
Hybrid CPU-GPU computing for
simulating calcium handling in the
heart

Altanaite Neringa
Master’s Thesis, Spring 2017

This master’s thesis is submitted under the master’s programme Computational
Science and Engineering, with programme option Computational Science, at the
Department of Mathematics, University of Oslo. The scope of the thesis is 60
credits.

The front page depicts a section of the root system of the exceptional Lie group E8,
projected into the plane. Lie groups were invented by the Norwegian mathematician
Sophus Lie (1842–1899) to express symmetries in differential equations and today
they play a central role in various parts of mathematics.

Abstract

Calcium plays a vital role in the normal functioning of a healthy human heart.
Any disturbances in calcium handling can alter the excitation-contraction cou-
pling and cellular properties, which lead to cardiac arrhythmias. Models of
the electrophysiology and calcium handling in a cell can help in understand-
ing the mechanisms of arrhythmias. Realistic simulations of the cellular and
subcellular processes require a lot of computational power.

The aim of this thesis is to investigate the heterogeneous CPU-GPU com-
puting as an approach to increase the performance of a realistic 3D Tissue-Scale
simulator. We study a multiscale cardiac ventricular myocyte model which re-
produces local calcium release processes and electrical activity. The cardiac
cell model consists of 10000 calcium release units which contain 100 ryanodine
receptors and 15 L-type calcium channels.

The most time consuming dyad-level computations are implemented on
GPU using CUDA API. In order to achieve high efficiency of the simulator,
we apply several optimizations to the code. Due to a large number of load
and store operations, it is important to have a fast access to the memory. The
completely optimized implementation demonstrates a significant speedup of
the simulation. Numerical experiments showed that in order to fully utilize a
single GPU, multiple cells must be involved in the computation.

Due to a large number of cells required for the realistic simulation, we
implement the 3D Tissue-Scale simulator on multiple GPUs. Simulations of
multiple cardiac cells are performed using multiple compute nodes equipped
with two GPUs each. A good scalability was indicated by weak and strong
scaling tests.

Scientific experiments demonstrated that physiological processes in a cell
are correctly reproduced using the computational cell model. Thus, we are
able to simulate arrhythmogenic patterns which arise from disturbances in
calcium handling. This provides a possibility to understand the cause of cardiac
ventricular arrhythmias and develop the preventive mechanisms.

1

Acknowledgements

First and foremost I would like to thank my supervisor, Johannes Langguth.
Without your guidance and constant feedback this thesis would not have been
completed or written. Your constructive comments and suggestions were an
enormous help to me.

I would like to express my gratitude to my main supervisor, Professor Xing
Cai, for advices and insightful comments. I would also like to thank Geir
Kleivstul Pedersen, for being my internal supervisor.

I would like to express the deepest appreciation to Namit Gaur for numerous
helpful e-mail correspondences.

Special thanks to the friendly and cheerful group of fellow students from
Simula Research Labaratory. I want to thank the High Performance Com-
puting group, which has provided an excellent working environment. I would
particularly like to thank Jeremie Lagraviere who has been very supportive
during my master thesis.

Finally, I thank my parents for supporting and encouraging me throughout
all my studies at the University.

2

Contents

Contents 3

1 Introduction 5
1.1 Motivation . 5
1.2 Previous work . 6
1.3 Thesis outline . 6

2 Physiological background. The overview of mathematical
and numerical methods 8
2.1 Physiologically detailed cell modelling 9
2.2 Mathematical modelling of dyadic calcium concentrations . . . 11
2.3 Mathematical modelling of calcium concentrations per cell . . . 13
2.4 Mathematical modelling of cardiac action potential 14
2.5 Numerical modelling . 14
2.6 Summary . 16

3 Background and overview of heterogeneous computing 17
3.1 Heterogeneous computing . 17
3.2 Graphics Processing Unit . 18
3.3 A platform for heterogeneous computing 18
3.4 Overview of the NVIDIA KEPLER GK 110 architecture 21
3.5 Hardware . 22
3.6 Message Passing Interface . 22
3.7 Performance metrics . 23
3.8 A brief introduction to the Roofline model 25
3.9 Summary . 26

4 Modelling a cardiac simulator on a hybrid CPU-GPU cluster 27
4.1 Computation distribution between CPU and GPU 27
4.2 Basic approach: a single cardiac cell 28
4.3 Multiple cells . 29
4.4 Thread configuration . 32
4.5 Tissue-Level parallelization . 34
4.6 Evaluation of the correctness of the implementation 36
4.7 Summary . 36

5 Implementation and optimization of the dyad-level compu-
tations on GPU 37
5.1 Common optimization techniques 37

3

5.2 Implementation of the reduction kernel 41
5.3 Stencil computation on the dyad level 44
5.4 L-type channel simulation . 49
5.5 RyR probability calculation . 50
5.6 RyR opening computation . 51
5.7 Ca concentration computation 51
5.8 Summary . 53

6 Experimental results and evaluation 54
6.1 Experimental setup . 54
6.2 Comparing results from different reduction implementations . . 55
6.3 Results of different implementations of the diffusion computation 57
6.4 L-type channel simulation . 61
6.5 RyR probability calculation . 62
6.6 RyR opening computation . 63
6.7 Ca concentration computation 64
6.8 Optimization impact on the distinct functions 65
6.9 Cell computation speed on a single GPU 67
6.10 Scaling experiments, results and analysis 68
6.11 Summary . 69

7 Cardiac simulations 70
7.1 Conduction velocity . 70
7.2 A possible defibrillation strategy that targets RyR openings . . 75

8 Discussion and Conclusion 80
8.1 Discussion . 80
8.2 Conclusion . 82

List of Tables 83

List of Figures 84

Bibliography 85

4

Chapter 1

Introduction

1.1 Motivation

Today, heart diseases are one of the most common causes of death. In 2013, one
in nine deaths in the United States was caused by a heart failure [35]. In the
recent years, a lot of research has been done to understand the cause of heart
diseases. The research requires a closer look into the physiology of the heart
and better understanding of the relation between the pathological condition
and the myocyte at microscopic and nanoscopic levels.

Calcium is an essential component for the normal functioning of the healthy
human heart. It is believed that calcium handling dysfunctions can implicate
cardiac pathological conditions. Divergence in calcium release processes, var-
ious mutations in calcium buffering and changes in calcium interaction with
ryanodine receptors (RyRs) are involved in cardiac arrhythmias [18, 26]. Any
structural changes in the dyadic properties can affect the excitation-contraction
coupling.

At present, it is ambitious to study microscopic processes in subcellular
compartments and understand the relation between the processes in the sub-
cellular level and the whole-cell using experimental approaches. However, the
development in computing technologies and advances in numerical methods
made it possible to study these phenomena through computer modelling. The
advanced stochastic models of the cardiac cell, which integrate calcium release
processes in the dyadic spaces and electrophysiology of a cell, were developed to
study the dyadic dysfunctions and membrane potential abnormalities [22, 38].
This study can help to understand the cause of various cardiac pathological
conditions and develop preventive mechanisms.

Due to the large computational demands, it is challenging to perform tis-
sue scale cardiac simulations. A human heart has around 2 × 109 cells [1].
Each cell has about 106 RyRs and 105 L-type calcium channels that are dis-
tributed among 104 calcium release units. Recently, realistic simulations with
detailed cell models of calcium handling at the tissue or organ level started to
become computationally achievable due to the increased computational power
of supercomputers.

Supercomputing or High Performance Computing (HPC) is the use of paral-
lel processing techniques and supercomputers for solving large and demanding
computational problems [48]. Over the years the number of processors in su-

5

percomputers increased from a few to thousands, which increased the capacity
of supercomputing [8]. This made it possible to perform large-scale scientific
and engineering applications in a reasonable amount of time.

As the Graphic Processing Unit (GPU) turned into a more powerful, pro-
grammable and highly parallel unit [43], it became an important component
in HPC systems and the most prominent type of hardware accelerator. Many
supercomputers consist of multicore CPUs and manycore accelerators, such as
GPU. The high computational throughput and high parallelism made GPUs
suitable for general purpose computing. Researches adopted GPU for diverse
range of scientific applications [21].

Due to their massive parallelism, tissue-level simulations can take advantage
of hardware accelerators. The detailed 3D Tissue-Scale model of electrical
activity and calcium handling in the human cardiac ventricle was implemented
on CPU [30] and later accelerated using heterogeneous computing [31, 32].

Motivated by the computational power of the GPU, we present a method to
enable massive parallel simulations of a calcium circulation on the dyad-level on
GPUs. Our aim is to implement the 3D Tissue-Scale model of calcium handling
and electrical activity in the human cardiac ventricle on heterogeneous clusters
that consist of multicore CPUs and manycore GPUs. Furthermore, we seek
to show the scientific goals of the simulator by carrying out physiologically
realistic simulations.

1.2 Previous work

This thesis is a part of the Tissue-Scale 3D cardiac simulations project that has
been developed by High Performance Computing researches at Simula research
laboratory. The model and computations are based on previous work described
in [22, 30, 31] and [32]. In [30] a detailed human cardiac cell model [22] along
with the parallel simulator was implemented on the Abel supercomputer [42].
Numerical experiments showed that various physiological behaviours are cor-
rectly reproduced using this model. In [31] the same model was implemented
using a CPU-Xeon Phi heterogeneous design. Due to the various optimiza-
tions, described in the aforementioned studies, it became possible to perform
a large scale simulations in a reasonable time. In [32] the optimizations were
made using SIMD code vectorization and combination of OpenMP and MPI
programming. Preliminary experiments have shown that GPUs can provide
better performance than CPUs, which is why the main focus of this thesis is
GPU implementation.

1.3 Thesis outline

The main part of this thesis is directed to the implementation and analysis
of the 3D Tissue-Scale simulator and the rest of the thesis consists of the
scientific experiments, verification and validation of the model. The structure
of the thesis is as follow:

Chapter 2 describes a physiologically detailed cardiac cell model and intro-
duces the most important definitions of cell physiology. Further, it presents
mathematical models of the processes in a cell, and introduces numerical and
stochastic methods to solve them.

6

Chapter 3 presents the background of the heterogeneous computing with
focus on the GPU architecture and programming platform, which is used for the
implementation of the simulator. In addition, it introduces important concepts
about the CUDA application programming interface (API) and metrics for the
performance measurements.

Chapter 4 focuses on the development of the simulator and computation
distribution. The process of the development of the simulator consists of three
stages: (1) the cell model implementation and optimization on a single GPU,
(2) multiple cells implementation and optimization on a single GPU, and (3)
multiple cells implementation on multiple GPUs. Furthermore, this chapter
describes the structure which is used for the communication between different
cell domains.

Chapter 5 introduces various optimization techniques and algorithms, which
is used to achieve better performance. In this chapter the implementation of
each execution kernel function is described separately.

Chapter 6 contains presentation and analysis of the results obtained due to
the optimizations of separate CUDA execution kernel functions. Performance
measurements collected running the implementation on the supercomputer are
reported.

Chapter 7 focuses on the scientific application of the tissue simulator. In
this chapter cell model is verified, tested and results are compared with the
published model of a human cell.

Chapter 8 concludes the thesis by discussing the achieved performance and
results from the scientific simulations. Further it presents future prospects
of porting implementation to more recent hardware accelerators and possible
improvements of the implementation.

7

Chapter 2

Physiological background. The
overview of mathematical and
numerical methods

The human heart is a muscular organ with rhythmic electrical activity and
mechanical muscle contraction. The electrical and mechanical coupling gener-
ates a heartbeat. A cardiac muscle is formed of cardiomyocytes that have the
ability to contract after being stimulated by a spontaneous electrical impulse
called action potential. This impulse causes depolarization and contraction
of atria and ventricles. In the cardiac ventricle when a cellular membrane is
depolarized by an action potential, L-type channels open, and calcium enters
the dyadic space from extracellular space and activates a large calcium inflow
from RyRs. This calcium-inducted calcium release is known as a Ca spark.
It results in increasing amount of calcium across the cell, which is important
for the contraction of the heart muscle [5]. Calcium flow from RyRs can also
occur spontaneously without influx from voltage-gated channels. Closing of
the L-type calcium channels and decreasing generation of calcium leads to the
repolarization of the cardiac myocyte membrane, in other words voltage be-
comes negative as before the depolarization. Further, the cardiac myocyte cell
membrane repolarizes to resting membrane potential. In the healthy heart,
each electrical activity is followed by the contraction. Any abnormalities of
initiation and conduction of electrical activity can lead to a heart failure [49].

A realistic simulation of a human heart tissue requires the precise replication
of all the intracellular and intercellular processes including the electrophysiol-
ogy of the heart. Modeling a cardiac cell is a challenging task because of its
complex structure. However, due to the development in technology, the under-
standing of the cardiac cell processes and their properties has increased in the
last decades. Models of cardiac cells of different species on different levels of
detail have been developed to understand the cause of various heart diseases.
The computational cardiac models range from a single cardiac myocyte [38] to
ventricles [51] and the whole heart [50].

The model [22] that we chose in this study is an extended model of calcium
cycling that includes sarcolemmal ionic currents, pumps and exchangers. At
the local calcium release level, the model reproduces calcium spark properties,
while at the whole-cell level it reproduces an action potential, calcium currents
and calcium transients.

8

Figure 2.1: [22] A ventricular myocyte model that shows composition and
communication of dyads. Calcium diffusion between dyads occurs in the dyadic
space and NSR. White arrows represent interaction between L-type channels
and RyRs. Each dyad contains five compartments with corresponding calcium
buffers. Thin arrows indicate currents that affect membrane potential.

2.1 Physiologically detailed cell modelling

Detailed simulations of calcium handling in a human heart require a complex
computational cell model that reflects calcium handling in a cardiac myocyte
not only on the cell level, but also on the local calcium release level. The
cardiac cell model that is used in this thesis is adopted from [30, 31, 32]. It
uses the O’Hara-Rudy (ORd) model [41] to reproduce the cardiac ventricular
action potential of a healthy human heart. Moreover, it applies a stochastic
multiscale calcium cycling model [22] that replicates calcium release processes
at the dyadic and the whole-cell level.

The multiscale cell model is shown in Figure 2.1. The cell model consists
of 10000 calcium release units or dyads arranged as a 3D grid. Calcium release
units are coupled by diffusion. Interaction between them occurs in a dyadic
space and network sarcoplasmic reticulum (NSR). Diffusive calcium fluxes ap-
pear between myoplasm and the submembrane space in a dyad. Membrane
currents, pumps, and exchangers that are calcium dependent perceive local
calcium concentrations in their partition.

9

Figure 2.2: [22] Interaction between L-type calcium channels and RyRs in
a dyad. L-type channels are voltage dependent calcium channels positioned
along t-tubules. RyRs are calcium-induced channels with four states which are
regulated by CSQN calcium buffer. JSR is the domain of CSQN distribution.
Ca inflow from the RyR channels can occur spontaneously or can be activated
by Ca influx from L-type channels into the dyadic space. JSR is the domain
of CSQN distribution.

Dyad model

It is assumed that calcium release units are organized as a 100× 10× 10 grid.
Each dyad contains five calcium distribution compartments: myoplasm, sub-
membrane space, dyadic space, network sarcoplasmic reticulum and junctional
sarcoplasmic reticulum (JSR). Calcium concentration is assumed to be uniform
in each of them. Calcium release occurs in the dyadic space, which consists of
15 L-type calcium channels (LCCs) and 100 RyRs. Figure 2.2 shows calcium
release in the dyadic space. Calcium signals operate between RyRs and L-type
channels that are positioned in the t-tubules [20]. Calcium inflow from the RyR
channels can occur spontaneously or can be activated by calcium influx from
L-type calcium channels into the dyadic space [5, 19]. In a healthy cardiac
ventricular myocyte membrane depolarization causes a synchronous calcium
release.

10

Figure 2.3: Possible transitions between four RyR states. The arrows indicate
the direction of transitions with the probability shown in the labels on the
arrows. The probability is related to the local calcium concentration.

RyRs model

The model of RyRs consists of four states and two tiers of modal gating. The
lower tier is the refractory tier, and the upper tier is the activation tier. The
model of possible transitions between states of RyR is shown in Figure 2.3. Here
C1, C2, C3, and O1 are the four states that an RyR can have. The channel is
open and calcium is released from the channel during the state O1. Each RyR
can be in one of the four states at the time. The probability of the transition
from one state to another is related to the local calcium concentration.

2.2 Mathematical modelling of dyadic calcium
concentrations

The increasing level of knowledge of the processes in a cell contributes to the
development of more accurate and complex mathematical models that are able
to represent calcium handing at different cell levels. In the computational
model [22] that we are using, calcium concentration in a dyad are modelled as
ordinary and partial differential equations. Ca represents the global calcium
concentration in a cell and ca represents concentration in a dyad. Calcium
fluxes from one space to another in a dyad are shown in Figure 2.1.

11

Calcium concentration in the dyadic space

cads = (Jrel + Jlca +
cass

τeflflux
)× τefflux (2.1)

Cads = (Jrel + Jlca +
Cass
τeflflux

)× τefflux (2.2)

A subscript ds denotes dyadic space. Jrel and Jlca are the calcium release
through RyRs and L-type calcium channels respectively. τeflflux is a diffusion
constant between the dyadic space and the submembrane space.

Ca concentration in the submembrane space

dcass
dt

= Bss(JNCX + Jdiff−myo−ss + Jdiff−ds−ss) (2.3)

∂Cass
∂t

= Bss(JNCX + Jdiff−myo−ss + Jdiff−ds−ss

+DCa
∂2Cass
∂x2

+DCa
∂2Cass
∂y2

+DCa
∂2Cass
∂z2

)

(2.4)

Subscript ss denotes submembrane space. JNCX is the calcium flux through
the Na-Ca exchange current into the submembarane space. Jdiff−myo−ss is
the diffusive flux between myoplasm and submembrane space. Jdiff−ds−ss is
the diffusive flux between dyadic and submembrane space. Bss is a buffering
factor, that includes both BSR and BSL buffers. Equation 2.4 includes a dif-
fusion part which corresponds to an inner-dyad coupling.

Calcium concentration in the JSR
dcaJSR

dt
= BJSR(Jrel + Jdiff−NSR−JSR) (2.5)

dCaJSR

dt
= BJSR(Jrel + Jdiff−NSR−JSR) (2.6)

Jdiff−NSR−JSR is the diffusive flux between NSR and JSR. BJSR is the buffer-
ing factor by calsequenstrin (CSQN).

Calcium concentration in the NSR
dcaNSR

dt
= Jup − Jleak − Jdiff−NSR−JSR (2.7)

∂CaNSR

∂t
= Jup − Jleak − Jdiff−NSR−JSR

+DSR
∂2CaNSR

∂x2
+DSR

∂2CaNSR

∂y2
+DSR

∂2CaNSR

∂z2

(2.8)

Jup is the uptake Ca flux into NSR from myoplasm. Jleak is the leak flux from
NSR into the myoplasm. Jdiff−NSR−JSR is the diffusive flux between NSR
and JSR. Equation 2.8 includes the inner-dyad coupling.

Calcium concentration in the Myoplasm

dcamyo

dt
= Bmyo(Jcab + Jpca + JNCX − Jup + Jleak − Jdiff−myo−ss) (2.9)

12

∂Camyo

∂t
= Bmyo(Jcab + Jpca + JNCX − Jup + Jleak − Jdiff−myo−ss

+DCa
∂2Camyo

∂x2
+DCa

∂2Camyo

∂y2
+DCa

∂2Camyo

∂z2
)

(2.10)

Jcab is the flux through the background calcium current. Jpca is the flux
through the sarcolemmal calcium pump. JNCX is the calcium flux through
the Na-Ca exchange current. Jdiff−myo−ss is the diffusive flux between my-
oplasm and submembrane space. Bmyo is the instantaneous buffering factor in
myoplasm by calmodulin (CMDN) and troponin (TRPN). Jup and Jleak were
defined in Equation (2.7) and Equation (2.8).

2.3 Mathematical modelling of calcium concentrations
per cell

In order to get the calcium concentration value that represents the correspond-
ing concentration of a particular cell, the average of dyadic concentrations must
be calculated. In each calcium compartment we sum up the calcium concen-
tration across dyads in the cell and divide the result by the number of calcium
release units in the cell.

