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Abstract

Computational models of fluids, structures, and the interaction between them
shows good promise in science and engineering, with nearly infinitely many
applications. However, fluid-structure interaction (FSI) is poorly understood
from a mathematical and computational stand point. The goal of this thesis
was to develop a virtual framework for computational FSI problems using
a monolithic scheme. The mathematics and physics that govern fluid and
structures was introduces, and the necessary conditions to model FSI prob-
lems. The θ-scheme was implemented in FEniCS because of its ability to
uphold stability for long time FSI simulations. The code has been verified in
parts using MMS.

The computational FSI solver was validated against the benchmark proposed
by Hron and Turek 2010 [11]. Both the fluid and structure were validated
separately, before adressing the FSI problem. Data was compared with con-
tributions made by leading scientists in the field, and shown good agreement.
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In the fifth chapter of this thesis, the crucial choice of lifting is discussed for
FSI problems with moderate to large deformations, and the need for long-
term numerical stability schemes.
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Chapter 1

Introduction to Fluid-Structure
Interaction

The interaction between fluids and structures can be observed all around us
in nature. Examples of fluid-structure interaction include flags waving in the
wind, windmills, and inhalation of air into the lungs. It is rather intuitive
that fluids and structures must exert mutual force on each other and that
the fluid and structure both can have dominant and passive properties. In
the example of a flag waving in the wind, it is the forces from the flowing
air that are dominant, whereas in the example of inhalation, the structure
(diaphragm) is dominating.

Understanding and modeling fluid-structure interaction (FSI) can greatly as-
sist in design of structures such as windmill and aircraft wings. A famous
example of design flaw is the collapse of the Tacoma Narrows Bridge in 1940
[1], only two months after being opened, see Figure 1.1. The bridge was
literally shaken apart due to strong winds (64 km/h) interacting with the
structure, making it resonate. No human lives were lost in the collapse, but
a Cocker Spaniel named Tubby left behind in a car was not that lucky and
lost its life in the bridge collapse.

FSI has matured and is now routinely used to model and design the motion
and wakes of windmills. Since there is a big difference in density between
fluid and structure ρf

ρs
<< 1, the structural deformations are small and the

interaction is “easy” to model. However, modeling arterial FSI deems more
challenging as the density of the fluid (blood) and the structure (artery) are
similar, resulting in large deformations of the arteries. Large deformations
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Figure 1.1: Left: Tacoma Narrows bridge still standing with large deforma-
tions, Right: Tacoma Narrows bridge collapsed

are challenging to model and require hyperelastic constitutive laws, and en-
ergy stable numerical schemes.

A scientific branch of fluid mechanics is Computational Fluid Dynamics,
where computers and numerical algorithms are used to solve fluid problems.
Similarly, a name used for solving fluid-structure interaction problems is sim-
ply “FSI”. However, it should be emphasized that it is actually Computational
Fluid Structure Interaction (CFSI) that will be addressed in this thesis. The
same name applies to the word “Structure” where the actual problem to be
solved belongs to the scientific branch of solid mechanics.

The goal of this master thesis is to develop a computational framework to
solve FSI problems arising in biomechincs, namely large deformations. The
effects of different numerical schemes and approaches will be investigated to
maintain acceptable accuracy.
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Chapter 2

Continuum Mechanics in
Different Frames of
Reference

Matter is made up of small building blocks called atoms, that are separated
by vacuum, and the fundamental laws at this small scale are described using
quantum mechanics [3]. The associated characteristic length scale far smaller
than most things of interest to describe and model at a macroscopic level.
Since it has been observed that the characteristic behavior is statistically uni-
form, it is reasonable to assume the matter can be mathematically described,
and modeled, as a continuum. This allows for a mathematical description
at the macroscopic level using Newtonian physical laws to model fluids and
solids. The Newtonian laws are generally expressed in one out of two frames
of reference, Lagrangian or Eulerian, depending on the physical problem, as
illustrated in Figure 2

To exemplify the differences between these frameworks, one can imagine a
river running down a mountain. In the Eulerian framework we observe an
object following the flow, standing besides the river. We are not necessarily
interested in each fluid particle or the history of it, but only how the fluid
acts as a whole flowing down the river. The Eulerian framework is especially
advantageous to describe fluid mechanics.

A Lagrangian description of solid mechanics is particularly beneficial, as one
is generally interested in where the solid particles are in relation to each
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other and the particles initial spatial state. This is best exemplified with
a deflecting beam attached to a wall. The more force applied to the beam
the more it will deflect, relative to its historical stress free configuration. As
described later this frame of reference is generally beneficial to describe stress
and strain for solid mechanical problems.

Figure 2.1: Comparison between the Eulerian and the Lagrangian descrip-
tion, the lines represent the grid, the dashed line represents the initial grid
and the gray represents the matter.

The goal of this chapter is to briefly introduce conservation of mass and
momentum for a fluid and a solid, respectively together with the respective
boundary conditions. A derivation and a more detailed description of the
Lagrangian framework and the stress and strain relations are covered in the
appendix A1.

2.1 Conservation of Mass and Momentum for
Solid

Assuming matter to behave like a continuum, fundamental physical laws like
conservation of mass and conservation of momentum can be applied to derive
a differential equation describing the motions of a solid. Information about
the particular material of a solid is described through constitutive relations.
The differential solid equation will be stated in the Lagrangian reference
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system [10], in the solid domain S as:

ρs
∂d2

∂t2
= ∇ · (P ) + ρsf in S (2.1)

written in terms of the deformation d, of the solid. P is the first Piola-
Kirchhoff stress tensor, its derivation is included in the appendix A1 for
the sake of completeness. Body forces are denoted as f , and are forces that
originate outside the body and act on the mass of the body e.g. gravitational
force. ρs is the solid density, and ∂

∂t2
is the second time derivative.

2.2 Conservation of Mass and Momentum for
Fluid

The differential equations describing the velocity and pressure in a fluid are
called the Navier-Stokes (N-S) equations. The N-S equations are derived,
like the solid equation, from principles of mass and momentum conservation,
assuming fluid to act as a continuum. The fluid equations are stated in an
Eulerian framework. The N-S equations are written in the fluid time domain
F(t) as an incompressible fluid:

ρf
(∂u

∂t
+ u · ∇u

)
= ∇ · σf + ρff in F(t) (2.2)

∇ · u = 0 in F(t) (2.3)

where u is the fluid velocity, p is the fluid pressure, ρf stands for density. f
is body force and σf is the Cauchy stress tensor, σf = µf (∇u +∇uT )− pI,
setting µf to be constant hence denoting a Newtonian fluid. I denotes the
identity matrix.

There does not yet exist an analytical solutions to the Navier-Stokes equa-
tions for every fluid problem. Analytical solutions can only be found for
fluid problems with certain boundary conditions and geometries using the
N-S equations [29]. Actually there is a prize set out by the Clay Mathe-
matics Institute of one million dollars to whomever can show the existence
and smoothness of Navier-Stokes equations [6], as a part of their millennium
problems. Nonetheless this does not stop us from discretizing and solving N-S
numerically. One difficulty in the Navier-Stokes equations is the nonlinearity
appearing in the convection term on the left hand side. This non-linearity
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can be handled using Newtons method, or Picard iterations. Another diffi-
culty is finding a suitable equation to solve for the pressure field [2]. As there
is no natural pressure update.

2.3 Fluid and Structure Boundary conditions

In order to obtain a unique solution to the fluid and solid equations, we need
to specify a computational domain and impose boundary conditions. The
fluid flow and the solid moves within the boundaries noted as ∂F and ∂S,
respectively.

Dirichlet boundary conditions, often referred to as essential ones, are defined
on the boundaries ∂FD and ∂SD. Dirichlet boundary conditions can be fixed
or time varying values, such as zero at the fluid boundary for a "no slip"
condition, or a Womersley profile [9] at the inlet of a pipe. For a problem
to be well posed we need also to prescribe initial conditions. The Dirichlet
boundary conditions are defined for u and p as :

u =u0 on ∂FD (2.4)
p =p0 on ∂FD (2.5)
d =d0 on ∂SD (2.6)

w(X, t)0 =
∂d(t = 0)

∂t
on ∂SD (2.7)

In addition, there are Neumann boundary conditions, often referred to as
natural, which states a specific value of the derivative of a solution at the
boundary. More specifically, ∂FN and ∂SN . One can also control eventual
forces on the Neumann boundary, to possibly equal an external force f :

σ · n = f on ∂FN (2.8)
P · n = f on ∂SN (2.9)

For the sake of completeness, it should be noticed that there exists other
boundary conditions as well, for instance the Robin boundary conditions,
which are the Dirichlet and Neumann conditions combined.
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Chapter 3

Fluid-Structure Interaction
Problem Formulation

The following chapter will be devoted to introducing the full FSI problem
mathematically. The equations and interface conditions will be introduced
in a strong and weak form. From the weak form both equations will be dis-
cretized into a scheme which will be used in the FSI solver.

When describing the FSI problems the domain is split into three: fluid,
structure, and interface. The fluid and structure domains are separated, and
different constitutive equations are solved in each domain. The spatial points
in which fluid and structure join is called the interface. The treatment of the
interface separates the two most commonly used methods for solving FSI
problems [12]. The first method is called fully Eulerian. In a fully Eulerian
framework, both the fluid and structure equations are defined and solved in
a purely Eulerian description. The interface in a fully Eulerian framework is
tracked across a fixed domain [27], which is a difficult task. The fully Eule-
rian description is suited for fluid problems but is problematic for structure
problems because of the interface tracking.

The second approach is the Arbitrary Lagrangian Eulerian (ALE). The ALE
method entails formulating the fluid equations in a type of Eulerian frame-
work and the solid in a Lagrangian framework. The entire domain itself
moves with the structural displacements and the fluid moves through these
points. In the ALE framework we get the best of both worlds, in that fluid
and solid are described in their most commonly stated mathematical forms.

7



The structure equation will remain as previously stated (2.1), and in the fluid
equation we need to take into account the change in convection arising from
the mesh deformation.

Dealing with the movement of the domain is performed in two ways. One
way is to move the domain itself in relation to the structural displacements,
and use this new domain to calculate the equations for every iteration. This
requires a specific function to move the mesh between each timestep. This
process can be time consuming as problems get large. The structural defor-
mation history can also give rise to problems as the points on the domain
have changed location.

