) = ν(W−1)
for all W ∈ B(G). We can reformulate this in terms of the measures λu in the
following way: For each f ∈ Cc(G), let f̂ : G→ C be defined by f̂(x) = f(x−1).
Note that f̂ ∈ Cc(G) if and only if f ∈ Cc(G). Now we can write∫

G

fdν−1 =
∫
G

f̂dν.

By the definition of ν and that (λu)−1 = λu, we have

∫
G

f̂dν =
∫
G0

∫
Gu

f(x−1)dλu(x)dµ(u)

=
∫
G0

∫
Gu

f(x)dλu(x)dµ(u).

This is similar to (3.7), and by notation parallel to that of (3.6) we write

ν−1 =
∫
G0
λudµ(u). (3.8)

To define ν2 on G2, let f ∈ Cc(G2) and set

ν2(f) =
∫
G0

∫
Gu

∫
Gu

f(x, y) dλu(x)dλu(y)dµ(u). (3.9)

For further discussion of this measure, see [Pat99, pp. 87–88].

Definition 3.3.3. Let µ ∈ P (G0) for some locally compact groupoid G, and
let ν be its associated measure. If ν is equivalent to ν−1 (they have the same
zero sets), then µ is called quasi-invariant. If µ is quasi-invariant, then the
Radon-Nikodym derivative

D = dν

dν−1

is called the modular function of µ.

The modular function defined above is a generalisation of the modular
function ∆ in the group case, and our function D has similar properties.
Spesifically, as noted in [Pat99, p.89], we have D(xy) = D(x)D(y) for ν2-a.e.
(x, y) ∈ G2. We prove another similar property below.

Proposition 3.3.4. The function D from above satisfies D(x)D(x−1) = 1 for
ν-a.e. x ∈ G.

Proof. If g ∈ Cc(G), then for every Borel set E we have∫
E

g(x) dν(x) =
∫
E−1

g(x)D(x) dν−1(x)

=
∫
E

g(x−1)D(x−1) dν(x)

=
∫
E−1

g(x−1)D(x−1)D(x) dν−1(x)

=
∫
E

g(x)D(x)D(x−1) dν(x),
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3.3. Representation Theory for Locally Compact Groupoids

so that D(x)D(x−1) = 1 ν-a.e. as we wanted. �

It turns out to be useful to have a measure that is equivalent to ν, but
which is symmetrical with respect to inversion on G. To this end, let ν0 be the
measure on B(G) defined by

ν0(E) =
∫
G

χE(x)D(x)−1/2dν(x)

for all E ∈ B(E), so that D−1/2 = dν0
dν .

Proposition 3.3.5. The measure ν0 as defined above is symmetrical with
respect to inversion.

Proof. First off, if E ∈ B(G), then

ν0(E) =
∫
G

χE(x)D−1/2(x)dν(x)

=
∫
G

χE(x−1)D−1/2(x−1)dν−1(x)

=
∫
G

χE−1(x)D1/2(x)dν−1(x),

where we have used that D(x−1) = D(x)−1 ν-a.e. Since D = dν
dν−1 , we

continue to find that

ν0(E) =
∫
G

χE−1(x)D1/2(x)D−1(x)dν(x)

=
∫
G

χE−1(x)D−1/2(x)dν(x)

= ν0(E−1),

just as we wanted. �

Hilbert Bundles and Groupoid Representations

We leave the measure theory briefly to discuss Hilbert bundles. Their structure
fits nicely together with the notion of a representation of a locally compact
groupoid. Indeed, while we can represent a group as unitary on a single Hilbert
space, the separated structure of a groupoid requires a more separated notion
than a Hilbert space. We will realise the groupoid G as operators between
Hilbert spaces in the Hilbert bundle.

Definition 3.3.6. A Hilbert bundle is a triple (X,K, µ) where X is a second
countable locally compact Hausdorff space, µ is a probability measure on X,
and K is a collection {Hu : u ∈ X} of Hilbert spaces.

Definition 3.3.7. A section of a Hilbert bundle (X,K, µ) is a function f : X →
∪u∈XHu where f(u) ∈ Hu. A sequence of sections {fn}n∈N is fundamental if
for each pair m,n ∈ N, the function u 7→ 〈fm(u), fn(u)〉 is µ-measurable on X,
and for each u ∈ X, the set {fn(u) : n ∈ N} spans a dense subspace of Hu.
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Fundamental sections turn out to be helpful to the theory. All Hilbert
bundles we discuss are assumed to have a fundamental sequence. The
fundamental sequence defines a notion of measurability for sections.

Definition 3.3.8. Suppose (X,K, µ) is a Hilbert bundle with fundamental
sequence {fn}n∈N. A section f on the Hilbert bundle is measurable if each
function u 7→ 〈f(u), fn(u)〉 is measurable, where u ∈ X and n ∈ N.

The Hilbert space L2(X, {Hu}, µ) is defined in the obvious way as the
space of (equivalence classes of) measurable sections f for which the function
u 7→ ‖f(u)‖22 is µ-integrable. The norm of f ∈ L2(X, {Hu}, µ) is given by

‖f‖2 =
[∫

X

‖f(u)‖2dµ(u)
] 1

2

,

and the inner product of two sections f, g ∈ L2(X, {Hu}, µ) is defined by

〈f, g〉 =
∫
X

〈f(u), g(u)〉dµ(u).

Now everything is in place, and we can define what a representation of a
groupoid is.

Definition 3.3.9. Let G be a locally compact groupoid. A representation of
G is a Hilbert bundle (G0, {Hu}, µ), where µ is a quasi-invariant measure on
G0 (with associated measure ν), and for each x ∈ G, there is a unitary element
L(x) ∈ B(Hd(x), Hr(x)) such that:

(i) L(u) is the identity map on Hu for all u ∈ G0,

(ii) L(x)L(y) = L(xy) for ν2-a.e. (x, y) ∈ G2,

(iii) L(x)−1 = L(x−1) for ν-a.e. x ∈ G, and

(iv) for any ξ, η ∈ L2(G0, {Hu}, µ), the function

x 7→ 〈L(x)ξ(d(x)), η(r(x))〉

is ν-measurable on G.

A representation of a locally compact groupoidG will be denoted (µ, {Hu}, L),
or simply L if µ and {Hu} are implicit. There are always representations of G.

Example 3.3.10. Let G be a locally compact groupoid, and let µ be any
quasi-invariant measure on G0. Define a Hilbert bundle by G0 × C, so that
each Hilbert space Hu is just C. Then the trivial representation for µ is given
by Ltriv(x) = id on C = Hd(x) = Hr(x).

The C∗-algebra of a Groupoid

Given a representation L of G, we can construct a representation πL of the
∗-algebra Cc(G). We will require that all representations of Cc(G) are
I-norm continuous.
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Proposition 3.3.11. Let G be a locally compact groupoid, and let (µ, {Hu}, L)
be a representation of G. Then there is a representation πL : Cc(G)→ B(H) of
Cc(G) with ‖πL‖ ≤ 1, where H = L2(G0, {Hu}, µ), given by

〈πL(f)ξ, η〉 =
∫
G

f(x)〈L(x)(ξ(d(x))), η(r(x))〉dν0(x). (3.10)

Explicitly, we have

πL(f)ξ(u) =
∫
Gu

f(x)L(x)(ξ(d(x)))D−1/2(x)dλu(x). (3.11)

Proof. The explicit formula (3.11) follows from (3.10) by writing it out, passing
the integration through the inner product and using Riesz’ representation
theorem. The full argument can be found in [Pat99, p.94].

We start off by showing that the integrand of (3.10) does in fact belong to
L1(G, ν0). Note that

|f(x)〈L(x)(ξ(d(x))), η(r(x))〉| ≤ |f(x)|‖(ξ(d(x)))‖‖η(r(x))‖ ≤[
|f(x)|1/2‖ξ(d(x))‖D(x)−1/4

]
·
[
|f(x)|1/2‖η(r(x))‖D(x)1/4

]
,

where the first inequality is due to the Cauchy-Schwarz inequality and that
L(x) is unitary. Integrating with respect to ν0 and using the Cauchy-Schwarz
inequality again yields∫

G

|f(x)〈L(x)(ξ(d(x))), η(r(x))〉|dν0(x) ≤[∫
G

|f(x)|‖ξ(d(x))‖2D(x)−1/2dν0(x)
]1/2
× (3.12)[∫

G

|f(x)|‖η(r(x))‖2D(x)1/2dν0(x)
]1/2

. (3.13)

By properties of the Radon-Nikodym derivative, we find that D1/2 =
(
dν0
dν

)−1 =
dν
dν0

and D−1/2 = D−1D1/2 = dν−1

dν
dν
dν0

= dν−1

dν0
, so we can rewrite the right-hand

side of (3.13) as[∫
G

|f(x)|‖ξ(d(x))‖2dν−1(x)
]1/2

·
[∫

G

|f(x)|‖η(r(x))‖2dν(x)
]1/2

.

By (3.8), we have∫
G

|f(x)|‖ξ(d(x))‖2dν−1(x) =
∫
G0

∫
Gu

|f(x)|‖ξ(d(x))‖2dλu(x)dµ(u)

=
∫
G0
‖ξ(u)‖2

∫
Gu

|f(x)|dλu(x)dµ(u)

≤
∫
G0
‖ξ(u)‖2‖f‖I,ddµ(u)

≤ ‖f‖I,d‖ξ‖22.
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Similarly, we have ∫
G

|f(x)|‖η(r(x))‖2dν(x) ≤ ‖f‖I,r‖η‖22,

so we can write

|f(x)〈L(x)(ξ(d(x))), η(r(x))〉| ≤ [‖f‖I,d‖ξ‖22]1/2[‖f‖I,r‖η‖22]1/2

≤ ‖f‖I‖ξ‖2‖η‖2.

Thus the map πL : Cc(G)→ B(L2(G0, {Hu}, µ)) is bounded with ‖πL‖ ≤ 1.
Next, we want to show that πL is a homomorphism. Using (3.11), we will

prove that
πL(f ∗ g)ξ(u) = πL(f)(πL(g)ξ(u))

for µ-a.e. u ∈ G0, and we skip the technical argument for the general case
taking null-sets into account. For µ-a.e. u ∈ G0 we have

πL(f ∗ g)ξ(u) =
∫
Gu

(f ∗ g)(x)L(x)(ξ(d(x)))D1/2(x) dλu(x)

=
∫
Gu

∫
Gd(x)

f(xy)g(y−1) dλd(x)(y) · L(x)(ξ(d(x)))D−1/2(x) dλu(x)

=
∑
x∈Gu

∑
y∈Gd(x)

f(xy)g(y−1)L(x)(ξ(d(x)))D−1/2(x),

by the definition of the product and the fact that the Haar system for G is just
counting measures. On the other hand, we have

πL(f)(πL(g)ξ(u)) =
∫
Gu

f(x)L(x) [πL(g)ξ(d(x))]D−1/2(x) dλu(x) =∫
Gu

f(x)L(x)
[∫

Gd(x)
g(y)L(y)(ξ(d(y)))D−1/2(y) dλd(x)(y)

]
D−1/2(x) dλu(x)

=
∫
Gu

∫
Gd(x)

f(x)g(y)L(xy)(ξ(d(y)))D−1/2(xy) dλd(x)(y) dλu(x)

=
∑
x∈Gu

∑
y∈Gd(x)

f(x)g(y)L(xy)(ξ(d(y)))D−1/2(xy),

where we have just written out the definition and passed functions of x through
the inner integral. Note that if y ∈ Gd(x), then r(y) = d(x) and (x, y) ∈ G2.
Substituting with s = y−1 and t = xy, such that y = s−1 and x = ts, yields

πL(f)(πL(g)ξ(u)) =∫
Gu

∫
Gd(ts)

f(ts)g(s−1)L(t)(ξ(d(t)))D−1/2(t) dλd(ts)(s−1) dλu(ts)

=
∑
ts∈Gu

∑
s−1∈Gd(ts)

f(ts)g(s−1)L(t)(ξ(d(t)))D−1/2(t),

where we have used that d(y) = d(s−1) = d(xs−1) = d(t). In the inner sum,
we go through elements s−1 where d(s) = r(s−1) = d(ts) = d(s), which is
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3.3. Representation Theory for Locally Compact Groupoids

obviously the case for every s ∈ Gd(t). Given this, we can also reduce the outer
summation to r(ts) = r(t) ∈ Gu. Thus

πL(f)(πL(g)ξ(u)) =
∑
t∈Gu

∑
s∈Gd(t)

f(ts)g(s−1)L(t)(ξ(d(t)))D−1/2(t)

= πL(f ∗ g)ξ(u).

Next, we show that πL is a ∗-map. For ξ, η ∈ H we have

〈πL(f∗)ξ, η〉 =
∫
Gu

f(x−1)〈L(x)ξ(d(x)), η(r(x))〉 dν0(x)

=
∫
Gu

f(x)〈L(x−1)ξ(r(x)), η(d(x))〉 dν0(x)

since ν0 is invariant under inversion. By part (iii) in Definition 3.3.9 and since
L(x) is unitary, we can write

〈L(x−1)ξ(r(x)), η(d(x))〉 = 〈ξ(r(x)), L(x−1)−1η(d(x))〉
= 〈ξ(r(x)), L(x)η(d(x))〉
= 〈L(x)η(d(x)), ξ(r(x))〉,

and hence we have

〈πL(f∗)ξ, η〉 =
∫
Gu

f(x)〈L(x−1)ξ(r(x)), η(d(x))〉 dν0(x)

=
∫
Gu

f(x)〈L(x)η(d(x)), ξ(r(x))〉 dν0(x)

= 〈πL(f)η, ξ〉 = 〈ξ, πL(f)η〉.

The last thing we need to prove is nondegeneracy. Suppose for contradiction
that πL(Cc(G))H 6= H, and let η ∈ (πL(Cc(G))H)⊥ be nonzero. This means
that for all f ∈ Cc(G) and ξ ∈ H, we have 〈πL(f)ξ, η〉 = 0; in other words∫

G

f(x)〈L(x)ξ(d(x)), η(r(x))〉 dν0(x) = 0.

Suppose U is any basic open set in G (with compact closure), and let {Ui}ni=1 be
a finite open cover of the compact set U by basis elements. Then K := ∪ni=1Ui is
compact. Since G is normal, we can apply Urysohn’s Lemma to find a function
f ∈ Cc(G) with f ≥ χU . Assume in addition that f takes values in [0, 1]. We
can approximate the L1(G, ν0)-function

x 7→ |f(x)〈L(x)ξ(d(x)), η(r(x))〉|

by functions of the form

x 7→ g(x)f(x)〈L(x)ξ(d(x)), η(r(x))〉

with g ∈ Cc(U). Therefore we have∫
U

|〈L(x)ξ(d(x)), η(r(x))〉| dν0

≤
∫
G

|f(x)〈L(x)ξ(d(x)), η(r(x))〉| dν0 = 0.
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By varying U , we find that 〈L(x)ξ(d(x)), η(r(x))〉 = 0 ν0-a.e. Let {ξn}n∈N be a
fundamental sequence for (G0, {Hu}, µ). By the above, there exists a set E ⊆ G
with ν0(E) = 0 such that

〈L(x)ξn(d(x)), η(r(x))〉

for all n ∈ N and x ∈ G \E. For x ∈ G \ E, the vectors {ξn(d(x))}n∈N span a
dense subspace of Hd(x). Since L(x) : Hd(x) → Hr(x) is unitary, {L(x)ξn(d(x))}
spans a dense subset of Hr(x). Indeed, if V ⊆ Hr(x) is open and nonempty, then
so is L(x)−1(V ); it contains some ξn(d(x)), so V contains L(x)ξn(d(x)). Since
〈L(x)ξ(d(x)), η(r(x))〉 = 0 for all x ∈ G \ E, we must have η(r(x)) = 0 ν0-a.e.,
and hence ν-a.e. since it is equivalent to ν0. Thus

0 =
∫
G

‖ν(r(x))‖ dν =
∫
G0

∫
Gu
‖η(u)‖ dλu dµ(u) =

∫
Gu
‖ν(u)‖λu(Gu)dµ(u),

and since λu(Gu) > 0 for all u ∈ G0, we must have η(u) = 0 µ-a.e. But this
means that η is (in the equivalence class of) zero in H, which is a contradiction.
Hence πL is nondegenerate, and the proof is complete. �

The above proposition is part of the road to prove the fundamental theorem
of analysis on locally compact groupoids, stated below. The proof can be found
in [Pat99], but is omitted here since the material isn’t very relevant for the rest
of the thesis.

Theorem 3.3.12. Let G be a locally compact groupoid. Then every represen-
tation of Cc(G) is of the form πL for some representation L of G, and the map
L 7→ πL preserves the natural equivalence relations on the representations of G
and the representations of Cc(G).

We can now turn to one of the C∗-algebras associated to the étale groupoid
G, namely the universal one.

Definition 3.3.13. Let G be an étale groupoid. The completion of Cc(G) with
respect to the C∗-norm

‖f‖∗ = sup{‖π(f)‖ : π is a representation of Cc(G)} (3.14)

is called the C∗-algebra of G, denoted C∗(G). The norm ‖ · ‖∗ is called the
universal norm on Cc(G).

We should clarify why (3.14) does indeed define a C∗-norm. First of all, by
Proposition 3.3.11, each representation of G yields a representation of Cc(G).
There are always representations of G – for instance the trivial one – so the set we
are taking the supremum of in (3.14) is nonempty. Secondly, Proposition 3.3.11
and Theorem 3.3.12 ensures that every representation of Cc(G) has norm less
than 1, so (3.14) is bounded by ‖f‖I . We clearly have the C∗-equality as

‖π(f∗f)‖ = ‖π(f)∗π(f)‖ = ‖π(f)‖2,

so ‖ · ‖∗ is a C∗-seminorm. In fact, it is a norm since it dominates another norm
– the reduced C∗-norm on Cc(G). This is the norm on the reduced C∗-algebra
associated to G, denoted C∗r (G). We can construct C∗r (G) by considering a
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3.3. Representation Theory for Locally Compact Groupoids

certain representation Indµ, which is (not surprisingly) related to the left regular
representation in the group case. The great majority of the argumentation in
the rest of the thesis is based on the universal case, and we will therefore not
go through the construction of the reduced algebra. This is why we will not go
into too much detail in arguments involving the reduced case.
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CHAPTER 4

Covariance C∗-algebras

The goal of this chapter is to prove that if G is an étale groupoid, then C∗(G) is
isomorphic to the covariance C∗-algebra C0(G0)×βS for any additive (countable)
inverse semigroup S of Gop with its natural localisation action on G0. In order
to prove this (rather copious) statement, we will of course need to know the
meaning of every word contained in it. To do so, we must go through a bit of
the theory on inverse semigroups. All proofs on this subject are omitted for
brevity.

4.1 Inverse Semigroups

Definition 4.1.1. A semigroup is a set S with an associative binary operation
(a, b) 7→ ab for (a, b) ∈ S2. The semigroup S is called an inverse semigroup if
for each s ∈ S, there is a unique element s∗ ∈ S such that

ss∗s = s and s∗ss∗ = s∗.

The map s 7→ s∗ is called the involution on S.

A homomorphism between inverse semigroups always preserves involution.
The use of the terminology “involution” is in its place; we have (st)∗ = t∗s∗

and s∗∗ = s for all elements s, t of an inverse semigroup. An important example
of an inverse semigroup is this: Let X be set, and define

I(X) := {α : D → R : D,R ⊆ X and α is bijective}.

Then I(X) is an inverse semigroup under composition, restricted to whereever
it makese sense.

Given an inverse semigroup S, we denote its set of idempotents by E(S) =
{s ∈ S : s2 = s}. The elements of this set has several nice properties; for
instance, all elements in E(S) commute with each other, and we have e∗ = e
for all e ∈ E(S). We also have a partial order ≤ on the elements of E(S); we
write e1 ≤ e2 for e1, e2 ∈ E(S) if e1e2 = e1.

There is also a notion of a quotient inverse semigroup. It differs from
the notion of quotient groups in that normal subgroups are replaced with
congruences. An equivalence relation ∼ on an inverse semigroup T is called
a congruence if as ∼ at and sa ∼ ta whenever s ∼ t in T and a ∈ T . The
set of equivalence classes T/ ∼ is an inverse subsemigroup in the natural way.
By reversing multiplication in T/ ∼, it follows that congruences correspond to
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surjective antihomomorphisms. Every relation ≤ on T generates a congruence,
namely the smallest congruence containing ≤.

Let G be a groupoid. A subset A of G is called a G-set if the restrictions
dA, rA of the domain and source maps are injective on A. We let Σ denote the
set of all G-sets. Note that Gop ⊆ Σ. If G is an étale groupoid, then Σ is an
inverse semiroup under set multiplication and with set inversion as involution.
The set G0 is the unit 1 and ∅ is the zero 0 for Σ. Furthermore, Gop is in fact
an inverse subsemigroup of Σ. The inverse semigroup Gop (for étale G) may
have many interesting inverse subsemigroups itself. An inverse subsemigroup S
of Gop is called additive if it is a basis for the topology on G, and whenever
A,B ∈ S with A ∪B ∈ Gop, then A ∪B ∈ S.

A representation of an inverse semigroup S on a separable Hilbert space H
is a ∗-homomorphism from S into B(H) such that

span (π(S)H) = H.

Note that a representation of S maps S to an inverse semigroups of partial
isometries.

Definition 4.1.2. Let S be an inverse semigroup, and let X be a set. A right
action of S on X is an inverse semigroup antihomomorphism from S to I(X);
in other words, a map s 7→ αs ∈ I(X) such that

αst = αtαs and αs∗ = α∗s

for all s, t ∈ S. We will often denote the right action by x 7→ x · s, where
x · s = αs(x) for all s ∈ S, x ∈ X.

This brings us back to étale groupoids again. It turns out that there is a
canonical right action connected to each Gop for an étale groupoid G.

Example 4.1.3. Let G be an étale groupoid. For any A ∈ Gop and u ∈ G0,
set

αA(u) = A−1uA.

We can reduce this to a simpler form. Indeed, αA(u) is only defined when
u ∈ r(A), so u = r(a) for some a ∈ A. Since r is injective on A, a is unique,
and we have uA = {a}. Thus we have A−1uA = A−1a. If the product ba is
defined for some b ∈ A−1, we would have d(b) = r(a), and since d is injective
on A−1, that b is unique and must be equal to a−1. Then we can write

A−1uA = A−1a = {a−1a} = {d(a)}.

Dropping the braces off {d(a)}, we have that αA is a function from r(A) to
d(A), given by

αA(r(a)) = d(a).

In fact, we can write αA = d ◦ r−1
A , which is a composition of homeomorphisms

and is therefore a homeomorphism. This defines the canonical right action of
Gop on G0.
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4.2. Localisations and Covariance C∗-algebras

4.2 Localisations and Covariance C∗-algebras

Localisations and Covariant Systems

An essential part to most constructions in this section is the notion of a
localisation.

Definition 4.2.1. Suppose that X is a locally compact Hausdorff space, G is
an étale groupoid, and S ⊆ Gop is an additive inverse subsemigroup. Suppose
further that there is a right action x 7→ x · s = αs(x) of S on X, and we let Ds

and Rs denote the domain and range of αs, respectively. The pair (X,S) is
called a localisation if

(i) the domain Ds for each map αs is open,

(ii) each map αs is a homeomorphism from Ds onto its range Rs = Ds∗ , and

(iii) the family of such domains Ds is a basis for the topology on X.

Note that αss∗ = αs∗αs, which is the identity on Ds; hence Ds = Dss∗ . This
means that the last condition in Definition 4.2.1 can be replaced by requiring
{De : e ∈ E(S)} to be a basis for the topology on X.

Example 4.2.2. Let G be an étale groupoid and S be an inverse subsemigroup
of Gop which is a basis for the topology on G. Let x 7→ x · s be the canonical
right action on G0 by S given in Example 4.1.3. Then the domain of αs is
Ds = r(s) (as with αs in Example 4.1.3). We will prove that (G0, S) is a
localisation by verifying the three parts of Definition 4.2.1.

We first note thatDs is open inG0 since s is open and rs is a homeomorphism,
and as already noted in Example 4.1.3, each αs is a homeomorphism. Now we
must check that C := {Ds : s ∈ S} is a basis for the topology on G0. For every
u ∈ G0 and basic neighbourhood s ∈ S of u, we must check that there a member
of C between u and s. Note that Ds = r(s) is open in G and contains u. Since
S is a basis for the topology on G, there is some t ∈ S with u ∈ t ⊆ r(s) ∩ s.
Then t ⊆ G0, so we have Dt = r(t) = t. But then t ∈ C and is between u and s,
and C generates the topology on G0.

Definition 4.2.3. A localisation (X,S) is called extendible if whenever e1, e2 ∈
E(S), then there exists e3 ∈ E(S) such that De3 = De1 ∪De2 .

Proposition 4.2.4. If G is an étale groupoid and S is a (countable) additive
subsemigroup of Gop acting canonically on G0, then the localisation (X,S) is
extendible.

Proof. If e1, e2 ∈ E(S) ⊆ Gop, we must have e1, e2 ∈ G0, so both e1 and e2
are singleton sets {u1} and {u2} respectively. Now we can write De1 ∪De2 =
r({u1, u2}) = {u1, u2}. Set e3 = {u1, u2}. We clearly have e3 ∈ Gop, so e3 ∈ S
since S is additive. But De3 = r(e3) = e3, so (X,S) is extendible. �

Suppose X is a topological space and U ⊆ X is open. Then we can regard
C0(U) as a closed ideal in C0(X) by extending each f ∈ C0(U) to be zero
outside of U . In particular, if (X,S) is a localisation, we can regard C0(Ds) as a
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closed ideal of C0(X). For each s ∈ S, we define a map βs : C0(Ds∗)→ C0(Ds)
by

βs(F )(x) = F (x · s) (4.1)
for x ∈ Ds. We will sometimes denote βs(F )(x) by sF .

Proposition 4.2.5. The function βs defined above is an isomorphism between
the closed ideals C0(Ds∗) and C0(Ds) of C0(X), and s 7→ βs is a homomorphism
from S into I(C0(X)).

Proof. We clearly have that βs is a homomorphism. It also has an inverse,
namely βs∗ . To show this, we need to know that x · ss∗ = x, or in other words
that αsα∗s(x) = x, for all s ∈ S and x ∈ Ds. From the definition of an inverse
semigroup we have αsα∗sαs = αs for all s ∈ S, so in particular we have for any
such s that

αs(α∗sαs(x)) = αs(x)
for all x ∈ Ds. But then α∗sαs(x) = x since αs is injective. Now we can see
that β−1

s = βs∗ . Indeed, using the notation βs(F ) = (x 7→ F (x · s)) we have

βs(βs∗(F )) = (x 7→ βs∗(F )(x · s))
= (x 7→ F (x · ss∗))
= (x 7→ F (x)) = F.

Thus βs is an isomorphism between closed ideals in C0(X).
We will now show that s 7→ βs is a homomorphism. The first step towards

proving that βst = βsβt for s, t ∈ S, is to prove that the two functions have the
same domain. Recall that that C0(U)∩C0(V ) = C0(U ∩ V ) for any topological
spaces U and V . The domain of αt∗s∗ = αs∗αt∗ is Dt∗s∗ , which equals

α−1
t∗ (Rt∗ ∩Ds∗) = αt(Dt ∩Ds∗).

On the other hand, the domain of βsβt is

β−1
t (C0(Dt ∩Ds∗)).