Calcium concentration in the dyadic space

Cacellds =

N∑
n=1

cands

N
(2.11)

Ca concentration in the submembrane space

Cacellss =

N∑
n=1

canss

N
(2.12)

Calcium concentration in the JSR

CacellJSR =

N∑
n=1

canJSR

N
(2.13)

Calcium concentration in the NSR

CacellNSR =

N∑
n=1

canNSR

N
(2.14)

Calcium concentration in the Myoplasm

Cacellmyo =

N∑
n=1

canmyo

N
(2.15)

Here, subscripts ds, ss, JSR, NSR and myo denote the five compartments of a
dyad. Index n represents a specific dyad. The number of dyads ranges from
n = 1 to n = N , where N is the total number of dyads.

13

2.4 Mathematical modelling of cardiac action potential

Cardiac cells are excitable, which means that they have the ability to trigger
an action potential in the neighbouring cells. Movements of ions across the
cell membrane produces an action potential which causes depolarization or
repolarization of the membrane. The action potential propagates through the
cardiac cells, which leads to the contraction of the whole heart muscle.

In the computational cell model that we use in this study, tissue-scale elec-
trical activity is modelled mathematically as a reaction-diffusion equation called
monodomain model. This is a simplification of a more accurate binomial mod-
eling assuming that conductivity in extracellular space is proportional to con-
ductivity in the intracellular space.

∂Vm
∂t

=
−Iion
Cm

+Dx
∂2Vm
∂x2

+Dy
∂2Vm
∂y2

+Dz
∂2Vm
∂z2

. (2.16)

Here Vm is the membrane potential and Iion is the algebraic sum of all the
currents provided by the underlying multiscale cell model of calcium handling
described above. Cm is the membrane capacitance of the cell and it is defined as
Cm = 1µFcm−2, Dx, Dy, Dz are the voltage diffusion coefficients in x, y and z-
dimensions respectively and they are defined as Dx = Dy = Dz = 0.2mm2/ms.
The solution domain is modeled as a 3D uniform grid made of cardiac cells.

2.5 Numerical modelling

Due to the increasing computational power of today’s supercomputers, the
most complex mathematical models can be solved numerically. In the previous
sections, we have presented the real-world problem - calcium handling in a
human heart, and described the mathematical model of the problem. In this
section, we present numerical methods used to solve the equations and perform
simulations.

Finite difference method

To solve differential equations (2.3)-(2.10) we use the finite difference method.
Since in the tissue model dyads are represented as a 3D grid, we only need
to discretize the temporal domain [0, T], where T denotes the total time. The
whole domain [0, X]× [0, Y]× [0, Z]× [0, T], where X, Y and Z denotes number
of dyads in all three spatial dimensions, is represented as a set of uniform mesh
points:

xi = i∆x, for i = 0, . . . , Nx, where xNx = X,

yj = j∆y, for j = 0, . . . , Ny, where yNy = Y,

zk = k∆z, for k = 0, . . . , Nz, where zNz = Z,

tn = n∆t, for n = 0, . . . , Nt, where tNt = T.

(2.17)

The differential equations are fulfilled at the interior mesh points only; the
boundary points need to be handled separately. To solve the equations in our
model using the finite difference method, we need to replace all derivatives with
finite differences. The first order derivatives are replaced by forward differences,

14

while the second order derivatives are replaced with centered finite differences.
Equation (2.18) and Equation (2.19) are examples of forward difference and
centered difference approximations applied to time derivatives.

u′(tn) ≈ un+1 − un

∆t
(2.18)

u′′(tn) ≈ un+1 − 2un + un−1

(∆t)2
(2.19)

Equations (2.20)-(2.21) show an examples of the finite difference method ap-
plied to the calcium concentration in the submembrane space presented in
Equation (2.3) and Equation (2.4). Other calcium concentration equations are
handled in the similar way.

can+1
ss = canss + ∆tBss(JNCX + Jdiff−myo−ss + Jdiff−ds−ss). (2.20)

Can+1
ssi,j,k

= Canssi,j,k + ∆tBss(JNCX + Jdiff−myo−ss + Jdiff−ds−ss

+
Canssi−1,j,k

− 2Canssi,j,k + Canssi+1,j,k

∆x2

+
Canssi,j−1,k

− 2Canssi,j,k + Canssi,j+1,k

∆y2

+
Canssi,j,k−1

− 2Canssi,j,k + Canssi,j,k+1

∆z2
).

for 0 < i < xNx, 0 < j < yNy, 0 < k < zNz, 0 ≤ n < T.

(2.21)

The boundary conditions are treated in the same manner for all the calcium
concentration equations:

For i = 0 i− 1 = i+ 1, for i = Nx i+ 1 = i− 1.

For j = 0 j − 1 = j + 1, for j = Ny j + 1 = j − 1.

For k = 0 k − 1 = k + 1, for k = Nz k + 1 = k − 1.

(2.22)

Operator-splitting approach

To solve the monodomain equation (2.16) we use an operator-splitting approach
[44]. This advanced algorithm is used for solving partial differential equations
in cardiac conduction and it speeds up computation without loosing accuracy.
This approach introduces two operators: one for the diffusion part and another
for the non-diffusion part, and applies them on each of the corresponding parts
separately. In our model Equation (2.16) is split into two parts: the diffusion
part, which is solved using the finite difference method and the Iion part which
is computed by solving the cell model.

Stochastic methods

The states of L-type calcium release channels and RyRs in a dyad fluctuate
stochastically, thus the stochastic method is needed to represent the state of
calcium channels numerically. Since L-type calcium channels and RyRs are
handled similarly, in this section we focus on the simulation of RyR state tran-
sitions. Recall that each dyad contains 100 RyRs, which can be in one of four

15

possible states (Figure 2.3). In [30] it is shown that the most efficient way of
obtaining the number of RyRs that changed state in the current time step is
to take two samples from binomial distributions for each of the four states,
more precisely, one sample for each direction of the transition. In this thesis
we apply the binomial distribution sampling method presented in [31].

The binomial cumulative distribution function is defined as follows:

F (k, n, p) = Pr(X ≤ k) =

k∑
i=1

(
n

k

)
pk(1− p)n−k,

where
(
n

k

)
=

n!

k!(n− k)!
.

(2.23)

In Equation (2.23), k is the number of successes in n trials with the individual
probability of success p. We pick a random number r from a uniform distribu-
tion in the interval [0,1], then we find the smallest number k such that

r ≤ F (k, n, p)

We obtain the number of RyRs in each state by sampling from binomial dis-
tributions. Let xi be the number of RyRs in the state i and kij the number of
RyRs transitioning from the state i to the state j. First we take one sample
from binomial distribution B(n, p) with n = xi and p = pij to compute the
number of RyRs transitioning from state i to state j. Then, we take another
sample to compute the number of RyRs transitioning from state i to state l.
Because only one of these transitions can happen, we have n = xi − kij and
p = pil/(1−pij). To obtain the final number of RyRs in the next time step, we
add the RyRs that transitioned from the neighbour states as shown in Equation
2.24. If no transition happens, the RyR remains in its original state.

xt+1
i = xti − ktij − ktil + ktji + knli (2.24)

Moreover, in [31] the optimized implementation of the binomial distribution
sampling function was described. The distribution function is computed iter-
atively by subtracting from random number r. The computation stops when
the smallest k satisfying the condition r ≤ F (k, n, p) is found.

2.6 Summary

To understand how modifications of calcium release can affect the human heart,
we need to look at the multiscale model of cardiac myocytes. In this chapter
we have presented a model that reproduces calcium handling in the cell on
the dyad-level and action potential on the cell-level. The L-type channels and
RyRs are of principal interest due to effect of calcium release on the action
potential. Moreover, we described mathematical models of calcium concentra-
tions in dyad compartments, inter-dyad couplings and the reaction-diffusion
equation for the action potential computation. Numerical methods such as the
finite difference method and operator-splitting approach were introduced as so-
lutions to mathematical equations. Sampling from binomial distribution allows
us to simulate the opening of L-type calcium channels and RyRs stochastically.

16

Chapter 3

Background and overview of
heterogeneous computing

In the previous chapter we introduced the cardiac cell model of electrophysi-
ology and calcium handling. Moreover, we presented numerical and stochastic
approaches that allow us to perform cardiac simulations. Now we will intro-
duce the specific hardware that is suitable for our implementation due to the
large computational requirements, substantial parallelism and importance of
the throughput. In this thesis we seek to utilize a hybrid CPU-GPU system,
which is well-suited for the large and complex computations. Since our appli-
cation contains data-parallel computation-intensive tasks, most of the compu-
tation is performed on GPU, whose description constitutes the main part of
this chapter.

3.1 Heterogeneous computing

Heterogeneous computing [28] uses different processor architectures to execute
an application by dividing it into tasks and assigning each task to the most
suitable architecture. Until recently, computers consisted only of the central
processing units (CPUs), which allow to perform general tasks. Over the last
decade, High Performance Computing became oriented toward heterogeneous
systems by including other processing units, such as GPUs, to their systems.
A typical heterogeneous compute node consists of multicore CPU sockets and
GPUs, both of them are discrete units connected by the PCI-Express bus,
and it is widely used for scientific computing [2, 4]. GPU is designed for the
applications with large parallel computation requirements and focus on the
throughput [43], while CPU has its advantages on applications with a low level
of parallelism, small data size and control intensive tasks. Thus, to utilize
the computational power of the hybrid CPU-GPU system, the tasks should
be divided and assigned to the processors according to their computational
requirements.

17

3.2 Graphics Processing Unit

The first GPUs were designed as a fixed-function processors, built around the
graphics pipeline. Over the years, the demand for more powerful and complex
graphics increased, which yielded enhanced focus on the programmable parts of
the pipeline. As a result, the GPU has evolved into a powerful programmable
processor by changing its architecture from being pipelined task-parallel to
being a singe unified data-parallel programmable unit [43].

Despite the fact that general-purpose computing on graphics processing
units (GPGPU) is not related to graphics, applications still needed to be struc-
tured in terms of the pipeline. As a solution, the high level interfaces such as
CUDA [11], which provides direct non-graphic interface to the hardware, were
introduced. Most importantly, this programming model supports the hybrid
CPU-GPU computing.

3.3 A platform for heterogeneous computing

CUDA is a parallel computing platform for GPGPU computing developed by
NVIDIA. It uses a small set of extensions to the C programming language. A
heterogeneous environment consists of host - the CPU and its memory, and
device - the GPU and its memory. Both of them operate independently for
most of the operations. The application is initialized on the host, which is
responsible for the setup of the environment and managing the data before
transferring it to the device. A function, which is performed on the device
is called execution kernel, and it is specified and launched by the host. The
code inside the kernel function is expressed as a sequential program, which is
executed by a large number of threads generated during the kernel initiation.
After the kernel launch, the control is returned immediately to the host, which
allows the additional work to be performed on the CPU, while the parallel code
is running on the GPU. When the computation on the device is completed, the
results can be copied back to the host memory.

A function that is executed and launched only by the device is defined
by a special qualifier __device__. An execution kernel is defined by using
__global__ declaration specification, and it is launched by specifying execu-
tion configuration inside the triple-angle-brackets <<< grid, block >>>. The
first parameter inside the brackets defines the number of blocks in a grid. The
second parameter defines the number of threads in a block. A grid contains all
threads generated by a single kernel launch. The grid is composed of blocks of
threads. All threads in a block can access the same local shared memory and
can be synchronized. Threads from different blocks cannot cooperate. Each
block and each thread within a block has its unique ID, which can be accessed
by the build-in variables threadIdx and blockIdx. In CUDA threads and blocks
are organized in three dimensions, and the size of dimensions can be accessed
by the build-in variables gridDim and blockDim. The global thread ID for a
one-dimensional grid can be computed as

thread_idx = blockDim.x× blockIdx.x+ threadIdx.x. (3.1)

For 3D grid, we compute thread ID in all three dimensions in the similar way.
The hierarchy of threads is shown in Figure 3.1.

18

Figure 3.1: [11] CUDA memory and thread hierarchy. Here, threads are orga-
nized in 2D blocks which are assigned to the grid. Each block and each thread
has unique ID. Each thread has access to its own local memory. All threads
in a block has per-block shared memory. Each thread in the grids can access
global memory.

3.3.1 Memory hierarchy

As defined in [9], there are three main memory places visible for threads: per-
thread local memory, per-block shared memory and global memory. The memory
hierarchy is shown in Figure 3.1. Per-thread memory is a local memory, which
is private to each thread and can be accessed only by the thread. Variables that
are eligible for the registers, but cannot fit into register space will be assigned to
the local memory. This type of memory belongs to the same physical location
as a global memory. Per-block shared memory is on-chip memory that can
be accessed by all the threads in a block. It is private to each block, and
it has a life-time of the block. Shared memory has a higher bandwidth and
a lower latency than local or global memory. Moreover, the access to shared
memory is approximately 10 times slower than to a register, but 100 times faster
than to a global memory [54]. Shared memory is defined by the __shared__
qualifier. Global memory can be accessed by all the threads, because it is
shared between threads, blocks and grids. It is the largest memory and has

19

a life-time of a program. A variable can be declared in global memory from
the device by using __device__ qualifier, otherwise it is allocated from host.
More information about the memory hierarchy and other memory types can
be found in [6].

3.3.2 Thread execution on GPU

During the kernel launch all thread blocks are distributed among available
Streaming Multiprocessors (SM) [39], such that all threads in a block execute
concurrently on the same SM. Thousand of threads can perform simultaneously,
because one GPU contains multiple SMs. Each SM partitions registers and
shared memory among assigned threads, and schedules each thread block into
groups of 32 threads, called warps. CUDA uses Single Instruction Multiple
Threads (SIMT) architecture, which means that all threads in a warp execute
the same instruction at the same time. It is possible that threads in a warp
have different behaviour, but if one of the threads needs to execute a different
instruction, all the threads perform that instruction as well. This is called warp
divergence [55] and it can cause a degraded performance.

Ideally, we want to keep the cores of device busy. If one warp in SM is
not able to issue an instruction, then SM executes another available warp. To
measure the activity of the SM we look at the occupancy - a ratio between
active warps and maximum warps.

3.3.3 Multiple devices

Multiple GPUs are used when problem domain size is too large for one GPU,
because device has a limited amount of memory. Additionally, multiple GPUs
can be used to increase speed of memory transfers and speed of the application
by executing multiple tasks concurrently on the multiple devices.

To run the code on the multi-GPUs, we need to know how many devices
are available and specify the target device. It can be done by calling the
functions shown in Listing 3.1. The code is executed on the specified device
until cudaSetDevice is called with a different id argument. If cudaSetDevice
is not called before the first CUDA API call, then the code will be run on the
default device with ID 0.

cudaError_t cudaGetDeviceCount(int* count);

cudaError_t cudaSetDevice(int id);

Listing 3.1: Multiple device management using CUDA. The first function
returns the number of available devices. The second function specifies the
device on which the computation will be performed.

20

Figure 3.2: [39] Kepler Memory Hierarchy. Shared memory and L1 cache are
accessible by all threads in a block. It is program-managed and configurable
memory with low latency and high bandwidth. Read-only data cache is used
for read only access and it is hardware managed. Global memory or DRAM is
accessible by all threads, host and other GPUs in the same system. All accesses
to the global memory go through L2 cache.

3.4 Overview of the NVIDIA KEPLER GK 110
architecture

The main GPU architecture used to perform our computations is Kepler GK
110 [39]. The specific GPU used in this study is Tesla K20m [12] that con-
sists of a GK 110 processor equipped with 5 GB of GDDR5 memory. It is a
high-end professional GPU developed by NVIDIA, launched in January 2013.
It includes 13 Streaming Multiprocessors (SM), each of them consists of 192
single-precision CUDA cores and 64 double-precision units achieving 1174.78
GFLOPS in double-precision peak performance. CUDA cores are arithmetic
logic units that perform the actual computation. Each SM implements four
warp schedulers and eight instruction dispatch units, which allows four warps
and two independent instructions per warp to be executed concurrently at each
cycle.

Kepler memory hierarchy [39] consists of shared memory, L1 and L2 caches,
read-only cache and global memory or DRAM. SM has 64 KB of on-chip mem-
ory that is used by shared memory and L1 cache. The on-chip memory can

21

be partitioned as 48 KB of the shared memory and 16 KB of the L1 cache or
vice versa, also it can be divided equally. Stream cores inside an SM commu-
nicate using these low latency and high bandwidth memories. Each thread can
access up to 255 registers, which is a compiler-managed local memory to each
thread. For the data that can only be used for read operation, Kepler intro-
duces a hardware-managed 48 KB read-only data cache, which can be directly
accessed by the SM. L2 cache of size 1536 KB is a hardware-managed storage
that is shared across the device. This cache is the primary point of data consol-
idation between the SM units. The majority of the memory in GPU is global
memory, which is accessible by all threads, host and all GPUs in the same
system. The loads and stores into and from the global memory are cached in
L2 cache. Kepler’s register, L1 and L2 caches, shared and DRAM memory are
protected by Single-Error Correct Double-Error Detect ECC code [39]. The
memory hierarchy implemented in the Kepler architecture is shown in Figure
3.2.

3.5 Hardware

We test our implementation on two different systems. To test the single GPU
implementation we use Lizhi - a GPU system operated by Simula Research
Laboratory. The system is configured with two NVIDIA Tesla K20m cards.
To perform computations on multiple GPUs we use Abel [42], a supercom-
puter operated by the University of Oslo. Each compute node has a minimum
of 64 GB RAM and 16 physical CPU cores. The interconnect is FDR (56
Gbps) Infiniband. Abel has a set of accelerated nodes equipped with Dual
Intel Xeon(R) CPU E5-2609 processors with two NVIDIA Tesla K20X cards
installed. Each card has 6 GB of device memory. The specifications of both
graphic cards are shown in Table 3.1.

Specifications K20 K20X

Double precision compute power 1.17 Tflops 1.31 Tflops
Memory size 5 GB 6 GB
Memory bandwidth 208 GB/s 250 GB/s
STREAM measured memory bandwidth 180 GB/s

Table 3.1: Kepler K20 and K20X specifications taken from [13]

3.6 Message Passing Interface

Message Passing programming paradigm is the approach for programming par-
allel computers. The message passing platform consists of p processing nodes
with exclusive address space. Each of the nodes can be a single processor or
a shared address space multiprocessor. The interaction between processes exe-
cuting on the different nodes is accomplished by message passing. MPI [23] is
a standard library that is used to develop portable message-passing programs
using C. The basic routines are initialization and termination of the MPI li-
brary, send and receive messages and get the information about the parallel
environment such as number of processes and label of the calling process.

22

3.7 Performance metrics

To verify the performance of our implementation, we use different metrics:
time measurement, floating-point operations per second (FLOPS) and mem-
ory bandwidth. Timing can be done by CPU and GPU timers. FLOPS and
memory bandwidth can be found using NVIDIA profiling tools, which are ex-
plained in Section 3.7.1.

CPU timer measures the elapsed time of a CUDA call or kernel execution.
This time includes the time required for launching the kernel. CUDA API func-
tions are asynchronous, thus they return the control back to the CPU thread
immediately after the call. In order to measure the execution time, we need
to synchronize CPU thread with GPU. This is done by calling cudaDeviceSyn-
chronize() function.

In this thesis we use two CPU timers: gettimeofday() and MPI_Wtime().
The former returns the actual time of the day, while the latter returns an
elapsed time on the calling processor.

CUDA GPU timer is an alternative to CPU timers provided via CUDA
Event API [9]. It creates an event, records it and computes the difference
between two recorded events into floating point value in milliseconds. The
example of the CUDA event use is shown below in Listing 3.2.

cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
float milliseconds;
cudaEventRecord(start,0);

KernelFunctionCall<<<grid,blocks>>>();

cudaEventRecord(stop,0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&milliseconds, start, stop);
Listing 3.2: Example of usage of CUDA Event for measuring kernel execution
time.

Number of floating-point operations per second is defined as a number
of single-precision or double-precision floating point operations that are pro-
cessed per second. It is a metric used to measure computational capability,
and it is commonly used for scientific computing applications performed on a
supercomputer.

Memory bandwidth is defined as an amount of data that is read or stored to
memory per second. It is expressed in gigabytes per second. Bandwidth can be
affected by the choice of the memory and the way data is stored and accessed.
During the kernel evaluation we will measure bandwidth corresponding to the
device memory. The theoretical bandwidth is given by hardware specifications
while the actual memory bandwidth can be found using NVIDIA profiling tools
(Section 3.7.1).

23

The peak memory bandwidth and the peak computational performance are
often unachievable in practice. For this reason, during evaluation of our im-
plementation we need to focus on the attained performance instead of the
maximum performance.

