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1 Abstract

This thesis explores various regression methods for predicting wind energy
generation in wind parks containing several turbines using historical data, with
an emphasis on determining whether Machine Learning algorithms might im-
prove on more traditional methods. As well as how the selection of input data
affects the Machine Learning algorithms relative to the traditional methods.

This thesis compares the predictive qualities of several statistical regression
methods when applied to the problem of estimating power produced by wind
parks. The algorithms explored are Linear Regression, K Nearest neighbours
Regression as well as the Machine Learning algorithms Support Vector Regres-
sion and a Multi-layer Perceptron used as a regressor. These regression methods
were used on various subsets of a data-set containing wind speed and wind power
information across a large amount of wind parks. The parks are located across
the western United States of America, and have data for the years 2004 to 2006.

The thesis starts by describing the content of the data used in the regressions.
The data-set is a large number of wind parks with speed and power generation
data in 10 minute increments, for the covered years 2004-2006. Then the thesis
lists the tools used in creating the regressions and executing the analysis. Fur-
ther on there will be an overview of how each of the four algorithms generate
their regressions’, as well as how to find their relative performance using the
error metric Mean Square Error. How this error metrics relates to the standard
deviation is also mentioned.

Following this we have a presentation of data in the form of a series of graphs
detailing how well the methods (Linear Regression, K Nearest neighbours, Sup-
port Vector Regression and Multi-layer Perceptron) perform, in the thesis’ three
main test situations.

The first test situation is the problem of predicting power generation using
measured current wind speed. This is done by creating regressions, and testing
the predictive qualities of those regressions.

The second test situation handles the problem of trying to generate a predic-
tion of future power generation in wind parks by creating regressions by using
historical power generation data from the exact same wind parks, by looking
some number of time-steps into the past. This method is also known as time
series analysis.

The third test situation also tries to predict future power generation in wind
parks, but includes data from neighbouring parks. This is done because infor-
mation from nearby parks might improve the predictive power of the regressions
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by taking into account conditions that are not observable in the local wind park,
such as changes in weather conditions that might affect the park at a later time.

The discussion then interprets the regressions of the various predictions. It is
concluded that Linear Regression is a poor fit for predicting wind energy from
wind speed, but does a better job at predicting based on history. K Nearest
Neighbours does a slightly better job, but struggles with the same situations
that Linear Regression does. The Machine Learning algorithms Support Vector
Regression and Multi-Layer Perceptron does the best, and it is discussed how
these two methods can be tinkered with to achieve even better results. However
the quality of the predictions could be improved further by wind park specific
tuning of parameters, and of more computing time to include more input data.
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2 Introduction

Machine Learning is a field of study that has shown promise in improving the
accuracy of predictions within multiple fields of study. Most have heard of
the advances within artificial intelligence in recent years exemplified by such
things as self-driving cars, computers that compete in game shows, or speech
recognition. The improvement of the technology is quick and unpredictable.
Which is exemplified by DeepMind’s AlphaGo program recently beating the
world champion in the board game Go. Just a few years ago, with traditional
methods this was considered to be far too computationally expensive, by many
orders of magnitude[6].

The technologies and methods from Machine Learning has been applied on a
lot different domains and problems, but there is still a lot left to be discovered or
improved upon. Machine Learning has already seen some use within Wind En-
ergy prediction and is a growing research domain. The use of Machine Learning
in wind energy prediction has the potential for saving a lot of otherwise wasted
energy, because even a small improvement in predictability or usable power
output would lead to huge gains due to the grand scale of the energy sector.
Improving the predictability of wind energy has the effect of making wind energy
cheaper to generate relative to other sources, which would help displacing more
expensive or polluting methods of generating power. A discovery that improves
predictability or usable energy from wind parks can also have a huge benefit
for already existing wind farms. This is because the old wind parks can draw
advantage of the new discoveries without having to invest in improvements of
the existing wind park infrastructure, due to the improvements taking the form
of a software change away from the actual wind park.

This thesis will use methods from Machine Learning to investigate how much
can be gained from implementing relatively simple Machine Learning methods.
The aim of this thesis is to answer the following question: Can the methods
from Machine Learning improve our ability to predict energy generation from
wind parks over older methods?