(Recall that multiplication in I(C0(X)) is defined as composition wherever it
makes sense.) If F ∈ β−1

t (C0(Dt ∩Ds∗)), we would have βt(F ) ∈ C0(Dt ∩Ds∗).
This function is defined by βs(F )(x) = F (αt(x)) for all x ∈ Dt ∩ Ds∗ , so
F ∈ C0(αt(Dt ∩Ds∗)). But then we have F ∈ C0(Dt∗s∗), which is the domain
of βst. The other inclusion is similar, so the domain of βst equals the domain
of βsβt. Finally, for any F in the domain of βst, we hav

βsβt(F ) = βs(x 7→ F (x · t))
= (x 7→ F ((x · t) · s))
= (x 7→ F (x · st))
= βst(F ),

so s 7→ βs is a homomorphism. �

Definition 4.2.6. Suppose S is an inverse semigroup and A is a C∗-algebra.
An action of S on A is defined to be a homomorphism β from S to I(A) such
that
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(i) for every s ∈ S, the domain Es∗ of every βs is a closed ideal in A, and βs
is an isomorphism from the ideal Es∗ to the ideal Es;

(ii) if s, t ∈ S then there exists w ∈ S such that Es ∪ Et ⊆ Ew, and

(iii) the set B = ∪s∈SEs is a dense subalgebra of A.

The triple (A, β, S) is said to give or even to be an (inverse semigroup)
covariant system.

We will sometimes denote βs(a) by sa for a ∈ Es∗ . Combining several
βts may require some care. If s, t ∈ S, then the domain of βsβt = βst is
β−1
t (Es∗ ∩ Et) = βt∗(Es∗Et) (and not Et∗), since the composition βsβt is only

defined where it makes sense. Here we have used that β−1
t = βt∗ , and that

I∩J = IJ for any closed ideals I, J in the C∗-algebra A. (To see that IJ = I∩J ,
just take an approximate identity {uλ}λ∈Λ for J ; then x ∈ I ∩ J can be written
as limλ xuλ, which is an element of IJ since IJ is closed. The other inclusion
is by the definition of ideal.) A useful property one can deduce from this is that
Est = βs(Es∗Et). Indeed, Est is the range of βts = βsβt, so we have

Est = βsβt(βt∗(Es∗Et)) = βs(Es∗Et).

We will be particularily interested in the covariant system (C0(X), β, S) where
(X,S) is an extendible localisation. With X = G0 for some étale groupoid G,
it turns out that the induced C∗-algebra C0(G0)×β S is isomorphic to S∗(G),
which is one of the main theorems of this section (Theorem 4.2.18).

Proposition 4.2.7. If (X,S) is an extendible localisation, then the triple
(C0(X), β, S) is a covariant system.

Proof. We will check the three conditions of Definition 4.2.6. Note that the
domain of βs is Es∗ = Cc(Ds∗), so the first condition is just the first part of
Proposition 4.2.5. For (ii), it suffices to consider E(S), since if s ∈ S then Es =
Ess∗ (where ss∗ ∈ E(S)). Suppose therefore that e1, e2 ∈ E(S); since (X,S) is
extendible we have another element e3 ∈ E(S) such that De1 ∪De2 = De3 . For
(iii), note that since {De}e∈E(S) is a basis for the topology on X, each compact
subset K ⊆ X is covered by a finite number of the De’s, say {Dei}ni=1. Suppose
f ∈ Cc(X) has compact support K. By the argument for (ii), there is some
w ∈ E(S) with

K ⊆ ∪ni=1Eei ⊆ Ew,

so we have f ∈ B and thus Cc(X) ⊆ B. But Cc(X) is dense in C0(X), so B is
too. �

To any covariant system (A, β, S), there is a related space of functions that
will be essential. Define C(A,S) to be the set of functions θ : S → A such that
θ(s) ∈ Es ⊆ A for all s ∈ S and is zero on all but finitely many elements of S.
The set C(A,S) is a vector space under pointwise operations. Next, let V (A,S)
be the set of elements (a, s) ∈ C(A,S) where a ∈ Es and (a, s)(t) = δs(t)a for
t ∈ S. The map a 7→ (a, s) is linear from Es to V (A,S). It is clear that V (A,S)
spans C(A,S). Indeed, for θ ∈ B(A,S) and t ∈ S, we have

θ(t) =
∑
s∈F

δs(t)θ(t) =
∑
s∈F

(θ(t), s)(t)
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where F is the finite subset of S on which θ is nonzero.

Proposition 4.2.8. Let (A, β, S) be a covariant system. The space C(A,S)
described above is then a C∗-algebra with product and involution determined by
the following product and involution on V (A,S):

(a, s)(b, t) = (s[(s∗a)b], st) and (a, s)∗ = (s∗a∗, s∗).

If (X,S) is an extendible localisation, we can simplify the associated product.
For (f, s), (g, t) ∈ V (A,S) we can define

(f, s)(g, t) = (f(sg), st), (4.2)

where the function sg : X → [0,∞) is defined by setting sg(x) = g(x · s) if
x ∈ Ds and zero otherwise. The involution on C(C0(X), S) is given by

(f, s)∗ = (s∗f, s∗). (4.3)

We define the norm ‖ · ‖1 on C(A,S) by setting ‖θ‖1 =
∑
s∈S ‖θ(s)‖. This

makes C(A,S) into a normed algebra.

Covariant Representations

Definition 4.2.9. Let (A, β, S) be a covariant system. A covariant representa-
tion (or for (A, β, S) is a pair of representations ϕ of A and π of S on a Hilbert
space H such that for all s ∈ S, the initial subspace Hs of π(s) is ϕ(Es∗)H, and
for all a ∈ Es we have

π(s)ϕ(a)π(s∗) = ϕ(sa). (4.4)

In the above definition, the set ϕ(Es∗)H is a closed linear subspace of H by
Cohen’s theorem [HR70, p.268]. Also, we can use (4.4) to see another useful
property. Indeed, we have

π(s∗s)ϕ(a)π(s∗s) = ϕ(s∗sa),

and since βs∗s is the identity on Es∗ , this just equals ϕ(a). Since s∗s is
idempotent and π is a homomorphism, we have

ϕ(a) = π(s∗s)ϕ(a)π(s∗s) = π(s∗s) [π(s∗s)ϕ(a)π(s∗s)] = π(s∗s)ϕ(a),

which again equals ϕ(a)π(s∗s). Thus we have

π(s∗s)ϕ(a) = ϕ(a) = ϕ(a)π(s∗s) (4.5)

for all s ∈ S and a ∈ Es∗ .

Definition 4.2.10. Let (A, β, S) be a covariant system. A representation of
C(A,S) on a Hilbert spaceH is a norm-continuous ∗-homomorphism Φ: C(A,S)→
B(H) which is nondegenerate and satisfies the following property: For all
(a, e1), (a, e2) ∈ V (A,S) with e1, e2 ∈ E(S), we have

Φ((a, e1)) = Φ((a, e2)). (4.6)
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Proposition 4.2.11. Let (ϕ, π) be a covariant representation for the covariant
system (A, β, S) on the Hilbert space H. Then the map Φ: C(A,S) → B(H)
given by

Φ((b, s)) = ϕ(b)π(s),
where (b, s) ∈ V (A,S), is a representation of C(A,S) on H.

Proof. We first show that Φ is a homomorphism on V (A,S) (and hence on
C(A,S)). To this end, let (b, s), (c, t) ∈ V (A,S). Since βss∗ is the identity on
Es∗ , we have ss∗b = b, so

Φ((b, s))Φ((c, t)) = ϕ(b)π(s)ϕ(c)π(t)
= ϕ(s(s∗b))π(s)ϕ(c)π(t).

Now we can use (4.4) and the fact that π is a homomorphism to see that

ϕ(s(s∗b))π(s)ϕ(c)π(t) = π(s)ϕ(s∗b)π(s∗s)ϕ(c)π(t),

and (4.5) gives that this equals π(s)ϕ(s∗b)ϕ(c)π(t). But ϕ is also a homomor-
phism, so

π(s)ϕ(s∗b)ϕ(c)π(t) = π(s)ϕ([s∗b]c)π(t)
= π(s)ϕ([s∗b]c)π(s∗s)π(t),

where we have used (4.5) again. Note that this makes sense since s∗b ∈ Es∗ , so
[s∗b]c ∈ Es∗ since Es∗ is an ideal. Now we can write

Φ((b, s))Φ((c, t)) = π(s)ϕ([s∗b]c)π(s∗s)π(t)
= (π(s)ϕ([(s∗b)c])π(s∗))π(st)
= ϕ(s[(s∗b)c])π(st)
= Φ((b, s)(c, t)).

We can see that Φ is a ∗-homomorphism by applying (4.4) and (4.5). Indeed,
for s ∈ S and b ∈ Es∗ we have

Φ((b, s)∗) = Φ((s∗b∗, s∗)) = ϕ(s∗b∗)π(s∗)
= π(s∗)ϕ(b∗)π(s)π(s∗) = π(s∗)ϕ(b∗)π(ss∗)
= π(s∗)ϕ(b∗) = (ϕ(b)π(s))∗

= Φ((b, s))∗.

For nondegeneracy, note that Φ((b, ss∗)) = ϕ(b)π(ss∗) = ϕ(b). But then

ϕ(A) ⊆ Φ(C(A,S)) = H

since ϕ is nondegenerate.
To see that Φ is continuous, simply note that

‖Φ((b, s))‖ = ‖ϕ(b)π(s)‖ ≤ ‖ϕ(b)‖‖π(s)‖ = ‖ϕ(b)‖
= ‖b‖ = ‖(b, s)‖1.

Finally, to see (4.6), let (b, e1), (b, e2) ∈ V (A,S) with e1, e2 ∈ E(S); then

Φ((b, e1)) = ϕ(b)π(e1) = ϕ(b) = ϕ(b)π(e2) = Φ((b, e1)),

since the initial space of π(ei) is ϕ(Eei) for i = 1, 2. �
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This result also has a converse. As the proof is quite long, we only give a
(very rough) sketch of it. The full proof can be found in [Pat99, pp. 133–136].

Proposition 4.2.12. Let (A, β, S) be a covariant system, and let Φ be a
representation of C(A,S) on H. Then there is a covariant representation (ϕ, π)
for the system such that

Φ((b, s)) = ϕ(b)π(s) (4.7)

for all (b, s) ∈ V (A,S).

Proof (sketch). The function ϕ : Ee → A for e ∈ E(S) defined by

ϕ(a) = Φ((a, e))

extends to a homomorphism ϕ : A → B(H). The function is well defined by
(4.6). For s ∈ S, let {pλ}λ∈Λ be a positive (bounded) approximate identity for
Es. Then the strong operator limit limλ→∞ Φ((pλ, s)) exists, and we set

π(s) = lim
λ→∞

Φ((pλ, s)).

It will turn out that (ϕ, π) is the desired covariant representation. Defining
π(s∗) the same way as π(s) (replacing the approximate identity for Es with an
approximate identity for Es∗), we find that

π(s∗) = π(s)∗ and π(s∗)π(s) = π(ss∗).

From this we can deduce that π(s) is a partial isometry with initial subspace
Hs and final subspace Hs∗ . To show that s 7→ π(s) is a homomorphism, one
first shows that π(s)π(t) = π(st) on Hst, and then that π(s)π(t) is zero on H⊥st.
Verifying (4.7), and (4.4) to see that (ϕ, π) is indeed a covariant representation,
is just straightforward calculation. Nondegeneracy of both ϕ and π follows from
nondegeneracy for Φ. �

Corollary 4.2.13. Let (A, β, S) be a covariant system. Then there is a one-
to-one correspondance, given by (4.7), between the representations Φ of C(A,S)
and the covariant representations (ϕ, π).

Resolutions of the Identity and Covariance C∗-algebras

It turns out that a good way to connect groupoids to covariant systems is to
express covariant representations through so-called resolutions of the identity.
For any topological space X, we let B(X) denote its Borel algebra, and B(X)
the set of Borel functions on X.

Definition 4.2.14. Let X be a locally compact space and H a Hilbert space.
A resolution of the identity on X with respect to H is a map P from B(X) into
the self-adjoint projections in B(H) such that:

(i) P (∅) = 0 and P (X) = 1,

(ii) for all E1, E2 ∈ B(X), we have P (E1∩E2) = P (E1)P (E2), and if E1∩E2 =
∅ then P (E1 ∪ E2) = P (E1) + P (E2), and
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(iii) for each ξ, η ∈ H, the map E 7→ 〈P (E)ξ, η〉 is a regular Borel (finite)
measure µξ,η on B(X).

If P is a resolution of the identity on X with respect to H, then there is a
representation ΦP on H of B(X) given by

ΦP (f) =
∫
X

f dP, (4.8)

where 〈ΦP (f)ξ, η〉 =
∫
X
f dµξ,η.

For a localisation (X,S), we set x ≤ s if x ∈ Ds. This relation turns out to
have useful properties. The proofs of these properties are not difficult, but we
leave them for brevity.

Proposition 4.2.15. Let (X,S) be a localisation. Then

(i) if e ∈ E(S) then ses∗ ∈ E(S),

(ii) x ≤ s if and only if x ≤ ss∗,

(iii) if x ≤ s and e ∈ E(S), then x · s ≤ e ⇐⇒ x · se = x · s ⇐⇒ x · (ses∗) =
x.ss∗ = x,

(iv) x · s ≤ e ⇐⇒ x ≤ ses∗, and

(v) x ≤ f ⇐⇒ x · s ≤ s∗fs.

Now we present the promised characterisation of covariant pairs.

Proposition 4.2.16. Let (X,S) be an extendible localisation. Then the co-
variant representations of the covariant system (C0(X), β, S) on a Hilbert space
H is given precisely by pairs (P, π), where P is a resolution of the identity on
B(X) for H, π is a representation of S on H, and for all e ∈ E(S) we have
P (De) = π(e).

Proof (sketch). Suppose first that (P, π) is as stated above; we must prove that
it yields a covariant representation. Define ϕ′ : B(X)→ B(H) by (4.8), i.e.

ϕ′(f) =
∫
X

f dP (4.9)

for each Borel function f . Then ϕ′, and its restriction ϕ to C0(X), are repre-
sentations on H. To see that (ϕ, π) is the required covariant representation, we
must prove (4.4). To this end, let s ∈ S and e ∈ E(S) with e ≤ s∗s. Then for
all ξ, η ∈ H, we have

〈
∫
X

χDe dPξ, η〉 =
∫
X

χDe dµξ,η = µξ,η(De) = 〈P (De)ξ, η〉,

so ϕ(χDe) = P (De) = π(e). Similarly, we have π(ses∗) = ϕ(χDses∗ ), so

π(s)ϕ(χDe)π(s∗) = π(s)π(e)π(s∗) = π(ses∗) = ϕ(χDses∗ ).

By part (iv) of Proposition 4.2.15, we have χDses∗ (x) = χDe(x · s) = sχDe(x)
(in the notation for (4.1), extended from C0(Ds∗) to B(Ds∗), so we have

π(s)ϕ(χDe)π(s∗) = ϕ(sχDe).

37



4. Covariance C∗-algebras

Now [Pat99] claims that by the Monotone Class Theorem and the fact that
De’s form a basis, we have the above equality for all Borel subsets W of Ds∗ .
Now consider the function

∑n
i=1 αiχWi

, where αi ∈ C and each Wi ⊆ Ds∗ is a
Borel set. Then we have

π(s)ϕ(
n∑
i=1

αiχWi
)π(s∗) =

n∑
i=1

αiπ(s)ϕ(χWi
)π(s∗)

=
n∑
i=1

αiϕ(sχWi
)

= ϕ(s
n∑
i=1

αiχWi
).

Any function in f ∈ C0(Ds∗) can be approximated uniformly by a monotonely
increasing sequence {fn}n∈N of such linear combinations. Since all such linear
combinations are also bounded, we have by the Monotone Convergence Theorem
that

〈ϕ( lim
n→∞

fn)ξ, η〉 =
∫
X

lim
n→∞

fn dµξ,η

= lim
n→∞

∫
X

fn dµξ,η

for all ξ, η ∈ H, so ϕ(limn→∞ fn) = limn→∞ ϕ(fn). As multiplication is
continuous in B(H) and f 7→ sf is also continuous, we have

π(s)ϕ(f)π(s∗) = π(s) lim
n→∞

ϕ(fn)π(s∗)

= lim
n→∞

π(s)ϕ(fn)π(s∗)

= lim
n→∞

ϕ(sfn)

= ϕ(s lim
n→∞

fn)

= ϕ(sf),

so (ϕ, π) satisfies Equation (4.4). The initial space for the orthogonal projection
ϕ(χDs∗s) = π(s∗s) is ϕ(C0(Ds∗))H, so (ϕ, π) is a covariant representation.

Conversely, let (ϕ, π) be a covariant representation of some Hilbert space
H. By the Riesz-Markov theorem, ϕ determines a unique resolution of the
identity, P , satisfying (4.9). Let e ∈ E(S). We can extend ϕ by continuity to
B(De) (which is the pointwise completion of C0(De) ⊆ C0(X)). Now we again
have that P (De) = ϕ(χDe) is the orthogonal projection onto ϕ(C0(De))H, so
P (De) = π(e), which is what we wanted. �

We are now ready to define the object naming this chapter, and finally
the main theorem of the section. For a covariant system (A, β, S), define a
seminorm on C(A,S) by setting

‖θ‖ = sup{‖Φ(θ)‖ : Φ is a representation of C(A,S)}. (4.10)

As in Definition 3.3.13, the seminorm above inherits the C∗-equality, so it is a
C∗-seminorm.
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Definition 4.2.17. Let (A, β, S) be a covariant system. The completion of
the quotient of C(A,S) by the kernel of the seminorm (4.10) is a C∗-algebra
denoted A×β S, and it is called the covariance C∗-algebra for (A, β, S).

The following result relates the covariance C∗-algebra to the groupoid algebra
C∗(G).

Theorem 4.2.18. Let G be an étale groupoid and S an additive inverse sub-
semigroup of Gop. Then the triple (C0(G0), β, S) is a covariant system, and
C∗(G) is canonically isomorphic to C0(G0)×β S.

Proof. Set X = G0; then (X,S) is an extendible localisation by Proposi-
tion 4.2.4, and (C0(X), β, S) is a covariant system by Proposition 4.2.7.

Our plan to construct the desired isomorphism is to first relate V (X,S) to
Cc(G), and then extend to C(A,S).

For (f, s) ∈ V (X,S), define fs : G→ C by

fs(x) =
{
f(r(x)) if x ∈ s,

0 if x ∈ G \ s.

Note here that if x ∈ s, then x ∈ Ds = r(s) so r(x) ∈ Ds. Since f ∈ Es =
C0(Ds), f(r(x)) makes sense. We claim that (f, s) 7→ fs is a ∗-homomorphism
from V (A,S) to Cc(G). We have supp fs ∈ Cc(s) as

supp fs = r−1
s (supp f),

which is the image of a compact set under a continuous function, and is a subset
of s. To see that (f, s) 7→ fs is a homomorphism, let (f, s), (g, t) ∈ V (A,S). We
must show that

fs ∗ gt = (f(sg))st,

using the notation from (4.2). We use (3.4) to see that fs ∗ gt ∈ Cc(st), and for
y = ab with a ∈ s, b ∈ t we have

(fs ∗ gt)(y) = fs(a)gt(b) = f(r(a))g(r(b)).

On the other hand, since r(x) · s = d(x) for the canonical right action (see
Example 4.1.3), we can write

(f(sg))st(y) = [f(r(ab))] [(sg(r(ab))]
= [f(r(a))] [(sg(r(a))]
= f(r(a))g(d(a))
= f(r(a))g(r(b));

thus fs ∗ gt = (f(sg))st. Showing that (f, s) 7→ fs is a ∗-map is similar. Indeed,
recalling the definition of the involution, (4.3), we must show that (s∗f)s∗ = f∗s .
Recall that h∗(x) = h(x−1) for h ∈ Cc(G) and x ∈ G. For x ∈ s∗ we have

(s∗f)s∗(x) = (s∗f)(r(x)) = f(r(x) · s∗)
= f(d(x)) = f(r(x−1)) = f∗s (x),
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so (f, s) 7→ fs is a ∗-homomorphism. Note that it is also linear. Since
C(A,S) is generated by V (A,S), we can extend this map to a ∗-homomorphism
∆: C(A,S)→ C.

The map ∆ is surjective. Indeed, suppose first that F ∈ Cc(s) for some
s ∈ S. Then define f ∈ V (A,S) by f(x) = F (r−1

s (x)) for x ∈ r(s). Then
fs(x) = f(r(x)) = F (r(r−1

s (x))) = F (x), so F = ∆((f, s)). For a general
F ∈ Cc(G), we cover its (compact) support with finitely many elements {si}ni=1
from S. We may do this since S is a basis for the topology on G. This
partition admits a partition of unity for F , so that we can write F as a sum of
functions f (i)

si for i = 1, . . . , n, where each f (i) is constructed as above. Thus
F = ∆(

∑n
i=1 f

(i)).
It turns out that ∆ is isometric with respect to the C∗-norms on C(A,S)

and Cc(G). We will not prove this as it requires a few results we didn’t include,
but the argument can be found in [Pat99, pp. 138–139]. We only had a C∗-
seminorm on C(A,S), but since ∆ is isometric, it is actually a norm. Since
∆ is an isometric homomorphism, it is injective, and hence an isomorphism
between C(A,S) and Cc(G). Therefore it extends to an isomorphism of the
closures of these sets, so C0(G0)×β S ∼= C∗(G). �

There is also a converse to the above theorem, in which we relate certain
extendible localisations (X,S) to an étale groupoid G such that the conclusion
of the above theorem holds. We will sketch how to prove this.

A problem with creating a converse to Theorem 4.2.18 is that there might
different es in E(S) with the same domains De. This cannot happen for an
inverse subsemigroup of Gop acting on G0. To relate an étale groupoid to (X,S),
we therefore replace (X,S) with another extendible localisation (X,S1) having
the same covariance C∗-algebra, but for which e 7→ De on E(S1) is injective.
Explicitly, let ρ be the relation on S defined by setting sρt if s, t ∈ E(S) and
Ds = Dt. Then we set S1 = S/R, where R is the congruence generated by ρ.
Then (X,S1) will be a localisation with corresponding action β1. It turns out
that C0(G0)×β S is isomorphic to C0(G0)×β S, which solves the initial problem.
This makes us able to identify e with De for e ∈ S(E), and from now on we
will assume that e 7→ De is an isomorphism for all localisations. Extendibility
for S then assumes the form that if e, f ∈ E(S), then e ∪ f ∈ E(S).

Next, we would like to relate the extendible localisation (X,S) to an étale
groupoid G(X,S). We start by constructing a “first approximation” to G(X,S),
denoted Ξ. Let Ξ ⊆ X × S be the subset given by

Ξ = {(x, s) : x ∈ Ds, s ∈ S}.

The set Ξ2 of “composable pairs” is defined to be the set of pairs ((x, s), (x ·s, t))
in Ξ×Ξ. For such a pair, we define their product as (x, s)(x · s, t) = (x, st). We
denote {(x, e) : x ∈ De, e ∈ E(S)} by Ξ0, the inverse map a 7→ a−1 is defined
as (x, s)−1 = (x · s, s∗). Now Ξ looks like a groupoid, but the groupoid axioms
do not hold in general. As usual when something doesn’t look exactly like
we want to, we just quotient out everything we don’t want. To this end, set
(x, s) ∼ (y, t) to mean that x = y and there exists an element e ∈ E(S) such
that x ≤ e and es = et. Then ∼ is an equivalence relation, and

G(X,S) := Ξ/ ∼
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turns out to be the desired étale groupoid. We summarise this and other
useful properties in the following theorem. To this end, we let (x, s) denote the
equivalence class of (x, s) in Ξ/ ∼.

Theorem 4.2.19. Let (X,S) be an extendible localisation. Then G(X,S) is
an étale groupoid with the following operations and topology. The composable
pairs are those of the form ((x, s), (x · s, t)), and the product and involution are
given by

(x, s)(x · s, t) 7→ (x, st) and (x, s) 7→ (x · s, s∗),

respectively. A basis for the topology on G(X,S) is given by the family of sets
of the form D(U, s), where s ∈ S, U is an open subset of Ds, and

D(U, s) = {(x, s) : x ∈ U}.

The unit space G(X,S)0 is canonically identified with X. The map ψX , where
ψX(s) = {(x, s) : x ∈ Ds}, is a homomorphism from S into Gop, and ψX(S) is
a basis for G(X,S).

Next, we want to formulate a condition on (X,S) that makes ψX in the
above theorem is injective, and that ψX(S) is additive in G(X,S)op. The
condition will be appropriately called additivity of (X,S). We first define the
notion of compatibility for partial homeomorphisms on X.

Suppose (X,S) is a localisation and s, t ∈ S. Recall that e ∈ E(S) is
identified with De. The pair (s, t) is r-compatible if for all x ∈ ss∗ ∩ tt∗, there
exists e ∈ E(S) with x ≤ e and es = et. We say that (s, t) is compatible if both
(s, t) and (s∗, t∗) are r-compatible.

We define a congruence on S by setting s ∼ t if ss∗ = tt∗ and for every
x ∈ ss∗, there exists e ∈ E(S) such that x ∈ e = De and es = et. A localisation
(X,S) is called additive if

(i) if s ∼ t then s = t, and

(ii) if the pair (s, t) is compatible and f = ss∗ ∪ tt∗ ⊆ X, then there exists
w ∈ S such that f = ww∗ and if x ≤ ss∗ (or x ∈ tt∗), then there exists
e ∈ E(S) such that x ≤ e and es = ew (or et = ew).

Any additive localisation is extendible. If (X,S) is an additive localisation,
then the map ψX from Theorem 4.2.19 is an isomorphism from S to an inverse
subsemigroup of G(X,S)op. Thus we can say that C0(X)×β S is isomorphic
to C∗(G(X,S)), which is precisely what we want. We summarise the fruits of
this chapter in the following corollary.

Corollary 4.2.20. If G is an étale groupoid and S is an additive inverse
subsemigroup of Gop, then C∗(G) is canonically isomorphic to the covariance
C∗-algebra C0(G0)×βS for the localisation (G0, S). Also, if (X,S) is an additive
localisation, then C0(X)×β S is canonically isomorphic to C∗(G(X,S)).
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CHAPTER 5

Deaconu-Renault Groupoids

In this chapter, we pass from the land of general locally compact Hausdorff
étale groupoids to one particular kind, namely the Deaconu-Renault groupoids.
These groupoids are built from Nk0-actions T on some locally compact Hausdorff
space X, and we denote them GT . The space X will lie naturally inside GT as
the set of unit elements. To formulate the construction of these groupoids, we
will need to generalise the notion of a group action. We will also be interested
in further properties of the isotropy subgroupoid Iso(G). The first section in
the chapter is devoted to investigate these basics, before we move onto the
actual construction of Deaconu-Renault groupoids in Section 5.2. In the two
following sections, we work on characterising the primitive ideal space of such
groupoids, and that concludes the reproduction of [SW16]. In Section 5.5, we
apply the theory to find a way of charcterising simple C∗-algebras coming from
Deaconu-Renault groupoids, in terms directly related to their actions. We give
an example by proving that the rotational algebra Aθ is simple if and only if θ
is irrational.

One issue must be addressed before we start, and that is the notion of
amenability for groupoids. This is a quite intricate subject, and there has not
been enough time to go through that theory. Thus we will treat amenability as
a black box throughout the chapter. However, we will rely on certain results
from that theory, and we sum those up in Lemma 5.1.13.

5.1 Groupoid Actions and Isotropy

Definitions

Let G be a (locally compact Hausdorff) étale groupoid. Recall the definition of
the isotropy subgroupoid Iso(G) from Example 3.1.3:

Iso(G) = {x ∈ G : r(x) = d(x)} =
⋃
u∈G0

Gxx.