Memory bandwidth depends on the Error Correction Code option (ECC)[39].
It adds a parity byte for every eight data bytes, which reduces available mem-
ory size by 12.5%. In addition, an extra byte must be read, so we lose at least
12.5% of the peak memory bandwidth because of the parity byte. This results
in a performance difference between the operations with enabled and disabled
ECC option.

3.7.1 NVIDIA profiling tools

To evaluate efficiency of the implementation, we use NVIDIA development
platform for heterogeneous computing, called Nsight [14]. The two basic tools
are NVIDIA Visual profiler and a command-line profiler, known as nvprof.
NVIDIA Visual profiler is a graphical tool that displays a timeline of the appli-
cation. It also includes an automated analysis engine, which identifies possible
optimizations. To collect the data from the command-line we use nvprof tool.
It provides a broad assortment of available measurements: memory transfer,
kernel execution time, events and metrics [9]. In this thesis we use nvprof to
extract the information about the performance and the NVIDIA Visual profiler
tool to detect possible optimizations or existing defects of the code segments.

The metrics that we execute for the assessment of the performance via
Nsight are listed below:

• Compute number of floating point operations
−−metrics "flop_count_dp, flop_count_dp_add, flop_count_dp_fma,
flop_count_dp_mul, flop_dp_efficiency"

• Compute the memory bandwidth
−−metrics "dram_read_throughput, dram_write_throughput,
dram_utilization, ecc_throughput"

• Perform guided analysis with Visual profiler
−−analysis-metrics

• Gather different information, for instance number of registers, amount of
shared memory, block size, grid size or execution time
−−print-gpu-trace

CUDA Occupancy Calculator [11] is a spreadsheet provided in a CUDA toolkit.
It helps to select optimal block and grid sizes that maximize occupancy for the
kernel according to the amount of registers and shared memory required by the
kernel function.

24

Figure 3.3: Roofline model for Kepler K20X. The dashed line indicates op-
erational intensity for the system. The given kernel is compute-bound if its
computational intensity is to the right from the dashed line and it is memory-
bound if its computational intensity is to the left from the dashed line.

3.8 A brief introduction to the Roofline model

The Roofline model [53] offers performance guidelines for Multicore Architec-
tures. It defines three types of potential bottlenecks: computation, commu-
nication, and locality. Moreover, it determines a realistic upper bound of the
performance of the kernel depending on the operational intensity of the kernel
function. The operational intensity (Equation (3.2)) is defined as a ratio of the
number of operations performed by kernel to the amount of memory transfers
carried out during the execution of the kernel.

I =
W
Q
, (3.2)

where W is measured in FLOPS, Q is measured in bytes, and I is expressed
as FLOPS/byte.

The upper bound of the performance (Equation (3.3)) is defined as the
minimum of peak floating-point performance, that is specified by the computer
architecture and measured in GFLOPS/s, and the product of bandwidth, ob-
tained from benchmarking, and operational intensity.

Let C define the peak floating-point performance and B define the memory
bandwidth obtained by the benchmarking, then the attainable performance P
is computed as follows:

P = min

{
C
B× I.

(3.3)

25

The roofline model can be visualized as a 2D graph (see Figure 3.3), where
x-axis represents an operational intensity of a kernel and y-axis express attain-
able Gflops/s. A roofline curve consists of two parts: the horizontal line of
peak floating-point performance and the line of unit slope - a bound of max-
imum floating-point performance obtained by memory bandwidth. Both lines
intersect at the point I = C/B. The attainable performance can be found
by drawing a vertical line through the point on the x-axis, that represents an
operational intensity of the kernel. The point where the vertical line hits the
Roofline curve defines the attainable performance. For a given kernel, we can
find if the kernel is compute-bound or memory-bound by using its operational
intensity [40].

If I ≤ C/B, then the kernel is memory-bound

If I ≥ C/B, then the kernel is compute-bound

3.9 Summary

In the last decades, a lot of developments in the High Performance Computing
community have been done: GPUs have been adjusted to perform general-
purpose computation and computing systems have started to include different
types of processors. In this chapter we described a heterogeneous CPU-GPU
programming platform, called CUDA. We introduced the main GPU architec-
ture which we will use for the computation. Moreover, we described a message
passing interface, called MPI which we will use for the communication on CPU.
We defined performance metrics, profiling tools and a performance guidelines
model that are used in this thesis.

26

Chapter 4

Modelling a cardiac simulator on
a hybrid CPU-GPU cluster

In the previous chapters we have presented the cardiac tissue model and the
hardware that we will be using for the implementation and simulation. This
chapter concentrates on the data structures and computation distribution be-
tween CPU and GPU. In order to achieve good performance, we need to be
aware of the memory transfer operations, thread-grid configuration and GPU
utilization. Memory copying is an expensive operation, which can decrease
overall performance of the program [24], especially with a large amount of
data. One of the questions of interest here is how we can distribute compu-
tation without losing the performance due to unnecessary data copying. To
get the maximum performance from the hardware, it is important to have a
sufficient amount of data and threads, to keep GPU busy [45]. In this chapter,
we also focus on the parallelization of the work at the tissue-level.

4.1 Computation distribution between CPU and GPU

The multiscale cell model consists of two types of computation: cell-level com-
putation and dyad-level computation. At the cell-level we perform computation
that involves whole-cell values and interaction between the cells, while at the
dyad-level we concentrate on the computation that involves processes inside
the dyad and interaction between dyads.

In the CPU implementation [30, 31, 32] the main tissue computation is
executed as a time loop. At each time step we loop over all the cells indi-
vidually and perform computation inside the current cell. The work of each
cell consists of a loop over all dyads, the computation inside them and calcium
diffusion between dyads after the last iteration. Before the next time step, we
perform voltage diffusion (Equation (2.16)) between the cells. The loop that
goes through the dyads in a cell contains the most time consuming operations
[30][31][32]. Hence, performing these computations on the GPU in parallel can
provide an essential improvement to the performance.

In our implementation, the GPU handles the computation at the dyad-
level and the interaction between dyads, which means that each CUDA thread
performs computation corresponding to the dyad assigned to it. Thus, there is

27

no need for the innermost loop and all the dyad computations are performed
by parallel threads.

Since cell voltage diffusion does not consume a significant amount of time,
it is performed on the CPU. All the voltage values of different cells are kept in
an array on CPU and are updated after each computation step. This requires
the communication between CPU and GPU, which is accomplished by CUDA
memory copying operations. After each computation step the voltage values
of the cells are copied from device to host and the updated voltage values are
copied back to the device for the next time step.

4.2 Basic approach: a single cardiac cell

Initially, we focused on the implementation of a single cardiac cell on GPU.
To implement a cardiac cell model, which corresponds to the actual human
cardiac cell, we adopt the data structure that was used in [30, 31, 32]. A cell
is represented as a structure - a user defined data type in the C programming
language. It contains cell-level variables, such as voltage and global calcium
concentrations in the different calcium distribution compartments, which are
set to their initial values at the initialization step. Recall that a cardiac cell
consists of smaller entities - calcium release units. Each of them is represented
by its inherent currents and concentrations. The collection of dyads is kept in
arrays - a data structure in the C programming language. In our model, each
dyad contains 29 elements corresponding to currents and concentrations, and
10 random numbers. Thus, we need to allocate 29 arrays of the length equal to
the number of dyads in the cell and one array of the length equal to the number
of dyads multiplied by 10. Pointers of the arrays are included in the struct for
the cell. In addition, the cell contains pointers to dyadOuterVars and dyadIn-
nerVars structures, consisting of the cell-level information initialized during
the computation. dyadOuterVars holds the values obtained during the dyadic
computation, for example Na-Ca exchanger current in myoplasm. The struc-
ture is used to update the main cell values at each time step. dyadInnerVars
contains data that is used only for the computation. One of the advantages of
having these structures is the convenience of passing arguments to the func-
tions, which require a large amount of parameters for the computation. The
advantage of having these two structures is even more visible during computa-
tion on the device.

Before performing computations on GPU, we have to copy the necessary
data from host to device. However, we are not able to copy the cell structure
directly, because it contains pointers to the memory locations. Thus, dyad-
OuterVars and dyadInnerVars structures, and dyadic information need to be
transferred from host to device separately.

Since the dyad-level computations are executed on device, the remaining
cell-level computations and updates of the variables are performed on the host.
The cell structure is updated by transferring dyadOuterVars back from device
to host after each time step. As all cell-level variables are updated and initial-
ized on the host, we need to copy the updated dyadOuterVars and dyadInner-
Vars from host to device at the beginning of each time step. The arrays with
dyad-level information are transferred from host to device at the beginning of
the program and transferred back after the last time step. Thus, we keep it

28

on the GPU during the whole computational process. The pseudo code of the
computation for the single cell is shown in Listing 4.1.

However, one cell computation does not utilize the whole power of the GPU.
The NVIDIA profiler reports low compute utilization, which means that some
of the multiprocessors are idle due to the small amount of data. Moreover,
inefficient size of data leads to low memory transfer throughput. Small amounts
of data do not enable GPU to fully use host to device bandwidth. Furthermore,
the kernel launch overhead cannot be hidden using only one cell. To obtain
more parallelism, we need to invoke more threads and perform computation on
the larger amount of data. This can be done by extending the single cell per
GPU implementation to multiple cells per GPU.

Cell initialization on CPU
Memory allocation on GPU
Memory copying from host to device
for int t=0; t<time steps; t++

Cell computation:
Compute initialization values for the cell on CPU
Update dyadOuterVars on CPU
Update dyadInnerVars on CPU
Copy dyadOuterVars from host to device
Copy dyadInnerVars from host to device
Dyad-level computations on GPU
Copy dyadOuterVars from device to host
Update cell values on CPU

Cell diffusion on CPU
end for

Listing 4.1: The pseudo code of a single cell computation. At each time step
the values for the main cell are computed, dyadOuterVars and dyadInnerVars
structures are updated and copied to device memory. The dyadic computation
is performed on device and the resulting dyadOuterVars is copied back to the
host, where the main cell values are updated. In case of multiple cells, voltage
diffusion between them is executed on the host before the next time step.

4.3 Multiple cells

4.3.1 Extending one cell implementation to multiple cells

Even though simulations involving only one cell are easier regarding the imple-
mentation, it is not enough to reproduce the real world problem. To perform a
realistic simulation of a human heart, simulation of 2-3 billions cardiac cells is
needed. Moreover, the single cell computation does not utilize the full power of
the GPU. To attain more parallelism, we take our implementation one step fur-
ther and implement the multiple cells approach. Therefore, we need to perform
some changes in the data structures.

First of all, updating variables on the CPU and copying the structures
before and after the main computation at each time step is expensive. Our
approach is to transfer all the data needed for the computation from host

29

Figure 4.1: An example of the array of calcium release units for one specific ele-
ment in the multiple cell model. This example shows four cells. The rectangles
inside the cell represent calcium release units with their IDs above.

to device at the beginning of the program execution and transfer it back to
the host at the end of the program. In this way, all the data needed for the
computation remains on GPU for the complete execution time. Thus, we no
longer need to update the main cell structure initialized on CPU at every time
step.

To have control over the data that needs to be updated at every time
step, we create third structure a dyadGPUVars. It contains all the cell values
that previously were holden by the CPU cell structure and updated by the
dyadOuterVars structure. Thus, instead of updating the main cell values, we
update the dyadGPUVars values that remain on the GPU for the computation.

Finally, we create three arrays of of the same size as a number of cells, where
each of them represents one type of structures dyadOuterVars, dyadInnerVars
or dyadGPUVars inherent to a specific cell. Dyadic currents and concentrations
corresponding to different cells are kept in the same array. There is a 10000 (or
number of dyads) units interval that belongs to each cell in the array, which
corresponds to the specific element of a calcium release unit. Thus, we have
29 arrays of size 10000×number of cells that contain dyad-level values. Figure
4.1 shows an example of the data structure of dyadic information.

As mentioned before, a human heart contains billions of cells. Unfortu-
nately, device memory is limited, so we can simulate only a finite number of
cells on the GPU. In our model one cell contains 10000 calcium release units
and each of them holds data of 29 values, which is

10000× 29× 8byte = 2.32 MB

of double-precision data. Moreover, each calcium release unit requires 10 ran-
dom numbers to perform binomial distribution: 2 numbers for L-type channel
computation and 8 for the RyR channel computation, which gives

10000× (8 + 2)× 8byte = 0.8MB.

In total, one cell requires about 3 MB of data. According to nvidia-smi [15], we
have 4742 MiB of memory available on Kepler K20 without ECC, which gives
us the maximum of 1580 cells. However, we are limited by the 1550 cells due to
the CUDA random number generator (cuRAND), which is not able to perform
memory allocation for more than 1550 cells. On the other hand, on Abel we

30

are able to simulate a larger number of cells. Since the NVIDIA Kepler K20X
has 6 GB of device memory, we should be able to perform the computation
of 6/0.003 = 2000 cells. However, we have empirically established that we are
able to simulate at most 1872 cells on one K20X GPU.

4.3.2 Structure of the implementation

The structure of multiple cells allows to transfer all the cells to the GPU at
once, so that we do not need to iterate over the cells. As a result, cell-level
computations and updates of cell-level variables that were required at the be-
ginning and at the end of each time step for the single cell implementation
(Listing 4.1) are directly performed on the device in parallel. Hence, the code
contains only one loop - the main time loop.

In our implementation we launch all CUDA kernels from the host. After
each kernel invocation, the control is given back to the host. In the pseudo code
(Listing 4.2) one can see the relation between host functions and CUDA kernel
functions. CUDA kernels are indicated with the specific syntax <<<>>> and
are called from the corresponding host function.

As shown in the pseudo code, the CUDA initialization and memory trans-
fer from host to device are performed before the time loop. Some of the cell
values do not need to be computed at every time step. Therefore we initialize
those values on device before the first time step. To avoid unnecessary mem-
ory transfers between host and device, the data needed for the computation
remains on the device for the lifetime of the program. Due to the intercel-
lular voltage diffusion, the cell voltage needs to be copied between host and
device at every time step. At the beginning of each time step, we initialize
and update the cell data, generate random numbers and copy the voltage val-
ues. Furthermore, we perform the dyad-level computation which is divided
into five parts : (1) L-type channel simulation, (2) RyR probability calculation,
(3) RyR opening computation, (4) Ca concentration computation and (5) Dyad
diffusion. Each of these is executed on the device by launching one or several
kernel functions. L-type function computes opening for the 15 L-type calcium
channels. RyR opening addresses random state transitions for the 100 RyRs
per dyad using probabilities computed in the RyR probability calculation func-
tion. The Ca concentration function computes local calcium concentrations in
the dyads. Block reduction kernel in this function computes the whole-cell
values of calcium currents. The dyad diffusion function computes the diffu-
sion of intracellular calcium concentrations between the dyads using equations
(2.4), (2.8) and (2.10) that were described in Section 2.2. The reduction func-
tion here computes the whole-cell value of the calcium concentrations in the
dyad compartments. Before the next time step the cell diffusion function per-
forms diffusion of intercellular voltage concentrations between the cells using
Equation (2.16). Initialization kernel1, Initialization kernel2 and Final update
compute Na and K concentrations and currents. This program structure is
used further in our implementation.

31

Memory Copying from host to device
Compute first initialization

Compute first initialization<<<blocks,threads>>
for(int t=0; t<time steps; t++){

Cell computation:
Compute initialization for the time step:

Generate random numbers
Copy voltage from host to device
Initialization kernel1<<<blocks,threads>>>
Initialization kernel2<<<blocks,threads>>>

L-type channel simulation:
L-type simulation<<<blocks,threads>>>

RyR probability calculation:
RyR probability<<<blocks,threads>>>

RyR opening computation:
RyR opening<<<blocks,threads>>>

Ca concentration computation:
Ca concentration<<<blocks,threads>>>
Block Reduction<<<blocks,threads>>>

Dyad diffusion:
Dyad diffusion<<<blocks,threads>>>
Reduction<<<blocks,threads>>>
Block Reduction<<<blocks,threads>>>

Final update for the time step:
Final update <<<blocks,threads>>>
Copy voltage from device to host

Cell diffusion
}

Listing 4.2: The pseudo code of the program. CUDA kernels are indicated with
the specific syntax<<<>>> and are launched from the functions implemented
on the host. The main computation consists of five parts : (1) L-type channel
simulation, (2) RyR probability calculation, (3) RyR opening computation, (4)
Ca concentration computation and (5) Dyad diffusion. Each of them is executed
as one or more several CUDA kernel functions. The cell-level computations and
updates are also performed on device, so that the data remains on device for
the life time of the program.

4.4 Thread configuration

The configuration of threads and correct assignment of the data are important
for the full utilization of the GPU. In our implementation the most of the
computation on the dyad-level uses one dimensional (1D) data, which is the
reason why we arrange our threads as 1D blocks assigned to a 1D grid.

By an empirical search, we have found that 128 threads per block is the
optimal amount to perform computation on one cell with 10000 calcium release
units. This requires 79 blocks of threads for a single cell choosing one thread
to perform computation over one dyad. The size of the grid or number of
blocks is computed by dividing the number of dyads in a cell by the number
of threads in a block and rounding the result up to the nearest higher integer
value (Equation (4.1)).

32

number of blocks =

⌈
number of dyads
number of threads

⌉
=

⌈
10000

128

⌉
= d78.12e = 79. (4.1)

Most of the dyad-level computations are independent of each other, so any
calculation performed on calcium release units of one cell cannot influence
results of another cell. This means that computations performed by different
threads do not overlap. Thus, threads that perform dyadic computations on
the different cells can be placed in the same block. To find a number of blocks
for multiple cell implementation, it is enough to compute the total number of
calcium release units among all the cells and find the correct size of the grid in
the same way as we did for a single cell. Hence, for multiple cells the number
of blocks in a grid becomes:

number of blocks =

⌈
number of dyads in a cell× number of cells

number of threads

⌉
(4.2)

However, execution of the functions that involve more complex computa-
tions, such as diffusion, or usage of the shared memory, such as reduction,
cannot have threads corresponding to the different cells in the same block, be-
cause it would cause data overlapping between cells. A specific mapping from
the threads to the array of calcium release units, which does not allow threads
representing dyads from distinct cells to be in the same block, is required.
Thus, we choose to keep a single cell structure of thread blocks, but increase
the grid according to the number of cells: we assign 79 blocks of threads to
each cell. Because we have more threads than dyads in a cell, the last block in
each cell contains some threads that are idle during the computation, but are
involved in the operations on shared memory. Therefore, the dyad information
from different cells does not overlap in the shared memory and we have a strong
separation between cells.

To map a specific thread to a corresponding dyad in the function that
requires a strong separation between the cells, we define a mapping called cell
separation mapping. Figure 4.2 shows the core of the mapping, where the cell
data is assigned only to a part of the threads. The mapping is computed as

MyDyad = Ndyads × myCell + blockDim × localBlock + threadIdx, (4.3)

Ndyads defines the number of dyads in a cell, blockDim is the number of threads
in a block and localBlock is the block ID in the cell (in this case it ranges from
0 to 78).

The calcium diffusion between the dyads requires a multidimensional grid,
where dimensions depend on the selected implementation. Threads can be
arranged into two dimensional (2D) blocks and assigned to a 2D grid or they
can be arranged into 3D blocks and assigned to a 3D grid. The diffusion
computation requires separation between threads corresponding to different
cells. Thus, we define the optimal grid for one cell and then we increase it
along the x-direction according to the number of cells. The optimal number of
threads for the diffusion is presented in Section 5.3.

33

Figure 4.2: An example of a cell separation mapping from threads to original
data for four cells. The rectangles represent threads in a cell defined via grid
composition. Cell_thread ID represents the threads corresponding to a cell,
while Cell ID represents original dyads in a cell. The thick vertical line defines
the boundary from threads corresponding to two different cells. The dashed
line defines the end of cell data. Threads in a striped area are idle.

4.5 Tissue-Level parallelization

The detailed tissue-scale cardiac simulation of the human heart requires a large
amount of cells to be involved in the computation. However, as we have seen
before, only a limited amount of cells, which form less than 1% of the cardiac
tissue, can be simulated on one GPU due to its limited memory. Therefore, we
extend our implementation from one GPU to multiple GPUs by enabling the
usage of supercomputers, which allow us to perform large scale simulations on
multiple GPUs.