The second approach to ALE, which will be used in this thesis, is to calcu-
late from reference domain. When solving equations from a reference domain
we solve the equations on an initial, stress free domain, and use a series of
mappings to account for the movements of the current time domain. It
is the displacements in the domain that determines the value of the map-
pings between frames of reference. The solid equation is already stated in
a Lagrangian formulation and does not need any mappings. It is the fluid
velocities and fluid pressure that needs to be mapped from the reference do-
main into the time domain in which they are stated. Since the reference
frame method does not need a function to move the mesh between each time
iteration, it can be less time consuming. The interface is also located in the
same position, making the interface easy to track. With the domain always
remaining the same variational coupling of forces is easier when computing
from a reference domain.

There are generally two different approaches when discretizing an FSI scheme.
The first is a partitioned approach where fluid and structure are solved se-
quentially. The partitioned approach is appealing in that we have a wealth
of knowledge and legacy code that can be used to solve each of these kinds
of problems in an efficient manner. The difficulty however is dealing with
the interface. There are kinematic and dynamic conditions that has to be
fulfilled in FSI, and the coupling of these conditions is where problems arise.
Artificial added mass can appear when a partitioned approach is used, aris-
ing from poorly coupling between fluid and solid velocities (this is discussed
further in discussion chapter). However, in this thesis the monolithic ap-
proach is used. In the monolithic approach all of the equations are solved
simultaneously. The monolithic approach has the advantage of offering nu-
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merical stability for problems with strong added-mass effects [12], and are
fully coupled. The disadvantage over the partitioned approach is that we
loose flexibility when solving many equations simultaneously, and the com-
puting matrices can quickly become large, hence computationally costly and
more memory demanding. The overall ease of implementation and numerical
stability makes monolithic the preferred choice in this thesis.

The following chapter starts by introducing the mappings needed to change
between current and reference domain. Lastly, the equations will be dis-
cretized following the notation and ideas from [18].

3.1 Mapping Between Different Frames of Ref-
erence

Figure 3.1 depicts a simple Fluid-Structure Interaction domain. The fluid is
surrounded by elastic walls, like for instance a blood vessel. Ŝ and F̂ denotes
the solid and fluid reference domain respectively. Σ̂ denotes the interface in
the reference domain. ∂F̂in and ∂F̂out denotes the fluid in and outflow. ∂Ŝ is
the outer solid wall. The reference domain is mapped using χs and χf to the
time domain denoted as S and F . While the interface in the time domain is
denoted as Σ

Figure 3.1: Illustration of domain mapping

Let V̂ be a reference domain and V(t) be the current time domain. Then
using the deformation gradient (A.5) and the determinant of the deformation
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gradient named the Jacobian (A.6), to define a mapping between the volumes
from the current to the reference configurations.

The Jacobian is used to map the domain from the current to the reference
domain shown in equation 3.1, and the gradients acting on a vector u will
be mapped with the deformation gradient, shown in equation 3.2. Lastly the
divergence of a vector u will be mapped in a slightly different manner, shown
in equation 3.3.

∫
V(t)

1dx =

∫
V̂
Jdx (3.1)∫

V(t)

∇udx =

∫
V̂
J∇uF−1dx (3.2)∫

V(t)

∇ · udx =

∫
V̂
∇ · (JF−1u)dx (3.3)

3.2 Governing Equations for Fluid-Structure
Interaction

The following section formulates the fluid and solid equations in the ALE
description. The solid equation will remain in its Lagrangian description
but the fluid equations will be changed in terms of the convective term and
mapping between configurations. The derivatives in the different configura-
tions are shown in equations 3.4-3.6, to understand the need to change the
the convective term in the fluid equation when stated in an ALE description
[31].

3.2.1 Derivatives in Different Frameworks

In the Lagrangian framework the total and partial derivatives have the fol-
lowing relation:

Dtf(x, t) = ∂tf(x, t) (3.4)

The total and partial derivatives have the following relation in the Eulerian
framework, where u is the convecting velocity:
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Dtf(x, t) = u · ∇f + ∂tf(x, t) (3.5)

whilst in the ALE framework this concept is extended to take into account
the motion of the domain:

Dtf(x, t) = w · ∇f + ∂tf(x, t) (3.6)

Equation 3.6 shows that in the Lagrangian framework w is zero and for the
Eulerian framework w = u.

3.2.2 Solid Equation

Let Ω ∈ Ŝ ∪ F̂ be a global domain that consists of the fluid, structure, and
the interface. The interface is defined as: Σ̂ ∈ Ŝ ∩ F̂ . Let u be a global
velocity function that describes the fluid velocity in the fluid domain and the
structure velocity in the structure domain, u = us∪uf ∈ Ω. The deformation
function is also defined as a global function d = ds ∪ df ∈ Ω. Using global
velocity and displacement functions adds the feature of the velocity and dis-
placement being continuous across the entire domain. This is an important
feature which will be apparent once the interface conditions are stated.

The solid equation will be written in terms of the solid velocity us, in con-
trast to equation (2.1) which was defined with respect to the deformation d.
Defining the solid equation w.r.t to the deformation d can de done since the
velocity is defined as the partial derivative of the deformation: u = ∂d

∂t
The

solid equation takes the following form in the Lagrangian formulation:

ρs
∂u

∂t
= ∇ · (P ) + ρsf in Ŝ (3.7)

3.2.3 Fluid Equations

In the ALE description the fluid domain is moving, giving the need to rede-
fine the velocity in the convective term in (2.2) to account for the moving
domain:

u · ∇u→ (u− ∂d

∂t
) · ∇u (3.8)
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Where d is the deformation in the fluid domain. The domain velocity w = ∂d
∂t

is defined w.r.t deformation as the partial time derivative.

Applying the mappings from (3.1)-(3.3) and including the mesh velocity in
the convecting velocity as shown in (3.6), we end up with the fluid equations
mapped from the time domain to the reference domain. These are shown in
3.9-3.13, split up into a transient part, convection part, incompressible part,
and the stress part:

∫
V(t)

ρf
∂u

∂t
=

∫
V̂
ρfJ

∂u

∂t
dx (3.9)∫

V(t)

∇u(u− ∂d

∂t
)dx =

∫
JV̂

(∇u)F−1(u− ∂d

∂t
)dx (3.10)∫

V(t)

∇ · udx =

∫
V̂
∇ · (JF−1u)dx (3.11)∫

V(t)

∇ · σfdx =

∫
V̂
∇ · (JF−1σ̂f )dx (3.12)

σ̂f = −pI + µ(∇uF−1 + F−TuT ) (3.13)

Assembling all these terms together gives strong form the fluid equations
from a reference frame:

ρfJ
(∂u

∂t
dx+ (∇u)F−1(u− ∂d

∂t
)
)

= ∇ · (JF−1σ̂f ) + Jρff (3.14)

∇ · (JF−1u) = 0 (3.15)

3.3 Interface Conditions at the Boundary

The fluid‘s forces on the walls causes deformation in the solid domain and
vice versa. The interface is where the energies between solid and fluid are
transferred and we therefore need conditions on the interface.

The three interface conditions comes from simple physical properties and
consist of [18]:
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• Kinematic condition: uf = us on Σ̂. The fluid and structure velocities
are equal on the interface, meaning the fluid moves with the interface at
all times. Since we use a global function for u in both fluid and structure
domains, this condition is upheld. The fluid and solid velocities are
usually in different coordinate systems, the solid velocity is then not
available in Eulerian coordinates. We instead link fluid velocity at the
interface by using the fact that us = ∂d

∂t
. Setting uf = ∂d

∂t
at the

interface.

• Dynamic condition: σfnf = σsns on Σ̂. The dynamic interface condi-
tion relates to Newtons third law of action and reaction. The forces on
the interface area, here written as the normal forces are balanced on
the interface. The forces from the fluid are defined in the time domain
and is therefore written in terms of the reference domain:

JσfF
−Tnf = Pns on Σ̂

The dynamic condition is a Neumann condition that belongs to both
subproblems.

• Geometrical condition: The geometric condition implies that the fluid
and structure domains should not overlap, but rather that elements
connect so the functions needing to transfer force are continuos across
the entire domain.

3.4 Methods for Domain Representation and
Mesh Quality Preservation

The kinematic interface conditions states that the fluid moves with the solid,
and therefore the fluid domain needs to move in accordance with the solid
deformations. The deformations from the structure are extrapolated through
the interface into the fluid domain using, what is known in the literature as
lifting operators. The lifting operators redistributes the interior node loca-
tions to uphold the mesh quality in the fluid domain. The choice of lifting
operator is important for the overall FSI problem to be calculated [32]. When
large deformations occur, we need a good lifting operator to uphold the in-
tegrity of the computing domain. A poor choice may cause the cells to overlap
and singularities may occur. In the best case the numerical solution diverges,
in the worst case the numerical solution will be wrong. When extrapolating
deformation from the solid to the fluid domain, the fluid domain itself acts
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as a structure, deforming according to the deformations from the structure
domain.

I will in this section present different lifting operators, that act differently on
the computational domain. In chapter 5 the techniques will be tested and
investigated.

3.4.1 Harmonic Lifting Operator

The harmonic lifting operator can be used for small to moderate deforma-
tions. The harmonic lifting operator is the Laplace equation, transporting the
deformations from the solid into the fluid domain. A variable αu > 0,which
can be constant or varied spatially, can be multiplied to the Laplace equation,
to control the amount of lifting of deformations to the fluid domain.

−αu∇2d =0 in F̂ (3.16)

d =0 on ∂F̂\Σ̂ (3.17)

df =ds on Σ̂ (3.18)

When using the harmonic lifting operator the variable αu is very important
when calculating moderate deformations. For small deformations a constant
can be used for αu. But for larger deformations we need to be a bit more
clever. A good strategy for choosing αu was proposed by Wick in [32], and
further discussed in [23] and [15]. This alpha gets bigger when closer to the
interface:

αu =
1

xq
(3.19)

where x is the distance from the interface. If q = 0 the laplacian i recovered.
When the distance becomes larger, αu gets smaller, and vice versa. Defining
αu in this manner is a smart choice since it upholds the cell structure closer
to the interface where most of the cell distortion appears.

