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Abstract
Environmental contours are used as a basis for e.g., ship designs. The traditional ap-
proach to environmental contours is based on the well-known Rosenblatt transformation.
However, due to the effects of this transformation the probabilistic properties of the re-
sulting environmental contour can be difficult to interpret. An alternative approach to
environmental contours uses Monte Carlo simulations on the joint environmental model,
and thus obtain a contour without the need for the Rosenblatt transformation. This con-
tour have well-defined probabilistic properties, but may sometimes be overly conservative
in certain areas. In this paper we give a precise definition of the concept of the exceedance
probability which is valid for all types of environmental contours. Moreover, we show how
to estimate the exceedance probability of a given environmental contour, and use this to
compare different approaches to contour constructions. The methods are illustrated by
numerical examples based on real-life data.

For comparison of environmental contours and finding the best contour for the given
application, we have also included a third type of environmental contours, the Iso contours.
We adjust the contours so that they get the same desired exceedance probability, which
makes it possible to compare the contours graphically. We find that the best contour is
the one with the lowest area as we want as little requirements for the construction of the
design as possible as well as we want it to be as little conservative as possible.
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1 INTRODUCTION
Environmental contours are widely used as a basis for e.g., ship design. Such contours
allow the designer to verify that a given mechanical structure is safe, i.e, that the failure
probability is below a certain value. A realistic model of the environmental loads and the
resulting response is crucial for structural reliability analysis of mechanical constructions
exposed to environmental forces. See [Win+93] and [HW09]. For applications of envi-
ronmental contours in marine structural design, see e.g., [BHØ10], [Fon+13], [JEF11],
[Moa09] and [Dit02].

The traditional approach to environmental contours is based on the well-known Rosenblatt
transformation introduced in [Ros52]. This transformation maps the environmental vari-
ables into independent standard normal variables. Using the transformed environmental
variables a contour with the desired properties can easily be constructed by identifying a
sphere centered in the origin and with a suitable radius. More specifically, the sphere can
be chosen so that any non-overlapping convex failure region has a probability less than
or equal to a desired exceedence probability. The corresponding environmental contour
in the original space can then be found by transforming the sphere back into the original
space.

However, a convex region in the transformed space does not necessarily correspond to a
convex region in the original space. Thus, the properties of the resulting environmental
contour are difficult to interpret. To avoid such problems, contours in the original space
can be constructed by using Monte Carlo simulations on the joint environmental model.
See [HVN13], [HVN15b] and [HVN15a]. By using this methodology, every calculation is
carried out in the original environmental space, and thus the use of the Rosenblatt trans-
formation is avoided. For simplicity we refer to the contours obtained by this approach as
Monte Carlo contours. Contours constructed using the suggested Monte Carlo simulation
approach will always be convex sets. This yields a more straightforward interpretation
of the contours. Another advantage of this approach is a more flexible framework for
establishing environmental contours, which for example simplifies the inclusion of effects
such as future projections of the wave climate related to climatic change. See [VB12]. It
should be noted, however, that convex contours may not fit the joint distributions of the
environmental variables well. Thus, this limitation may sometimes be too restrictive.

In this paper we will give a precise definition of the concept of exceedence probability which
is valid for all types of environmental contours. Moreover, we show how to estimate the
exceedence probability of a given environmental contour, and use this to compare different
approaches to contour construction. The methods are illustrated using the examples
introduced in [VB15].

In the last section, the inverse problem, we compare contours with the same desired ex-
ceedance probability and we will therefore include a third type of environmental contours,
the Iso contours. Such contours are determined by identifying all points where the joint
density of the enviromental variables is equal to a given value. In the section of the inverse
problem we will adjust the Rosenblatt contours and the Iso contours such that they get
the same desired exceedance probability. The Monte Carlo contours basically has the
desired exceedance probability, so these contours are not to be adjusted for comparison.
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2 BASIC CONCEPTS AND RESULTS
In this paper we consider cases where the environmental conditions can be described by a
vector of environmental variables, (T,H) ∈ R2, where T is the time period, and H is the
wave height. An environmental contour is then defined as the boundary of a set B ⊆ R2,
and denoted ∂B.

A given mechanical structure can withstand environmental stress up to a certain level.
The failure region of the structure is the set of states of the environmental variables that
imply that the structure fails. The exact shape of the failure region of a structure may
be unknown. Still it may be possible to argue that the failure region belongs to a certain
family which we denote by E . A given environmental contour ∂B will be evaluated with
respect to this family. The family E is chosen relative to B in such a way that F ∩B ⊆ ∂B
for all F ∈ E . Thus, a failure region F may intersect with the boundary of B but not the
interior of B. The exceedence probability of B with respect to E is defined as:

Pe(B, E) = sup{P [(T,H) ∈ F ] : F ∈ E}.

We observe that the exceedence probability defined above represents an upper bound on
the failure probability of the structure assuming that the true failure region is a member
of the family E . Of particular interest are cases where one can argue that the failure
region of a structure is convex. That is, cases where E is the class of all convex sets which
do not intersect with the interior of B. We denote the interior of B by Bo.

2.1 Maximal failure regions

A failure region F ∈ E is said to be maximal if there does not exist a region F ′ ∈ E such
that F ⊂ F ′. The family of maximal regions in E is denoted by E∗. If F1,F2 ∈ E and
F1 ⊆ F2, we obviously have:

P [(T,H) ∈ F1] ≤ P [(T,H) ∈ F2].

From this it follows that:

Pe(B, E) = sup{P [(T,H) ∈ F ] : F ∈ E∗}.

This simple observation sometimes simplifies the calculation of Pe(B, E).

In order to explain this in further detail, we need the concept of a supporting hyperplane
of a set. If Π is a hyperplane in Rn, we let Π− and Π+ denote the two half-spaces bounded
by the hyperplane Π. In general a supporting hyperplane of a set S ∈ Rn, is a hyperplane
Π such that we either have S ⊆ Π− or S ⊆ Π+, and such that S ∩ Π 6= ∅. In particular,
if S ⊆ Π−, we say that Π+ is a supporting half-space of S. We observe that if Π+ is a
supporting half-space of S, we have that Π+ ∩ S ⊆ ∂S.

We then consider a case where the set B is convex, where all sets in the family E are
convex as well, and let F ∈ E . Then it follows by standard convexity theory, that there
exists a supporting hyperplane Π of B such that B ⊆ Π− and F ⊆ Π+. Moreover, since
Π+ ∩ B ⊆ ∂B, and since every half-space is convex, it follows by the definition of E that
Π+ ∈ E . We have illustrated this in Figure 1.
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Figure 1: Illustration of the supporting hyperplane Π of B.

Assume then that F ∈ E∗. If this is the case, we cannot have F ⊂ Π+. Hence, the only
possibility is that F = Π+. Thus, we have shown that every maximal failure region F is
a supporting half-space of B. Conversely, we have that if Π+ is a supporting half-space of
B, then we cannot find another supporting half-space Π′+ such that Π+ ⊂ Π′+. Hence, if
Π+ is a supporting half-space of B, then Π+ ∈ E∗.

We let P(B) denote the family of supporting half-spaces of B. Then we may summarize
the above discussion as follows:

Proposition 2.1 Assume that B is convex and that E is a family of convex sets such that
F ∩ B ⊆ ∂B for all F ∈ E. Then E∗ = P(B). Moreover, we have:

Pe(B, E) = sup{P [(T,H) ∈ Π+] : Π+ ∈ P(B)}.

2.2 Transformed contours

In this subsection we review the traditional approach to environmental contours based
on the well-known Rosenblatt transformation in the context of an exceedence probability
defined relative to a family of failure regions. The Rosenblatt transformation, denoted
Ψ, is such that if (T ′, H ′) = Ψ(T,H), then T ′ and H ′ are independent standard normally
distributed. See [Hav87].

The contour for the transformed vector (T ′, H ′) is constructed as follows: Let Pe < 0.5
be the desired exceedence probability, and let r > 0 denote the (1− Pe)-percentile in the
standard normal distribution. We then introduce the set B′, a circle centered at the origin
and with radius r, and let E ′ be the family of all convex sets F ′ such that F ′∩B′ ⊆ ∂B′. By
Proposition 2.1, we then have that E ′∗ = P(B′). We then choose an arbitrary half-space
Π+ ∈ P(B′). By the rotational symmetry property of the bivariate normal distribution
of (T ′, H ′) it follows that:

P [(T ′, H ′) ∈ Π+] = P [T ′ > r] = Pe.

Since this is true for all Π+ ∈ P(B′), we then get:

Pe(B′, E ′) = sup{P [(T ′, H ′) ∈ Π+] : Π+ ∈ P(B′)} = Pe.
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We then let B = Ψ−1(B′), and let E be given by:

E = {F = Ψ−1(F ′) : F ′ ∈ E ′},

where Ψ−1 denotes the inverse Rosenblatt transformation. In practice we need to limit
ourselves to transform a finite number of points evenly spread out along the border ∂B′
over to the border ∂B. The resulting contour ∂B is then obtained by connecting these
points with line segments. As a result the contour ∂B is approximated by a polygon.
In this context we have chosen to transform a total of 360 points. Thus, the resulting
polygon will have 360 corners.

B = Ψ-1(B' )
B'

Figure 2: Obtaining the set B by using the inverse Rosenblatt transformation Ψ−1.

In Figure 2 we have illustrated how to obtain the set B, where the inverse mapping
Ψ−1(M) of an arbitrary setM is defined by:

Ψ−1(M) = {(t, h) = Ψ−1(t′, h′) : (t′, h′) ∈M}.

We then get that:

Pe(B, E) = sup{P [(T,H) ∈ F ] : F ∈ E}
= sup{P [(T,H) ∈ Ψ−1(F ′)] : F ′ ∈ E ′}
= sup{P [(T ′, H ′) ∈ F ′] : F ′ ∈ E ′}
= sup{P [(T ′, H ′) ∈ Π+] : Π+ ∈ P(B′)} = Pe.

Thus, the contour ∂B has the desired exceedence probability with respect to the family
E of failure regions.

The problem with this approach is that since E consists of transformed convex sets, where
the transformation depends on the joint distribution of (T,H), it may be difficult to argue
that a given mechanical construction should have a failure region which belongs to this
particular family. In order to do so we must argue that if F is the true failure region
for the given mechanical construction, then Ψ(F) must be convex. It is typically much
easier to argue that the true failure region F itself is convex, and hence avoid an argument
involving the joint distributions of the environmental variables. In order to accomplish
this, however, the family E must be redefined, and hence the exceedence probability may
change.
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2.3 Convex contours

In [HVN13], [HVN15b] and [HVN15a] the focus was restricted to contours where the set
B itself was convex. Moreover, the family E was chosen relative to B as the family of all
convex failure regions F ⊆ R2 such that F ∩ B ⊆ ∂B. By Proposition 2.1 this makes the
calculation of the exceedence probability relatively simple.