In order to discuss the thesis question this thesis needs to specify which set
of algorithms to compare. Algorithms previously used to generate predictions
as well as algorithms from Machine Learning needs to be included so that the
effectiveness of implementing Machine Learning can be determined. The thesis
will use the following algorithms for Machine Learning: Multi-layer Perceptron
Regression, and Support Vector Machine Regression. For traditional methods I
have used Linear Regression, and K Nearest Neighbours Regression. Thus the
thesis will determine if Linear Regression and K Nearest Neighbours can give
a satisfactory prediction of future power generation relative to some Machine
Learning Algorithms.
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The thesis question first be explored by first looking at some older methods
for predicting energy generation, and then doing comparable analyses on the
same data using a couple of Machine Learning algorithms. This will be done by
generating regressions using Linear Regression and K Nearest Neighbours and
then repeating the analyses using Support Vector Regression and Multilevel
Perceptron Regression.

To adequately discuss the central thesis question this thesis is structured in
the following fashion. First a discussion about the source and contents of the
data used in the thesis. Then a presentation of the various tools and libraries
used in the creation and handling of the data. Following this there is a short
introduction to each of the four methods used to generate predictions. As well
as some information regarding the how the data is supplied to the algorithms,
and the use of error metrics for the regressions. Then the thesis moves on to
show some regressions resulting from tasking the algorithms with predicting
power generation from a subset of the data containing only wind speed. Then
the thesis shifts focus to the regressions generated by using the algorithms to
predict future power generation. The thesis then discusses the effectiveness of
varying input settings for one of the Machine Learning algorithms, Multi-Layer
Perceptron, and value that can be gained by tuning it correctly. The thesis then
concludes on the effectiveness of the Machine Learning algorithms relative to
the traditional methods.
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3 Data - The Western Wind Integration Data
Set

All graphs and analysis in this thesis is done on the data-set known as The
Western Wind Integration Data Set, hereafter referred to as the Western Wind
data-set. The data-set consists of a set of locations of thought to be potential
locations for wind parks across the western half of The United States of America.

Each of the locations have for the years of the study (2004-2006) data about
wind speed, and power generation retroactively estimated using data from other
sources, such as weather data.

3.1 Creation of the data-set

The Western Wind data-set was created as part of and for use in the Western
Wind and Solar Integration Study (WWSIS)[4].The study was organized by the
National Renewable Energy Laboratory (NREL), which is a research laboratory
under the U.S. Department of Energy (DOE)[3]. The goal of the WWSIS study
was to determine if a large amount of wind and solar energy could be effectively
integrated in the power distribution network of the western United States of
America[8]. To determine this they created several data-sets to do their analyses
on. One of these data-sets is the Western Wind which is used in this thesis.

3.2 Size and contents

The data in the Western Wind consists of 32043 different locations across the
western United States for possible positions of wind parks. These wind parks
are assumed to hold ten VestasV90 wind turbines generating up to 3 megawatt
(MW) of energy each, for a total max output of 30 MW for that wind park.
The wind parks are generally placed in a grid with each wind park being about
two kilometers away from the ones next to it[4]. The 32043 wind park locations
have data for the years 2004, 2005 and 2006 in ten minute increments leading
to 157823 wind speed, and 157823 wind power data-points for each wind park.
The wind power is measured in megawatts ranging from 0 to 30. The wind
speed is measured in meters per second, and has no set range, however power
generation from the wind parks in the Western Wind data-set can generally be
seen to stop at around 26 meters per second. This matches well with the official
information brochure listing 25 meters per second as the cut-of point[7].

3.2.1 Turbine Cutoff

The turbines used in the wind parks in the Western Wind data-set are a set of
ten VestasV90 3 Megawatt Turbines[4]. These turbines like all wind turbines
have an upper limit to how strong winds they can operate in. The data from
the Western Wind data-set shows that they cut out and stop generating energy
somewhere around 25 meters per second. After they have stopped like this they
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can not start up again (cut-in) unless the wind has dropped significantly below
this level. Cut-in can be seen to happen at around 20 meters per second, which
matches the official information broshure which lists 20 meters per second as
cut-in speed[7]. The frequency of cut-ins and cut-outs varies a lot by location,
and the usual winds speeds for that location. Some locations cut out rarely,
while others cut out relatively often.