The isotropy subgroupoid will be essential when dealing with Deaconu-Renault
groupoids. Note that, given some unit u ∈ G0, there might not be any other
groupoid element x with r(x) = u and d(x) = u. In other words, the isotropy
groupGuu = Gu∩Gu at u ∈ G0 is trivial. Groupoids with many such units behave
nicely in certain ways; for instance, in many cases, their faithful representations
have a nice representation (see Lemma 5.1.13).
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Definition 5.1.1. A groupoid G is called topologically principal if the units
with trivial isotropy group are dense in G0. In other words, if

{x ∈ G0 : Gxx = {x}} = G0.

We now define the generalisation of a (left) group action.

Definition 5.1.2. Let G be a groupoid and X be any topological space. A
left action of G on X is a pair (ρ, µ) of continuous maps ρ : X → G0 and
µ : G×d,ρ X → X, where

G×d,ρ X := {(a, x) ∈ G×X : d(a) = ρ(x)},

such that the the statements below hold. We let a x denote µ(a, x) for all
(a, x) ∈ G×d,ρ X.

(i) ρ(a x) = r(a) for all (a, x) ∈ G×d,ρ X,

(ii) a (b x) = (ab) x for (a, b) ∈ G2 with (b, x) ∈ G×d,ρ X, and

(iii) ρ(x) x = x for all x ∈ G.

The maps ρ and µ are called the anchor map and action map, respectively.
If there is a left action of G on X, we say that X is a left G-space. Let
Ψ: G×d,ρ X → X ×X be the map defined by Ψ(a, x) = (a x, x). The action
(ρ, µ) is called

• free if Ψ is injective, or equivalently if a x = x implies a = ρ(x), and

• proper if Ψ is a proper map, in other words if Ψ−1(K) is compact for all
compact K ⊆ X ×X.

For a right action, replace G ×d,ρ X by X ×ρ,r G. The conditions in the
definition above are “reversed” in the obvious manner, including changing r to
d.

Example 5.1.3. There is always a natural left action of G on G0. Indeed, just
let ρ be the identity. Then G ×d,ρ G0 = {(γ, d(γ)) : γ ∈ G}, and we define
γ · d(γ) = r(γ) for all γ ∈ G.

Deaconu-Renault groupoids are closely related to dynamical systems, and
they share many of the same notions. The next definitions should therefore not
sound too foreign.

Definition 5.1.4. Let G be a groupoid, and let it act naturally on G0. If
x ∈ G0, then G x = r(Gx) is called the orbit of x and is denoted by [x]. A
subset A ⊆ G0 is called invariant if G A ⊆ A. The quotient space G/G0 is
called the orbit space of G. We can define an equivalence relation ∼ on G/G0

by saying that two orbits are equivalent if they have the same closure. The
quotient of G/G0 by ∼ is called the quasi-orbit space of G.

Definition 5.1.5. Let G be a groupoid. An ideal I /C0(G0) is called invariant
if the corresponding closed set

CI := {u ∈ G0 : f(u) = 0 for all f ∈ I}
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is invariant. If M is a representation of C0(G0) with kernel I, then CI is called
the support of M . We say that CI is G-irreducible if it is not the union of two
proper closed invariant sets.

We have a nice characterisation of G-irreducible sets.

Lemma 5.1.6. Let G be a locally compact groupoid. A closed invariant subset
C of G0 is G-irreducible if and only if there exists u ∈ G0 such that C = [u].

Proof. First, let u ∈ G0 and suppose for contradiction that [u] = A ∪ B for
closed and invariant proper subsets A,B ⊆ [u]. Suppose further that a ∈ A, so
[a] = G a ⊆ [u]. If a ∈ [u], then there is some x ∈ G with d(x) = u and r(x) = a.
If v ∈ [u] by some y ∈ Gu, then (y, x−1) ∈ G2 since r(x−1) = d(x) = u = d(y).
But then d(yx−1) = d(x−1) = a and r(yx−1) = r(y) = v, so v ∈ [a]. This
implies [a] = [u], contradicting the assumption that A was a proper subset.
Hence A∩ [u] = ∅. But the exact same argument can be applied to B, so neither
A or B intersects [u]. The set [u] is not empty as it contains u itself, which
contradicts that A ∪B = [u]. Hence [u] is invariant.

For the converse, let C ⊆ G0 be a closed, invariant and G-irreducible subset.
Then q(C) ⊆ G/G0, where q is the quotient map, is irreducible in the regular
sense – i.e. it cannot be written as a union of two closed nonempty proper
subsets. Indeed, suppose for contradiction that q(C) = A1 ∪A2 for such sets;
then q−1(Ai) is a proper closed subset for i = 1, 2, and they cover C. Both Ai
are invariant since they are unions of orbit closures. Proving that C = [u] then
reduces to seeing that q(C) has a dense point.

To prove this statement, we follow the proof of the lemma preceding [Gre78,
Corollary 19]. Since G is locally compact and Hausdorff, it is totally Baire by
Remark 2.0.9. We have that G/G0 is the continuous open image of G, and
hence totally Baire by Proposition 2.0.7. Since C is closed and G-irreducible,
any nonempty open set of q(C) is dense. Since G is second countable, so is
q(C), with basis (say) {Un}n∈N. Since each of these sets are dense, we have by
the Baire property that ∩n∈NUn is dense in q(C). Hence it must be nonempty,
containing a point [u]. But then [u] is an element of every nonempty open
subset of q(C), and must therefore be dense.

�

Definition 5.1.7. Let G be a locally compact groupoid. We say that C0(G0)
is G-simple if it has no nonzero proper invariant ideals.

Lemma 5.1.6 implies that C0(G0) is G-simple if and only if G0 has a dense
orbit.

Multiplier Algebras and C0(G0)

Let G be an étale groupoid. As we shall see, we can look at C0(G0) as a
C∗-subalgebra of C∗(G). To do so, we need to take a small detour to discuss
multiplier algebras. We follow [Mur90, pp.38–39]. To any C∗-algebra A, we
can associate a large unital C∗-algebra M(A) – the multiplier algebra of A –
containing A as an ideal.
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Definition 5.1.8. A double centraliser for a C∗-algebra A is a pair (L,R) of
bounded linear maps on A, such that for all a, b ∈ A we have

L(ab) = L(a)b, R(ab) = aR(b) and R(a)b = aL(b).

If (L,R) is a double centraliser on a C∗-algebra, then ‖L‖ = ‖R‖.

Definition 5.1.9. For a C∗-algebra A, we denote its set of double centralisers
M(A). This is a closed vector subspace of B(A)⊕ B(A), where B(A) denotes
the set of bounded linear operators on A. We define a norm on M(A) by
‖(L,R)‖ = ‖L‖ = ‖R‖. We define a product on M(A) by

(L1, R1)(L2, R2) = (L1L2, R2R1).

Finally, we define involution on M(A) by L∗(a) = (L(a∗))∗. This makes M(A)
a C∗-algebra.

Example 5.1.10. Let A be a C∗-algebra. For any x ∈ A, there is an associated
double centraliser (Lx, Rx) defined by Lx(a) = xa and Rx(a) = ax for all a ∈ A.
Hence we can identify A in M(A). From the left centralisers associated to
elements of A, we can build all the right centralisers. Indeed, given x ∈ A we
have

Rx(a) = ax = (x∗a∗)∗ = (Lx∗(a∗))∗ = L∗x∗(a).

There is a homomorphism V : C0(G0)→M(C∗(G)) such that for f ∈ Cc(G)
and ϕ ∈ C0(G0), we have

(V (ϕ)f)(x) = ϕ(r(x))f(x).

Since G is étale, V will take values in C∗(G) and extend the inclusion Cc(G0) ↪→
C∗(G). Hence we can regard C0(G0) as a ∗-subalgebra of C∗(G).

Let us check that V (ϕ) does in fact give us an element of C∗(G). If
ϕ ∈ Cc(G0), then for any f ∈ Cc(GT ) we have L(ϕ)(f) = ϕ∗f by Remark 3.2.12.
Hence V (ϕ) is just Lϕ, which we can identify with ϕ by the discussion in
Example 5.1.10. Since V is continuous and C∗(G) is closed in M(C∗(G)),
V (G0) ⊆ C∗(G).

If L is a nondegenerate representation of C∗(G), we obtain an associated
representation M of C0(G0) by extension: M(ϕ) = L(V (ϕ)). It turns out
that the representation M factors in a useful way, through the C∗-algebra we
get when we restrict the unit space of G to the support of M . This makes
intuitive sense, since “ignoring” the kernel of the representation shouldn’t change
anything. We omit the proof of the first of the propositions.

Proposition 5.1.11. Let G be a second-countable locally compact groupoid.
Let L be a nondegenerate representation of C∗(G) with associated representation
M of C0(G0). Then kerM is invariant. If L is irreducible, then the support of
M is G-irreducible.

Proposition 5.1.12. Let G be a second-countable locally compact groupoid.
Let L be a nondegenerate representation of C∗(G) with associated representation
M of C0(G0). If F = Cker(M) is the support of M , then L factors through
C∗(G|F ). In particular, if L is irreducible, then L factors through C∗(G|[u]) for
some u ∈ G0.
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Proof. First note that F is invariant by Proposition 5.1.11. It is also closed,
since the set of zeros of a continuous function is closed and

F = Cker(M) = {u ∈ G0 : f(u) = 0 for all f ∈ ker(M)}

=
⋂

f∈ker(M)

{u ∈ G0 : f(u) = 0}

is an intersection of such sets. Thus G0 \ F is open. We claim that it is
also invariant. Suppose for contradiction that there is some u ∈ G0 \ F with
G u = [u] 6⊆ G0 \ F . Then there is some v ∈ [u] with v ∈ F . But then
[u] = [v] ⊆ F since orbits partition G0, which is a contradiction. Now by
[MRW96, Lemma 2.10], we have a short exact sequence of C∗-algebras

0 −→ C∗(G|U ) ι−→ C∗(G) R−→ C∗(G|F ) −→ 0,

where ι is induced by extending functions in Cc(G|U ) by 0, and R comes from
restricting functions in Cc(G). (Recall Definition 2.0.19.) To prove the desired
factoring, we must prove that we do not lose any information by passing through
R. In other words, we must prove that everything in the kernel of R is sent
to zero by L, i.e. that the composition L ◦ ι is zero. The following diagram
commutes, where i : C∗(G) ↪→M(C∗(G)) is the natural inclusion.

C0(U) Cc(G|U )

C0(G0) M(C∗(G)) C∗(G)

B(H)

V

M
L

i

L

First, we shall see that C0(U) is in the kernel of M , when looked upon as
a subset of C0(G0) in the natural way. Suppose therefore that ϕ ∈ C0(U) is
nonzero, and pick any u ∈ U with ϕ(u) 6= 0. By the construction of U , there is
some ψ ∈ ker(M) with ψ(u) 6= 0. By scaling, we may assume that ψ(u) = ϕ(u).
Set ϕu := ϕ− ψ. We have M(ϕu) = M(ϕ), while ϕu(u) = 0. For any x ∈ Gu
and f ∈ Cc(G), we now have

(V (ϕu)f)(x) = ϕu(u)f(x) = 0.

Varying u would yield elements in M(C∗(G)) being zero on a cover of {Gu}u∈U ,
and they are already zero on {Gu}u∈F by definition. Their images under L
must be the same as M(ϕ) = M(ϕu), so M(ϕ) = 0 and ϕ ∈ ker(M).

Suppose f ∈ Cc(G|U ); we must prove that L ◦ ι(f) = 0. It suffices to prove
that L(i ◦ ι(f)) = 0. Since V is nondegenerate, there is a sequence of functions
{ϕn}n∈N in C0(G0) with V (ϕn)→ i◦ ι(f). In fact, since supp f ⊆ G|U , we may
assume that ϕn ∈ C0(U) for all n. But then

L(i ◦ ι(f)) = lim
n→∞

L(ϕn) = lim
n→∞

0 = 0,

just as we wanted.
If L is irreducible, then F is G-irreducible by Proposition 5.1.11 and hence

an orbit closure by Lemma 5.1.6. The last assertion follows. �
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The subgroupoid Iso(G)◦

If G is an étale groupoid, then G0 is open. Thus we have G0 ⊆ Iso(G)◦, and
Iso(G)◦ is an open étale subgroupoid of G. For Deaconu-Renault groupoids
coming from Nk0-actions, Iso(G)◦ is closed in G as well as open. This enables us
to form the groupoid GT / Iso(GT )◦, often called an orbit space since we mod
out all the units. (This should not be confused with the orbit space G/G0.) The
groupoid GT / Iso(GT )◦ will be a crucial part of the classification of the primitive
ideal spaces. This subsection is about which properties of G, GT / Iso(GT )◦,
C∗(G) and C∗(GT / Iso(GT )◦) we can deduce from the fact that Iso(G)◦ is closed.
We will by Iso(G)◦u refer to the set (Iso(G)◦)u = {x ∈ Iso(G)◦ : d(x) = u} for
u ∈ G0.

One of the useful properties of G when Iso(G)◦ is closed, is that amenability
behaves nicely when passing to the quotient groupoid defined below. As
mentioned, we will be treating the notion of amenability for groupoids as a
black box. The property of amenable groupoids which we will be using is stated
below.

Lemma 5.1.13. Suppose G is an amenable étale groupoid. By [BO08, Corol-
lary 5.6.17], C∗r (G) and C∗(G) are isomorphic. Thus, if G is topologically
principal, then we have by [Exe11, Theorem 4.4] that any representation of
C∗(G) that is faithful on C0(G0) is faithful on all of C∗(G).

If u ∈ G0, then there is an associated left regular representation Lu of C∗(G)
on `2((GT )u) given by

Lu(f)δx =
∑

d(y)=r(x)

f(y)δyx

for f ∈ Cc(G). The reduced algebra C∗r (G) can be veiwed as the image of C∗(GT )
under

⊕
u∈G0 Lu. By the above, this is an isomorphism if G is amenable.

Proposition 5.1.14. Suppose that G is an étale groupoid such that Iso(G)◦ is
closed in G. Then the following statements hold.

(i) The subgroupoid Iso(G)◦ acts freely and properly on the right of G, and
the orbit space G/ Iso(G)◦ is locally compact and Hausdorff.

(ii) For each x ∈ G, the map y 7→ xyx−1 is a bijection from Iso(G)◦d(x) to
Iso(G)◦r(x).

(iii) For each u ∈ G0, the set Iso(G)◦u is a normal subgroup of Guu.

(iv) The set G/ Iso(G)◦ is a locally compact Hausdorff étale groupoid with
respect to the operations [x]−1 = [x−1] for x ∈ G, and [x][y] = [xy] for
(x, y) ∈ G2. The corresponding range map r′ and domain map d′ are given
by r′([x]) = r(x) and d′([x]) = d(x).

(v) The groupoid G/ Iso(G)◦ is topologically principal.

(vi) If G is amenable, then so is G/ Iso(G)◦.
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Proof. (i) We have that Iso(G)◦ acts on the right of G by (ρ, ), where ρ = d
and x y = xy. Note that G×ρ,d Iso(G)◦ is just the subset of G2 where
the second entry is an element of Iso(G)◦. The orbit of x ∈ G is

[x] = x Iso(G)◦ = {x y : (x, y) ∈ G2, y ∈ Iso(G)◦}.

Orbits partition G, and we may form the orbit space G/ Iso(G)◦ with the
quotient topology.
If xy = x, then y = d(x), so the action is free. The function Ψ in
continuous, with inverse (defined on its image) given by (a, x) 7→ (a, a−1x).
This function is also continuous, so Ψ is a homeomorphism onto its image.
Since Iso(G)◦ is closed in G, the image of Ψ is closed in G×G, so Ψ maps
compact sets to compact sets. Hence the action is proper.
By the above discussion and [MW95, Corollary 2.3], the orbit space
G/ Iso(G)◦ is locally compact and Hausdorff.

(ii) Let αx : Iso(G)d(x) → Iso(G)r(x) denote the map y 7→ xyx−1. We
note that αx is a bijection from Iso(G)d(x) to Iso(G)r(x). Indeed, if
z ∈ Iso(G)◦r(x), then z = x(x−1yx)x−1 where x−1yx ∈ Iso(G)◦d(x), so αx is
surjective. It is clearly injective with inverse αx−1 , taking z to x−1zx.
If we can show that

x Iso(G)◦x−1 ⊆ Iso(G)◦ (5.1)

for all x ∈ G, then αx would restrict to an injection Iso(G)d(x) →
Iso(G)r(x). Its inverse αx−1 would restrict to an injection in the other
direction, thus proving the desired bijectivity.
To prove (5.1), it suffices to show that x Iso(G)◦x−1 is open. Suppose
y ∈ Iso(G)◦ with r(y) = d(x) and let U ∈ Gop be an open neighbourhood
of y in Iso(G)◦. Let V ∈ Gop be an open neighbourhood of x. Then
y ∈ d(V ) ∩ r(U), so there is some open set in W ⊆ d(V ) ∩ r(U) since Gop

is a basis. Since the product of open sets are open, V UV −1 is an open
neighbourhood of xyx−1. If we have u ∈ U, v ∈ V with vuv−1 ∈ V UV −1,
then d(vuv−1) = d(v−1) = r(v) = r(vuv−1), so V UV −1 ⊆ Iso(G). Thus
V UV −1 is an open neighbourhood of xyx−1 in Iso(G)◦.

(iii) We must check that Iso(G)◦u is closed under multiplication and inversion.
If x, y ∈ Iso(G)◦u have neighbourhoods U and V in Iso(G)u (and hence
in Iso(G)◦u), then UV is an open neighbourhood of xy in Iso(G)◦u, so
xy ∈ Iso(G)◦u. Inversion is similar: If x ∈ Iso(G)◦u has neighbourhood
U ⊆ Iso(G)◦u, then U−1 is a neighbourhood of x−1 since inversion is a
homeomorphism (and hence an open map). Finally, Iso(G)◦u contains the
identity u of Guu, so it is a subgroup.
From (ii) we know that Iso(G)◦u is closed under conjugation by any element
of Guu. Hence Iso(G)◦u is normal.

(iv) We first show that the maps in question are well-defined. Multiplying
x ∈ G by any feasible element from Iso(G)◦ doesn’t change the range or
source of x, so r′ and d′ are well-defined. Suppose next that (x, y) ∈ G2

and x′ = xa, y′ = yb for a, b ∈ Iso(G)◦. Then x′y′ = xayb = (xy)(y−1ayb).
By (ii) we have y−1ay ∈ Iso(G)◦, and since Iso(G)◦ is closed under
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multiplication as proved in (iii) we have y−1ayb ∈ Iso(G)◦. This means
that [x′y′] = [xy], so multiplication is well-defined. Similarly, if x ∈ G
with x′ = ax for some a ∈ Iso(G)◦, we have (x′)−1 = x−1(xa−1x−1), so
[x−1] = [(x′)−1].
The next step is to prove that the maps above are continuous. We
will need the fact that the quotient map q : G → G/ Iso(G)◦ is open.
We follow the proof in [MW95, Lemma 2.1]. Suppose that V ⊆ G is
open; we must show that q(V ) is open in G/ Iso(G)◦. It suffices to
prove that q−1(q(V )) = V Iso(G)◦ is open in G. This is the same as
saying that any net converging to a point in V Iso(G)◦ eventually lies in
V Iso(G)◦. Suppose therefore that (aλ)λ∈Λ is a net in G converging to
vx = v x ∈ V Iso(G)◦. Then d(aλ)→ d(vx) = d(x). Since d is open, we
may by [Wil07, Proposition 1.15] pass to a subnet and find (xλ)→ x with
d(xλ) = d(aλ). Then aλx−1

λ → vxx−1 = v, so (aλx−1
λ ) is eventually in V

since V is open. But then aλ = aλx
−1
λ xλ = (aλx−1

λ ) xλ is eventually in
V Iso(G)◦, as we wanted.
We will prove that multiplication is continuous; the proof for inversion is
similar. Suppose [xλ]→ [x] and [yλ]→ [y] where (xλ, yλ) ∈ G2 for all λ in
the indexing set Λ; we want to show that [xλyλ]→ [xy]. By Lemma 2.0.3,
it suffices to show that every subnet of ([xλyλ])λ∈Λ has a subnet converging
to [xy]. By passing to any subnet and relabeling, we assume that ([xλyλ])
is a subnet. Since the quotient map q : G → G/ Iso(G)◦ is open and
surjective, we have by [Wil07, Proposition 1.15] that there are subnets
([xλβ ]) and ([yλβ ]) such that there exists nets (aλβ ) and (bλβ ) in Iso(G)◦
with

xλβaλβ → x and yλβbλβ → y.

Then xλβaλβyλβbλβ → xy since multiplication is continuous, and hence
[xλβyλβ ]→ [xy] since q is continuous.
Lastly, we must show that G/ Iso(G)◦ is étale. It suffices to show that
r′ is a local homeomorphism. Let [x] ∈ G/ Iso(G)◦, and suppose K
is a compact neighbourhood of x such that r|K is a homeomorphism.
Since q is continuous, q(K) is a compact neighbourhood of [x]. Since
r′|q(K) is a continuous bijection onto its image, it is a homeomorphism by
Proposition 2.0.4.

(v) By [Bro+14, Lemma 3.3] it suffices to prove that the interior of Iso(G/ Iso(G)◦)
equals q(G0). The set q(G0) is clearly contained in this interior, since G0 is
open and q is an open map. Next, take some b ∈ Iso(G/ Iso(G)◦) \ q(G0),
so that r′(b) = d′(b) but b 6= r′(b). We must check that this isn’t an
interior point. We have b = q(x) for some x ∈ Iso(G) \ Iso(G)◦. (We
can’t have x ∈ Iso(G)◦ since then b = q(x) must be a unit, but b 6= r′(b).)
Take an open neighbourhood U of b. Then q−1(U) is an open neighbour-
hood of x. Since x lies on the border of Iso(G), q−1(U) must intersect
G \ Iso(G). Take some element y ∈ q−1(U) ∩ Iso(G), so that s(y) 6= d(y).
Then q(y) ∈ U and r′((y)) 6= d′(q(y)). Thus q(y) 6∈ Iso(G/ Iso(G)◦), and
b does not belong to the interior of Iso(G/ Iso(G)◦). Thus the interior of
Iso(G/ Iso(G)◦) is precisely the set q(G0).

�
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Proposition 5.1.15. Let G be an étale groupoid such that Iso(G)◦ is closed in
G. Then there is a C∗-homomorphism κ : C∗(G)→ C∗(G/ Iso(G)◦) such that

κ(f)(b) =
∑
q(x)=b

f(x) for f ∈ Cc(G) and b ∈ G/ Iso(G)◦,

where q : G→ G/ Iso(G)◦ is the quotient map.

Proof. For ease of notation, we set H := G/ Iso(G)◦. By [MRW87, Lemma
2.9(b)] we have that κ defines a surjection Cc(G) → Cc(G/ Iso(G)◦). To see
that this surjection is a ∗-map, we calculate

κ(f∗)(b) =
∑
q(x)=b

f(x−1)

=
∑

q(x)=b−1

f(x)

= κ(f)∗(b),

where we have used that the equality of the sets {x−1 : q(x) = b} and {x :
q(x) = b−1}. (This equality follows from the fact that b−1 = q(x−1), as in
part (iv) of Proposition 5.1.14.) To see that κ is a homomorphism, we first
write

(κ(f) ∗ κ(g)) (b) =
∑

d′(a)=r′(b)

[κ(f)(a−1)][κ(g)(ab)]

=
∑

d′(a)=r′(b)

 ∑
q(x)=a−1

f(x)

 ∑
q(y)=ab

g(y)


=

∑
d′(a)=r′(b)

 ∑
q(x)=a

f(x−1)

 ∑
q(y)=ab

g(y)


=

∑
d′(a)=r′(b)

 ∑
q(x)=a

∑
q(y)=ab

f(x−1)g(y)

 .
We can rewrite this into

∑
d′(a)=r′(b)

 ∑
q(x)=a

∑
q(x−1y)=b

f(x−1)g(y)


=

∑
d′(a)=r′(b)

 ∑
q(x)=a

∑
q(z)=b

f(x−1)g(xz)

 ,
since q(y) = ab if and only if q(x−1y) = b as multiplication is well-defined. We
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can pull out the inner sum to get

∑
q(z)=b

 ∑
d′(a)=r′(b)

∑
q(x)=a

f(x−1)g(xz)


=
∑
q(z)=b

∑
d(x)=r(z)

f(x−1)g(xz)

=
∑
q(z)=b

(g ∗ f)(z) = κ(f ∗ g)(b),

where we have used that d′(q(x)) = r′(q(y)) if and only if d(x) = r(y). Hence κ
is a homomorphism.

We want to extend κ to the whole of C∗(G), and to do so we have to show
that it is continuous. Since κ is linear, it suffices to prove that it is a contraction.
If π is a representation of Cc(H), then π ◦ κ is a representation of Cc(G) since
κ is a ∗-homomorphism. If we can show that κ is an I-norm contraction, then
the induced representation π ◦ κ is I-norm bounded since

‖π ◦ κ(f)‖ ≤ ‖κ(f)‖I ≤ ‖f‖I
for any f ∈ Cc(G). Then we would have

‖κ(f)‖∗ = sup{‖π(κ(f))‖ : π is an I-norm bounded repr. of Cc(H)}
≤ sup{‖ρ(f)‖ : ρ is an I-norm bounded repr. of Cc(G)}
= ‖f‖∗.

This would prove that κ is continuous and extends like we wanted.
We look at the sum∑

x∈Hu
|κ(f)(x)| ≤

∑
x∈Hu

∑
q(y)=x

|f(y)|.

In the double sum to the right, we sum over all y ∈ G such that q(y) ∈ Hu for
a given u ∈ H0. This is precisely the same as the set q−1(Hu). Since we can
identify H0 with G0 and q preserves the range map, we have q−1(Hu) ⊆ Gu.
Hence we can write∑

x∈Hu

∑
q(y)=x

|f(y)| =
∑

y∈q−1(Hu)

|f(y)| ≤
∑
y∈Gu

|f(y)|,

and similarly we have ∑
x∈Hu

|κ(f)(x)| ≤
∑
y∈Gu

|f(y)|.

We plug this into the definition of the I-norm to get

‖κ(f)‖I = sup
u∈H0

max{
∑
x∈Hu

|κ(f)(x)|,
∑
x∈Hu

|κ(f)(x)|}

≤ sup
u∈G0

max{
∑
y∈Gu

|f(y)|,
∑
y∈Gu

|f(y)|}

= ‖f‖I ,

and we are done. �
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5.2 Deaconu-Renault Groupoids

We will now properly define Deaconu-Renault groupoids and prove some of
their basic properties. This is also the time for us to change the notation of
general groupoid elements. From now on, instead of letting u and v be general
unit elements, we denote unit elements by x and y. This notation coincides
well when the unit space of our groupoid is a locally compact Hausdorff space
X. We will use greek letters such as γ to denote general groupoid elements.

Definition 5.2.1. Let X be a locally compact Hausdorff space. Given k
commuting local homeomorphisms {Ti}ki=1 on X (which are not necessarily
surjective), we obtain an action of Nk0 on X written n 7→ Tn = Tn1

1 . . . Tnkk for
n = (n1, . . . , nk) ∈ Nk0 . The corresponding Deaconu-Renault groupoid is the set

GT :=
⋃

m,n∈Nk
{(x,m− n, y) ∈ X × Zk ×X : Tmx = Tny}. (5.2)

Its unit space is G0
T = {(x, 0, x) : x ∈ X}, which is canonically identified with X.