In order to briefly explain the approach we let Pe < 0.5 be the desired exceedence proba-
bility of B with resepect to E . In order to determine B such that Pe(B, E) = Pe, we start
out by introducing the function C(θ) defined for θ ∈ [0, 2π) as:

C(θ) = inf{C : P [T cos(θ) +H sin(θ) > C] = Pe}. (1)

This means that C(θ) is the (1 − Pe)-percentile of the distribution of Y (θ) = T cos(θ) +
H sin(θ). Furthermore, we introduce for θ ∈ [0, 2π):

Π+(θ) = {(t, h) : t cos(θ) + h sin(θ) ≥ C(θ)},
Π(θ) = {(t, h) : t cos(θ) + h sin(θ) = C(θ)},

Π−(θ) = {(t, h) : t cos(θ) + h sin(θ) ≤ C(θ)}.
(2)

By the definition of C(θ) it follows that for all θ ∈ [0, 2π) we have:

P [(T,H) ∈ Π+(θ)] = P [T cos(θ) +H sin(θ) > C(θ)] = Pe.

In [HVN15b] it was shown that B may be expressed as:

B =
⋂

θ∈[0,2π)

Π−(θ),

assuming that Π(θ) intersects the boundary of B for all θ ∈ [0, 2π). Under this assumption
it also follows that:

P(B) = {Π+(θ) : θ ∈ [0, 2π)}.
We may then use Proposition 2.1 to compute the exceedence probability of B with respect
to E , and get:

Pe(B, E) = sup{P [(T,H) ∈ Π+] : Π+ ∈ P(B)}
= sup{P [(T,H) ∈ Π+(θ)] : θ ∈ [0, 2π)}
= sup

θ∈[0,2π)

P [T cos(θ) +H sin(θ) > C(θ)] = Pe.

We then conclude that the contour ∂B has the desired exceedence probability with respect
to E .

In [HVN15b] three specific methods for identifying ∂B are presentet, all of them using
Monte Carlo simulations. In this paper we focus on the second method.

In the relevant method we assume that C(θ) in (1) is differentiable. We can then use C(θ)
to identify the boundary of the set B. For a given angle θ ∈ [0, 2π) and a small number
δ > 0 we consider the intersection between the two Pe-exceedance hyperplanes Π(θ) and
Π(θ + δ). From (2), this point can be found by solving the following linear equations:

t cos(θ) + h sin(θ) = C(θ),

t cos(θ + δ) + h sin(θ + δ) = C(θ + δ),
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which has the following solution for t and h:

t =
sin(θ + δ)C(θ)− sin(θ)C(θ + δ)

sin(δ)
,

h =
− cos(θ + δ)C(θ) + cos(θ)C(θ + δ)

sin(δ)
.

As δ → 0 the intersection point (t, h) will converge to a point in Π(θ) which we denote
by (t(θ), h(θ)). Using l’Hôpital’s rule we get that:

lim
δ→0+

t = t(θ) = lim
δ→0+

cos(θ + δ)C(θ)− sin(θ)C ′(θ + δ)

cos(δ)

= C(θ) cos(θ)− C ′(θ) sin(θ),

and

lim
δ→0+

h = h(θ) = lim
δ→0+

sin(θ + δ)C(θ) + cos(θ)C ′(θ + δ)

cos(δ)

= C(θ) sin(θ) + C ′(θ) cos(θ).

Hence, (t(θ), h(θ)) can be written as:

(
t(θ)
h(θ)

)
=

[
C(θ) −C ′(θ)
C ′(θ) C(θ)

]
·
(

cos(θ)
sin(θ)

)
,

where C ′(θ) denotes the derivative of C(θ).

The suggested Monte Carlo method is then based on what we just did, but with the
true value of the C-function and its derivative replaced by estimates. In particular, the
derivative of C is found numerically by approximating C with a piecewise linear function.
For more details about this, see [HVN15b]. ∂B is estimated by the points (t(θ), h(θ))
after inserting estimates for C(θ) and its derivative.

In order to construct the contour ∂B, we would ideally like to calculate the point (t(θ), h(θ))
for all θ ∈ [0, 2π). However, as we did for the Rosenblatt contour, we limit the process by
considering only a finite number of angles, θ1 < · · · < θm wherem is a suitable number. In
our calculations we have chosen m to be 360. As a result the true contour is approximated
by a polygon.

We will now explain how we estimate C(θ) by simulating from the joint distributions of
T and H. In principle it is possible to simulate (T,H) by sampling directly from the joint
distributions. In this context, however, we assume that this simulation is done by first
simulating a vector (X, Y ) from a bivariate normal distribution, and then transforming
(X, Y ) over to (T,H) using the inverse Rosenblatt transformation.

Assume that the vector (X, Y ) is standard bivariate normally distributed, i.e, X and Y
are independent and normally distributed with mean 0 and standard deviation 1. We
then let:

R =
√
X2 + Y 2,

V = atan2(Y,X),
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where the function atan2(y, x) is described as follows:

atan2(y, x) =



arctan( y
x
) if x > 0,

arctan( y
x
) + π if x < 0 and y ≥ 0,

arctan( y
x
)− π if x < 0 and y < 0,

π
2

if x = 0 and y > 0,

−π
2

if x = 0 and y < 0,

undefined if x = 0 and y = 0.

This implies that R and V are the polar coordinates of (X, Y ). It can now be shown that
R and V are independent, and that Z = R2 is χ2-distributed with 2 degrees of freedom,
while V becomes R[0, 2π]-distributed. This means that the density of Z is :

fZ(z) =
1

2
e−z/2, for z > 0,

which is an exponential distribution with rate λ = 1/2. We then also have that P (Z >
z) = e−z/2. This means that if (X, Y ) is standard bivariate normally distributed, then
the probability that (X, Y ) is located outside a circle with centrum in origin and with a
radius r is equal to e−r2/2.

To simulate from the distribution of (X, Y ) we can then do the following: We start by
generating U and V , where U ∼ R[0, 1] and V ∼ R[0, 2π]. We then let Z = −2 ln(U).
Then it is easy to show that Z gets the density fZ . We also calculate R =

√
Z. Since R

and V are the polar coordinates to (X, Y ), we find that:

X = R cos(V ),

Y = R sin(V ).

Let then (T,H) = Ψ−1(X, Y ), where Ψ−1 is the inverse Rosenblatt transformation for the
joint distributions of T and H. This way (T,H) gets the correct joint distribution.

Now let θ ∈ [0, 2π), and let S = T cos(θ) + H sin(θ). For a given exceedance probability
Pe we wish to estimate C(θ) such that P (S > C(θ)) = Pe.

By simulating (T,H) n times as explained above, and each time calculating the resulting
value of S, we can estimate C(θ) by the order observator S(k), where k is such that:

1− k

n
=
n− k
n
≈ Pe.

This method works well for moderately small exceedance probabilities. However, when Pe
is very small, i.e., 0.1%, we need a large number of simulations in order to obtain stable
estimates. We also have that most of the simulations yields a result close to the central
area of the joint distribution, and that means that very few results provide information
about the contour area. Thus, in order to get a sufficiently large number of samples in
the area of the contour, a huge number of simulations is needed. This can represent a
challenge.
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To reduce the number of simulations, there are in [HVN15a] introduced an importance
sampling method where all samples in the central area of the joint distribution are rejected.
This way it is possible to focus the estimation on the area of interest, i.e., the area close
to the contour. Still one has to generate a large number of samples as part of the rejection
procedure in order to end up with a sufficiently large sample of non-rejected points. In
this paper we will propose an alternative sampling scheme. In this sampling scheme we
avoid sampling points from the central area of the joint distribution completely, and only
sample points close to the contour. This is actually easier to do when we start out by
simulating (X, Y ) and then transforming this vector over to (T,H).

More specifically, we start out by simulating (X, Y ) from the conditional distribution for
(X, Y ) given that this vector falls outside a circle with radius, say r0. The specific value of
r0 will be determined below. This corresponds to simulating (X, Y ) from the conditional
distribution given that R =

√
X2 + Y 2 > r0, or equivalently from the conditional distri-

bution for (X, Y ) given that Z = X2 + Y 2 > z0 = r2
0. To do this we need the conditional

distribution for Z given that Z > z0. For z > z0 we have:

P (Z > z|Z > z0) =
P (Z > z

⋂
Z > z0)

P (Z > z0)
=

P (Z > z)

P (Z > z0)
= e−(z−z0)/2.

Hence, given that Z > z0, (Z − z0) is also exponentially distributed with rate λ = 1/2.
Thus, we can simulate from the conditional distribution for Z given Z > z0 by generating
U ∼ R[0, 1] and let Z = z0 − 2 ln(U) = r2

0 − 2 ln(U). The angle V is generated from the
R[0, 2π]-distribution. Finally, we calculate R =

√
Z, X = R cos(V ) and Y = R sin(V )

as earlier, and transform the resulting vector (X, Y ) over to the vector (T,H) using the
inverse Rosenblatt transformation.

By using this type of importance sampling technique we avoid simulating a large number
of outcomes in the centre of the outcome space of the joint distribution for T and H
far away from the contour we want to estimate. Instead, the simulations are focused in
the area of interest on the outer edge of the outcome space where we expect that the
contour is. If we do so, we need to correct for this by estimating C(θ) using an "adjusted"
exceedance probability which takes into acount that we are not simulating from the true
joint distributions of T and H. That is, we let P ′e = P (S > C(θ)|R > r0) be this adjusted
exceedance probability, and assume that r0 is chosen such that the event {S > C(θ)} is
contained in the event {R > r0}. We can achieve this by ensuring that r0 is not too large.
Assuming that we have done so, we have:

P (S > C(θ)|R > r0) =
P (S > C(θ)

⋂
R > r0)

P (R > r0)
=
P (S > C(θ))

P (R > r0)
=

Pe

e−r
2
0/2
,

where we have used that P (R > r0) = P (Z > r2
0) = e−r

2
0/2. In other words, we have

shown that:
P ′e = P (S > C(θ)|R > r0) = er

2
0/2 · Pe.

We can then simulate n times from this conditional distribution and estimate C(θ) as the
order observation S(k), but where k is determined such that:

1− k

n
=
n− k
n
≈ P ′e.
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To get this method to work, it is necessary to ensure that the event {S > C(θ)} is
contained in the event {R > r0}. Thus, we let O denote a circle centered in the origin
with radius r0. Then r0 must be chosen so that the transformed set Ψ−1(O) is contained
inside the contour we want to estimate. At the same time, r0 should be chosen as large
as possible to get the maximal effect of the importance sampling. Experiences has shown
that we get a stable estimate by choosing r0 = 0.95 · r, where r is the radius we use to
determine the Rosenblatt contour. See Subsection 2.2.

Big differences in the variations between the environmental variables T and H may have
a significant effect on the precision of the contour estimates. See [HVN15b]. This is
especially true since C(θ) is estimated only for a finite number of angles. In order to
avoid these problems, it is in [HVN15b] recommened that the variables are standardized
as part of the estimation procedure. Thus, we have applied bivariate standardization
throughout this paper.

A problem with the suggested Monte Carlo method is that the estimated contour may
have small irregularities. This issue is discussed in detail in [HVN15b]. In order to avoid
this problem, we propose using the boundary of the convex hull of all the estimated points
along the contour instead of the original polygon. This is done by using the well-known
Graham’s algorithm. See [Gra72] or [oRo98]. As a result all the irregularites are removed,
and the area surrounded by the contour becomes a truely convex set. This method will
be used in all our examples.

