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Abstract

Millions of people world wide suffer from asthma, and respiratory diseases are one
of the leading causes of death. Patients can be treated or relieved by inhalation
of medicine, but the efficiency of the treatment is often dependent on on the local
deposition of the inhaled drug.

In this thesis, a virtual laboratory for simulating the deposition of pharmaceutical
particles inhaled into the human respiratory system has been developed. The
virtual laboratory is composed of the Navier-Stokes solverOasis, a particle tracking
framework, and several scripts for analyzing flow properties and post-processing
of data.

The Navier-Stokes solver Oasis has been thoroughly validated on problem spe-
cific test cases, and has proven capable of simulating turbulent-like flows with
high accuracy and minimal numerical dissipation, at a reasonable computational
cost.

Based on considerations on the flow properties in the human respiratory system, a
particle motion algorithm has been developed and implemented in the framework of
LagrangianParticles.py within the open source software fenicstools. The algorithm
was verified second order accurate, and performed well under validation against
established numerical and experimental results.

The airflow in the human respiratory system for moderate and high inhalation rates
was simulated, with inflow conditions that mimic the effect of a spray inhaler. The
flow field was found to exhibit turbulent-like structures enhanced by asymmetries
in the geometry.

Finally, simulations of particles inhaled into the human respiratory system were
performed, from which connections between particle size and deposition pattern
were determined in overall good results reported in the literature.

i



Acknowledgement

I want to express my sincere gratitude to my main supervisors Dr. Kristian Valen-
Sendstad and Aslak W. Bergersen for the assistance I have received while working
on this Master’s thesis. By generously sharing your time and knowledge you have
both been great inspirations, which I hope is reflected in this thesis. Your inputs
has been of the highest value.

Thanks to my co-supervisor Associate Professor Mikael Mortensen for the support
and great lectures on viscous flow and turbulence.

I want to thank the community at Simula for including me and widening my
academic horizon.

Thanks to my father for reflections and proofreading.

Finally, I want to thank my family and my partner, Rebecca, for continuous love
and support.

ii



Contents

1 Introduction 1
1.1 Why Model Inhalation and Particle Deposition? . . . . . . . . . . . 1

2 Governing Equations, Numerical Methods, and Turbulence The-
ory 3
2.1 Governing the Motion of Fluids: Navier-Stokes Equations . . . . . . 3
2.2 Methods for solving the Incompressible Navier-Stokes Equations . . 4
2.3 Characteristics of a Turbulent Flow . . . . . . . . . . . . . . . . . . 6
2.4 On the Importance of Properly Modeling the Energy Cascade in

Numerical Simulations of Turbulent Flows. . . . . . . . . . . . . . . 10

3 Verification and Validation of the Fluid Flow Solver 15
3.1 On the Difference between Verification and Validation in Computa-

tional Science and Engineering . . . . . . . . . . . . . . . . . . . . . 15
3.2 Verification and Validation of the Navier-Stokes Solver Oasis . . . . 16
3.3 Validation Case 1: The von Karman Vortex Street . . . . . . . . . . 17
3.4 Validation Case 2: The 3D Taylor-Green Vortex . . . . . . . . . . . 24
3.5 Concluding Remarks on the Validation of the Navier-Stokes Solver

Oasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 The Kinetics of Particles Dispersed in a Moving Fluid 31
4.1 Determining an Appropriate Particle Motion Model . . . . . . . . . 31
4.2 Development of a Particle Motion Algorithm . . . . . . . . . . . . . 35
4.3 The Particle Tracking Framework . . . . . . . . . . . . . . . . . . . 40

5 Verification and Validation of the Particle Tracking Framework 43
5.1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Rate-of-Convergence Tests for the Particle Motion Algorithm . . . . 44
5.3 Validation: Particle deposition in a 90 degree tube bend . . . . . . 49

6 A Computational Study of the Air Flow in a Realistic Model of
the Human Respiratory System 57
6.1 Aim: Determining Appropriate Numerical Resolution . . . . . . . . 57
6.2 Anatomical Features of the Human Respiratory System and a Plau-

sible Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

iii



6.3 Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4 Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.5 Conclusion: A Trade-off between Accuracy and Computational Cost 72

7 A Simulation of the Motion of Inhaled Particles in the Human
Respiratory System 75
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Benchmark test case: Brno Lung . . . . . . . . . . . . . . . . . . . 75
7.3 Setup and Modifications of the Benchmark . . . . . . . . . . . . . . 76
7.4 Deposition Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.5 Discussion and Relations to the Literature . . . . . . . . . . . . . . 87
7.6 Conclusion: Medical Applications . . . . . . . . . . . . . . . . . . . 90

8 Main Findings and Future Work 91
8.1 Main Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

iv



Chapter 1

Introduction

1.1 Why Model Inhalation and Particle Deposi-
tion?

According to World Health Organization it is estimated that in 2030 the third,
forth and sixth leading causes of death will be chronic obstructive pulmonary dis-
ease, lower respiratory infections, and trachea, bronchus and lung cancers, respec-
tively [48]. Over 300 million people world wide are suffering from asthma and it
is expected that 100 million additional affected by 2025, much due to increasingly
urban lifestyles [40]. In the US alone, the socio-economic cost of asthma in 2007
reached $57 billions, and in 2008, on average, children lost 4 days of school and
adults 5 days of work due to asthma [1]. All of the above mentioned conditions can
in various ways be threated or relieved by inhalation of medicine, but the effec-
tiveness of the treatment is often dependent on the local deposition of the inhaled
remedy [32]. This motivates the study of air flow in the human respiratory system
with the aim of predicting the deposition pattern of inhaled particles, depending
on size, density and respiratory influx.

Qualitative studies of the motion of inhaled air and particles in the human res-
piratory system emerged in the 50’s [52]. An advance in the field came in 1963
with Weibel’s Model A which gave a simple geometrical description of the human
respiratory system, and provided a theoretical framework for calculations of air
flow and particle deposition [66]. The first significant in vitro experiment of parti-
cle deposition based on a cast of the human respiratory system was performed in
1972 by Schlesinger and Lippmann [57]. The experiment was conducted by releas-
ing slightly radioactive particles that left a measurable residue on the cast surface
upon impact, a method which is also used in more recent experiments [34]. In vivo
experiments on live subjects are much more limited both due to the difficulty of
measuring particle deposition within the human airways and the related potential
health hazards.
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Although in vitro experiments has given valuable and detailed insight into the
mechanisms of particle deposition in the human respiratory system, the procedure
for such practices are both expensive and time consuming, requiring advanced
apparatus and laboratories. Hence, the last two decades the focus has shifted
towards numerical simulations with computational fluid dynamaics (CFD) [13]. In
addition to being faster and cheaper to perform, CFD has the advantage over in
vitro methods as it offers much more flexibility and simpler acquisition of data from
the experiments. However, CFD can produce erroneous and misleading results if
not performed without proper verification and validation, understanding of the
underlaying physical, mathematical and numerical problems [65, 16].

Nowadays, the overall deposition pattern of inhaled particles as function of size
and density can be predicted with moderate precision [34]. General characteristics
of the airflow through the human respiratory system are also described, and is
known to possess turbulent properties even at moderate inhalation flow rates [33].
However, further efforts in the characterization of the flow is necessary before a
more accurate description of local deposition can be established, with the purpose
of optimizing pharmaceutical products for inhalation therapy. In order for CFD
to make a break-through in the field, validation of the numerical models are nec-
essary to ensure that the experiments correctly reflects the nature of the flow. For
this purpose, researchers at Brno University of Technology has performed in vitro
experiments of both the flow and particle deposition in a realistic model of the
human airways [34]. Based on the experiments, a benchmark test case has been
announced, inviting researchers to perform numerical simulations on digitalized
versions of the same geometry. The benchmark study is called Brno lung and is
organized by SimInhale, a European network of scientists working on technological
development in the field of inhalation medicine.

The goal of this thesis is to develop and validate a virtual laboratory for simulat-
ing particles of different diameters inhaled in the human respiratory system with
the aim of being able to predict the variations in local deposition patterns
depending on particle size and inspiratory flow rates.

The flow of inhaled air has been modeled with the open source, Navier-Stokes solver
Oasis [44]. A particle motion algorithm has been developed and implemented
within the framework of the open source software, fenicstools [43]. Both Oasis
and the particle tracking framework has been verified and validated in separate,
problem specific test cases, in order to ensure the validity of the obtained results.
In addition, several post-processing scripts has been written for analyzing flow
properties and measure convergence. Oasis, the particle tracking frame work, and
the post processing scripts together constitutes the virtual laboratory.

The concluding simulations of particle deposition in the human respiratory system
were performed with a digital model provided by the Brno lung benchmark, and
included 25000 particles of each size, with diameters ranging from 1 µm to 20 µm.
A total of 4.5 TB data was generated and analyzed in this thesis.
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Chapter 2

Governing Equations, Numerical
Methods, and Turbulence
Theory

2.1 Governing the Motion of Fluids: Navier-Stokes
Equations

The motion of fluids are described by the Navier-Stokes equations which is derived
using the laws of conservation of momentum and mass [30]. In this thesis the
studied fluid is air with the properties of being Newtonian and incompressible.
The Navier-Stokes equations then takes the form:

∂u
∂t

+ u · ∇u =
1

ρ
∇p+ ν∇2u + f (2.1)

∇ · u = 0 (2.2)

where u is the velocity, ρ the density, ν kinematic viscosity and f body forces. The
validity of the incompressibility constraint can be shown by combining conservation
of momentum, the ideal gas law - which is valid for air - and an isentropic flow
condition, and deduce the following relation

−M2dV

V
=
dρ

ρ
(2.3)

The mach number M is the ratio of the fluid velocity to the speed of sound
(≈ 340.3 m/s in air), V and ρ is volume and density respectively. Relation 2.3
states that for M2 � 1 a change of volume cause negligible change of density, i.e
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incompressibility. Assuming that the air flow in the human respiratory system does
not exceed 10 m/s, then M2 ≈ 10−4 � 1, and the assumption of incompressibility
is considered to be valid [34].

2.2 Methods for solving the Incompressible Navier-
Stokes Equations

The existence of a smooth and unique solution to the Navier-Stokes Equations has
not been proven, and is one of the Millennium Price Problems [15]. Some analytical
solutions can be found given simple geometries and boundary conditions. However,
by discretizing the equations it has for decades been possible to use numerical
solutions in scientific and engineering applications. There are several features
of the Navier-Stokes equations which makes them non-trivial to solve, even with
discretization techniques, which can be illustrated by attempting a simple, implicit
temporal discretization of Eq. 2.1 and 2.2:

un − un−1

∆t
+ un · ∇un =

1

ρ
∇pn + ν∇2un (2.4)

∇ · un = 0 (2.5)

Here ∆t is a finite time step, and superscript n denotes the discrete time level such
that tn = n∆t. First of all, there are no obvious strategies for computing the next
step pressure gradient ∇pn, and the convective term u · ∇ u makes the equations
non linear. The coupling of the velocity and pressure through the incompressibil-
ity constraint further complicates the issue [21]. Even though these obstacles can
be circumvented by different discretization and linearization techniques, making
an efficient, energy conserving and minimally dissipating solution algorithm is a
challenging task. As of today, several approaches exist with different advantages
and drawbacks. One possibility is to solve the equations as a fully coupled system,
which, when discretized, results in a linear set of equations that are very computa-
tionally demanding to solve [22]. Another, computationally faster approach is to
split the equations and solve them separately, as introduced by Chorin and Teman
in the late 60’s [9]. This type of splitting method, referred to as the projection
method, consist of three main steps:

1. Compute a tentative velocity directly from the momentum equation.

2. Project the pressure onto a divergence free velocity field.

3. Update the velocity solution.

The advantage with this approach is that the Naviers-Stokes equations are split
into three well known and easy solvable equations; the convection-diffusion, the
Poisson equation, and an explicit velocity update. However, this approach does
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not come without negative trade-offs: The Poisson equation arising from the cor-
rection step demands an additional boundary condition on the pressure at the full
boundary. As a result, artificial boundary conditions must be assigned which may
lead to an error of first order for the pressure at the vicinity of the boundary,
although methods exists for limiting this problem [22].

A development of the projection method introduced by Chorin is the incremental
pressure correction scheme (IPCS), where the previous time level pressure gra-
dient ∇pn is used in the computation of the tentative velocity (Chorin’s method
simply discards the pressure gradient in the tentative calculation). A generic IPCS
following a centered Crank-Nicholson temporal discretization reads:

u∗k − un−1
k

∆t
+B

n−1/2
k = ∇kp

∗ + ν∇2u
n−1/2
k + f

n+1/2
k (2.6)

∇2φ = − 1

∆t
∇ · u∗k (2.7)

unk − u∗k
∆t

= −∇φ (2.8)

where subscript k denotes spatial coordinates and superscript n temporal step. u∗k
and p∗ are tentative velocity and pressure, respectively. The density is incorpo-
rated into the pressure gradient through a change of variables, and Bn−1/2

k is the
convective term uk∇ · uk.

Some of the many spatial discretization techniques for solving partial differential
equations (PDE), such as the Navier-Stokes Equations, include the finite difference
method (FDM), the finite volume method (FVM) and the finite element method
(FEM). The FEM is one of the most popular methods today, as it is well suited
for computations on complicated geometries.

2.2.1 The Navier-Stokes Solver Oasis

In this thesis the Navier-Stokes equations are solved using the open source solver
Oasis [44], which is based on the FEM computing platform FEniCS [36]. Several
schemes are implemented in Oasis. In the current work IPCS-ABCN is used,
which is an incremental pressure correction scheme featuring a Crank-Nicholson
temporal discretization and a linearization of the convective term, Bn+1/2

k , through
an Adams-Bashforth (AB) projection:

B
n+1/2
k = (

3

2
un−1
k − 1

2
un−2
k )∇ · 1

2
(unk + un−1

k ) (2.9)

This solver is reported to perform well with regards to turbulence transition and
scales weakly in parallel computation up to 256 CPU’s, which together with a
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flexible Python interface makes it well suited for the intended computations, as
respiratory flow is reported to be in the transient regime [44, 33]. An algorithm
of the IPCS-ABCN as implemented in Oasis is presented in Algorithm 1 as fol-
lows:

Algorithm 1 Fractional Step Algorithm. Rewritten from M.Mortensen [44]
1: set initial conditions
2: t = 0
3: while t < T do
4: t = t+ ∆t
5: while error < max error and iter < max iter do
6: φ = p∗ = pn−1/2

7: solve eq 2.6 for u∗k, k=0,...,d
8: solve eq 2.7 for pn−1/2

9: φ = pn−1/2 − φ
10: solve eq 2.8 for unk , k=0,...,d
11: update to next time step

2.3 Characteristics of a Turbulent Flow

Since it is argued that the air flow in the human respiratory system inherit turbulent-
line properties, the following section will give a summary of the most central char-
acteristics of turbulence and how it affects CFD simulations.

Figure 2.1: Turbulent motion by Leonardo Da Vinci (1451-1519)

One of the first known descriptions of turbulent motion is through drawings made
by Leonardo Da Vinci between 1508-1513 [41]. The modern, mathematically ap-
proached study of turbulent motion and related field dates back to the 1870s,
associated with names such as Boussinesq, Taylor, Prandtl and von Karman [38].
Even today, due to the complex nature of turbulence a complete definition has not
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yet been described, but it is possible to characterize it through its many properties
[67], some of which are:

• Random fluctuations in space and time

• Energy cascade

• Stochastic motion

• Increased convection

One of the most essential characteristics of turbulence is the presence of the energy
cascade, first introduced by Richardson (1922). The essence of this idea is that
kinetic energy is fed to the turbulence at the largest length scales and continuously
transfered to smaller ones until the energy is dissipated by viscous action. A
lyrical interpretation of this process was presented by Richardson and sounds as
follows:

Big whorls have little whorls
Which feed on their velocity,
And little whorls have lesser whorls
And so on to viscosity.