The range and domain maps are r(x, n, y) = x and d(x, n, y) = y, respectively.
Multiplication is defined by (x, n, y)(y,m, z) = (x, n+m, y), and inversion is
given by (x, n, y)−1 = (y,−n, x).

Below, we prove that there is a natural topology on GT making it locally
compact. All through the thesis, we have restricted our attention to special
classes of groupoids, always excused by the fact that this is all we need to un-
derstand Deaconu-Renault groupoids. Spesifically, we have looked at Hausdorff
étale groupoids. The reader would be cheated if we did not include the proof
that this is the case.

Proposition 5.2.2. Let X be a locally compact Hausdorff space with a Deaconu-
Renault groupoid GT . For open sets U, V ⊆ X and for m,n ∈ Nk0 , define

Z(U,m, n, V ) := {(x,m− n, y) : x ∈ U, y ∈ V, Tmx = Tny}. (5.3)

These sets form a basis for a locally compact Hausdorff topology on GT . The sets
Z(U,m, n, V ) such that Tm|U and Tn|V are homeomorphisms and Tm(U) =
Tn(V ) are a basis for the same topology. With this topology, GT is a (locally
compact Hausdorff) étale groupoid.

Proof. We split the proof into sections. We let B denote the family of sets in
question. The first step is to prove that B does indeed form a basis. After that,
we show that the generated topology is locally compact (in the usual sense),
and that the groupoid operations are continuous. The final part is to prove the
existence of a left Haar system. This turns out to be the counting measures.
The restricted topology will make sure that GT is étale.

The set B is a basis: This is a modification of the proof in [ER07, Propo-
sition 3.2]. It is clear that B covers GT , so it remains to prove that if
x ∈ A ∩ B for A,B ∈ B, then we have x ∈ C for some C ∈ B with
C ⊆ A ∩B. Suppose therefore that

(x, r, y) ∈ Z(U1,m1, n1, V1) ∩ Z(U2,m2, n2, V2).
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We want U ⊆ U1∩U2, V ⊆ V1∩V1, andm,n ∈ Nk0 such that if Tmx = Tny,
then Tm1x = Tn1y and Tm2x = Tn2y.
Note that m1− n1 = m2− n2. Set m = m2 +m1 and n = m2 + n1. If we
have Tmx = Tny for some u ∈ U1 ∩ U2 and v ∈ V1 ∩ V2, then we would
have

Tm2(Tm1u) = Tm2(Tn1v).

To force Tm1u = Tn1v, it would therefore suffice to require that Tm2 is
injective on some appropriately chosen set. This is the motivation for
the picking the following sets. Let W1 be some open neighbourhood of
Tm1x = Tn1y such that Tm2 is injective (or a homeomorphism!) on W1.
This is possible since T is a local homeomorphism. Similarly, pick W2
with Tm2x = Tn2x ∈W2 so that Tm1 is injective (or a homeomorphism!)
on W2. Now we can define

U = U1 ∩ U2 ∩ T−m2(W1) ∩ T−m1(W2) and
V = V1 ∩ V2 ∩ T−n2(W1) ∩ T−n1(W2).

We claim that Z(U,m, n, V ) is an element of B satisfying the desired
conditions. Note that (x, r, y) ∈ Z(U,m, n, V ), since x ∈ U and y ∈ V by
construction, and m− n = m1 − n1 = r. We also have

Tmx = Tm2(Tm1x) = Tm2(Tn1y) = Tny.

If (u,m− n, v) ∈ Z(U,m, n, V ), then

Tm2(Tm1u) = Tm2(Tn1v),

so Tm1u = Tn1v by the choice of W1. Similarly, since m1 = m2 +n1−n2,
we could write

Tm1(Tm2u) = Tm1(Tn2v),

so Tm2u = Tn2v by the same reason. Hence

Z(U,m, n, V ) ⊆ Z(U1,m1, n1, V1) ∩ Z(U2,m2, n2, V2).

In the discussion above, we could have pickedW1 andW2 in such a manner
that Tm|U and Tn|V were homeomorphisms. (See the parentheses.)
Note also that Tm(U) = Tn(V ). We can ensure that TmU = TnV by
intersecting U with T−m(TmU ∩ TnV ) and V with T−n(TmU ∩ TnV ).
But this means that for every neighbourhood Z of (x, r, y) ∈ GT , there is
some neighbourhood Z(U,m, n, V ) between x and Z such that Tm|U and
Tn|V are homeomorphisms and TmU = TnV . Thus the family of these
sets generate the same topology, as claimed.

The topology is locally compact: Let K1 and K2 be any compact subsets
of X, and let p, q ∈ Nk0 . Then the set

K := {(x, y) ∈ K1 ×K2 : T px = T qy}

is compact. Indeed, first define ϕ : (x, y) 7→ (Tmx, Tny) on X ×X, which
is continuous. Since X is Hausdorff, its diagonal is closed in X ×X. This
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means that ϕ−1(Diag(X)) is closed, so K = (K1 ×K2) ∩ ϕ−1(Diag(X))
is compact. We claim that the map (x, y) 7→ (x, p, q, y) is a continuous
surjection onto Z(K1, p, q,K2) (which is defined as ifK1 andK2 were to be
open). The map is clearly surjective, and continuous since (U∩K1, V ∩K2)
is mapped into (U, p, q, V ) for any open sets U, V ⊆ X. But this means
that K is compact in GT . By varying K1 and K2, we can force K to be
a neighbourhood of any point in GT ; hence GT is locally compact.

GT is a topological groupoid: We need to prove that the groupoid oper-
ations are continuous in the topology described above. We start with
inversion. Let (x, r, y) ∈ GT and suppose (U,m, n, V ) be a basic open
neighbourhood of (x, r, y). Then

Z(U,m, n, V )−1 = {(y, n−m,x) : x ∈ U, y ∈ V, Tmx = Tny} = Z(V, n,m,U)

is an open neighbourhood of (x, r, y)−1 = (y,−r, x).
Multiplication is slightly more technical. Suppose (x,m− n, y), (y,m′ −
n′, z) ∈ GT , and let Z(U,m, n, V ) and Z(U ′,m′, n′, V ′) be basic open
neighbourhoods of these points, respectively. We pick the basis elements
from the restricted basis described above, in other words with Tm(U) =
Tn(V ), Tm|U and Tn|V being homeomorphisms, et cetera. We will see
that

Z(U,m, n, V )Z(U ′,m′, n′, V ′) = Z(U,m+m′, n+ n′, V ′),

which is enough to prove that multiplication is continuous. Suppose
first that (u,m − n, v)(v,m′ − n′, v′) is in the product. This equals
(u,m+m′ − n− n′, v′), and we have

Tm+m′u = Tm
′
(Tmu) = Tm

′
(Tnv) = Tn(Tm

′
v) = Tn+n′v′,

so the element is in Z(U,m + m′, n + n′, V ′). For the other inclusion,
let (u,m + m′ − n − n′, v′) ∈ Z(U,m + m′, n + n′, V ′). We need some
v ∈ V ∩ U ′ such that

Tmu = Tnv and Tm
′
v = Tn

′
v′.

The obvious candidate is v := Tm−nu = Tn
′−m′v′, which clearly satisfies

the above conditions. It only remains to see that v ∈ V ∩ U ′. This is
also clear since v ∈ Tm−nU = V and v ∈ Tn′−m′V ′ = U ′ by our choice of
basis.

The counting measures form a left Haar system: The final step to show-
ing that GT is a locally compact groupoid, is to show that it has a left Haar
system. If this were the case, it is easily seen that GT is étale. Indeed, let
Z := Z(U,m, n, V ) be an element of the restricted basis described above.
If y ∈ r(Z), then there exists a unique point x ∈ U with Tmx = Tny, so
r is injective on Z. The only choice of x would be Tn−my, so

y 7→ (Tn−m,m− n, y)

is a continuous inverse of r. Hence the range map restricts to a homeo-
morphism on Z, and the same holds for the domain map. One could also
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prove that GT is étale by noting that X is open. Thus, the only thing left
to show is that the counting measures form a left Haar system for GT .
The proof for this is a special case of one direction of Proposition 3.2.9.

�

Example 5.2.3. Let X := Rd/Zd be the d-torus. Suppose further that T =
(T1, . . . , Tk) are k commuting hyperbolic toral automorphisms on X. The Ti
comes from k commuting d× d-matrices, with integer matrices and determinant
±1. Then there is a group action of Nk on X given by

n 7→ Tn = Tn1
1 . . . Tnkk

for n = (n1, . . . , nk) ∈ Nk. We can then form the associated Deaconu-Renault
groupoid GT . We study this dynamical system further in Appendix A.

Remark 5.2.4. Let T be an action of Nk0 on X by local homeomorphisms. Recall
that the orbit of a point x ∈ X in groupoid terms is defined as [x] = r(Gx).
However, when dealing with dynamical systems such as the one in Example 5.2.3,
the orbit of a point x ∈ X is usually defined as

[x] := {y ∈ X : Tmx = Tny for some m,n ∈ Nk0}.

We observe that this coincides the definition of orbit in Definition 5.1.4. Indeed,
we have y ∈ r(Gx) if and only if there exists a point γ = (y,m − n, x) ∈ GT
with Tmx = Tny, which is the same as saying that y ∈ [x] as defined above.
Remark 5.2.5. We will be using the k-torus Tk further in this chapter, but
viewed as the product of k unit circles in C. Addition, multiplication and
complex conjugation in Tk is defined component wise. If we have some tuple
r = (r1, . . . , rk) ∈ Rk and a point z = (z1, . . . , zk) ∈ Tk, we define zc by

zr := zr1
1 . . . zrkk .

These conventions enables us to use identities connected to the unit circle, such
as zr = z−r and zz = (1, . . . , 1) = 1 for z ∈ Td and r ∈ Rk.

We state [SW16, Lemma 3.5], but skip the proof since it’s just cite-chasing
with amenability.

Lemma 5.2.6. Let GT be the locally compact Hausdorff étale groupoid arising
from an action T of Nk0 on X by local homeomorphisms as above. Let c : GT →
Zk be the function defined by c(x, k, y) = k. Then both c−1({0}) and GT are
amenable.

Given an open set U ⊆ X, it will be useful to know which pairs (m,n) ∈ Nk0
gives us that Tm = Tn on U .

Lemma 5.2.7. Let X be a locally compact Hausdorff space, and let T be an
action of Nk0 on X by local homeomorphisms. For each open set U ⊆ X, let

ΣU := {(m,n) ∈ N0 × N0 : Tmx = Tnx for all x ∈ U}. (5.4)

Then
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(i) ΣU is a submonoid of Nk0 × Nk0 ,

(ii) ΣU is an equivalence relation on Nk0 ,

(iii) if U ⊆ V , then ΣU ⊆ ΣV , and

(iv) if p ∈ Nk0 , then we have ΣU ⊆ ΣTpU .

Proof. (i) It is clear that the unit (0, 0) is an element of ΣU , so all that is
left is to show that ΣU is closed under addition. Suppose therefore that
(m,n), (p, q) ∈ Nk0 . Then for all x ∈ U , we have

Tm+px = Tm(T px) = Tm(T qx) = T q(Tmx) = T q(Tnx) = Tn+qx,

so (m+ p, n+ q) ∈ Nk0 .

(ii) The relation ΣU is reflexive since Tnx = Tnx, symmetric since Tnx = Tmx
if and only if Tmx = Tnx, and transitive since Tnx = Tmx and Tmx = T p

implies Tnx = T px.

(iii) If U ⊆ V , then for all (m,n) with Tmx = Tnx for all x ∈ V , we certainly
have Tmx = Tnx for all x ∈ U . Hence ΣU ⊆ ΣV .

(iv) If Tnx = Tmx for all x ∈ U , then as in part (i) with q = p, we have
Tn(T px) = Tm(T px). Hence ΣU ⊆ ΣTpU .

�

In Section 5.3, we characterise the primitive ideal space of Deaconu-Renault
groupoids coming from so-called irreducible actions. We define this next. With
an irreducible action, we can describe the ΣU -sets in greater detail.

Definition 5.2.8. Suppose X is a locally compact Hausdorff space with a
Deaconu-Renault groupoid GT . If X = G0

T is Nk0-irreducible, then we say that
T acts irreducibly on X.

Note that if T acts irreducibly on X, then Lemma 5.1.6 implies that X is
an orbit closure.

Lemma 5.2.9. Let T be an Nk0-irreducible action on a locally compact Hausdorff
space X by local homeomorphisms. For all open subsets U, V ⊆ X, there exists
a nonempty open set W such that ΣU ∪ ΣV ⊆ ΣW .

Proof. We may assume that U and V are both nonempty. Fix x ∈ X with
[x] = X. Since [x] is dense, it intersects both U and V , and thus there are points
y ∈ U , z ∈ V with Tny = Tmz for some n,m ∈ Nk0 . ThenW := TnU∩TmV 6= ∅.
Since Tn, Tm are local homeomorphisms and therefore open, W is open. By
Lemma 5.2.7 we have

ΣU ⊆ ΣTmU ⊆ ΣW ,

and similarly,
ΣV ⊆ ΣTnV ⊆ ΣW .

�
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Given X and T as in Lemma 5.2.9, define

Σ :=
⋃
{ΣU : U ⊆ X is nonempty and open}. (5.5)

We give Nk0×Nk0 a partial order ≤ by saying that (n1, n2) ≤ (m1,m2) if n1 ≤ m1
and n2 ≤ m2 component-wise. We let Σmin denote the collection of minimal
elements of Σ \ {(0, 0)} with respect to this order.

Lemma 5.2.10. Let T be an irreducible action of Nk0 by local homeomorphisms
on a locally compact Hausdorff space X, and let Σ and Σmin be as above. Then
Σ is a submonoid of Nk0 × Nk0 and an equivalence relation on Nk0. We have
Σ = (Σ − Σ) ∩ (Nk0 × Nk0). Furthermore, Σmin is finite and generates Σ as a
monoid.

Proof. We start by showing that Σ is a monoid. It has a unit since (0, 0) ∈
ΣX ⊆ Σ. Suppose next that (m,n), (p, q) ∈ Σ. Then there are open sets
U, V ⊆ X with (m,n) ∈ ΣU , (p, q) ∈ ΣV . By Lemma 5.2.9, there is some open
set W ⊆ X with ΣU ,ΣV ⊆ ΣW . Then (m+ p, n+ q) ∈ ΣW ⊆ Σ by part (i) of
5.2.7. Hence Σ is closed under addition.

To see that Σ is an equivalence relation, note first that it inherits reflexivity
and symmetry from the ΣU ’s. For transitivity, suppose (m,n), (n, p) ∈ Σ, with
(m,n) ∈ ΣU and (n, p) ∈ ΣV for open sets U, V ⊆ X. By Lemma 5.2.9, there is
an open set W with (m,n), (n, p) ∈ ΣW , so Σ inherits transitivity also.

Next, we show Σ = (Σ − Σ) ∩ (Nk0 × Nk0). One inclusion is trivial, since
Σ = (Σ−0)∩ (Nk0×Nk0). For the other inclusion, suppose (m,n), (p, q) ∈ Σ with
m− p, n− q ∈ Nk0 . We must show that (m− p, n− q) ∈ Σ. As before, we may
choose an open set W with (m,n), (p, q) ∈ ΣW . Fix some element in T p+qW ,
say x = T p+qy for y ∈ W . Since ΣW is symmetric, we have (q, p) ∈ ΣW , and
since it closed under addition we have (m+ q, n+ p) ∈ ΣW . Then we have

Tm−px = Tm−p(T p+qy) = Tm+qy = Tn+py = Tn−q(T q+py) = Tn−qx,

so that (m− p, n− q) ∈ ΣTp+qW ⊆ Σ.
Next on the agenda is showing that Σmin is finite. In our favourite article,

[SW16], they refer to Dickon’s lemma; however, we will prove it in an alternative
way. More generally, if M is any subset of Nr0 \ {(0, . . . , 0)} for any r ∈ N,
ordered in the same manner, then the set of minimal elements of M is finite.
We prove this by induction. The result clearly holds for r = 1, as we can just
pick the smallest number of M . Suppose the result holds for r = k, and let
M ⊆ Nk+1

0 be nonzero. Let M1 ⊆ Nk0 be the set of elements in M where the
last coordinate is deleted, and let M2 be the set where the first coordinate is
deleted. Then n = (n1, . . . , nk+1) ∈ M is minimal if and only if (n1, . . . , nk)
and (n2, . . . , nk+1) are minimal in M1 and M2, respectively. By assumption
there, can only be a finite number of these.

To see that Σmin generates Σ, we must show that each element of Σ can
be written as a finite sum of elements of Σmin. We prove this by induction
on |(m,n)| =

∑k
i=1(mi + ni). If |(m,n)| = 0, we have m = n = 0 and the

statement is clear. Next, let N ∈ N and suppose that all pairs (m′, n′) ∈ Σ
with |(m′, n′)| ≤ N is a finite sum of elements in Σmin. Suppose we have
some (m,n) ∈ Σ with |(m,n)| = N + 1. By definition, there must be some
(p, q) ∈ Σmin with (p, q) ≤ (m,n). Then m− p, n− q ≥ 0, so (m− p, n− q) ∈
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(Σ−Σ) ∩Nk0 ×Nk0 = Σ by the discussion above. We have |(m− p, n− q)| ≤ N ,
so

(m,n) = (m− p, n− q) + (p, q)

is a sum of elements in Σmin by the induction hypothesis. �

For T as above, we let

H(T ) := {m− n : (m,n) ∈ Σ} (5.6)

and
Y max :=

⋃
{Y ⊆ X : Y is open and ΣY = Σ}.

Lemma 5.2.11. Let T be an irreducible action of Nk0 by local homeomorphisms
on a locally compact Hausdorff space X. With Σ as in (5.5), we have

Σ = {(m,n) ∈ Nk0 × Nk0 : m− n ∈ H(T )}. (5.7)

The set Y max is nonempty and open, and is the maximal open set in X such
that ΣY max = Σ. We have TmY max ⊆ Y max for all m ∈ Nk0 .

Proof. We have Σ ⊆ {(m,n) : m − n ∈ H(T )} by definition. Conversely,
suppose we have m − n = p − q where (p, q) ∈ Σ. Set g = m − p ∈ Zk (not
necessarily Nk0), and fix a, b ∈ Nk0 such that g = a− b. Since Σ is reflexive, we
have (b, b) ∈ Σ, and since it is a monoid we have (p+ a, q + a) ∈ Σ. We have
(m,n) = (p+ q, q + g), and so

(m,n) = (p+ (a− b), q+ (a− b)) = (p+a, q+a)− (b, b) ∈ (Σ−Σ)∩ (Nk0 ×Nk0).

Hence (m,n) ∈ Σ by Lemma 5.2.10.
For each (m,n) ∈ Σmin, pick a representative open subset U ⊆ X with

(m,n) ∈ ΣU . Since Σmin is finite, repeated use of Lemma 5.2.9 yields a
nonempty open set Y ⊆ X such that Σmin ⊆ ΣY . Since ΣY is a monoid by
Lemma 5.2.7, and contains the generators of Σ by Lemma 5.2.10, we have
ΣY = Σ. Hence Y max is nonempty. It is open as it is a union of open sets. It is
also maximal, since any other set Y satisfying ΣY = Σ will be a subset of Y max

by definition. Lastly, if m ∈ Nk0 , then ΣY max ⊆ ΣTmY max = Σ by Lemma 5.2.7.
Then TmY max ⊆ Y max since Y max is maximal. �

If Y ⊆ X is open and satisfies ΣY = Σ and T pY ⊆ Y for all p ∈ Nk0 , then
in some sense GT |Y contains a lot of infomation about T . As shown below, we
have an easy characterisation of Iso(GT |Y )◦ if this is the case, and that allows
us to apply Proposition 5.1.14 to the groupoid GT |Y .

Proposition 5.2.12. Let T be an irreducible action of Nk0 by local homeomor-
phisms of a locally compact Hausdorff space X, and let GT be the associated
Deaconu-Renault groupoid. The set H(T ) of (5.6) is a subgroup of Zk. Let Σ
be as in (5.5), and let Y ⊆ X be an open set such that ΣY = Σ and T pY ⊆ Y
for all p ∈ Nk0 . Then

Iso(GT |Y )◦ = {(x, u, x) : x ∈ Y and u ∈ H(T )},

and Iso(GT |Y )◦ is closed in GT |Y .
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Proof. We have 0 ∈ H(T ) since Σ is nonempty and reflexive. Since Σ is
symmetric, we have p − q ∈ H(T ) if and only if q − p ∈ H(T ), so n ∈ H(T )
implies −n ∈ H(T ). Suppose that m,n ∈ H(T ) with, say, m = p1 − q1 and
n = p2 − q2 for (pi, qi) ∈ Σ. We have (p1 + p2, q1 + q2) ∈ Σ since Σ is a monoid,
and thus m+ n = p1 + p2 − q1 − q2 ∈ H(T ). Hence H(T ) is a subgroup of Zk.

Let Y ⊆ X be as described above, and let x ∈ Y and n ∈ H(T ). By
Lemma 5.2.10, there exists (p, q) ∈ Σ with n = p − q. Pick some open
neighbourhood U ⊆ Y of x such that T p and T q are homeomorphisms when
restricted to U . We have T py = T qy for all y ∈ U since (p, q) ∈ Σ. Now we
have

{(y, n, y) : y ∈ U} = Z(U, p, q, U).

Indeed, {(y, n, y) : y ∈ U} ⊆ Z(U, p, q, U) is clear by the above discussion. For
the reverse inclusion, let y1, y2 ∈ U be such that T py1 = T qy2; then y1 = y2 since
T p and T q are homeomorphisms on U . Now we have that {(y, n, y) : y ∈ U} is
an open neighbourhood of (x, n, x) contained in {(y, n, y) : y ∈ Y, n ∈ H(T )}.
Thus every point in the latter set is interior, hence {(y, n, y) : y ∈ Y, n ∈ H(T )}
is an open set (in Iso(GT )). Now we have

{(y, n, y) : y ∈ Y, n ∈ H(T )} ⊆ Iso(GT |Y )◦.

For the reverse inclusion, suppose that (z,m, z) ∈ Iso(GT |Y )◦; we must show
that m ∈ H(T ). By Proposition 5.2.2, there exist r, s ∈ Nk0 and open sets
U, V ⊆ Y such that (z,m, z) ∈ Z(U, r, s, V ) ⊆ Iso(GT |Y )◦, with T r(U) = T s(V ).
Thus for every x ∈ U , there exists x′ ∈ V with T rx = T sx′, and we can write

Z(U, r, s, V ) = {(x, r − s, y) : x ∈ U, y ∈ V, T rx = T sy}
= {(x, r − s, x′) : x ∈ U}.

In fact, since Z(U, r, s, V ) ⊆ Iso(GT |Y ), its elements must have the same domain
and range. Hence

Z(U, r, s, V ) = {(x, r − s, x) : x ∈ U},

so we have T rx = T sx for all x ∈ U . Thus (r, s) ∈ ΣU ⊆ Σ, and m ∈ H(T ) as
required.

Lastly, we prove that Iso(GT |Y )◦ is closed. Suppose (x, n, y) ∈ GT |Y . This
element being in Iso(GT |Y )◦ is, by the discussion above, the same as saying
that x = y(∈ Y ) and n ∈ H(T ). Removing the elements of GT |Y not satisfying
this therefore gives us Iso(GT |Y )◦. Elements with n 6∈ H(T ) is covered precisely
by basis elements Z(U, r, s, V ) with r − s 6∈ H(T ), and elements with x 6= y is
covered precisely by basis elements with U ∩ V = ∅. Hence

Iso(GT |Y )◦ = GT |Y \

 ⋃
m−n 6∈H(T )

Z(U,m, n, V ) ∪
⋃

U∩V=∅

Z(U,m, n, V )

 .

We only remove open sets, so Iso(GT |Y )◦ is closed. �

We finish off this section by putting things into context with the more
general literature. This yields a corollary that is key to Theorem 5.4.2.
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Corollary 5.2.13. Let T be an irreducible action of Nk0 by local homeomor-
phisms on a locally compact Hausdorff space X. Let Σ and H(T ) be as in
(5.5) and (5.6), respectively. Suppose that Y is an open subset of X such that
T pY ⊆ Y for all p ∈ Nk0 and such that ΣY = Σ. Then the following statements
are true.

(i) Regard Cc(GT |Y ) as a subalgebra of Cc(GT ). The identity map extends
to an injective homomorphism ι : C∗(GT |Y )→ C∗(G), and ι(C∗(GT |Y ))
is a hereditary subalgebra of C∗(GT ).

(ii) The map π 7→ π ◦ ι is a bijection from the collection of irreducible rep-
resentations of C∗(GT ) that are injective on C0(X) to the space of ir-
reducible representations of C∗(GT |Y ) that are injective on C0(Y ), up
to unitary equivalence. Moreover, the map kerπ 7→ ker(π ◦ ι) is a
homeomorphism from {I ∈ PrimC∗(GT ) : I ∩ C0(X) = {0}} onto
{J ∈ PrimC∗(GT |Y ) : J ∩ C0(Y ) = {0}}.

Proof. (i) The inclusion Cc(GT |Y ) ↪→ Cc(GT ) is a continuous ∗-homomorphism
(in any topology), so it extends to a ∗-homomorphism ι : C∗(GT |Y ) →
C∗(GT ). Fix x ∈ Y , and let Lx be the regular representation of C∗(GT )
on `2((GT )x) from Lemma 5.1.13. Then the image of Lx ◦ ι leaves the
subspace `2({(y, r, x) ∈ GT : y ∈ Y }) invariant. Indeed, if we have
γ = (y, r, x) ∈ GT for some y ∈ Y , then for any f ∈ Cc(GT |Y ) we can
write

(Lx ◦ ι)(f)δγ =
∑

α∈(GT |Y )y

f(α)δαγ .

Since d(γ) = x and r(α) ∈ Y , the above function is an element of
`2({(y, r, x) ∈ GT : y ∈ Y }).
Let LxY be the corresponding regular representation of C∗(GT |Y ) on
`2((GT |Y )x) = `2({(y, r, x) ∈ GT : y ∈ Y }). We get a representation
LxY ⊕ 0 of C∗(GT |Y ) on `2((GT )x) if we compose with the natural in-
clusion `2((GT |Y )x) ↪→ `2((GT )x). By the above discussion, the two
representations Lx ◦ ι and LxY ⊕ 0 are unitarily equivalent. Since GT is
amenable, ι must be injective. Indeed, suppose a ∈ C∗(GT |Y ) is nonzero;
then there must be some x ∈ X such that LxY (a) 6= 0; since LxY is equivalent
to Lx ◦ ι, we must have ι(a) 6= 0.
Now we show that ι(C∗(GT |Y )) is hereditary. Let (fλ)λ∈Λ be an approxi-
mate identity for C0(Y ). We claim that

ι(C∗(GT |Y )) =
⋃
λ∈Λ

fλ ∗ C∗(GT ) ∗ fλ. (5.8)

To prove so, note first that (fλ) is also an approximate identity for
ι(C∗(GT |Y )). Indeed, suppose f ∈ Cc(GT |Y ). Then for γ ∈ GT |Y , we
have

(fλ ∗ f)(γ) = fλ(r(γ))f(γ)→ f(γ).