3.4.2 Biharmonic Lifting Operator

The biharmonic lifting operator provides more freedom than the harmonic in
choosing boundary conditions and choice of parameter αu > 0 [15, 32]. This
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is because the biharmonic extension, extends the deformation such that it
upholds the integrity of the cells even in large deformations. In its simplest
form it is written as:

−αu∇4d = 0 in F̂ (3.20)

The biharmonic extension is calculated using a mixed formulation where
we introduce a new function ω (not to be confused with the domain veloc-
ity), the function is added to the system so that we solve for 4 functions
(u,d, p, and ω):

ω = αu∇2d and − αu∇2ω = 0 in F̂ (3.21)

with the two types of boundary conditions. The first boundary conditions
being:

d = ∂nd =0 on ∂F̂ \ Σ̂ (3.22)

df =ds on Σ̂ (3.23)

The second type of boundary condition imposes conditions on d and ω, and
are written in terms of single component functions d(1),d(2) and ω(1), ω(2), in
the x and y directions.

d(1) =∂nd
(1) = 0, and ω(1) = ∂nω

(1) = 0 on ∂F̂in,out (3.24)

d(2) =∂nd
(2) = 0, and ω(2) = ∂nω

(2) = 0 on ∂F̂walls (3.25)
(3.26)

Since the biharmonic extension is a fourth order PDE, it will have a higher
computational cost [18] than the harmonic.

3.5 Discretization of Monolithic Fluid-Structure
Interaction Equations

The temporal discretization is performed using a finite difference scheme and
the spatial discretization is treated with the finite element method, following
the ideas and notations of [31].
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The scheme is first introduced in a weak form and using, for simplicity, the
harmonic lifting operator.

The full monolithic FSI weak formulations reads:
In the domain Ω ∈ RD(D = 1, 2, 3) and time interval [0,T], find u ∈ Ω×R+ →
RD , p ∈ Ω × R+ → R and d ∈ Ω × R+ → RD. Let φ, ψ and γ be the test
functions used in the weak formulation, which are continuous across the entire
domain.

(Jρf∂tu, φ) + (J(∇u)F−1(u− ∂td), φ)F̂ =0 (3.27)
(JσfF

−T ,∇φ)F̂ =0 (3.28)
(ρs∂tu, φ)Ŝ +

(
P,∇φ

)
Ŝ =0 (3.29)

(αu∇u,∇ψ)F̂ + (∇ · (JF−1u), γ)F̂ =0 (3.30)
δ
(
(∂td, ψ)Ŝ − (u, ψ)Ŝ

)
=0 (3.31)(

Jσf,pF
−T ,∇φ

)
=0 (3.32)

Introducing the θ-scheme from [31], which has the advantage of easily being
changed from a backward (implicit), forward(explicit), or a Crank-Nicholson
(implicit) scheme, by changing the value of θ. The Crank-Nicholson scheme
is of second order, but suffers from instabilities in this monolithic scheme for
certain time step values [31]. A remedy for these instabilities is to chose a
Crank-Nicholson scheme that is shifted towards the implicit side. How this
is performed will become evident once the scheme is defined.

The variational form is defined by dividing the equations (3.27) - (3.32) into
four categories. The four divided categories consists of: a time group AT
(with time derivatives), implicit AI (terms always kept implicit), pressure
AP and the rest AE (stress terms and convection):

AT (U) = (Jρf∂tu, φ)− (J(∇u)F−1(∂td), φ)F̂ (3.33)
+ (ρs∂tu, φ)Ŝ + (∂td, ψ)Ŝ (3.34)

AI(U) = (αu∇u,∇ψ)F̂ + (∇ · (JF−1u), γ)F̂ (3.35)
AE(U) = (J(∇u)F−1u, φ)F̂ + (Jσf,uF

−T ,∇φ)F̂ (3.36)
+
(
P,∇φ

)
Ŝ − (u, ψ)Ŝ (3.37)

AP (U) =
(
Jσf,pF

−T ,∇φ
)

(3.38)

Notice that the fluid stress tensors have been split into a velocity and pressure
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part.

σf,u = µ(∇uF−1 + F−T∇u) (3.39)
σf,p = −pI (3.40)

For the time group, discretization is done in the following way:

AT (Un,k) ≈1

k

(
ρfJ

n,θ(un − un−1), φ
)
F̂ −

1

k

(
ρf (∇u)(dn − dn−1), φ

)
F̂ (3.41)

+
1

k

(
ρs(u

n − un−1), φ
)
Ŝ +

1

k

(
(dn − dn−1), ψ

)
Ŝ (3.42)

The Jacobian Jn,θ is expressed as:

Jn,θ = θJn + (1− θ)Jn−1 (3.43)

Let the θ scheme be defined as:

AT (Un,k) + θAE(Un) + AP (Un) + AI(U
n) = (3.44)

− (1− θ)AE(Un−1) + θf̂n + (1− θ)f̂n−1 (3.45)

By choosing a value of θ = 1 we obtain the backward Euler scheme, for θ = 1
2

we get the Crank-Nicholson scheme and for the shifted Crank-Nicholson we
set θ = 1

2
+ k, effectively shifting the scheme towards the implicit side. f̂ is

the body forces. The impact of choosing values for θ will be investigated in
chapter 4.

17



18



Chapter 4

Verification and Validation of
the Fluid-Structure Interaction
Implementation

When investigating a real world problem with a numerical model, the general
approach is to: describe the problem with a mathematical model, discretize
and implement the model on a computer, and finally simulate the imple-
mented model to gain insight into the real world problem.

A question then immediately arises, computer models have been known to be
incorrect in the past [17], how can we trust the insight gained from numerical
simulation? To answer this question we need to adress another question, are
the equations implemented correct? If so, is the mathematical description
of the problem adequately defined? Without answering these questions, be-
ing confident that your solutions are correct is difficult [17]. The process of
generating evidence that computed solutions meets certain requirements to
fulfill an intended purpose, in the context of scientific computing, is known
as Verification and Validation. The goal of this section will hence be to ver-
ify and validate the different numerical schemes outlined in the two previous
chapters.

The chapter starts with the process of Verification, where the fluid and struc-
ture numerical schemes will be verified separately. Then use a well known
benchmark to validate the fluid, structure, and FSI models, separately.
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4.1 Verification

Verification, in the context of scientific computing, is the process of determin-
ing wether or not the implementation of numerical algorithms in computer
code, is correct [16]. Mapping a mathematical model to a computational
model there will always be introduced an error, often referred to as trun-
cation error. Verification helps us identify, quantify, and reduce the errors,
assuring that there are no coding mistakes which effects the truncation er-
ror. Verification does not address wether or not the computed solutions are
in alignment with physics in the real world. It only tells us that our model
is computed correctly or not.

In Verification there are multiple classes of test that can be performed, one
of which is order of convergence tests. Order of convergence are based on the
behavior of the error between a known exact solution and a computed solu-
tion [20]. The most rigorous of the order of convergence test is the Method of
Manufactured Solution (MMS) [16]. When performing a MMS test, rather
than looking for an exact solution, we manufacture one. The idea is to create
a solution a priori, and use this solution to generate an analytical source term
for the governing PDEs and then compute the PDE with the source term
to produce a solution. The manufactured solution does not need to have a
physically realistic relation, since the solution is only testing the mathemat-
ics.

When manufacturing a solution in MMS tests there are a number of criteria
that needs to be met for a solution to be sufficient. The manufactured solu-
tions should be chosen to be non-trivial and analytic [16, 20]. The solutions
should be manufactured such that all terms of the equation are of the same
order of magnitude. For this reason trigonometric and exponential functions
can be a smart choice, since they are smooth and infinitely differentiable. In
short, a good manufactured solution is one that is complex enough so that
it rigorously tests each part of the equations.

The procedure of MMS is as follows [16]:

• We define a mathematical model on the form L(u) = 0, where L(u) is
a differential operator and u is a dependent variable.

• Define the analytical form of the manufactured solution û
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• Use the model L(u) with û inserted to obtain an analytical source term
f = L(û)

• Initial and boundary conditions are enforced from û

• Find the numerical solution of the problem with the given source term,
L(u) = f

If we let u be the numerical solution and û be the exact solution, ||.|| be the
L2 norm, the error can be computed as:

E = ||u− û|| (4.1)

When we decrease the node spacing (∆x) or decrease time step size (∆t),
we expect the solution to convergence towards a given solution and hence
the error becomes smaller. If we assume uniform node spacing in all spatial
directions:

E = C1∆xk + C2∆tl (4.2)

where C1 and C2 are constants, k = m+ 1 and m is the polynomial degree of
the spatial elements. The error is hence dependent on the node spacing and
the time step. In order to compute the convergence k based on the error, we
first have to let the term with C2∆tl be negligible compared to C1∆x2. Let
En+1 and En be the computed errors of a solution with fine and coarse node
spacing respectively. Using equation (4.2) we can find k by:

En+1

En
=
(∆xn+1

∆xn

)k (4.3)

k =
log(En+1

En
)

log(∆xn+1

∆xn
)

(4.4)

After refining the mesh while keeping ∆t fixed and sufficiently small, k can
be compared to the theoretical order of convergence for each given problem.
If the k that we have found matches the theoretical order of convergence,
with small margin of error, there are no coding mistakes present which ef-
fects the order of convergence, and thus the accuracy of the numerical scheme.
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4.1.1 Method of Manufactured Solution on the Imple-
mentation of the Solid Equation

The MMS test is constructed to verify the implementation of the solid equa-
tion (3.7), with the restriction:

u =
∂d

∂t
(4.5)

Solutions d̂ and û are manufactured with sine and cosine such that the
derivatives are guaranteed and we have temporal and spatial dependencies.
The solutions are also manufactured to uphold the restriction u = ∂d

∂t
.

d̂e =(cos(y)sin(t), cos(x)sin(t))

ûe =(cos(y)cos(t), cos(x)cos(t))

The manufactured solutions are used to produce a sourceterm fs :

ρs
∂ûe

∂t
−∇ · (P (d̂e)) = fs (4.6)

The equations are solved for d and u on a unit square domain, and the
number N denotes the number of spatial points in x and y direction. The
computations were simulated for 10 time steps and the error was calculated
for each time step and then the mean of all the errors were used as a measure
of the error.

In Table 4.1 we set m = 1, and vary the number of spatial points from 4 to 64
keeping ∆t = 10−7. The error Eu and Ed decreases for increasing values of
N.The order of convergence ku and kd converges toward the expected value
of 2.