Lewis Fry Richardson, 1922

In fluid dynamics, when referring to kinetic energy, it is actually the kinetic energy
per unit mass with units [m

2

s2
] that it is being referred to. Similarly, the units

for the rate of dissipation is [m
2

s3
]. Thus, the total dissipation of energy can be

determined from the motions that triggers the turbulence and is scaled as ε =
u3

0/l0, where u0 and l0 are the characteristic velocity and length scales of the flow,
respectively.

The size of the largest eddies are comparable to the macroscopic length scale of
the flow, which is limited by the geometry which it flows around or within, such
as the diameter of a pipe. The size of the smallest scales η, however, can be found
in Kolmogorov’s Theory of 1941 which is stated in the form of three hypotheses,
given sufficiently high Reynold’s Number:

• Kolmogorov’s hypothesis of local isotropy; the small scale turbulent
motions are statistically isotropic.

• Kolmogorov’s first similarity hypothesis; the statistics of the small
scale motions are uniquely determined by the fluid viscosity ν and turbulent
dissipation ε.

• Kolmogorov’s second similarity hypothesis; the statistics of the inter-
mediate length scale l0 � l� η are uniquely determined by ε only.

The expressions for the Kolmogorov time, velocity and length scales can be derived
in just a few steps. The smallest time scale of the flow τn is related to the smallest
length η and velocity scale uη as:
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τn =
η

uη
(2.10)

Given a kinematic viscosity ν and characteristic length and velocity scale l0 and
u0, respectively, the Reynolds number, defined as the ratio of inertial to viscous
forces is

Re =
l0u0

ν
(2.11)

At the smallest length and velocity scales the Reynolds number reach unity:

Reη =
ηuη
ν

= 1 → η =
ν

uη
(2.12)

The dissipation rate is defined as ε = 2ν(S, S), with S = 1
2
(∇u+ (∇u)T ), the rate

of strain tensor. An expression for the smallest velocity scale is found by utilizing
the fact that the dissipation rate scales with the velocity and length scale as

ε =
u3
η

η
=
u4
η

ν
→ uη = (εν)1/4 (2.13)

By inserting 2.13 into 2.12 the smallest length scale is found:

η =
ν

(εν)1/4
=

(
ν3

ε

)1/4

(2.14)

The smallest time scale can then be expressed by inserting 2.13 and 2.14 into
2.10:

τn =

(
ν3

ε(εν)

)1/4

=
(ν
ε

)1/2

(2.15)

Hence, the three Kolmogorov scales, estimating the magnitude of the smallest
scales existing in a given flow, are:
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η =
(
ν3/ε

)1/4 (2.16)

uη = (εν)1/4 (2.17)

τη = (ν/ε)1/2 (2.18)

Furthermore, the ratios between the smallest and largest scales is related to the
Reynolds Number as:

η/l0 ∼ Re−3/4 (2.19)

uη/u0 ∼ Re−1/4 (2.20)

τη/τ0 ∼ Re−1/2 (2.21)

where τ0 is the characteristic time scale of the flow.

The full range of length scales in the energy cascade can be split into three, as
depicted in Figure 2.2:

1. Energy is introduced at the large length scales in the energy-containing range

2. transfered through the inertial subrange

3. and dissipated in the dissipation range

The last two steps in the energy dissipation process are categorized as the universial
equilibrium range. The span of the energy-containing range lEI is crudely estimated
to be lEI > l0/6 and the dissipation range lDI < 60η [51].

DI EIη 0 L0

Dissipation
range

Inertial
subrange

Energy-
containing
range

Universal Equilibrium Range

Figure 2.2: Characteristic eddy length sizes for a high Reynolds Number flow, illus-
trating the relations to various length scales and ranges. Re-sketched from Pope (2001)

The bulk of the kinetic energy is contained within the energy-containing range
while being transfered through the inertial subrange as the eddies are breaking up,
until finally being dissipated in the dissipation range. The rate of which energy
is transfered from the large scales is, logically, equal to the total dissipation rate
ε.
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2.4 On the Importance of Properly Modeling the
Energy Cascade in Numerical Simulations of
Turbulent Flows.

As stated above, the bulk of the dissipation happens at the small length scales
< DI , something which has major implications for numerical turbulent flow sim-
ulations; the smallest length scale possible to model is confined by the element
size of the computational mesh, as well as the discrete time step ∆t. Figure 2.3
exemplifies two simulations with a somewhat well resolved and underresolved spa-
tial resolution, respectively. The triangle grids are representing the computational
mesh while the whirls the smallest eddies in the flow with a diameter approxi-
mately η. In Figure 2.3a the edge length is about half the Kolmogorov length
scale and the simulation is reasonably resolved in space, while in Figure 2.3b edge
length is about ten times the Kolmogorov length scale and the contrary is the
case.

∆l

(a) Small length scales being reason-
ably resolved by the discretization as
the eddy length scale η is greater than
the edge length of the mesh

∆l

(b) Small length scales not being well
resolved by the discretization as the
eddy length scale η is smaller than the
edge length of the mesh

Figure 2.3

Even with modern computers, in most scientific and engineering turbulent flow
simulations we are not able to resolve the flow down to the smallest length scales.
As an example, Nakayamna (1988) studied air flowing at 3.3 m/s over a flat plate
2.4 m long and 1.2 m wide, transitioning into turbulence at around 0.9 m, and
found the smallest eddies having a diameter of around 0.04 mm. If performing
a fully resolved numerical simulation of the same experiment, modeling the shear
layer with a thickness of 10 cm would require approximately 5 trillion mesh points
[67]!

Furthermore, not only does an increased mesh resolution cause a rise in the com-
putational cost of solving the equations, smaller steps are also necessary to comply
with the smaller cell sizes. Since small time and length scales are associated with
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each other, a mesh refinement may be futile if being cut off by a too coarse tempo-
ral resolution. Furthermore, numerical errors are introduced both from the spatial
and temporal discretization. For a numerical scheme of temporal and spatial order
of convergence a and b, respectively, the error can be expressed as:

E = α∆ta + β∆xb (2.22)

where α and β are constants, ∆t and ∆x, characteristic temporal and spatial
resolution, respectively. Thus, a unilateral reduction of only one of the terms is
futile if the other term is dominating.

Following the Energy Cascade, the consequences of not resolving the small scale
motions may affect the flow up to the macroscopic level, such as causing spurious
break downs of turbulent jets [4]. The particular effects of a under-resolved flow
simulation are both dependent on the problem studied and the numerical scheme
applied. As is observed in Chapter 3.4, artificial numerical dissipation may work
as a counter weight when the smallest flow scales are not captured in coarse mesh
simulations. Since it is not possible a priori to determine the full range of effects
caused by under-resolved flow simulations, the sensitivity of the measured metrics
to the spatial and temporal resolution should be examined through a refinement
study. For many problems where crude metric are investigated, such as when
computing time averaged lift and drag coefficients, the desired result may be ob-
tained within the expected level of accuracy even for under-resolved flows [28]. As
the size of the particles studied in this thesis are of the same magnitude as the
smallest length scales typically found in turbulent-like flows, it is plausible that
the computed pattern of deposited particles are highly sensitive to temporal and
spatial resolution. Hence, the methods used for the characterization of turbulence
and measuring convergence are described in the next section.

2.4.1 Methods for Measuring and Visualizing Turbulence

The aim of this thesis is not to compute an optimal turbulent flow simulation.
However, since it is reported that flow pattern of the studied problem possesses
characteristics of a turbulent flow, it is necessary to investigate how turbulence
properties are affected by temporal and spatial resolution. In order to quantify how
well resolved a flow simulation is, both temporally and spatially, the Kolmogorov
scales have been computed and compared with the cell circumference ∆l and time
step ∆t. As least one cell is needed to roughly approximate a length scale in the
dissipation range, the ratio between η and ∆l must be smaller or equal to one for
the simulated flow to be considered a direct numerical simulation (DNS) where all
turbulence length scales are well resolved.

A second, similar approach used is to consider the simplified length and time scale
ratios described in Statistical Theory and Modeling for Turbulent Flow (2001)
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l+ =
u∗∆x

ν

t+ =
u2
∗∆t

ν

where u∗2 = ν(S, S)1/2, where S is the previously defined strain tensor.

As mentioned in the previous section, turbulence is characterized by stochastic
fluctuations in fluid velocity and pressure. If measuring the magnitudes of a quan-
tity over a statistically significant time interval (t0, t0 + T ), a time average, here
exemplified by the velocity, is found as:

u(x) =
1

N

N∑
i

u(x, ti) (2.23)

where N is the number of samples at discrete time intervals ti and x is the spatial
location. Following the Reynolds decomposition, the fluctuating parts are then
defined as the difference between the instantaneous and the mean values:

u′(x, ti) = u(x, ti)− u(x) (2.24)
p′(x, ti) = p(x, ti)− p(x) (2.25)

In order to measure the magnitude of the turbulent fluctuations, root-mean-square
(RMS) values are uses, defined as:

u′(x, ti)rms =

√√√√ 1

N

N∑
i

u′2(x, ti) (2.26)

The turbulence is considered statistically stationary if Eq 2.23 and 2.26 are in-
variant under a translation in time. Furthermore, in a numerical simulation it is
important that sampling is performed after the flow has become developed, mean-
ing that it is no longer affected by initial effects. Thus, t0 is some time after the flow
has become developed and T is the time for the flow statistics to converge.

2.4.2 The Q Criterion

There are several methods for visualizing vortex structures. One of these meth-
ods are the Q-criterion, where the magnitude of the vorticity is larger than the
magnitude of the strain [29]
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Q =
1

2

(
|Ω|2 − |S|2

)
> 0 (2.27)

where Ω = 1
2
(∇u − (∇u)T ) and the rate of strain tensor S is as previously de-

fined.
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Chapter 3

Verification and Validation of the
Fluid Flow Solver

3.1 On the Difference between Verification and
Validation in Computational Science and En-
gineering

In the process of the development of any product, Quality Assurance (QA) is an
indispensable routine to be performed before the product is used or released for
public use. In the setting of this thesis, the product is a number of algorithms
that are programmed in computer codes, and it is crucial that the expected per-
formance of the algorithms is assured before any results are presented to a wider
audience. Following the chapter on Semantics in P. J. Roache’s Verification and
Validation in Computational Science and Engineering (1998) [54], code QA can be
split into two separate practices; verification and validation (V&V). Even though
being synonyms and often mistaken or interchanged in the literature, verification
and validation have, according to Roache’s definition, strictly independent defi-
nitions and goals. Both are performed with the aim of assuring the quality of
code and algorithms, and hence the validity of the obtained results. In this thesis,
verification and validation are, respectively, defined as:

• Verification is to check that the equations are solved correctly.

• Validation is to check that equations correctly solves the physical problem
in question.

Thus, in the setting of computational science and engineering, verification is to
ensure that the equations are correctly implemented in the code, while validation
is to assess whether the implemented equations and boundary conditions correctly
reflect the physics of the problem in question. Another important distinction is
that while a computer code can, at least to some extent, be considered verified,
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validation is a more problem specific and continuous process. Even though a
software or code may have been extensively tested, it is still necessary to perform
a validation test when it is applied on a new problem.

3.2 Verification and Validation of the Navier-
Stokes Solver Oasis

The order of accuracy and performance of Oasis has been thoroughly tested [44,
26, 4]. In the paper describing the structure and theory behind the solver, a rate
of convergence test was carried out by computing the 2D Taylor-Green Vortex.
Due to "super convergence" a rate of convergence two orders higher than the
polynomial degree was reported. A second order temporal convergence was found
in agreement with the Crank-Nicholson discretization [44]. In the master thesis
of Aslak W. Bergersen a verification test was carried out through the method
of manufactured solutions, recovering the expected convergence rates. Since the
performance and accuracy of Oasis has been verified, a separate verification has
not been carried out in this thesis. However, in compliance with the arguments in
the previous sections, validation tests has been performed.

The process of validation is typically split into building block which are gradually
more complex and problem specific. The perhaps most desirable method of as-
sessing a result is by comparison with trustworthy experimental data. For many
applications where the scale or nature of the problems makes the acquisition of
experimental data difficult, other approaches are possible, such as comparison with
other, well established numerical results.

In this thesis two different benchmarks are considered with the intention of validat-
ing that Oasis is well suited for computing turbulent flow in the human respiratory
system. Neither of the problems are of a nature for which experiments can be con-
ducted, but have both been subject to several benchmark studies [56, 47]. The
first problem concerns a 2D laminar flow past a cylinder asymmetrically located in
a channel, i.e., the von Karman vortex street. This problem was selected in order
to validate the use of Oasis in the computation of a laminar, vortex shedding flow
with minimal computational resources by applying simple refinement techniques.
In the second validation test case the 3D Taylor-Green vortex has been computed
with the intention of verifying that Oasis can, at a reasonable computational cost
and with limited numerical dissipation, compute laminar flow transitioning into
turbulence.
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3.3 Validation Case 1: The von Karman Vortex
Street

In 1996 M. Schäfer and S. Turek announced the study Benchmark Computations
of Laminar Flow Around a Cylinder [56]. Participants from 17 different German
research groups participated in what became one of the first large CFD bench-
mark studies. The aim of the study was to analyze the performance of different
computational methods, (e.g., Coupled Solvers vs. Fractional Step Solvers), and
to determine whether and why certain approaches are superior to others. The
benchmark consists of a total of nine 2D and 3D problems.

In this thesis one of the 2D test cases was computed. The domain of this problem
is a cylinder located with a small offset to the center of a narrow channel, as
depicted in Figure 3.1. Due to the asymmetric location of the cylinder, wakes in
the flow field behind the cylinder is created, causing oscillations in the drag and
lift forces.

Inlet
~u = uinn

Outlet
p = 0

(0.25, 0.20 m)

~u = 0

~u = 0(0, 0)

(0, 0.41 m)

(2.2 m, 0)

(2.2, 0.41 m)

Figure 3.1: Schematic drawing of the 2 dimensional cylinder in a channel. Note that
the cylider is located asymmetrically in the channel, thus causing instabilities in the flow
field.

Setup for the von Karman test case (2D-1, unsteady, Re=100)

The inflow condition is:

u(0, y, t) = 6(0.41− y)/0.412, v(0, y, t) = 0

The following metrics are computed:

• Maximum Drag Coefficient, Cd max.

• Maximum Lift Coefficient, Cl max.

• Change of the pressure behind the cylinder, ∆P (t0 + 1
2f

).

• Strouhal Number, Str.
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Here, t0 is defined as the discrete time when maximum drag occurs, f is the vortex
shedding frequency and Str = D/fŪ with D being the circle diameter (0.1 m)
and Ū the mean velocity (1 m/s). The drag and lift are calculated by, respectively,
taking the first and second component of the force vector:

F =

∫
Circle

(
ν(∇u+ (∇u)T )− pI

)
· n ds

where ν is the viscosity, u the velocity, p the pressure, I the unit matrix, and n
the unit vector normal to the cylidner surface. The corresponding coefficients are
defined as:

Cd =
2Fx
ρŪD

Cl =
2Fy
ρŪD

3.3.1 Methods for the Mesh Convergence Test

In time dependent numerical simulations, errors are introduced from both the
temporal and spatial discretization as described in Eq. 2.22. Depending on the
applied discretization technique such as the FDM, FEM, or the spectral method,
several approaches are possible to reduce the spatial numerical error. In FEM we
can either increase the mesh resolution, the order of the polynomial space, or both.
In this section, a convergence test was carried out by adjusting the mesh density
while the polynomial degree was kept constant (P1P1). In order to keep errors
from the temporal discretization low, the time step was set to ∆t = 5 · 10−4 s for
all computations.