We will now take a closer look at the difference between the contour with the small
irregularities, which we for simplicity will refer to as the uncorrected Monte Carlo method,
and the boundary of the convex hull. To see the difference we have, in Figure 3, zoomed
in on the same specific area of a Monte Carlo simulation represented by the two different
contours.

75.00 75.60 76.20 76.80 77.40 78.00

0.50

0.47
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0.41
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0.35

(a) The contour obtained by the uncor-
rected Monte Carlo method.

75.00 75.60 76.20 76.80 77.40 78.00

0.50

0.47

0.44

0.41

0.38

0.35

(b) The contour obtained as the boundary
of the convex hull.

Figure 3: Differences between the contour obtained by the uncorrected Monte Carlo
method and the contour obtained as the boundary of the convex hull.
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Recall that the Monte Carlo contour is approximated by a polygon of 360 points. The
polygon is constructed by drawing line segments between the points, and moving coun-
terclockwise along the border. For the contour obtained by the uncorrected Monte Carlo
method, there might be many points around the same area, and this contour includes
all of them resulting in line segments back and forth. The convex hull in contrast, only
includes the outlying points which means that the curls we get from the contour by the
uncorrected Monte Carlo method are gone. Note, that because of the exclusion of some
points, the contour obtained as the boundary of the convex hull is approximated by a
polygon consisting of less than 360 points. We observe that by using the boundary of the
convex hull, the contour becomes smoother than the contour obtained by the uncorrected
Monte Carlo method.

To get a deeper understanding of how big the difference between these two contours is,
we want to show how the angles between successive line segments vary along the border.
In order to explain this further, we start with an easy example of a polygon consisting
of 6 points. When moving along the polygon from point to point counterclockwise, we
measure the angles between line segments illustrated by Figure 4, where the encountered
angles corresponding to the corners a, ..., f are marked. We observe that all the angles
are positive except for the angle at corner e. Note that as we move along the border in
a counterclockwise direction, positive angles results in left turns, while negative angles
results in right turns. Every left turn corresponds to convexity and every right turn
corresponds to concavity. We will come back to this in Section 4.

c

b

     a

d

e f

Figure 4: Measure of angles between line segments.

If we now look at the difference between the contour obtained by the uncorrected Monte
Carlo method and the contour obtained as the boundary of the convex hull by looking at
variations in the angles, we see a clear difference. See Figure 5.
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(a) Variations in angles for the contour
obtained by the uncorrected Monte Carlo
method.
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(b) Variations in the angles for the con-
tour obtained as the boundary of the con-
vex hull.

Figure 5: The difference between the variations in the angles between the contour obtained
by the uncorrected Monte Carlo method and contour obtained as the boundary of the
convex hull.

Note that the angles on the y-axis are given as radians. We observe that the contour
obtained by the uncorrected Monte Carlo method consists of 360 points while the contour
obtained as the boundary of the convex hull only consists of 150 points. The x-axis
represents these points. Note that for the contour obtained as the boundary of the convex
hull all the angles are positive, while the angles associated with the contour obtained by
the uncorrected Monte Carlo method fluctuate between positive and negative numbers.
However, as we can see in Figure 6, the contours will look approximatly the same zooming
out on Figure 3.

0.00 16.00 32.00 48.00 64.00 80.00
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2.20

1.55

0.90
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Figure 6: Black squares: Contour obtained by the uncorrected Monte Carlo method.
Grey circles: Contour obtained as the boundary of the convex hull.
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Contours constructed by Monte Carlo simulations have the advantage, compared to trans-
formed contours, that it is much easier to argue that the true failure region of a given
mechanical construction belongs to the family E . The disadvantage, however, is that one
is limited to convex contours. In cases where the joint distribution of (T,H) is concen-
trated on a non-convex area, a convex contour would typically include significant areas
with very little probability mass. In such cases convex contours may lead to overly con-
servative designs. See [VB15].

2.4 Iso contours

Let the environmental variables T and H have density f(t, h) and the set B be given by:

B = {(t, h) : f(t, h) ≥ c},

where c > 0 is an appropriate constant. The boundary, ∂B, is then called an Iso curve or
an Iso contour if it is given by:

∂B = {(t, h) : f(t, h) = c}.

In this paper we have chosen to let c be given by:

c = min[f(t, h) : (t, h) ∈ ∂BR],

where ∂BR denotes the Rosenblatt contour. As a result, the Iso contour is always outside
of the corresponding Rosenblatt contour. This also implies that the exceedance probability
of the Iso contour is always slightly less than the corresponding Rosenblatt contour. Note,
however, that when we find the value of c, we only investigate a finite number of points
along the Rosenblatt contour. Thus, in rare cases there may exist points on the Rosenblatt
contour where the density is smaller than c. In such cases there may be points on the
Iso contour which lie inside the Rosenblatt contour. In such cases the Iso contour may
have an exceedance probability which is slightly larger than the corresponding Rosenblatt
contour.

As for both the Rosenblatt contours and the Monte Carlo contours, the Iso contours are
approximated by polygons as well.

Two main problems with Iso contours we will state in this paper is when we have:

1. Multimodal probability distributions.

2. Distributions where the contours are not closed.

When the first problem occurs, we end up with contours consisting of multiple enclosed
sets. See Figure 7. The contours will then be difficult to interpret. However, all our
examples are unimodal, so we will in fact not encounter this problem in this paper.
We refer to [Has+17] where methods for multimodal probability distributions generates
clearly defined contours.
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Figure 7: Example of multiple enclosed sets.

The second problem can be illustrated by a simple example. Let:

f(x, y) =
1

4
√
xy

where 0 < x ≤ 1 and 0 < y ≤ 1.

To find the Iso contours, we then need to solve f(x, y) = c:

f(x, y) = c

⇔ 1

4
√
xy

= c

⇔ √xy =
1

4c

⇔ xy =
1

16c2
.

Thus, in this case the Iso curves becomes hyperbolas, and we observe that these Iso
contours are not closed. See Figure 8.

0.02 0.22 0.42 0.61 0.81 1.00

1.00

0.80

0.61

0.41

0.22

0.02

Figure 8: Iso contours for f(x, y) when c=1.5, c=1.0 and c=0.5.
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2.5 Joint distributions for the environmental variables T and H

We consider joint long-term models for the environmental variables time period (or wave
period), T , and wave height, H. From [VB15], a marginal distribution is fitted to the
data for significant wave height and a conditional model, conditioned on the value of
significant wave height, is subsequently fitted to the wave period. The joint model is then
the product of these distribution functions:

fT,H(t, h) = fH(h)fT |H(t|h). (3)

Joint distributions have been fitted to data assuming a three-parameter Weibull distribu-
tion for the significant wave height, H, and a lognormal conditional distribution for the
wave period, T . The three-parameter Weibull distribution is parameterized by a location
parameter, γ, a scale parameter α, and a shape parameter β as follows:

fH(h) =
β

α

(
h− γ
α

)β−1

e−[(h−γ)/α]β , h ≥ γ. (4)

The lognormal distribution has two parameters, the log-mean µ and the log-standard
deviation σ and is expressed as:

fT |H(t|h) =
1

t
√

2π
e−[(ln(t)−µ)2/(2σ2)], t ≥ 0,

where the dependence between H and T is modelled by letting the parameters µ and σ
be expressed in terms of H as follows:

µ = µ(h) = E[ln(T )|H = h] = a1 + a2h
a3 , (5)

σ = σ(h) = SD[ln(T )|H = h] = b1 + b2e
b3h. (6)

The parameters a1, a2, a3, b1, b2, b3 are estimated using available data from the relevant
geographical location which we will come back to in later numerical examples.

We will now describe the inverse Rosenblatt transformation for the joint model given
by (3). That is, we will describe how to transform two independent standard normally
distributed variables, T ′ and H ′ over to the environmental variables T and H so that
these variables get their correct joint distributions.

Assume, as above, that T ′ and H ′ are independent and standard normally distributed.
We denote the inverse Rosenblatt transformation by Ψ−1. Expressed as coordinates, this
transformation can be written as follows:

(T,H) = Ψ−1(T ′, H ′) = (Ψ−1
1 (T ′, H ′),Ψ−1

2 (T ′, H ′)).

Since the joint distributions for T and H is expressed by the marginal distribution for H
and the conditional distribution for T given H, we start by describing H = Ψ−1

2 (T ′, H ′).
In this context we let G denote the cumulative distribution function for the standard
normal distribution, and claim that U = G(H ′) is uniformly distributed on the interval
[0, 1]. This is true since for 0 ≤ u ≤ 1 we have that:

P (U ≤ u) = P (G(H ′) ≤ u) = P (H ′ ≤ G−1(u)) = G[G−1(u)] = u.
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The cumulative distribution function for U is then equal to the cumulative distribution
function for the uniform distribution on the interval [0,1], which showes that U has the
alleged distribution. We then let W denote the cumulative distribution function to the
current three-parameter Weibull distribution, and let:

H = W−1(U).

We then have that, since U is uniformly distributed on [0,1]:

P (H ≤ h) = P (W−1(U) ≤ h) = P (U ≤ W (h)) = W (h),

then H gets the correct three-parameter Weibull distribution. By taking the cumulative
distribution function for the three-parameter Weibull distribution as a starter, we find
that:

H = W−1(U) = γ + α · (− ln(U))1/β.

By combining this, we get that:

H = Ψ−1
2 (T ′, H ′) = Ψ−1

2 (H ′) = γ + α · (− ln(G(H ′)))1/β.

To compute T , we start by compute the parameters µ and σ by (5) and (6) respectively,
where we use the calculated value of H. We then find T by the formula:

T = eσ·T
′+µ = eσ(H)·T ′+µ(H).

Combining this, we then get that:

T = Ψ−1
1 (T ′, H ′) = eσ(H)·T ′+µ(H) = eσ(Ψ−1

2 (H′))·T ′+µ(Ψ−1
2 (H′)).

In (4) we observe that when 0 < β < 1, we also have that 1− β > 0. By taking the limit
of fH(h) when h→ γ+ we get that:

lim
h→γ+

fH(h) = lim
h→γ+

β

α

(
h− γ
α

)β−1

e−[(h−γ)/α]β

= lim
h→γ+

β

α

(
α

h− γ

)1−β

e−[(h−γ)/α]β

=∞.

(7)

Hence, fT,H(t, h) has vertical asymptote along the line where h = γ. This implies that the
Iso contour is not closed. This is similar to the issue illustrated in Figure 8. In Subsection
5.3 we have two cases where this happens.
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3 UPPER BOUND ON THE EXCEEDENCE PROB-
ABILITY

In Subsection 2.1 we explained how to compute the exceedence probability of a convex
set by using Proposition 2.1. In this section we approach the problem of computing the
exceedence probability of a general environmental contour. More specifically we assume
that B ⊆ R2 is a simply connected, but not necessarily convex set. Intuitively a simply
connected set is a connected set with no holes.

As in the previous section we let E be the family of all convex sets F ⊆ R2 such that
F∩B ⊆ ∂B. In order to verify that ∂B has the correct exceedence probability with respect
to E , we have to compute Pe(B, E). Since B does not need to be convex, we cannot assume
that E∗ is equal to P(B). This problem is illustrated in Figure 9. In this figure the set
B is not convex. Then it is possible to find a set F ∈ E which is not contained in any
supporting half-space of B. In fact any half-space containing F will overlap with the
interior of B and hence cannot be a supporting half-space of B.