This extends by continuity to all of ι(C∗(GT |Y )). (We let f ∗ g denote the
product of f, f ∈ Cc(GT ) to separate it from the complex multiplication
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f(γ)g(γ).) Thus we can conclude that ι(C∗(GT |Y )) is contained in the
closure of ∪λ∈Λfλ ∗ C∗(GT ) ∗ fλ. To see the other inclusion, it suffices
to show that fλ ∗ f ∈ Cc(GT |Y ) for all f ∈ Cc(GT ). This is clear by
the equation (fλ ∗ f)(γ) = fλ(r(γ))f(γ), since fλ(r(γ)) is zero whenever
γ 6∈ GT |Y .
Now we can show that ι(C∗(GT |Y )) is hereditary by using Theorem 2.0.18.
Suppose that b, b′ ∈ ι(C∗(GT |Y )) and a ∈ C∗(GT ). There is no longer any
complex multiplication in the picture, so we will not use the ∗-notation to
denote multiplication. We can write

b = lim
λ→∞

fλbλfλ and b′ = lim
λ→∞

fλb
′
λfλ

for bλ, b′λ ∈ C∗(GT |Y ). But then we have

bab′ = lim
λ→∞

(fλbλfλ)a(fλb′λfλ)

= lim
λ→∞

fλ(bλfλafλb′λ)fλ,

which is an element of ι(C∗(GT |Y )) by (5.8). Hence ι(C∗(GT |Y )) is
hereditary.

(ii) Recall that we can regard C0(Y ) ⊆ C0(X) as a ∗-subalgebra of C∗(GT ).
Let IY be the ideal generated by C0(Y ). We claim that ι(C∗(GT |Y )) is
Morita equivalent to IY . To show that, we will first see that ι(C∗(GT |Y )) ⊆
IY . Suppose for contradiction that this is not the case; then ι(C∗(GT |Y ))∩
IY will be a proper ideal in ι(C∗(GT |Y )) containing C0(Y ). This would
contradict that C0(Y ) is full in C∗(GT |Y ), so that is what we want
to show. Let I ′ ⊆ C∗(GT |Y ) be an ideal containing C0(Y ). We will
show that Cc(GT |Y ) ∗ I = Cc(GT |Y ), where I = I ′ ∩ Cc(GT |Y ). Then
I ′ = I = C∗(GT |Y ), so C0(Y ) will be full in C∗(GT |Y ) as we wanted.
Suppose therefore that f ∈ Cc(GT |Y ). Since GT |Y is étale, we may assume
that f ∈ Cc(A) where A ∈ GT |op

Y , as in the proof of Proposition 3.2.11.
Since the support of f is compact, K := d(supp(f)) is compact in GT |0Y .
Cover K in a finite number of relatively compact open subsets of GT |0Y ,
and let U be the union of these elements. Then by Urysohn’s lemma there
exist a function g ∈ Cc(GT |0Y ) which equals 1 on K and 0 outside U . Let
x ∈ supp(f); then d(x) ∈ K. We have

(f ∗ g)(x) = f(x)g(d(x)) = f(x)

by Remark 3.2.12. For x 6∈ supp(f), we have (f ∗ g)(x) = 0, so f ∗ g = f .
Hence Cc(GT |Y ) ∗ I ⊆ I.
To see that ι(C∗(GT |Y )) is Morita equivalent to IY , it suffices by [Bro77,
Theorem 2.8] to show that ι(C∗(GT |Y )) is a full hereditary subalgebra
of IY . Any ideal containing ι(C∗(GT |Y )) also contains C0(Y ), and hence
contains IY . Thus there can be no ideal between the two, and ι(C∗(GT |Y ))
is full in IY . Since ι(C∗(GT |Y )) is hereditary in C∗(GT ), it is certainly
hereditary in IY too.
Now we can get along with proving the actual statement. Let π be an
irreducible representation of C∗(GT ) that is injective on C0(X). In partic-
ular, π is nonzero on IY , so by [Arv76, Theorem 1.3.4], the representation
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π|IY is irreducible. As noted in the proof of [SW16, Corollary 3.12], one
can implement the so-called Rieffel induction from IY to ι(C∗(GT |Y ))
by restriction of fuctions. Since these two C∗-algebras are Morita equiv-
alent, Rieffel induction takes irreducible representations of the prior to
irreducible representations of the latter. Hence π ◦ ι is an irreducible
representation of C∗(GT |Y ) that is injective on C0(Y ). Additionally, since
the representation π is fully determined by how it behaves on the ideal
IY by [Arv76, Theorem 1.3.4], the map π 7→ π ◦ ι is injective.
Next, we will see that π 7→ π ◦ ι is surjective. Suppose ρ is an irreducible
representation of C∗(GT |Y ) on a Hilbert space K, such that ρ is injective
on C0(Y ). We can view it as a representation of ι(C∗(GT |Y )). By [Ped79,
Proposition 4.1.8], there is an irreducible representation ρ′ of IY on a
Hilbert space H, such that there is a subspace H ′ ⊆ H that is isomorphic
to K, and such that ρ′ is unitarily equivalent to ρ when the elements in
its image is restricted to H ′. By [Arv76, Theorem 1.3.4], we can extend ρ′
uniquely to a representation π of C∗(GT ) (on H). Now π ◦ ι is unitarily
equivalent to ρ. We illustrate this in the below diagram, which commutes
up to unitary equivalence.

C∗(GT )

IY B(H) B(H ′)

ι(C∗(GT |Y )) B(K)

π

ρ′

⊆
·|H′

⊆

ρ

∼=

Next, [SW16] claim that π|C0(X) has Nk0-invariant support. This is the
same as saying that, for f ∈ C0(X), π(f) = 0 implies π(f ◦Tn) = 0 for all
n ∈ Nk0 . This is clear in the related case of crossed product C∗-algebras.
For example, take a transformation group crossed product C(Z) oβ H for
a compact space Z and a discrete group H. Let ϕo u be a nondegenerate
representation, and let f ∈ C(Z) ⊆ Cc(H,C(Z)) satisfy ϕ o u(f) = 0.
Then we have ϕ(βg(f)) = ugϕ(f)u∗g = 0 for any g ∈ H, so

‖ϕo u(αg(f))‖ = ‖
∫
H

ϕ(αg(f))uh dh‖

≤
∫
H

‖ϕ(αg(f))‖ dh = 0.

By Corollary 4.2.20, one can write C∗(G) as a (different kind of) crossed
product C0(X)×βS for an additive localisation (X,S). One could probably
use the discussion of the associated covariant representations in [Sie97], or
the possibly the temptatious identity in Definition 4.2.9, to find a similar
argument in the case of groupoid C∗-algebras. However, this isn’t obvious
to the author, and we settle with this handwavy discussion.
Since π is faithful on C0(Y ), its kernel cannot be the whole of C0(X). The
space C0(X) is GT -simple since T acts irreducibly, so ker

(
π|C0(X)

)
= {0}

as we wanted.
�
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5.3 The Primitive Ideals of the C∗-algebra of an Irreducible
Deaconu-Renault Groupoid

In this section, we will focus on the case when T is an irreducible action of Nk0
on Y , where Y is a locally compact Hausdorff space with ΣY = Σ in the usual
notation. The results from the previous section can be applied, and we sum up
the implications in the following remark.
Remark 5.3.1. Let T and Y be as above. By part (i) of Lemma 5.2.7, we have
ΣU = Σ for all nonempty open subsets U ⊆ Y . Lemma 5.2.11 says that if
m− n ∈ H(T ), then Tmx = Tnx for all x ∈ Y . Proposition 5.2.12 says that

Iso(GT )◦ = {(x, n, x) : x ∈ Y and n ∈ H(T )}.

Lemma 5.3.2. Suppose that T is an irreducible action of Nk0 on a locally
compact space Y with ΣY = Σ. Then the sets

Z(U, q(m), q(n), V ) := {(x, q(m− n), y) : x ∈ U, y ∈ V, Tmx = Tny}

form a basis for the topology on GT / Iso(GT )◦.

Proof. We need some preparation. Recall that H(T ) is a (normal) subgroup
of Zk. Let q : Zk → Zk/H(T ) be the quotient map. As noted in Remark 5.3.1,
we have Iso(GT )◦ = {(x, n, x) : x ∈ Y and n ∈ H(T ). By this, we can identify
GT / Iso(GT )◦ with

{(x, q(r), y) : (x, r, y) ∈ GT } ⊆ Y × (Zk/H(T ))× Y.

Indeed, if [(x, n, y)] = (x, n, y) Iso(GT )◦ ∈ GT / Iso(GT )◦, then

[(x, n, y)] = {(x, n, y)(y,m, y) : m ∈ H(T )}
= {(x, n+m, y) : m ∈ H(T )}
∼ (x, n+H(T ), y)
= (x, q(n), y),

where we have used ∼ as the vaguely defined form of similarity that mathemati-
cians call “identification”.

Let p : GT → GT / Iso(GT )◦ be the other quotient map (not to be con-
fused with q above). We denote by B the collection of sets of the form
Z(U, q(m), q(n), V ). We shall now prove that B forms a basis for the topology
on GT / Iso(GT )◦. We first show that these sets are in fact open. Pick any
Z(U, q(m), q(n), V ) ∈ B. For each (x, q(m − n), y) ∈ Z(U, q(m), q(n), V ), we
have p−1((x, q(m− n), y)) = (x,m− n, y) Iso(GT )◦ by the identification in the
previous paragraph. Thus

p−1(Z(U, q(m), q(n), V ))

=
⋃
{(x,m− n, y) Iso(GT )◦ : x ∈ U, y ∈ V, Tmx = Tny}

=
⋃
{(x,m− n, y) Iso(GT )◦ : (x,m− n, y) ∈ Z(U,m, n, V )}

= Z(U,m, n, V ) Iso(GT )◦.
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The action in question is just multiplication. Since GT is étale, multiplication
is an open map, so p−1(Z(U, q(m), q(n), V )) (and hence Z(U, q(m), q(n), V )) is
open.

To show that B is a basis generating the topology, we must prove that there
exists an element from B between any point and open neighbourhood containing
it. Suppose therefore that we have a point (x, q(m − n), y) ∈ GT / Iso(GT )◦
with an open neighbourhood S. Then p−1(S) is open in GT , and we can write
it as a union of basis elements. So we have

p−1(S) =
⋃
i∈I

Z(Ui,mi, ni, Vi),

where I is a countable index set, and for all i ∈ I we have Ui, Vi ⊆ Y and
q(mi − ni) = m− n. For one of these basis elements, say Z(Ut,mt, nt, Vt) for
some t ∈ I, we have x ∈ p(Ut) and y ∈ p(Vt). (If not, the above union would not
cover p−1(S).) But then p(Z(Ut,mt, nt, Vt)) = Z(Ut, q(m− n), Vt) is an open
neighbourhood of (x, q(m− n), y) inside S, so B generates the topology. �

Let T act on X as above, and recall the group H(T ) as defined in Equa-
tion (5.6). Set

H(T )⊥ = {z ∈ Tk : zr = 1 for all r ∈ H(T )}.

Lemma 5.3.3. Suppose that T is an irreducible action of Nk0 on a locally
compact space Y such that ΣY = Σ. Then

(i) there is a strongly continuous action α of Tk on C∗(GT ) such that
αz(f)(x, n, y) = znf(x, n, y) for f ∈ Cc(GT ).

Let κ : C∗(GT ) → C∗(GT / Iso(GT )◦) be the homomorphism from Proposi-
tion 5.1.15.

(ii) There is a strongly continuous action α̃ of H(T )⊥ on C∗(GT / Iso(GT )◦)
such that α̃z ◦ κ = κ ◦ αz for all z ∈ H(T )⊥ ⊆ Tk.

(iii) If zw 6∈ H(T )⊥, then (ker(κ ◦ αz) + ker(κ ◦ αw)) ∩ C0(Y ) 6= {0}.

(iv) We have ker(κ ◦ αz) = ker(κ ◦ αw) if and only if zw ∈ H(T )⊥.

Proof. (i) Let c : GT → Zk be the map defined by c(x, n, y) = n, and let
z ∈ Tk. Note that c(γ−1) = −c(γ) and c(γδ) = c(γ) + c(δ). There is an
induced ∗-homomorphism αz : Cc(GT )→ Cc(GT ), defined by

αz(f)(γ) = zc(γ)f(γ)

for f ∈ Cc(GT ) and γ ∈ GT . Indeed, the map is clearly linear. To see
that αz is a ∗-map, note first that c(γ−1) = −c(γ), and zr = z−r for all
r ∈ Zk since z ∈ Tk. Now we can write

αz(f)∗(γ) = zc(γ−1)f(γ−1) = z−c(γ)f(γ−1)
= zc(γ)f(γ−1) = αz(f∗)(γ).
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To see that αz is a homomorphism, suppose that f ∈ Cc(A) and g ∈ Cc(B)
for A,B ∈ Gop

T , and let γ = δβ for δ ∈ A and β ∈ B. We see that
αz(f) ∈ Cc(A) and αz(g) ∈ Cc(B). Then

αz(f ∗ g)(γ) = zc(γ)(f ∗ g)(γ) = zc(δ)+c(β)f(δ)g(β)

=
(
zc(δ)f(δ)

)(
zc(β)g(β)

)
= αz(f)(δ) ∗ αz(g)(β).

As in the proof of Proposition 3.2.11, multiplicativity of αz for general f
and g follows from linearity.
We want to extend αz to C∗(GT ). As when extending κ in Proposi-
tion 5.1.15, it suffices to prove that αz is an I-norm contraction. In
fact, it is I-norm preserving, since |αz(f)(γ)| = |f(γ)|. Hence αz ex-
tends to αz : C∗(GT )→ C∗(GT ). Since αz̄ is an inverse of αz on Cc(GT )
and hence C∗(GT ), we have αz ∈ Aut(C∗(GT )). The map z 7→ αz is a
homomorphism, since for f ∈ Cc(GT ) we have

αzw(f)(γ) = (zw)c(γ)f(γ) = zc(γ)wc(γ)f(γ)
= zc(γ)(αw(f)(γ)) = (αz ◦ αw)(f)(γ).

Now we shall see that z 7→ αz is strongly continuous. Suppose first that
f ∈ Cc(GT ) has support in c−1({r}) for some r ∈ Zk. Then αz(f) = zrf ,
so z 7→ αz(f) is continuous. Indeed, if zλ → z in Tk, then ‖(zrλ−zr)f‖ → 0.
If f ∈ Cc(GT ) is any element, we have that f |c−1({r}) = fχc−1({r}) is
continuous. To see this, it suffices to see that c−1({r}) is clopen. It is
closed since any net ((xλ, r, yλ))λ with constant middle term can only
converge to a point with the same middle term. Openness is also clear, as

c−1({r}) = {(x, r, y) ∈ GT : there exist m,n ∈ Nk0 with Tmx = Tny}

=
⋃

m−n=r
Z(Y,m, n, Y ).

Since the sets c−1({r}) partition GT when r varies, we have

f =
∑
{f |c−1({r}) : supp(f) ∩ c−1({r}) 6= ∅}.

Consequently, the function z 7→ αz(f) is a finite sum of continuous
functions, and is therefore continuous (for any f ∈ Cc(GT )). To see that
z 7→ αz is strongly continuous, suppose zλ → z in Tk. Then

‖(αzλ − αz)f‖ → 0

since w 7→ αw(f) is continuous.

(ii) As in the proof of Lemma 5.3.2, we can identify GT / Iso(GT )◦ with

{(x, q(r), y) : (x, r, y) ∈ GT } ⊆ Y × (Zk/H(T ))× Y.

Using this and the basis we found in Lemma 5.3.2, we can argue precisely
as we have done above to see that there is an action α̃ of H(T )⊥ on
C∗(GT / Iso(GT )◦) such that

α̃z(f)(x, q(r), y) = zrf(x, q(r), y)
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for all f ∈ Cc(GT / Iso(GT )◦). Note that q(r) 7→ zr is well-defined for
z ∈ H(T )⊥. Indeed, if q(r) = q(s) for r, s ∈ Zk, then q(r − s) = 0, so
r − s ∈ H(T ). But then zr−s = 1, so zr = zs.
Now we will check the identity α̃z ◦ κ = κ ◦ αz for z ∈ H(T )⊥. We
let c : GT / Iso(GT )◦ → Zk/H(T ) be the function c(x, q(r), y) = q(r), as
with the function of the same name in the beginning of this proof. For
q(r) ∈ Zk/H(T ), we will by zq(r) mean zr, which works since q(r) 7→ zr

is well-defined. Let p : GT → GT / Iso(GT )◦ be the quotient map. For
f ∈ Cc(GT ), z ∈ H(T )⊥ and b ∈ GT / Iso(GT )◦, we have

(α̃z ◦ κ(f))(b) = zc(b)
∑
p(γ)=b

f(γ) =
∑
p(γ)=b

zc(b)f(γ).

Here, we can use the fact that zc(p(γ)) = zc(γ) for γ ∈ GT and z ∈ H(T )⊥.
Consequently, the above equals∑

p(γ)=b

zc(γ)f(γ) = κ(γ 7→ zc(γ)f(γ))(b)

= (κ ◦ αz(f))(b).

The identity α̃z ◦ κ = κ ◦ αz extends to C∗(GT ) by continuity of α̃z, αz
and κ.

(iii) Suppose zw 6∈ H(T )⊥. Then we can find some n ∈ H(T ) with zn 6= wn.
Indeed, suppose for contradiction that zm = wm for all m ∈ H(T ); then
we would have (zw)m = z−mwm = 1, so zw ∈ H(T )⊥. Pick any nonzero
function f ∈ Cc(Y ), and define a function fn ∈ Cc({(x, n, x) ∈ GT :
x ∈ Y }) ⊆ Cc(GT ) by setting fn(x, n, x) = f(x, 0, x) and zero otherwise.
(This function is continuous and compactly supported since f is.) Now we
have wnf − fn ∈ ker(κ ◦ αw) and −znf + fn ∈ ker(α̃z ◦ κ). We will show
the first one; the second is analogous. We can write

(κ ◦ αw)(wnf − fn)(b) = κ(γ 7→ wc(γ)(wnf(γ)− fn(γ)))(b)

=
∑
p(γ)=b

wc(γ)(wnf(γ)− fn(γ)).

We split the sums into the supports of the functions to get ∑
p(γ)=b,c(γ)=0

wc(γ)wnf(γ)

−
 ∑
p(γ)=b,c(γ)=n

wc(γ)fn(γ)


=

 ∑
p(γ)=b,c(γ)=0

wnf(γ)

−
 ∑
p(γ)=b,c(γ)=n

wnfn(γ)

 .
Suppose b = (x, 0, x) for some x ∈ Y . (We may assume that the middle
term is zero since all other such b’s would be sent to zero, as 0 and n are
elements of H(T ).) Then there is only one element in both summation
indeces above. Thus the above equals

wnf(u, 0, u)− wnfn(x, n, x) = 0,
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which is what we wanted. A key element here is the fact that (x, n, x) ∈ GT ;
otherwise the sum would be nonzero. We know that this is the case since
(x, n, x) ∈ Iso(GT )◦ ⊆ GT by Remark 5.3.1. Hence wnf−fn ∈ ker(κ◦αw).
Since wnf − fn and −znf + fn are elements of Cc(Y ), and

(wnf − fn) + (−znf + fn) = (wn − zn)f 6= 0

by our choice of n, we have that

(wn − zn)f ∈ (ker(κ ◦ αz) + ker(κ ◦ αw)) ∩ C0(Y ) \ {0}.

Note that even though (ker(κ ◦ αz) + ker(κ ◦ αw)) ∩ C0(Y ) 6= {0}, we
cannot necessarily conclude that κ ◦ αz and κ ◦ αw aren’t injective on
C0(Y ). Indeed, the functions wnf − fn and −znf + fn that we picked out
were not elements of C0(Y ), but they became so when added together.
Below, we will prove that the functions in question in fact are injective on
C0(Y ).

(iv) We start with a contrapositive proof of the “only if”-statement. Suppose
that zw 6∈ H(T )⊥. If we can prove that κ◦αz and κ◦αw are injective (have
zero kernel) on C0(Y ), then we are done. Indeed, suppose for contradiction
that we then had ker(κ ◦ αz) = ker(κ ◦ αw). By (iii), we could find some
nonzero element f ∈ ker(κ ◦ αz) ∩ C0(Y ), which is a contradiction.
We first see that κ ◦ αz and κ ◦ αw are injective on Cc(Y ). Let f ∈ Cc(Y )
be nonzero; suppose f(γ) 6= 0 for some γ ∈ Y . Since αz and αw equal the
identity on Cc(X), it suffices to see that κ does not send f to zero. Set
b := p(γ). Since the quotient map p is injective on X by the identity in
Remark 5.3.1, we have

κ(f)(b) =
∑
p(β)=b

f(β) = f(γ) 6= 0,

so κ(f) 6= 0. Note also that κ ◦ αz and κ ◦ αw are injective on C0(Y ).
Suppose that zw ∈ H(T )⊥. Since zz = 1 and v 7→ αv is a homomorphism,
we have αw = αz̄w ◦ αz. Thus

ker(κ ◦ αw) = ker(κ ◦ αz̄w ◦ αz) = ker(α̃z̄w ◦ κ ◦ αz).

Since αz̄w is an automorphism, it is injective, so ker(κ ◦ αw) = ker(κ ◦ αz)
as we wanted.

�

Since α̃ is a strongly continuous action, we can form the induced algebra
IndTk

H(T )⊥(C∗(GT / Iso(GT )◦), α̃) as in [RW98, Chapter 6.3]. This is defined as

{s ∈ C(Tk, C∗(GT / Iso(GT )◦) :
s(wz) = α̃z(s(w)) for all w ∈ Tk and z ∈ H(T )⊥}.

We will often denote the induced algebra by IndTk
H(T )⊥ to avoid overwhelming

notation; the proofs involving it are technical enough without dealing with
complicated names.

68



5.3. The Primitive Ideals of the C∗-algebra of an Irreducible Deaconu-Renault
Groupoid

Lemma 5.3.4. Suppose that T is an irreducible action of Nk0 on a locally
compact space Y with ΣY = Σ. If (x, r, y) ∈ GT , then (x, r + s, y) ∈ GT for all
s ∈ H(T ).

Proof. We may assume that r = m−n with Tmx = Tny. Let s ∈ H(T ) be any
element. Then s = s+−s− for (s+, s−) ∈ Σ = ΣY . Then we have T s+z = T s−z
for all z ∈ Y , and we can write

Tm+s+x = T s+Tmx = T s+Tny = T s−Tny = Tn+s−y.

Hence we have (x, r + s, y) = (x, (m+ s+)− (n+ s−), y) ∈ GT . �

Let Cc(H(T )) denote the set of finitely supported functions H(T ) → C.
The preceding lemma enables us to define a left multiplication of Cc(H(T )) on
Cc(GT ) by

ϕ � f(x, r, y) :=
∑

s∈H(T )

ϕ(s)f(x, s− r, y). (5.9)

(We need Lemma 5.3.4 to be able to write f(x, s− r, y).)
Let us check that (ϕ ∗ ψ) � f = ϕ � (ψ � f). We calculate:

((ϕ ∗ ψ) � f)(x, p, y) =
∑

r∈H(T )

∑
s∈H(T )

ϕ(s)ψ(r − s)f(x, p− r, y).

On the other hand, we have

(ϕ � (ψ � f))(x, p, y) =
∑

s∈H(T )

ϕ(s)
∑

r∈H(T )

ψ(r)f(x, p− s− r, y)

=
∑

s∈H(T )

∑
r∈H(T )

ϕ(s)ψ(r)f(x, p− s− r, y)

=
∑

r∈H(T )

∑
s∈H(T )

ϕ(s)ψ(r − s)f(x, p− r, y),

where the last equality comes from substituting r with r+ s. Thus (ϕ ∗ψ) � f =
ϕ � (ψ � f).

Recall that if ϕ ∈ Cc(H(T )), then its Fourier transform ϕ̂ ∈ C(Tk) is given
by

ϕ̂(z) =
∑

n∈H(T )

ϕ(n)zn,

and is constant onH(T )⊥ cosets. We may regard ϕ̂ as an element of C(Tk/H(T )⊥).
We have that {ϕ̂ : ϕ ∈ Cc(H(T ))} is a uniformly dense subalgebra of C(Tk/H(T )⊥).

Lemma 5.3.5. Let T be an irreducible action of Nk0 on a locally compact space Y
by local homeomorphisms such that ΣY = Σ, and let κ : C∗(GT )→ C∗(Iso(GT )◦)
be as in Proposition 5.1.15. Then

κ(αz(ϕ � f)) = ϕ̂(z)κ(αz(f))

for all f ∈ Cc(GT ), z ∈ Tk and ϕ ∈ Cc(H(T )).
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Proof. This is again only computation. We have

κ(αz(ϕ � f))(x, q(r), y) =
∑

m∈H(T )

αz(ϕ � f)(x, r +m, y)

=
∑

m∈H(T )

zr+m(ϕ � f)(x, r +m, y)

=
∑

m∈H(T )

zr+m
∑

n∈H(T )

ϕ(n)f(x, r +m− n, y)

=
∑

m∈H(T )

zr+m
∑

n∈H(T )

ϕ(n)f(x, r +m− n, y)

=
∑

n∈H(T )

∑
m∈H(T )

zr+mϕ(n)f(x, r +m− n, y).

Note that we switched the order of the sums. This enables us to substitute m
for m− n, and we may continue:

=
∑

n∈H(T )

∑
m∈H(T )

zr+m+nϕ(n)f(x, r +m, y)

=
∑

m∈H(T )

zr+mf(x, r +m, y)
∑

n∈H(T )

znϕ(n)

=
∑

m∈H(T )

zr+mf(x, r +m, y)ϕ̂(z)

= ϕ̂(z)
∑

m∈H(T )

zr+mf(x, r +m, y)

= ϕ̂(z)κ(αz(f))(x, q(r), y).

�

Proposition 5.3.6. Let T be an irreducible action of Nk0 on a locally compact
space Y by local homeomorphisms, and suppose that ΣY = Σ. Let

α : Tk → Aut(C∗(GT )) and α̃ : H(T )⊥ → Aut(C∗(GT / Iso(GT )◦))

be as in Lemma 5.3.3, and let κ : C∗(GT )→ C∗(GT / Iso(GT )◦) be as in Propo-
sition 5.1.15. There is a C∗-isomorphism

Φ: C∗(GT )→ IndTk
H(T )⊥(C∗(GT / Iso(GT )◦), α̃)

such that Φ(a)(z) = κ(αz(a)) for a ∈ C∗(GT ) and all z ∈ Tk.

Proof. This is quite a long proof, so we break it into sections.

Φ is a ∗-homomorphism into IndT
k

H(T )⊥ . Since α is strongly continuous,
z 7→ αz(a) is continuous for any a ∈ C∗(GT ). Thus, the map z 7→
κ(αz(a)) = Φ(a)(z) is continuous.
Suppose f ∈ Cc(GT ), w ∈ Tk and z ∈ H(T )⊥. Lemma 5.3.3 gives
α̃z ◦ κ = κ ◦ αz, so

Φ(f)(wz) = κ(αwz(f)) = κ(αz(αw(f))) = α̃zκ(αw(f)) = α̃z(Φ(f)(w)).
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Thus Φ takes values in IndTk
H(T )⊥(C∗(GT / Iso(GT )◦), α̃).

To see that Φ is a homomorphism, let a, b ∈ C ∗ (GT ) and z ∈ Tk. Then

Φ(ab)(z) = κ(αz(ab)) = κ(αz(a))κ(αz(b)) = (Φ(a)(z)) (Φ(b)(z)) .

Lastly, Φ is a ∗-map since α and κ are. Indeed, for a ∈ C∗(GT ) we have

Φ(a∗)(z) = (κ(αz(a)))∗ = Φ(a)∗(z).