N ∆t m Eu ku Ed kd

4 1× 10−7 1 0.0068828 - 3.7855× 10−9 -
8 1× 10−7 1 0.0017204 2.0002 9.4622× 10−10 2.0002
16 1× 10−7 1 0.0004300 2.0000 2.3654× 10−10 2.0000
32 1× 10−7 1 0.0001075 2.0000 5.9136× 10−11 2.0000
64 1× 10−7 1 0.0000268 2.0000 1.4783× 10−11 2.0000

Table 4.1: Order of convergence test for the spatial resolution using the
method of manufactured solution on the implementation of the Solid equation
with m = 1
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In table 4.1.1 we check the temporal convergence, setting the number of
spatial points has been fixed to 64, with varying ∆t from 0.1 halving each
step to 0.0065. The error Eu and Ed decreases for decreasing values of ∆t.
The scheme tested is theoretically temporal first order accurate, by setting
a value θ = 1 expecting a temporal order of convergence of 1. In table 4.1.1
we can observe that the convergence of ku and kd tends towards 1.

N ∆t Eu[×10−6] ku Eu[×10−8] kd

64 0.1 0.027663 0.0034221
64 0.05 0.013390 1.0467 0.0018093 0.9194
64 0.025 0.007016 0.9324 0.0009246 0.9685
64 0.0125 0.003645 0.9444 0.0004688 0.9798
64 0.00625 0.001828 0.9957 0.0002414 0.9571

Table 4.2: Order of convergence test for the temporal resolution using the
method of manufactured solution on the implementation of the Solid equation

The MMS test of the solid equation has a clear trend toward 2 in spatial
direction, and 1 in temporal direction. The temporal convergence rate k is
not exactly 1, and is likely caused by the number of spatial points N = 64 is
not high enough, such that the spatial error is negligible. With this in mind
the trends shows convergence towards the theoretical convergence, which
concludes that the solid equation has been implemented correctly.

4.1.2 Method of Manufactured Solutions on Fluid Equa-
tions with Prescribed Motion

In this section we verify the fluid equations (3.14) in the ALE framework
computed on a reference domain, with a prescribed motion.

The functions û, d̂ and p̂ are manufactured to uphold the restrictions u = ∂d
∂t

and incompressible fluid, and are made with sine and cosine function to
uphold the criteria of MMS.

d̂ =(cos(y)sin(t), cos(x)sin(t))

û = ŵ =(cos(y)cos(t), cos(x)cos(t))

p̂ =cos(x)cos(t)

Whilst testing the implementations of the fluid equations, the opportunity
arises to also test the mappings between current and reference configurations.
The source term ff is produced without mappings:
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ρf
∂û

∂t
+∇û(û− ∂d̂

∂t
)−∇ · σ(û, p̂)f = ff in F

To be specific, we use ff from the current configuration and map it to the
reference:

ρfJ
∂u

∂t
+ (∇u)F−1(u− ∂d

∂t
) +∇ · (J ˆσf (u, p)F

−T ) = Jff in F̂

The computations are performed on a unit square domain and the compu-
tations were simulated with 10 timesteps and the error was calculated for
each time step and then the mean of all the errors was taken and used as a
measure of the error.

In table 4.3 we check the temporal convergence keeping the spatial points
constant with N = 64, by varying ∆t by half, from 0.1 to 0.0125. The errors
for fluid velocity and pressure Eu and Ep decrease with decreasing time steps.
The compute convergence ku and kp tends toward a value of 1.

N ∆t Eu ku Ep kp

64 0.1 5.1548× 10−5 - 0.008724 -
64 0.05 2.5369× 10−5 1.0228 0.004290 1.0240
64 0.025 1.2200× 10−5 1.0561 0.002058 1.0596
64 0.0125 0.56344× 10−5 1.1145 0.0009556 1.1068

Table 4.3: Order of convergence test for the temporal resolution using the
method of manufactured solution on the implementation of the fluid equa-
tions

In table 4.4 we check the spatial convergence keeping the time step fixed
∆t = 10−6. Increasing spatial points N from 2 to 16. The error Eu and
Ep decreases with increasing spatial points. Computed convergence ku tends
toward 3 and kp tends towards 2, which is expected when computing with P2-
P2-P1 elements, for velocity, deformations and pressure, respectively.

N ∆t m Eu ku Ep kp
2 1× 10−6 2 8.6955× 10−4 - 0.01943 -
4 1× 10−6 2 1.0844× 10−4 3.0032 0.00481 2.0140
8 1× 10−6 2 0.1354× 10−4 3.0007 0.00119 2.0120
16 1× 10−6 2 0.0169× 10−4 3.0001 0.00029 2.0074

Table 4.4: Results of MMS ALE FSI u=w
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The MMS test of the fluid equations computed from the reference domain
shows trends in the spatial convergence toward 3 in the fluid velocity and
2 in pressure, which is expected. For the temporal convergence of the fluid
equation the trend is towards 1 but is not exactly 1. The reason could be
that the number of spatial points are not high enough, and also that the
fluid equations have been computed on a reference domain. Nonetheless
the convergence rates are sufficient and giving the conclusion that the fluid
equations are implemented correctly.

Discussion of the Method of Manufactured Solutions Tests

It should be noted that a more rigorous MMS test of the FSI problem would
be to test the entire FSI problem, and not splitting the test into parts. To
do a full MMS of the entire FSI problem, one needs to take into account
the condition of continuity of velocity on the interface [5], the stresses need
to equal on the interface and the flow needs to be divergence free. Manu-
facturing such a solution is very difficult [4]. The author has yet to find a
paper that manufactures a solution fulfilling all the condition in a rigorous
manner. For this reason the MMS was split into parts, and for the intended
use the author finds the results from MMS tests sufficient to proceed with
validation.

4.2 Validation

After the code has been verified, we move on to Validation which is the
process of determining if a model gives an accurate representation of real
world physics within the bounds of the intended use [17]. Depending on
the quantities of interest and the problem at hand the computational model
has to be validated. However, when solving a multiphysics problem, good
benchmarks and trustworthy experimental data might be difficult to produce
[14]. Therefore we will here validate the solver, brick by brick, starting with
simple testing of each part of the model and building more complexity and
eventually testing the entire model.

In the benchmarks used for validation, there are 9 different tests. For each
test a refinement with respect to temporal an spatial resolution is performed.
However, one major draw back is that the results of the benchmark were
known a priori. It is easier to mold the model to the data we already have,
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and as Oberkampf and Trucano in [17] puts it “Knowing the ‘correct’ answer
beforehand is extremely seductive, even to a saint”. Knowing the limitations
of our tests will therefore strengthen our confidence in the model. The pro-
cess of verifying and validating, if one does not clearly know the bounds of
sufficient accuracy, is an endless process [17].

4.2.1 Fluid-Structure Interaction between an elastic
object and laminar incompressible flow

The benchmark used in this chapter is called “Proposal for numerical bench-
marking of fluid-structure interaction between an elastic object and laminar
incompressible flow” [11], based on an older well known CFD benchmark[21].
The authors provides a computational domain, and boundary conditions,
splitting up into a: computational solid mechanical (CSM) part called CSM1-
3, a CFD part called CFD1-3 and a full FSI part named FSI1-3. Providing
in total 9 subproblems with 3 problems in each part. The chapter starts by
defining the computing domain, the boundary conditions and quantities for
comparison. For the sake of completeness we split up into the three parts,
CSM, CFD and FSI, listing how the subtests are computed and providing
results.

Problem Defintion

Domain

The computational domain consists of a rigid circle with an elastic bar at-
tached behind the circle. The circle is positioned at (0.2, 0.2) making it 0.05
off center vertically. This shift in the domain is done to induce oscillations,
for some flow conditions, to an otherwise symmetric flow.
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L H l h A
2.5 0.41 0.35 0.02 (0.2, 0.6)

Table 4.5: Domain parameters

The mesh shown in figures 4.1 and 4.2 were created using Gmsh, with 11556
Cells, which is the mesh with the smallest node spacing. Table 4.6 shows the
number of cells and dofs used in each mesh. Elements are the computational
cells in the mesh and dofs are the degrees of freedom, often called the number
of unknowns.

Mesh level Elements Dofs
1 2474 21749
2 7307 63365
3 11556 99810

Table 4.6: Mesh levels showing number og cells and dofs in each mesh

Figure 4.1: Picture of entire FSI computational domain with 11556 cells

Figure 4.2: Picture of FSI computational domain with 11556 cells, zoomed
in with the solid domain marked in pink. Around the circle we can see a
small boundary layer with the width of 2 cells
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Boundary conditions

A parabolic profile has been prescribed to the inlet velocity that increases
from t = [0, 2] and is kept constant after t = 2. The fluid velocity on upper
and lower walls are set to zero, normally called a “no slip” condition. The
pressure is set to zero on the outlet.

u(0, y) = 1.5u0
y(H − y)

(H
2

)2

u(0, y, t) = u(0, y)
1− cos(π

2
t)

2
for t < 2.0

u(0, y, t) = u(0, y) for t ≥ 2.0

Quantities for comparison

When the fluid moves around the circle and bar it exerts a frictional force.
These forces are split into drag and lift and calculated as follows:

(Fd, FL) =

∫
S

σfndS

where S is the part of the circle and bar in contact with the fluid.
We define a point A = (0.2, 0.6) on the right side of the bar. Where this
point is in the spatial direction gives a measure for how much the bar has
deflected.
For some given inflow conditions, unsteady solutions appear. For the un-
steady solutions the values, meaning drag and lift, and displacement in x
and y directions, are represented by the mean and amplitude values:

mean =
1

2
(max+min) (4.7)

amplitude =
1

2
(max−min) (4.8)

(4.9)

In each test the values denoted as ref are the values taken from the original
benchmark proposal paper [11].
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CFD test cases

The CFD tests can be simulated with two approaches. The first way assumes
the bar to be rigid object, meaning that the computational domain consists of
the fluid domain only, and a no slip condition has been set on the interface.
The other way, which is implemented in this thesis, is by computing the
problem with the entire FSI scheme, but setting by setting ρs = 106 and
µs = 1012, such that the bar is almost completely rigid, only giving rise to
very small deformation (in the 10−9 − 10−10 range).

The CFD tests cases, CFD1 and CFD2, are simulated with Reynolds numbers
20 and 100 converging to steady solutions, 4.7. The CFD3 benchmark has
a Reynolds number 200 at which point the asymmetry in the geometry will
cause vortex shedding behind the circle and bar, and thus create an unsteady
solution.

Parameters CFD1 CFD2 CFD3
ρf [103 kg

m3 ] 1 1 1
νf [10−3m2

s
] 1 1 1

U [m
s

] 0.2 1 2
Re = Ud

νf
20 100 200

Table 4.7: Summary of all the parameters in CFD tests

Figure 4.3: CFD2 steady state case fluid flow with 11556 cells

Notice in figure 4.2.1, which shows the fluid flow of the CFD2 case, that since
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the circle and bar are positioned non symmetric in the y direction there is
more fluid flowing closer to the upper boundary. The CFD2 case has an inlet
velocity just below the point of inducing oscillations.