F

B
∂B

Figure 9: The convex set F ∈ E is not contained in any supporting half-space of B.

In order to compute Pe(B, E) for a general simply connected set we need an efficient way
of identifying the family E∗. The fact that E∗ typically is an infinite family makes this
difficult.

Instead of identifying the family E∗ directly, it can sometimes be easier to introduce an
alternative family of failure regions. We denote this family by Ẽ , and assume that this
family is such that for each F ∈ E , there exists a set F̃ ∈ Ẽ such that F ⊆ F̃ . By this
assumption we immediately get:

Pe(B, E) ≤ Pe(B, Ẽ).

This means that by introducing the alternative family Ẽ and base the calculations on this,
we get an upper bound on the exceedence probability.

The point here is that by choosing Ẽ in a clever way, it may be much easier to compute
the upper bound on the exceedence probability.

In order to explain this in more detail, we consider a specific family Ẽ . We assume that
B is given, and as before we let E be the family of all convex sets F ⊆ R2 such that
F ∩ B ⊆ ∂B. We then choose an arbitrary convex set F ∈ E . Then there exists a
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maximal set F∗ ∈ E such that F ⊆ F∗ having at least point x0 in common with the
contour ∂B, i.e., x0 ∈ F∗ ∩ ∂B. We then let Π(x0) be a hyperplane supporting F∗ at x0,
such that F∗ ⊆ Π+(x0), where Π+(x0) is the half-space bounded by Π(x0) and containing
F∗. Finally, we introduce the set F̃(x0) = Π+(x0) \ Bo. See Figure 10. It is then clear
that F ⊆ F∗ ⊆ F̃(x0).

F

B
∂B

~

Π

x0

(x )0

(x )0

Figure 10: The construction of the set F̃(x0).

The same construction can be carried out along the entire border of B. Thus, for any
x ∈ ∂B we define F̃(x) to be the corresponding set constructed as above by identifying a
maximal set in E containing the point x. Moreover, we define Ẽ = {F̃(x) : x ∈ ∂B}. We
then have that for each F ∈ E , there exists a set F̃ ∈ Ẽ such that F ⊆ F̃ . We observe that
the family Ẽ is indexed by the points in ∂B. Thus, we may estimate P [(T,H) ∈ F̃(x)] for
all x ∈ ∂B and plot the result. An upper bound on the exceedence probability, Pe(B, E),
can then be found by identifying the maximum value of this function, which by definition
is equal to Pe(B, Ẽ).

We also observe that if B is itself convex, we get that E∗ = Ẽ . Thus, in this case the upper
bound is equal to the exceedence probability of B with respect to E , i.e., Pe(B, E) =
Pe(B, Ẽ). On the other hand, if parts of the set B is strongly non-convex, as in Figure 10,
the upper bound can be rather crude.

3.1 Numerical examples

In this subsection we illustrate the proposed method by considering numerical examples
introduced in [VB15].

The parameters a1, a2, a3, b1, b2, b3 from Subsection 2.5 are estimated using available data
from the relevant geographical location. In the examples considered here the parameters
are fitted based on data sets from West Shetland, West of Africa - Nigeria and Northwest
of Australia. We consider data for three different cases for both West Shetland and
Northwest of Australia: Total sea, wind sea and swell, and for one case for West of Africa:
Swell. Wind sea is defined as waves coming from local wind. Swell is defined as waves
coming from wind far away or waves that keeps going after the wind has slowed down.
And finally, total sea is the sum of wind sea and swell. For every locations, the parameters
for the three-parameter Weibull distribution are listed in one table, while the parameters
for the conditional log-normal distribution are listed in another table.

20



In the examples we use return periods of 25 years, 10 years and 1 year. For West Shetland
and West of Africa the models are fitted using sea states representing periods of 3 hours.
Thus, we get 8 data points per 24 hours. For Northwest of Australia the models are fitted
using sea states representing periods of 1 hour. Thus, we get 24 data points per 24 hours.

Hence, we have the following desired exceedance probabilities:
– 25 years return period for West Shetland and West of Africa:

Pe =
1

25 · 365.25 · 8
= 1.3689 · 10−5.

– 25 years return period for Northwest of Australia:

Pe =
1

25 · 365.25 · 24
= 4.5631 · 10−6.

– 10 years return period for West Shetland and West of Africa:

Pe =
1

10 · 365.25 · 8
= 3.4223 · 10−5.

– 10 years return period for Northwest of Australia:

Pe =
1

10 · 365.25 · 24
= 1.1408 · 10−5.

– 1 year return period for West Shetland and West of Africa:

Pe =
1

1 · 365.25 · 8
= 3.4223 · 10−4.

– 1 year return period for Northwest of Australia:

Pe =
1

1 · 365.25 · 24
= 1.1408 · 10−4.

For more details about these examples we refer to [VB15].

In the following examples we will limit ourselves to environmental contours for all types
of sea which are constructed using the traditional approach based on the Rosenblatt
transformation, and the alternative approach based on Monte Carlo simulations. For
every case, we will show the Rosenblatt contour and the Monte Carlo contour in the same
plot. The corresponding upper bound on the exceedance probability, P [(T,H) ∈ F̃(x)]
as a function of the point x ∈ ∂B for the Rosenblatt contour, along with the desired
exceedance probability will be shown in another plot for the same cases.

In the plots of the environmental contours the x-axis represents the wave period measured
in seconds (i.e., T ), while the y-axis represents the significant wave heights measured in
meters (i.e., H).

In the plots of P [(T,H) ∈ F̃(x)] as a function of the point x ∈ ∂B, we let the point x
run counterclockwise along the Rosenblatt contour. The starting point is set by a marker
in the contour plots. A total of 360 points are used in each of these plots. The x-axis in
these plots represents the index of these points.

In Table 7, Table 8 and Table 9 for West Shetland, West of Africa and Northwest of
Australia respectively, we have listed the largest values of P [(T,H) ∈ F̃(x)], i.e., the upper
bound on the exceedance probability, and for which x this value occurs for every type of
sea and every return period. We have also listed the desired exceedance probabilites in
the same tables.
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3.1.1 West Shetland

Table 1: Fitted parameter for the three-
parameter Weibull distribution for sig-
nifcant wave heights.

α β γ

Total sea 2.259 1.285 0.701
Wind sea 2.139 1.176 0.318
Swell 2.527 1.460 0.337

Table 2: Fitted parameter for the con-
ditional log-normal distribution for wave
periods.

i = 1 i = 2 i = 3

Total sea ai 1.069 0.898 0.243
bi 0.025 0.263 -0.148

Wind sea ai 0.005 1.694 0.186
bi 0.050 0.191 -1.074

Swell ai 1.069 0.898 0.243
bi 0.025 0.263 -0.148

Total sea

2.50 6.50 10.50 14.50 18.50 22.50
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7.00

3.50

0.00

(a) Environmental contours for total sea,
25 years return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for total sea, 25 years return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 1.3689 ·
10−5.

Figure 11: West Shetland, total sea, 25 years return period.
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(a) Environmental contours for total sea,
10 years return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for total sea, 10 years return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 3.4223 ·
10−5.

Figure 12: West Shetland, total sea, 10 years return period.
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(a) Environmental contours for total sea,
1 year return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for total sea, 1 year return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 3.4223 ·
10−4.

Figure 13: West Shetland, total sea, 1 year return period.
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Wind sea
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(a) Environmental contours for wind sea,
25 years return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for wind sea, 25 years return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 1.3689 ·
10−5.

Figure 14: West Shetland, wind sea, 25 years return period.
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(a) Environmental contours for wind sea,
10 years return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for wind sea, 10 years return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 3.4223 ·
10−5.

Figure 15: West Shetland, wind sea, 10 years return period.
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(a) Environmental contours for wind sea,
1 year return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for wind sea, 1 year return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 3.4223 ·
10−4.

Figure 16: West Shetland, wind sea, 1 year return period.
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(a) Environmental contours for swell, 25
years return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for swell, 25 years return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 1.3689 ·
10−5.

Figure 17: West Shetland, swell, 25 years return period.
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(a) Environmental contours for swell, 10
years return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for swell, 10 years return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 3.4223 ·
10−5.

Figure 18: West Shetland, swell, 10 years return period.
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(a) Environmental contours for swell, 1 year
return period, constructed using the Rosen-
blatt transformation (grey curve) and using
Monte Carlo simulation (black curve). The
small marker defines the starting point of
the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for swell, 1 year return period,
for the Rosenblatt contour (grey curve).
The black curve represents the desired ex-
ceedence probability Pe = 3.4223 · 10−4.

Figure 19: West Shetland, swell, 1 year return period.

3.1.2 West of Africa

Table 3: Fitted parameter for the three-
parameter Weibull distribution for sig-
nifcant wave heights.

α β γ

Swell 0.709 1.688 0.297

Table 4: Fitted parameter for the con-
ditional log-normal distribution for wave
periods.

i = 1 i = 2 i = 3

Swell ai 0.100 2.146 0.193
bi 0.035 0.957 -1.053
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(a) Environmental contours for swell, 25
years return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for swell, 25 years return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 1.3689 ·
10−5.

Figure 20: West of Africa, swell, 25 years return period.
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(a) Environmental contours for swell, 10
years return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for swell, 10 years return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 3.4223 ·
10−5.

Figure 21: West of Africa, swell, 10 years return period.
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(a) Environmental contours for swell, 1 year
return period, constructed using the Rosen-
blatt transformation (grey curve) and using
Monte Carlo simulation (black curve). The
small marker defines the starting point of
the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for swell, 1 year return period,
for the Rosenblatt contour (grey curve).
The black curve represents the desired ex-
ceedence probability Pe = 3.4223 · 10−4.

Figure 22: West of Africa, swell, 1 year return period.

3.1.3 Northwest of Australia

Table 5: Fitted parameter for the three-
parameter Weibull distribution for sig-
nifcant wave heights.

α β γ

Total sea 0.606 0.892 0.452
Wind sea 0.605 0.867 0.322
Swell 0.450 1.580 0.132

Table 6: Fitted parameter for the con-
ditional log-normal distribution for wave
periods.

i = 1 i = 2 i = 3

Total sea ai 0.750 1.150 0.153
bi 0.061 0.882 -1.023

Wind sea ai 0.000 1.798 0.134
bi 0.042 0.224 -0.500

Swell ai 0.010 2.543 0.032
bi 0.137 0.000 0.000
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(a) Environmental contours for total sea,
25 years return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for total sea, 25 years return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 4.5631 ·
10−6.

Figure 23: Northwest of Australia, total sea, 25 years return period.
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(a) Environmental contours for total sea,
10 years return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for total sea, 10 years return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 1.1408 ·
10−5.

Figure 24: Northwest of Australia, total sea, 10 years return period.
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(a) Environmental contours for total sea,
1 year return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for total sea, 1 year return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 1.1408 ·
10−4.

Figure 25: Northwest of Australia, total sea, 1 year return period.
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(a) Environmental contours for wind sea,
25 years return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for wind sea, 25 years return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 4.5631 ·
10−6.