Even though the geometry in question is quite simple, the process of refining
the mesh for obtaining convergence at a reasonable computational cost is not
trivial. A brute force process would simply be to refine the every triangle in
the mesh until convergence is reached, but that is likely to produce meshes that
requires computations that are inconvenient or even impossible to perform on a
personal laptop. A better approach is to refine in the area that intuitively has the
largest impact on the metrics sought, namely the the pressure and the velocity
gradients around the cylinder. Three different mesh refinement parameters were
considered;

• The number of nodes constituting the cylinder, Ncyl

• The radial thickness of the innermost cell to the cylinder surface, ∆y1

• The resolution in the domain up to 0.5 m downstream of the cylinder, ∆xw

A total of 9 meshes were produced using the open source tool, GMSH [20] which
easily allows controlling the local mesh density. In Mesh1 - Mesh4 only the cells

18



constituting the cylinder are refined. For the remaining meshes a more deliberate
refinement approach was taken. The cells at the cylinder surface was organized in
a structured inflation layer, where the thickness of the innermost layer is denoted
∆y1. Furthermore, as stated above, the cells up to a distance of 0.5 m behind the
cylinder were also refined, in order to better approximate the motion of the vortex
shedding. For all meshes the characteristic edge length in the field far away from
the cylinder is kept constant at ∆xfar = 2.0 · 10−2 m2. The mesh characteristics
are presented in Table 3.1 at the end of this section.
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(a) Mesh6

(b) Mesh9

Figure 3.2: Overview of mesh resolution around and behind the cylinder.

(a) Mesh1 (b) Mesh3

(c) Mesh6 (d) Mesh9

Figure 3.3: A close view of the mesh resolution at the cylinder boundary.
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3.3.2 Flow Description

It is important to note that the cylinder is located with a small offset to the center
of the channel. This causes different flow rates and velocities at each side of the
cylinder which affects the pressure gradients and triggers flow instabilities. The
evolution of the velocity and vorticity (∇×u) field is depicted in 3.4. At t = 0.5 s
the flow is still undeveloped and steady, but asymmetries can be observed. A
second later instabilities are being apparent as oscillations are observed behind
the cylinder. At t = 5 s the instabilities have reached a steady state causing
vortex shedding behind the cylinder. The vortices are rotating in every other
direction, manifesting the conservation of momentum.

(a) Steady flow at t = 0.5 s (velocity). (b) Steady flow at t = 0.5 s (vorticity).

(c) Instabilities at t = 1.5 s (velocity). (d) Instabilities at t = 1.5 s (vorticity).

(e) Developed von Karman vortex
street at t = 5 s (velocity).

(f) Developed von Karman vortex
street
at t = 5 s (vorticity).

Figure 3.4: Velocity and vortex profiles at t = 0.5, 1.5 and 5.0 s, showing the evolution
of the vortex shedding. The computations were performed on Mesh7 (cf., Table 3.1)

3.3.3 Results and Discussion

The results produced following computations on the nine different meshes are pre-
sented in Table 3.2, while Table 3.3 shows the results established in the benchmark.
Curves illustrating the fluctuations in lift and drag are depicted in Figure 3.5. Of
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note is the very irregular drag initially in the simulation. The computations per-
formed on Mesh1 - Mesh4 underestimated the lift and drag coefficients overall as
a consequence of not being able to capture the steep gradients at the cylinder
surface. For Mesh1 and Mesh2 the errors may also be ascribed to insufficient
number of cells constituting the cylinder, as seen in Figure 3.3a. For Mesh6 -
Mesh9 a convergence in all metrics are observed with variations below 1% except
for ∆P in Mesh6. The lift coefficients and Stokes numbers are within the bounds
established in the benchmark, while the drag coefficient and pressure difference is
marginally below. For the last 3 meshes the Strouhal number is identical down to
4 digits.

It is concluded that it is possible, with a simple mesh refinement strategy, to
reproduce the results following Schäfer and Turek’s benchmark and achieve grid
independent solutions with Oasis.

Figure 3.5: The evolution of the lift and drag coefficients.
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Mesh Ntot Ncyl ∆y1 [m] ∆xw [m]

Mesh1 4000 32 n/a n/a
Mesh2 7000 128 n/a n/a
Mesh3 12000 512 n/a n/a
Mesh4 19000 1024 n/a n/a
Mesh5 20000 512 2.0 · 10−4 2.0 · 10−2

Mesh6 28000 512 2.0 · 10−4 1.0 · 10−2

Mesh7 42000 512 1.0 · 10−4 5.0 · 10−3

Mesh8 52000 1024 1.0 · 10−4 2.5 · 10−3

Mesh9 68000 1024 5.0 · 10−5 2.5 · 10−3

Table 3.1: Mesh characteristics for the von Karman vortex street benchmark. Ntot -
total number of cells, Ncyl - number of cells constituting the cylinder, y1 - radial thickness
of the innermost boundary layer cell, xw - cell density in the domain downstream of the
cylinder. y1 and xw was not specified for Mesh1 - Mesh4

Mesh Cl max Cd max ∆P (t0 + t1/2) Str

Mesh1 0.3852 2.7442 2.8381 0.3134
Mesh2 0.8673 2.9555 2.4242 0.2999
Mesh3 0.9673 3.1380 2.3641 0.2990
Mesh4 0.8488 3.1103 2.3891 0.2999
Mesh5 0.9237 3.0935 2.4661 0.2999
Mesh6 0.9952 3.2105 2.4314 0.2994
Mesh7 0.9979 3.2080 2.4646 0.3003
Mesh8 1.0037 3.2150 2.4631 0.3003
Mesh9 1.0040 3.2090 2.4594 0.3003

Table 3.2: Results for the von Karman vortex street benchmark for steady flow,
Re=100.

Cl max Cd max ∆P (t0 + t1/2) Str

0.9900 - 1.0100 3.2200 - 3.2400 2.4600 - 2.5000 0.2950 - 0.3050

Table 3.3: Upper and lower bounds for the results produced by the benchmark study.
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3.4 Validation Case 2: The 3D Taylor-Green Vor-
tex

The Taylor-Green vortex (TGV) is a fluid dynamics problem developed to study
the process of large eddies breaking up into smaller eddies [61]. As the TGV prob-
lem has a relatively simple setup and involves central mechanisms in turbulence, it
is a much used case for testing the accuracy of numerical schemes on modeling the
transition of laminar flow into turbulent-like motion. Since this thesis concerns
the modeling of airflow in the human airways, known to possess turbulent-like
properties [33], the TGV problem is considered as an appropriate validation case
for this purpose.

3.4.1 Notes on TGV and Turbulence

In Chapter 2.3 it was argued that even though a complete and definite definition
of turbulence is not made, several key characteristics must be present for a flow
to be characterized as turbulent. Two of these characteristics include random
fluctuations in space and time, and local isotropy of the small length scales. As
the TGV is completely deterministic and DNS simulations results in a symmetric
flow field due to the periodic boundary conditions, it is somewhat dubious to
refer to the problem as turbulent. Even though the TGV is not turbulent in the
strictest sense, the presence of the energy cascade is still prominent in the problem,
making it relevant for testing the performance of numerical schemes on turbulence
problems. Because the TGV flow contains some turbulence characteristics and is
frequently described as turbulent in the literature [12, 6], this phrase will also be
adopted here, despite the aforementioned contradiction.

3.4.2 Methods for Computing and Comparing the Rate of
Kinetic Energy Dissipation Between Different Meshes

Even though the 3D Taylor-Green does not have an analytical solution, DNS
simulations of the problem has been conducted, providing reference solutions for
comparison. In addition, by computing the kinetic energy and the dissipation of
energy it is possible to measure the effects of different numerical schemes and reso-
lutions on how well the transition process is being modeled. As the coarser meshes
are not able to capture the smallest length scales where a substantial amount of
energy is being dissipated (cf., Section 2.3), it may be expected that computations
on coarse meshes will result in artificially high levels of kinetic energy. However,
many CFD schemes are subject to artificial numerical dissipation, and in particu-
lar those of lower order [24]. Even though a thorough examination of the sources
behind numerical dissipation (or diffusion) is outside the scope of this thesis, its
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effects related to different spatial resolution have none-the-less been investigated
in this section.

Given a velocity field, u, existing within a finite volume, V, the volume averaged
kinetic energy is defined as:

Ek(u) =
1

2V

∫
V

u · u dV (3.1)

The total kinetic energy dissipation rate (KEDR) can be found by differentiating
Eq. 3.1 with respect to time:

ε(u) =
Ek(u)

dt
(3.2)

Furthermore, the enstrophy is the volume averaged dot product of the vortic-
ity:

ς =
1

2V

∫
V

ω · ω dV (3.3)

where ω = ∇ × u, i.e the vorticity. For an incompressible fluid with constant
density, ρ, and viscosity, µ, the KEDR is related to the enstrophy through the
following relation:

ε(ς) =
2µς

ρ
(3.4)

The KEDR computed from the enstrophy is dissipation due to vortical structures
and shows how well the small scale motions are being captured [8]. Hence by
comparing the two different KEDR curves for a given simulation it is possible to
measure the amount of dissipation due other effects than vorticity, e.g., numerical
dissipation [12].

Following NASA’s 3rd International Workshop on Higher-Order CFD-Method [47],
reference solutions to ε(u) and ε(ς) was made available. The reference solutions
were produced by a spectral method scheme.

In order to distinguish between the two approaches for computing dissipation, the
KEDR from direct differentiation is denoted ε(u) (cf., Eq. 3.2), and the KEDR
related to the enstrophy is denoted ε(ς) (cf., Eq. 3.4).
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3.4.3 Setup

The simulations were performed over a [−π, π]3 domain with periodic boundary
conditions and the motion was initiated with the following velocity field:

u(x, y, z) = V0 sin(x/L) cos(y/L) sin(z/L) (3.5)
v(x, y, z) = −V0 sin(x/L) cos(y/L) sin(z/L) (3.6)
z(x, y, z) = 0 (3.7)

p(x, y, z) = p0 +
ρV 2

0

16
(cos(2x/L) + cos(2y/L)) (cos(2z/L) + 2) (3.8)

The Reynolds number was set to 1600 which allows the comparison of results
with several published papers. As the density is incorporated into the pressure
gradient in Oasis, it was set to 1 kg/m3 in 3.8 . Furthermore, L = 1 m and
V0 = 1 m/s forcing ν = 1/1600 m2/s in order to obtain the desired Reynolds
number. The computational time was set to T = 20 s which made it possible to
study the process of the flow from transitioning laminar to turbulent, before being
relaminarized. The time step was set to ∆t = 2 ·10−3s giving a total of 10000 time
steps. In order to study the effect of spatial discretization, three different meshes
were considered in this study; 32, 64 and 128 cells in each direction of the cubical
domain, with P1P1 finite elements. The simulations conducted on the different
meshes will be referred to as N32, N64, and N128, respectively.

3.4.4 Results

Discretization
∣∣∣ ε(u)−ε(ς)

ε(u)

∣∣∣ ∣∣∣ ε(u)−ε(u)reference
ε(u)reference

∣∣∣
N32 P1P1 0.0793 0.1221
N64 P1P1 0.0549 0.0946
N128 P1P1 0.0341 0.0214

Table 3.4: Center column: normalized discrepancy between ε(u) and ε(ς) (numerical
dispersion), right column: normalized discrepancy of ε(u) from reference solution.

Iso-surfaces of the Q-criterion (cf., Eq. 2.27) at six characteristic stages in the
vortex build-up and dissipation process are depicted in Figure 3.6 for N128. Ini-
tially the flow field is laminar and characterized by eight large, round vortices
(Figure 3.6a). Note the periodic boundary conditions mirroring the half vortices.
At t = 3 s the vortices have begun to stretch and divide, but the KEDR is still
low (Figure 3.6b). Two seconds later the KEDR has rapidly increased and more
eddies are formed (3.6c). At t = 9 s the KEDR has reached peak values and the
flow is fully turbulent (Figure 3.6d). At t = 15 s the magnitude of the KEDR is
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approximately the same as at t = 5 s, but the size of the vortices are much smaller
(Figure 3.6e). After 20 s the KEDR is starting to flatten out, the distribution of
length scales is more homogeneous and the effect of the Energy Cascade is wearing
out. If simulated over a longer time interval the flow field would eventually become
completely relaminarized.

(a) t = 0 s: Laminar (b) t = 3 s: Vortex stretching

(c) t = 5 s: Dissipation increasing (d) t = 9 s: Peak dissipation

(e) t = 15 s: Vortex break down (f) t = 20 s: Relaminarization

Figure 3.6: Iso-surfaces of the Q criterion showing the evolution of vortices breaking
down into small scale motion.

As indicated in the previous section, it may, based on the theory of the energy
cascade, be reasonable to make the a priori assumption that the KEDR will be
overall lower for computations performed with coarser spatial resolutions because
the length scales in the dissipation range are not properly captured. The curves
presented in Figure 3.7 do, however, not support this assumption.

27



Figure 3.7: Temporal Development of the kinetic energy

At the end of the simulation the kinetic energy is lowest for N32 and is increasing
for the finer discretizations. Thus, surprisingly, the coarsest mesh yields the largest
total dissipation, which is an indication that there are other processes than just
the viscous dissipation contributing to the KEDR.

The Figures 3.8a - 3.8c shows comparisons of ε(u) and ε(ς) for each of the sim-
ulations. By observing the curves in relation to the second column in Table 3.4,
it is clear that ε(u) and ε(ς) is converging for better resolved simulations, which
is in agreement with reference solution, where ε(u) and ε(ς) are indistinguishable
[12]. In Figure 3.8d ε(ς) is compared for the various simulations. N128 is closest
resembling the reference solution.

(a) N32 P1P1 ε(u) vs. ε(ς). (b) N64 P1P1 ε(u) vs. ε(ς).

(c) N128 P1P1 ε(u) vs. ε(ς). (d) Enstrophy computed KEDR. ε(ς)

Figure 3.8: Time development of ε(u) vs. ε(ς) (a,b,c), and comparisons of ε(ς) between
the three meshes (d).
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Figure 3.9a shows the directly computed KEDR ε(u) for the three simulations
in relation to the reference solution, while Figure 3.9b exhibits N128 extracted.
Whereas N32 and N64 yields ε(u) with an considerable offset from the reference
solution, N128 shows a very good correlation with a normalized discrepancy of
only ≈ 2% following last row in column 3 in Table 3.4.

(a) Directly computed KEDR ε(u). (b) N128 P1P1 ε(u)

Figure 3.9: The development of ε(u) for all three meshes compared with the reference
solution.

For a well resolved simulation (e.g. the reference solution) ε(u) = ε(ς), and thus
any inconsistency must be due to numerical dissipation. It was observed that the
discrepancy between ε(u) and ε(ς) decreased when the mesh was refined. The
simulation on N128 both showed a good correlation between ε(u) and ε(ς), as well
as to the reference solution. It can thus be concluded that Oasis is capable of
computing turbulence-like flow conditions at a moderate computational cost and
with very low numerical dissipation.

3.5 Concluding Remarks on the Validation of
the Navier-Stokes Solver Oasis

In Section 3.3 it was shown that with only a simple mesh refinement strategy
we are able to compute a 2D transient flow in good agreement with established
results, and obtain a mesh independent solution at a low computational cost.
The significance of keeping a high mesh resolution in sections of the domain with
intuitively high gradients was also demonstrated. A similar approach was also
taken when the model of the upper human respiratory system was meshed, as
outlined in Section 6.4.2.