Φ is injective. There is an action lt of Tk on the left of IndTk
H(T )⊥ given by

left translation: ltx(s)(w) = s(zw). We have Φ ◦ αz = ltz̄ ◦Φ. To each of
the actions α and lt, we can associate the so-called faithful conditional
expectations, denoted ξ and ζ respectively. They are defined as

ξ(a) =
∫
Tk
αz(a) dz and

ζ(s) =
∫
Tk

ltz(s) dz,

for f ∈ C∗(GT ) and s ∈ IndTk
H(T )⊥ , where we use vector-valued integration.

For f ∈ Cc(GT ) and z ∈ Tk, we have

(ζ ◦ Φ)(f)(z) =
∫
w∈Tk

ltw Φ(f)(z)

=
∫
w∈Tk

Φ ◦ αw̄(f)(z)

= Φ
(∫

w∈Tk
αw(f)(z)

)
= (Φ ◦ ξ)(f)(z)

Hence, by [SWW14, Lemma 3.14], it suffices to prove that Φ restricts to
an injection on the fixed-point algebra C∗(GT )α for α, which is defined as

C∗(GT )α := {a ∈ C∗(GT ) : αz(a) = a for all z ∈ Tk}.

We have C∗(GT )α = ξ(C∗(GT )). If f ∈ Cc(GT ), then ξ(f) ∈ Cc(GT ) as
well, by arguing as in [Wil07, Lemma 1.108]. Thus, if f ∈ Cc(GT ), then
for any γ ∈ GT we have

ξ(f)(γ) =
(∫

Tk
αz(f) dz

)
(γ)

=
∫
Tk
αz(f)(γ) dz =

∫
Tk
zc(γ)f(γ) dz

=
∫
Tk
zc(γ)f(γ) dz = f(γ)

∫
Tk
zc(γ) dz

=
{
f(γ) if γ ∈ c−1(0),
0 otherwise.

Here, we have “passed evaluation through the integral” as in [Wil07,
Remark 1.109], and used the fact that integrating a polynomial with no
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constant term over the circle gives zero. This implies that Cc(c−1(0)) is
dense in C∗(GT )α. Since c−1(0) and GT are amenable, their C∗-algebras
both come from the left-regular representation of GT . Hence the inclu-
sion Cc(c−1(0)) ↪→ Cc(GT ) induces a monomorphism ρ : C∗(c−1(0)) ↪→
C∗(GT ). The image of ρ is ρ(C∗(c−1(0)) = Cc(c−1(0)) = C∗(GT )α, so
proving that Φ|C∗(GT )α is injective is the same as proving that Φ ◦ ρ is
injective. Since c−1(0) is amenable by Lemma 5.2.6, and clearly topo-
logically principal, we have by Lemma 5.1.13 that it suffices to check
that (Φ ◦ ρ)|C0(Y ) is injective. Since ρ restricts to the canonical inclusion
on C0(Y ), all we need to prove is that Φ is injective on C0(Y ). We
know that κ ◦ αz restricts to the identity of C0(Y ) ⊆ C∗(GT ) to the
identity of C0(Y ) ⊆ C∗(GT / Iso(GT )◦). Hence for f ∈ C0(Y ), z ∈ Tk
and b ∈ GT / Iso(GT )◦, we have

Φ(f)(z)(b) = κ(αz(f))(b) =
{
f(x) if b = (x, 0, x) ∈ (GT / Iso(GT )◦)0,

0 otherwise.

From this, we see that if Φ(f) = 0 then f = 0, so Φ is injective.

Φ is surjective. There is a canonical operation C(Tk/H(T )⊥)× IndTk
H(T )⊥ →

IndTk
H(T )⊥ given by

(ϕ̂ · s)(z) = ϕ̂(z)s(z),

for ϕ̂ ∈ C(Tk/H(T )⊥), s ∈ IndTk
H(T )⊥ , and z ∈ Tk. This operation

makes IndTk
H(T )⊥ a C(Tk/H(T ))-module. For instance, the operation is

compatible in the sense that (ϕ̂ · ψ̂) · s = ϕ̂ · (ψ̂ · s), where ϕ̂ · ψ̂ denotes
pointwise multiplication of functions in C(Tk/H(T )).
We now prove that under the operation above, Φ(C∗(GT )) is a C(Tk/H(T )⊥)-
submodule of IndTk

H(T )⊥ . We must show that

C(Tk/H(T )⊥) · Φ(C∗(GT )) ⊆ Φ(C∗(GT )).

By Lemma 5.3.5, we have that ϕ̂ · Φ(f) = Φ(ϕ � f) for all ϕ ∈ Cc(H(T ))
and f ∈ Cc(GT ). Indeed, we have

(ϕ̂ · Φ(f)) (z) = ϕ̂(z)Φ(f)(z) = ϕ̂(z)κ(αz(f)) = κ(αz(ϕ � f)) = Φ(ϕ � f)

for all z ∈ Tk. Suppose next that ψ̂ ∈ C(Tk/H(T )⊥). Since {ϕ̂ : ϕ ∈
Cc(H(T ))} is dense in C(Tk/H(T )⊥), we can find a net (ϕ̂λ) of such
functions converging to ψ̂. Then for any f ∈ Cc(GT ), we have

ψ̂ · Φ(f) = lim
λ→∞

ϕ̂λ · Φ(f) = lim
λ→∞

Φ(ϕλ � f).

Since Φ is an injective ∗-homomorphism, its range is closed, so ψ̂ ·Φ(f) is
in the image of Φ. This extends to elements of C∗(GT ), so C(Tk/H(T )⊥) ·
Φ(C∗(GT )) ⊆ Φ(C∗(GT )) and we are done.

We will show that the image of Φ is all of IndTk
H(T )⊥ by applying [PST15,

Lemma 3.6]. First note that, in the notation of [PST15, Definition
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3.3], IndTk
H(T )⊥ is a C(Tk/H(T )⊥)-algebra with structure map η given

by η(f)s = f · s, for f ∈ C(Tk/H(T )⊥) and s ∈ IndTk
H(T )⊥ . (Indeed,

since the module operation just comes from pointwise multiplication in
C, η takes values in Z(M(IndTk

H(T )⊥)). We also have η(1)s = s for all
a ∈ IndTk

H(T )⊥ , so in particular we have that η(C(Tk)/H(T )⊥) IndTk
H(T )⊥

is dense in IndTk
H(T )⊥ .) Since Φ(C∗(GT )) is a C(Tk/H(T )⊥)-module, the

second condition of the lemma is satisfied. The only thing left to prove is
that for each z ∈ Tk/H(T )⊥, the set

εz(IndTk
H(T )⊥) = {s(z) : s ∈ IndTk

H(T )⊥} ⊆ C∗(GT / Iso(GT )◦)

is covered by the set {Φ(a)(z) = κ(αz(a)) : a ∈ C∗(GT )}. It suffices to
prove that the range of κ ◦ αz contains Cc(GT / Iso(GT )◦).
Let f ∈ Cc(GT / Iso(GT )◦), and let c : GT / Iso(GT )◦ → Zk/H(T ) pick
out the middle element, as in the proof of Lemma 5.3.3. Given any
r ∈ Zk, the set Ur := {(x, q(r), y) : (x, r, y) ∈ GT } = c−1(q(r)) is
clopen by Lemma 5.3.2, and the Ur are disjoint for different q(r). Hence
χUrf ∈ Cc(GT / Iso(GT )◦), and we can write

f =
∑

q(r)∈Zk/H(T )

χUrf.

Since f has compact support, the above sum must be finite. Thus, to
show that f is in the image of κ ◦ αz, we may without loss of generality
assume that f ∈ c−1(q(r)) for some r. Define h ∈ Cc(GT ) by

h(γ) =
{
zrf(p(γ)) if c(γ) = r

0 otherwise
,

where p : C∗(GT )→ C∗(GT / Iso(GT )◦) is the quotient map. We have that
h is continuous since c−1(r) is clopen in GT . We see that κ(αz(h)) = f = 0
on
(
c−1(q(r))

)c, and for c(γ) = q(r) we have

κ(αz(h))(b) =
∑
p(γ)=b

αz(h)(γ) =
∑
p(γ)=b

zc(γ)h(γ)

=
∑

p(γ)=b,
c(γ)=r

zq(r)zq(r)f(p(γ)) =
∑

p(γ)=b,
c(γ)=r

f(p(γ)).

There is precisely one γ ∈ GT with both p(γ) = b and c(γ) = r. Hence
(κ ◦ αz)(h) = f , and we are done.

�

For any x ∈ X, let `2([x]) = span{δy : y ∈ [x]}. There has not been enough
time to go through the material covered in all of the proofs. The next lemma is
one example, and we omit its proof.
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Lemma 5.3.7. Let G be an étale groupoid, and fix x ∈ G0. Then there is an
irreducible representaion ω[x] : C∗(G)→ B(`2([x])) satisfying

ω[x](f)δy =
∑

d(γ)=y

f(γ)δr(γ)

for all f ∈ Cc(G). If G is topologically principal and amenable, and [x] is dense
in G0, then ω[x] is faithful, and hence C∗(G) is primitive.

We will now make use of the quasi-orbit space Q(G) = {[x] : x ∈ G0}.
Recall that Q(G) carries the quotient topology for the map q : G0 → Q(G) that
identifies x and y precisely when [x] = [y]. Also, if S ⊆ Q(G), then

S = {q(u) : u ∈ q−1(S)}. (5.10)

Indeed, since S ⊆ Q(G) is closed if and only if q−1(S) ⊆ G0 is closed, we have

S =
⋂
{R ⊆ Q(G) : R closed, S ⊆ R}

=
⋂
{R ⊆ Q(G) : q−1(R) closed, q−1(S) ⊆ q−1(R)}

= q
(⋂
{q−1(R) ⊆ G0 : q−1(R) closed, q−1(S) ⊆ q−1(R)}

)
= q

(
q−1(S)

)
.

We don’t necessarily have q−1(S) =
⋂
{q−1(R) ⊆ G0 : q−1(R) closed, q−1(S) ⊆

q−1(R)}, but their images under q are the same, so the argument is valid.

Lemma 5.3.8. Let G be an amenable étale groupoid such that G|U is topologi-
cally principal for every closed invariant subset U ⊂ G0. For u ∈ U , let ωu be
the irreducible representation from Lemma 5.3.7. The map u 7→ kerωu from G0

to Prim(C∗(G)) induces to a homeomorphism of Q(G) onto Prim(C∗(G)).

Proof. For u ∈ G0, we claim that kerωu ∩ C0(G0) = C0(G0 \ [u]). For f ∈
Cc(G0), we have ω[u](f) = 0 if and only if ω[u](f)(δy) = 0 for all y ∈ [u]. In
other other words, if we for all such y have

ω[u](f)(δy) =
∑

d(γ)=y

f(γ)δr(γ) = f(y)δy = 0,

where we have used that f = 0 outside G0. This happens if and only if
f(y) = 0 for all y ∈ [u]. Hence Cc(G0 \ [u]) = kerωu ∩ Cc(G0). Since ωu is
continuous, we have ωu(f) = 0 for f ∈ C0(G0) if and only if f is zero on [u], so
C0(G0 \ [u]) = kerωu ∩ C0(G0).

Now [Ren91, Corollary 4.9] implies that kerωu = kerωv if and only if
[u] = [v]. (Since amenability is a black box for us, we won’t go into details
on how the result works.) Hence the map G0 → Prim(C∗(G)) defined by
u 7→ kerωu induces a well-defined injection Q(G) → Prim(C∗(G)) given by
[u] 7→ kerωu.

Next we shall see that the induced map is surjective. Suppose π is an
irreducible representation of C∗(G). Since G is étale, the representation M that
π induces on C0(G0) is just restriction, so M = π|C0(G0). By Proposition 5.1.11,
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suppM = suppπ ∩ C0(G0) is G-irreducible, and hence equal to [u] for some
u ∈ G0 by Lemma 5.1.6. An irreducible representation of C0(G0) with support
[u] must have kernel C0(G0\[u]). Indeed, as we define support in Definition 5.1.5,
we have that f(x) = 0 for all f ∈ kerM if and only if x ∈ [u]. The inclusion
C0(G0 \ [u]) ⊆ kerM comes from the “if”-part of the statement, and the reverse
inclusion comes from the “only if”-part. So now we have

kerπ ∩ C0(G0) = C0(G0 \ [x]) = kerωx ∩ C0(G0).

Another application of [Ren91, Corollary 4.9] implies that kerπ = kerωx.
We now show that [u] 7→ kerωu is a homeomorphism. Since the map is

bijective, it suffices by Lemma 2.0.2 to show that S ⊆ Q(G) is closed if and only
if its image {kerωv : v ∈ S} is closed in Prim(C∗(G)). Hence, given S ⊆ Q(G)
and some u ∈ G0, we must show that

[u] ∈ S if and only if kerωu ∈ {kerωv : q(y) ∈ S}. (5.11)

Fix S ⊆ Q and u ∈ G0. Recall from Definition 2.0.16 that we have

{kerωv : q(v) ∈ S} = hull(
⋂

q(v)∈S

kerωv)

= {kerωw :
⋂

q(v)∈S

kerωv ⊆ kerωw},

where we have used that [w] 7→ kerωw is surjective. Again, [Ren91, Corollary
4.9] implies that kerωu ∈ {kerωv : q(v) ∈ S} if and only if

(⋂
q(v)∈S kerωv

)
∩

C0(G0) ⊆ kerωu ∩ C0(G0). We have

 ⋂
q(v)∈S

kerωv

 ∩ C0(G0) =
⋂

q(v)∈S

(kerωv ∩ C0(G0))

=
⋂

q(v)∈S

C0(G0 \ [v])

= C0(G0 \ q−1(S))
= C0(G0 \ q−1(S)),

where the last equality comes from the fact that the inverse image of {0} under
f ∈ C0(G0\q−1(S)) is closed. On the other hand, kerωu∩C0(G0) = C0(G0\[u]).
Hence kerωu ∈ {kerωv : q(v) ∈ S} if and only if

C0(G0 \ q−1(S)) ⊆ C0(G0 \ [u]),

which happens if and only if [u] ⊆ q−1(S). We claim that this again is equivalent
to

q(u) ∈ S = {q(v) : v ∈ q−1(S)},

where we have used (5.10). Indeed, if u ∈ [u] ⊆ q−1(S), then we clearly have
q(u) ∈ S.
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Suppose next that q(u) ∈ S. Then there exists some v ∈ q−1(S) with
q(v) = q(u), or equivalently [v] = [u]. Since q−1(S) is closed and invariant, it
can be written as a union of orbit closures. One of these orbits must contain
v (and must therefore equal [v]), and hence [u] = [v] ∈ q−1(S). Now we have
proved (5.11), and we are done. �

We will soon describe the primitive ideal space of C∗(GT ). Before that, we
need to make a few observations that will make the proof of Theorem 5.3.12
more to the point. It is needed, as the proof connects a lot of the results we
have had so far, and is therefore quite technical.

Lemma 5.3.9. Let G be an étale groupoid. The quotient map q : G →
G/ Iso(G)◦ induces a homeomorphism Q(G) ∼= Q(G/ Iso(G)◦).

Proof. The quotient map q restricts to a homeomorphism on the unit spaces of
G and G/ Iso(G)◦. Since q also preserves the range and domain maps, it maps
G-orbits bijectively to G/ Iso(G)◦-orbits. Indeed, if q(u) = a for some u ∈ G0

and a ∈ G/ Iso(G)◦, we have

q([u]) = q(r(d−1(u)) = r(d−1(q(u))) = [a],

which is a bijection of the orbits. Since q is a homeomorphism on G0, closure
commutes with its images, so q takes orbit closures to orbit closures. Hence q
induces a homeomorphism between Q(G) and Q(G/ Iso(G)◦). �

Lemma 5.3.10. Let G be an étale groupoid such that Iso(G)◦ is closed in G.
For C ⊆ G0, we have

(G/ Iso(G)◦) |C = G|C/(Iso(G)◦|C).

Proof. For x ∈ G, we let [x] denote the orbit x Iso(G)◦, as in Proposition 5.1.14.
We have [x] ∈ G/ Iso(G)◦|C if and only if every y ∈ [x] has range and domain
in C. This is the same as saying that every y ∈ [x] has y ∈ G|C and [x] =
x Iso(G)◦ = x Iso(G)◦|C , so the conclusion follows. �

Lemma 5.3.11. Let T be an action on a locally compact Hausdorff space by
local homeomorphisms. Then there is an isomorphism Tk/H(T )⊥ ∼= H(T )∧.

Proof. Let z̄ be the class of z ∈ Tk in the quotient group. Then ϕz̄ : r 7→ zr is
an element of Hom(H(T ),Tk) = H(T )∧. Let Ψ: Tk/H(T )⊥ → H(T )∧ be the
homomorphism z̄ 7→ ϕz̄. If z̄ = z̄′, say z′ = zw for some w ∈ H(T ), then

ϕz̄(r) = zr = zr1 = zrwr = (zw)r = (z′)r = ϕz̄′r

for all r ∈ H(T ), so Ψ is well-defined. Injectivity is clear since zr = 1 for all
r ∈ H(T ) if and only if z ∈ H(T )⊥.

For surjectivity, choose generators g1, . . . , gn for H(T ) such that for r =
(r1, . . . , rn) we have rgi = ri for i = 1, . . . , n. We may do this since H(T ) is a
direct sum of subgroups of Z. Set z := ϕ(g1 + . . .+ gn); then any element of
r ∈ H(T ) can be written as rg1 + . . .+ rgn. Now we have

ϕ(r) = ϕ(g1)r1 · . . . · ϕ(gn)rn = zr,

so ϕ = ϕz̄ and Ψ is surjective. �
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We define
H(T )∧ := Hom(H(T ),Zk).

We let C∗(G)∧ denote the spectrum of C∗(G), consisting of all unitary
equivalence classes of irreducible representations of C∗(G). So the topology
on C∗(G)∧ is the pull-back of the one on Prim(C∗(G)). We now describe
the topology of Prim(C∗(GT )) for the particular Nk0-actions T we have been
focusing on in this chapter.

Theorem 5.3.12. Let T be an irreducible action of Nk0 on a locally compact
space Y by local homeomorphisms such that ΣY = Σ, in the notation of (5.5).
Suppose that for every y ∈ Y , the set

Σ[y] := {(m,n) ∈ Nk0 × Nk0 : Tmx = Tny for all x ∈ [y]}

satisfies Σ[y] = Σ. Let α : Tk → Aut(C∗(GT )) be as in Lemma 5.3.3, and
let κ : C∗(GT ) → C∗(GT / Iso(GT )◦) be as in Proposition 5.1.15. For y ∈
(GT / Iso(GT )◦)0, let ωy be as described in Lemma 5.3.7. Then the map (y, z) 7→
ker(ωy ◦ αz) from Y × Tk to Prim(C∗(GT )) descends to a homeomorphism
Q(GT )×H(T )∧ ∼= Prim(C∗(GT )).

Proof. We have done most of the work to prove this theorem now, this proof is
mostly about connecting the dots. It isn’t the easiest proof to get an overview
of, but we try to make it easier by breaking it into sections.

Part one. We want to prove that (y, z) 7→ ker(ωy ◦ αz) induces a homeo-
morphism Q(GT ) ×H(T )∧ ∼= Prim(C∗(GT )). However, as we prove in
this part of the proof, it suffices to show that (y, z) 7→ ker(ω̃y ◦ εz) in-
duces a homeomorphism induces a homeomorphism Q(GT )×H(T )⊥ →
Prim(IndTk

H(T )⊥).

Let Φ: C∗(GT ) → IndTk
H(T )⊥(C∗(GT / Iso(GT )◦), α̃) be the isomorphism

from Proposition 5.3.6. For each y ∈ Y , let ω̃y and ωy be the irreducible
representations of C∗(GT / Iso(GT )◦) and C∗(GT ), respectively, coming
from Lemma 5.3.7. We claim that ωy = ω̃y ◦ κ. Indeed, for f ∈ Cc(GT )
and x ∈ [y], we have

ω̃y(κ(f))(δx) =
∑
d(b)=x

κ(f)(b)δr(b)

=
∑
d(b)=x

∑
q(γ)=b

f(γ)δr(b)

=
∑
d(b)=x

∑
q(γ)=b

f(γ)δr(γ).

We note that for b ∈ GT / Iso(GT )◦ and γ ∈ GT , we have d(b) = x and
q(γ) = b if and only if d(γ) = x. Hence we continue to find that the above
equals ∑

d(γ)=x

f(γ)δr(γ) = ωy(f)(δx),
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which is what we wanted.
Let z ∈ Tk. Our next claim is that

Φ(ker(ωy ◦ αz)) = {s ∈ IndTk
H(T )⊥ : s(z) ∈ ker ω̃y}.

To see this, let εz : IndTk
H(T )⊥ → C∗(GT / Iso(GT )◦) be the homomorphism

defined by evaluation at z ∈ Tk. By the definition of Φ and the fact that
ωy = ω̃y ◦ κ, the following diagram commutes.

C∗(GT ) C∗(GT ) IndTk
H(T )⊥

`1([y]) C∗(GT / Iso(GT )◦)

ωy κ

αz Φ

εz

ω̃y

Hence we have a ∈ ker(ωy ◦ αz) if and only if Φ(a)(z) ∈ ker(ω̃y), which is
precisely what we wanted.
Since Φ is an isomorphism, it maps primitive ideals in C∗(GT ) to primitive
ideals in IndTk

H(T )⊥ . Since the primitive ideals in IndTk
H(T )⊥ coming from

the kernels of ωy ◦ αz are precisely the ones that are kernels of ω̃y ◦ εz, it
suffices to prove that

(y, z) 7→ ker(ω̃y ◦ εz) (5.12)

induces a homeomorphism Q(GT )×H(T )⊥ → Prim(IndTk
H(T )⊥).

Part two. To prove that (5.12) induces a homeomorphism, we will use that
there is an induced homeomorphism (C∗(GT / Iso(GT )◦)∧×Tk)/H(T )⊥ →
(IndTk

H(T )⊥)∧. This is what we prove in this part.
First, we claim that Iso(GT )◦|[y] = Iso(GT |[y])

◦ for all y ∈ Y . One
inclusion is clear: Since GT |[y] is a subgroupoid of GT and Iso(GT |[y])

◦

has unit space [y], we have Iso(GT |[y])
◦|[y] = Iso(GT |[y])

◦ and

Iso(GT |[y])
◦ ⊆ Iso(GT )◦|[y].

For the other inclusion, we use that Σ[y] = Σ and T p[y] ⊆ [y] for all
p ∈ Nk0 . We can use Proposition 5.2.12 to see that

Iso(GT )◦|[y] = {(x, n, x) ∈ Iso(G)◦ : x ∈ [y]}

⊆ {(x, n, x) : n ∈ Nk0 and x ∈ [y]}
= Iso(GT |[y])

◦.

Now by Lemma 5.3.10, we have

(GT / Iso(GT )◦) |[y] = GT |[y]/ Iso(G)◦|[y] = GT |[y]/ Iso(GT |[y])
◦,

which is topologically principal by Proposition 5.1.14. The restriction of
(GT / Iso(GT )◦) |[y] to another orbit closure, say [x], will still be topologi-
cally principal. Any closed invariant subset C of G0

T can be written as the
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union C = [y]∪ [x] by varying x and y, so the restriction of GT / Iso(GT )◦
to any closed invariant subset of the unit space is topologically principal.
Now we can apply Lemma 5.3.8. We have [x] = [y] if and only if ker ω̃x =
ker ω̃y, which happens if and only if ker(ω̃x ◦ εz) = ker(ω̃y ◦ εz) since εz
is surjective. Thus (5.12) induces a well-defined map ([y], z) 7→ ker(ω̃y ◦
εz). Combining this map with the homeomorphism [y] 7→ ker ω̃y from
Lemma 5.3.8 yields well-defined map Prim(C∗(GT / Iso(GT )◦) × Tk →
Prim(IndTk

H(T )⊥) defined by

M : (ker ω̃y, z) 7→ ker(ω̃y ◦ εz).

We will now apply [RW98, Proposition 6.16]. To do so, we introduce the
diagonal action of H(T )⊥ on C∗(GT / Iso(GT )◦)∧×Tk, defined as follows:

(π, z) · x := (π ◦ α̃x, z · x).

Since H(T )⊥ acts freely and properly on Tk by right translation (z ·x = zx
for z ∈ Tk, x ∈ H(T )⊥), we can apply [RW98, Proposition 6.16]. The
proposition states that given z ∈ Tk and π ∈ C∗(GT / Iso(GT )◦)∧, the map
N(π, z) : f 7→ π(f(z)) is an irreducible represenation of IndTk

H(T )⊥ . Further-
more, (π, z) 7→ N(π, z) induces a homeomorphism of (C∗(GT / Iso(GT )◦)∧×
Tk)/H(T )⊥ onto (IndTk

H(T )⊥)∧. We observe that our map M is just the
map corresponding N when passing from the spectrum to the primitive
ideal space. Since the topology on the prior is the pull-back of the topology
on the latter, M induces a homeomorphism of (PrimC∗(GT / Iso(GT )◦)×
Tk)/H(T )⊥ onto Prim(IndTk

H(T )⊥).

Part three. Let us recap. What we want to prove is that (5.12) induces a
homeomorphism

Q(GT )×H(T )⊥ ∼= Prim(IndTk
H(T )⊥). (5.13)

What we have proven is that (5.12) induces a homeomorphism

(Prim(C∗(GT / Iso(GT )◦))× Tk)/H(T )⊥ ∼= Prim(IndTk
H(T )⊥);

by Lemma 5.3.11, we have an isomorphism Tk/H(T )⊥ ∼= H(T )∧, and we
have yet another homeomorphism

Prim(C∗(GT / Iso(GT )◦) ∼= Q(GT ).

To prove (5.13), it therefore suffices to show that H(T )⊥ acts trivially
on Prim(GT / Iso(GT )◦) by the diagonal action described above. In other
words, given some irreducible representation π of C∗(GT / Iso(GT )◦) and
any x ∈ H(T )⊥, we must show that ker(π ◦ α̃x) = ker(π). It suffices
to prove that α̃x maps ideals onto themselves. By the definition of α̃x
in the proof of Lemma 5.3.3, we know that α̃x restricts to the iden-
tity on C0(G0

T ) ⊆ C∗(GT / Iso(GT )◦). We also have α̃x(C0(G0
T )c) ⊆

C0(G0
T )c since α̃x is an automorphism. Therefore, for any ideal I ⊆

C∗(GT / Iso(GT )◦), we have

I ∩ C0(G0
T ) = α̃x(I ∩ C0(G0

T )) = α̃x(I) ∩ C0(G0
T ).
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Now [Ren91, Corollary 4.9] implies that α̃x(I) = I, which is what we
wanted to show.

�
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5.4 The Primitive Ideals of the C∗-algebra of a
Deaconu-Renault Groupoid

In this section, we will use Theorem 5.3.12 to characterise the primitive ideal
space in the non-irreducible case. We have to refine our notation to accommodate
actions which are not necessarily irreducible.

Let T be an action of Nk0 on a locally compact space X by local homeomor-
phisms. Recall the two equivalent definitions of orbits in Remark 5.2.4. For
x ∈ X and a (relatively) open subset U ⊆ [x], define

Σ(x)U := {(m,n) ∈ Nk0 × Nk0 : Tmy = Tny for all y ∈ U},

and set
Σ(x) :=

⋃
U

Σ(x)U .