Figure 26: Northwest of Australia, wind sea, 25 years return period.
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(a) Environmental contours for wind sea,
10 years return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for wind sea, 10 years return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 1.1408 ·
10−5.

Figure 27: Northwest of Australia, wind sea, 10 years return period.
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(a) Environmental contours for wind sea,
1 year return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for wind sea, 1 year return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 1.1408 ·
10−4.

Figure 28: Northwest of Australia, wind sea, 1 year return period.
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(a) Environmental contours for swell, 25
years return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for swell, 25 years return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 4.5631 ·
10−6.

Figure 29: Northwest of Australia, swell, 25 years return period.
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(a) Environmental contours for swell, 10
years return period, constructed using
the Rosenblatt transformation (grey curve)
and using Monte Carlo simulation (black
curve). The small marker defines the start-
ing point of the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for swell, 10 years return
period, for the Rosenblatt contour (grey
curve). The black curve represents the de-
sired exceedence probability Pe = 1.1408 ·
10−5.

Figure 30: Northwest of Australia, swell, 10 years return period.
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(a) Environmental contours for swell, 1 year
return period, constructed using the Rosen-
blatt transformation (grey curve) and using
Monte Carlo simulation (black curve). The
small marker defines the starting point of
the Rosenblatt contour.
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(b) P [(T,H) ∈ F̃(x)] as a function of the
point x ∈ ∂B for swell, 1 year return period,
for the Rosenblatt contour (grey curve).
The black curve represents the desired ex-
ceedence probability Pe = 1.1408 · 10−4.

Figure 31: Northwest of Australia, swell, 1 year return period.
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West Shetland

Type of
sea

Return
period

Desired
exceedance
probability

Upper bound
on the

exceedance
probability

x-coordinates

Total sea

25 years 1.3689 · 10−5 5.1445 · 10−5 (20.42, 4.37)

10 years 3.4223 · 10−5 1.1765 · 10−4 (19.60, 4.57)

1 year 3.4223 · 10−4 8.7393 · 10−4 (17.60, 5.14)

Wind sea

25 years 1.3689 · 10−5 8.6806 · 10−5 (5.77, 2.51)

10 years 3.4223 · 10−5 2.0714 · 10−4 (5.80, 2.48)

1 year 3.4223 · 10−4 0.0018 (5.91, 2.38)

Swell

25 years 1.3689 · 10−5 4.7138 · 10−5 (20.36, 4.36)

10 years 3.4223 · 10−5 1.0643 · 10−4 (19.46, 4.69)

1 year 3.4223 · 10−4 7.5871 · 10−4 (17.39, 5.44)

Table 7: The largest value of P [(T,H) ∈ F̃(x)] as a function of the point x ∈ ∂B, i.e.,
the upper bound on the exceedance probability, with the corresponding x-coordinates
and the desired exceedance probabilities for every type of sea and return period for West
Shetland.

West of Africa

Type of
sea

Return
period

Desired
exceedance
probability

Upper bound
on the

exceedance
probability

x-coordinates

Swell

25 years 1.3689 · 10−5 8.0733 · 10−5 (55.37, 0.81)

10 years 3.4223 · 10−5 1.9002 · 10−4 (51.76, 0.79)

1 year 3.4223 · 10−4 0.0016 (42.34, 0.72)

Table 8: The largest value of P [(T,H) ∈ F̃(x)] as a function of the point x ∈ ∂B, i.e., the
upper bound on the exceedance probability, with the corresponding x-coordinates and
the desired exceedance probabilities for every type of sea and return period for West of
Africa.
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Northwest of Australia

Type of
sea

Return
period

Desired
exceedance
probability

Upper bound
on the

exceedance
probability

x-coordinates

Total sea

25 years 4.5631 · 10−6 3.1074 · 10−5 (15.24, 2.12)

10 years 1.1408 · 10−5 7.3812 · 10−5 (15.21, 2.03)

1 year 1.1408 · 10−4 6.3456 · 10−4 (14.51, 1.89)

Wind sea

25 years 4.5631 · 10−6 2.7117 · 10−5 (7.59, 5.05)

10 years 1.1408 · 10−5 6.4318 · 10−5 (7.68, 5.01)

1 year 1.1408 · 10−4 5.5009 · 10−4 (7.74, 4.66)

Swell

25 years 4.5631 · 10−6 6.7988 · 10−6 (6.81, 0.67)

10 years 1.1408 · 10−5 1.6705 · 10−5 (6.99, 0.66)

1 year 1.1408 · 10−4 1.5845 · 10−4 (7.57, 0.67)

Table 9: The largest value of P [(T,H) ∈ F̃(x)] as a function of the point x ∈ ∂B, i.e., the
upper bound on the exceedance probability, with the corresponding x-coordinates and
the desired exceedance probability for every type of sea and return period for Northwest
of Australia.

Summarizing all the results from these examples we see that the upper bound on the
exceedance probability is larger than the desired exceedance probability for all cases.
From the plots of the upper bound on the exceedance probability, we observe that there
are points where the curve is below the desired value as well. However, the average value
of the curve is obviously greater than the desired exceedence probability, except for the
Northwest of Australia, swell case. Typically, the points where curve is above the desired
value corresponds to points on the Rosenblatt contour which are inside the Monte Carlo
contour, while the points where curve is below the desired value corresponds to points on
the Rosenblatt contour which are outside the Monte Carlo contour.

We also observe that the value of P [(T,H) ∈ F̃(x)] varies a lot as the point x is moved
along the contours. This indicates that design based on these contours may not have
the desired failure probability. In fact, depending on the chosen design point, the failure
probability may be considerably greater than the desired value, but it may also be lower
than this value. In contrast environmental contours obtained using the Monte Carlo
simulation approach will always have the desired exceedence probability. Thus, in cases
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where the true failure region is convex, design based on these contours will have a failure
probability which is less than or equal to the desired exceedence probability.

While the results for the environmental contours obtained using the Rosenblatt trans-
formation are unsatisfactory, we should keep in mind that since most of these contours,
except for Northwest of Australia, swell case, are clearly not convex, the upper bound can
be crude. In the next section we shall investigate this further.
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4 LOCALLY CONCAVE SEGMENTS
We recall from the examples considered in the previous section, that the probability
P [(T,H) ∈ F̃(x)] typically had its highest values whenever the point x was located in a
part of the contour which was strongly non-convex. In this section we would like to derive
a method for identifying a maximal convex failure region which covers such a part. In
order to do so, we parametrize the contour ∂B. That is, we assume that we have found
functions gt og gh and an interval Ω ⊆ R such that:

∂B = {(t, h) = (gt(s), gh(s)) : s ∈ Ω}.

Intuitively, this means that when the parameter s runs through the interval Ω, then the
point (gt(s), gh(s)) runs through ∂B. As a convention we always choose the parametriza-
tion so that each of the points in ∂B occurs exactly once as s runs through Ω, and such
that the point (gt(s), gh(s)) runs through ∂B counterclockwise as s runs through Ω from
the lowest to the highest value.

We now define the concepts of local convexity and local concavity for the contour ∂B as
follows. We say that ∂B is locally convex at the point (t, h) = (gt(s), gh(s)), where s ∈ Ω,
if there exists an open interval Ωs ⊆ Ω where s ∈ Ωs, such that for all s1, s2 ∈ Ωs the
line segment between the points (gt(s1), gh(s1)) and (gt(s2), gh(s2)) is entirely contained
in B. Similarly, we say that ∂B is locally concave in the point (t, h) = (gt(s), gh(s)), where
s ∈ Ω, if there exists an open interval Ωs ⊆ Ω where s ∈ Ωs, such that for all s1, s2 ∈ Ωs

the line segment between the points (gt(s1), gh(s1)) and (gt(s2), gh(s2)) is entirely (except
for the end points) contained in the complement of B. Note that if B is locally convex at
a point (t, h), then the complement of B is locally concave at the same point. Similarly,
if B is locally concave at a point (t, h), then the complement of B is locally convex at the
same point.

To find intervals where B is locally concave, we move along ∂B counterclockwise and
identify whether angles between line segments are positive or negative as explained in
Figure 4. We notice that if we get an positive angle between the line segments we get a
left turn which corresponds to local convexity, while if the angle between line segments
is negative, we get a right turn which corresponds to local concavity. By using this
interpretation it is possible to construct an algorithm for identifying intervals of points
where ∂B is locally concave. See Figure 32.
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Figure 32: Identifying intervals of points where ∂B is locally concave.

Having identified these locally concave intervals we use the fact that the complement
of B is locally convex in the same intervals. Thus, we can construct maximal convex
failure regions by extending these intervals of ∂B by straight lines, and let these maximal
failure regions be the area separated from B by the resulting lines. See Figure 33. Since
B typically has a smooth boundary, there will only be a finite number of such maximal
convex failure regions. It is then easy to estimate the failure probabilities associated with
these maximal failure regions using Monte Carlo simulation. The exceedence probability
can then be estimated by taking the maximum of these estimated probabilities.
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Figure 33: Maximal convex failure regions outside of contour.

4.1 Numerical examples

In this subsection we proceed with all the examples introduced in Subsection 3.1, and
compute the exceedence probability by identifying the intervals of points where ∂B is
locally concave. We then construct maximal convex failure regions by extending these
parts of ∂B by straight lines as shown in Figure 33. The resulting estimated exceedence
probabilities, Pe(B, E), for every type of sea are listed in the following tables for every lo-
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cation and every return period. In the tables we have also included the desired exceedance
probabilites and the upper bound on the exceedance probabiliy from Subsection 3.1.

4.1.1 West Shetland

25 years return period

Type of sea Pe(B, E)
Desired

exceedance
probability

Upper bound on the
exceedance
probability

Total sea 3.7327 · 10−5 1.3689 · 10−5 5.1445 · 10−5

Wind sea 3.8988 · 10−5 1.3689 · 10−5 8.6806 · 10−5

Swell 3.6190 · 10−5 1.3689 · 10−5 4.7138 · 10−5

Table 10: West Shetland, 25 years return period.

10 years return period

Type of sea Pe(B, E)
Desired

exceedance
probability

Upper bound on the
exceedance
probability

Total sea 8.9620 · 10−5 3.4223 · 10−5 1.1765 · 10−4

Wind sea 9.6825 · 10−5 3.4223 · 10−5 2.0714 · 10−4

Swell 8.7421 · 10−5 3.4223 · 10−5 1.0643 · 10−4

Table 11: West Shetland, 10 years return period.

1 year return period

Type of sea Pe(B, E)
Desired

exceedance
probability

Upper bound on the
exceedance
probability

Total sea 7.7166 · 10−4 3.4223 · 10−4 8.7393 · 10−4

Wind sea 9.1372 · 10−4 3.4223 · 10−4 0.0018

Swell 7.3533 · 10−4 3.4223 · 10−4 7.5871 · 10−4

Table 12: West Shetland, 1 year return period.
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4.1.2 West of Africa

25 years return period

Type of sea Pe(B, E)
Desired

exceedance
probability

Upper bound on the
exceedance
probability

Swell 4.6939 · 10−5 1.3689 · 10−5 8.0733 · 10−5

Table 13: West of Africa, 25 years return period

10 years return period

Type of sea Pe(B, E)
Desired

exceedance
probability

Upper bound on the
exceedance
probability

Swell 1.1483 · 10−4 3.4223 · 10−5 1.9002 · 10−4

Table 14: West of Africa, 10 years return period.