3.3 Normalization and Extra Preprocessing

The power generation data found in the Western Wind data-set is already nor-
malized between 0 and 30, which matches the actual power generation of the
wind park in megawatts. For doing statistical analysis it is more convenient
to have data range from zero to one. The wind has no upper bound, but the
relevance of the data falls a lot once it passes 30 meters per second.

Power generation from the wind parks were already normalized to be from
zero to 30 in the original data-set, but for this thesis it was decided to normalize
the data between the ranges of zero to one instead. When used the wind speed
has not been normalized, but graphs may sometimes cut out some data since
all there is very little relevant data above around a wind speed of 40 meters per
second.

3.4 Feature Window and Prediction Distance

A parameter specifying which data a method is looking at when creating pre-
diction is needed. In this thesis it will be referred to as that method’s feature
window, and the prediction distance. These two parameters can when com-
bined describe how much data is used to generate predictions, and describe the
size of the gap between the data used for predicting and the data-point that
is being predicted. The figures on page 9 illustrates how the feature window,
and prediction distance relate to each other. The figures contains a time series
for a single wind park with eight data-points. The data points covered by the
window size are used by the regression algorithms in order to predict the data
selected by the prediction distance. On page 9 there is also an illustration for
how the feature window and prediction distance behaves when there are more
than one wind park in the input data.

Larger feature windows and prediction distances does reduce the amount of
predictable values, based on how far apart the earliest and latest data used.
In the illustrations there are eight time steps, but only the later four can be
predicted when using a feature window of four and prediction distance of one.
This is not a major problem when dealing with the Western Wind data-set due
to its size, but it does mean graphs created with different feature windows and
prediction distances will look shifted relative to each other when rendered as
graphs.

8



Figure 1: Four values predicting the next value

Figure 2: Four values predicting a value two steps later

Figure 3: Four times four values predicting the next value for one park

3.5 Training and Testing Data

To determine the quality of the regressions created later in the thesis a test data-
set is needed. However if the same data-set is used for ’training’ the Machine
Learning algorithms and for testing we can get some problems. Mainly that the
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Figure 4: Overview of data handling

true quality of the regression can be hidden by the regression being overfitted.
When a data-set is overfitted it is too closely matched and/or tuned to the
data-set used to create it, and can give bad results when presented with new
data[1, p. 19].

To avoid the problem with overfitting the data used for this thesis has been
split into two distinct data-sets. For use as training and testing data respectively.
The data is split chronologically to preserve information related to ordering,
which is relevant for predictions in chapter five and six. Unless otherwise noted
the chronologically first 80% of the data is used for training, while the remaining
20% is used as testing data.

There are some potential problems with doing it this way, like skewing the
data in unforeseen ways. For instance if the regressions were only done on
the first half of a year’s worth of data, the testing data would be during the
summer, but the regression would have been trained on data from earlier in
the year. This could be bad if the location has seasonal variations that affect
predictions. Likewise if three years of training data is used the testing data
would be the last year’s fall, which may not be representative. These situations
could lead to a reduction in prediction power, but have not been tested for.

The figure on page 10 shows the steps the data from Western Wind goes
through before use.
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While training data is not the proper term for the input data for the two
non-Machine Learning algorithms it has been used when referring to their input
data to reduce the number of terms used to describe the exact same data.

3.6 Park Selection For Graphs

Most of the graphs shown in this thesis are generated using the wind park
with ID 4155. This location is in the area of an already existing wind park
called Tehachapi Pass Wind Farm[10]. This location is one of the locations
set up by the developers of windML as a location worth looking at by adding
it to a dictionary of several wind parks in the windML library. The location
is interesting for testing algorithms on because the wind is variable, without
reaching extreme levels. Of particular note is the fact that the wind can reach
speeds which cause the wind turbines modelled in the Western Wind data-set
to cut out to prevent damage to themselves. Coupled with the turbines not
cutting in again before the wind speed has dropped back down to 20 meters
per second[7] means that being able to predict the power output of the turbines
around these wind levels is quite useful. See the graph on page 20 for an example
of how the wind parks cuts out when the wind speed goes too high.