In Section 3.4 Oasis was tested by simulating a laminar flow transitioning into
turbulence before being relaminarized, and showed excellent agreement with the
reference solution. Based on the validation test cases, it is concluded that Oasis
is an energy conserving and minimally dissipative Navier-Stokes solver
capable of producing high precision simulations of turbulent flow at a
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moderate computational cost. Oasis has also been extensively used to model
turbulent-like flows in the cardiovascular system and demonstrated phenotypically
similar results compared to spectral element method solvers. [3, 25, 26, 27, 46, 60,
63, 64, 65]. Thus, Oasis is deemed an adequate choice for computing air inhaled
in the human respiratory system under turbulent flow conditions.
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Chapter 4

The Kinetics of Particles
Dispersed in a Moving Fluid

Fbody

Ffluid on particleFparticle on fluid

�fluid

dp��

Fdrag

Figure 4.1: A particle influenced by a moving fluid. Body forces such as gravity
working on the particle, in addition to the friction between the particle and the fluid.
The size of the particle is defined by an characteristic radius dp/2.

4.1 Determining an Appropriate Particle Motion
Model

The study of the kinetics of particles dispersed in a moving fluid is a subcategory
of multiphase flows. As the field covers physical phenomenons that are central in
a wide range of modern sciences and technology applications such as combustion
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engines, pollutant control, and petroleum pipelines, comprehensive work has been
conducted on the subject in the recent decades [10]. The very definition of a mul-
tiphase flow is, as the name suggests, a flow mixture of different phases. A phase
is the state of a matter, such as solid, liquid, or vapor. The type of multiphase
flow studied in this thesis is solid particles dispersed in air. Even though the below
definitions apply for different types of multiphase flows, the solid phase will only
be referred to as particles.

Figure 4.1 shows a small particle in a moving fluid with arrows illustrating the
different forces acting on the particle. The body force is typically gravity, but
can also include magnetic or electrostatic forces among other. From the moving
fluid, several forces act on the particle, and the presence of the particle also affects
the surrounding flow, possibly making it a coupled-force problem. However, the
significance of the difference forces and to which degree the presence of the parti-
cle modifies the surrounding flow is strictly problem specific and depends on the
particle, fluid, and flow properties. In order to determine an appropriate model for
the type of multiphase flows considered in this thesis, it is necessary to establish a
basis of expressions and relations. The following definitions are taken from Multi-
phase Flow with Droplets and Particles, Second Edition (2012), but the notation
is adjusted to the nomenclature of the thesis [10].

Consider the velocity of a particle and the fluid at the corresponding location, ex-
pressed respectively as up,i and uf,i with subscript i denoting the spatial direction.
In the reference of a particle, the local Reynolds number is defined by the velocity
difference between the continuous and dispersed phase as:

Rep =
dp|uf,i − up,i|

νf
(4.1)

The particle response time is the approximate time for a particle to accelerate from
zero to 67% of the free stream velocity. This crude estimate is deduced assuming
a creeping flow around the particle with no forces acting back on the fluid. In
numerical simulations the response time is critical as it both sets an upper limit
for the discrete time step ∆t, in addition to characterizing to which degree particles
respond to changes in the velocity field. If considering a particle of diameter dp
and density ρp dispersed in a fluid of viscosity µc, the particle response time is
then expressed as:

τp =
ρdd

2
p

18µc
(4.2)

The Stokes number describes the response time in relation to the condition of the
flow in which the particle is suspended. For high or low Stokes number, the motion
of the particle is characterized either by its inertia or susceptibility to abrupt flow
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changes, respectively. For a characteristic length scale D0, such as the diameter of
a tube, and a mean velocity U0, the flow time scale can be estimated as τf = D0/U0.
The dimensionless Stokes number is then:

St =
τp
τf

(4.3)

Given the presence of particles with a total volume of Vd contained in a sample
volume ∆V , the volume fraction is defined as

Φp = lim
∆V→∆Vmo

Vd
V

(4.4)

where ∆Vmo is a sampling volume that contains a sufficient number of particles
for a sound statistical representation. The volume fraction in a multiphase flow
is essential when considering the interaction between the phases (e.g., fluid and
particle). In S. Elghobashi (1994) a quantification of the significance of phase
interaction in turbulent multiphase flows depending on volume fraction and relative
time scales was made and presented as a map divided into four regions [14]. A
re-sketch is depicted in Figure 4.2, showing the map split into four regions.
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Figure 4.2: Map consisting of four regions quantifying the significance for phase inter-
action for turbulent flows, given mass loading and characteristic time scale.

In a multiphase problem with very low mass loading Φp < 10−6, (region 1), the
flow is virtually unaltered by the presence of the particles, and a one way coupling
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is sufficient. Given an intermediate mass loading Φp > 10−6 (region 2 and 3), the
particles affect the flow in such degree that a two way coupling is necessary. For
high mass loadings (region 4) the particles are so densely suspended that inter-
particle interaction should also be accounted for.

The fluid-particle interaction map in Figure 4.2 is a useful tool for determining the
significance of the interaction between the fluid and the particles for the problems
considered in this thesis. Figure 4.3 shows the volume fractions as function of
number of particles dispersed based on the lung geometry provided by Brno lung.
The calculations were performed assuming an even distribution of particles. The
horizontal, dashed line indicates the lower limit of volume fractions for which a
one-way coupling is considered adequate. For the smallest particles, dp = 1.0 µm,
a one way coupling is sufficient. The second largest particles, dp = 10 µm reach the
limit when 80000 particles are present in the geometry. For the largest particles
the limit is already reach for less than 10000. However, based on the results in the
literature [50, 34] it is expected that the largest particles barely reach beneath the
oral cavity, and are thus not suitable for pharmaceutical applications. Despite that
also the 10 µm particles may be within the two-way coupling region for dense local
concentration, a one-way coupling is deemed adequate for the intended purpose of
the thesis.

Figure 4.3: Volume fraction as function of number of particles present in the lung
geometry for different particle diameters. The black, dashed line indicates the upper
limit of volume fractions which allows for a one-way coupling of the fluid - particle
interaction.
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4.2 Development of a Particle Motion Algorithm

In this thesis, the trajectories of independent particles have been calculated with a
Lagrangian-Eulerian approach by integrating the force balance on each single par-
ticle. Consider a particle with mass mp, volume Vp, diameter dp, and with velocity
up,i, located at position xp. The fluid velocity at the corresponding location is uf,i
with density ρf , dynamic and kinematic viscosity µf and νf , respectively. Sub-
script p and f is referring to fluid and particle, respectively, and i denotes spatial
direction. The shear force from the fluid on the particle surface is τp, while p is
the pressure field, and t′ is a short time after t. Following Maxey and Riley’s rig-
orous studies in 1983 on small particles in a low Reynolds Numbers, non-uniform,
unsteady flow, the full force balance law contains contributions from gravity, undis-
turbed flow, steady state drag, virtual mass and Basset force [10]:

ΣFp,i = mp
dup,i
dt

= mpfi︸︷︷︸
body forces

+Vd(−
∂p

∂xi
+
∂τij
∂xj

)︸ ︷︷ ︸
undisturbed flow

+ 3πµfdp

[
(up,i − uf,i) +

d2
p

24
∇2up,i

]
︸ ︷︷ ︸

steady state drag

+
1

2
ρfVp

d

dt

[
(up,i − uf,i) +

d2
p

40
∇2up,i

]
︸ ︷︷ ︸

virtual mass

+
3

2
πµfdp

∫ t

0

[
d
dt′

(up,i − uf,i + dp
24
∇2up,i)

πνf (t− t′)1/2

]
dt′︸ ︷︷ ︸

Basset term
(4.5)

The contribution from the undisturbed flow includes the net pressure difference
acting on the particle and the shear stress on its surface. Both the contributions
from the undisturbed flow and the last term in the steady state drag (Faxen force)
can be neglected for small particles, as they scale with d3

p and d2
p, respectively.

Virtual mass accounts for the volume expelled by the presence of a particle, which
acts a force on the particle when accelerated. The Basset term accounts for the
temporal delay in the boundary layer on a surface in a unsteady flow. According
to the studies of Hjelmfelt and Mockros (1966), both the virtual mass and the
Basset term are negligible for ρp/ρf < 10−3 which is approximately the density
ratio between the particles considered in this thesis and that of air, and thus both
terms are left out [10]. Hence, by applying the above simplifications, Eq. 4.5 is
reduced to:

ΣFp,i = mp
dup,i
dt

= 3πµfdp(up,i − uf,i) +mpfi (4.6)

Furthermore, Eq. 4.6 can be expressed through a drag coefficient Cd and the cross
sectional area A of the particle:
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Fp,i =
1

2
CDA|uf,i − up,i|(uf,i − up,i) + fi (4.7)

Assuming spherical particles, the equation can be rewritten as:

Fp,i =
3µmpCDRep

4ρpd2
p

(uf,i − up,i) + fi (4.8)

or simplified to a equation of motion:

dup,i
dt

=
CD,iRep,i

τp
(uf,i − up,i) + fi (4.9)

The particle trajectory is found by integrating the velocity:

dxi
dt

= up,i (4.10)

Since uf,i is defined as the fluid velocity at the particle location at a given time,
defined in a Eulerian frame, it is both a function of time and space. The location
of the particles, however, are in a Lagrangian frame and thus only function of
time. As a result Eq. 4.9 is on a form referred to as a Lagrangian-Eulerian
formulation.

The drag coefficient CD is an experimentally determined function of the Reynolds
Number. In this thesis the definition followingMorsi and Alexander (1972) is used,
where the drag coefficient is a second order polynomial on the form [42]:

CD(Rep) =



24
Rep

for Rp < 0.1

3.6900 + 22.7300
Rep

+ 0.0903
Re2p

for 0.1 ≤ Rp < 1.0

1.2220 + 29.1667
Rep

− 3.8889
Re2p

for 1.0 ≤ Rp < 10.0

0.6167 + 46.5000
Rep

− 116.67
Re2p

for 10.0 ≤ Rp < 100.0

0.3644 + 98.3300
Rep

− 2778
Re2p

for 100.0 ≤ Rp < 1000.0

0.3570 + 148.620
Rep

− 4.75·104

Re2p
for 1000.0 ≤ Rp < 5000.0

0.4600− 490.546
Rep

+ 57.87·104

Re2p
for 5000.0 ≤ Rp < 10000.0

(4.11)

Other expressions for the drag coefficients are also used in modern softwares, such
as the one proposed by Chiller and Neumann in 1935, which is implemented in
both Ansys Fluent and OpenFoam [17, 37]. However, in this thesis Expression
4.11 is chosen as it provides the most detailed predictions for low particle Reynolds
numbers.
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4.2.1 A Predictor Corrector Algorithm for Solving the Equa-
tion of Motion for Particles Dispersed in a Moving
Fluid

Equation 4.9 and 4.10 are ordinary differential equations on the form u′p = F (t, xp, up)
and can be discretized by the second order accurate Crank Nicholson scheme
as:

un+1
p,i − unp,i

∆t
=
C
n+1/2
D,i Re

n+1/2
p,i

τp

(
u
n+1/2
f,i − un+1/2

p,i

)
+ f

n+1/2
i (4.12)

xn+1
i − xni

∆t
= u

n+1/2
p,i (4.13)

where superscript n denotes discrete time level. There are several difficulties in
approximating the "in between" time steps such as un+1/2

f,i . A common second
order approximation is to use the arithmetic mean: un+1/2

f,i = 1
2
(un+1

f,i + unf,i), and
similar for the drag coefficient and particle Reynolds number. However, un+1

f,i ,
the fluid velocity at the next step particle location, is not known. The same also
applies for Ren+1/2

p and Cn+1/2
D,i as both are functions of the fluid velocity. In order

to circumvent this problem and still maintain a second order accuracy, a simple
predictor-corrector algorithm, similar to Heun’s method, is applied. The idea of
this method is as follows:

1. Find a tentative next step particle location x∗i by solving Eq. 4.12 and 4.13
semi explicitly, i.e, un+1/2

f,i ≈ unf,i and similarly for Ren+1/2
p,i and Cn+1/2

D,i (Eq.
4.14 - 4.15).

2. Find a tentative next step fluid velocity u∗f,i by interpolating the velocity
field to position x∗i .

3. Solve Eq. 4.12 implicitly using u
n+1/2
f,i = 1

2
(un+1

f,i + unf,i) and similarly for
Re

n+1/2
p,i and Cn+1/2

D,i (Eq. 4.16 - 4.17).
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u∗p,i =
unp,i + ∆tfi +

∆tCn
D,iRe

n
p,i

τp

(
unf,i − 1

2
unp,i
)

1 +
∆tCn

D,iRe
n
p,i

2τp

(4.14)

x∗i = xn + ∆t
1

2
(u∗p,i + unp,i) (4.15)

un+1
p,i =

unp,i + ∆tfi +
∆tCn

D,iRe
n
p,i

2τp

(
u∗f,i + unf,i − unp,i

)
1 +

∆tCn
D,iRe

n
p,i

2τp

(4.16)

xn+1
i = xn + ∆t

1

2
(un+1

p,i + unp,i) (4.17)

The above algorithm is depicted in Figure 4.4 for a particle moving within a FEM
mesh. In the left illustration, consider, at a discrete time step, a particle with
position xni and instantaneous velocity unp,i. At the corresponding location the
instantaneous fluid velocity is unf,i. Following Eq. 4.14 a tentative velocity, u∗p,i,
is found from unf,i and unp,i. From Eq. 4.15 the tentative position x∗i is found by
moving one discrete time step in the direction of 1

2
(unp,i + u∗p,i). The flow field is

interpolated to the tentative particle location xip, giving u∗f,i. In the right figure the
same procedure applies, but the force contribution from the fluid on the particle
is calculated from 1

2
(unp,i + u∗p,i) following Eq. 4.16. Finally, the next step particle

position, xn+1
p and the procedure repeats.
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Figure 4.4: A schematic figure of predictor-corrector algorithm when solving the equa-
tion of particle motion. The left and right figures are corresponding to Eq. 4.14 and
4.16 - 4.17, respectively.

An algorithm of the implementation of Eq. 4.14 - 4.17 is depicted in Algorithm
3.
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Algorithm 3 Particle Motion Algorithm
1: for particle in ParticleMap do
2: x = particle.position
3: unf = interpolate fluid velocity to x
4: for i in [spatial directions] do
5: compute CD from 4.11
6: solve 4.14 for u∗p,i
7: solve 4.15 for x∗i
8: u∗f = interpolate fluid velocity to x∗
9: for i in [spatial directions] do
10: compute CD from 4.11
11: solve 4.16 for un+1

p,i

12: solve 4.17 for xn+1
i

4.2.2 Numerical Stability of the Algorithm

The above algorithm is derived using a Crank-Nicholson scheme which is known
only to be conditionally stable. Spurious oscillations in the particle velocity was
observed when testing Algorithm 3. Since this artificial effect was typical for
small particles when the discrete time step ∆t was relatively large, the existence
of a stability relation between ∆t and the particle response time τp was hypothe-
sized.

In order to test this working hypothesis, a simple experiment was carried out.
Particles of different diameters spanning the range studied in this thesis was ac-
celerated from rest in a constant 2D velocity field uf = (U0, 0). For each particle
diameter the test was performed with increased ∆t until the criteria 4.18 - 4.19
were not met.

|unp | > |unf | (4.18)

|un+1
p | < |unp | (4.19)

From a least square fit to the instability limit ∆tlim as a function of particle
diameter dp, the following relation was found:

∆t < 2.0119τp + 1.4929 · 10−5 s (4.20)
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Figure 4.5: Stability relation between response time τp and temporal resolution ∆t for
the Particle Motion Algorithm.