1 year return period

Type of sea Pe(B, E)
Desired

exceedance
probability

Upper bound on the
exceedance
probability

Swell 0.0010 3.4223 · 10−4 0.0016

Table 15: West of Africa, 1 year return period.

4.1.3 Northwest of Australia

25 years return period

Type of sea Pe(B, E)
Desired

exceedance
probability

Upper bound on the
exceedance
probability

Total sea 1.2558 · 10−5 4.5631 · 10−6 3.1074 · 10−5

Wind sea 1.4549 · 10−5 4.5631 · 10−6 2.7117 · 10−5

Swell - 4.5631 · 10−6 6.7988 · 10−6

Table 16: Northwest of Australia, 25 years return period.
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10 years return period

Type of sea Pe(B, E)
Desired

exceedance
probability

Upper bound on the
exceedance
probability

Total sea 3.1283 · 10−5 1.1408 · 10−5 7.3812 · 10−5

Wind sea 3.6386 · 10−5 1.1408 · 10−5 6.4318 · 10−5

Swell - 1.1408 · 10−5 1.6705 · 10−5

Table 17: Northwest of Australia, 10 years return period.

1 year return period

Type of sea Pe(B, E)
Desired

exceedance
probability

Upper bound on the
exceedance
probability

Total sea 3.1261 · 10−4 1.1408 · 10−4 6.3456 · 10−4

Wind sea 3.3596 · 10−4 1.1408 · 10−4 5.009 · 10−4

Swell - 1.1408 · 10−4 1.5845 · 10−4

Table 18: Northwest of Australia, 1 year return period.

For Northwest of Australia, in the swell case for all return periods, the contour has
no such locally concave intervals. For the other cases, we observe that these probabili-
ties are smaller than the crude upper bounds obtained by considering the maximum of
P [(T,H) ∈ F̃(x)]. Still for all the cases where there exists locally concave intervals, the
estimated exceedence probabilities are some higher than the desired value. Thus, while
the environmental contours obtained using the Rosenblatt transformation typically fits
the joint distribution of the environmental variable better than the contours obtained us-
ing the Monte Carlo simulation approach, the resulting exceedance probability, as defined
in this paper, may be considerably larger than desired. However, in the next section, we
will adjust contours such that the exceedance probabilities becomes equal to the desired
exceedance probabilities.
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5 THE INVERSE PROBLEM
The inverse problem is about adjusting contours so that they obtain the same desired
exceedance probability. This makes it possible to obtain contours that fit the main parts
of the joint distribution better while keeping the exceedance probability under control.
By adjusting the contours so that they all have the same desired exceedance probability,
we can compare them directly, and find the best contour for the given application. For
comparison, we now include the Iso contours.

As the Monte Carlo contours basically have the desired exceedance probability, we do not
need to adjust these contours in any way. On the other hand, since the Rosenblatt con-
tours and the Iso contours basically have exceedance probabilities higher than the desired
exceedance probabilites, these need to be adjusted. Graphically, we find that the contour
with the smallest area is the best. That is because we want as little requirements for the
construction of the design as possible as well as we want it to be as little conservative as
possible.

Before the comparison, we want to explain the techniques behind the adjustments.

5.1 Method

The contours are constructed by a simulation program where we specify the location, type
of sea, the return period and which contour we want to obtain. In the next numerical
examples we have included Iso contours in addition to the examples introduced in Sub-
section 3.1. We will now explain how the constructions of the contours with the desired
exceedance probability is done.

The main using tool to obtain contours with the desired exceedance probability is a P-
factor. This factor will be explained deeper in Subsection 5.2, but intuitively, an increased
P-factor will expand the contours resulting in lower exceedance probability. This is es-
pecially useful for the Rosenblatt contours and the Iso contours as they basically has
exceedance probability higher than desired. We always start with a P-factor=1.0 which
leaves the contours unchanged. The program then uses the bisection method with 20
iterations in order to identify a value of P-factor which gives the contours the desired
exceedance probability. The P-factor is varied within the interval [1, 5]. If the exceedance
probability when P-factor=1.0 is too small, i.e., lower than desired, the P-factor is var-
ied within the interval [0.5, 5]. For more details about the bisection method we refer to
[BF85].

To see the effect of increasing the P-factor we take West Shetland, total sea, 25 years
return period case as an example. For the Rosenblatt contour, the program iterates to
a P-factor equal to 2.92. For the Iso contour the program iterates to a P-factor equal to
2.15. In Figure 34 we compare the Rosenblatt contours when P-factor is equal to 1.0 and
P-factor equal to 2.92, and compare the Iso contours when the P-factor is equal to 1.0
and P-factor is equal to 2.15.
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(a) Black: Rosenblatt contour, P-factor=1.0.
Grey: Rosenblatt contour, P-factor=2.92
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(b) Black: Iso contour, P-factor=1.0. Grey:
Iso contour, P-factor=2.15

Figure 34: Effect of increasing the P-factor.

When the program has identified a P-factor giving contours with the desired exceedance
probability, we will also get an adjusted return period. This is the product of the P-factor
by the iterations and the original return period. For the Rosenblatt contours this adjusted
return period is of interest. Continuing with the same example, West Shetland, total sea,
25 years return period, we see in Figure 35 how it looks like when we get the adjusted
return period. In this case, the adjusted return period is equal to 73, i.e, 2.92 · 25 (by
rounding of the P-factor to two decimals). This means that the failure we suppose will
happen after 25 years must be calculated from a return period of 73 years. In Figure 35,
we also see how iterations of the P-factor is working.

Figure 35: Adjusted return period.

It can be of interest to compare the P-factor for the Rosenblatt contours and the P-factor
for the Iso contours. Since the Iso contours are constructed such that they are outside the
original Rosenblatt contours as explained in Subsection 2.4, we do not, in general, need
such a high P-factor value for the Iso contours as for the Rosenblatt contours.

The Monte Carlo contours do not need to be adjusted. The point is that the Monte Carlo
contours are constructed such that the exceedance probabilities stabilises at the desired
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exceedance probabilities at the very first time. Hence, we do not need the iterations of
the P-factor as we did for the Rosenblatt contours and the Iso contours.

5.2 P-factor - a deeper understanding

In this subsection we will get a deeper understanding of the P-factor and what it means.
We notice that a P-factor equal to, say 2.90, is not the same as saying that the exceedance
probability is 2.90 times higher than the desired one. If we want to compare an exceedance
probability with the desired one, we must be clear on which exceedance probability we
actually mean. What is natural is to compare the exceedance probability of a contour by
putting P-factor=1.0 with the desired exceedance probability.

Again, take the Rosenblatt contour for West Shetland, total sea, as an example. For a
return period of 25 years, we get that the Rosenblatt contour, when P-factor =1.0, has
an exceedance probability equal to 3.7888 · 10−5. Since the P-factor=1.0 we can compare
it to the desired exceedance probability, 1.3689 · 10−5:

3.7888 · 10−5

1.3689 · 10−5
= 2.77, (8)

and hence we can say that this contour has an exceedance probability which is 2.77 times
higher than the desired one.

If we iterate the P-factor such that we get a contour with the desired exceedance probabil-
ity, we get a P-factor equal to 2.91. This is a number not that different from 2.77, but it is
a difference. That is why it is not correct to say that the exceedance probability for that
contour when P-factor=1.0 is 2.91 times higher than the desired exceedance probability.

What we in fact can say is that the Rosenblatt contour which has the desired exceedance
probability and the desired return period, is evaluated from a return period which is 2.91
times as big as the return period of 25 years. That is why the program writes out an
adjusted return period which is the product of 25 and 2.91. This return period corresponds
to a contour with the desired exceedance probability. Alternatively we can say that the
Rosenblatt contour which has the desired exceedance probability is evaluated from an
exceedance probability which is equal to the desired exceedance probability divided by
2.91.

The same understanding of the P-factor applies to Iso contours as well. We start by
looking at the Iso contour when P-factor=1.0. Continuing with the same example, West
Shetland, total sea, with a return period equal to 25 years, we get an exceedance proba-
bility equal to 2.9141 · 10−5. Again, since we have P-factor=1.0 we compare this to the
desired exceedance probability, 1.3689 · 10−5 and get:

2.9141 · 10−5

1.3689 · 10−5
= 2.13,
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and hence we can say that the exceedance probability we get is 2.13 times higher than
the desired one. To get the Iso contour which has the desired exceedance probability, we
iterate the P-factor and end up with a value of 2.16 which again is little higher than 2.13.

But why is the P-factor so close to the value which is x times higher than the desired
exceedance probability? Let Rd and Pd define the desired return period and the desired
exceedance probability respectively. Then the connection between Rd and Pd is as follows:

Pd =
1

N ·Rd

.

Where N is average number of samples per year.

Equivalently we can write:

Rd =
1

N · Pd
.

As an example we choose 8 samples of data per day, as is the case for the locations West
Shetland and West of Africa. Since the average number of days per year is 365.25 due to
leap year every four year, we have that N is given by:

N = 365.25 · 8.

Assume now that we have chosen Rd = 25. We then have that:

Pd =
1

365.25 · 8 ·Rd

=
1

365.25 · 8 · 25
=

1

73050
= 1.3689 · 10−5.

Which is how we found the desired exceedance probabilities in section 3.1.

To study this further we start by constructing a Rosenblatt contour where we let P-
factor=1.0 and where the desired return period Rd = 25 years, and the desired exceedance
probability Pd = 1.3689 · 10−5. Then for West Shetland, total sea, we get a contour with
two locally concave intervals with the following estimated probabilities:

P1 = 3.1992 · 10−5,

P2 = 3.7867 · 10−5.

The exceedance probability for the Rosenblatt contour is per definition the biggest of
these probabilities, i.e P2 = 3.7867 · 10−5. We then have that:

P2

Pd
=

3.7867 · 10−5

1.3689 · 10−5
= 2.77. (9)

We see that this is the same as in (8)1, and again we say that P2 is 2.77 times higher than
the desired exceedance probability, Pd.

1Because P2 ≈ 3.7888 · 10−5. Small difference due to simulation.
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More generally, let:

P (x) = The exceedance probability for the Rosenblatt contour when P-factor = x,

R(x) = The return period for the Rosenblatt contour when P-factor = x.

The inverse problem can then be expressed as the following equation problem:

Find x such that

P (x) = Pd.

Or alternatively and equivalently:

Find x such that

R(x) = Rd.

Based on simulations we have estimated P (1) = P2 = 3.7867 · 10−5. We then get that:

R(1) =
1

N · P (1)
=

1

365.25 · 8 · 3.7867 · 10−5
= 9.04.

And since P (1)
Pd

= P2

Pd
= 2.77 from (9), the relation between the desired return period, Rd,

and the estimated return period, R(1), is naturally:

Rd

R(1)
=

25

9.04
= 2.77.

To solve this equation with respect to R(1), we then get that:

R(1) =
Rd

2.77
.

We now assume that R(x) is approximately proportional to x (i.e., with the P-factor).
This means that:

R(x) = a · x,

for an appropariate factor a. If the assumption of the proportionality is correct, we then
get that:

R(1) = a · 1 = a.