Since [x] is irreducible, T |[x] acts irreducibly on [x]. Hence Lemma 5.2.11 implies
that

Y (x) :=
⋃
{Y ⊆ [x] : Y is relatively open and Σ(x)Y = Σ(x)}

is nonempty and is the maximal relatively open subset of [x] such that Σ(x)Y (x) =
Σ(x), and that TmY (x) ⊆ Y (x) for all m ∈ Nk0 . Define H(x) := H(T |[x]). Then
Lemma 5.2.11 also gives us that

H(x) = {(m,n) ∈ Nk0 × Nk0 : m− n ∈ H(T )},

which by Proposition 5.2.12 is a subgroup of Zk. The same proposition also
gives us that

I(x) := Iso(GT |Y (x))◦ = {(y, g, y) : y ∈ Y (x) and g ∈ H(x)},

and that this is a closed subset of GT |Y (x).

Lemma 5.4.1. Let T be an action of Nk0 on a locally compact Hausdorff space
X by local homeomorphisms. For x, y ∈ X, we have Y (x) = Y (y) if and only
if [x] = [y].

Proof. If [x] = [y], then Y (x) = Y (y) by definition. Suppose conversely that
Y (x) = Y (y). Since orbits partition X, it suffices to show that [y] ∩ [x] 6= ∅.
Since Y (x) = Y (y) is open and nonempty in [y], we have Y (x) ∩ [y] 6= ∅. But
we have Y (x) ⊆ [x], so [y] ∩ [x] 6= ∅. �

We need one final result before proving the main theorem.

Theorem 5.4.2. Let T be an action of Nk0 on a locally compact Hausdorff space
X by local homeomorphisms. Let x ∈ X and z ∈ Tk. Suppose ρ is a faithful
irreducible representation of C∗(GT |Y (x)/I(x)). Let ι : C∗(GT |Y (x)))→ C∗(GT )
be the monomorphism from Corollary 5.2.13, let

Φ: C∗(GT |Y (x))→ IndTk
H(x)⊥(C∗(GT |Y (x)/I(x)), α̃)
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be the isomorphism from Proposition 5.3.6, and let

εz : IndTk
H(T )⊥ → C∗(GT |Y (x)/I(x))

denote evaluation at z. Furthermore, let Rx : C∗(GT ) → C∗(GT |[x]) be the
homomorphism induced by restriction of compactly supported functions. There
is a unique irreducible representation πx,z,ρ of C∗(GT ) such that

(i) πx,z,ρ factors through Rx, and

(ii) the representation π0
x,z,ρ of C∗(GT |[x]) such that πx,z,ρ = π0

x,z,ρ ◦ Rx
satisfies πx,z,ρ ◦ ι = ρ ◦ εz ◦ Φ.

Every irreducible representation of C∗(GT ) has the form πx,z,ρ for some x, z, ρ.

Proof. First off, we have that ρ ◦ εz ◦ Φ is an irreducible representation of
C∗(GT |Y (x)). It is injective on C0(Y (x)) since ρ is faithful and εz ◦Φ is injective
on Φ(C0(Y (x))). To see the last part, note first that εz ◦ Φ = κ ◦ α̃z on
Cc(GT |0Y (x)) = Cc(Y (x)). Since α̃z and κ restricts to the identity on Cc(Y (x)),
the map εz ◦ Φ extends injectively to C0(Y (x)). Now we can apply the second
part of Corollary 5.2.13 to Y (x) ⊆ [x] to obtain a unique representation π0

x,z,ρ of
C∗(GT |[x]) such that π0

x,z,ρ ◦ ι = ρ◦εz ◦Φ. As in the proof of Proposition 5.1.12,
there is homomorphism Rx : C∗(GT ) → C∗(GT |[x]) induced by restriction of
functions. Now πx,z,ρ := π0

x,z,ρ ◦Rx satisfies (i) and (ii).
For uniqueness, suppose ϕ is another irreducible representation of C∗(GT )

on B(H) for some Hilbert space H, satisfying (i) and (ii). Let ϕ0 be the
representation from (ii) such that ϕ = ϕ0 ◦Rx. Since ϕ is irreducible, we have
for every ξ ∈ H that

ϕ(C∗(GT ))ξ = ϕ0(Rx(C∗(GT )))ξ ⊆ ϕ0(GT |[x])ξ

is dense in H. Hence ϕ0 is an irreducible representation of C∗(GT |[x]) satisfying
ϕ0 ◦ ι = ρ ◦ εz ◦ Φ. But as we noted above, that representation is unique, so
ϕ0 = π0

x,z,ρ and ϕ = πx,z,ρ.
Now we will prove that every irreducible representation of C∗(GT ) has the

form πx,z,ρ. Pick any irreducible representation ϕ of C∗(GT ). By Proposi-
tion 5.1.12, ϕ factors through C∗(GT |[x]) for some x ∈ X. Thus ϕ = ϕ0 ◦ Rx
for some irreducible representation ϕ0 of C∗(GT |[x]) that is faithful on C0([x]).
The second part of Corollary 5.2.13 implies that ϕ0 is uniquely determined
by the irreducible representation ϕ0 ◦ ι which is faithful on C0(Y (x)). In fact,
since Φ is an isomorphism we can uniquely determine ϕ0 by ϕ0 ◦ ι ◦ Φ−1,
which will then be an irreducible representation of IndTk

H(T )⊥ that is faithful on
C0(Y (x)). By the last part of Theorem 5.3.12, we know that ker(ϕ0 ◦ ι ◦ Φ−1)
is of the form ker(ωy ◦ εz) for some y ∈ Q(GT |[x]) and z ∈ H(T )∧ ⊆ Tk. Since
ker(εz) ⊆ ker(ωy ◦ εz), we have

ker(εz) ⊆ ker(ϕ0 ◦ ι ◦ Φ−1).

Now ϕ ◦ ι ◦ Φ−1 induces an irreducible representation ρ of C∗(GT |Y (x)/I(x)),
with ϕ ◦ ι ◦ Φ−1 = ρ ◦ εz. (See Remark 2.0.20.) Composing with Φ on both
sides yields ϕ0 ◦ ι = ρ ◦ εz ◦ Φ, as we wanted.
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All that’s left to show is that ρ is faithful. Since ϕ0 is faithful on C0([x])
and ι is injective, ρ ◦ εz = ϕ0 ◦ ι ◦ Φ−1 is injective on Φ(C0(Y (x))). Hence ρ is
faithful on C0(Y (x)) = C0((GT |Y (x)/I)0). Lemma 5.2.6 says that GT |Y (x) is
amenable, so GT |Y (x)/I(x) is also amenable by part (vi) of Proposition 5.1.14.
By (v) in the same proposition, GT |Y (x)/I(x) is topologically principal. By
[Exe11, Theorem 4.4], ρ is faithful on all of GT |Y (x)/I(x). �

Finally, we present the main theorem.

Theorem 5.4.3. Suppose that T is an action of Nk on a locally compact
Hausdorff space X by local homeomorphisms. For each x ∈ X and z ∈ Tk, there
is an irreducible representation πx,z of C∗(GT ) on `2([x]) such that

πx,z(f)δy =
∑

(u,g,y)∈GT

zgf(u, g, y)δu for all f ∈ Cc(GT ). (5.14)

The relation on X × Tk given by

(x, z) ∼ (y, w) if and only if [x] = [y] and zw ∈ H(x)⊥

is an equivalence relation, and ker(πx,z) = ker(πy,w) if and only if (x, z) ∼
(y, w). The map (x, z) 7→ ker(πx,z) induces a bijection from (X × Tk)/ ∼ to
Prim(C∗(GT )).

Proof. We split the proof into sections to make it easier to follow. First, we
prove the existence of πx,z and that it satisfies (5.14). Then we prove that

kerπx,z = kerπx,w if and only if (x, z) ∼ (y, w) (5.15)

in two parts, and lastly we show that (x, z) 7→ πx,z induces a bijection.

Existence of πx,z: Let x ∈ X and z ∈ Tk, let αz ∈ Aut(C∗(GT )) be the
automorphism from Lemma 5.3.3, and let ω′[x] be the irreducible represen-
tation of C∗(GT ) from Lemma 5.3.7. Define the irreducible representation
πx,z := ω′[x] ◦ αz. For f ∈ Cc(GT ), we have

πx,z(f)δy =
∑

d(γ)=y

αz(f)(γ)δr(γ)

=
∑

d(γ)=y

αz(f)(γ)δr(γ)

=
∑

(u,r,y)∈GT

zrf(u, r, y)δu,

so πx,z satisfies (5.14). Furthermore, as in the end of the proof of Proposi-
tion 5.1.12, the support of πx,z|C0(G0

T
) is [x]. By Proposition 5.1.12, πx,z

factors through Rx.

It is clear that ∼ is an equivalence relation. The next step is to prove the
equivalence (5.15). We first prove the contrapositive of “ =⇒ ”, and then move
on to “⇐= ”.
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Proving (5.15), part one: Suppose first that [x] 6= [y]. Then πx,z and πy,w
have different supports when restricted to C0(G0

T ), which by definition
implies different kernels. We will prove the contrapositive of “ ⇐= ”,
which requires two steps.
Suppose next that [x] = [y] but zw 6∈ H(T )⊥. Then both πx,z and
πy,w induces representations π0

x,z and π0
y,w of C∗(GT |[x]). (For later,

note that πx,z = π0
x,z ◦ Rx.) Let ι : C∗(GT |Y (x)) → C∗(GT |[x]) be the

monomorphism from part (i) of Corollary 5.2.13. Then part (ii) of the
same corollary implies that kerπ0

x,z = kerπ0
y,w if and only if ker(π0

x,z ◦
ι) = ker(π0

y,w ◦ ι). By Lemma 5.4.1 we have Y (x) = Y (y), and for
f ∈ Cc(GT |Y (x)) = Cc(GT |Y (x)) we have

(π0
x,z ◦ ι)(f)δy =

∑
(u,r,y)∈GT |Y (x)

zrf(u, r, y)δu.

Note that, given n ∈ H(x), we have (u, r, y) ∈ GT |Y (x) if and only if
(u, r + n, y) ∈ GT |Y (x) by Lemma 5.3.4. Hence we can write∑

(u,r,y)∈GT |Y (x)

zrf(u, r, y)δu =
∑

(u,r+n,y)∈GT |Y (x)

zrf(u, r, y)δu

for any n ∈ H(x). As in Lemma 5.3.5 we have for f ∈ Cc(GT |Y (x)) that
π0
x,z ◦ ι(ϕ � f) = ϕ̂(z)(π0

x,z ◦ ι)(f) and π0
y,w ◦ ι(ϕ � f) = ϕ̂(w)(π0

y,w ◦ ι)(f).
Indeed, we calculate to find that

(π0
x,z ◦ ι)(ϕ � f)δy =

∑
(u,r,y)∈GT |y(x)

zr(ϕ � f)(u, r, y)δu

=
∑

(u,r,y)∈GT |y(x)

zr
∑

s∈H(x)

ϕ(s)f(u, r − s, y)δu

=
∑

(u,r,y)∈GT |y(x)

∑
s∈H(x)

zrϕ(s)f(u, r − s, y)δu.

On the other hand, we have

ϕ̂(z)(π0
x,z ◦ ι)(f)δy =

∑
s∈H(x)

ϕ(s)zs
∑

(u,r,y)∈GT |y(x)

zrf(u, r, y)δu

=
∑

(u,r,y)∈GT |y(x)

∑
s∈H(x)

ϕ(s)zs+rf(u, r, y)δu

=
∑

(u,r,y)∈GT |y(x)

∑
t=s+r∈H(x)

ϕ(s)ztf(u, t− s, y)δu

= (π0
x,z ◦ ι)(ϕ � f)δy,

as we wanted.
Pick some ϕ ∈ Cc(H(x)) with ϕ̂(w) = 0 and ϕ̂(z) 6= 0. For instance,
choose r ∈ H(x) with zr 6= wr, and set ϕ := χ{r} − w−rχ{2r}. Then
ϕ̂(w) = wr −w2r−r = 0, while ϕ̂(z) = zr − z2rw−r = zr(1−wz) 6= 0. We
may also pick an f ∈ Cc(Y (x)) with f(x) = 1. Then

π0
y,w ◦ ι(ϕ � f) = ϕ̂(w)(π0

y,w ◦ ι)(f) = 0,
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but

π0
x,z ◦ ι(ϕ � f)δx = ϕ̂(z)(π0

x,z ◦ ι)(f)δx
= ϕ̂(z)

∑
(u,r,x)∈Y (x)

zrf(u, r, x)δu

= ϕ̂(z)z0f(x)δx
= ϕ̂(z)δx 6= 0.

Hence the kernels are different.

Proving (5.15), part two: Suppose that [x] = [y] and zw ∈ H(T )⊥. We still
have Y (x) = Y (y) by Lemma 5.4.1. Let ω[x] and ω[y] be the irreducible rep-
resentations of C∗(GT |Y (x)/I(x)) = C∗(GT |Y (y)/I(y)) from Lemma 5.3.7.
Now we claim that π0

x,z ◦ ι = ω[x] ◦ εz ◦ Φ. The calculations to prove so
are done by just looking at the definitions of the functions. Indeed, let
κ : C∗(GT |Y (x))→ C∗(GT |Y (x)/I(x)) be as in Proposition 5.1.15, and let
α act on C∗(GT |Y (x)) as in Lemma 5.3.3. If f ∈ Cc(GT |Y (x)) and u ∈ [x],
we have

(ω[x] ◦ εz ◦ Φ)(f)(δu) =
∑

d(γ)=u

(εz ◦ Φ)(f)(γ)δr(γ)

=
∑

(v,r,u)∈
GT |Y (x)/I(x)

(εz ◦ Φ)(f)(v, r, u)δv

=
∑

(v,r,u)∈
GT |Y (x)/I(x)

(Φ(f))(z)(v, r, u)δv

=
∑

(v,r,u)∈
GT |Y (x)/I(x)

κ(αz(f))(v, r, u)δv

=
∑

(v,r,u)∈
GT |Y (x)/I(x)

∑
(v,s,u)∈GT |Y (x)

with q(s)=r

αz(f)(v, s, u)δv

=
∑

(v,r,u)∈
GT |Y (x)/I(x)

∑
(v,s,u)∈GT |Y (x)

with q(s)=r

zsf(v, s, u)δv

=
∑

(v,s,u)∈GT |Y (x)

zsf(v, s, u)δv

= (π◦x,z ◦ ι)(f)δu.
(5.16)

The same calculations can be done to see that π◦y,w ◦ ι = ω[y] ◦ εw ◦Φ. By
the definition of Φ, we have εz ◦ Φ = κ ◦ αz. Hence

α̃z̄w ◦ εz ◦ Φ = α̃z̄w ◦ κ ◦ αz = α̃z̄wα̃z ◦ κ = α̃w ◦ κ = εw ◦ Φ,

so we have
ω[x] ◦ α̃z̄w ◦ εz ◦ Φ = ω[x] ◦ εw ◦ Φ.
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Since ω[x] and ω[y] are injective and α̃z̄w is an automorphism, we have

ker(ω[y] ◦ εw ◦ Φ) = ker(ω[x] ◦ εw ◦ Φ)
= ker(ω[x] ◦ α̃z̄w ◦ εz ◦ Φ)
= ker(εz ◦ Φ)
= ker(ω[x] ◦ εz ◦ Φ).

Hence ker(π0
x,z ◦ ι) = ker(π0

y,w ◦ ι). Part (ii) of Corollary 5.2.13 implies
that kerπ0

x,z = kerπ0
y,w. Since [x] = [y], we have Rx = Ry, so

kerπx,z = R−1
x (kerπ0

x,z) = R−1
x (kerπ0

x,z) = kerπy,w,

which is what we wanted.

The map (x, z) 7→ kerπx,z induces a bijection: It suffices to prove that
(x, z) 7→ kerπx,z is surjective. Suppose I ∈ Prim(C∗(GT )). Theorem 5.4.2
gives us that I = kerπx,z,ρ for some x ∈ X, z ∈ Tk and faithful irreducible
representation ρ of C∗(GT |Y (x)/I(x)). Pick an element y ∈ [x]∩Y (x), and
let ω[y] be the corresponding faithful representation of C∗(GT |Y (x)/I(x))
from Lemma 5.3.7. Since ρ and ω[y] are faithful, we have

ker(ω[y] ◦ εz ◦ Φ) = ker(εz ◦ Φ) = ker(ρ ◦ εz ◦ Φ),

so from part (ii) in Theorem 5.4.2, we can write

ker(πx,z,ω[y]) = ker(ω[y] ◦ εz ◦ Φ) = ker(ρ ◦ εz ◦ Φ) = ker(πx,z,ρ).

Now, all we need to prove is that that πx,z,ω[y] = πx,z. It may be useful
to have in mind that the following diagram commutes.

C∗(GT ) `1([x]) C∗(GT |Y (x)/I(x))

C∗(GT |[x]) C∗(GT |Y (x))

πx,z,ω[y]

Rx

ω[y]

π0
x,z,ω[y]

ι

εz◦Φ

Since both πx,z,ω[y] and πx,z factor through Rx, it suffices to show that
π0
x,z,ω[y]

= π0
x,z. We will first see that π0

x,z and π0
x,z,ω[y]

agree on ι(Cc(GT |Y (x))).
So let

f ∈ ι(Cc(GT |Y (x))) ⊆ Cc(GT |[x]).

Then f ∈ Cc(GT |Y (x)) since ι extends the inclusion Cc(GT |Y (x)) ↪→
Cc(GT |[x]). We can write

π0
x,z,ω[y]

(f) = (πx,z,ω[y] ◦ ι)(f) = (ω[y] ◦ εz ◦ Φ)(f).

As with the calculations in (5.16), we have for any basis element δu ∈
`1([x]) that

(ω[y] ◦ εz ◦ Φ)(f)δu =
∑

(v,r,u)∈GT |Y (x)

zrf(v, r, u)δu,
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where we have used that Y (x) = Y (y). For f ∈ Cc(GT |Y (x)) and u ∈ [x],
we have

πx,z(f)δu = ω[x](αz(f))δu
=

∑
s(γ)=u

αz(f)(γ)δr(γ)

=
∑

(v,r,u)∈GT |Y (x)

αz(f)(v, r, u)δv

=
∑

(v,r,u)∈GT |Y (x)

zrf(v, r, u)δv

= (ω[y] ◦ εz ◦ Φ)(f)δu
= πx,z,ω[y](f)δu.

We can extend this identity by continuity, so that π0
x,z ◦ ι = π0

x,z,ω[y]
◦ ι.

By part (ii) of Corollary 5.2.13, π0
x,z = π0

x,z,ω[y]
, and we are done.

�
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5.5 An Application to Simplicity

For this section, let T = (T1, . . . , Tk) be an action of Nk0 on a locally compact
Hausdorff space X by local homeomorphisms, and let GT be the corresponding
Deaconu-Renault groupoid. We will investigate when C∗(GT ) is simple. This
happens if and only if the equivalence relation ∼ from Theorem 5.4.3 degenerates
to one element. It turns out that this has something to do with the fixed points
of the functions T1, . . . , Tk. It might not come as a big surprise that fixed
points turn up in questions like these, as they are quite central in the study
of dynamical systems. The fact that we end this chapter with fixed points
also creates a nice bridge to Appendix A, where we discuss the growth rate of
periodic points for certain toral automorphisms.

Lemma 5.5.1. We have that C∗(GT ) is simple if and only if every orbit in X
is dense and Σ = {(n, n) : n ∈ Nk0} ≈ Nk0 , in the notation of (5.5).

Proof. If C∗(GT ) is simple, then (x, z) ∼ (y, w) for all x, y ∈ X, z, w ∈ Tk. In
particular, orbit closures [x] are equal for all x ∈ X. Fix some x ∈ X, and pick
another element y ∈ X. Then y ∈ [y] ⊆ [y] = [x], so [x] is dense. We also have
zw ∈ H(T )⊥ for all z, w ∈ Zk. The multiplication map on Tk is surjective,
so this can only happen when H(T )⊥ = Tk. This is the same as saying that
H(T ) = {0}, which again is the same as saying that all elements of Σ is of the
form (n, n) for some n ∈ Nk0 . We have Tnx = Tnx for all x ∈ X and n ∈ Nk0 ,
so {(n, n) : n ∈ Nk0} ⊆ ΣX ⊆ Σ.

The converse statement is clear. �

We use the notation Σ ≈ Nk0 to mean precisely that Σ = {(n, n) ∈ Nk0}. We
will investigate further what entails Σ ≈ Nk0 . By definition, this is the case if and
only if for all open subset U ⊆ X and all distinct m,n ∈ Nk0 , there exists some
y ∈ U with Tmy 6= Tny. This again is precisely the same as saying that for any
distinct m,n ∈ Nk0 , the set on which Tm and Tn disagree is dense in X. Instead
of using that phrase over and over, we give it a name. So, if f, g : X → X are
any functions, we let f#g denote the fact that f and g disagree on a dense
subset of X. Hence Σ ≈ Nk0 if and only if Tm#Tn for all distinct m,n ∈ Nk0 .
For continuous f and g, we can reformulate f#g into a statement about where
they agree instead.

Lemma 5.5.2. Suppose f, g : X → Y are continuous for locally compact Haus-
dorff spaces X,Y . Then f#g if and only if the set on which f and g agree is
nowhere dense.

Proof. Let x be such that f(x) 6= g(x); it suffices to prove that there is a
neighbourhood of x on which f and g do not agree. Suppose for contradiction
that this is not the case. Then there is a net xλ → x with f(xλ) = g(xλ), so

f(x) = f( lim
λ→∞

xλ) = lim
λ→∞

f(xλ) = lim
λ→∞

g(xλ) = g( lim
λ→∞

xλ) = g(x),

which is a contradiction. The converse is clear. �

If Σ ≈ Nk0 , then in particular we have Ti#Tj for distinct i, j ∈ {1, . . . , k}.
The converse is not true, however. Suppose for instance that T1 is any local
homeomorphism whose set of fixed points is nowhere dense, and T2 is the identity;

88



5.5. An Application to Simplicity

then T1#T2, but we do not have T1#T1T2 = T1. Thus we are interested in
knowing when f#g implies f#(f ◦ g).

Lemma 5.5.3. Let f, g : X → X be commuting local homeomorphisms. Then
f#(f ◦ g) if and only if the subset of f(X) fixed by g is nowhere dense. In
particular, if the sets of fixed points for f and g are nowhere dense (i.e. f, g# id),
we have f, g#(f ◦ g).

Proof. We have f#(f ◦ g) = (g ◦ f) if and only if

{x ∈ X : f(x) = g(f(x))} = {x ∈ f(X) : g(x) = x}

is nowhere dense. The last assertion follows. �

We want to put a condition on the action T ensuring that Tm#Tn for all
distinct m,n ∈ Nk0 . It looks like this might be achieved if the fixed points for
each Tn are nowhere dense. It turns out that we must also require Ti#Tj for
distinct i, j. Before proving this is the case, we need two lemmas.

Lemma 5.5.4. Let f : X → X be a local homeomorphism. If S ⊆ X is nowhere
dense, then f−1(S) is nowhere dense.

Proof. Let U ⊆ X be any nonempty open set. We may assume that f is a
homeomorphism on U . Then f−1(S) ∩ U contains at most one point. If it
doesn’t, we are done. If it contains a point x, then U \ {x} is an open subset of
U not intersecting f−1(S), since X is Hausdorff. Note that U \{x} is nonempty,
since if not, then {f(x)} ⊆ S is an open set without a nonempty subset not
intersecting S. So we are done. �

Lemma 5.5.5. If every point in X has dense orbit, then the union of the
ranges of the Ti is dense in X. In particular, the set

X \
k⋃
i=1

Ti(K)

is nowhere dense in X.

Proof. We may assume that X consists of more than one point. Let x be any
point in X, and let U be any open neighborhood of x. Since [x] is dense, the set
[x] \ {x} is also dense, so there is a sequence of tuples nk ∈ Nk0 \ {0} such that
xk := Tnkx → x. Then in particular, there is some l ∈ N with xl ∈ U . The
tuple nl must have a nonzero entry, say the i-th entry; let n′l be the tuple where
we subtract 1 from that entry in nl. Then Ti applied to the point Tn′lx ∈ X
equals Tnlx = xl, which is in U . The first assertion follows.

To prove the last part, just observe that since local homeomorphisms are
open maps, the set ∪ki=1Ti(K) is open. Since it is also dense, its complement is
contained in its boundary. The boundary of open sets are nowhere dense, and
the conclusion follows. �

Proposition 5.5.6. If Ti#Tj for distinct i, j ∈ {1, . . . , k} and Tn#id for all
n ∈ Nk0 \ {0}, then Σ = {(0, 0)}. If every point of X has dense orbit, the
converse also holds.
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Proof. Recall that Σ ≈ Nk0 if and only if Tm#Tn for all distinct m,n ∈ Nk0 .
We prove the first statement by a weird kind of induction argument. For

the first step, let i, j be distinct. We know that the set F on which Ti and
Tj agree is nowhere dense. The set on which TjTi = T 2

i is precisely the set
T−1
i (F ), which is nowhere dense by Lemma 5.5.4. Hence TiTj#T 2

i . We also
have Ti, Tj#TiTj , T 2

i by Lemma 5.5.3. We now have Tm#Tn for (m,n) in the
set N2 := {(m,n) ∈ Nk0 : 0 < |m|, |n| ≤ 2}.

For the “induction step”, let {Si}i∈N2 denote the set of commuting homeo-
morphisms that we proved were different on a dense set above. But then we may
apply the exact same argument as above to see that all distinct combinations of
at most two of the Si disagree on a dense set. This is precisely the same as saying
that Tm#Tn for all (m,n) in the set N4 := {(m,n) ∈ Nk0 : 0 < |m|, |n| ≤ 4}.
Applying the argument again will yield the result for N8, then for N16 and so on.
This process does not stop, so eventually we have Tm#Tn for any m,n ∈ Nk0 .

Now suppose every orbit in X is dense. Pick any n ∈ Nk0 with |n| > 1. By
assumption, we have Ti#TiTn for all i ∈ {1, . . . , k}. Now Lemma 5.5.3 gives us
that, for each i, the subset of Ti(X) fixed by Tn is nowhere dense. Hence the
set of fixed points on ∪ki=1Ti(X) is nowhere dense, so Tn# id by Lemma 5.5.5.
Lastly, to see that Ti# id for all i, note that every fixed point for Ti must
certainly be a fixed point for T 2

i . The set of fixed points for T 2
i is nowhere

dense by the discussion above, and the conclusion follows.
�

We may not remove the demand that Ti#Tj for distinct i, j. Indeed, suppose
T1 = T2 is the function x 7→ x2 on the unit interval X = [0, 1]. Then Tn# id
for all n ∈ N2

0, but T1T2 = T 2
1 is the same function x 7→ x2.

We now sum up what we have discovered in the following corollary of
Theorem 5.4.3.

Corollary 5.5.7. Let T = (T1, . . . , Tk) be an action of Nk0 on a locally compact
Hausdorff space X by local homeomorphisms, and let GT be the corresponding
Deaconu-Renault groupoid. Then C∗(GT ) is simple if and only the following
conditions hold.

(i) Every orbit in X is dense.

(ii) For each distinct 0 < i, j ≤ k, the set on which the functions Ti and Tj
agree is nowhere dense in X. (Ti#Tj)

(iii) For each n ∈ Nk0, the set of fixed points for Tn is nowhere dense in X.
(Tn# id)

Example 5.5.8. Let θ ∈ R be any number, and consider the C∗-dynamical
system (C(T),Z, αθ) where αθ is the circle rotation by θ, given by

αθ(z) = e2πiθ

for z ∈ T. The resulting crossed-product C∗-algebra, Aθ = C(T)oαθZ, is simple
if and only if θ is irrational. We will formulate this in terms of Deaconu-Renault
groupoids to give an alternative way proof that this is the case. The proof itself
is almost trivial, but we must do some work to see that we can actually form
Aθ as a Deaconu-Renault groupoid.
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Note that αθ is a homeomorphism T → T. We let αθ also denote the
resulting N0-action also, so that

αnθ (z) = e2πinθz

for all n ∈ N0. Thus we can form the corresponding Deaconu-Renault groupoid
Gθ := Gαθ . It is easy to see that the associated C∗-algebra C∗(Gθ) is simple if
and only if θ is irrational. Indeed, the orbit of every point in T is dense if and
only if θ is irrational, so if θ ∈ Q, then Aθ is not simple by Corollary 5.5.7. If
θ ∈ R\Q, then αnθ has no fixed points for any n ∈ N0. We apply Corollary 5.5.7
again to see that C∗(GTθ ) is simple.