Table 4.8 shows the results for the CFD1 testcase, showing convergence to-
wards the referential values in Drag and Lift for increasing elements and
dofs.

elements dofs Drag Lift
2474 21749 14.059 1.100
7307 63365 14.110 1.080
11556 99810 14.200 1.1093
ref 14.29 1.119

Table 4.8: Results of CFD1 case simulated as full FSI, with almost rigid bar

Table 4.9 shows the results for CFD2 tending towards the referential values
in Drag and Lift for increasing elements and dofs.

elements dofs Drag Lift
2474 21749 134.9 10.38
7307 63365 135.4 10.0
11556 99810 136.1 10.41
ref 136.7 10.53

Table 4.9: Results of CFD2 case run as full FSI with almost rigid bar

Table 4.2.1 shows the results for the CFD3 benchmark, the results show clear
convergence toward the ref value for increased number of cells and dofs.

elements dofs Drag Lift
2474 21749 434.42± 4.28 −15.63± 407.59
7307 63365 435.54± 5.06 −11.77± 425.73
11556 99810 438.13± 5.42 −10.01± 435.40
ref ref 439.45± 5.61 −11.893± 437.81

Table 4.10: Results of unsteady state case CFD 3 with ∆t = 0.01, where the
ref was computed with ∆t = 0.005

The solutions to the CFD1-3 test cases gives satisfactory results compared
to the referential values given in the benchmark paper.

30



Computational Structural Mechanical test cases

The CSM tests are calculated using only the bar as computational domain.
A body force fs is set a gravitational force g, which has been kept fixed
throughout the CSM tests, changing only the material parameters of the
solid. The tests CSM1 and CSM2 gives rise to steady state solutions. The
difference between them is a more slender bar. The CSM 3 gives unsteady
solutions, and since there is no friction the bar should, if energy is preserved
hence a correct solution, move down and back up infinitely.

Figure 4.4: Picture of the coarsest solid mesh used in the MMS test

Parameters CSM1 CSM2 CSM3
ρs[103 kg

m3 ] 1 1 1
νs 0.4 0.4 0.4
µs[106m2

s
] 0.5 2.0 0.5

g 2 2 2

Table 4.11: Summary table of the parameters used in the CSM tests

The Tables 4.12 ,4.13 and 4.14 shows the results of the CSM1, CSM2 and
CSM3 cases respectively. All three show a clear tendency towards the refer-
ential values when increasing the number of elements.

The Figure 4.9 is of displacement at the point A in x and y direction of the
CSM3 test. The CSM3 test was run with Crank-Nicholson, θ = 0.5, and
it can be seen that in the y displacement the bar returns to it initial state,
that is with zero displacement. This results indicates that the energy in the
system has been preserved.

The results are within 1% error margin, and we therefore consider the results
as satisfactory.
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elements dofs dx(A)[×10−3] dy(A)[×10−3]
725 1756 -5.809 -59.47
2900 6408 -6.779 -64.21
11600 24412 -7.085 -65.63
46400 95220 -7.116 -65.74
ref ref -7.187 -66.10

Table 4.12: Results of the steady CSM1 case from coarse to fine mesh.

Elements Dofs dx(A)[×10−3] dy(A)[×10−3]
725 1756 -0.375 -15.19
2900 6408 -0.441 -16.46
11600 24412 -0.462 -16.84
46400 95220 -0.464 -16.87
ref ref -0.469 -16.97

Table 4.13: Results of the steady CSM2 case from coarse to fine mesh.

elements dofs dx(A)[×10−3] dy(A)[×10−3]
725 1756 −11.743± 11.744 −57.952± 58.940
2900 6408 −13.558± 13.559 −61.968± 63.440
11600 24412 −14.128± 14.127 −63.216± 64.744
46400 95220 −14.182± 14.181 −63.305± 64.843
ref -14.305± 14.305 -63.607± 65.160

Table 4.14: Results of the unsteady CSM3 case with mesh from coarse to
fine.
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Figure 4.5: Displacement in x direction,
timeinterval (0,10)

Figure 4.6: Displacement in y direction,
timeinterval (0,10)

Figure 4.7: Displacement in x direction,
timeinterval (8,10)

Figure 4.8: Displacement in y direction,
timeinterval (8,10)

Figure 4.9: Plots of the results for CSM3 showing Displacement of point A

FSI tests

The FSI tests are run with 2 different inflows conditions. FSI1 gives a steady
state solution while the others are unsteady. FSI2 gives the largest deforma-
tion is therefore considered the most difficult of the three [19], giving defor-
mations of 2.5 times greater than the flag height. FSI2 was computed using
the harmonic lifting operator with variable αu for ∆t = 0.01,∆t = 0.001.
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The FSI3 test has the highest inflow speed giving medium deformations but
more rapid oscillations. The parameters for FSI3 are shown in table 4.15.
FSI3 was computed using the biharmonic lifting operator with a constant αu
for ∆t = 0.01,∆t = 0.001.

Parameters FSI1 FSI2 FSI3
ρf [103 kg

m3 ] 1 1 1
νf [10−3m2

s
] 1 1 1

u0 0.2 1 2
Re = Ud

νf
20 100 200

ρs[103 kg
m3 ] 1 10 1

νs 0.4 0.4 0.4
µs[106m2

s
] 0.5 0.5 2

Table 4.15: FSI Parameters

Cells Dofs dx(A)[×10−3] dy(A)[×10−3] Drag Lift
2474 21749 0.0229 0.8265 14.0581 0.7546
7307 63365 0.02309 0.7797 14.1077 0.7518
11556 99810 0.02295 0.8249 14.2046 0.7613
ref ref 0.0227 0.8209 14.295 0.7638

Table 4.16: Results of FSI 1 test case

Figure 4.10: FSI2 test case Fluid velocity at t = 9.70 s shown on the reference
mesh, the bar has in reality moved but is not shown here.

34



Figure 4.11: FSI2 test case deformation at t = 9.70 s. The bar is marked
with pink colour and deformed using warp by vector in Paraview.

The tables 4.17 and 4.18 shows results for the FSI2 test case. First observing
the third and fourth column, we can observe that the displacement of the bar
appear to converge towards the reference values. However, for the for drag
and lift neither is converging for ∆t = 0.01. For a finer time step, the lift is
greatly improved, see Table 4.18 , however the drag is off be ≈ 30%.

Cells Dofs dx(A)[×10−3] dy(A)[×10−3] Drag Lift
2474 21749 −15.26± 13.44 1.34± 82.38 157.02± 14.79 −1.426± 258.4
7307 63365 −14.96± 13.24 1.01± 81.67 159.01± 16.33 1.88± 254.2
11556 99810 −14.96± 13.23 1.29± 81.9 161.09± 17.66 0.06± 255.78
ref ref -14.58± 12.44 1.23± 80.6 208.83± 73.75 0.88± 234.2

Table 4.17: FSI2 test case results, ∆t = 0.01, using the harmonic lifting
operator.

Cells Dofs dx(A)[x10−3] dy(A)[x10−3] Drag Lift
2474 21749 −15.10± 13.32 1.16± 82.46 159.53± 17.44 0.68± 259.10
7307 63365 −14.85± 13.14 1.21± 81.72 160.72± 17.84 0.93± 255.14
11556 99810 −14.83± 13.11 1.24± 81.6 161.50± 18.17 0.62± 254.40
ref ref -14.58± 12.44 1.23± 80.6 208.83± 73.75 0.88± 234.2

Table 4.18: FSI2 with ∆t = 0.001, using harmonic lifting operator.
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Figure 4.12: Displacement x vs time Figure 4.13: Displacement y vs time

Figure 4.14: Drag vs time Figure 4.15: Lift vs time

Figure 4.16: Plots of FSI2 result values for, ∆t = 0.001, with 11556 elements

In tables 4.19 and 4.20 shows that results for FSI3 with ∆t = 0.01 and
∆t = 0.001, respectively. Both tables show convergence for displacements
in both directions and for drag. In the results for lift the values are more
scattered and not showing a clear trend and is about 50 % off the referential
values.
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Cells Dofs dx(A)[×10−3] dy(A)[×10−3] Drag Lift
2474 21249 −1.79± 1.80 3.29± 26.41 439.36± 12.04 1.96± 142.31
7307 63365 −2.48± 2.48 1.64± 32.82 449.77± 18.02 3.41± 153.47
11556 99810 −2.47± 2.45 1.27± 32.81 456.60± 18.73 1.55± 153.46
ref ref −2.69± 2.56 1.48± 34.38 457.3± 22.66 2.22± 149.78

Table 4.19: FSI3 unsteady test case results with ∆t = 0.01, with biharmonic
bc1 lifting operator

Cells Dofs dx(A)[×10−3] dy(A)[×10−3] Drag Lift
2474 21249 −2.188± 2.11 3.56± 2.90 435.19± 9.77 −1.57± 151.43
7307 63365 −1.42± 4.70 0.77± 28.50 454.38± 19.75 1.79± 155.08
11556 99810 −2.23± 6.164 1.72± 44.48 459.12± 22.97 3.12± 171.22
ref ref −2.69± 2.56 1.48± 34.38 457.3± 22.66 2.22± 149.78

Table 4.20: FSI3 unsteady test case results with ∆t = 0.001, with biharmonic
bc1 lifting operator

Discussion on FSI tests

A very important thing to notice about this benchmark [11] is that it is a pro-
posal for a benchmark, as it is called “Proposal for numerical benchmarking of
fluid-structure interaction between an elastic object and laminar incompress-
ible flow”. So the point of the paper is give a specific problem setup which
others can contribute result-data. A paper was published in 2010 by J. Hron,
Turek, et al, [24] that compared results of different discretizations and solu-
tion approaches. The study [24] gives 7 different methods and results for two
of the FSI test cases. They state in the numerical results that “However, also
clear differences between the different approaches with regard to accuracy
are visible. Particularly for the drag and lift values, which lead to differences
of up to order 50%, and also for the displacement valueswhich are in the
range of 10% errors.”. With this in mind it is important to know that the
referential values used are only those reported from the original paper, which
only looked at one implementation. While the paper which compares results,
only 2 of the 7 contributions were schemes of monolithic nature, which are
the closest one should refer to in this thessis. In the Appendix B is a copy of
the results from the paper comparing schemes, showing different results for
different discretization, with different time steps and unknowns.