The usage of multiple GPUs requires a particular data distribution among
them. The cardiac ventricle tissue is represented as a 3D Cartesian grid of
cardiac cells, which needs to be distributed among different GPUs. Since a
supercomputer consists of many compute nodes, the data is distributed in
two steps. Firstly, the grid is decomposed into smaller 3D domains which are
assigned to the compute nodes of the supercomputer. To utilize every compute
node equally, each domain contains a uniform number of cells. Secondly, we
need to distribute the data among GPUs that belongs to the same compute
node. Each compute node subdivides its domain into the smaller sub-domains
of equal size. The number of sub-domains depends on the number of available
GPUs on the node. Example of 3D Cartesian grid decomposition is shown in
Figure 4.3.

In our implementation each sub-domain is assigned to one GPU by one MPI
process. Since each compute node contains only two GPUs in the hardware
that we use, the procedure to assign one GPU to one MPI process is quite
simple. Each node invokes two MPI processes, the device with ID 0 is assigned
to the MPI process with an even rank, and the device with ID 1 is assigned to
the MPI process with an odd rank. Computation on each GPU are performed
independently of each other and all the necessary communication between the
cells is performed via the CPU.

34

Figure 4.3: An example of the Tissue-Level parallelization having four compute
nodes with two GPUs on each of them. The large rectangle represents a 3D
cardiac ventricle tissue. The first arrow shows a part of the tissue assigned to
one compute node. The second arrow shows how the domain is divided into
two smaller sub-domains corresponding to two different GPUs on the same
compute node.

The cells must be equally distributed among the GPUs, otherwise some
GPUs would not be fully utilized which would slow down the whole simula-
tion. Moreover, due to the required communication between the different MPI
processes, some of the processes would need to wait for others to finish their
computation to be able to exchange the data.

4.5.1 Communication

The only communication needed between cells is an exchange of voltage values
required by the reaction-diffusion computation for Equation (2.16). To perform
diffusion using a finite difference approach, each cell needs to have access to
the voltage values corresponding to its neighbours in all three spatial dimen-
sions. As mentioned earlier at each time step the computed whole-cell voltage
values are transferred from device to host and the diffusion computation is
performed on the CPU. However, since the global domain is decomposed into
the smaller sub-domains that are assigned to the different MPI-processes, the
diffusion computation is distributed between different processes. This requires
communication between MPI-processes to provide access to the data from the
neighbouring cells.

The communication method we use in this thesis is adopted from [32]. We
introduce ghost cells at the boundary points that hold the values of the voltage
that corresponds to the neighbour cells located in the sub-domain assigned to
the neigbouring process. This makes it possible to exchange voltage values
along the faces of the sub-domains. The data interchange is done via MPI
messages [36] between the host CPUs. At each time step after the diffusion
computation, the ghost cells are updated with new voltage values.

MPI processes are arranged as a 3D Cartesian grid by using theMPI_Cart_
create function. For data exchange along the dimensions of the topology, the
MPI_Cart_shift is used to compute the rank of the source and destination

35

processes. Moreover, each MPI process partitions the data and constructs a
structure that contains all the relative information for the communication, such
as buffers for sending and receiving the data, and information about the grid
of cells that each process owns. In addition, each partition holds a structure
containing MPI information, such as the number of processes in each dimension
and the rank of neighbours.

Communication is performed after a process has completed its part of the
voltage diffusion computation. So that all neighbours get the updated data.
First, the process or partition assigns the voltage values that are required by
its neighbour consecutively to a buffer and sends it using the non-blocking
MPI_Isend. The non-blocking receive operation MPI_Irecv is performed in
order to receive data from the neighbours. If the neighbour do not exists, the
ghost cells are updated using only values from the same partition. After all
given MPI requests are completed, the received data is unpacked and allocated
to the ghost cells in the voltage array.

4.6 Evaluation of the correctness of the implementation

To evaluate the correctness of our implementation, we compare the obtained
results of voltage, calcium concentrations in various spaces and calcium currents
with the obtained results from previously implemented human heart simulators
[30, 31, 32]. Due to the stochastic modelling of channel opening, the same
random number generator and access pattern of random numbers is used during
the evaluation of the correctness.

4.7 Summary

The main computation is distributed between CPU and GPU, such that the
most expensive dyadic computations are performed on the GPU, while the volt-
age diffusion is performed on the CPU. A single cell on the GPU does not utilize
the whole GPU capacity, as a consequence a multiple cell implementation was
introduced. Further, due to the large number of cells, the implementation was
extended to multiple GPUs. The required data distribution and communica-
tion is handled by MPI processes.

36

Chapter 5

Implementation and
optimization of the dyad-level
computations on GPU

The dyad-level computation consists of several computationally heavy and
time-consuming functions: L-type channel simulation, the calculation of RyR
channels opening, Ca concentration computation and the diffusion of intracel-
lular calcium concentration. To increase the performance of the simulator, we
have chosen to implement the dyad-level computation in parallel on the GPU.
In addition to the previously mentioned functions, we will define reduction
function which has not been implemented in the previous implementations [30,
31, 32]. Reduction operation constitutes a major part of our implementation.
In this chapter, we will broadly present the CUDA implementations of diffusion
and reduction functions, because of the significant difference from the CPU im-
plementations. Functions with minor changes in the implementation will be
described in terms of optimizations that we have used in order to increase the
performance. Since our parallel implementation of the cell-level computations,
such as initialization and final update, on the GPU is not different from the
CPU implementation, they are omitted in this chapter.

5.1 Common optimization techniques

Random number generation

Sampling from binomial distribution requires drawing a randomly generated
number from a uniform distribution in the interval between 0 and 1. Due to
eight possible transitions in the RyR channels and two possible transitions in
the L-type calcium channels, ten random numbers need to be generated for
one dyad. Since in our model each cell contains 10000 calcium release units,
100000 random numbers need to be generated for one cell at each time step.
For this task, we utilize NVIDIA CUDA Random Number Generation library
(cuRAND) [10], which provides a high performance GPU-accelerated random
number generation. The random number generator covers all the internal ca-
pacity necessary to generate a sequence of pseudo-random numbers. cuRAND
provides two interfaces: host generation and device generation. The former

37

generates and stores all the random numbers on the CPU. The latter is called
on the host, but all the random numbers are generated and stored on the de-
vice. In our application, we use cuRAND host interface and generate an array
of uniformly distributed 10000 times number of cells random numbers. Each
thread reads the corresponding random values from the global memory.

Shared memory usage

CUDA supports declarations of single shared memory variables and 1D, 2D
and 3D shared memory arrays. Threads load the corresponding variable into
the shared memory before performing computation on it. If there is no bank
conflict, the data is loaded simultaneously.

Shared memory is one of the most frequent optimization techniques applied
in our implementation. First of all, we can use it to get faster access to the
global data that is reused several times by the thread. Secondly, shared memory
can serve as a communication between the threads in a block, for instance in
the diffusion computation. Finally, it can be used to store a global common
variable for all the threads in a block.

Read-only cache

In this application, a significant amount of data is used as a read-only for the
duration of the kernel function. This data can be stored in a read-only cache
which is considerably faster to access than the global memory. The compiler
can automatically access the stored data via read-only cache and minimize
redundant access to global memory. The pointers used for loading the data
should be marked with const and __restrict__ annotations. In this way,
read-only cache can benefit the performance of bandwidth-limited kernels.

Coalesced memory access

Global memory access pattern is essential for the performance of a CUDA
application. To minimize DRAM bandwidth requirement the device coalesces
reads and stores into global memory, such that the number of transactions
would be minimized. During the memory load, the hardware identifies whether
the threads access memory that is consecutively located. In order to carry out
the best performance, all threads in a warp should execute the same instruction
and access consecutive DRAM locations. The consecutive locations then are
combined into a single entry. Memory access is coalesced if it is sequential and
aligned.

To have coalesced memory access to random numbers, we need to take into
consideration the structure of the grid. All computations involving random
numbers are performed on the dyad-level and there is no possible overlap be-
tween the data belonging to the distinct cells. Therefore, the grid of threads
is formed of consecutive threads. This allows us to store random numbers
sequentially so that all threads in a warp have a coalesced access.

38

Improved power function

The power function is one of the most expensive operations. In cases where the
exponent is known beforehand and it is not a large number, substituting power
function with the direct multiplication can give a significant speed up to the
program. However, performing binomial distribution sampling, the value of
the exponent ranges from 0 to 100, which makes it cumbersome to use a simple
direct multiplication. Recall that power can be expressed as a product of other
powers that have the same base. For instance, ak = am+n = (am)(an) for k =
m + n. To improve the implementation it is beneficial to adopt bit-wise op-
erations. First, the exponent is bit-wise compared with the smallest possible
exponent, which in this case is one. The binary add operator checks if the
bit exists in both operands. If this is the case, the power becomes a part of
the combination of power functions. The binary left shift is performed on the
smallest exponent in order to compare the next bit of the exponent of interest,
and then the next possible power, which is the previous power squared, is com-
puted. To compute the power of 100, it is enough to perform this computation
seven times, because a100 = a4 × a32 × a64. The code is shown in Listing 5.1.

int bit = 1;
double result = 1.0;
int exponent = n;
double base = 1 - p;
for(int j = 0;j < 7;j++){
char tmp = bit&exponent;
if(tmp)
result*=base;

bit = bit<<1;
base*=base;

}
Listing 5.1: The code for the power computation using bit-wise operators

Double-precision floating point division

The device that we use is of CUDA compute capability 3.5 which means that it
supports both single-precision and double-precision floating point operations.
However, the same arithmetic operation can produce slightly different results
due to the greater accuracy of the double-precision floating values and round-
ing issues. CUDA supports all arithmetic operations: addition, multiplication,
subtraction and division. The last mentioned produces the floating point value
closest to the correct mathematical result. GPU hardware does not have sup-
port for floating point division at the instruction level. Instead, it uses numeri-
cally implemented division based on other basic instructions. As an alternative
for the standard division and other standard operations, CUDA provides in-
trinsic functions, which are only accessible from the device. Intrinsic functions
use fewer instructions which makes them faster, but they are less precise than
standard functions.

Performing experiments and assessing the outcomes of the NVIDIA pro-
filer, we have noticed that the count of double-precision floating-point division

39

operations includes also single-precision operations. According to the data
from NVIDIA profiler, one division is counted as one multiplication and five
fused multiply-add operations, thus the device performs 11 double-precision
floating point operations. In addition, the device executes one single precision
fused multiply-add, which is 2 single precision floating point operations. There-
fore, to keep double precision and speed up the computation, we interchange
division by multiplication where it is possible. However, some of the denom-
inators contain values that are not known at compile time. Thus, division
operation cannot be interchanged by multiplication by precomputed reciprocal
of the denominator. For instance, x = y/2 can be changed to x = y × 0.5
while to change x = y/(k1 + k2 × k4 × k6) is not that simple. As a conse-
quence, we introduce an intrinsic reciprocal rounded to the nearest value in our
implementation. The intrinsic is used by calling __drcp_rn(double x) func-
tion. Using CUDA intrinsic x = y/(k1 + k2 × sk4 × k6) can be changed to
x = y ×__drcp_rn(k1 + k2× k4× k6), which speeds up the computation.

Redundant calculations

There is a considerable amount of variables involved in the dyadic computa-
tions. Several of them vary from dyad to dyad, while others remain the same
for all dyads. To improve performance by avoiding computation of the same
variable for each of 10000 dyads, we pre-compute all the common variables
before each time step. Pre-computed variables are stored as whole-cell values
into one of the structures depending on their purpose. Some of the variables
remain the same for the whole execution time of the program. These variables
are defined as constants and are known at the compiling time.

Decomposition of the computation

Several of the kernel functions, for instance, RyR probability calculation ker-
nel and Ca concentration kernel, are limited by the number of registers. This
restricts the number of concurrently executing threads. To improve the perfor-
mance and increase occupancy, we need to lower the number of registers. This
can be done by decomposing the computation inside the CUDA kernel function
into the smaller __device__ functions, which are called and executed on the
device.

Merging the execution kernels

The main computation at the dyad-level is divided between several distinct ex-
ecution kernels that perform computations on GPU. The amount of computa-
tion performed by each kernel varies from one function to another. Having one
kernel that executes a larger amount of computation instead of several smaller
kernels can increase performance significantly. First of all, since the most time -
consuming operation is loading data from the global memory, separate kernels
might need to perform several redundant memory accesses. For the second,
having a lot of small kernels might introduce kernel launch overhead, which
could be an important bottleneck for the performance of the program. Thus,
we can improve performance by merging two or more small kernels together.
The kernel merging was used to improve L-type calcium channel simulation,
by merging L-type probability and L-type opening kernels.

40

5.2 Implementation of the reduction kernel
Majority of the computations corresponding to the estimation of the calcium
concentration are executed on the dyad-level. However, to represent calcium
level in a cell, the whole-cell value is needed. The calcium concentrations of
the whole-cell are computed using equations (2.11)-(2.15). The whole-cell rep-
resentations of calcium currents are computed in the same way. Equations
(2.11)-(2.15) are known as reduction operations, which pass over O(N) input
elements and generate O(1) results. Finding the best way to sum-up vari-
ables across the calcium release units and assign them to the corresponding
cell is one of the most challenging problems we encountered working with our
implementation.

NVIDIA has presented several ways of performing reductions. Since this
part of the code has been improved many times during the programming pro-
cess, we were able to try several approaches. Further in this paragraph, we will
present a couple of possible implementations of reduction function.

5.2.1 Basic parallel reduction
Tree-based approach within each thread block is the mostly used solution for
reduction computation. First, each thread loads the corresponding value to
the shared memory. Then, the number of active threads is halved by adding
the values from the upper half of the shared memory to the lower half. We
continue to reduce the number of active threads until only one value within a
block is left. Note that because of this step, we are required to have the block
size of power of two. To accumulate the final value we launch kernel one more
time, but this time we use only one block of threads.

In our implementation, we utilize several optimization techniques presented
in [25]. Since the size of blocks is fixed in our implementation, we are able to
unroll the loops. To decrease the number of registers, we cache the data into
the read-only data cache. One of the main optimizations is performing multiple
adds per thread. We let each thread load and add multiple elements into the
shared memory before we start to perform the actual reduction algorithm. The
pseudo code is shown in Listing 5.2.

5.2.2 Shuffle warp reduce
Kepler architecture provides a shuffle instruction [9, 39], which allows to inter-
change data among threads in a warp without going through shared or global
memory. The benefits of the shuffle instruction are increased bandwidth and
decreased latency.

The algorithm that we present here is adopted from [33]. First, we perform
reduction within warps. At each iteration a thread calls _shfl_down(var, off-
set) instruction. It calculates source thread index within its warp, known as
lane ID, by adding offset to the lane ID of the calling thread. Then it returns
value held by the source thread. The returned value is added to the variable
that the caller is holding. We continue until lane 0 has the total reduced value.
To perform reduction within blocks, each warp writes its result to the shared
memory. Then the first warp performs reduction on the shared data. Finally,
thread 0 of each block contains the partially reduced variable. This is a two-
pass reduction, which means that we need to execute the kernel one more time
in order to perform the final reduction across the blocks. The pseudo code is
shown in Listing 5.3.

41

__shared__ double input_s [BLOCK_WIDTH];
input_s[tid] = 0.0;
size_t i = getDyad(n,num_cells);
unsigned int tid = threadIdx.x;
if(i < n * (my_cell + 1))

input_s[tid] += input_gpu[i];
//array size and grid size for one cell must be divisible 2
i = i + blockDim.x * (gridDim.x / num_cells);
if(i < n * (my_cell + 1))

input_s[tid] += input_gpu[i];
__syncthreads();
if (blockSize >= 128)

if (tid < 64)
input_s[tid] +=input_s[tid+64];

__syncthreads();
if (tid < 32){

volatile double * input_w=input_s;
if (blockSize >= 64)

input_w[tid] += input_s[tid + 32];
if (blockSize >= 32)

input_w[tid] += input_s[tid + 16];
if (blockSize >= 16)

input_w[tid] += input_s[tid + 8];
if (blockSize >= 8)

input_w[tid] += input_s[tid + 4];
if (blockSize >= 4)

input_w[tid] += input_s[tid + 2];
if (blockSize >= 2)

input_w[tid] += input_s[tid + 1];
if (tid == 0)

output_tmp[blockIdx.x] = input_w[0];
}

Listing 5.2: The basic parallel reduction implementation. A block consists of
128 threads. The number of threads needed for the one cell computation is
halved at each step, such that at the beginning of the execution each thread
adds two input values to the shared memory. Note that n represents the
number of elements that need to be reduced per cell.

42

unsigned int tid = threadIdx.x;
int i = getDyad(n,num_cells);
__shared__ double input_s [num_part_sum];
double sum=0.0;
if(i < n * (my_cell + 1))

sum1 += input_gpu[i];
i = i + blockDim.x * (gridDim.x / num_cells);
if(i < n * (my_cell + 1))

sum1 += input_gpu[i];
int lane = threadIdx.x % warpSize;
int wid = threadIdx.x / warpSize;
for (int offset = warpSize/2; offset > 0; offset /= 2)

sum += __shfl_down(sum, offset);
if(lane == 0)

input_s[wid] = sum;
__syncthreads();
sum = (threadIdx.x < blockDim.x / warpSize) ? input_s[lane] : 0;
if (wid==0){

for (int offset = warpSize/2; offset > 0; offset /= 2){
sum += __shfl_down(sum, offset);

}
}
if (tid == 0)

output_tmp[blockIdx.x] = sum;

Listing 5.3: The shuffle warp reduce implementation. At the beginning of the
execution, each thread adds two input values to the shared memory. Note that
n represents the number of elements that need to be reduced per cell.

5.2.3 CUB library

CUB [16] is a library that provides the implementation with diversity of al-
gorithmic strategies of the state-of-the-art algorithms in parallel for arbitrary
data types and widths of parallelism. The library contains BlockReduce class
that supports several functions which perform parallel reduction of items parti-
tioned across the CUDA threads. We select Reduce function where each thread
contributes with one element and computes a block-wide reduction for thread 0
using a binary combining operator. It is possible to optimize the reduction by
selecting an algorithm between BLOCK_REDUCE_RAKING _COMMUTA-
TIVE_ONLY and default BLOCK_REDUCE_WARP_REDUCTIONS. Fur-
ther in our implementation, we use the default algorithm.

Another possibility of implementation is to let each thread contribute with
two elements and use only half of the grid size for the computation. In other
words, each thread holds two values from different dyads before the actual
reduction operation. The pseudo code is shown in Listing 5.4. Notice that this
is a two-pass reduction, thus we need to perform the reduction on partially
reduced data as well. The second kernel launch uses the one-element-per-thread
solution described above due to the small amount of data. This approach is
called CUB list.

43

int my_cell = getCell(num_cells);
int i = getDyad(num_of_dyads,num_cells);
double elements [2];
element [1] = 0;
typedef cub::BlockReduce <double,BLOCK_WIDTH_R > BlockReduceT;
__shared__ typename BlockReduceT::TempStorage temp_storage;
element[0] = input_gpu[i];
i = i + blockDim.x * (gridDim.x / num_cells);
if(i<n*(my_cell+1))

elements [1] = input_gpu[i];
result = BlockReduceT(temp_storage).Reduce(elements, cub::Sum());
if(threadIdx.x == 0)

outdata[blockIdx.x] = result;
Listing 5.4: The implementation of execution kernel that uses CUB list solu-
tion. First, we initialize the two values corresponding to the dyads per thread,
then we perform block reduction operation using CUB library. Note that n
represents the number of elements that need to be reduced per cell.

5.3 Stencil computation on the dyad level

Stencil computation is a fixed computational pattern on an n-dimensional grid,
where each point in the grid is updated iteratively as a function of itself and its
neighbouring points. This pattern is used to write finite difference approxima-
tions of derivatives at the grid points. To solve the differential equations (2.4),
(2.8) and (2.10) in our application, we use the finite difference method which
is expressed as a 7-point 3D stencil. A 7-point stencil means that the value
of a point is computed as a combination of its own value and values of its six
neighbours at the previous time step. A 3D stencil means that the computation
is moving along the x, y and z spatial dimensions. Our main focus here is to
find a method to accelerate the stencil computation on GPU.

5.3.1 Baseline implementation
The baseline implementation of the stencil is performed by letting each thread
handle one separate grid point. Threads are organized as 3D blocks and as-
signed to a 3D grid, where cells are arranged in the x-direction. To keep track of
the previous time step and updated values, we allocate two buffers. One buffer
is allocated for reading values from previous time step and one for writing the
results of the computation. At the end of each time step buffers are swapped.
In our implementation we let one kernel function to execute all three diffusion
operations due to the possible reuse of data and kernel launch overhead.