3.7 Tools

In this thesis was done using the following tools. The programs were written
in Python, using libraries from NumPy for large array handling, Matplotlib for
chart generation and scikit-Learn for the Machine Learning functions. In addi-
tion I used a library called WindML which handles data import, and structures
the data for easier retrieval.

3.7.1 Python

All code was written in standard Python version 2.7.X, in a virtual machine
running Ubuntu 16.04. The code written should be fully portable and com-
patible with all systems running Python 2.7.X. The code used to generate the
graphs can be found in the appendix.

3.7.2 NumPy

NumPy which is the standard way of handling large arrays in Python was used
for handling the data in the anaysis. It is required by both the WindML li-
brary, as well as the scikit-learn library. NumPy is usually included with most
installations of Python.

3.7.3 scikit-learn

The Scikit-learn library is a library with implementations of various Machine
Learning algorithms. It also has implementations of various error metrics which
can be used to determine the quality of the predictions. The scikit-learn library
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is available to everyone, and instructions for installation is available at their
website[5].

3.7.4 Matplotlib

The MatplotLib library is a library for drawing and generating graphs of various
types. The matplotlib library is available to everyone, and instructions for
installation is available at the website[2].

3.7.5 WindML

WindML is a library specifically designed to experiment with Machine Learning
algorithms on Wind Park data. The library has standard methods for importing
data from the National Research Energy Laboratory (NREL) and structures it
for use with the methods provided by the library. It relies on the use of scikit-
learn. The source code is available from their github account with setup and
documentation provided on their website.[9]

Setup is relatively simple with only a clone of the github repository, and
a specification of the root of the downloaded folder added to the operating
system’s PYTHONPATH environment variable.
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4 Prediction Methods

In order to determine if the Machine Learning methods are better than the older
traditional methods, we need to generate regressions using all the algorithms.
We also need an error metric to determine the quality of the regressions. Once
we have an applied our error metric on each of the regression we can figure out
the how the algorithms stack up to each other, and whether the two Machine
Learning algorithms prove an improvement over the traditional methods.

The following four methods, Linear Regression, K Nearest Neighbours, Sup-
port Vector Regression, and Multi-layer Perceptron regression, will all be used
on three distinct situations. The first situation is for predicting power genera-
tion from wind speed data. The second is predicting future power generation
using time-line analysis for a single location. The third is predicting future
power generation using data from several nearby locations.

The four methods were all generated using one set of data, and tested on a
second set of data. This was done in order to detect if the whether the algo-
rithms were generating too complicated regressions which fit the input data too
closely and losing its predictive ability on new data. This is called overfitting
within Machine Learning and statistical analysis[1, p. 19]. For a complete expla-
nation about input and testing data check section 3.5 in the data chapter called
”Training and Testing Data”. The first set of data will generally be referred
to as the training data. The idea behind calling it training data is that the
Machine Learning algorithms will look at this data in order to ’train’ itself to
recognize correct results. In order to avoid having to make a distention between
’input data’ and ’training data’, which both refers to the same data-set, both
will be referred to as ’training data’. This means the data used to generate
Linear Regression and K Nearest Neighbours regression will have their input
data called training data, even though these algorithms does not really train
the same way the Machine Learning algorithms does.

4.1 Error Metrics

There are several possible error metrics, but the regressions generated by these
algorithms will only have the Mean Squared Error metric displayed, next to
them. The Error metric will be the primary way of deciding the quality of the
prediction.

4.1.1 Mean Squared Error

The primary error metric used in this thesis. It is also known as the Mean
Squared Deviation. Mean Squared Error is an error metric that takes the av-
erage (mean) value of the squared (prediction) error values. As an error metric
this means that errors that are further from the target values are more impor-
tant for determining the quality of our predictions. If we have nine predictions
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that are exactly right, but the tenth are very wrong, the information about the
tenth being wrong is more relevant for describing the quality of the set of ten
predictions.

4.1.2 Mean Squared Error Example

Suppose one of the algorithms generated the following four predictions for wind
power. 23, 25, 19, and 13, but the actual values were found to be 21, 21, 15
and 13. The differences between the predictions and the results would be the
amount by which our prediction was wrong. This is called the prediction error
of the prediction. To calculate the error we take 23 minus 21, 25 minus 21, 19
minus 15 and 13 minus 13 giving us the error values of 2, 4, 4 and 0.