The FSI1 test gives a low fluid velocity and gives very low displacements.

37



FSI1 is therefore not a rigid test for FSI. In fact I personally experienced in
the beginning of making the FSI solver, that even that even with an erronous
implementation I obtained adequate results. However it is a good test for
early checks, because if FSI1 is wrong more complex cases will definitely not
provide good results.

For the FSI2 test case we only have results from the initial Hron and Turek
paper [11]. As previously stated the results for the FSI3 case differ by in
some cases 50% for Drag and Lift. With this in mind, in the FSI2 case I
am off by less then 10% for displacement in x and y direction and for Lift.
While Drag is off by about 50%. It is reasonable to assume that since there
were such differences in the results for different implementations for the FSI3
results, we would expect similar behavior in the FSI2 results.

If we compare the results reported in the FSI3 case in the inital paper by
Hron and Turek 2006, to their reported results in 2010 B implementation 3,
we can see that they do not report the same results same scheme, leading
one believe that that they have changed their implementation a bit.

A note should be added about the construction of the computational meshes.
If we look at figures 4.1 and 4.2. The node spacing on the inlet is small to
ensure that the parabolic inlet profile was adequately represented. There
is also smaller node spacing around the circle and around the bar, leading
to larger node spacing as we move downstream. In the unsteady CFD and
FSI cases there is vortex shedding happening downstream. With large node
spacing in this area the vortexes may not be produced to its full extent, hence
introducing errors in the unsteady results.

In hindsight, larger gaps in the number of elements between each mesh should
have been larger. The three meshes that are mainly used go from 2474 cells
to 7307 cells to 11556 cells. When calculating in 2D to see converging effects
in the results of smaller node spacing, one should make meshes with 4 times
the number of cells for each new mesh. This might have helped in converging
to the referential values. The reason for not being able to run lower values
for ∆t or increased number of cells in the meshes was a lack of computational
resources.
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Chapter 5

Comparing the Effects of
Different Lifting Operators and
Investigating Numerical
Stability in Fluid-Structure
Interaction Problems

The first section is devoted to comparing different lifting operators defined
in section 3.4. The choice of lifting operators is crucial in FSI problems [23].
When handling large structural deformations one has to be very cautious
about the choice of lifting operators. A good lifting operator upholds the
integrity of the computational domain, allowing large deformations in the
solid, moving into the fluid domain. The most robust lifting operators are
also the most computational expensive. There is therefore a trade-off between
computational cost and robustness. In an problem where the deformations
are small the simplest lifting operator will suffice, however if the deformations
are large one of the more computational costly lifting operators have to be
used.

The second section briefly investigates the impact of choosing different value
for θ in the θ-scheme. The effects of choosing a Crank-Nicholson or a back-
ward Euler scheme is known to have effects on the energy preservation in
a computational system. Also the effects of shifting the Crank-Nicholson
scheme is investigated using the FSI2 and FSI3 benchmarks from the previ-
ous chapter.
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5.1 Methods for Comparing Lifting Opera-
tors

The comparisons will be performed using a version of the CSM1 test as
defined the previous chapter, with the same computational domain as the
full FSI benchmark and parameters of the CSM1. The version of CSM1 test
case is now computed as a full FSI problem with the fluid initially at rest. A
gravitational force is applied to the structure like the previous CSM test. The
only difference is that we now use the full domain from the 4.2.1. The test is
simulated as time-dependent with a the backward Euler scheme, leading to
a steady state solution.

The tests will compare the different operators by investigating how the de-
formation from the solid domain is lifted into the fluid domain, investigating
the mesh after deformation to see how much cells distort and where the cells
distort. This is visualized using Paraview with its built in function warp by
vector, which redistributes nodes based on the displacement values in each
nodal point. The computing domain is the same as used in the Hron Turek
benchmark, from the previous section. The Dirichlet boundaries are set to
the “no slip” condition. The left Neumann boundary is set to “do nothing”,
and zero pressure.

The different operators will be measured with the minimal value of the Ja-
cobian. The Jacobian is also known as the volume ratio, and if the Jacobian
is zero anywhere in the domain it means that the volume is negative, and
cells overlap. If cells overlap it can cause singularity in the matrices during
assembly. When cells overlap it can in the best case cause the computed
numerical code to diverge, and in the worst case just give very wrong results.

A plot of the deformation in the domain has been added, to to visually
inspect the result of each lifting operator. It is possible to see that if get
thin triangles in the computational domain then the lifting operator is not
good enough, and we might get singularities in the computing matrix. I also
investigated how different lifting operators react differently in the FSI2 and
FSI3 test cases from the previous section. To that end, quantitative results
of the drag an lift are compared with plotting drag and lift versus time. Bc1
and bc2 denotes the boundary conditions 1 and 2 used when employing the
biharmonic lifting operator.
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Results of Investigating Different Lifting Operators

Figure 5.1 shows the minimum of the Jacobian of the entire domain. The
harmonic operator with a constant αu parameter, results in overlapping cells,
which can be seen from the the plot since it is below zero. In contrast,
the harmonic lifting operator with variable αu, and both biharmonic lifting
operators preserves the cell quality.

Figure 5.1: plot of the minimum of J vs time in entire domain, using the
CSM1 test. ∆t = 0.05

Figure 5.6 displays how the mesh nodes are distrubuted at the steady state
solution in the CSM1 test case. The same as we observed in Figure 5.1, is
here displayed visually, only the harmonic lifting operator with constant αu
is not able to avoid inverted cells. However, the computed numerical code
was able to compute with the harmonic constant αu operator, but as we can
see in table 5.1 the displacement values are incorrect.
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Figure 5.2: Harmonic lifting operator with
spatial dependent αu

Figure 5.3: Harmonic lifting operator with
constant αu

Figure 5.4: Biharmonic lifting operator with
boundary condition 1

Figure 5.5: Biharmonic lifting operator with
boundary conditions 2

Figure 5.6: Results of testing different lifting operator using the CSM1 test-
case computing full FSI. Green square denoting good cell integrity.

Technique dy(A)[×10−3] dx(A)[×10−3]
Harmonic -65.406 -7.036
Constant -43.033 -2.999
Bibc1 -65.404 -7.036
Bibc2 -65.405 -7.036
Hron & Turek −66.10 −7.187

Table 5.1: Displacements results of different lifting operators of CSM1 test

FSI2 with Different Lifting Operator

Figure 5.7 shows the harmonic and the two biharmonic mesh motion tech-
niques for the FSI2 case. All three are similar and only a slight change in
the period can be noticed.

42



Figure 5.7: FSI2 displacements, drag, and lift, vs time, with different lifting
operators: harmonic with varying αu, biharmonic bc1 and bc2. ∆t = 0.01

Figure 5.8, 5.9, 5.10 and 5.11 shows the displacement in x and y direction,
and drag and lift plots respectively. The displacements and Lift plots show
only a slight change in the period. While the Drag for the harmonic lifting
operator with mesh dependent αu shows an increasing in the Drag value of
about 10.
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Figure 5.8: Displacement in x direction vs time for FSI3 with different lifting
operators: Harmonic varying αu, Biharmonic bc1 and bc2. ∆t = 0.001

Figure 5.9: Displacement in y direction vs time for FSI3 with different lifting
operators: Harmonic varying αu, Biharmonic bc1 and bc2. ∆t = 0.001
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Figure 5.10: Drag vs time results for FSI3 with different lifting operators:
Harmonic varying αu, Biharmonic bc1 and bc2. ∆t = 0.001

Figure 5.11: Lift vs time results for FSI3 with different lifting operators:
Harmonic varying αu, Biharmonic bc1 and bc2. ∆t = 0.001

Discussion of Comparing Different Lifting Operators

In the FSI2 case all the different lifting operators show similar trend and it is
seemingly not important for the results which lifting operator we use. This
indicates that with a clever αu, the harmonic technique can be chosen. This
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is an advantage since the harmonic techniques is the least computationally
costly. Whilst when we increase the inflow velocity as in the FSI3 case there
is a change in the period of the unsteady solution and the drag actually gives
higher values, indicating that the biharmonic lifting operator may be a wiser
choice.

In the FSI3 case there is an observed change in the drag values and the
reason could be that the cells integrity are upheld in a different manner for
different lifting operators. For the harmonic lifting operator it is reasonable
to assume that for larger deformations the cell height on the interface will
be smaller than for the biharmonic, hence giving a different value to the
integrals when calculating drag. The lift and displacement differences for
different lifting operators are similar. It is reasonable to assume that this is
because of the normal force applied to the upper and lower sides of the bar,
which is originally an effect of asymmetry in the y-direction of the domain,
is what induces motion. The displacements are a secondary effect of the
instability of the fluid and hence the effects we see in the values of lift are
also seen in the displacements.

In short the lifting of the deformations into the fluid domain gives different
cell structures which in turn effects the integral of the stress tensors on the
interface. This in turns produces different results for problems with larger
mesh deformations combined with high fluid velocities. This gives the con-
clusion that lifting operators are highly problem specific and for cases with
large deformations lifting operators should be chosen with care.

A side note is on the computational cost, is that in the current implementa-
tion the harmonic lifting operator with a variable αu can at this point not
run in parallel, which all the other implemented lifting operators can. This
concludes that even though the harmonic lifting operator is is less compu-
tationally costly, computing on multiple cores is faster with the biharmonic
lifting operator.

5.2 Investigating Numerical Stability for Fluid-
Structure Interaction Problems

The following section will give a brief insight in to the effects of choosing
different θ values in the θ−scheme for different time steps. The benchmark
tests FSI2 and FSI3, as discussed in the previous section, has been investi-
gated since they are known to be numerical unstable for certain values of θ
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and ∆t. Only the effects of Drag are reported as the three other quantities
shows similar behavior. The impact of different θ values on energy stability
in the solid mechanical benchmark CSM3 is also investigated.

Figure 5.12 shows the temporal evolution of drag in a simulation with ∆t =
0.01. In the left panel the results are from simulations with θ = 0.5 + ∆t,
and in the right panel θ = 0.5. Based on the results we can observe that a
standard Crank-Nicholson scheme becomes unstable when reaching ∼13 s.
While the shifted Crank-Nicholson, θ = 0.5 + ∆t, is stable throughout the
simulation.