At the same time we have estimated that R(1) = 9.04 = Rd
2.77

. This means that the
constant a is equal to Rd

2.77
, and hence we get the following formula for R(x):

R(x) =
Rd

2.77
· x.

Given that this equation is correct we see that:

R(2.77) =
Rd

2.77
· 2.77 = Rd.
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Therefore it is reasonable to replace the P-factor with the value 2.77 and run simulations
again hoping that this will give the desired return period and the desired exceedance
probability. By doing this we got the following probabilities for the two locally concave
intervals:

P1 = 1.2039 · 10−5,

P2 = 1.4195 · 10−5.

This means that P (2.77) = 1.4195 · 10−5. Since:

P (2.77)

Pd
=

1.4195 · 10−5

1.3689 · 10−5
= 1.04,

we have that the exceedance probability is 1.04 times higher than the desired exceedance
probability. More exact we say that:

P (2.77) = 1.04 · Pd.

This difference comes from that the assumption that R(x) is proportional to x is not exact
but still very close.

To find the x-value (i.e., the P-factor value) which gives the desired return period and the
desired exceedance probability, we run iteration and find that P-factor= x = 2.91. This
means, as already mentioned, that the exceedance probability is not 2.91 times higher
than the desired one. The correct thing to say is that the Rosenblatt contour which
has the desired return period and the desired exceedance probability is calculated from a
return period which is 2.91 times higher than the desired return period of 25 years.

If it in contrast had been that R(x) was exactly proportional to x, the correct P-factor
value would actually been 2.77. At the same time it will still be that the exceedance
probabilty for the original Rosenblatt contour (the one we got with a P-factor value
equal to 1.0) actually is 2.77 times bigger than the desired exceedance probability. So
in this case, it would have been correct saying that the relation between the exceedance
probability to the original Rosenblatt contour and the desired exceedance probability was
equal to the correct P-factor value.

When we evaluate the Iso contour with a P-factor=1.0 for West Shetland, total sea case,
we get a contour with estimated exceedance probability P (1) = 2.9145 ·10−5. This means
that:

P (1)

Pd
=

2.9145 · 10−5

1.3689 · 10−5
= 2.13.

By changing the P-factor to 2.13 and running 5 simulations, we get the following results:

– Simulation 1: P (2.13) = 1.3669 · 10−5.

– Simulation 2: P (2.13) = 1.3861 · 10−5.
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– Simulation 3: P (2.13) = 1.3870 · 10−5.

– Simulation 4: P (2.13) = 1.3815 · 10−5.

– Simulation 5: P (2.13) = 1.4005 · 10−5.

The first value is actually approximately equal to Pd, 1.3689 · 10−5, but the other values
are some higher which indicates that we need to increase the P-factor some. We then do
5 demands with iterations and get:

– Iteration 1: P-factor=2.168.

– Iteration 2: P-factor=2.154.

– Iteration 3: P-factor=2.150.

– Iteration 4: P-factor=2.135.

– Iteration 5: P-factor=2.170.

The average value of these is 2.16, and hence bigger than 2.13.

To summarize this we have that the Iso contour for P-factor=1.0 has an exceedance
probability which is 2.13 times as big as the desired exceedance probability. The Iso
contour which has the desired return period and the desired exceedance probability, is
evaluated from a return period which is 2.16 times as high as the desired return period of
25 years.

5.3 Numerical examples

In the following examples we note that the figures will only contain the adjusted contours
for the Rosenblatt contours and the Iso contours, and the original Monte Carlo contours.
Hence, different contours for the same location and return period will have the same de-
sired exceedance probability which makes it possible to compare the contours graphically.
For every type of sea and every return period, we will first compare the adjusted Rosen-
blatt contour with the adjusted Iso contour, and then use the best of these to compare
with the Monte Carlo contour in a different plot.

Recall the desired exceedance probabilities given in section 3.1:

For West Shetland and West of Africa, the desired exceedance probability for a return
period of:

– 25 years is 1.3689 · 10−5,

– 10 years is 3.4223 · 10−5,

– 1 year is 3.4223 · 10−4.

And for Northwest of Australia, the desired exceedance probability for a return period of:

– 25 years is 4.5631 · 10−6,

– 10 years is 1.1408 · 10−5,
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– 1 year is 1.1408 · 10−4.

We will now illustrate the inverse problem by examples considering the three locations,
the three types of sea and the three different return periods as earlier in this paper.

For every location and every type of sea, we make one table for the Rosenblatt contours
and one table of the Iso contours of the P-factors we got from the iterations considering
all the return periods. For the Rosenblatt contours we also include the adjusted return
periods in the same table. The corresponding plots are shown under the tables. We
summarize the observations for every location and every type of sea after considered all
the return periods.

5.3.1 West Shetland

Total sea

Table 19: West Shetland, total sea, Rosenblatt contours.

Return period P-factor from iterations Adjusted return period

25 years 2.89 25 · 2.89 ≈ 72 years

10 years 2.77 10 · 2.77 ≈ 28 years

1 year 2.43 1 · 2.42 ≈ 2 years

Table 20: West Shetland, total sea, Iso contours.

Return period P-factor from iterations

25 years 2.17

10 years 2.11

1 year 1.99

From the tables we have the following corresponding figures:
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(a) Black: Rosenblatt contour, P-factor=2.89.
Grey: Iso contour, P-factor=2.17.
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(b) Black: Rosenblatt contour, P-factor=2.89.
Grey: Monte Carlo contour.

Figure 36: West Shetland, total sea, 25 years return period.
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(a) Black: Rosenblatt contour, P-factor=2.77.
Grey: Iso contour, P-factor=2.11.
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(b) Black: Rosenblatt contour, P-factor=2.77.
Grey: Monte Carlo contour.

Figure 37: West Shetland, total sea, 10 years return period.
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(a) Black: Rosenblatt contour, P-factor=2.43.
Grey: Iso contour, P-factor=1.99.
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(b) Black: Rosenblatt contour, P-factor=2.43.
Grey: Monte Carlo contour.

Figure 38: West Shetland, total sea, 1 year return period.

For every return period for the total sea case for West Shetland we observe that the
adjusted Rosenblatt contour is the best contour compared to the adjusted Iso contour as
is has the smallest area. When we then take the Monte Carlo contour into consideration,
and compare this with the best adjusted contour, i.e., the adjusted Rosenblatt contour in
this case, we observe that the Monte Carlo contour has the smallest area and hence is an
even better contour.

Wind sea

For West Shetland, wind sea case, we have that for the Iso contours, the exceedance
probabilities are too small, i.e., less than the desired exceedance probabilites. As explained
in Subsection 5.1, the P-factors for these contours are varied within the interval [0.5, 5].

Table 21: West Shetland, wind sea, Rosenblatt contours.

Return period P-factor from iterations Adjusted return period

25 years 2.90 25 · 2.90 ≈ 73 years

10 years 2.82 10 · 2.82 ≈ 28 years

1 year 2.77 1 · 2.77 ≈ 3 years

Table 22: West Shetland, wind sea, Iso contours.

Return period P-factor from iterations

25 years 0.77

10 years 0.79

1 year 0.85

From the tables we have the following corresponding figures:
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(a) Black: Rosenblatt contour, P-factor=2.90.
Grey: Iso contour, P-factor=0.77.
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(b) Black: Monte Carlo contour. Grey: Iso
contour, P-factor=0.77.

Figure 39: West Shetland, wind sea, 25 years return period.
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(a) Black: Rosenblatt contour, P-factor=2.82.
Grey: Iso contour, P-factor=0.79.
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(b) Black: Monte Carlo contour. Grey: Iso
contour, P-factor=0.79.

Figure 40: West Shetland, wind sea, 10 years return period.

0.00 3.50 7.00 10.50 14.00 17.50

15.00

12.00

9.00

6.00

3.00

0.00

(a) Black: Rosenblatt contour, P-factor=2.77.
Grey: Iso contour, P-factor=0.85.
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(b) Black: Monte Carlo contour. Grey: Iso
contour, P-factor=0.85.

Figure 41: West Shetland, wind sea, 1 year return period.
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For every return period for the wind sea case for West Shetland we observe that the
adjusted Iso contour is the best contour compared to the adjusted Rosenblatt contour as
it has the smallest area. When we then compare the adjusted Iso contour with the Monte
Carlo contour, we observe that the adjusted Iso contour still has the smallest area, and
hence is the best contour even when we take the Monte Carlo contour into consideration.
Still we underline that the exceedance probability for the Iso contour is evaluated only
at the locally concave regions. In this particular cases this has resulted in a contour that
has slightly higher exceedance probability in the locally convex area around the topmost
point. Unfortunately, this issue is not captured by our methodology.

Swell

Table 23: West Shetland, swell, Rosenblatt contours.

Return period P-factor from iterations Adjusted return period

25 years 2.79 25 · 2.79 ≈ 70 years

10 years 2.64 10 · 2.64 ≈ 26 years

1 year 2.30 1 · 2.30 ≈ 2 years

Table 24: West Shetland, swell, Iso contours.

Return period P-factor from iterations

25 years 2.02

10 years 1.98

1 year 1.86

From the tables we have the following corresponding figures:
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(a) Black: Rosenblatt contour, P-factor=2.79.
Grey: Iso contour, P-factor=2.02.
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(b) Black: Rosenblatt contour, P-factor=2.79.
Grey: Monte Carlo contour.

Figure 42: West Shetland, swell, 25 years return period.
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(a) Black: Rosenblatt contour, P-factor=2.64.
Grey: Iso contour, P-factor=1.98.
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(b) Black: Rosenblatt contour, P-factor=2.64.
Grey: Monte Carlo contour.

Figure 43: West Shetland, swell, 10 years return period.
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(a) Black: Rosenblatt contour, P-factor=2.30.
Grey: Iso contour, P-factor=1.86.
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(b) Black: Rosenblatt contour, P-factor=2.30.
Grey: Monte Carlo contour.

Figure 44: West Shetland, swell, 1 year return period.

For every return period for the swell case for West Shetland we observe that the adjusted
Rosenblatt contour has the smallest area compared to the adjusted Iso contour, and hence
is the best contour. Comparing this with the Monte Carlo contour we observe that the
Monte Carlo contour has even smaller area, meaning that the Monte Carlo contour is the
best contour when it is taken into consideration.
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5.3.2 West of Africa

Swell

Table 25: West of Africa, swell, Rosenblatt contours.

Return period P-factor from iterations Adjusted return period

25 years 3.62 25 · 3.62 ≈ 91 years

10 years 3.50 10 · 3.50 ≈ 35 years

1 year 3.19 1 · 3.19 ≈ 3 years

Table 26: West of Africa, swell, Iso contours.

Return period P-factor from iterations

25 years 1.33

10 years 1.35

1 year 1.40

From the tables we have the following corresponding figures:
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(a) Black: Rosenblatt contour, P-factor=3.62.
Grey: Iso contour, 1.33.
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(b) Black: Monte Carlo contour. Grey: Iso
contour, P-factor=1.33.

Figure 45: West of Africa, swell, 25 years return period.
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(a) Black: Rosenblatt contour, P-factor=3.50.
Grey: Iso contour, P-factor=1.35.
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(b) Black: Monte Carlo contour. Grey: Iso
contour, P-factor=1.35.