4.3 The Particle Tracking Framework

The equation of particle motion algorithm presented in Section 4.2.1 is imple-
mented in the framework of the module LagrangianParticle.py found in the open
source software fenicstools [43]. This module contains a structure for storing in-
formation about particle properties and methods for reading and interpolating
velocity fields to point locations within the mesh. In addition, LagrangianParti-
cle.py utilizes parallelization through MPI for Python (mpi4py) [11], by assigning
different parts of the mesh to each processor.

In LagrangianParticle.py, each particle is defined through an instance of a class
Particle, containing information of the current position, velocity, and other prop-
erties of the particle. Furthermore, a class CellParticleMap contains a dictionary
that links individual particle to the cell in which they are located, such that the
velocity field can be interpolated from the surrounding nodes. After a new particle
position has been computed, its presence within the cell is revisited. If the particle
is no longer present in the cell, the neighboring cells will first be checked for its
presence, significantly speeding up the relocation process compared to checking
the full mesh. Only if a particle is not located within any of the neighboring cells
the remaining cells are inspected.
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In the initial configuration of the LagrangianParticle.py, inertia is ignored and the
particles are moved according to the path lines of the velocity field. As particle
inertia is only negligible for τp → 0, it was therefore deemed necessary to implement
force balance integrating algorithm.

In this thesis the following changes to LagrangianParticle.py were performed:

• Adding particle physics by the implementation of Algorithm 3.

• Functionality for saving particle position and velocity to file for post pro-
cessing and possibility of restarting simulations.

• Deposition criterion: defining particles as deposited and remove from particle
map when a given distance to the domain boundary is reached.
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Chapter 5

Verification and Validation of the
Particle Tracking Framework

5.1 Verification

In order to verify that the equation of particle motion algorithm is correctly im-
plemented, convergence rate tests were carried out. As the particle equations of
motion (Eq.4.9 - 4.10) were derived within a Lagrangian frame, they are functions
only with respect to time. Furthermore, the equations are discretized using the
Crank-Nicholson scheme which is know to be second order accurate [31]. The order
of accuracy reflects the polynomial degree of the residual in the Taylor expansion
from which the finite difference schemes were derived. By subtracting the exact
from the numerical solution of the equation, we are left with the truncation error.
As the Taylor residual is the leading order term, we expect the truncation error
on the form:

E = C∆tr (5.1)

where C is an constant and r the rate-of-convergence. By computing a series of
errors Ei for different temporal resolutions ∆ti, the rate-of-convergence is found
as

ri =
log(Ei+1

Ei
)

log(∆ti+1

∆ti
)

(5.2)

A wide range of values for ∆ti should be used to verify that the rate-of-convergence
is consistent.
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5.2 Rate-of-Convergence Tests for the Particle
Motion Algorithm

Three problems, each specifically involving different parts of the Equations of
Particle Motion algorithm, was considered in the rate-of-convergence tests:

1. Free falling particle accelerated by gravity in fluid at rest.

2. Particle accelerated by a temporally changing velocity field uf = (At, 0)
where A is a constant of dimension [m

s2
].

3. Particle accelerated by a spatially changing velocity field uf = (Bx, 0) where
B is a constant of dimension [1

s
].

�gr�vity

�dr�g �dr�g

Test 1 Test 2 Test 3
uf�t) uf�x)

Figure 5.1: Schematic drawing of the three problems for verifying the particle equation
of motion algorithm.

Equation 4.9 is non-linear for particle Reynolds numbers above 0.1. Thus, in order
to derive simple analytical solutions for Test 1 and 2, the particle Reynolds number
was forced below 0.1, thus making the equation linear. Since the tests only involve
translation on one direction, the corresponding problems can be described by the
one dimensional equations. As no analytical solution was found for Test 3, a trusted
numerical scheme was used in order to provide a "reference solution".

5.2.1 Test 1

The first problem verifies that drag and the body force term is correctly imple-
mented. For a free falling particle in a fluid at rest, Eq. 4.9 and 4.10 simplifies
to:

dup,z(t)

dt
= −24

τp
up,z(t)− gz,

dxz(t)

dt
= up,z(t) (5.3)

Initiating the particle at rest from position xz = 0 gives the following analytical
solution for the velocity and position:
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up,z(t) =
gτp
24

(
1− exp(−24t

τp
)

)
(5.4)

xp,z(t) =
gτp
24

(
t− τp

24
exp(−24t

τp
)

)
−
gτ 2

p

24
(5.5)

The problem was simulated for a wide range of time steps for a particle with
diameter 20 µm and compared with the analytical solution. Table 5.1 shows the
obtained results with the (expected) convergence rates marked in bold font.

∆t Eu ru Epos rpos
5.00 · 10−5 1.73 · 10−4 - 3.24 · 10−11 -
2.50 · 10−5 4.34 · 10−5 2.00 8.09 · 10−11 2.00
1.25 · 10−5 1.09 · 10−5 2.00 2.02 · 10−11 2.00
6.25 · 10−6 2.71 · 10−6 2.00 5.05 · 10−12 2.00

3.1250 · 10−6 6.79 · 10−7 2.00 1.26 · 10−12 2.00
1.5625 · 10−6 1.70 · 10−7 2.00 3.16 · 10−13 2.00
7.8125 · 10−6 4.24 · 10−8 2.00 7.96 · 10−14 1.99

Table 5.1: Results from Test 1: Convergence rates computed from the problem of a
large particle (dp = 20µm) in free fall. Rate of convergence for the velocity and position
ru and rpos, respectively.

5.2.2 Test 2

The second problem verifies that the drag contribution from a moving fluid is
correctly implemented. For a single particle suspended in the fluid field uf (t) =
(At, 0), experiencing no body forces, Eq. 4.9 and 4.10 simplifies to:

dup,x(t)

dt
=

24

τp
(At− ux,p(p(t)),

dxx(t)

dt
= up,x(t) (5.6)

(5.7)

Initiating the particle at rest from position xx = 0 gives the analytical solu-
tion:
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up,i(t) = A

(
t+

τp
24

(exp(−24t

τp
)− 1)

)
(5.8)

xp,i(t) = A

(
1

2
t2 − τp

242
(τp exp(−24t

τp
) + 24t)

)
−
Aτ 2

p

242
(5.9)

The problem was simulated for a large dp = 20 µm and a small dp = 3 µm particle.
Again, the expected convergence rates were found, marked in bold font in Table
5.2 - 5.3.

∆t Eu ru Epos rpos
5.00 · 10−5 1.22 · 10−2 - 2.44 · 10−8 -
2.50 · 10−5 3.43 · 10−3 1.83 5.74 · 10−9 2.09
1.25 · 10−5 9.10 · 10−4 1.91 1.39 · 10−9 2.05
6.25 · 10−6 2.25 · 10−4 1.96 3.42 · 10−10 2.02

3.1250 · 10−6 5.96 · 10−5 1.98 8.49 · 10−11 2.01
1.5625 · 10−6 1.50 · 10−5 1.99 2.11 · 10−11 2.01
7.8125 · 10−6 3.78 · 10−5 1.99 5.27 · 10−12 2.00

Table 5.2: Results from Test 2: Convergence rates computed from the problem of a
large particle (dp = 20µm) accelerated by a temporarily changing velocity field. Rate of
convergence for the velocity and position ru and rpos, respectively.

∆t Eu ru Epos rpos
2.50 · 10−5 1.02 · 10−5 - 7.81 · 10−8 -
1.25 · 10−5 4.39 · 10−6 1.21 1.95 · 10−8 2.00
6.25 · 10−5 1.34 · 10−6 1.71 4.88 · 10−9 2.00

3.125 · 10−6 3.64 · 10−7 1.88 1.22 · 10−9 2.00
1.5625 · 10−6 9.45 · 10−8 1.95 3.05 · 10−10 2.00
7.8125 · 10−6 2.41 · 10−8 1.97 7.62 · 10−11 2.00

3.90625 · 10−6 6.07 · 10−9 1.99 1.90 · 10−11 2.00

Table 5.3: Results from Test 2: Convergence rates computed from the problem of a
small particle (dp = 3 µm) accelerated by a temporarily changing velocity field uf =
(At, 0). Rate of convergence for the velocity and position ru and rpos, respectively.
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5.2.3 Test 3

Both test 1 and 2 successfully computed the expected convergence rates. However,
both tests has the shortcoming as neither properly tests the predictor step of the
algorithm. Consider Eq. 4.14; if uf is constant in the spatial domain, x∗ = xn+1,
and the effectiveness of the predictor step is not tested. Furthermore, as the
motion of the fluid and particles are described in different frames - Eulerian and
Lagrangian, respectively, finding an analytical solution for the motion of a particle
moved by a spatially changing velocity field is challenging. Therefore, instead
of computing the error by comparing numerical to analytical solution, a trusted
numerical scheme was used in order to produce a "reference" solution.

For a single particle suspended in the fluid field uf (t) = (Bx, 0), experiencing no
body forces, Eq. 4.9 and 4.10 simplifies to:

dup,x(t)

dt
=

24

τp
(Bx− ux,p(p(t)),

dxx(t)

dt
= up,x(t) (5.10)

Eq. 5.10 was solved with a first order, forward difference scheme with a temporal
resolution of magnitude 10−11 s - approximately a millionth of the ones in the
refinement test. The reference scheme, shown in Listing 5.1 below, was prior to
the computations verified as first order accurate on Test 1 and 2.

Listing 5.1: Forward Difference Scheme for Eq. 5.10
def drag_model_1 (u_p, u_f , g , dt ) :

for i in range ( len (u_p [ : ] ) ) :
u_p [ i ] = u_p [ i ] + dt∗K1∗(u_f [ i ] − u_p [ i ] ) + dt∗g [ i ]

return u_p [ : ]

The results with convergence rates in bold font are presented in Table 5.4. For
∆t→ 1 · 10−6 the convergence rates appears to become somewhat irregular, which
may be explained by recalling the error estimate in Eq. 5.1. The error of the
"reference solution" scales as Eref ≈ 10−11, whereas the scheme under assessment
scales as E2 ≈ 10−6∗2 = 10−12. Thus, when ∆t→ 1 · 10−6, the equation of particle
motion algorithm is more accurate than the "reference" solution, due to the higher
order.

Table 5.5 shows the convergence rates with the corrector step disabled, which, as
expected, causes a drop in the convergence rate and demonstrating the benfit of
the implemented predictor-corrector procedure.
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∆t Eu ru Epos rpos

5.00 · 10−5 3.07 · 10−3 - 2.27 · 10−6 -
2.50 · 10−5 7.84 · 10−4 1.97 5.69 · 10−6 2.00
1.25 · 10−5 1.98 · 10−4 1.99 1.42 · 10−6 2.00
6.25 · 10−6 4.88 · 10−4 2.02 3.55 · 10−7 2.00

3.1250 · 10−6 1.13 · 10−5 2.10 8.90 · 10−8 2.00
1.5625 · 10−6 1.95 · 10−6 2.54 2.23 · 10−8 1.99
7.8125 · 10−6 4.01 · 10−7 2.28 5.67 · 10−9 1.98

Table 5.4: Results from Test 3: Convergence rates computed from the problem of a
large particle (dp = 20µm) accelerated by a spatially changing velocity field uf = (Bx, 0).
Rate of convergence for the velocity and position ru and rpos, respectively.

∆t Eu ru Epos rpos

5.00 · 10−5 3.18 · 10−3 - 1.90 · 10−4 -
2.50 · 10−5 8.32 · 10−4 1.93 1.12 · 10−4 0.75
1.25 · 10−5 2.13 · 10−4 1.97 6.08 · 10−5 0.89
6.25 · 10−6 5.38 · 10−5 1.99 3.15 · 10−5 0.95

3.1250 · 10−6 1.32 · 10−5 2.00 1.61 · 10−5 0.97
1.5625 · 10−6 3.29 · 10−6 2.03 8.10 · 10−6 0.99
7.8125 · 10−6 7.42 · 10−7 2.15 4.07 · 10−5 0.99

Table 5.5: Results from Test 3 with corrector step disabled : Convergence rates com-
puted from the problem of a large particle (dp = 20 µm) accelerated by a spatially
changing velocity field uf = (Bx, 0). Rate of convergence for the velocity and position
ru and rpos, respectively. Note the drop of convergence rate.
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5.3 Validation: Particle deposition in a 90 de-
gree tube bend

The previous section verified that the equation of particle motion algorithm is
correctly implemented and produces results of the expected order of accuracy. The
next step is to perform a test case that allows for the comparison with established
experimental and numerical results in order to validate the algorithm. Such a
test case should contain similar characteristics as the inhaled particle deposition
problem so that the results can be extrapolated to the full scale problem. Pui
et. al (1987) [53] performed an extensive series of experiments releasing particles
of different sizes through bent tubes of varying diameters and curvatures. The
Reynolds numbers varied between 1000 and 10000, hence including both laminar
and turbulent cases. Previous studies have shown that the particle deposition in
bends has a negligible dependency of the curvature ratios, Rc, between 5-30, which
is defined as the inscribed radius of the bend divided with the radius of the tube
[23]. The study of Pui et. al showed that Reynolds number had no impact on the
deposition ratio in the turbulent regime and that particle inertia (Stokes number)
is the dominant factor.

In this section a numerical simulation of one of the experiments carried out by
Pui. et. al. has been performed with the aim of comparing the obtained results.
In addition, results following two other numerical studies, Breuer et. al. (2006)
and Tsai and Pui (1990) have also been considered [7, 62].

The motion of fluids running through bends is characterized by the Dean number,
which is a dimensionless quantity representing the ratio of the square root of the
centripetal and viscous forces to the inertial forces [53]. Given a flow with Reynolds
number Re running through a bent pipe with dimensionless curvature ratio Rc,
the Dean number is expressed as:

De =
Re√
Rc

(5.11)

5.3.1 Method

In this thesis the test case was performed with a tube diameter of D = 8.51 mm,
Reynolds number Re = 1000, and curvature radius of the bend R0 = 5.6D/2,
yielding the Dean number De = 422.5. Based on the magnitude of the Dean
number, the flow field was expected to be characterized by two counter rotating
vortices, skewed towards the inside of the bend. The flow field simulation was per-
formed with Oasis on an unstructured mesh created with ICEM-CFD (Ansys Inc.,
Canonsburg, PA, USA), consisting of 6 million cells with a 6 layer thick boundary
layer at the walls. Figure 5.2b shows a cross sectional slice of the mesh. The
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boundary conditions were set to parabolic velocity inlet profile, no-slip condition
at the walls, and zero pressure at the outlet.

A total of 30000 particles of each diameter was released in the experiment over
3000 time steps, crudely corresponding to one flow-through time (0.06 s) with the
time step set to ∆t = 2·10−5. The properties of the released particles are presented
in 5.6. All the particles were well within the empirical stability criterion for the
equation of particle motion algorithm (cf. Figure 4.5). Particles were considered
as deposited if a next step position xni was located outside the domain boundaries.
The particles depositing at the outlet surface were considered escaped. At each
time step the flow field was sampled along four lines consisting of 250 equally
spaced sample locations using fenicstools. Two of the lines were located orthogonal
to each other at the particle release plane (y = 0 mm) and similarly at the end of
the bend (z = −23.8 mm).