Figure 5.12: Drag vs time for FSI2 with ∆t = 0.01 with different values, left
panel with θ = 0.5 + ∆t and right panel with θ = 0.5
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Figures 5.13 show drag for FSI3 simulation with ∆t = 0.001 and θ = 0.5,
showing long term stability for the normal Crank-Nicholson scheme.

Figure 5.13: FSI3 drag vs time plot for 10-15 seconds and 14-15 seconds,
with ∆t = 0.001 and θ = 0.5 showing long term numerical stability

For the CSM3 case only the solid bar is computed, and with an applied force
g and no friction, the bar should move down and back up infinitely, for a
correct solution.

Figure 5.2 shows plots of the displacements in x and y directions for θ =
0.5 and 1. With the implicit scheme (θ = 1) the bar moves to a steady
state solution. This means energy has not been preserved and the energy
dissipates. While in the Crank-Nicholson scheme (θ = 0.5), the bar moves
down and back up. This indicates that the Crank-Nicholson scheme is energy
preserving.
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Figure 5.14: θ = 1 Figure 5.15: θ = 1

Figure 5.16: θ = 0.5 Figure 5.17: θ = 0.5

Figure 5.18: CSM3 displacements with ∆t = 0.01 with different values for θ

Discussion on numerical stability

The shifted version of the Crank-Nicholson scheme is stable when computing
for time step values as low as ∆t = 0.01. However with ∆t = 0.001 the
normal Crank-Nicholson scheme (θ = 0.5) can be used and is long term
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stable in the period investigated here. It might be that after 100 s, that the
flow would become unstable. However, a rigorous investigation of long-term
stability is out of the scope of this thesis. It has also been reported by Wick
2011 [31] that the Crank-Nicholson, θ = 0.5, scheme is stable throughout the
computing time by setting ∆t = 0.001.

In the FSI2 case the results for the finest mesh showed, in previous chapter,
similar results for ∆t = 0.01 and ∆t = 0.001, meaning that the shifted
version of the Crank-Nicholson scheme can be applied, in certain cases, with
∆t = 0.01 greatly reducing computational runtime.

The CSM3 test shows that choosing θ = 0.5 is crucial for preserving energy
when computing solid problems. The same property will also be present in
a FSI simulation, therefore it is crucial that an energy preserving scheme is
applied, otherwise one does not have any control over the artificial numerical
dissipation.
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Chapter 6

Compute time reduction
techniques

Computational fluid and solid mechanics are both well know to be time con-
suming or computationally intensive individually, and the iterative mono-
lithic FSI problem is naturally an order of magnitude more expensive. As
demonstrated in chapter 4, both accuracy and high resolutions are necessary
to obtain adequate results. However, it was quickly observed that simula-
tions took days to complete, even on meshes that were coarser than reported
in this thesis. It was evident that simulations with adequate mesh and time
step size would result in infeasible compute times.

The initial implementation was therefore profiled, and the Newton solver of
the monolithic FSI problem was identified to spend the most compute time.
The point of this chapter is not to rigorously experiment with multiple speed-
up techniques, but merely to describe implementations of the compute time
reduction techniques that made simulation times feasible. Retrospectively
it was discovered that the same techniques were applied previously[22], but
there only briefly addressed.

6.1 Newton runtime profile

Table 6.1 shows compute times for the FSI1 problem for the initial FEniCS
implementation. The table contains the amount of time spent on assembly of
the Jacobian, assembly of the residual, and a call to solve the linear system
of equations. It can be observed that almost 95% of the resources are spent
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of assembly of the Jacobian, and efforts to reduce this bottleneck was taken.
The next sections introduce two ways of speeding up assembly; the first is
reuse of the Jacobian and the second is reduction of quadrature degree. The
computational speedup will be compared to Table 6.1.

Method Runtime [s] Runtime [%] Calls
Assembly of Jacobian 60.7 94.4 5
Assembly or residual 0.6 0.9 5
Solve 2.8 4.4 5
Fulltime 64.3 100% -

Table 6.1: Newton solver timed with no optimizations, ∆t = 0.5

6.2 Reusing the Jacobian

As the time step size is relatively low in all the benchmark experiments, the
effects of reassembling the Jacobian at every iteration was hypothesized to
have a negligible impact on convergence. It was therefore tested whether a
reuse of the Jacobian could speed up computations, by assembling only a few
specified times. Table 6.2 shows the same simulation as presented in table
6.1, but now using ∆t = 0.5. Even with a time step size that is fairly large,
we obtain an acceptable decrease in compute time by -74%. The effect was
an increase in the number of iterations, but and overall decreased compute
time since the Jacobian was assembled only once.

Method Runtime [s] Runtime [%] Calls
Assembly of Jacobian 11.5 (-80%) 68.7 1 (-20%)
Assembly or residual 0.9 (+50%) 5.8 9 (+46%)
Solve 4.2 (+50%) 25.0 9 (+46%)
Fulltime 16.8 (-74 %) - -

Table 6.2: Parts of the Newtonsolver timed with reuse of the jacobian run
with ∆t = 0.5

6.3 Quadrature reduction

Assembly of the Jacobian matrix with non-linear terms induces a high num-
ber of quadrature points, dense matrix, and lower convergence rates. How-
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ever, faster convergence rates can be obtained if the accuracy of the Jacobian
is reduced by specifying the of quadrature degree. Table 6.3 shows that re-
ducing the quadrature degree gives a 92 % decrease in time spent assembling
the Jacobian even with the same number of calls. The full time spent went
down by 87 %. The effect is therefore more iterations per time step, but an
overall decrease in compute time as both convergence of the linear solvers
and assembly of the residual, is much faster, respectively. However, it should
be noted that reduction of the quadrature degree can lead to numerical di-
vergence of the system for some problems.

Method Runtime [s] Runtime [%] Calls
Assembly of Jacobian 4.9 (-92%) 60.3 5 (0%)
Assembly or residual 0.5 (-17%) 6.9 5 (0%)
Solve 2.6 (-7%) 31.9 5 (0%)
Fulltime 8.2 (-87%) - -

Table 6.3: Parts of the Newtonsolver timed with quadrature reduxe run with
FSI1 ,∆t = 0.5

6.4 Summary of runtime improvement tech-
niques

Finally, a combination of Jacobian reuse and reduction of the quadrature
is presented in Table 6.4, where the total compute time decreased by 89%.
Both techniques were applied to the FSI2 and FSI3 problems as well.

Method Runtime [s] Runtime [%] Calls
Assembly of Jacobian 1.2 (-98%) 18.1 1 (-20%)
Assembly or residual 0.9 (+50%) 14.7 9 (+46%)
Solve 4.4 (+57%) 66.2 9 (+46%)
Fulltime 6.6 (-89%) - -

Table 6.4: Newton solver timed with jacobian reuse and quadrature reduce
run with ∆t = 0.5
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Chapter 7

Conclusions

The intended work in this thesis was admittedly to develop a fast partitioned
computational FSI framework to investigate possible high-frequent arterial
wall vibrations in arteries in the vicinity of the brain, stemming from flow
instabilities [25, 26]. The initial plan was to implement and use a monolithic
FSI solver, but solely to obtain reference data. The idea was to implement
partitioned scheme, specifically the scheme introduced by Fernandez 2013
[7]. However, it was soon discovered that there are many difficulties in im-
plementing an accurate monolithic FSI solver that can handle large deforma-
tions and high fluid velocity. This complexity is reflected by the variability
of the results provided in the appendix B, from highly renowned scientists.
In addition, the scientific field of computational FSI is still in its infancy, and
appropriate reference data is inaccessible. The work started out broadly, ad-
dressing monolithic and partitioned schemes simultaneously. However, work
on the partitioned scheme was ultimately put aside and the focus during the
last six months was on rigorous implementation, verification, and validation
of a monolithic solver. Lessons were learned about the importance of lift-
ing operators, energy stable numerical schemes and the need to compute on
reference domains.

For the scientific field of computational FSI, it seems the most critical chal-
lenge to overcome is stability of partitioned schemes. The partitioned ap-
proach allows for used of legacy code for the structure and fluid parts, de-
creasing computing times significantly. The difficulty is still to transfer the
stresses between the fluid and structure when each problem is solved sequen-
tially. Explicit coupling schemes are known to be unconditionally unstable
for standard Dirichlet-Neumann strategies when there is a large amount of
added-mass in the system [8, 28]. There are however, schemes that offer
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added-mass free stability with explicit coupling, where the interface is treated
through a Robin-Neumann coupling. The first scheme was developed for cou-
pling of a thin walled structure[7]. Later a scheme was developed with an
extension coupling with a thick walled structure, by the same main author
[8]. The partitioned scheme for coupling thick walled structures is rather
complex, but with the use of the associated code attached to this thesis, a
monolithic solver can hopefully help others advance the field of FSI.
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Appendix A

Appendix

A.1 Lagrangian Description of Solid Mechan-
ics

Let Ŝ, S, S(t) be the initial stress free configuration of a given body, the ref-
erence and the current configuration respectively. I define a smooth mapping
from the reference configuration to the current configuration:

χs(X, t) : Ŝ → S(t) (A.1)

Where X denotes a material point in the reference domain and χs denotes
the mapping from the reference configuration to the current configuration.
Let ds(X, t) denote the displacement field which describes deformation on a
body. The mapping χs can then be specified from a current position plus the
displacement from that position:

χs(X, t) = X + ds(X, t) (A.2)
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which can be written in terms of the displacement field:

ds(X, t) = χs(X, t)−X (A.3)

Let w(X,t) be the domain velocity which is the partial time derivative of the
displacement:

w(X, t) =
∂χs(X, t)

∂t
(A.4)

A.1.1 Deformation Gradient

The deformation gradient describes the rate at which a body undergoes de-
formation. Let d(X, t) be a differentiable deformation field in a given body,
the deformation gradient is then:

F =
∂χs(X, t)
∂X

=
∂X + ds(X, t)

∂X
= I +∇d(X, t) (A.5)

which denotes relative change of position under deformation in a Lagrangian
frame of reference. We can observe that when there is no deformation. The
deformation gradient F is simply the identity matrix.

Let the Jacobian determinant, which is the determinant of the of the defor-
mation gradient F, be defined as:

J = det(F ) (A.6)

The Jacobian determinant is used to change between volumes, assuming
infinitesimal line and area elements in the current ds, dx and reference dV, dX
configurations. The Jacobian determinant is therefore known as a volume
ratio.
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A.1.2 Strain

Figure A.1: Deformation of a line element with length dε into a line element
with length λdε

Strain is the relative change of location between two particles. Strain, strain
rate and deformation is used to describe the relative motion of particles in a
continuum. This is the fundamental quality that causes stress [18].