5.3.2 Two-kernel implementation
To improve our baseline implementation, we split the computation into two
parts: (1) computation along the y-z plane on the left (x = 0) and right
(x = Nx−1) boundaries, and (2) computation of inner points and the boundary
points for y = 0, y = Ny − 1, z = 0 and z = Nz − 1. We implement two
CUDA kernel functions to handle this computation. Both of them take care of
the boundary conditions by introducing conditional statements, which create
divergent branches. Figure 5.5 shows the pseudo code of (1), and Figure 5.6
shows the pseudo code of (2).

44

int y = blockIdx.y*blockDim.y + threadIdx.y;
int z = blockIdx.z*blockDim.z + threadIdx.z;
int my_cell=blockIdx.x/num_blocks_per_cell;
int x = threadIdx.x;

//check that treads are inside the computational region
if y < Ny_diff and z < Nz_diff

c = y*Nx_diff + z*Nx_diff*Ny_diff + (Nx_diff - 1)*x;
n = c - Nx_diff;
s = c + Nx_diff;
if Ny_diff == 1

n = s = c;
else if y == 0

n = s;
else if y == Ny_diff-1

s = n;
b = c - Nx_diff*Ny_diff;
t = c + Nx_diff*Ny_diff;
if Nz_diff == 1

b = t = c;
else if z == 0

b = t;
else if z == Nz_diff - 1

t = b;
if x == 0

p = c + 1;
else

p = c - 1;
n += Ndyads*my_cell;
c += Ndyads*my_cell;
s += Ndyads*my_cell;
b += Ndyads*my_cell;
t += Ndyads*my_cell;
p += Ndyads*my_cell;

new_diff[c] = old_diff[c] + 2*(old_diff[p] - old_diff[c])*r1
+ (old_diff[n] + old_diff[s]-2*old_diff[c])*r2 + 2*(

old_diff[b] + old_diff[t] -2*old_diff[c])*r3;

endif

Listing 5.5: Pseudo code for diffusion computation along the y-z plane on the
x = 0 and x = Nx − 1. First each thread computes its global ID in y and
z directions, then it checks if it belongs to the region of the computation. If
so, each thread computes its and its neighbouring indices, which will be used
to read the data from 1D array. Before the computation, each thread checks
boundary conditions. Finally, threads perform the diffusion computation.

45

int x=blockDim.x*(blockIdx.x%num_blocks_per_cell)+threadIdx.x;

if x>0 and x<Nx_diff-1 and z<Nz_diff and y<Ny_diff
c = y*Nx_diff + z*Nx_diff*Ny_diff + x;
n = c - Nx_diff;
s = c + Nx_diff;
if Ny_diff == 1

n = s = c;
else if y == 0

n = s;
else if y == Ny_diff - 1

s = n;
b = c - Nx_diff * Ny_diff;
t = c + Nx_diff * Ny_diff;
if Nz_diff == 1

b = t = c;
else if z == 0

b = t;
else if z == Nz_diff - 1

t = b;
n += Ndyads*my_cell;
c += Ndyads*my_cell;
s += Ndyads*my_cell;
b += Ndyads*my_cell;
t += Ndyads*my_cell;

new_diff[c] = old_diff[c] + (old_diff[c-1] + old_diff[c+1] -
2*old_diff[c])*r1 + (old_diff[n] + old_diff[s] - 2*
old_diff[c])*r2 + (old_diff[b] + old_diff[t] - 2*
old_diff[c])*r3;

endif

Listing 5.6: Pseudo code for diffusion on inner points and the y = 0,
y = Ny− 1,z = 0,z = Nz− 1 boundary points. First each thread computes its
global ID in all three dimensions, then it checks if it belongs to the region of
the computation. If so, each thread computes its and its neighbouring indices,
which will be used to read the data from 1D array. Before the computation,
each thread checks boundary conditions. Finally, threads perform the diffusion
computation.

Kernel (1) and (2) are independent of each other, so it is not important in
which order we invoke them. For kernel (1) we use the block size of 2× 4× 4.
Thread with local ID = 0 computes values on x = 0 boundary and thread
with local ID = 1 computes values on x = Nx−1 boundary. For kernel (2) an
optimal block size which allows to compute on internal grid points is 32×4×4.
The block sizes are dependent on the arrangement of the dyads.

46

5.3.3 Two-dimensional implementation

Two-dimensional diffusion implementation method was adopted from [37] and
[52]. The method was improved and adjusted to fit our model. The main idea
is to organize threads into 2D blocks and use a loop to obtain the coordinate
in the third dimension. Hence, the grid is divided into a 2D plane and each
point is represented as a point in the x and y-direction. Each thread operates
on several grid points which are placed Nx × Ny distance apart, assuming
that z is the slowest varying dimension. In our implementation we use blocks
of 32 × 4 threads. This size was selected among all valid configurations by
empirical search.

Optimization techniques

Below we describe several optimization techniques that have been used to im-
prove the two-dimensional implementation. The pseudo code is shown in List-
ing 5.7.

• Usage of registers

Every time a thread iterates over z-direction, it reads a current value and
its neighbours along z-direction from the global memory. Since the point
(i, j, k) becomes (i, j, k-1) and the point (i, j, k+1) become (i, j, k) at
the next iteration, we can cache the points (i, j, k-1) and (i, j, k) into the
registers and read only (i, j, k+1) from the global memory. In this case
we need only one global memory access at every iteration.

• Blocking with read-only cache

Each thread reads 7 points of the data in order to produce one output
value. Since the buffer containing input grid is used only for read op-
erations, we can get faster access by using read-only cache instead of
accessing the global memory at each time step.

• Handling constants

To avoid unnecessary computations, whenever it is possible we compute
constants beforehand and define them with #define macro.

• Handling x and y boundary conditions

The loop over z-direction contains a significant number of if tests that
check boundary conditions for x-y plane, which causes warp divergence.
We create four new variables: Nx_diff1, Nx_diff2, x_diff1, x_diff2,
which are used to compute the corresponding four neighbouring indices:
y−1, y+1, x−1 and x+1 respectively. This allows us to check the bound-
ary conditions and update the new variables according to the boundary
before the for-loop. As a consequence, now indices over z-direction do
not require boundary check and do not cause warp divergence.

• Handling z boundary conditions

Since we use registers to cache values over z-direction, we can initialize
values for the boundary z = 0 before the loop. For the other boundary,
z = Nz − 1, we construct if test inside the loop and check the boundary
condition at every iteration.

47

int blocksPerCell = gridDim.x /num_cells;
int y = blockIdx.y * blockDim.y + threadIdx.y;
int x = blockDim.x*(blockIdx.x%blocksPerCell)+threadIdx.x;
int my_cell = blockIdx.x /b locksPerCell;
int in_idx = y*Nx_diff + x;
int stride = Nx_diff*Ny_diff;
register double front, current, behind;
if x < Nx_diff and y < Ny_diff
int Nx_diff1 = Nx_diff;
int Nx_diff2 = Nx_diff;
int x_diff1 = 1;
int x_diff2 = 1;
if(Ny_diff == 1)

Nx_diff1 = Nx_diff2 = 0;
else if(y == 0)

Nx_diff1 = -Nx_diff;
else if(y == (Ny_diff-1))

Nx_diff2 = -Nx_diff;
if(Nx_diff == 1)

x_diff1 = x_diff2 = 0;
else if(x == 0)

x_diff2 = -1;
else if (x == (Nx_diff-1))

x_diff1 = -1
if(Nz_diff == 1)

stride = 0;
in_idx += Ndyads*my_cell
current = old_diff[in_idx+stride];
front = old_diff[in_idx];
for int i = 0; i < Nz_diff; i++

behind = current;
current = front;
front = old_diff[in_idx+stride];
if (i == (Nz_diff - 1))
front = behind;

n = in_idx - Nx_diff1;
s = in_idx + Nx_diff2;
t = in_idx + x_diff1;
b = in_idx - x_diff2;

new_diff[in_idx] = current + (old_diff[b] + old_diff[t] -
2*current) * r1 + (old_diff[n] + old_diff[s] - 2*
current)*r2 + 2*(behind + front - 2*current)*r3;

in_idx += stride;
end for loop
end if

Listing 5.7: Pseudo code for the two-dimensional dyad diffusion computation.
Threads are arranged as 2D blocks. The loop over z-direction is introduced.

48

(Listing continued from previous page) First, each thread computes the
corresponding index and checks the x and y boundary conditions. Then,
previous and current z values are loaded into the registers. Each thread goes
through the loop, updates z values and reads z + 1 value from the global
memory. Then, it checks z = Nz − 1 boundary, computes the neighbouring
indices and performs diffusion operation.

5.3.4 Spatial blocking with shared memory

Shared memory can be used to improve the performance of a stencil compu-
tation by reducing the access to the global memory. We apply spatial block-
ing with shared memory to the two-dimensional implementation. Each thread
block allocates (BDIMY +2)×(BDIMX+2) chunk of shared memory, where
BDIMX and BDIMY are the number of threads in the x and y-directions.
Since a point computation requires access to its neighbour points, we intro-
duce additional slices (halo points) at each border of the shared memory array.
Firstly, each thread reads its own value from the previous grid and stores it
into the shared memory. Then, the boundary threads read and load the halo
data from the global memory to the shared memory.

5.3.5 Spatial blocking with shared memory and additional
registers

Loading halo data can cause warp divergence, which can be reduced by keep-
ing y halo values in the registers in the similar fashion as for the boundary
conditions in the z-direction. In this case, every thread needs to allocate only
(BDIMY)× (BDIMX + 2) chunk of shared memory, so that shared memory
is used for the inner grid points and halo points in the x-direction. However,
this requires two more registers per equation.

5.4 L-type channel simulation

L-type calcium channel simulation consists of two steps: probability computa-
tion and sampling from the binomial distribution. In our first approach, we
construct two kernels: (1) L-type probability calculation and (2) L-type open-
ing. In this paragraph, firstly we will describe the implementation of each of
the kernel functions separately, then we will assess the possibility to join two
separate kernel functions into one function, called L-type simulation.

5.4.1 L-type probability calculation

Although probability computation involves a sufficient number of operations,
L-type probability calculation kernel does not allow for many optimizations.
The structure of thread blocks and grid is plain. Since we are operating on
dyad-level and there is no dependency between cells, calcium release units from
contrasting cells are allowed to be assigned to the same block of threads. In
our computation we take advantage of CUDA compiler and read-only cache.
Other optimizations, such as the use of shared memory, had no impact on
performance.

49

5.4.2 L-type opening

In this part we focus on the L-type calcium channels opening, which is sam-
pling from the binomial distribution. The structure of the threads and grid
is treated in similar fashion as in the (1) L-type probability computation. We
use coalesced memory to access random numbers generated by the cuRAND
random number generator. Read-only cache is used for faster access to the
read-only data. Moreover, the standard power operation is changed to our
implemented power function.

5.4.3 Joined L-type channel simulation kernel

The L-type opening computation depends on the probabilities computed in L-
type probability calculation kernel. In the next chapter we will see that L-type
opening function is compute-bound while L-type probability computation is
memory-bound. Moreover, the probability computation requires 30 registers,
while the sampling computation requires 38 registers. The number of registers
required for the computation can be reduced by merging kernels. Therefore,
the possible optimization is to join both kernel functions into one, called L-type
simulation.

To increase the performance of the joined kernel function, several optimiza-
tions are performed in addition to the ones applied to distinct implementations.
Because the computed probabilities and random numbers are used more than
once by each thread, we store them into the shared memory. The use of shared
memory helps to lower the number of registers. Furthermore, for the faster
access, we load one of the structures which contain variables per cell into the
local memory.

5.5 RyR probability calculation

The RyR probability calculation performs an extensive number of computa-
tions, some of them require a reduction operation. The basic approach would
be to have separate kernels for the computation and for the reduction opera-
tion. In this case, we would need to perform three kernel launches because the
reduction operation consists of two kernel launches. However, in our imple-
mentation we decided to partially reduce data inside the computational kernel.
Thus, the RyR probability calculation kernel is composed of the actual com-
putation and a partial-reduction on dyad-level. Considering that RyR opening
(see Section 5.6) is independent of these operations and that we need to perform
reduction in the RyR probability calculation function, we delay the final block
reduction until the calcium concentration computations will be executed. In
other words, we combine two final block reduction kernels into one, such that
we are able to lower the kernel launch overhead. As a results, we need to
launch only one kernel function to perform RyR probability calculation. The
main computation is composed of several parts that are divided into individual
device functions (see Listing 5.8). Note that due to the partial-reduction com-
putation which requires to keep dyads of distinct cells in separate blocks, we
need to use a cell separation mapping to assign each thread to a specific dyad.

50

RyR probability<<<blocks,threads>>>
__device__ Compute Ca current through Ca Channel()
__device__ Compute Na current through L-type channel()
__device__ Compute K current through L-type channel()
__device__ Compute RyR probabilities()
Partial - reduction of Ca, Na and K currents

Listing 5.8: RyR probability computation structure. It shows all the com-
putations executed inside the RyR probability kernel function. Compute Ca
current, Compute Na current and Compute K current are defined as __de-
vice__ functions. CUDA kernel function is indicated by <<<>>>.

Similarly to the majority of the functions, we use read-only cache to increase
the number of warps per SM and reduce the number of registers. Moreover, we
put all the variables, that are common to all threads in the same block, into the
shared memory. This lowers the number of registers as well. Finally, we take
advantage of the CUDA intrinsic function that provides a faster computation
of reciprocals, which is used to avoid the heavy division operation.

5.6 RyR opening computation

The RyR opening kernel function computes eight possible transitions between
four RyR states. It is the second most time consuming kernel in our application.
We keep implementation on device similar to the CPU implementation: each
thread checks the four states and if the state is not empty, the thread reads
two random numbers from the global memory and samples from the binomial
distribution. We keep the same structure of the grid as for L-type simulation
kernel, because all the computations are performed on the dyad-level and no
reduction operation is needed.

A small amount of optimizations have been made to decrease the execu-
tion time of the RyR opening computation: coalesced access to the random
numbers in the global memory, the read-only cache and the CUDA intrinsic
reciprocal. The most significant improvement that has a great impact to the
RyR opening kernel function is our implemented power function used in the
binomial sampling method.

5.7 Ca concentration computation

Calcium concentration computation is especially complex. It contains several
laborious calculations that also include reductions of one or more items. The
implementation is divided into two parts: main kernel and reduction kernel.
The latter performs reductions on partially reduced data across the blocks of
threads and sends the final result as the whole-cell value to the corresponding
cell. The main kernel consists of two parts: computation and partial-reduction.
The structure of Ca concentration computation is shown in Listing 5.9. Because
the final reduced value is a per-cell value, calcium release units from different
cells need to be assigned to different blocks. Thus, we used a cell separation
mapping. We have broadly presented reduction algorithm in Section 5.2, so
we omit the reduction part here and concentrate mostly on the computational
part.

51

Ca concentration<<<blocks,threads>>>
__device__ Compute concentrations and SR Ca flux in a dyad ()

Partial-reduction of SR Ca release flux
__device__ Compute local Na-Ca exchanger current in myoplasm()
__device__ Compute local Na-Ca current in submembrane()
Compute Sarcolemmal Ca Pump, local background Ca current
Compute local myoplasmic Ca concentration
Partial - reduction of Na-Ca, Ca Pump, Ca currents

Block reduction<<<blocks,threads>>>

Listing 5.9: Structure of the Ca concentration computation. There are two
main kernels: Ca concentration and Block reduction. All the computations
and partial-reduction operations executed inside the Ca concentration kernel
are shown in the code. CUDA kernel functions are indicated by <<<>>>,
functions with __device__ syntax are called from kernel and performed on
the device, while other computations are performed directly inside the kernel
function.

5.7.1 Calcium concentration kernel

In this paragraph we declare all optimizations we have made on the Ca con-
centration kernel excluding partial-reduction of SR Ca release flux and partial-
reduction of NA-Ca, Ca Pump and Ca currents. Our initial implementation
was limited by the number of registers per thread. To lower the number of reg-
isters we apply several optimizations. Since fetching from the shared memory
is faster than from the global memory, we let thread 0 load variables that are
common for cell into the shared memory which is accessible by all threads in
a block. Moreover, we store data, which is accessed more than once into the
shared memory. Secondly, we divide the kernel into smaller device functions.
This reduces the number of registers significantly. Powers of two and division
are costly operations that are substituted by a sophisticated multiplication op-
eration. For divisions that cannot be interchanged with multiplications, we
use the CUDA intrinsic function that computes the reciprocal of a variable in
round-towards-nearest mode.

As mentioned above, the computation kernel performs two types of calcu-
lations: the main computation and the reduction within the dyads. In order
to perform the reduction, we use one of the algorithms presented in Section
5.2. We select to use the block-reduction provided by the CUB library because
of its high performance and effortless adjustment to our implementation. The
partial-reduction is implemented as a part of the computation. It operates in-
side the device function which was called from the kernel function and it takes
part in the main kernel computation. This is shown in Listing 5.9.

52

5.7.2 Reduction kernel

The calcium concentration computation requires the reduction of five values per
cell. The partial reduction is performed during the main kernel launch and the
remaining reduction is left to an independent kernel. To obviate unnecessary
kernel launch overheads, we combine the reduction over partially reduced items
from the RyR probability calculation function (Section 5.5) with the reduction
from the computation of calcium concentration. Block reduction operates on
the Ca, Na, K, Na-Ca, Ca Pump currents and on the SR Ca release flux. In
our implementation we select the CUB provided block reduction to reduce all
eight values. We invoke the kernel only once, specifying the grid size equal to
the number of cells and the optimal block size equal to the number of threads
(128 threads are used in our program) that allows each block to perform the
reduction over cell variables.

5.8 Summary

In this chapter, we presented implementation and optimization strategies for
the computation on the dyad-level. We broadly described several algorithms
and implementation methods for the reduction operation and the intracellu-
lar diffusion computation. L-type simulation, RyR channel opening and Ca
concentration computation were presented in terms of the composition and
optimizations.

53

Chapter 6

Experimental results and
evaluation

In the previous chapter we have presented various optimization techniques
and algorithms used for the implementation of dyad-level computations. We
begin this chapter by comparing different implementations for the reduction
operation and stencil computation. Further, we evaluate each of the dyad-level
function implemented on the device separately. To verify our implementation
we will look at the execution time of the function, number of floating-point
operations per second and memory bandwidth. Then, we compare the impact
of the different optimization techniques for all the functions. We conclude this
section by measuring scalability and the performance of the simulator.

6.1 Experimental setup

For all experiments, we use a fixed time step of 0.05 ms. To discretize the
diffusion terms in Equation (2.16), we use a fixed spatial mesh resolution of
0.5 mm. For the diffusion terms in equations (2.4), (2.8) and (2.10) we use
spatial mesh resolution of 0.2 mm. To evaluate all the implementations and
optimizations of the separate kernel functions on the dyad-level, we run the
tests for one time step. Unless otherwise noted, the number of cells is 1500
and each cell always contains 10000 calcium release units. Dyads are organized
as a 3D grid of size 100 × 10 × 10. Each kernel was executed five times and
the fastest time was selected. For the evaluation we use kernel execution time
excluding the cost of PCI data transfer. Floating-point operations per second
and memory bandwidth were measured by nvprof profiler. The implementation
and optimization experiments were performed with disabled ECC option on the
Lizhi server (Section 3.5) using a single GPU. The scaling tests and the cell
computation speed tests were performed on the Abel supercomputer (Section
3.5) for 10000 time steps, measuring the whole program execution time.

54

Implementation Read Write Total

Basic parallel reduction 121 GB/s 2 GB/s 123 GB/s
Shuffle warp reduce 163 GB/s 3 GB/s 166 GB/s
CUB (commutative only) 169 GB/s 4 GB/s 173 GB/s
CUB (warp reduction) 177 GB/s 3 GB/s 180 GB/s
CUB (list) 179 GB/s 1 GB/s 180 GB/s

Table 6.1: Memory bandwidth for the reduction computation using different
implementation strategies: basic parallel reduction, shuffle warp reduce and
three reduction algorithms from the CUB library. The table contains read,
write and total bandwidth of the first kernel launch.

6.2 Comparing results from different reduction
implementations

In this section we will present the achieved performance of several different
implementation techniques of the reduction operation: basic parallel reduction,
shuffle warp reduce algorithm and three different variations of the CUB library
algorithms. In this analysis, we measure the reduction operation contained in
the dyad diffusion function (see Listing 4.2). It is the only function where the
reduction is not merged with the computation. The reduction is performed
by launching two execution kernels. It operates on six items, which implies
6× 10000× 8 bytes = 0.48 MB of data in total.