To go from these values to the Mean Square Error we square each of the
prediction errors, and find the average of the squared values. The squared
values are calculated to be 4, 16, 16 and 0. We now take the average of the
values which is (4 + 16 + 16 + 0) / 4 giving us the Mean Square Error of 9.
Note how the larger errors of the second and third value have a greater impact
on the final Mean Square Error value.

When finding errors in this thesis a prediction is generated by the regression,
and tested versus a test data-set generating the initial prediction error values
for each prediction. The Mean Square Error is generated using these prediction
errors, and is the error value shown, even if the labels simply state ”error:”.

Since wind power generation data is normalized between zero and one in this
thesis most of the Mean Squared Error values will be small. The errors will be
from 0.0356 for a very bad value, down to 0.002544 for the best predictions.

4.1.3 Root Mean Squared Error

Root Mean Squared Error is not reported along with the graphs. It is simply
the square root of the Mean Square error. It is the error that gives the range
of one standard deviation for the prediction errors. Roughly 68% of prediction
errors fall within this range on unspecified data-sets. The highest RMSE in the
thesis is 0.18868, and the lowest is 0,050439, on predictions ranging from zero
to one.

4.2 Algorithms

These are the two algorithms used to create regressions that are not Machine
Learning algorithms.
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4.2.1 Linear Regression

The thesis have used the implementation found in in the scikit-learn Python
library. Linear Regression is a simple method for creating regressions. It tries
to find a line through the data-set which minimizes the Least Squares error
value[1, pp. 64-66]. It gives its answer in the form of a line, in a number of
dimensions equal to the number of dimensions of the input data. The algorithm
is provided with the chosen input data, and target values. It uses these to
generate a regression line through the many-dimensional input line that best
matches the data. The resulting regression is then tested new values, and a
Mean Square Error is generated.

4.2.2 K Nearest Neighbours Regression

The thesis have used the implementation found in the scikit-learn Python li-
brary, where it is known as a KNeighboursRegressor. K Nearest Neighbours
regression is a simple method for creating regressions that aren’t linear. The
algorithm looks at the average for nearby values. On page 21 an example can
be seen of K Nearest Neighbours regression with K set to 25. The jagged line is
the line of created by generating an average of the 25 values closest input fea-
tures. In chapter 5 this is would equate to the immediate right and left on the
graph, but in chapter 6 and 7 the K Nearest Neighbours regressor will look for
neighbors in a higher number of dimensions. The line in the mentioned graph is
pretty jagged in some areas because the 25 closest values sometimes being zero,
and sometimes a value closer to 1.

The averages is then used as a regression, which is tested on new values, and
a Mean Square Error is generated.

4.3 Machine Learning Algorithms

These two algorithms are used to create regressions, and fall within the domain
of Machine Learning. These two methods, like most Machine Learning algo-
rithms make use of the training data by learning as they go through the data
sequentially. Learning rate and error metrics can be adjusted in a lot of different
ways. For example by setting a flat learning rate for new data, or by adjusting
how much weight to give new information provided to the algorithm as it gets
further and further into the data-set they work on. There is a myriad of ways to
pair the algorithms within the domain of Machine Learning with various error
metrics, and initialization methods, some may focus on fine-tuning, while oth-
ers are chosen for ease of computation. The ease of computation is sometimes
desirable in cases where large data-sets are used

The two algorithms used here will both be from the group of Machine Learn-
ing algorithms called Supervised Learning, which is a set of Machine Learning
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algorithms where we attempt to have the algorithms learn from a set of exam-
ples in an attempt to try to get them to generalize the correct solution to the
problem[1, p. 6].

4.3.1 Support Vector Regression

The thesis have used the implementation found in the scikit-learn Python li-
brary, where it is known as an Epsilon-Support Vector Regression or SVR. Sup-
port Vector regression is based on Support Vector machines, which are a kind of
Machine Learning algorithm for classifying data by finding a linear separation
with the biggest biggest separation between two classes. For classifications prob-
lems that aren’t linearly separable the Support Vector Machines uses various
methods, known as kernels to force the data into having more dimensions than
the input data. It then looks for a linear separation through this new higher
dimensional data[1, pp. 176-178]. The kernel used in this thesis is known as the
Radial Basis function kernel, this is the default in the scikit-learn function.