Observing two neighboring points X and Y. Let Y be described by adding
and subtracting the pointX and rewritingY from the pointX plus a distance
dX :

Y = Y + X−X = X + |Y−X| Y−X
|Y−X|

= X + dX (A.7)

Let dX be denoted by:

dX =dεa0 (A.8)
dε =|Y−X| (A.9)

a0 =
Y−X
|Y−X|

(A.10)

where dε is the distance between the two points and a0 is a unit vector

We see now that dX is the distance between the two points times the unit
vector.

A certain motion transform the points Y and X into the displaced positions
x = χs(X, t) and y = χs(Y, t). Using Taylor‘s expansion y can be expressed
in terms of the deformation gradient:
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y =χs(Y, t) = χs(X + dεa0, t) (A.11)
=χs(X, t) + dεFa0 +O(Y−X) (A.12)

where O(Y − X) refers to the small error that tends to zero faster than
(X−Y)→ O.

Setting x = χs(X, t) It follows that:

y− x =dεFa0 +O(Y−X) (A.13)
=F (Y−X) +O(Y−X) (A.14)

Let the stretch vector be λa0, which goes in the direction of a0:

λa0(X, t) = F (X, t)a0 (A.15)

Looking at the square of λ:

λ2 = λa0λa0 = F (X, t)a0F (X, t)a0 (A.16)
= a0F

TFa0 = a0Ca0 (A.17)

Introducing the right Cauchy-Green tensor:

C = F TF (A.18)

Since a0 is just a unit vector, we see that C measures the squared length of
change under deformation. We see that in order to determine the stretch
one needs only the direction of a0 and the tensor C. C is also symmetric
and positive definite C = CT . I also introduce the Green-Lagrangian strain
tensor E:

E =
1

2
(C − I) (A.19)

which is also symmetric since C and I are symmetric. The Green-Lagrangian
strain tensor E has the advantage of having no contributions when there is
no deformations. Where the Cauchy-Green tensor gives the identity matrix
for zero deformation.
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A.1.3 Stress

While strain, deformation and strain rate only describe the relative motion
of particles in a given volume, stress give us the internal forces between
neighboring particles. Stress is responsible for deformation and is therefore
crucial in continuum mechanics. The unit of stress is force per area.

Introducing the Cauchy stress tensor σs, which define the state of stress inside
a material. The version of Cauchy stress tensor is defined by the material
model used. If we use this tensor on an area, taking the stress tensor times
the normal vector σsn we get the forces acting on that area.

Stress tensor defined from the Cauchy by the constitutive law of St. Venant-
Kirchhoff hyperelastic material model:

σs =
1

J
F (λs(trE)I + 2µsE)F T (A.20)

Using the deformation gradient and the Jacobian determinant, we get the
first Piola-Kirchhoff stress tensor P:

P = JσF−T (A.21)

This is known as the Piola Transformation and maps the tensor into a
Lagrangian formulation which will be used when stating the solid equa-
tion.

Introducing the second Piola-Kirchhoff stress tensor S:

S = JF−1σF−T = F−1P = ST (A.22)

from this relation the first Piola-Kirchhoff tensor can be expressed by the
second:

P = FS (A.23)
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Appendix B

Results from Renowned
Scientists

Figure B.1: Results from different contributions in from the paper Turek
et.al 2010 [24]
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Appendix C

Implementation of
Fluid-Structure Interaction in
FEniCS

The discretization described in chapter 3.5, is implemented using FEniCS
[13]. FEniCS is a platform used to solve partial differential equations. Code
is written in python, using FEniCS to easily run efficient finite element code.

The complete code consist of many hundreds of lines of code, and therefore
only the most essential parts are covered. The code that has been added is
added so that a reader with a minimal skill set in scientific computing and
basic knowledge of the finite element method could implement a version of
the code.

C.1 Variational Formulation

The variational form can be written directly into FEniCS. A big advantage
in FEniCS is that there is a small “gap” between mathematical notation and
FEniCS syntax. For instance the gradient and divergence, is in FEniCS as
written as grad and div respectively. For this reason the basic parts of the
code should be self evident.

The code structure has a main script named monolithic.py which from com-
mand line takes in arguments specifying the problem to be solved, the version
of the variational form and the Newtonsolver. The main script gather the
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called parts from specific folders. The problem folder contains the specific
problem, which contains the necessary boundary conditions, mesh, parame-
ters for fluid an structure, and saves the solutions and other data in a post
processing function. The variational form folder contains the fluid and solid
variational form, which given in the command line takes a value for θ and the
chosen lifting operator. The Newtonsolver folder contains different versions
of the Newtonsolver, which determines which one of the speedups, outlined
in chapter 6, to be implemented.

The main script monolithic.py creates the functions, functionspaces and vec-
torfunction spaces needed. The main script contains the time loop which
iterates in time calling the variational form, the newton solver and updating
the functions in time.

The vector functions and functions such as the displacement, velocity, and
pressure, are written with a script “n” meaning at which time the function is
valued.

1 d_["n"] """deformation in the current timestep """

2 u_["n−1"] """velocity in the last timestep """
3 p_["n−2"] """pressure in the second last timestep """

We define the linear and nonlinear parts of the fluid and solid variational. All
the linear and nonlinear parts are added together to create the full variational
form.

psi, phi and gamma are the test functions: ψ, φ and γ.
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1 J_theta = theta∗J_(d_["n"]) + (1 − theta)∗J_(d_["n−1"])
2

3 F_fluid_linear = rho_f/k∗inner(J_theta∗(v_["n"] − v_["n−1"]), psi)∗dx_f
4

5 F_fluid_nonlinear = Constant(theta)∗rho_f∗\
6 inner(J_(d_["n"])∗grad(v_["n"])∗inv(F_(d_["n"]))∗v_["n"], psi)∗dx_f
7

8 F_fluid_nonlinear += inner(J_(d_["n"])∗sigma_f_p(p_["n"], d_["n"])∗\
9 inv(F_(d_["n"])).T, grad(psi))∗dx_f

10

11 F_fluid_nonlinear += Constant(theta)∗inner(J_(d_["n"])\
12 ∗sigma_f_u(v_["n"], d_["n"], mu_f)∗inv(F_(d_["n"])).T, grad(psi))∗dx_f
13

14 F_fluid_nonlinear += Constant(1 − theta)∗inner(J_(d_["n−1"])∗\
15 sigma_f_u(v_["n−1"], d_["n−1"], mu_f)∗inv(F_(d_["n−1"])).T, grad(psi))∗

dx_f

16

17 F_fluid_nonlinear += \

18 inner(div(J_(d_["n"])∗inv(F_(d_["n"]))∗v_["n"]), gamma)∗dx_f
19

20 F_fluid_nonlinear += Constant(1 − theta)∗rho_f∗\
21 inner(J_(d_["n−1"])∗grad(v_["n−1"])∗inv(F_(d_["n−1"]))∗v_["n−1"], psi)∗

dx_f

22

23 F_fluid_nonlinear −= rho_f∗inner(J_(d_["n"])∗\
24 grad(v_["n"])∗inv(F_(d_["n"]))∗((d_["n"]−d_["n−1"])/k), psi)∗dx_f
25

26 delta = 1E10

27 F_solid_linear = rho_s/k∗inner(v_["n"] − v_["n−1"], psi)∗dx_s +\
28 delta∗(1/k)∗inner(d_["n"] − d_["n−1"], phi)∗dx_s −\
29 delta∗inner(Constant(theta)∗v_["n"] + Constant(1−theta)∗v_["n−1"], phi)∗

dx_s

30

31 F_solid_nonlinear = inner(Piola1(Constant(theta)∗d_["n"] +\
32 Constant(1 − theta)∗d_["n−1"], lamda_s, mu_s), grad(psi))∗dx_s
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C.2 Newtons Method Implementation for Solv-
ing Fluid-Structure Interaction in FEn-
iCS

To handle the non-linearities in the scheme we use a Newton solver. FEniCS
already has a built-in Newtonsolver, however this solver was not able to
compute the monolithic FSI problem because of the pressure function, with
our choice of solid stress tensor, only being defined in the fluid domain. We
had to manipulate the matrix to ensure that the pressure was zero in the solid
domain. This gave the need to implement our own Newtonsolver taking ideas
from Mikael Mortensens course in CFD named MEK4300 at the University
of Oslo [30]. Following is a print out of the full Newtonsolver, that is called
for each time iteration.
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1 def newtonsolver(F, J_nonlinear , A_pre, A, b, bcs, \

2 dvp_, up_sol, dvp_res, rtol, atol, max_it, T, t, ∗∗
monolithic):

3 Iter = 0 """ Setting initial values """

4 residual = 1

5 rel_res = residual

6 lmbda = 1 """ """

7 while rel_res > rtol and residual > atol and Iter < max_it:

8 if Iter % 10 == 0: """Assembles the Jacobian for each tenth

round, in this instance. """

9 A = assemble(J_nonlinear , tensor=A, form_compiler_parameters

= {"quadrature_degree": 4}) """ Assembles the Jacobian with

reduction of the quadrature """

10 A.axpy(1.0, A_pre, True)

11 A.ident_zeros() """ Sets values of zero to 1 to ensure zero

pressure in the solid domain """

12

13 b = assemble(−F, tensor=b) """ assembling the residual """

14

15 [bc.apply(A, b, dvp_["n"].vector()) for bc in bcs] """ Applies

boundary conditions to the mixed function dvp """

16 up_sol.solve(A, dvp_res.vector(), b) """ Solves the matrix

equation A ∗ dvp = b """
17 dvp_["n"].vector().axpy(lmbda, dvp_res.vector()) """ A fast

"""

18 [bc.apply(dvp_["n"].vector()) for bc in bcs]

19 rel_res = norm(dvp_res, ’l2’)

20 residual = b.norm(’l2’)

21 if isnan(rel_res) or isnan(residual):

22 print "type rel_res: ",type(rel_res)

23 t = T∗T
24

25 if MPI.rank(mpi_comm_world()) == 0: """ Prints only out the

numeber 0 process when running code in paralell """

26 print "Newton iteration %d: r (atol) = %.3e (tol = %.3e), r

(rel) = %.3e (tol = %.3e) " \

27 % (Iter, residual, atol, rel_res, rtol)

28 Iter += 1

29

30 return dict(t=t)
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