Reduction is not a computationally heavy operation, but it requires a lot of
memory read and write operations. Therefore, the reduction kernel is memory-
bound and we focus on the memory bandwidth in this analysis. During the first
kernel launch a large number of blocks performs reduction, while during the
second launch the reduction is performed on already partially reduced data by
a significantly smaller number of threads. The second kernel launch is so short,
that it is omitted from our bandwidth analysis. Table 6.1 shows the memory
bandwidth given by the NVIDIA profiler for the different implementations. The
bandwidth of the basic parallel reduction reaches only 123 GB/s. The improved
reduction with shuffle operations increases device memory bandwidth to 166
GB/s. The CUB reduction with the commutative only algorithm achieves 173
GB/s, which is more than 96% of the STREAM measured bandwidth. The
CUB with the warp reduce algorithm and the CUB list reach the maximum
practically achievable memory bandwidth, which is 180 GB/s.

Figure 6.1 visualizes how bandwidth depends on our selected implementa-
tion method and data size. From the graph we can see that all the implemen-
tations behave similarly. The bandwidth increases rapidly when applying the
reduction for data ranging from 0.48 MB to 24 MB, then the growth slows down
and the bandwidth reaches its maximum at the point where the data size is 240
MB. When further increasing the data size, bandwidth remains stable. The
increased size of data yields the better usage of GPU resources and increased
bandwidth. From the graph we can see that there is a large gap in memory
bandwidth between the basic parallel reduction and other implementations.
Moreover, the progress of the bandwidth of the basic parallel reduction is not
as steep as for the other methods.

55

Figure 6.1: Memory bandwidth for the reduction computation. The graph
shows how bandwidth depends on the selected implementation method and
the data size. The bandwidth reaches its maximum when using 240 MB of
data.

Implementation First launch Second launch Total time

Basic parallel reduction 6.00 ms 0.15 ms 6.15 ms
Shuffle warp reduce 4.39 ms 0.09 ms 4.48 ms
CUB (commutative only) 4.27 ms 0.10 ms 4.37 ms
CUB (warp reduction) 4.09 ms 0.09 ms 4.18 ms
CUB (list) 4.02 ms 0.07 ms 4.09 ms

Table 6.2: Execution time of the reduction computation. The table shows the
execution time of the first kernel launch, the second kernel launch and the
total execution time for different implementations. CUB list implementation
consists of first launching the kernel with the two-elements-per-thread approach
and then launching the kernel with the one-element-per-thread approach.

The execution time of the reduction operation, which consists of two kernel
launches, is shown in Table 6.2. We can see that the fastest algorithm takes
4.09 ms. Basic parallel reduction is 1.5 times slower than the fastest CUB
list implementation. Shuffle warp reduce implementation execution takes 4.48
ms, which is 27% less than the execution time of basic parallel reduction, but
10% more than the execution time of the CUB list implementation. Both
CUB commutative only and CUB warp reduction takes more time to perform
reduction operation than the CUB list algorithm.

56

6.2.1 Discussion

We have tried several reduction algorithms during the process of the imple-
mentation. The advantage of using the CUB library to perform the reduction
operation is undeniable. The drawbacks of our implemented basic parallel re-
duction are low occupancy and the need for thread synchronization. Increasing
occupancy may not increase the performance because we are also limited by
the shared memory. Even though we increased memory utilization of the ba-
sic parallel reduction by including multiple additions at the beginning of the
kernel, our implementation does not reach the achievable bandwidth or the
bandwidth obtained in [25]. Reduction with the shuffle instruction achieves
68.3% occupancy, which means that there is an acceptable number of warps
executing on each SM. The problem of limited performance might be mem-
ory and execution dependencies. Although all the algorithms provided by the
CUB library showed good performance, in our program we will be using the
fastest approach - the CUB list implementation, which achieves the maximum
STREAM measured bandwidth. Our achieved performance is close to the per-
formance of the CUB reduction given in [33], where the reduction was executed
on the Kepler K20X and on data set of 537 MB, which gave bandwidth of 175
GB/s. In addition, the whole data set was reduced by one CUB function while
in our implementation we call the CUB reduce function 6 times and we use
thread synchronization between the calls.

6.3 Results of different implementations of the diffusion
computation

We evaluate the performance of the 3D stencil computation algorithms and
compare it with the Roofline model [53]. Since the dyad diffusion kernel func-
tion computes not one, but three differential equations, we include all of them
in our analysis.

First, we use the Roofline model analysis on the baseline implementation of
the diffusion equations. An update of a single point requires 18 or 16 double-
precision floating point operations depending on the selected equation. There-
fore, at each time step the kernel function performs (18+18+16)×Nx×Ny×Nz
operations, where Nx, Ny and Nz represent the grid dimensions. To make our
analysis easier, we assume that once we load a value, it remains in the cache
memory for this time step. Hence, the size of the data that is loaded per time
step is Nx × Ny × Nz × 8 × 3 bytes and the size of the data that is stored
per time step is also Nx × Ny × Nz × 8 × 3 bytes. Here, 8 is the size of a
double precision value in bytes. We multiply computations by the factor of 3,
because we perform three differential equations that have the same amount of
loads and stores. Now, we can compute the operational intensity I, which is
defined as a floating-point operations per DRAM transfer in bytes and perform
the Roofline model analysis that was presented in Section 3.8.

I =
W
Q

=
(18 + 18 + 16)×Nx×Ny ×Nz

(Nx×Ny ×Nz × 8× 3)× 2
= 1.0833 GFLOP/GB

Peak floating-point performance is defined by the hardware specifications:

C = 1174.78 GFLOPS

57

Memory bandwidth measured by the STREAM benchmark is

B = 180 GB/s

C
B

=
1174.78GFLOPS

180 GB/s
= 6.5 GFLOP/GB > I

According to the Roofline model, this indicates that the performance is limited
by memory bandwidth. Optimizing memory accesses is the most important
approach in this case.

The attainable compute performance found by the Roofline model is

P = min

{
C
B× I

= min

{
1174.78 GFLOPS
180× 1.0833 GFLOPS

= 194 GFLOPS

Table 6.3 displays the execution times for one time step of all the optimiza-
tions applied to stencil computation function. The two kernel implementations
described in Section 5.3.2 lead to the longest execution time, which is 17.35 ms.
The two-dimensional solution from Section 5.3.3, where we loop along the z-
direction and store redundant variables into the registers, decreases execution
time by more than 50%. Usage of the read-only cache and x and y bound-
ary optimizations decreases the execution time further. Thus, the completely
optimized two-dimensional version obtains the best execution time, which is
6.99 ms. As we can see, this implementation is more than two times faster
than our naive baseline implementation. Additional optimization techniques
on the two-dimensional implementation, such as spatial blocking using shared
memory with or without additional registers, increased the execution time.

As we have observed, the diffusion kernel function is memory-bound. None
of the implementations achieve the STREAM measured bandwidth. For the
optimized two-dimensional implementation, the bandwidth increases to 138
GB/s, whereas for the baseline and two-kernel implementation it is only 64
GB/s. The implementation that uses shared memory without additional reg-
isters achieves bandwidth of approximately 82 GB/s and the implementation
with additional registers achieves 83 GB/s. All the measurements can be found
in Table 6.4.

In Figure 6.2, the two-dimensional implementation leads to a significant
increase in the number of floating-point operations per second compared to the
baseline implementation. As discussed above, the computational intensity is
1.0833. This indicates that the attainable number of FLOPS is 194 GFLOPS.
As shown in Figure 6.2, the baseline and the two-kernel implementations have a
large gap compared to the estimated attainable peak on Kepler, which in ratio
is 55% and 50%, respectively. In contrast to the two-kernel implementation,
the two-dimensional implementation achieves 98% of the estimated number of
FLOPS. This is the highest performance we were able to reach. Moreover, in
our kernel function we perform additional calculations needed for the stencil
computation, which probably lowers the performance. The figure shows, that
blocking with shared memory does not yield performance improvements. On
the contrary, it degraded performance by approximately 35%. Blocking with
shared memory and the usage of addition registers in the y-direction reduces
performance even more.

Our analysis with the NVIDIA profiler indicates that warp divergence and
a high number of registers are the main bottlenecks of performance for all the

58

Optimization time in ms #registers size of shared
memory

Baseline implementation 16.14 46 0
Two-kernel solution 16.00 + 1.35 42 + 42 0 / 0
Two-dimensional implementation 8.12 64 0
Read-only cache optimization 7.37 65 0
X and Y boundary optimization 6.99 64 0
Spatial blocking with shared memory 10.52 78 4.7813KB
Spatial blocking with shared memory
and additional registers 11.43 89 3.1875KB

Table 6.3: Execution time of diffusion computation on the dyad-level and kernel
details. The time and the number of registers for the two-kernel solution are
given as inner diffusion kernel plus x-boundary diffusion kernel.

Implementation Read Write Total

Baseline implementation 41 GB/s 23 GB/s 64 GB/s
Two-kernel solution 41 GB/s 23 GB/s 64 GB/s
Two-dimensional implementation 87 GB/s 51 GB/s 138 GB/s
Spatial blocking with shared memory 48 GB/s 34 GB/s 82 GB/s
Spatial blocking with shared memory
and additional registers 51 GB/s 32 GB/s 83 GB/s

Table 6.4: Device Memory Bandwidth of the optimized versions of the 3D 7-
point stencil computation. The measurements are given by the NVIDIA Visual
profiler.

implementations. The number of registers used is given in Table 6.3. As we can
see spatial blocking with shared memory and additional registers requires the
largest number of registers. However, in the two-dimensional implementation
each thread uses 64 registers or in other words, each block uses 8192 registers,
which means that each SM is limited to executing 8 blocks simultaneously. As
a result, the achieved occupancy is no larger than 47%.

6.3.1 Discussion
Several different stencil computation implementations and optimizations were
analyzed during this project. First, the two-kernel solution was introduced to
avoid warp divergence during computations on the boundary. However, we
saw that the kernel launch overhead cannot be hidden by the computation.
Dividing the computation among two kernels is more expensive than having
conditional statements inside the main computation. Having a loop over the
z-direction and caching the data into the registers turned out to be the most
significant improvement in the diffusion computation because of the fast access
to the registers. However, thread divergence and a large number of registers
per thread are significant issues. Because of the conditional statements caused
by the unoptimized boundary conditions not all warps have the same branch-
ing behaviour, which leads to inefficient usage of GPU resources. Despite all
the optimizations applied to the boundary conditions, the NVIDIA profiler

59

Figure 6.2: Number of floating-point operations per second of the different
implementations of the 3D 7-point stencil computation. Note that BI is the
baseline version that was described in Section 5.3.1. 2K is implementation that
invokes two kernel functions: one for the inner computation and one for the x-
boundary computation. 2D is a two-dimensional implementation, where we use
a 2D grid for x and y-directions, and a loop over z-direction. Moreover, we use
registers to cache points that vary over z-direction. The 2DSh implementation
takes advantage of the 2D shared memory. In addition to the shared memory,
the 2DShR implementation uses registers for keeping points that vary in the
y-direction. The red line is the model-estimated maximum of the floating-point
operations per second.

still reports warp divergence of 20.8% for the two-dimensional implementa-
tion. Other optimizations such as predefining constants and improving the
z = Nx − 1 boundary conditions by performing the last iteration outside the
loop do not increase the performance.

Loading halo data in the shared memory needs conditional operations at
each iteration. This causes a significant execution overhead, since every thread
in the warp needs to execute the same condition, which leads to 75% of warp
divergence in the implementation that uses spacial blocking with shared mem-
ory. In fact, this futile use of the shared memory on stencil computations on
the Kepler architecture was mentioned in [37].

We extended our shared memory optimization further by using registers
along the y-direction, but even then the execution time increased. Although,
additional usage of registers gave improvements on the Kepler GK-104 archi-
tecture [52], it does not show any benefits in performance on the Kepler GK110.

In our program we will be using fully optimized two-dimensional solution.

60

6.4 L-type channel simulation

In the previous chapter, we introduced two different implementations of the
L-type computation on the device. One possible way is to have two sepa-
rate CUDA kernel functions: (1) L-type probability calculation and (2) L-type
opening computation. Another way is to join all the computations into one
kernel function. In this section, we will present and compare results from both
implementations.

First, we want to determine if the L-type probability calculation kernel is
memory-bound or compute-bound. We evaluate two specific metrics: memory
bandwidth and computational throughput expressed as the number of floating-
point operations per second. Table 6.5 shows the resulting memory bandwidth
and computational throughput. We know that for Kepler K20m the STREAM
measured bandwidth is 180 GB/s. L-type probability calculation function at-
tains 170 GB/s of memory bandwidth, which is more than 94% of the estimated
peak. From the NVIDIA profiler we can get the exact number of the double-
precision floating-point operations kernel is performing and measure the perfor-
mance in GFLOPS. The execution time of the kernel is 4.22 ms and it performs
720×106 floating-point operations, which gives 171 GFLOPS. According to the
NVIDIA profiler, the kernel utilizes only 50% of the compute capability. Hence,
L-type probability calculation kernel is memory-bound. Note that block size,
register usage, and occupancy allows us to fully utilize all warps on the GPU.
However, the possible problem here could be that a load or store operation can
not be performed, because the required resources are fully utilized.

The execution time of the L-type opening kernel is 5.18 ms and the com-
putational throughput is 295 GFLOPS. According to the NVIDIA profiler,
the kernel compute utilization is more than 80%, which means that the ker-
nel is compute-bound. Memory bandwidth is 142 GB/s, which is 79% of the
STREAM measured bandwidth.

We have observed that the L-type opening function is compute-bound, but
the L-type probability computation is memory-bound. This means that we can
consolidate these two kernels into one, without losing performance. In this case,
we avoid 50% of the kernel launch overhead. Moreover, we lower the number of
accesses to the global memory since the L-type probability computation pro-
vides values that are used in the L-type opening. After the consolidation, the
L-type kernel execution time becomes 7.6 ms which is faster than executing the
two kernels consecutively, but as expected the number of registers increases.
The final result after all optimizations is a perfectly balanced memory and com-
pute utilization and a significantly faster computation. The complete L-type
computation time is 6.11 ms, the memory throughput is 158 GB/s which is
88% of the achievable peak bandwidth and the computational throughput is
334 GFLOPS. Thus, we have increased the utilization of the computation by
the consolidation of the L-type probability calculation and the L-type opening
computation kernels. According to the NVIDIA profiler, the L-type channel
simulation utilization is 80%. We are not able to improve the joined L-type
computation kernel further, because of the limited number of registers and
amount of shared memory per multiprocessor. According to the CUDA occu-
pancy calculator, lowering the number of registers further would not help to
improve the occupancy and increase the performance.

61

Kernel function GFLOPS Bandwidth Time # registers

L-type probability calcula-
tion

171 170 GB/s 4.22 ms 30

L-type opening 295 142 GB/s 5.18 ms 38
L-type simulation 334 158 GB/s 6.11 ms 41

Table 6.5: Performance metrics of L-type channels computation. The table
shows the number of floating-point operations per second in GFLOPS, de-
vice memory bandwidth, execution time and number of registers for L-type
probability calculation kernel, L-type opening computation and a joined im-
plementation - L-type simulation.

6.5 RyR probability calculation

The occupancy of the RyR probability calculation function was limited by
the number of registers. Performing the first optimization technique, which is
dividing computational kernel into several small device functions called from
the execution kernel, reduced the number of registers used and increased a
theoretical occupancy rate of the threads from 56% to 75%.

The RyR probability calculation is a complex function, where the main
computation and partial-reduction are performed in the same execution ker-
nel. We have already evaluated the reduction implementation and confirmed
that it is a memory-bound operation. Thus, to perform a better evaluation, we
will look only at the computational part. According to the NVIDIA visual pro-
filer, compute utilization is significantly lower than memory utilization. Thus,
the computational part of the RyR probability calculation is also bounded by
memory bandwidth. To increase the performance, we need to lower the num-
ber of registers used. This was done by the use of the read-only cache, which
decreased the number of register per thread from 37 to 34. To lower the num-
ber of registers further, we loaded a common variable into the shared memory.
This optimization decreased the number of registers per thread to 32, which
according to the NVIDIA occupancy calculator, is enough to achieve 100% oc-
cupancy. A disadvantage of the usage of shared memory is the required thread
synchronization. In Table 6.6, we can see how the decrease in the number of
registers results in decreased execution time.

Optimization Time # of registers

None 8.23 ms 37
Read-only 8.07 ms 34
Shared memory 7.95 ms 32

Table 6.6: Optimisation of the RyR probability calculation. The table shows
that the register count per thread can affect the execution time of the CUDA
kernel function. Note that the measurements are done just for the computa-
tional part of the kernel.

62

Kernel function GFLOPS Bandwidth Time

Computational part 209 172 GB/s 7.95 ms
Full RyR probability calculation 210 142 GB/s 9.36 ms

Table 6.7: Performance metrics of the RyR probability calculation. The first
row shows performance of the function without reduction. The second row
shows performance of the full kernel function.

Now, we will look at the complete RyR probability calculation execution
kernel, where both computation and reduction operation are executed. In this
evaluation, we look at the fully optimized computational part. We use the CUB
library one-element-per-thread approach to perform the reduction operation.
The complete RyR probability kernel execution time is 9.36 ms. The compute
utilization is slightly lower than the memory utilization. Otherwise it would be
a perfectly balanced kernel function. Memory bandwidth exceeds 142 GB/s,
which is 79% of the achievable bandwidth. Table 6.7 contains the performance
of the RyR probability calculation. It is not surprising that joining reduction
part almost does not effect the computational performance, but it lowers the
memory utilization.

6.6 RyR opening computation

Several optimizations have been made to increase the performance of the RyR
opening kernel function, but the most significant improvement is the reimple-
mented power function used in the binomial sampling method. It decreased ex-
ecution time from 12.17 ms to 10.44 ms. According to the NVIDIA profiler, the
RyR opening kernel function is bounded by memory bandwidth. The achieved
bandwidth in this computation is 162 GB/s, which is 90% of the achievable
bandwidth. Computational throughput reaches 142 GFLOPS. Results can be
found in Table 6.8.

Kernel function GFLOPS Bandwidth Time

RyR opening 142 162 GB/s 10.37 ms

Table 6.8: Performance of the RyR opening computation. The table shows the
number of floating-point operations per second, device memory bandwidth and
execution time of the RyR opening computation.

63

Kernel function GFLOPS Bandwidth Time

Ca concentration only computation 274 119 GB/s 22.09 ms
Ca concentration kernel 244 98 GB/s 26.12 ms

Table 6.9: Performance of the Ca concentration computation. The table shows
the number of floating-point operations per second, the device memory band-
width and the execution time of the main kernel of the Ca concentration com-
putation. The Ca concentration kernel defines the main computational kernel.
Ca concentration only computation excludes the partial-reduction operations.

6.7 Ca concentration computation

The Ca concentration function consist of two kernel calls: the main kernel and
the block-reduction kernel. As we have already evaluated the reduction opera-
tion, in this analysis we will concentrate on the main kernel. We evaluate the
performance of the main kernel in the same way as we did for the RyR proba-
bility calculation function. We will look at the computational part separately
from the partial-reduction operation.

We need to determine whether the computational part of the main kernel is
memory or compute-bound. The kernel performs 6.045×109 floating-point op-
erations and the execution time is 22.09 ms, which means that its performance
is 6.045× 109/0.02209 = 274 GFLOPS. According to the NVIDIA Visual pro-
filer, kernel compute and memory utilizations are 53% and 55% respectively.
Both compute and memory utilizations are lower than 60%, which means that
the kernel is probably bounded by latency of arithmetic operations. The imple-
mentation achieves 55.2% occupancy which is close to the theoretical occupancy
56.2% of the kernel. Due to the grid structure and the number of registers we
cannot expect higher occupancy rate.

Now, let us evaluate the results of the main kernel that includes the partial-
reduction. The bandwidth of the whole main kernel is represented in the second
line in Table 6.9. The kernel achieves a low compute throughput and memory
bandwidth utilization compared to the achievable peak. A large amount of
warp blocking before reduction and before writing to the shared memory is
performed, which reduces the performance.