Figure 46: West of Africa, swell, 10 years return period.
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(a) Black: Rosenblatt contour, P-factor=3.19.
Grey: Iso contour, P-factor=1.40.
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(b) Black: Monte Carlo contour. Grey: Iso
contour, P-factor=1.40.

Figure 47: West of Africa, swell, 1 year return period.

Comparing the adjusted Rosenblatt contour with the adjusted Iso contour for every return
period in the swell case for West of Africa, it is not that clear which contour has the
smallest area. However, it might seems like the adjusted Iso contour has some smaller
area than the adjusted Rosenblatt contour by looking at the lower right corner. By
comparing the adjusted Iso contour with the Monte Carlo contour we observe that the
adjusted Iso contour still has the smallest area. Hence, the adjusted Iso contour is the
best compared to both the adjusted Rosenblatt contour and the Monte Carlo contour.
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5.3.3 Northwest of Australia

For Northwest of Australia we recall, from Subsection 3.1, the fitted parameter for the
three-parameter Weibull distribution for significant wave heights:

α β γ

Total sea 0.606 0.892 0.452
Wind sea 0.605 0.867 0.322
Swell 0.450 1.580 0.132

Note that for the total sea case and wind sea case the β-values are less than 1.0. We recall
from (7) that when h → γ+, the Iso contours, and then also the adjusted Iso contours,
are not closed in these cases. Hence, the following graphs for the adjusted Iso contours
will look some strange for values of h close to γ for the total sea case and wind sea case.

Total sea

Table 27: Northwest of Australia, total sea, Rosenblatt contours.

Return period P-factor from iterations Adjusted return period

25 years 2.77 25 · 2.77 ≈ 69 years

10 years 2.75 10 · 2.75 ≈ 28 years

1 year 2.72 1 · 2.72 ≈ 3 years

Table 28: Northwest of Australia, total sea, Iso contours.

Return period P-factor from iterations

25 years 1.23

10 years 1.24

1 year 1.34

From the tables we have the following corresponding figures:
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(a) Black: Rosenblatt contour, P-factor=2.77.
Grey: Iso contour, P-factor=1.23.
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(b) Black: Rosenblatt contour, P-factor=2.77.
Grey: Monte Carlo contour.

Figure 48: Northwest of Australia, total sea, 25 years return period.
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(a) Black: Rosenblatt contour, P-factor=2.75.
Grey: Iso contour, P-factor=1.24.
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(b) Black: Rosenblatt contour, P-factor=2.75.
Grey: Monte Carlo contour.

Figure 49: Northwest of Australia, total sea, 10 years return period.
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(a) Black: Rosenblatt contour, P-factor=2.72.
Grey: Iso contour, P-factor=1.34.
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(b) Black: Rosenblatt contour, P-factor=2.72.
Grey: Monte Carlo contour.

Figure 50: Northwest of Australia, total sea, 1 year return period.
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For every return period for Northwest of Australia, total sea case, we observe that the
adjusted Rosenblatt contour have some smaller area than the adjusted Iso contour. By
comparing this with the Monte Carlo contour we see clearly that the adjusted Rosenblatt
contour is still the best.

Wind sea

Table 29: Northwest of Australia, wind sea, Rosenblatt contours.

Return period P-factor from iterations Adjusted return period

25 years 3.26 25 · 3.26 ≈ 82 years

10 years 3.24 10 · 3.24 ≈ 32 years

1 year 3.05 1 · 3.05 ≈ 3 years

Table 30: Northwest of Australia, wind sea, Iso contours.

Return period P-factor from iterations

25 years 3.47

10 years 3.15

1 year 2.23

From the tables we have the following corresponding figures:
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(a) Black: Rosenblatt contour, P-factor=3.26.
Grey: Iso contour, P-factor=3.47.
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(b) Black: Rosenblatt contour, P-factor=3.26.
Grey: Monte Carlo contour.

Figure 51: Northwest of Australia, wind sea, 25 years return period.

59



0.00 3.50 7.00 10.50 14.00 17.50

12.50

10.00

7.50

5.00

2.50

0.00

(a) Black: Rosenblatt contour, P-factor=3.24.
Grey: Iso contour, P-factor=3.15.
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(b) Black: Rosenblatt contour, P-factor=3.24.
Grey: Monte Carlo contour.

Figure 52: Northwest of Australia, wind sea, 10 years return period.
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(a) Black: Rosenblatt contour, P-factor=3.05.
Grey: Iso contour, P-factor=2.23.

0.00 3.00 6.00 9.00 12.00 15.00

9.25

7.45

5.65

3.85

2.05

0.25

(b) Black: Rosenblatt contour, P-factor=3.05.
Grey: Monte Carlo contour.

Figure 53: Northwest of Australia, wind sea, 1 year return period.

Unfortunately, for every return period for Nortwest of Australia, wind sea case, the ad-
justed Iso contour became numerically unstable. This is due to the vertical asymptote of
the density along the line where h = γ. The instability can be seen at the lower right
corner of the Iso contours. As a result the P-factor calculations are less reliable. Anyway,
we observe that the adjusted Rosenblatt contour came out better than the adjusted Iso
contour, so we proceed with this. Comparing the adjusted Rosenblatt contour with the
Monte Carlo contour we see that the adjusted Rosenblatt contour is still the best contour.

Swell

For return periods of 25 years, 10 years and 1 year in the swell case for Northwest of
Australia, we obtain 0 locally concave intervals for the Rosenblatt contours. It turns
out that this is also the case for the Iso contour for a return period of 1 year. This
means that the method we have used to iterate P-factors giving contours with the desired
exceedance probability, will not be possible to use in these cases as we have 0 locally
concave intervals to iterate from. For return periods of 25 years and 10 years for the
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Iso contour, the exceedance probabilites happens to be way smaller than desired, and
by changing the interval which the P-factor is varied within to [0.5, 5], will not make
iterations possible by the method used earlier neither. Hence, in these cases we use an
alternative method for iterations of the P-factor without using concave intervals.

This alternative method iterates the P-factor by the exceedance probability evaluated
using the method described in Subsection 3.1. We observe that the P-factors obtianed
from this alternative iteration method in these cases are not that different from 1.0.

Table 31: Northwest of Australia, swell, Rosenblatt contours.

Return period P-factor from iterations Adjusted return period

25 years 1.50 25 · 1.50 ≈ 38 years

10 years 1.48 10 · 1.48 ≈ 15 years

1 year 1.40 1 · 1.40 ≈ 1 years

Table 32: Northwest of Australia, swell, Iso contours.

Return period P-factor from iterations

25 years 1.15

10 years 1.14

1 year 1.13

From the tables we have the following corresponding figures:
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(a) Black: Rosenblatt contour, P-factor=1.50.
Grey: Iso contour, P-factor=1.15.
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(b) Black: Rosenblatt contour, P-factor=1.50.
Grey: Monte Carlo contour.

Figure 54: Northwest of Australia, swell, 25 years return period.
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(a) Black: Rosenblatt contour, P-factor=1.48.
Grey: Iso contour, P-factor=1.14.
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(b) Black: Rosenblatt contour, P-factor=1.48.
Grey: Monte Carlo contour.

Figure 55: Northwest of Australia, swell, 10 years return period.
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(a) Black: Rosenblatt contour, P-factor=1.40.
Grey: Iso contour, P-factor=1.13.
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(b) Black: Rosenblatt contour, P-factor=1.40.
Grey: Monte Carlo contour.

Figure 56: Northwest of Australia, swell, 1 year return period.

For every return period in the swell case for Northwest of Australia we have that the
adjusted Rosenblatt contour is the best compared to the adjusted Iso contour. As we
take the Monte Carlo contour into consideration we observe that this will be an even
better contour.

In general, since the Iso contours in this paper are constructed such they are outside the
corresponding Rosenblatt contour, we will think that the Rosenblatt contours will have
the smallest area and hence are the best contours. However, summarizing the examples
above, after adjusting the contours we found that this was not true in all cases. That
is, the adjusted Iso contours were better than the adjusted Rosenblatt contours for West
Shetland in the wind sea case, and West of Africa in the swell case.

When we in addtion to the adjusted contours included the Monte Carlo contours, we
would think that this would be the best contours as these contours generally has the
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desired properties. We found that this was not true in all cases neither. As we took the
Monte Carlo contours into consideration, the Monte Carlo contours were only the best
contours for West Shetland in the total sea case, and in the swell case, and for Northwest
of Australia in the swell case.

If we summarize the best contours when all of them is taken into consideration we have
that:

– The adjusted Rosenblatt contours are best for the cases: Northwest of Australia,
total sea and wind sea.

– The adjusted Iso contours are best for the cases: West Shetland, wind sea, and West
of Africa, swell.

– The Monte Carlo contours are best for the cases: West Shetland, total sea and swell,
and Northwest of Australia, swell.

Hence, this is something to keep in mind when constructing skip designs in these areas.

When it comes to the P-factors from iterations, we had, as expected, that the P-factors for
the Rosenblatt contours were higher than the corresponding P-factors for the Iso contours.
The exception was for Northwest of Australia in the wind sea case for a return period
of 25 years. What we also observe is that the P-factors for the Rosenblatt contours are
decreasing for lower return periods. We would then think that this would also be true
for the Iso contours. It turned out that the Iso contours in fact was increasing for lower
return periods for West Shetland in the wind sea case, West of Africa in the swell case,
and Northwest of Australia in the total sea case. However, we will not, in this paper, go
into details of why it became so.
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6 CONCLUSIONS
In the present paper we have introduced a precise definition of the exceedence probability
of a given environmental contour with respect to a family of failure regions. We believe
that this concept is needed in order to evaluate the probabilistic properties of a given
contour. Throughout the numerical examples we have seen that the traditional approach
based on the Rosenblatt transformation can produce a contour with an exceedence prob-
ability which is higher than desired. The alternative approach based on Monte Carlo
simulation, however, is constructed so that the exceedence probability is always equal
to the desired exceedance probability. On the other hand the contour based on Monte
Carlo simulation can sometimes be too conservative and include areas with very low prob-
ability when the joint distribution of the environmental variables are concentrated in a
non-convex region.

For Monte Carlo simulations we showed techniques for how to identify the boundary of
the set B, i.e., ∂B using estimates of C(θ) and estimates of its derivative. We explained
an importance sampling method which only focuses on the estimation on the area of
interest. This reduces the number of simulation which might be large when Pe is very
small. Avoiding small irregularitites on the estimated contour from the suggested Monte
Carlo method, we used the boundary of the convex hull of all estimated points along the
contour instead of the original polygon, resulting in smoother contours.

As the Rosenblatt contours can sometimes be overly conservative in some areas, it was
interesting to also include a third type of environmental contours, the Iso contours. We
then had three types of environmental contours to compare; the Rosenblatt contours,
the Monte carlo contours and the Iso contours. For the Rosenblatt contours and the
Iso contours we used P-factors from itereation to adjust the contours such that they got
the desired exceedance probability. Hence, when all the contours had the same desired
exceedance probability, we were able to compare them graphically and could find which
contour had the lowest area and hence was the best. Knowing that the contour with the
lowest area is the best makes it easier to choose the best contour for the given application.
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