We will show that there is an isomorphism C∗(Gθ) ∼= Aθ. We will first need
to recall some basic facts about crossed products algebras. Recall that the
crossed product C(T) oαθ Z is defined as the completion of Cc(Z, C(T)) in the
universal norm given by

‖f‖c∗ := sup{‖π o U(f)‖ : (π, U) is a covariant representation of (C(T),Z, αθ)}
= sup{‖π(f)‖ : π is an `1-norm bounded representation of Cc(Z, C(T))},

where we have used [Wil07, Corollary 2.46]. The convolution on Cc(Z, C(T)) is
given by

(f ∗ g)(r)(z) =
∑
s∈Z

f(s)(z)g(r − s)(α−sθ (z))

for f, g ∈ C(Z, C(T)), and involution is given by

f∗(r)(z) = f(−r)∗(α−rθ (z)) = f(−r)(α−rθ (z)).

For more on the crossed product, see (for instance) [Wil07, Section 2.3].
We now return to our groupoid Gθ. Say we have (z,m−n,w) ∈ Gθ, so that

e2πimθz = e2πinθw; this is the same as saying that w = e2πi(m−n)θz. Hence we
can write each element of Gθ uniquely as (z,−r, α−rθ (z)) for some z ∈ T and
r ∈ Z, and this defines a bijection

Gθ → {(z,−r, α−rθ (z))}.

For any f ∈ Cc(Gθ), there is a unique element Φ(f) ∈ Cc(Z, C(T)) given by

Φ(f)(r)(z) = f(z,−r, α−rθ (z)).

The bijection Φ: Cc(Gθ)→ Cc(Z, C(T)) is a ∗-isomorphism. Indeed, it is clearly
linear, and we have

Φ(f∗)(r)(z) = f∗(z,−r, α−rθ (z))

= f((z,−r, α−rθ (z))−1)

= f(α−rθ (z), r, z)

= Φ(f)(−r)(α−rθ (z))
= Φ(f)∗(r)(z)

so Φ is a ∗-map. To see that it is a homomorphism, note that for γ =
(z,−r, α−rθ (z)) ∈ Gθ, we have

G
r(γ)
θ = {(z,−s, α−sθ (z)) : s ∈ Z}.
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Now we have, by the convolution in Cc(Gθ) defined in Definition 3.2.10, that

Φ(f ∗ g)(r)(z) = (f ∗ g)(z,−r, α−rθ (z))

=
∑
s∈Z

f(z,−r, α−rθ (z))g(α−sθ (z), s− r, α−rθ (z))

=
∑
s∈Z

Φ(f)(r)(z)Φ(g)(r − s)(α−sθ (z))

= (Φ(f) ∗ Φ(g)) (r)(z),

as we wanted.
To show that Φ extends to an isomorphism between Aθ and C∗(Gθ), all we

need is for Φ to be isometric with respect to the universal norms on Cc(Gθ) and
Cc(Z, C(T)). If we can show that Φ is isometric when Cc(Gθ) has the I-norm
and Cc(Z, C(T)) has the `1-norm, the latter will follow. Indeed, if that were
the case, then π is an I-norm bounded representation of Cc(Gθ) if and only
if π′, given by π′(Φ(f)) = π(f), is an `1-norm bounded representation π′ of
Cc(Z, C(T)). Hence

‖f‖∗ = sup{‖π(f)‖ : π is I-norm bounded}
= sup{‖π′(Φ(f))‖ : π′ is `1-norm bounded}
= ‖Φ(f)‖c∗,

and we would be done.
To see that Φ is isometric in this way, we first see that the I-norm can be

simplified. Indeed, in the notation preceding Theorem 3.2.14, we have for all
f ∈ Cc(Gθ) that

‖f‖I,r = sup
z∈T

∑
γ∈Gz

|f(γ)|

= sup
z∈T

∑
r∈Z
|f(z,−r, α−rθ (z))|

=
∑
r∈Z

sup
z∈T
|f(z,−r, α−rθ (z))|

=
∑
r∈Z

sup
w=αr

θ
(z)∈T

|f(α−rθ (w),−r, w)|

= sup
w∈T

∑
r∈Z
|f(α−rθ (w),−r, w)|

= ‖f‖I,d.

All sums above are finite, so there is no trouble in interchanging the order with
the supremum. Hence ‖ · ‖I = ‖ · ‖I,r. Now we can write

‖Φ(f)‖1 =
∑
r∈Z
‖Φ(f)(r)‖sup =

∑
r∈Z

sup
z∈T
|Φ(f)(r)(z)|

= sup
z∈T

∑
r∈Z
|f(z,−r, α−rθ (z))| = ‖f‖I ,

which is what we wanted. Hence Aθ ∼= C∗(Gθ), which is simple if and only if θ
is irrational.
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We finish off the chapter with an example connected to Appendix A.

Example 5.5.9. Recall the Deaconu-Renault GT groupoid from Example 5.2.3,
coming from k commuting d× d-matrices with determinant ±1. We never have
that C∗(GT ) is simple, since 0 always has the trivial orbit.
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APPENDIX A

The Growth Rate of Periodic
Points for Hyperbolic Toral

Automorphisms

In this appendix, we get hands-on experience of working explicitly with dy-
namical dynamical systems. Spesifically, we will be working with commuting
hyperbolic automorphisms Td → Td. We introduced these dynamical systems
in Example 5.2.3, and we could study them via Deaconu-Renault groupoids.
We will go thorugh most of [Pol12] by Pollicott, where we study the growth
rate of the number of periodic points for the dynamical system. We will assume
general knowledge in linear algebra, and some basics about dynamical systems.
We follow the conventions of terminology used in [BS15].

A.1 Introduction

We define the d-dimensional torus as Td := Rd/Zd. We will be looking at linear
maps TA : Td → Td, represented by an invertible d× d integer matrix A. The
columns of such a matrix necessarily span the whole of Rd, so TA is surjective.
Furthermore, if TA(x+Zd) = 0 for some x ∈ Rd, then Ax is some integer vector.
Since A is an integer matrix, x must also be a vector of integers, so the class of
x in Td is 0. Hence TA is both surjective and injective, and since it is linear,
TA is an automorphism. This is our motivation for the next definition.

Definition A.1.1. A hyperbolic toral automorphism is a linear map
TA : Td → Td, represented by the d × d integer matrix A, such that A is
invertible and has no eigenvalues on the unit circle.

Note that the integer matrix A is invertible if and only if |det(A)| = 1. We
will only consider orientation-preserving automorphisms, where det(A) = 1; in
other words where A ∈ SL(d,Z). Each TA is linear and therefore continuous,
so (Td, TA) is a discrete-time dynamical system. Suppose we had k of these,
represented by matrices A1, A2, . . . , Ak, and that they all commute. Then we
may associate a group action A : Zk × Td → Td defined by

A(n1, . . . , nk, x) = An1
1 An2

2 . . . Ankk x+ Zd,
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for every x ∈ Td. This is indeed an action: Suppose n = (n1, . . . , nk) ∈ Zk, and
m = (m1, . . . ,mk) ∈ Zk. Then

A(n+m,x) = An1+m1
1 . . . Ank+mk

k x+ Zd

= (An1
1 . . . Ankk )(Am1

1 . . . Amkk )x+ Zd

= A(n,A(m,x)),

since we assume that the matrices commute. Furthermore, A(0, x) = Ix+ Zd,
so the identity in Zd gives the identity in Td.

As mentioned, we consider the growth of the number of periodic points for
these commuting hyperbolic toral automorphisms. A point x ∈ Td is a periodic
point for the dynamical system if A(n, x) = x for some n ∈ Zk. We shall be
interested in the cardinality of the set of periodic points, given a set of integers
n ∈ Zk. We will denote this cardinality by

N(n) = |{x ∈ Td : A(n, x) = x}|.

If we had An1
1 An2

2 . . . Ankk = I for some (n1, n2, . . . , nk) ∈ Zk, N(n) would be
infinite, so we will only be interested in matrices that do not satisfy this. This
condition is the same as saying that the action A is nondegenerate.

We start out by considering T3 with two commuting hyperbolic toral auto-
morphisms, and generalise to Td and k automorphisms for d ≥ 3, k ≥ 2.

A.2 The case where d = 3, k = 2

Suppose, for this entire section, that A1, A2 ∈ SL(3,Z) are commuting hyper-
bolic matrices. Then the function A : Z2 × T3 → T3 defined by

A(n1, n2, x) = An1
1 An2

2 x+ Z3

is a group action of Z2 on T2. We also assume that the action is nondegenerate.
The purpose of this section is to give upper and lower bounds for the growth

of the number of periodic points of the action associated to (n1, n2) as the
Euclidean norm ‖(n1, n2)‖ tends to infinity. We start off with a few lemmas.

Lemma A.2.1. Suppose A1 and A2 are as specified above, that A1 has eigen-
values α1, α2, α3 and A2 has eigenvalues β1, β2, β3. Then we have that

1. the eigenvalues of A1 and A2 are real,

2. each of the common eigenvectors v1, v2, v3 for A1 and A2 have irrational
slopes, and

3. each of the numbers log |αi|/ log |βi| for i = 1, 2, 3 are irrational.

Proof. For (1) and (2), see [Pol12].
For the last part, let i be 1, 2 or 3 and suppose log(αi)

log(βi) = p
q for numbers

p, q ∈ Z. We have p log(αi) = q log(βi), so

αpi β
q
i = ep log(αi)+q log(βi) = e2p log(αi) = α2p

i ,
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hence αpi = βqi . If vi is the eigenvector corresponding to αi and βi, then we
have

Ap1vi = αpi vi = βqi vi = Aq2vi,

so Ap1A
−q
2 = I when we restrict to the eigenspace Rvi. But that would mean

that Ap1A
−q
2 = I on the dense subset Rvi+Z3 of T3. Since Ap1A

−q
2 is continuous,

it must in fact act as the identity on the whole of T3. This means that for every
x ∈ R3, there is an integer vector nx ∈ Z3 such that Ap1A

−q
2 x = x+ nx. Since

Ap1A
−q
2 is continuous, nx must be equal for all x, and since Ap1A

−q
2 0 = 0, we have

nx = 0. This means that Ap1A
−q
2 = I, which contradicts our nondegenerative

assumption. �

Lemma A.2.2. For each (n1, n2) ∈ Z2 \ {(0, 0)}, we have

N(n1, n2) = |det(I −An1
1 An2

2 )|.

Proof. See [FM13, p. 171]. �

The previous lemma has a useful corollary.

Lemma A.2.3. For each (n1, n2) ∈ Z2 \ {(0, 0)}, we have

N(n1, n2) =
|(αn1

1 βn2
1 + αn1

2 βn2
2 + αn1

3 βn2
3 ) + (α−n1

1 β−n2
1 + α−n1

2 β−n2
2 + α−n1

3 β−n2
3 )|.

Proof. The matrix An1
1 An2

2 has eigenvalues 1− αn1
i β

n2
i for i = 1, 2, 3, and the

determinant is the product of these eigenvalues. Thus by the previous lemma,
we have

N(n1, n2) =|(1− αn1
1 βn2

1 )(1− αn1
2 βn2

2 )(1− αn1
3 βn2

3 )|
=|1− (αn1

1 βn2
1 + αn1

2 βn2
2 + αn1

3 βn2
3 )

+ ((α1α2)n1(β1β2)n2 + (α1α3)n1(β1β3)n2 + (α2α3)n1(β2β3)n2)
− (α1α2α3)n1(β1β2β3)n2 |.

We have det(A1) = det(A2) = 1, so α1α2α3 = β1β2β3 = 1. Thus we may
rewrite the last line as

N(n1, n2) =
|(αn1

1 βn2
1 + αn1

2 βn2
2 + αn1

3 βn2
3 ) + (α−n1

1 β−n2
1 + α−n1

2 β−n2
2 + α−n1

3 β−n2
3 )|,

as desired. �

We will use this lemma to estimate the growth of N(n1, n2), and it will be
convenient to introduce the following vectors in R2:

u1 =
(

log |α1|
log |β1|

)
, u2 =

(
log |α2|
log |β2|

)
, and u3 =

(
log |α3|
log |β3|

)
.

Each of these vectors have irrational slopes. Indeed, from Lemma A.2.1 we
know that log |αi|

log |βi| is irrational for all i. Thus for each i, the line Rui given by
the equation y = log |βi|

log |αi|x has irrational slope.
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Lemma A.2.4. The vectors u1, u2 and u3 are nonzero and satisfy u1+u2+u3 =
0.

Proof. For the first part, suppose that ui = 0 for some i. Then |αi| = 1 and
|βi| = 1, both of which are contradictions. For the second part, we use that
det(A1) = α1α2α3 = 1 and det(A2) = β1β2β3 = 1. Thus

log |α1α2α3| = log |α1|+ log |α2|+ log |α3| = 0,

and similarly, log |β1|+ log |β2|+ log |β3| = 0. Now we have

u1 + u2 + u3 =
(

log |α1|+ log |α2|+ log |α3|
log |β1|+ log |β2|+ log |β3|

)
= 0,

as desired. �

Our next step is to parameterise all unit vectors in R2 by

wθ =
(

cos θ
sin θ

)
for 0 ≤ θ < 2π. Then we have

〈ui, wθ〉 = cos θ log |αi|+ sin θ log |βi|.

Given (n1, n2) ∈ Z2, let R := ‖(n1, n2)‖2. Then we can write (n1, n2) =
(R cos θ,R sin θ). Thus we have

|αn1
i β

n2
i | = exp(n1 log |αi|+ n2 log |βi|)

= exp(R(cos θ log |αi|+ sin θ log |βi|))
= eR〈wθ,ui〉.

Lemma A.2.5. For every θ ∈ [0, 2π), there is an i such that 〈ui, wθ〉 > 0.

Proof. We claim that it suffices to prove that the ui are not collinear. Indeed, if
they are not collinear, we have 〈ui, wθ〉 = ‖ui‖‖wθ‖ cosφi = ‖ui‖ cosφi where
φi is the angle between ui and wθ. If ‖ui‖ cosφi ≤ 0 for all i, then all the vectors
ui would lie in the half plane defined by the line to which wθ is orthogonal to;
this is impossible, since the ui are nonzero and sums up to 0.

Now suppose for contradiction that the ui are collinear. Then we may choose
a δ 6= 0 such that

δ = log |α1|
log |β1|

= log |α2|
log |β2|

= log |α3|
log |β3|

.

From the last part of Lemma A.2.1, δ must be irrational; hence the set
{n log |α1|+m log |β1| : n,m ∈ Z} is dense in R. Choose sequences {nk}, {mk}
in Z \ {0} so that nk log |α1|+mk log |β1| → 0. Then for all r ∈ R+,

AnkBmkrv1 + Z3 = enk log |α1|+mk log |β1|rv1 + Z3 → rv1 + Z3.

Thus AnkBmk → I on the set R+v1 + Z3. This set is dense in T3 by the
second part of Lemma A.2.1, so AnkBmk → I. Each AnkBmk is unequal to I
because of our nondegenerative assumtion, and since we are dealing with integer
matrices, the convergence AnkBmk → I is impossible. �
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Lastly, we denote

λ := sup
0≤θ<2π

{
max
i=1,2,3

{〈ui, wθ〉}
}
, and

λ := inf
0≤θ<2π

{
max
i=1,2,3

{〈ui, wθ〉}
}
.

We are now ready to state and prove our main theorem.

Theorem A.2.6. Let A1, A2 ∈ SL(3,Z) be commuting independent hyperbolic
matrices. The growth rates of the periodic points satisfy

lim sup
‖(n1,n2)‖2→∞

logN(n1, n2)
‖(n1, n2)‖2

= λ and

lim inf
‖(n1,n2)‖2→∞

logN(n1, n2)
‖(n1, n2)‖2

= λ.

Furthermore, 0 < λ < λ <∞.

Proof. We will prove the first equality in the theorem; the other is similar.
From Lemma A.2.3 and the discussion above, we can write

N(n1, n2) = |(eR〈u1,wθ〉 + eR〈u2,wθ〉 + eR〈u3,wθ〉)
+ (eR〈u1,w−θ〉 + eR〈u2,w−θ〉 + eR〈u3,w−θ〉)|. (A.1)

From Lemma A.2.5, there is at least one i such that 〈ui, wθ〉 > 0; hence
N(n1, n2)→∞ as R→∞. Thus, when R→∞, the term or terms with largest
positive exponent will dominate the sum in (A.1). Suppose that there is always
one dominating term; the general argument is similar, but requires much detail.
Writing R instead of ‖(n1, n2)‖2, we get that

lim sup
R→∞

logN(n1, n2)
R

= lim
R→∞

sup
x≥R

{
max
i=1,2,3

{ log(e〈ui,wθ〉)
x

} : 0 ≤ θ < 2π
}

= lim
R→∞

sup
x≥R

{
max
i=1,2,3

{〈ui, wθ〉} : 0 ≤ θ < 2π
}
.

Note that the terms with 〈ui, w−θ〉 are covered since we are taking the
supremum when θ varies from 0 to 2π. The last term does not depend on R, so
we may simply write

lim sup
R→∞

logN(n1, n2)
R

= sup
0≤θ<2π

{
max
i=1,2,3

{〈ui, wθ〉}
}
.

We recognise the right-hand side as λ, which is clearly less than ∞, so we
are done. �
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A.3 Generalisations to Zk-actions

We would like to generalise Theorem A.2.6 to higher-dimensional actions. For
the rest of this section, we make the following assumptions.

1. We assume that A1, . . . , Ak ∈ SL(d,Z) commute. This gives rise to an
action A : Zk × Td → Td defined by

A(n1, . . . , nk, x) = An1
1 . . . Ankk x+ Zd,

as discussed in the beginning of this article.

2. We assume that each matrix An1
1 . . . Ankk such that n(n1, . . . , nk) ∈ Zk is

ergodic (i.e. they do not have eigenvalues which are roots of unity).

3. We assume that the action is nondegenerate, so that if there are integers
n1, . . . , nk ∈ Z such that An1

1 . . . Ankk = I then n1, . . . , nk = 0.

4. We assume that the action is irreducible, that is, no A(n1, . . . , nk) : Td →
Td preserves a proper invariant toral subgroup of Td.

5. We assume that the matrices Ai are semisimple (that is, they diago-
nalise over the complex numbers), and that Ai has complex eigenvalues
α

(i)
1 , . . . , α

(i)
d for i = 1, . . . , k.

As before, we let

N(n1, . . . , nk) = |{x ∈ Td : A(n1, . . . , nk, x) = x}|

denote the number of periodic points for the function A(n1, . . . , nk). Further-
more, we denote

λ = inf
w

〈w, ∑
j:〈w,vj〉≥0

vj〉

 ,

λ = sup
w

〈w, ∑
j:〈w,vj〉≥0

vj〉

 .

The generalisation of Theorem A.2.6 in this setting will be the following.

Theorem A.3.1. The growth rates of the number of periodic points satisfy

lim sup
‖(n1,...,nk)‖2→∞

logN(n1, . . . , nk)
‖(n1, . . . , nk)‖2

≤ λ, and

lim inf
‖(n1,...,nk)‖2→∞

logN(n1, . . . , nk)
‖(n1, . . . , nk)‖2

≥ λ.

Furthermore, 0 < λ < λ <∞.

To prove this, we will need two lemmas; the first one is a generalisation of
Lemma A.2.2.
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Lemma A.3.2. For each (n1, . . . , nk) ∈ Zk \ {0, . . . , 0}, we may write

N(n1, . . . , nk) = |det(I −An1
1 . . . Ankk )|.

Proof. See [FM13, p. 171]. �

Lemma A.3.3. Given d ≥ 2, there exists ε > 0 such that if α is an algebraic
integer of degree d whose conjugate roots do not lie on the unit circle, then the
conjugate values α = α1, . . . , αd cannot all be contained in the annulus

A(ε) = {z ∈ C : 1− ε ≤ |z| ≤ 1 + ε}.

Proof. Assume for contradiction that for some d ≥ 2 we can find an infinite
sequence of monomials

Pn(x) = xd + c
(n)
d−1x

d−1 + . . . c
(n)
k xk + . . . c

(n)
1 x1 + c

(n)
0 ∈ Z[x]

whose roots α(n)
1 , . . . , α

(n)
d ∈ A( 1

n ) do not lie on the unit circle. Since Pn(x) =∏d
i=1(x− α(n)

i ), we see that

∣∣∣c(n)
k

∣∣∣ =

∣∣∣∣∣∣
∑

i1<...<id−k

α
(n)
i1

. . . α
(n)
id−k

∣∣∣∣∣∣
≤

d∑
i=1

∣∣∣α(k)
i . . . α

(n)
d

∣∣∣
≤ d

(
1 + 1

n

)d
≤ d2d

for k = 1, . . . , d and n ≥ 1. In particular, we have c(n)
k ∈ Z ∩ [−d2d, d2d] for

all k = 1, . . . , d and n ≥ 1. By the pigeonhole principle, we may choose a
subsequence P (x) := Pn1(x) = Pn2(x) = Pn3(x) = . . . for which the coefficients
all agree. But then the roots of P (x) are all arbitrarily close to 1 in modulus,
so they must lie on the unit circle. This is a contradiction. �

Proof of Theorem A.3.1. Since each Ai is diagonalisable, the product A :=
An1

1 . . . Ankk is diagonalisable with diagonalisation A = PDP−1, say; thus
I −A = PP−1 − PDP−1 = P (I −A)P−1 is also diagonalisable. Therefore we
may write det(I −An1

1 . . . Ankk ) as the product of the eigenvalues of the matrix
I −An1

1 . . . Ankk , namely the complex numbers 1−
∏k
i=1(α(i)

j )ni . Hence we have

det(I −An1
1 . . . Ankk ) =

d∏
j=1

∣∣∣∣∣1−
k∏
i=1

(α(i)
j )ni

∣∣∣∣∣ . (A.2)

We will parametrise elements (n1, . . . , nk) ∈ Zk as (p1R, . . . , pkR), where

1. pi ∈ [−1, 1] for i = 1, . . . , k,

2. ‖(p1, . . . , pk)‖2 = 1 and

3. R = ‖(n1, . . . , nk)‖2.
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We introduce the notation vj = (log |α(1)
j |, . . . , log |α(k)

j |) for j = 1, . . . , k, and
w = (p1, . . . , pk). For each j = 1, . . . , k, we have

k∏
i=1

(α(i)
j )Rpi = eR

∑k

i=1
pi log |α(i)

j
| = eR〈w,vj〉;

hence by (A.2) we may write

N(n1, . . . , nk) =
∏

j:〈w,vj〉≥0

(eR〈w,vj〉 − 1)
∏

j:〈w,vj〉<0

(1− eR〈w,vj〉).

The second product is always between 0 and 1, so

N(n1, . . . , nk) ≥
∏

j:〈w,vj〉≥0

(eR〈w,vj〉 − 1).

The right-hand side above is a polynomial in eR〈w,vj〉 of some degree m with
leading coefficient 1. So is

∏
j:〈w,vj〉≥0 e

R〈w,vj〉, and thus

lim
R→∞

∏
j:〈w,vj〉≥0(eR〈w,vj〉 − 1)∏

j:〈w,vj〉≥0 e
R〈w,vj〉

= 1.

This means that there exists a number R0 ∈ R so that if R ≥ R0, then

∏
j:〈w,vj〉≥0

(eR〈w,vj〉 − 1) ≥ 1
2

∏
j:〈w,vj〉≥0

(eR〈w,vj〉)

= 1
2e

R〈w,
∑

j:〈w,vj〉≥0
vj〉
.

We recognise the inner product in the exponent as λ, so

N(n1, . . . , nk) ≥ 1
2e

λ‖(n1,...,nk)‖2 .

This gives us that

logN(n1, . . . , nk)
‖N(n1, . . . , nk)‖2

≥
log 1

2 + λR

R
,

which in turn yields that the growth rate satisfies

lim inf
‖(n1,...,nk)‖2→∞

logN(n1, . . . , nk)
‖(n1, . . . , nk)‖2

≥ lim inf
R→∞

log 1
2 + λR

R
= λ.

Similarly, we have

N(n1, . . . , nk) ≤ 2eλ‖(n1,...,nk)‖2 ,
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which gives us

lim sup
‖(n1,...,nk)‖2→∞

logN(n1, . . . , nk)
‖(n1, . . . , nk)‖2

≤ λ.

It remains to show that 0 < λ and λ <∞. We have by definition that λ ≥ 0.
To show that λ 6= 0 and λ <∞, we first note that the function

w 7→ 〈w,
∑

j:〈w,vj〉≥0

vj〉

=
k∑
j=1

max (〈w, vj〉, 0)

is a continuous map on the compact unit circle in Rk. That means that it will
attain its infimum λ and supremum λ. This implies that λ <∞. In addition, to
prove that λ 6= 0, we only have to show that there is no w such that 〈w, vj〉 = 0
for all j = 1, . . . , k.

Suppose for contradiction that there is such a w. Fix a j ∈ {1, . . . , d}. By
Dirichlet’s theorem of simultaneous diophantine appriximation, for any ε > 0,
we may choose 1 ≤ q ≤ ( 1

ε + 1)k and (n1, . . . , nk) ∈ Zk such that |nl − qpl| ≤ ε
for l = 1, . . . , k. Thus

|nl log |α(l)
j | − qpl log |α(l)

j || ≤ ε| log |α(l)
j | (A.3)

for l = 1, . . . , k. Summing the inequations (A.3) for l = 1, . . . , k and applying
the reverse triangle inequality yields

∣∣∣∣∣
∣∣∣∣∣
k∑
l=1

nl log |α(l)
j |

∣∣∣∣∣−
∣∣∣∣∣
k∑
l=1

qpl log |α(l)
j |

∣∣∣∣∣
∣∣∣∣∣ ≤

k∑
l=1

∣∣∣nl log |α(l)
j | − qpl log |α(l)

j |
∣∣∣

≤ ε
k∑
l=1
| log |α(l)

j || = εL,

where L :=
∑k
l=1 | log |α(l)

j ||. In particular, we have

∣∣∣∣∣
k∑
l=1

nl log |α(l)
j |

∣∣∣∣∣ ≤ εL+ q

∣∣∣∣∣
k∑
l=1

pl log |α(l)
j |

∣∣∣∣∣
= εL+ q〈w, vj〉 = εL,

since we assume that 〈w, vj〉 = 0. We restate this as∣∣∣log
∣∣∣(α(1)

j

)n1
. . .
(
α

(k)
j

)nk ∣∣∣∣∣∣ ≤ εL. (A.4)

We recognise
(
α

(1)
j

)n1
. . .
(
α

(k)
j

)nk
for j = 1, . . . , d as the eigenvalues of the

matrix An1
1 . . . Ankk , so (A.4) implies that the eigenvalues of this matrix can be

arbitrarily close to 1 in modulus. In other words, the algebraic integers, and
its conjugates, occuring as zeros of the polynomial det(zI − An1

1 . . . Ankk ) = 0
can be arbitrarily close to 1 in modulus. By Lemma A.3.2, this is impossible,
finishing our proof. �
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