Particle properties
St dp[µm] τp[ms] ρp[

kg
m3 ]

0.10 8.52 0.21 895
0.17 11.13 0.36 895
0.23 12.94 0.49 895
0.36 16.90 0.77 895
0.44 17.90 0.94 895
0.70 22.58 1.49 895

Table 5.6: Properties of the particles released in the bend

�D

D

Particle release planeD

Outlet

yx

z

3D

R0 = 5�6D=�

Inlet

Parabolic inlet pro�le

� = 0

(a) Schematic figure of the tube (b) Mesh

Figure 5.2: Schematic figure of the tube and cross sectional slice of the mesh at the
particle release plane. Note the very fine mesh resolution at the boundary.
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5.3.2 Flow field

In order to ensure that the flow field is fully developed before the particles were
released, the simulation was run until the velocity field, measured at the four
cross sectional locations, showed convergence. Figure 5.3 shows mean velocity
profiles based on 1000 samples taken at these probes starting at time step 10000
and 15000. Since no distinction can be seen between the curves following the
two different starting time steps at any of the locations, it is evident that the
flow has reached a steady state at time step 15000 (0.3 s). Figure 5.5a shows
the Q-criterion visualizing the two counter rotating vortices that are described in
the literature [7, 53]. The eddies are a result of the fluid moving faster in the
outer bend, thus creating a pressure gradient that forces the slower moving fluid
outwards in a recirculating motion. Figure 5.4 indicates the direction of rotation
of the vortices.

(a) y = 0 mm, x-direction (b) y = 0 mm, z-direction

(c) z = −23.8 mm, x-direction (d) z = −23.8 mm, y-direction

Figure 5.3: Mean velocity cross sectional profiles at the particle release plane (y =
0 mm) and at the end of the bend (z = −23.8 mm). The average of the first 1000 time
step and the average of time step 5000 - 6000 is compared in each window but are not
distinguishable as the flow is fully developed.
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(a) Streamlines of the instantaneous velocity. (b) Cross sectional slice of the tube
downstream of the bend displaying the
y-component of the velocity.

Figure 5.4: Streamlines and velocity y-component showing that the fluid is moving
from outside of the bends along the wall before being pushed back out through the
center.

(a) Q-criterion for the velocity field show-
ing the two counter rotating vortices slightly
skewed towards the inner walls.

(b) Particle pattern at the outlet neatly
matching the counter rotating vortices.
St = 0.17

Figure 5.5
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5.3.3 Results

Figure 5.6: Comparison of deposition efficiency between different studies.

Deposition fraction
St Pui. et. al (experimental) Present simulation
0.10 1.5 6.2
0.17 22.7 18.7
0.23 43.5 33.5
0.36 53.0 65.8
0.44 67.6 75.1
0.70 93.71 89.0

Table 5.7: Deposition fraction for particles depending on the Stokes numbers. Experi-
mental (Pui. et. al.) and numerical results. 1(from experiment with D = 3.95 mm and
r0 = 2.7).

The deposition efficiency as function of Stokes number is presented in Figure 5.6
together with the results obtained in the three other studies. In addition to the
already mentioned experiment by Pui et. al, two other numerical studies are
included. The best overall agreement of results are between Tsai and Breuer.
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At Stokes numbers around 0.4-0.5 all the numerical methods over predict the
deposition efficiency compared with the experimental results, but the present study
only to a lesser degree. At Stokes number 0.7 the present study shows the lowest
deposition efficiency. However, if considering relative error, the discrepancy is less
significant than for the smallest Stokes numbers. In Figure 5.8 a particular change
in the deposition pattern can be seen for Stokes numbers larger than 0.23. The
smallest particles do not have the inertia to escape the centrifugal forces and are
only deposited at the inside of the bend with some offset from the middle. For
particles with Stokes number 0.36 and larger this behavior is changed and the
deposition occurs predominately on the outside bend.

5.3.4 Discussion

The general trend of underprediction of particle deposition in the current study
compared with the two other numerical studies, may be seen in correlation to how
the deposition criterion has been treated. As explained in Section 5.3.1, in the
present study, a particle is considered deposited if its next step velocity xn+1 is
outside the mesh domain. In the studies by Breuer et al, and Tsai and Pui, particle
deposition was modeled by a control volume method, where a particle is considered
deposited if being closer to the wall than to the present cell center. Furthermore,
in Tsai and Pui, simulations were initially performed with high Stokes number
particles. Based on the simulations of the high Stokes number particles, cells
at the inlet that did not contain deposited particles were defined as non-impact
control volumes. In the subsequent simulations, smaller particles initiated in the
non-impact control volumes were assumed not to deposit, and thus removed from
the simulation. In both papers, the details and uncertainties regarding the control
volume method are not outlined, but the reader is referred to Tsai et. al. (1988),
which, however, is not available online.

Figure 5.7 show St = 0.36 particles that are "trapped" in the viscous sublayer very
close to the boundary at T = 0.15 s. Similar behavior could be seen for the other
particles as well. Given the control volume approach for determining deposition,
some of these particles may have been considered deposited in the other studies,
depending on the thickness of the boundary layer cells. Breuer et al. reports
that the innermost cells has an non dimensional thickness of y+ = 0.70, but it is
not specified from which flow condition this is derived. In addition to different
approaches for particle deposition modeling, the flow fields were also computed
using different temporal and spatial resolutions, which despite the low Reynolds
number may have had some impact on the results. Breuer et. al. simulated the
flow with a finite volume method on a block structured curvilinear grid consisting
of 2.28 · 106 cells, Tsai and Pui used a mesh in toroidal coordinates with 17, 38
and 25 cells in radial, angular, and streamvise direction, respectively.

Finally, the experimental method of Pui et al. was reported to have an expected
uncertainty of 5%.
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Figure 5.7: Particles moving very slowly in the viscous sublayer close to the boundary
at T = 0.15s

5.3.5 Conclusion

In Section 5.2 the desired second order convergence rate was measured following
three different test problems. The validation test case showed good results given
the uncertainties discussed in the previous section. It is thus concluded that the
equation of particle motion algorithm is correctly implemented in the particle
tracking framework of this study.
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(a) St = 0.10 (b) St = 0.17 (c) St = 0.23

(d) St = 0.36 (e) St = 0.44 (f) St = 0.70

Figure 5.8: The deposition pattern for the six experiments. The particles deposited at
the outlet are considered escaped.
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Chapter 6

A Computational Study of the
Air Flow in a Realistic Model of
the Human Respiratory System

6.1 Aim: Determining Appropriate Numerical
Resolution

In Section 4.1 it was argued that a one way coupling is sufficient for modeling
the motion of the considered particles. Thus, the flow field could be computed
separately without any interaction from the particles. In this chapter a refinement
test was carried out with the aim of finding a combination of temporal and spatial
resolution producing a reasonably well resolved flow field at a moderate compu-
tational cost. Sensitivity to temporal and spatial resolution was evaluated by the
following metrics:

• Mean velocity profiles.

• Root-mean-square velocity perturbation profiles (turbulence rms).

• Kolmogorov scales versus spatial and temporal resolutions.

• Turbulence energy spectrum.

With the settings found appropriate in the refinement study, the simulation was
extended and used to model the motion of inhaled particles, which is described in
Chapter 7.

57



1
2

3

4

5

6
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Figure 6.1: ) The digital model of the upper human respiratory system used in this
thesis, with prominent geometrical and anatomical features pinpointed.
Inlet - 1), Oral cavity - 2), Epiglottis - 3), Trachea - 4), Bifurcation - 5), Bronchi - 6),
Outlet container - 7)

6.2 Anatomical Features of the Human Respira-
tory System and a Plausible Model

Figure 6.1 shows the digitalized surface model used for the computations carried
out in this thesis. The model consists of the oral cavity, trachea and the bronchial
three, which together constitutes the upper human respiratory system. The mouth
is extended with a cylindrical inlet section (1) which replicates a inhalation drug
delivery device. The oral cavity (2) is connected to the lungs through the trachea
(4) which inside the chest splits into the bronchi (5). Both the trachea and the
bronchi are radially asymmetrical, causing turbulent-like flow at even moderate
Reynolds Numbers (Re < 2300) [33]. The epiglottis (3), located in the upper part
of the trachea is a sharp edge that can close the airways, preventing food from
entering the airways. Apart from its obvious important anatomical function, the
epiglottis has a significant impact on the flow field as its sharp, asymmetrical shape
enhance velocity instabilities in the trachea.

A particular characteristic of the geometry studied in this thesis, is the merging
of the 7th generation bronchi into 10 cone shaped containers (7), which originates
from the physical model used in vitro experiments.
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From a geometrical point of view, the perhaps most prominent feature of the hu-
man respiratory system is the progressive branching of the tract. The branching of
the bronchi progresses into the bronchioles which, at approximately the 17th gen-
eration, ends up in the alveolar sacks where the inhaled gas is exchanged through
diffusion. The change of the bronchial radii between bifurcations is governed by
Murry’s law [45]. Given rp and rdi are the radii of parent and daughter bronchi
branch number i, respectively, Murray’s law is expressed as

r3
p =

∑
i

r3
di

(6.1)

The diameter of the trachea is approximately 1.5 cm. From 6.1 we can deduce
that the 7th generation bronchus has a diameter of around 2 mm while the 10th
generation less than 1 mm, which is a complicating factor when creating models
of the human respiratory system as it requires very high image resolutions to
capture.

There are mainly two approaches for creating a model of the human respiratory
system, either by casting of cadaver lungs or digital imaging of live volunteers.
However, it is difficult to obtain sufficient image quality of the bronchi beyond the
third generation, due to the combination of small length scales and heart beating.
The model used in Brno Lungs was produced by combining the two mentioned
methods: Computer tomography (CT) scans were taken of an excised lung down
to the 7th generation bronchi, and then merged with a digitalized cast of an oral
cavity (The A Model) from Lovelace Respiratory Research Institute, Albuquerque
[69]. A detailed description of the development of the model is presented in Lizal
et al. (2011) [35].
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(a) 8.5M (b) 23.3M (c) 40.7M

(d) 8.5M (e) 23.3M (f) 40.7M

(g) 8.5M (h) 23.3M (i) 40.7M

Figure 6.2: Slices of the mesh along the Oral Cavity and upper Trachea, close up
at boundary layer around the Epiglottis and cross section at a 7th generation Bronchi.
Color plot of characteristic cell edge length ∆x

6.3 Mesh Generation

The Journal of Fluids Engineering Editorial Policy Statement on the Control of
Numerical Accuracy is used as a guideline in the refinement study [55]. Following
this guideline, three meshes with increasingly finer cell resolutions were used for
studying the effect of spatial resolution. The meshes consists of 8.5, 23.3, and
40.7 million (M) cells, will be referred to as 8.5M, 23.3M, and 40.7M, respectively.
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Mesh characteristics including number of cells and nodes, in addition to average
node spacings, h, are presented in Table 6.1.

Number of Cells Number of Nodes h hi/hi+1

8.5M 1.5M 6.54 · 10−4 -
23.3M 4.2M 4.68 · 10−4 1.40

40.7M 7.2M 3.88 · 10−4 1.21

Table 6.1: Mesh characteristics including number of cells, number of nodes and charac-
teristic edge length h. The ratio between characteristic edge length of the coarsest and
finest mesh is of factor 1.72, within the range recommended by the guideline [55].

The meshes were created with ICEM-CFD (Ansys Inc., Canonsburg, PA, USA)
from a STL surface file of the model. The VTK [58] based open source geometry
processing tool Vascular Modeling Tool Kit (VMTK) [2] was used to scale the
geometry prior meshing, as well as extracting smaller parts of the geometry for
initial studies. Even though also being a meshing tool, VMTK was not able to
create a boundary layer mesh, most likely due to sharp edges in the geometry (e.g
Epiglottis), which is why ICEM-CDF was used.

The process of creating meshes from the surface file consisted of first assigning
different areas of the geometry to parts. This is a feature that allows for easy
adjustment of local mesh density, as well as the possibility of pinpointing loca-
tions of the mesh for assigning boundary conditions in FEniCS. As the variation
in diameter between the inlet and the most narrow bronchi is of factor 10, the
element size was set to depend on the surface curvature, controlled by a minimum
and maximum factor, leading to a smooth transition in cell sizes and securing a
good cross sectional resolution in the narrow branches. In order to better capture
the steep gradients at the wall, a structured and exponentially growing boundary
layer was configured at the walls, consisting of four cells in the normal direction.
Finally, meshes was be generated using the unstructured Delauney method. In
order to improve the mesh quality, the meshes were smoothed using Lagrangian
smoothing.

Following the Brno Lung benchmark, a turbulent-like inlet condition was triggered
in order to mimic the jet from a spray inhaler, typically used for delivering asthma
medicine. Several methods exits for generating turbulent inflow conditions in
CFD. Some include recirculating the velocity field in an extended inlet region and
adding small disturbances perpendicular to the flow direction. The recirculation
approach can be challenging to implement as the flow rate is not constant at all
slices perpendicular to an instantaneous velocity field. In addition, artificially
induced velocity perturbations may not satisfy the continuum criterion (Eq. 2.2).
As no conditions on the characteristics of the turbulent inflow were given in the
benchmark, a simpler approach was taken in this thesis. The inlet tube section was
extended a length corresponding to five diameters, and an asymmetrical geometry
was added, as depicted in Figure 6.3b. The most narrow part of the double conical
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shape is half the initial radius, with an offset of 5% in the z-direction causing a
turbulence triggering asymmetry.

6.3.1 Notes on the Spatial Discretization

Ideally, the boundary layers would have been set according to The Law of the Wall,
with the thickness of innermost cells corresponding to the thickness of the viscous
sublayer [67]. Estimating the viscous sublayer for complex geometries requires
an iterative process where the wall shear is calculated to approximate a new mesh
thickness and repeated until convergence. This was not performed as it would have
required a varying boundary layer thickness and density throughout the geometry,
which for practical reasons is very demanding to accomplish with the softwares in
question.

6.3.2 Setup and Data Sampling

Based on the experimental measurements flow rates was assigned to each of the
ten outlets as presented in Table 6.2. According to the directions of the benchmark
the simulation should have been performed with a prescribed parabolic velocity
profiles at the outlets and zero pressure at the inlet. However, this setup caused
back-flow at in the inlet making the simulation to diverge. Instead, the simulations
were performed with the following boundary conditions:

• Parabolic velocity profile at the inlet.

• Paraboloc velocity profiles at 9 outlets (section 13-21)

• Zero pressure condition at the last outlet (section 22)

• No slip condition at the walls.

In this thesis two different flow rates were considered; Q = 30 and 60 liters per
second. For Q = 60 l/min the circulation time through the trachea is estimated to
be 0.025 s, and the total computational time was set to 0.15 s. The total wall clock
time for the computations varied from 23 to 72 hours on the Abel supercomputer
depending on mesh size, number of time steps (30000 or 60000), and CPU’s. The
number of CPU’s used for the calculations were 32, 48, and 64 for the three meshes.
For the computations with flow rate Q = 30 l/min the discrete time step ∆t and
computational time T was doubled. The setup is shown in Table 6.3.

The full velocity and pressure field was saved every 10th time step producing
140GB, 380GB and 662GB of data for the three meshes respectively. From the
saved velocity field the Kolmogorov Scales, t+, and l+, were computed and used to
estimate to which degree the energy cascade was captured in the different simula-
tions. However, as the cells in the inlet tube and outlet containers was not subject
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Flow rates per segment l/min
Segment Q = 30 l/min Q = 60 l/min

13 0.7 1.4
14 0.8 1.6
15 2.0 4.0
16 1.0 1.9
17 1.8 3.6
18 2.3 4.7
19 1.9 3.8
20 1.6 3.1
21 1.5 3.1
22 1.5 3.0

Table 6.2: Flow rates per outlet segment. Following Brno lung the geometry was
divided into 22 segments, where 13-22 points at the outlets.

Flow rate (Q) [ l
min

] Computational Time (T) [s] ∆t [s]

30 0.30
1.0 · 10−5

5.0 · 10−6

60 0.15
5.0 · 10−6

2.5 · 10−6

Table 6.3: Computational time and time step values for the two different flow rates.

to refinement, only data from the inner part of the geometry, depicted in Figure
6.3a, was used in the analysis.