Merging block reduction kernels from the RyR probability calculation and
the Ca concentration computation, increases the overall performance signifi-
cantly. However, the achieved bandwidth of the block reduction kernel is 83
GB/s which is significantly lower than the STREAM measured bandwidth. Al-
though thread block size and number of registers allows us to completely utilize
warps on the GPU, the program does not reach peak performance due to the
low amount of data involved in the reduction operation.

64

6.8 Optimization impact on the distinct functions

Figure 6.3 shows most of the optimization techniques that were applied to the
dyad-level computation functions. All of the functions are distinctive: some of
them perform more computations than others, some of them are compute-
bound, while others are memory-bound, some of them have a simple grid
structure, while others require the cell separation mapping. As a consequence,
diverse optimization techniques have a different influence on distinct kernel
functions and the same optimization might not lead to the same improvement.
One example is the dyad diffusion function for which the use of shared memory
leads to decreased performance while for other functions it lead to significantly
better performance.

From the Figure 6.3 we can see that the calcium concentration computation
is the most demanding kernel function in our application. It has the longest ex-
ecution time, but it also reflects optimizations best. The use of shared memory
decreased execution time by 5 ms alone. Other optimizations, such as divid-
ing computation into smaller device functions, defining constants, the use of
read-only cache and CUDA intrinsic functions, improved running time by 5 ms.
The final implementation is 33% faster then the original. The execution time
of other kernel functions shows slightly less improvement in the performance.

As we mentioned above, accessing items stored in the shared memory gives
one of the largest improvements in the execution time of the functions. The
use of the shared memory decreased L-type simulation time by 6%, the RyR
probability calculation time by 1% and Ca concentration computation time by
17%. The sum of reductions over all the code segments with applied shared
memory optimization is 5.75 ms.

Most of the computations require an extensive amount of complex division
operations. Unfortunately, not all division operations were possible to inter-
changed with a simple multiplication. However, the CUDA’s intrinsic recipro-
cal was used instead. It gave approximately 3 ms of reduction in execution time
over all the functions. This optimization had the considerable impact on the
calcium concentration computation. Usage of the CUDA’s intrinsic reciprocal
reduced calcium concentration computation time by 7%.

Read-only cache is the most common optimization, which had been used
in every kernel function. This is the most obvious and easiest optimization.
Moreover, it decreased execution time of every kernel function. The usage of
read-only cache decreased execution time of the calcium concentration compu-
tation by 3%. The execution time of the dyad diffusion kernel decreased by
9%.

The replacement of the power function that uses bit-wise operations is used
in the L-type simulation and RyR opening functions. It has no effect on the L-
type opening due to a small exponent. In this case the MATH power function
might be faster than the implemented power function. Contrary to the L-type
binomial sampling, we get a meaningful improvement for the RyR opening
binomial sampling. The execution time of the function decreased from 13.17
ms to 10.04 ms, meaning that for large exponents the new power function is
significantly faster than the simple power function.

65

Figure 6.3: Performance improvements of the individual functions in the dyad-
level computations due to the different optimization techniques. All optimiza-
tions are applied cumulatively. Improvement shows the sum of reduction in
running time over all code sections due to each optimization. Others rep-
resents manifold optimization techniques, such as power by two or division
operation interchanged with multiplication, defining constants, dividing ker-
nel into smaller device function or loading variables into local memory. RyR
opening and calcium concentration computation are counted without reduction
operation.

After all the optimizations that are shown in Figure 6.3 the execution time
of the L-type simulation decreased by 20%. The computation time of the RyR
probability and the RyR opening kernel functions decreased by 7% and 15%,
respectively. The calcium concentration computation time is reduced by 31%
and the dyad diffusion computation time is reduced by 14%.

The optimization that is not shown and mentioned in the graph is the
improved reduction operation. Faster reduction implementation yields faster
RyR opening and Calcium concentration computation. Using the fastest re-
duction algorithm, time for the calcium concentration computation decreased
from 46.93 ms to 26.12 ms, which is more than 50%. The RyR opening com-
putation execution time decreased only by 0.2 ms. According to the results,
we can conclude that the improved reduction has the largest impact on the
performance of our simulator.

66

Figure 6.4: Speed of the cell computation on one GPU. The graph shows
the dependency between the performance of the computation and the number
of cells on one GPU. The performance is given in CC/sec. 1872 cells is the
maximum number of cells that can be contained in the memory of our device.

6.9 Cell computation speed on a single GPU

A test on one GPU is performed to find out how the number of cells affects the
speed of a cell computation. To compute the speed of the cell computation, we
use a special metric called number of cell computations per second (CC/sec).
The number of cell computations is defined as the number of time steps for a
single cell. So the total number of cell computations for a given number of cells
is number of cells× number of time steps. For the smallest number of cells the
stride between cells used in the experiment is 20 cells. For the simulation, where
number of cells ranges from 100 to 500 we choose the stride to be 100 cells and
for the larger numbers of cells the stride is set to 500 cells. Graph 6.4 shows the
obtained results. The speed of computation increases with the greater number
of cells. Using a small amount of data we do not utilize GPU fully, thus single
cell computation is extremely slow. The speed rises rapidly by increasing the
number of cells from one to ten. The number of cell computations per second is
6 times larger for the simulation of 10 cells than for the simulation of one cell.
Further expanding the number of cells, we increase the speed, but the increase
in speed is not rapid. The speed becomes almost stable with the number of
cells being larger than 1000. The reason for that is the full utilization of GPU
using a large amount of data. In Figure 6.4 we can see that 1000 cells is enough
to achieve the maximum speed. Therefore, increasing the number of cells for
one GPU probably would not increase the speed.

67

6.10 Scaling experiments, results and analysis

To measure the efficiency of our application using an increasing number of
nodes, we perform scaling experiments. Due to the limited number of available
compute nodes during these tests, the number of nodes that we use ranges from
1 to 8, where each node has two NVIDIA GPUs.

As the cell simulation requires a lot of memory, weak scaling is a suitable
way for testing the program. We perform weak scaling tests using 10000 dyads
per cell. In this test we use grids of size 18 × 13 × 8 which is 1872 cells for
each GPU or 3744 cells for each compute node. We increase the tissue size
and the number of compute nodes for each test. The tissue size for 8 nodes is
72× 26× 16 cells.

Since simulation of a large number of cells takes a long time to run, a good
way of evaluating the program is a strong scaling test. To perform the strong
scaling we fix the tissue size at 18 × 13 × 16, which utilizes the maximum
memory of two GPUs. The tissue size remains the same, but we increase the
number of compute nodes for each experiment.

We measure scalability in the compute cell computations per second (CC/sec).
Note that in this experimental setup we use 10000 time steps. To verify scala-
bility, we plot the number of cell computations per second versus the number
of nodes.

The performance of weak and strong scaling tests is shown in Figure 6.5.
We see that almost the same performance is achieved using both weak and
strong scaling. The linearly increasing curve indicates a good scaling. The
weak scaling attains almost 100% efficiency in every test case because of the
low communication between the nodes and a large amount of computation.
The efficiency of the strong scaling decreases with an increasing number of
compute nodes. The communication overhead becomes more visible for the
larger number of compute nodes in the strong scaling experiment because each
node performs a smaller amount of the computation.

6.10.1 Analysis of the performance

The execution time of the simulation of the 29952 cells organized as a 72 ×
26 × 16 grid is 901.12 seconds using 16 GPUs. The time spend to perform
cell computations is approximately equal to 894 seconds on each GPU. The
diffusion computation takes 0.313 seconds for each process. The remaining
time is spent on the MPI communication and data transfer.

To verify the speed of our implementation, we compare our achieved speed
defined as a number of cell computations per second with the speed achieved
in the CPU implementation of the same simulator described in [31]. Here,
a dual Intel Xeon E5-2670 (Sandy Bridge) processor was used. For the grid
of size 236 × 2 × 3 or 1416 cells, the CPU implementation reached the speed
of 5000 CC/sec. We performed the simulation of 1416 cells using our GPU
implementation. The speed amounts to 20623 CC/sec, which is more than 4
times faster than the speed of the CPU version.

68

Figure 6.5: The performance of the weak and strong scaling tests. Performance
is given in CC/sec. The number of nodes ranges from 1 to 8. Linearly increasing
curves indicate a good scaling.

6.11 Summary

In this chapter we evaluated our implementation of the dyad-level computa-
tions. Firstly, we compared different algorithms for the reduction operation.
The best performance was demonstrated by using the CUB library implemented
reduction functions, which achieved the maximum bandwidth of 180 GB/s.
Then, we compared different implementations and optimizations of the stencil
computation, where the fully optimized two-dimensional solution showed the
best performance. Several optimizations on the dyad-level computation func-
tions were made. The performance of the calcium concentration computation
kernel improved the most. Shared memory was the largest improvement source
for all the functions. Finally, we measured the speed of the cell computations
and performed scaling tests.

69

Chapter 7

Cardiac simulations

The number of computational models of action potential propagation and pro-
cesses in a cardiac cell increased during the last years. Models of the cardiac
electrophysiology and calcium handling make it possible to test and explain
hypotheses that would be problematic to investigate experimentally. However,
computational models are usually based on several assumptions of the parame-
ters that could have important consequences for the accuracy and validation of
the models. Any changes in the structural dyadic properties in the cell can lead
to the heart failure, thus it is essential to investigate computational models of
the heart and estimate the correct values of the parameters.

7.1 Conduction velocity

A conduction velocity (CV) is the speed at which action potential propagates
through a given tissue region. The most important factors that determine
CV are membrane excitability and the conductivities of cardiac tissue. In the
normal cardiac ventricle, a cell by cell conduction velocity is approximately
0.5 m/sec [29]. CV depends on a lot of parameters, such as cell excitability,
tissue conductivity, a degree of repolarization and pacing cycle length [7].

To validate CV first we record voltage of two cells in z-direction: we choose
one cell (cell1) to be at point v1 = (Nx/2 , Ny/2, Nz/4) and another cell
(cell2) to be at point v2 = (Nx/2, Ny/2, 3×Nz/4). Then, we find the time
t1 and t2 at which each of these cells triggers respectively. The cell has been
triggered if its voltage is larger than -70 mV, which means that we are looking
for the time points where the voltage of cell1 and cell2 is larger than -70 mV
for the first time. To compute the conduction velocity in the z-direction, we
compute the distance between cells cell1 and cell2 in the z-direction and divide
it by the difference in time at which each cell triggers. Since a cell is represented
as a point on a grid, we find the distance between cells by computing the
distance between v1 and v2 and multiplying it by the mesh resolution in the
z-direction.

distance =
(3×Nz

4
− Nz

4

)
× dz =

Nz

2
× dz,

CV = distance/(t2− t1).
(7.1)

70

7.1.1 The impact of the number of dyads on the conduction
velocity

In the following experiment tissue of size 6 mm×6 mm×24 mm is stimulated
at the entire x-y plane at time t = 0 ms. Each GPU performs computations
on 1728 cells. This is the largest possible amount of cells, containing 10000
dyads, that can be simulated on a single GPU on Abel supercomputer. The
experiment is performed on two compute nodes. The size of a time step is set
to 0.05 ms and diffusion terms in Equation (2.16) are discretized using a fixed
spatial mesh resolution dx = dy = dz = 0.5 mm. We simulate one cardiac beat
of 500 ms and measure the conduction velocity under healthy conditions. The
goal of the experiment is to verify the impact of the number of dyads in a cell
on the conduction velocity.

Our experiment considers four different cases: simulation using cells with
10000 dyads, 1000 dyads, 100 dyads and 10 dyads. The experiment has shown
that the time for which cell1 and cell2 are triggered is the same for 10000, 1000
and 100 dyads: cell1 is triggered at t1 = 10.65 ms and cell2 is triggered at
t2 = 33.6 ms. The CV is computed as

CV = (48/2× 0.5)/(33.6− 10.65) = 0.523 m/sec. (7.2)

For the simulation of 10 dyads, the time for which cell1 and cell2 are triggered
are t1 = 10.65 ms and t2 = 33.70 ms respectively. The CV in this case is

CV = (48/2× 0.5)/(33.6− 10.70) = 0.524 m/sec. (7.3)

This means that CV is similar for different numbers of dyads. Thus, we
can conclude that the number of dyads in a cell does not have an impact
on conduction velocity. Moreover, the CV we obtained in our experiments is
approximately 0.5 m/sec, which validates the correctness of our model.

7.1.2 Conduction velocity as a function of diffusion
coefficient

One of the main parameters that determines the conduction properties of the
tissue model are the diffusion coefficients (or conductivities), which are cor-
related with the conduction efficiency. The diffusion coefficients, given in our
model, are estimated based on the experimental measurements, which lead to
the reasonable CV. The exact biophysical mechanism of cardiac conduction is
unknown, so the suitable parameters depend on the mathematical model and
numerical scheme. The common approach of selecting the parameters is to
change diffusion coefficients and make sure that it results in plausible CV. Our
aim is to investigate how CV changes as a function of the diffusion coefficient.

We stimulate the x-y plane, which means that action potential propagates
in the z-direction. Thus, to observe effects of changing diffusion coefficient, we
need to change Dz parameter in Equation (2.16), while keeping Dx and Dy
constant.

71

Figure 7.1: Conduction velocity as a function of diffusion coefficient for the
tissue of size 50 mm × 50 mm × 100 mm, where each cell contains 10 dyads.
The estimated value of Dz for our model is 0.2 and it is indicated by the dashed
vertical line. With Dz = 0.025 and Dz = 0.4 conduction fails. Failing values
of Dz are indicated by diamonds.

Tissue of size 50 mm x 50 mm x 100 mm

In this experiment we use a tissue of size 50 mm × 50 mm × 100 mm, where
each cell contains 10 dyads, and we measure the conduction velocity for different
values of the diffusion coefficient in the z-direction. A time step is defined as
dt = 0.05 ms and a spatial mesh resolution is dx = dy = dz = 0.5 mm.

The results are shown in Figure 7.1, where CV is visualized as a function of
voltage diffusion coefficient Dz. With Dz equal to 0.2, which is the estimated
value for our model, we obtain CV equal to 0.53 m/sec, which is consistent
with the reported value [29]. As expected, the conduction velocity increases
with the higher values of conductivity and decreases with values lower than
the estimated conductivity. With both low (Dz = 0.025) and high values
(Dz = 0.4) of the diffusion coefficient conduction fails. In our experiment
neither cell1 nor cell2 is triggered with the Dz = 0.4. At the high values
electronic currents between cells are too fast and dissipate rapidly from the
stimulated plane. Thus, the cells are unable to excite since there is not enough
current to activate them. During pathological conditions CV decreases. In our
experiment only cell1 fired with the Dz = 0.025. The low values of CV may
cause a propagation block and the conduction fails.

72

Figure 7.2: Conduction velocity as a function of diffusion coefficient for the
tissue of size 6 mm × 6 mm × 24 mm, where each cell contains 10000 dyads.
The estimated value of Dz for our model is0.2 and it is indicated by the dashed
vertical line. With Dz = 0.4 and Dz = 0.00625 conduction fails. Failing values
of Dz are indicated by diamonds.

Tissue of size 6 mm x 6 mm x 24 mm

We perform the same experiment on tissue of size 6 mm × 6 mm × 24 mm,
where each cell contains 10000 dyads. The results are shown in Figure 7.2.
The values and behavior of CV are similar to the previous experiment, where
we used the tissue of size 50 mm × 50 mm × 100 mm. CV increases using
higher values of conductivity and it slows down using lower values. Moreover,
conduction fails with Dz = 0.00625 and Dz = 0.4. Thus, CV is independent
of the dimensions of the tissue. For both small and large sizes of the tissue,
conduction fails with Dz = 0.4. However, for the small size of tissue CV is able
to exceed lower values and conduction fails only with Dz = 0.00625. The cells
involved in the experiment are located closer to the stimulated plane and the
distance between them is smaller than in the larger tissue. For this reason, we
encounter propagation block for the smaller value of conductivity.

A closer look at the failing conduction

We perform tissue scale simulations using three different values of conductivity:
Dz = 0.025, Dz = 0.2 and Dz = 0.4 to analyze the action potential propaga-
tion in case of the failing conduction. A tissue of size 50 mm×50 mm×100 mm,
where each cell contains 10 dyads is used for this experiment. The xy-plane
was stimulated at t = 0 ms, the selected size of a time step is dt = 0.05 ms
and spatial mesh resolution is dx = dy = dz = 0.5 mm.

First, we perform the simulation of the tissue with the estimated value of
Dz to see how the action potential propagates under normal conditions. The

73

Figure 7.3: Activation pattern in 3D human ventricular tissue using diffusion
coefficient value equal to 0.2. The xy-plane is stimulated at t = 0 ms. The
excitation wave travels in the z-direction.

snapshots of membrane potential with Dz = 0.2 are shown in Figure 7.3. The
entire tissue is depolarized between 150 ms and 200 ms, more precisely at
100 mm / 0.53 mm

ms = 189 ms. At 200 ms the membrane voltage values start
to decrease and the entire tissue is repolarized.

Figure 7.4 visualizes snapshots of the membrane potential associated with
Dz = 0.4. As we can see, there is a little increase in the voltage value at
t = 10 ms, but the membrane voltage does not reach -70mV. As a consequence,
the cells are not triggered and therefore, the tissue is not depolarized.

Snapshots of the membrane potential associated withDz = 0.025 are shown
in Figure 7.5. From the figure, we clearly see the propagation block. The action
potential is propagating until t = 50 ms. Then it blocks leaving a part of the
tissue not depolarized. At t = 150 ms we see the begining of the repolarization
of a part of the tissue.

Results

The computational models of electrophysiology of the cardiac tissue incorporate
information about excitability of the cells and conduction of the tissue. Exact
values of the most of the parameters are unknown; they are dependent on

74

Figure 7.4: Activation pattern in 3D human ventricular tissue using diffusion
coefficient value equal to 0.4. The xy-plane is stimulated at t = 0 ms. The
voltage does not reach -70mV and propagation fails.

the selected mathematical model and other parameters. The importance of
the correctness of the computational model is crucial. We have validated our
model and shown that CV is independent of the number of dyads in a cell
and tissue dimensions. Thus, CV is only dependent on membrane properties.
Moreover, CV decreases during the pathological conditions and fails at low and
high values of the diffusion coefficient.

7.2 A possible defibrillation strategy that targets RyR
openings

In this experiment we use a tissue of size 12 mm× 12 mm× 12 mm. At time
t = 50 ms we open all RyRs for 100 ms, which causes a spontaneous action
potential. The time step is defined as dt = 0.05 ms, a spatial mesh resolution
is dx = dy = dz = 0.5 mm and the cycle length is 500 ms. The goal of
this experiment is to show the importance of having 10000 dyads in a cell and
analyze the outcome of defibrillation that targets RyR openings.

Spontaneous and paced action potential

First, we perform a simulation of a cardiac tissue under normal conditions. To
cause a paced action potential, we stimulated the y-z plane at t = 50 ms. The
paced action potential in a cell is shown in Figure 7.7 (A). During normal paced
heart beat an action potential causes depolarization. When the membrane
voltage reaches positive values, L-type channels became active and extracellular
calcium flows into the dyad. The calcium activates RyRs, which release a
greater calcium flow from the calcium stores inside the sarcoplasmic reticulum.

Now, instead of providing the stimulus to the tissue, we open RyRs at
t = 50 ms for 100 ms as we have described above. Open RyRs release a

75

Figure 7.5: Activation pattern in 3D human ventricular tissue using diffusion
coefficient value equal to 0.025. The xy-plane is stimulated at t = 0 ms. The
excitation wave travels in the z-direction, but it does not reach the edge of the
tissue. The propagation stops inside the tissue.

high calcium flow, which causes a spontaneous action potential in a cell. The
spontaneous action potential is shown in Figure 7.8 (A). Initially, intracellular
calcium has a steep rise when there is a steep depletion of JSR. However, at t =
50 ms all RyRs in a cell are opened for 100 ms. Thus, we have a slower calcium
release as JSR is refilled from NSR, and we have a linear increase of calcium
concentration until the RyRs are closed. The calcium release activates Na-Ca
exchange current, which slowly increases voltage at the beginning. When the
voltage reaches a certain threshold, L-type Ca current and fast Na currents are
activated and this forms a spontaneous action potential.

Spontaneous heart beat
In the previous paragraph, we have shown that abnormal RyRs openings can
generate a spontaneous action potential in a cell. Figure 7.6 visualizes the
results obtained at the tissue scale by opening all RyRs for 100 ms. As we
can see all cells are depolarized and repolarized simultaneously, which forms a
spontaneous heart beat. This proves that abnormal RyRs openings lead to the
spontaneous heart beats.