When using the modifying the Support Vector Machine to a Support Vector
Machine Regressor, it uses the Least Squares Algorithm internally, and needs
to be supplied with an epsilon value [1, p. 186]. This epsilon value describes a
band next to the regression for which the Support Vector Regression considers
any data points within as good enough. The internal error metric only looks at
values outside of this band.

The Support Vector Regression can be very slow, and without doing any
trimming of the data, training the Support Vector Regression takes some time,
when training on the complete time-line for one or more parks in the Western
Wind data set. Increasingly so when more input data is added in Chapter 6
and 7.

4.3.2 Multi-layer Perceptron Regression

The thesis have used the implementation found in the scikit-learn Python li-
brary, where it is known as Multi-layer Perceptron regressor or MLPRegressor.

The Multi-Layer Perceptron is based on the Perceptron. The Perceptron is an
Machine Learning algorithm that uses two layers of node-like objects, referred
to as neurons, to generate its output. The neurons have an activation function
which determines its output based on the inputs given to the neuron. The
inputs from different other neurons, or input layer, have weights assigned to
them. These weights determine how much the neuron bases its decision on each
of its inputs. The learning in the Perceptron functions by clever adjustment of
the weights. This can be seen by looking at the algorithm for training the Multi-
Layer Perceptron being focused on updating the internal weights only making
changes to the internal weights. Pseudocode for the Multi-Layer Perceptron
training can be seen in Machine Learning - An Algorithmic Perspective[1, p. 78].
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When training the system a prediction is made, and the weights are adjusted
based on the size of the error.

The neurons in a Perceptron or a Multi-Level Perceptron are ordered in layers
with every single node in one layer, is connected to every single node in the
next. An illustration can be seen on page 17. Each of connections, shown here
as arrows, between nodes have a weight for how much one neuron affects the
next.

The Perceptron with its single layer is limited in how complex predictions
it can learn. It can only solve problems that are Linearly Separable[1, p. 55].
Adding another layer of nodes to the network allows a Multi-Layer Perceptrons
to learn more complex problems. This is because the knowledge generated in
one layer can be used as input for the next, as illustrated in the book Machine
Learning - An Algorithmic Perspective[1, pp. 86-87].

In this thesis the weights inside the Multi-Layer Perceptron is set to be small
random numbers. This random initialization is done so that the value of each
neuron does not overlap completely with another. Such overlap inhibits the
neurons ability to discover distinct patterns in the data.

The random values assigned to the internal weights are are small, but too far
from each other in order for them to reach their final values about the same
time in the training[1, p. 80].

Figure 5: placement of nodes in a multilayer perceptron
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4.4 Training and Testing Methodology

I train on the training data, then I test on the testing data. The training
and testing data will be the same for each algorithm, and should be directly
comparable quality wise. This mimics a how it would work in real life situations
under normal conditions, because we can then get the result of which algorithm
best predicts a the power generation of a specific wind park.
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5 Estimating Power Generation Using Current
Wind Speed

While the Western Wind data-set supplies both power generation and wind
speed for each location at all times, having the ability to independently predict
the power generation from wind speed data is useful. Creating power generation
forecasts using only wind speed information could allow for the use of Machine
Learning on data created from weather forecasting. These predictions would
be degraded in relation to how close the weather forecasting is to the actual
weather it predicts, but could could, given accurate forecasts make estimates
that are good enough to plan around.

In these following four groups of regressions I have used wind data from
location 4155 from the years 2004 to 2006. Each of the regression methods have
been trained on the first 80% of the data, with the remaining 20% being used
for testing, and is shown in the graphs. The error value is generated as the
Mean Square Error generated from the prediction error between the generated
regression, and the testing data.

5.1 Extra Preprossessing

None. The MLPR does not handle the lack of preprocessing well. MLPR did
better when wind parks that had been cut off due to high wind speeds had been
removed as outliers, but no graphs for that situation has been included.
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5.2 Linear Regression

The graph on page 20 illustrates Linear Regression predicting the power output
from park 4155 by using wind speed as input data. The regression tracks the
power generated pretty poorly with a Mean Square Error of 0.0356. Linear
Regression has particular trouble generating a decent result due to only being
able to create straight lines, while the optimal curve would need to be curved
to follow the data closely.