At every time step samples of the velocity field were taken at 250 sampling probes
equally spaced along three lines radial to the flow direction. The sampling was
performed with fenicstools [43]. Both the locations, shown in 6.3b, and the names
of the probe lines are following the Brno Lungs. From the probe samples, the mean
(Eq. 2.23) and turbulence root-mean-square (rms) (eq 2.26) velocity profiles was
computed. In addition, the power spectrum was computed from six different probe
locations in the oral cavity and down the trachea. Following the theory of Fourier
analysis every signal can be decomposed into a spectrum of frequencies which
constitutes the corresponding power spectrum. However, by performing a Fourier
transform of a stochastic signal the resulting power spectrum may be distorted
by "noise" inherent in the signal. In Welsch method the distorting "noise" is
filtered out by first splitting the signal into segments. For each segment individual
power spectra are found, which are then averaged. The result is a more correct
distribution, but the lower frequencies get filtered away if the signal is split into
too many segments. In this study power spectra was computed by splitting the
signals into 15 segments.
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Mesh Number of cores Wall clock time per 1000 time steps
8.5M 2× 16 ≈ 1.1 hours
23.3M 3× 16 ≈ 1.2 hours
40.7M 4× 16 ≈ 2.3 hours

Table 6.4: Magnitude of computational time used on the Abel supercomputer for the
different meshes. Note the difference in number of cores used in the simulations.

(a) Inner section (b) Probe locations

Figure 6.3: Figures showing the inner section representing the bodily part of the
geometry, used in the turbulence analysis (left), and the locations of the three cross
sectional probe lines (right).

6.4 Convergence Results

6.4.1 Flow Description

Figure 6.4 shows the instantaneous velocity profiles at a plane in center of the inlet
tube and oral cavity for both flow rates and all three meshes at t = 0.20 s and t =
0.10 s for Q = 30 l/min and Q = 60 l/min, respectively. The jets appear to break
down at approximately the same distance from the asymmetric perturbation in the
inlet tube. This is an indication of mesh convergence, as significant variations in
jet break downs depending on spatial resolution has been reported in the literature
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[4]. However, visual inspections of the flow field’s appearance should not be given
too much credence when analyzing convergence.

(a) 8.5M, Q = 30 l/min (b) 8.5M, Q = 60 l/min

(c) 23.3M, Q = 30 l/min (d) 23.3M, Q = 60 l/min

(e) 40.7M, Q = 30 l/min (f) 40.7M, Q = 60 l/min

Figure 6.4: Figures showing the instantaneous velocity profiles at a slice through the
center of the inlet tube and oral cavity. Note that the color maps are scaled differently
between the two flow rates.

In 6.5 vortical structures are depicted by the Q-criterion, in additional to cross
sectional slices along the trachea showing instantaneous velocity profiles at the final
time steps. It can be observed that vortex structures are amplified downstream
asymmetries in the geometry, and damped by dissipation in the smoother middle
trachea region.
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8.5M 23.3M 40.7M 8.5M 23.3M 40.7M

Q=30 l/s Q=60 l/s
Figure 6.5: Vortical structures represented by the Q-criterion in addition slices of
instantaneous velocity profiles through the trachea at T = 0.15 s and T = 0.30 s for
Q = 60 l/min and Q = 60 l/min, respectively

6.4.2 Mesh Refinement

The impact of increasing the mesh density was investigated both with respect
to mean velocity and turbulence rms profiles. In addition, to which degree the
small scale motions were captured by the spatial and temporal discretization was
evaluated by considering the Kolmogorov scales in relation the time step ∆t and
characteristic cell size ∆l.

By first investigating the impact of varying the sampling interval on mean velocity
and turbulence rms profiles, the following was observed:

• The velocity fields were only "reasonably" developed after 0.2 s / 0.10 s for
Q = 30 l/min, Q = 60 l/min, respectively.

• 10000 time steps appeared sufficient to provide a statistically significant from
which turbulence statistics could be computed.

• As a result; all statistics were computed from the last 1/3 of the time steps.

Figure 6.6 shows the comparison of the mean and turbulence rms velocity profiles
between the three meshes at the three locations for both flow rates. The dis-
crepancies are greater in the more turbulent regions (A1A2 and D1D2), and are
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further amplified for the highest flow rate. At location A1A2, the mean velocity
peak value is significantly lower for the computations on the 8.5M mesh, while
the curves are more equal at the other two locations. Despite some discrepancies,
the overall results shows a clear sign of convergence for the mean value statistics,
especially for Q = 30 l/min.

(a) A1A1, Q = 30 l/min (b) A1A1, Q = 60 l/min

(c) D1D1, Q = 30 l/min (d) D1D2, Q = 60 l/min

(e) F1F1, Q = 30 l/min (f) F1F2, Q = 60 l/min

Figure 6.6: Mesh refinement comparison of mean velocity and turbulence rms profiles
at three cross sectional lines for both flow rates
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Probe1
Probe 2

Probe 3

Probe 4

Probe 5

Probe 6

Q = 30 l/s

Q = 60 l/s

Figure 6.7: Frequency spectrum at six probe locations for both flow rates computed
by Welch Method.
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In Table 6.5 the minimum and mean turbulence length scales are compared with
the node spacings in the different meshes. The Kolmogorov Scales are functions
of the rate of dissipation, ε and kinematic viscosity, ν and thus sensitive to mesh
refinement, which is evident when considering the ηmin values. For Q = 30; l/min
the smallest Kolmogorov length scale is varying from 11.9 µm to 10.6 µm, and
7.0 µm and 6.0 µm for Q = 60; l/min. The change in η between the two flow
rates is in agreement with Eq. 2.19 (≈ 59% smaller η for double Re). When
observing minimum values of the ratios between ∆l and η, it is obvious that even
the simulations on the 40.3M mesh is far away from being a DNS. Even the average
turbulence length scales are for both flow rates significantly smaller than the node
spacing at the corresponding locations. The same trend is seen for t+. However,
the decrease of this quantity shows that the finer meshes are able to resolve more
of the smallest length scales, thus also represent more of the dissipation range.
Consequently, more energy can be carried by the smallest length scales in the
simulations on the finer meshes, which is verified by observing the energy spectrum
curves depicted in Figure 6.7. At all six locations, for both flow rates, more energy
is distributed in the higher frequencies. At probe 3 for Q = 30 l/min as well as
2 and 3 for Q = 60 l/min it can be seen that the 8.5M and 23.3M curves are
leveling out at and becoming much smoother the highest frequencies. This is an
artificial effect and an indication that the smallest time scales are limited by low
mesh resolution, i.e, that the small length scales with corresponding time scales
cannot be approximated by the meshes.

Q = 30 l/min ∆t = 1 · 10−5 s Q = 60 l/min ∆t = 5 · 10−6 s

8.5M 23.3M 40.7M 8.5M 23.3M 40.7M

∆lavg 4.22 · 10−4 2.27 · 10−4 1.85 · 10−4 4.22 · 10−4 2.27 · 10−4 1.85 · 10−4

ηmin 1.19 · 10−5 1.13 · 10−5 1.06 · 10−5 7.03 · 10−6 7.00 · 10−6 5.98 · 10−6

ηmean 1.01 · 10−4 9.60 · 10−5 1.09 · 10−4 6.31 · 10−5 6.02 · 10−5 6.90 · 10−5

(∆l
η

)max 22.94 19.31 15.93 35.93 31.33 23.94

(∆l
η

)mean 5.15 3.34 2.94 8.11 5.26 4.61

l+max 19.31 16.35 13.41 30.27 26.53 20.17

l+mean 4.47 2.90 2.57 7.08 4.59 4.06

Table 6.5: Turbulence length scales compared with mesh resolutions for the spatial
refinement study. Metrics computed from average of 1000 time steps in the time interval
T=[0.2− 0.3 s] for Q = 30 l/min and T = [0.1− 0.15 s] for Q = 60 l/min.

Table 6.6 shows the sensitivity of the turbulence time scale to spatial resolution.
The smallest Kolmogorov time scales approximated are decreasing for increased
mesh resolution. The variations are of factor 1.82 and 1.76 for Q = 30 l/min
and Q = 60 l/min, which indicates that steeper velocity gradients are captured
for finer mesh resolution. That the Kolmogorov time scales appear to be more
sensitive to mesh resolution can be explained by recalling their definitions 2.18
and observing that τη and η scales with ∇u and (∇u)1/2, respectively.
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Q = 30 l/min ∆t = 1 · 10−5 s Q = 60 l/min ∆t = 5 · 10−6 s

8.5M 23.3M 40.7M 8.5M 23.3M 40.7M

CFLmax 0.59 1.11 1.16 0.53 1.06 1.30

τη,min 6.54 · 10−6 4.79 · 10−6 3.56 · 10−6 2.84 · 10−6 2.06 · 10−6 1.61 · 10−6

τη,mean 2.24 · 10−3 1.39 · 10−3 2.25 · 10−3 7.41 · 10−4 4.83 · 10−4 8.05 · 10−4

t+max 1.10 1.58 2.04 1.30 1.75 2.27

t+mean 0.021 0.026 0.020 0.026 0.031 0.025

Table 6.6: Turbulence time scales compared with mesh resolutions for the spatial
refinement study. Metrics computed from average of 1000 time steps in the time interval
T=[0.2− 0.3 s] for Q = 30 l/min and T = [0.1− 0.15 s] for Q = 60 l/min.

The overall trend for both flow rates show that the smallest turbulence time scale is
approximately a factor 2.5 less than the temporal resolutions considered in spatial
refinement simulations, which suggests that a temporal refinement may yield some
improvement. However, as the average turbulence time scales are more than a
factor 100 greater than ∆t, and that it appears some of the smallest time scales
are cut of by coarse mesh resolution, only limited effects of decreasing ∆t was
expected.

6.4.3 Temporal Refinement

Q = 30 l/min 24M Q = 60 l/min 24M
∆t = 1.0 · 10−5 s ∆t = 5.0 · 10−6 s ∆t = 5.0 · 10−6 s ∆t = 2.5 · 10−6 s

CFLmax 1.11 0.56 1.06 0.53

τη,min 4.79 · 10−6 4.75 · 10−6 2.06 · 10−6 2.05 · 10−6

τη,mean 1.39 · 10−3 1.14 · 10−3 4.83 · 10−4 4.90 · 10−6

t+max 1.58 0.76 1.75 0.48

t+mean 0.026 0.013 0.031 0.016

Table 6.7: Turbulence time scales compared with mesh resolutions for the temporal
refinement study. Metrics computed from average of 1000 time steps in the time interval
T=[0.2− 0.3 s] for Q = 30 l/min and T = [0.1− 0.15 s] for Q = 60 l/min.

The impact of temporal resolution was investigated using the 23.3M mesh. Due to
limited computational resources and time limits on Abel, it was only practically
achievable to reduce ∆t once with a factor 2. A coarser temporal resolution was
not tested as it was out of question to the limiting, numerical stability of the
equation of particle motion algorithm.
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, simulations with increased ∆t was not performed.

(a) A1A1, Q = 30 l/min (b) A1A1, Q = 60 l/min

(c) D1D1, Q = 30 l/min (d) D1D2, Q = 60 l/min

(e) F1F1, Q = 30 l/min (f) F1F2, Q = 60 l/min

Figure 6.8: Cross sectional mean velocity turbulence rms profiles for 23M, Q =
60 l/min computed over 10000 time steps for three different starting time steps.

Figure 6.8 shows the mean velocity and turbulence rms curves following computa-
tions with the different temporal resolutions. Some differences between the curves
are seen, especially in segments with high turbulence rms values. As observed in
Figure 6.6 the discrepancies are amplified for Q = 60 l/min. The overall effects
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of doubling the temporal resolution with regards to mean value statistics are not
radical, especially not for Q = 30 l/min. Whereas increasing the mesh resolution
had a significant effect on the turbulence rms velocity curve at A1A2, the temporal
resolution had a much less impact. Furthermore, when observing Table 6.7 it is
evident that the computed Kolmogorov time scales are only marginally affected
by the change of ∆t. Despite the simulations are close to being "well resolved in
time" (∆t < τeta) when the temporal resolution is halved, the impact on the large
scale flow appears to be rather limited.

6.4.4 Discussion

As addressed in Subsection 6.4.2, based on samplings throughout the simulations,
it could not be concluded that the flow fields had reached a state of being totally
developed (e.g not affected by initial effects). Ideally, as explained in Section
2.4.1, flow field statistics should be computed based on a statistically significant
interval sampled after the flow field has reached a developed state. However,
as only very small variations in the velocity profiles were seen between different
sampling intervals (e.g 0.15− 0.25 and 0.20− 0.30 s), it assumed that extending
the simulations would not have altered the outcome of the below conclusion.

6.5 Conclusion: A Trade-off between Accuracy
and Computational Cost

ρp = 914 kg/m3 µ = 1.95 kg/sm

dp [µm] τp [s]

1.0 2.60 · 10−6

2.5 1.63 · 10−5

4.0 4.17 · 10−5

10.0 2.60 · 10−4

20.0 1.04 · 10−3

Table 6.8: Response times for different diameters and given particle density and vis-
cosity.

When also considering computational resources it is concluded the 23.3M mesh
produces a velocity field that is adequately well resolved in time and space for
∆t = 1 · 10−5s and Q = 30 l/min. For the larger flow rates a lesser degree of
convergence was observed. Thus this flow rate was not considered for particle
tracking, as it was deemed that the resulting uncertainties in deposition fractions
would have been to large.

72



Furthermore, performing the concluding particle tracking simulations with ∆t =
1 · 10−5s implies that the smallest particles considered, dp = 1 µm, are outside the
stability criterion (cf., 4.20), leading to less accurate results.
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Chapter 7

A Simulation of the Motion of
Inhaled Particles in the Human
Respiratory System

7.1 Introduction

In Chapter 6 it was found that for the flow rate Q = 30 l/min, the 23.3M mesh
in combination with a temporal resolution of ∆t = 1 · 10−5 s produced a flow field
reasonably temporally and spatially resolved, at a moderate computational cost.
It was also found that after a simulation over 30000 time steps, corresponding to
0.3 s, the flow field had become sufficiently developed in time. Hence, this setup
was chosen as a basis for completing the main goal for this thesis - simulating the
flow and motion of inhaled particles in the human respiratory system, after the
directions in the benchmark test case, Brno Lungs

7.2 Benchmark test case: Brno Lung

Following Brno Lungs, the participating researchers was given access to a digi-
talized model of the lung cast in a .vtp file format, which can be read by several
meshing tools. As briefly outlined in Section 6.3.2, flow rates, boundary condi-
tions, and properties of the dispersed phase was given in the benchmark as the
following:

• Flow rates: Q = 15, 30, and 60 l/min.

• Prescribed velocity conditions at the ten outlets.

• Zero pressure condition at the inlet.

• No slip condition (uwall = 0) at the remaining boundary.
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• Fluid kinematic viscosity µ = 1.7 · 10−5 m2/s (air at ≈ 25◦C)

• Particle diameters, dp = [0.5, 1, 2, 2.5, 4, 4.3, 6, 8, 10, 20] µm and density
ρp = 914 kg/m3.

• 105 particles of each size released from random locations at the inlet surface
over 0.025 s, (Q = 60 l/min)

The model was divided into 22 segments as depicted in Figure 7.1. The deposition
pattern was determined by counting the number of deposited particles in each
segment.

Figure 7.1: The human airways model split into 21 segments following the Brno Lung
benchmark

7.3 Setup andModifications of the Benchmark

Some modifications to the benchmark directions were done in this thesis due to
problems imposing the assigned boundary conditions and limited computational
resources practically available. As explained in Section 6.3.2, the boundary con-
ditions were changed to prescribed parabolic velocity profile at the inlet and nine
of the outlets, and zero pressure at the last outlet. In addition, the flow rate
Q = 60 l/min was discarded, and only simulations with Q = 30 l/min was found
adequate for performing the numerical experiment. Furthermore, the total number
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of injected particles of each size were reduced to 25000, and only the five following
diameters were considered: [1, 2.5, 4, 10, 20] µm.