76

Figure 7.6: Spontaneous heart beat. At t = 50 msall RyRs are open for 100 ms
in the tissue of size 12 mm×12 mm×12 mm, where each cell consists of 10000
dyads. The whole tissue is excited simultaneously at t = 120 ms.

Effect of the number of dyads

From Figure 7.8 we can see that the spontaneous action potential is fired when
a cell contains 10000 dyads, but with a smaller amount of dyads, spontaneous
action potential fails. A dyad is a small region in a cell where the calcium
release occurs. When we employ more dyads in a cell, more RyRs are open.
Thus, we have a larger calcium release, which can be seen from the plots of
intracellular calcium concentrations. Having 10000 dyads and all of them open
calcium concentration exceeds the normal range, which is between 0.1µM and
1µM . On the other hand, small calcium release lowers the ability to trigger an
action potential in a cell.

In Figure 7.7 we can also see that a larger amount of calcium release occurs
with a larger number of dyads in a cell. As a consequence, with a smaller
number of dyads, we have a shorter repolarization phase.

This reflects the importance of having all 10000 dyads in a computational
cell model in order to get accurate simulation results.

Results

Under abnormal conditions, when RyRs are open for some time, calcium release
from RyRs can activate a Na-Ca exchange current, which causes depolarization.
When the voltage reaches a certain threshold, the Na current becomes activated
and this forms an action potential. We have tested and proven that abnormal
RyRs openings can cause the spontaneous action potential, which can lead
to arrhythmias. Moreover, we have verified that in order to receive accurate
results from the simulation, we indeed need to have a detailed cell model, which
contains 10000 dyads.

77

Figure 7.7: Paced beat of a cell. The figure shows paced action potential (left)
and intracellular calcium concentration (right). A, B, C, D and E represent
the results of simulations where 10000, 1000, 100 and 10 dyads were employed
respectively. The tissue was stimulated at t = 50 ms, basic cycle length is
500 ms under healthy conditions.

78

Figure 7.8: Spontaneous beat of a cell. The figure shows spontaneous action
potential (left) and intracellular calcium concentration (right). A, B, C, D and
E represent the results of simulations where 10000, 1000, 100 and 10 dyads
were employed respectively. At t = 50 ms all RyRs were open for 100 ms.

79

Chapter 8

Discussion and Conclusion

8.1 Discussion

The general aim of using the computational models of the human heart is to
develop a precise perception of the role played by disturbances of calcium han-
dling in cardiac arrhythmias. The multiscale myocyte model [22] was adopted
to develop a 3D Tissue-Scale model which can be used to investigate vari-
ous dysfunctions of subcellular calcium release processes and action potential
propagation. The same model was implemented and tested on CPU and Xeon
Phis in previous research [30, 31, 32]. This thesis presents a novel approach
of increasing performance of the computation by integrating GPU into the 3D
Tissue-Scale model of calcium handling and electrical activity in the human
cardiac ventricle. The high-efficiency simulator which uses hybrid CPU-GPU
computing has been implemented and tested. Moreover, physiologically real-
istic simulations were carried out in order to evaluate the selected model and
show the scientific purpose of the cardiac simulator.

During the last years, a lot of research has been done to investigate the
efficiency of the computations, such as sparse matrix solvers [3], implemented
using GPU accelerators. However, in most of the cases GPU was used for one
specific computational task, while our application consists of several distinct
computational strategies and algorithms. This requires different adjustments
of the implementation and optimization techniques for each of the functions
executed on the device. In this thesis GPU accelerator is applied to the detailed
simulator that has been used in cardiac research and requires good computa-
tional precision.

The optimized implementation demonstrates a significant speedup of sim-
ulations of human cardiac ventricle tissue. We have shown that the optimized
reduction and diffusion operations can result in significant performance gain.
After performing various optimizations to the simulator, we have certified that
the large performance improvements come from the usage of shared memory,
which is not surprising because most of the kernel functions in our simulator
are memory traffic bound. In addition, we have demonstrated the weakness of
the power function and division operation. An algorithmic improvement, such
as implemented power function, leads to decreased execution time. In this the-
sis we have demonstrated the dependency between the number of cardiac cells
on the device and the computational performance. Having one cell on GPU is

80

inefficient, and thus in order to achieve full utilization of the GPU, we need to
use large-scale data or multiple cells.

In [31] the same 3D Tissue-Scale model was implemented to run on het-
erogeneous CPU - Xeon Phi systems. Compared to the optimized CPU imple-
mentation results, which have been reported in [31], our GPU implementation
is approximately 4 times faster. The usage of both CPU and Phi halves the
running time, but it still remains 2 times slower than our GPU simulator. Even
including two Phis is not enough to exceed the GPU performance. 3D cardiac
Tissue-Scale simulator implemented on GPU shows better performance than
all previous implementations of this simulator [30, 31, 32]. On the other hand,
the preliminary experiments of the tissue simulator on the Knights Landing
generation of Xeon Phis have demonstrated that the performance greater than
obtained on Kepler GPU can be achieved.

The benefits of using GPU for cardiac computing have already been shown
in other publications, such as simulations of cardiac electrophysiology equations
in the tissue [46]. It confirmed GPU to be about 30 ∼ 40 times faster than CPU.
However, our model is more complex involving not only electrophysiology of
the heart but also calcium handling at subcellular level, which requires a larger
amount of computations to be performed.

In [38] another model of cardiac cell and calcium signaling has been imple-
mented using GPU accelerator. However, all the computations are performed
on a Fermi GPU, which is an older architecture with lower CUDA compute
capability than Kepler. In this implementation the reduction of Ca fluxes and
concentration was also performed on the GPU. The basic parallel reduction
approach, which as we have seen requires a lot of thread synchronizations,
was used to implement reduction operation. The authors of the previously
mentioned paper have chosen to perform the ODEs of the action potential on
CPU while in our implementation we solve the PDEs of the action potential
on CPU. In [38] computations are performed on the cellular scale, whereas our
implementation contributes with computations on the tissue-scale.

The ability of the parallel 3D Tissue simulator to predict normal ventricle
tissue patterns, action potential, calcium values and currents consistent with
the published results were shown in [31]. In this thesis we have provided addi-
tional simulations that verified the correctness of the chosen cardiac simulator
model and its structure.

The performed tissue simulations in this thesis have shown that the con-
duction velocity is independent of the number of dyads and dimension of the
tissue. This confirms that conduction velocity depends on the excitability of
the membrane as stated in [29]. Furthermore, we found out that conduction
fails at low values of the diffusion coefficient and the tissue cannot be depo-
larized. At high values of the diffusion coefficient conduction fails, because
there is not enough current to activate the cells. In addition, conduction slows
down during pathological conditions, which is consistent with [17]. Finally,
we have used our implementation of the computational model of the human
heart tissue to test and prove the hypothesis that abnormal RyRs openings
can cause spontaneous heart beats. Dysfunctions of RyRs and their relation
to arrhythmogenesis have been examined extensively in the literature [27, 47].
Our findings suggest that the simulator can be used as a tool to investigate
electrophysiology and calcium release processes in the heart, which will help to
understand the multiscale mechanisms of cardiac arrhythmias.

81

Due to the limited GPU memory and our limited access to the large-scale
GPU clusters, we were not able to test the cardiac tissue simulator on the
large-scale, which would involve millions of cells containing 10000 dyads per
cell. Even a single cell implementation requires hundreds of variables and
significant amount of computation using our selected detailed cell model.

Further studies of the attainable performance of the implementation on the
larger and novel architectures are needed. Our future work will focus on refining
and testing simulator on the NVIDIA Pascal architecture, which is equipped
with 16 GB of memory, 5.3 Tflops of double precision compute power and
480 GB/s memory bandwidth. Having 16 GB of memory we would be able to
perform simulations of over 5000 cells on one GPU, which is almost three times
more cells than we were able to initialize on Kepler. Moreover, we expect to test
the simulator on the new generation GPU based on Volta architecture [34] with
memory bandwidth reaching 900GB/s, which gives 95 % greater bandwidth
efficiency than on Pascal architecture. Furthermore, we intend to incorporate
CPU into the computation by distributing the tissue domain between multiple
CPUs and GPUs in our future work. Another possible approach is to shuffle
the data between CPU and GPU to increase the simulation size.

8.2 Conclusion

Models of electrophysiology and calcium handling in the human heart have
played an important role in understanding the causes of arrhythmias that oc-
cur on tissue and organ scale. Detailed large scale models require a lot of
computational power, which makes it challenging to perform realistic simu-
lation in reasonable time. In this thesis we have shown that a detailed 3D
Tissue-Scale simulator can be accelerated using GPU. We can firmly state that
hybrid CPU-GPU computing is faster than a pure CPU computing. This pro-
vides a possibility to scientists to use this simulator in order to understand the
multiscale mechanism of cardiac arrhythmias originating from the disturbances
in calcium handling in a heart. Due to the increasing power of supercomputers,
larger scale simulations will be feasible in the future.

82

List of Tables

3.1 Kepler K20 and K20X specifications 22

6.1 Memory bandwidth and utilization 55
6.2 Execution time of the reduction computation 56
6.3 Execution time of diffusion computation on the dyad-level and ker-

nel details . 59
6.4 Device Memory Bandwidth of different optimizations of stencil com-

putation . 59
6.5 Performance metrics of L-type channels computation 62
6.6 Optimisation of the RyR probability calculation 62
6.7 Performance metrics of the RyR probability calculation 63
6.8 Performance of the RyR opening computation 63
6.9 Performance of the Ca concentration computation 64

83

List of Figures

2.1 Ventricular Myocyte model . 9
2.2 LCC-RyR interaction . 10
2.3 RyR Scheme . 11

3.1 CUDA memory and thread hierarchy 19
3.2 Kepler Memory Hierarchy . 21
3.3 Roofline model for Kepler K20X 25

4.1 Multiple cell representation of dyadic information 30
4.2 A cell separation mapping . 34
4.3 Tissue-Level parallelization . 35

6.1 Memory bandwidth for the reduction computation 56
6.2 Number of floating-point operations per second of different opti-

mizations of stencil computation 60
6.3 Effects of the code optimization . 66
6.4 Speed of the cell computation on one GPU 67
6.5 Scaling Experiments . 69

7.1 Conduction velocity as a function of diffusion coefficient 72
7.2 Conduction velocity as a function of diffusion coefficient 73
7.3 Activation pattern in 3D human ventricular tissue using diffusion

coefficient value equal to 0.2 . 74
7.4 Activation pattern in 3D human ventricular tissue using diffusion

coefficient value equal to 0.4 . 75
7.5 Activation pattern in 3D human ventricular tissue using diffusion

coefficient value equal to 0.025 . 76
7.6 Spontaneous heart beat . 77
7.7 Paced beat of a cell . 78
7.8 Spontaneous beat of a cell . 79

84

Bibliography

[1] CP Adler and U Costabel. “Cell number in human heart in atrophy,
hypertrophy, and under the influence of cytostatics.” In: Recent advances
in studies on cardiac structure and metabolism 6 (1974), pp. 343–355.

[2] Peter Benner et al. “Using hybrid CPU-GPU platforms to accelerate the
computation of the matrix sign function”. In: European Conference on
Parallel Processing. Springer. 2009, pp. 132–139.

[3] Jeff Bolz et al. “Sparse matrix solvers on the GPU: conjugate gradients
and multigrid”. In: ACM Transactions on Graphics (TOG). Vol. 22. 3.
ACM. 2003, pp. 917–924.

[4] Jun Chai et al. “Resource-efficient utilization of CPU/GPU-based het-
erogeneous supercomputers for Bayesian phylogenetic inference”. In: The
Journal of Supercomputing 66.1 (2013), pp. 364–380.

[5] Heping Cheng, WJ Lederer, and Mark B Cannell. “Calcium sparks: ele-
mentary events underlying excitation-contraction coupling in heart mus-
cle”. PhD thesis. University of Maryland, 1994.

[6] John Cheng, Max Grossman, and Ty McKercher. Professional Cuda C
Programming. John Wiley & Sons, 2014.

[7] RH Clayton et al. “Models of cardiac tissue electrophysiology: progress,
challenges and open questions”. In: Progress in biophysics and molecular
biology 104.1 (2011), pp. 22–48.

[8] Jeffrey S Cook and Neha Gupta. “History of Supercomputing and Super-
computer Centers”. In: Research and Applications in Global Supercom-
puting. IGI Global, 2015, pp. 33–55.

[9] Nvidia Corporation. CUDA Toolkit Documentation v8. 0. 2017. url: http:
//docs.nvidia.com/cuda/index.html.

[10] Nvidia Corporation. CURAND LIBRARY Programming Guide. 2016.
url: http://docs.nvidia.com/cuda/pdf/CURAND_Library.pdf.

[11] Nvidia corporation. url: http://www.nvidia.com/object/cuda_home_
new.html.

[12] Nvidia corporation. url: http://www.nvidia.com/content/pdf/kepler/
tesla-k20-passive-bd-06455-001-v07.pdf.

[13] Nvidia corporation. url: https : //computing . llnl . gov/ tutorials / linux_
clusters/gpu/Tesla-K10K40-datasheet.pdf.

[14] Nvidia corporation. url: http://www.nvidia.com/object/nsight.html.

85

[15] Nvidia corporation. url: https ://developer .nvidia .com/nvidia- system-
management-interface.

[16] Nvidia corporation. url: https://nvlabs.github.io/cub/index.html.

[17] Paul F Cranefield, Herman O Klein, and Brian F Hoffman. “Conduction
of the cardiac impulse”. In: Circulation Research 28.2 (1971), pp. 199–
219.

[18] DA Eisner et al. “From the ryanodine receptor to cardiac arrhythmias”.
In: Circulation Journal 73.9 (2009), pp. 1561–1567.

[19] ALEXANDRE Fabiato. “Time and calcium dependence of activation and
inactivation of calcium-induced release of calcium from the sarcoplasmic
reticulum of a skinned canine cardiac Purkinje cell.” In: The Journal of
general physiology 85.2 (1985), pp. 247–289.

[20] CLARA FRANZINI-ARMSTRONG, Feliciano Protasi, and Pierre Ti-
jskens. “The assembly of calcium release units in cardiac muscle”. In:
Annals of the New York Academy of Sciences 1047.1 (2005), pp. 76–85.

[21] Michael Garland et al. “Parallel computing experiences with CUDA”. In:
IEEE micro 28.4 (2008).

[22] Namit Gaur and Yoram Rudy. “Multiscale modeling of calcium cycling
in cardiac ventricular myocyte: macroscopic consequences of microscopic
dyadic function”. In: Biophysical journal 100.12 (2011), pp. 2904–2912.

[23] Ananth Grama. Introduction to parallel computing. Pearson Education,
2003.

[24] Chris Gregg and Kim Hazelwood. “Where is the data? Why you cannot
debate CPU vs. GPU performance without the answer”. In: Performance
Analysis of Systems and Software (ISPASS), 2011 IEEE International
Symposium on. IEEE. 2011, pp. 134–144.

[25] Mark Harris. Optimizing Parallel Reduction in CUDA. 2007. url: http://
docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/reduction.pdf.

[26] Dawei Jiang et al. “Enhanced store overload–induced Ca2+ release and
channel sensitivity to luminal Ca2+ activation are common defects of
RyR2 mutations linked to ventricular tachycardia and sudden death”. In:
Circulation research 97.11 (2005), pp. 1173–1181.

[27] Rodolphe P Katra et al. “Ryanodine receptor dysfunction and triggered
activity in the heart”. In: American Journal of Physiology-Heart and Cir-
culatory Physiology 292.5 (2007), H2144–H2151.

[28] Ashfaq A. Khokhar et al. “Heterogeneous computing: Challenges and
opportunities”. In: Computer 26.6 (1993), pp. 18–27.

[29] Andre G Kleber and Yoram Rudy. “Basic mechanisms of cardiac impulse
propagation and associated arrhythmias”. In: Physiological reviews 84.2
(2004), pp. 431–488.

[30] Qiang Lan et al. “Towards Detailed Tissue-Scale 3D Simulations of Elec-
trical Activity and Calcium Handling in the Human Cardiac Ventricle”.
In: International Conference on Algorithms and Architectures for Parallel
Processing. Springer. 2015, pp. 79–92.

86

[31] Johannes Langguth et al. “Accelerating Detailed Tissue-Scale 3D Car-
diac Simulations Using Heterogeneous CPU-Xeon Phi Computing”. In:
International Journal of Parallel Programming (2016), pp. 1–23.

[32] Johannes Langguth et al. “Enabling Tissue-Scale Cardiac Simulations Us-
ing Heterogeneous Computing on Tianhe-2”. In: Parallel and Distributed
Systems (ICPADS), 2016 IEEE 22nd International Conference on. IEEE.
2016, pp. 843–852.

[33] Justin Luitjens. “Faster Parallel Reduction on Kepler”. In: Parallel Forall
(blog) (2014). url: https : / / devblogs . nvidia . com/parallelforall / faster -
parallel-reductions-kepler/.

[34] Mark Harris Luke Durant Olivier Giroux and Nick Stam. url: https :
//devblogs.nvidia.com/parallelforall/inside-volta/l.

[35] Dariush Mozaffarian et al. “Executive summary: Heart Disease and Stroke
Statistics-2016 update: A report from the American Heart Association.”
In: Circulation 133.4 (2016), p. 447.

[36] MPICH. High-Performance portable MPI. url: https://www.mpich.org.

[37] Maruyama Naoya and Takayuki Aoki. “Optimizing stencil computations
for NVIDIA Kepler GPUs”. In: ().

[38] Michael Nivala et al. “Computational modeling and numerical methods
for spatiotemporal calcium cycling in ventricular myocytes”. In: Frontiers
in physiology 3 (2012), p. 114.

[39] C Nvidia. “NVIDIAs next generation CUDA compute architecture: Ke-
pler GK110”. In: Whitepaper (2012).

[40] Georg Ofenbeck et al. “Applying the roofline model”. In: Performance
Analysis of Systems and Software (ISPASS), 2014 IEEE International
Symposium on. IEEE. 2014, pp. 76–85.

[41] Thomas O’Hara et al. “Simulation of the undiseased human cardiac ven-
tricular action potential: model formulation and experimental validation”.
In: PLoS Comput Biol 7.5 (2011), e1002061.

[42] University of Oslo: Abel. url: http://www.uio.no/english/services/it/
research/hpc/abel/.

[43] John D Owens et al. “GPU computing”. In: Proceedings of the IEEE 96.5
(2008), pp. 879–899.

[44] Zhilin Qu and Alan Garfinkel. “An advanced algorithm for solving partial
differential equation in cardiac conduction”. In: IEEE Transactions on
Biomedical Engineering 46.9 (1999), pp. 1166–1168.

[45] Shane Ryoo et al. “Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA”. In: Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming. ACM. 2008, pp. 73–82.

[46] Daisuke Sato et al. “Acceleration of cardiac tissue simulation with graphic
processing units”. In: Medical & biological engineering & computing 47.9
(2009), pp. 1011–1015.

87

[47] Mark Scoote and Alan J Williams. “The cardiac ryanodine receptor (cal-
cium release channel)”. In: Cardiovascular research 56.3 (2002), pp. 359–
372.

[48] Charles Severance and Kevin Dowd. High performance computing. 2011.

[49] Daniel C Sigg et al. Cardiac electrophysiology methods and models. Springer
Science & Business Media, 2010.

[50] NP Smith et al. “Multiscale computational modelling of the heart”. In:
Acta Numerica 13 (2004), pp. 371–431.

[51] KHWJ Ten Tusscher et al. “A model for human ventricular tissue”. In:
American Journal of Physiology-Heart and Circulatory Physiology 286.4
(2004), H1573–H1589.

[52] Anamaria Vizitiu et al. “Optimized three-dimensional stencil computa-
tion on Fermi and Kepler GPUs”. In: High Performance Extreme Com-
puting Conference (HPEC), 2014 IEEE. IEEE. 2014, pp. 1–6.

[53] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline:
an insightful visual performance model for multicore architectures”. In:
Communications of the ACM 52.4 (2009), pp. 65–76.

[54] Nicolas Wilt. The CUDA handbook. A comprehensive guide to GPU pro-
gramming. Pearson Education, 2013.

[55] Ping Xiang, Yi Yang, and Huiyang Zhou. “Warp-level divergence in GPUs:
Characterization, impact, and mitigation”. In: High Performance Com-
puter Architecture (HPCA), 2014 IEEE 20th International Symposium
on. IEEE. 2014, pp. 284–295.

88