The following statistics and definitions are computed and discussed in this chap-
ter:

• The segments (cf. Figure 7.1) are merged into four sections :

1. Oral cavity: seg. 1.

2. Trachea: seg. 1-2.

3. 2nd - 4th generation bronchi: seg. 4-12.

4. 5th-7th generation bronchi: seg. 13-22.

• Particles beyond the 7th generation bronchi (i.e in the outlet containers) are
considered not deposited.

• Deposition fraction: the fraction of particles deposited in a given segment or
section, normalized both to the number of released or deposited particles .

• Deposition efficiency : the fraction of particles deposited within the geometry
(not including outlet containers), normalized both to the number of released
or deposited particles .

7.4 Deposition Results

Figure 7.2 and 7.3 show the location of the particles deposited within the model.
Larger particles yields a higher deposition efficiency as depicted in Figure 7.5.
For the small particles (dp ≤ 4.0µm) the deposition efficiency is so low that any
conclusion based on the local deposition statistic is dubious. It appears that the
small particles are less affected by inertia as no significant deposition build-ups
are seen are any bifurcation. This is not surprising when recalling the results
in Section 5.3 where a shift in the deposition mechanism was observed between
small and large particles. Furthermore, as a result of less inertia and thus shorter
response times, the small particles appears to be more influenced by convection
due to turbulent-like motion (i.e being transported by eddies). By inspecting the
particles deposited in the oral cavity, it can be seen that very few of the small
particles deposit on the tung, while some have deposited at the inlet walls. It
can even be seen that a significant amount of particles of all sizes have deposited
behind the inlet release plane, which can be explained by considering Figure 7.4.
As the inlet perturbation has an offset in the z-direction, a recirculation zone if
created underneath the jet, dragging the particles backwards. Even at the end
of the simulation a small number of particles of all size were still trapped in the
recirculating back-flow.
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(a) dp = 1.0 µm (b) dp = 2.5 µm

(c) dp = 4.0 µm

Figure 7.2: Deposition pattern for small particles after 0.5 s of inhalation at a constant
flow rate Q = 30 l/min.
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(a) dp = 10.0 µm (b) dp = 20.0 µm

Figure 7.3: Deposition pattern for the small particles after 0.5 s of inhalation at a
constant flow rate of Q = 30 l/min

Figure 7.4: Streamlines in the inlet region showing particles being deposited upstream
the release plane due to backflow. Color of streamlines indicating magnitude of velocity
y-component. The deposited particles (black dots) have a diameter of 20 µm.

When considering Figure 7.3a it can be seen that a significant fraction of the
inhaled particles have deposited on the tip of the tung. The same also applies
for the largest particles, although not equally apparent in Figure 7.3b due to
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dense deposition in the entire oral cavity. Furthermore, virtually none of the small
particles have deposited in the bend where the oral cavity connects with the throat,
which demonstrates the shift in the primary deposition mechanism from turbulence
convection to particle inertia between the small and large particles.

Figure 7.5: Deposition efficiency (Ndeposited/Nreleased) per particle diameter.

The Figures 7.6 and 7.7 shows comparisons of the deposition fraction per section
for the different particles, normalized against the number of released and deposited
particles, respectively. Figure 7.6 shows that the large particles dp ≥ 10.0µm have
a deposition fraction of a magnitude 10 larger than the small particles in the
oral cavity. Virtually none of the largest particles have penetrated to the 5th-7th
generation bronchi, whereas a significant portion of the second largest particles
have deposited in the section. In the two sections constituting the bronchi, the
10µm particles are, by far, dominating the deposition fraction.
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Figure 7.6: Comparison of deposition fraction per segment normalized against total
number of particles injected (25000).

Figure 7.7: Comparison of deposition fraction per segment normalized against total
number of particles deposited (ref. Table 7.5)
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If considering the distribution of deposited particles (Figure 7.7) it can be observed
that for dp ≤ 4.0 µm the fraction of particles depositing in the oral cavity is
decreasing for increased diameter, while the opposite applies for dp > 4.0 µm.
For all particles, except dp = 4.0 µm, the oral cavity is the section with the
highest portion of deposited particles. However, as suggested above, the primary
mechanism for deposition in this section appears to be turbulence-like convection
and particle inertia for the small and large particles, respectively. Compared with
the other sections, the Trachea is the section with the overall lowest deposition
fraction, again with the exception for the largest particles. The smallest particles
prevail the deposition fraction in this section, which strengthens the perception of
turbulence-like convection being the driving mechanism for deposition of the small
particles.

The Figure 7.9 - 7.13 show the deposition fraction per segment section for each
of the particles, depicting a more detailed map of the deposition distribution. For
the small particles the deposition fraction in each segment, except the first (oral
cavity), is so small that the statistical significance is dubious. Segment 13 and 14
stands out with containing a very low fraction of the deposited particles. Of the
largest particles none deposited neither in these segments or segment 17, 20, and
22. The segments with few or none particles deposited have correspondingly low
flow rates (ref. Table 6.2).

Figure 7.8: Deposition fractions per section obtained in the in vitro Brno experiment.
The experiment was conducted with a steady, unperturbed inlet flow.
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Figure 7.9: Deposition fraction per section for dp = 1.0 µm

Figure 7.10: Deposition fraction per section for dp = 2.5 µm
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Figure 7.11: Deposition fraction per section for dp = 4.0 µm

Figure 7.12: Deposition fraction per section for dp = 10.0 µm
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Figure 7.13: Deposition fraction per section for dp = 20.0 µm
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In Figure 7.14 the deposition fractions per segment are compared between the
different particles. Figure 7.15 shows the same, but with the metrics normal-
ized against the number of particle deposited. By considering the deposition-
normalized statistics, some correlation between the deposition patterns are seen.
However, as Figure 7.7 is logarithmically scaled, caution must be taken when com-
paring the curves. For all particles, segment 1 is dominating the deposition fraction
statistics. The 20 µm particles show the largest shows the most significant devi-
ation from the deposition trend overall, with the curve being discontinuous due
to several segments without any deposition (cf., Figure 7.13). Noteworthy are the
quite well correlated deposition fractions in segment 2, 15, 17, and 18.

Figure 7.14: Comparison of deposition fraction per segment normalized against the
number of particles injected (25000).
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Figure 7.15: Comparison of deposition fraction per segment normalized against the
number of particles deposited (ref. Table 7.5)

7.5 Discussion and Relations to the Literature

Results from the in vitro experiment which sets the basis for the Brno lung bench-
mark is depicted in Figure 7.8. Note that squares denotes 2.5 µm particles at
Q = 30 l/min. The experiment was performed on the physical version of the
model used in this thesis, but without a turbulent inlet profile. Given the devia-
tion in inlet flow condition, the deposition pattern numerically computed in this
thesis does not deviate radically for the one experimentally obtained. The overall
increase of deposition fraction in many of the segments may be accredited the
turbulent inlet condition, such as the doubling of deposition in the trachea (seg.
1).

Several other numerical studies of micron particles depositing in the oral cavity are
described in the literature. Despite variations in boundary conditions and geomet-
rical model, they still provide a foundation for comparison. Ma et al. simulated
particles inhaled at the flow rates 15, 30 and 60 l/min in a model extending to
the 10th generation bronchi, with turbulent inflow conditions of varying intensity.
[39]. The particles had a density of 1000 kg

m3 and the geometry also included a small
portion of the nasopharynx which connects the nasal passage with the respiratory
system. Some increase in overall deposition efficiency appears to be due to the
inclusion of this anatomical feature. The study reported an deposition efficiency
of 12% for 3.0 µm particles inhaled at Q = 30 l/min. Based on a visual inspec-
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tion, it appears that the model used by [39] was somewhat less smooth, which
may partly explain the increased deposition efficiency, besides the slightly heavier
particles.

P.G Koullapis et al. carried out deposition simulations of particles with a density of
1200 µm and the flow rates 15.2, 30 and 60 l/min. [50]. Their study also included a
realistic, although not turbulent, inlet profile based on experiment measurements,
which they found led to an significant increase of particle deposition compared to
a constant inlet profile. The results were in overall good agreement with the ones
obtained in this thesis.

As mentioned in the previous section, the deposition efficiencies of the small parti-
cles are so limited that a sound statistical selection was not provided (e.g., in some
segments only ≈ 10 particles deposited). Even though no uncertainty margin has
been derived, it is likely that the number of released particles should have been
tenfolded in order to significantly improve the statistical precision. However, as
the particle tracking framework accounted for up to 50 % of the computational
time during peak (time step 5000), a tenfolding of the number of particles released
was not achievable with the resources available for this project.

Between dp = 4 µm and dp = 10 µm the deposition efficiency is increased almost
by a factor 10. Thus the details in the transition from particles penetrating to
depositing could, unfortunately, not be addressed.

In Chapter 6 it was shown that despite the model being meshed with 23.3 mil-
lion cells, the flow was still largely underresolved in space, and to some degree
also time. Moderate differences in the mean velocity profiles between the 23.3M
and 40.7M mesh was also observed. As the mesh was not further refined, it was
not possible to conclude that the 40.7M mesh would have provided a converged
solution, and the turbulence statistics also suggested otherwise (ref. Table 6.6).
Furthermore, it is not possible to conclude to which degree the particle deposition
was affected by the flow being somewhat underresolved. Since results from Brno
Lung has not yet been published, it has not been possible to compare with the
results obtained by the other research groups. Given more available time and re-
sources, particle tracking should have been performed on all meshes, which would
have given qualitative information on the sensitivity of the particle deposition to
the mesh resolution.

In addition, as DNS simulations are still out of practical reach, turbulence models
that account for the lack of dissipation in the smallest turbulence scales, may have
provided flow fields closer to the "reality". Different turbulence models such as the
k-ω [68] and the simpler large eddy simulation (LES) have been employed in liter-
ature [50, 18]. A LES extension containing several models is implemented in Oasis
and have been reported to perform well under testing [5]. Based on the assessment
results in Joachim Bø’s Master’s thesis, two of the LES extensions were tested in
this thesis. The dynamic Smagorinsky model [19], where the artificial dissipation
term is adjusted every time step, yielded an increase of computational time of fac-
tor 3 and thus deemed too impractical. The simpler, standard Smagorinsky [59]

88



model did not cause a noticeable increase in computational time and was further
applied during this project. However, as an error was detected in this model few
weeks prior to the submission date, the simulations had to be discarded.

As briefly mentioned in Section 1.1, it is a general agreement in the scientific
community that simulations of higher resolution and accuracy are necessary before
CFD can provide a more detailed prediction of the deposition pattern of particles
inhaled in the human respiratory system. Based on the somewhat dispersed results
in the 90◦ bend benchmark described in Section 5.3, it also appears that more care
should be taken in the validating particle tracking models. In this thesis a particle
tracking algorithm with second order precision was employed, but higher order
methods has been implemented in other software, such as the 6 step Runge-Kutta
method in ANSYS Fluent [17]. However, as the flow fields simulated in this thesis
was not fully resolved, it is not given that a higher order integration of the equation
of particle motion would have provided a more precise deposition pattern. Hence,
by also considering the aspect of time spent testing and development, the simpler,
second order method was considered appropriate.

Finally, when performing any type of simulation of a physical processes occurring
in the nature, it is important to remember that the result are only a model of the
actual process. In the setting of computing the flow field in the human respiratory
system, even though it may be possible to produce a fully converged flow field,
the results are always confined by the limitation of the geometrical model. The
geometry used for the simulations in this thesis is obviously not a complete model
of the human respiratory system. Furthermore, the boundaries were modeled as
completely rigid, which is partly justified by that the trachea and main bronchi
are supported by cartilage and do not move significantly during respiration [34].
However, if extending the models to include deeper generations of the bronchi,
or even the alveoli region, interaction between the air and tissue may be of high
significance.

Due to the complexity of the problem studied, a discussion regarding the validity
of the obtained results could be continued for many pages. The limitations of this
work considered the most central can be summarized as:

• The results are confined by the limitations of the model which do not repre-
sent the full human respiratory system.

• High uncertainties in the deposition pattern in the bronchi for small particles
(dp ≤ 4.0µm) due to very low deposition efficiency.

• The smallest particles (dp = 1.0 µm) were outside the numerical stability
criterion (cf., Section 4.2.2).

• A better resolved flow field may have provided more precise results.

• The effects of different flow rates and particle densities were not considered.
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7.6 Conclusion: Medical Applications

The discussion of which types of drugs are suitable for pulmonary delivery (medicine
inhalation) is left to the medical professionals. However, through numerical sim-
ulations like the one performed in the thesis, it may be possible to create a map
showing the likelihood of a particle of a certain property to deposit in a confined
region in the human respiratory system for a given mode of respiration. Such a
map may be very useful for the medical industry in determining the best action
for the delivery of a given drug.

The condition perhaps most commonly associated with inhalation medicine is
asthma, but an array of other deceases such as lung infection, diabetes and cystic
fibrosis can be treated or relieved by inhaling medicine [49]. Furthermore, partic-
ular conditions are most effectively treated through deposition in different parts of
the respiratory system. Some remedies are only effective if reaching all the way to
the alveoli where gas exchange is taking place, while other needs to settle in the
main bronchi.

Given particles with a density of 914kg/m3 and a moderate inhalation flow rate
30 l/s, the following can be concluded with regards to medical applications:

• Particles larger than 10.0 µm will mainly deposit in the oral cavity and are
thus not suitable for pulmonary drug delivery.

• Particles smaller than 4.0 µm will penetrate deep into the lung and may thus
be effective for the delivery of medicine for absorption in the alveoli.

• Particles with a diameter in the range 4.0 − 10.0 µm largely deposit it the
bronchi, with smaller particles penetrating deeper.
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Chapter 8

Main Findings and Future
Work

8.1 Main Findings

Through carefully verifying and validating the various steps taken in this thesis,
the following can be concluded:

• The open source Navier-Stokes solver Oasis is definitively suitable for com-
puting the challenging flow conditions in the human respiratory system.

• Verification and validation is an indispensable part of any CFD experiment.

• The flow in the human respiratory system features turbulent-like character-
istics even at moderate inhalation rates.

• The deposition pattern of inhaled particles of different diameters has been
analyzed and we find that: Small particles (dp ≤ 4.0 µm) penetrates deep
into the lung, medium sized particles (4.0 µm < dp ≤ 10.0 µm) largely
deposit in the bronchi, whereas large particles (dp > 10.0 µm) mostly deposit
in the oral cavity.

• Small particles (dp ≤ 4.0 µm) are more influenced by turbulent-like flow
structures than the larger ones, for which the deposition pattern is mostly
influenced by inertia.

8.2 Future Work

CFD simulations has proven itself as a valuable tool in describing the deposition
pattern of particle inhaled in the human respiratory system. However, the field is
still in development and further research coordinated between the CFD- and med-
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ical community is necessary before a sufficiently precise map of particle deposition
in the human respiratory system can be made.

Based on the results obtain in this thesis and a review of selected literature on the
subject, it is recommended that future research focus on the following:

• Validation of CFD simulations. Computational results without thoroughly
validated methods may easily be misleading.

• Development of more realistic models (mesh) that includes finer anatomical
features.

• Particles with diameters between 4.0 µm and 10.0 µm where a significant
change in deposition efficiency is observed. Consequently, further investiga-
tions into the deposition mechanisms should be carried out.

• Investigation of the impact of rigid versus compliant walls in order to reveal
the possible importance of fluid structure interaction in the human respira-
tory system.

• The potential of guided drug delivery such as through magnetic drug target-
ing, for a potentially enhanced treatment efficiency.
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