Figure 6: Linear Regression in black on grey testing data. Park 4155. Error:
0.0356
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5.3 K Nearest Neighbours Regression

The graph on page 21 shows a K Nearest Neighbours regression predicting the
power output from park 4155 by using wind speed as input data. K was set
to be 25. This is the same data as in the Linear Regression above. The KNN
regression is tracking the power curve far better than the linear regression,
with a Mean Square Error of 0.00417. The graph looks ugly with a lot of
jagged edges in part because the times where the wind park has cut out due to
previously having too high wind speed, but the wind hasn’t yet dropped down
to a level where the wind park can start up again. The next graph runs the

Figure 7: K Nearest Neighbours Regression in black. Park 4155. K=25. Error:
0.00417

same regression with a higher K value of 500 in an attempt to get rid of the
jaggedness. This makes the look nicer graph nicer, but the predictive power is
largely unchanged with a Mean Square Error of 0.00403.
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Figure 8: K Nearest Neighbours regression in black. Park 4155. K=500. Error:
0.00403
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5.4 Support Vector Regression

The graph on page 23 shows a Support Vector regression predicting the power
output from park 4155 by using wind speed as input data. The epsilon value
was set to be 0.01, this is the range for which the regression attempts to put
the data inside of. The data for this regression was reduced by four fifths for
performance reasons. Every fifth data-point was used. The graph tracks the
power curve decently, and finds the curve that would intuitively be more correct
by weighting the zero values between 22 and 27 meters per second, less than
staying close to the power curve of the active wind parks. The Mean Square
Error was found to be 0.00499

Figure 9: Support Vector Regression in black. Data size reduced to 1/5 for
time. Park 4155. Epsilon=0.01. Error: 0.00499
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5.5 Multi-Layer Perceptron Regression

The graph on page 24 shows a Multi-Layer Perceptron regression predicting
the power output from park 4155 by using wind speed as input data. A single
hidden layer with 300 nodes was used. Like the K Nearest Neighbours regressor
the MLPR struggles with dealing with the values between 22 and 27 meters per
second, and ends up generating an average for the area instead of tracking an
area with higher data-point density. The Multi-Layer Perceptron was randomly
initialized, which leads to slightly different results each run. The Mean Square
Error was in this regression found to be 0.00475

Figure 10: Multi-Layer Perceptron regression in black. Park 4155. One hidden
layer of 300 nodes. Error: 0.00475

5.6 Problems With Wind Park Cutoff

As described in the data chapter wind turbines can cut in and out of operation
when wind speeds become too high. A cut-out happens, followed by a cut
in when the wind speed is somewhat lower. When predicting power generation
using only information about current wind speed, the information about whether
the turbine is currently cut out due to previously high wind speeds is entirely
missing. This leads the regressions in this chapter to blend the data from wind
parks with turbines that are operational with wind parks where turbines are
not operational.
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6 Predicting Power Generation - Time Series
Analysis

As shown in the chapter about doing estimates exclusively using wind speeds
and no history information, the predictions were not perfect. The predictions
did not, and could not, take into account the knowledge of whether the wind
park is currently shut down, either from high wind speeds, or other reasons. To
take this into account we need to use at least some history information for the
wind park.

This chapters will show graphs illustrating regressions created by looking at
the immediately prior data about power generation. For this to work we need
to decide how far back we want to look back. While it makes intuitive sense
to include a lot of information about history, the value of the data is lower
the further we got back in the past. It may make sense for the wind power
generation in the last twenty minutes at a wind park to be a decent predictor of
the power generated in the next 10, but it makes less sense to also include data
about power generation three months earlier. The best range is somewhere in
between, and will be discussed further in the next chapter where neighbouring
wind parks will also be taken into account.

In these following four groups of regressions wind data from location 4155
from the years 2004 to 2006 has been used. Each of the regressions methods
have been trained on the first 80% of the data, with the remaining 20% being
used for testing. The error value is being generated as the Mean Square Error
generated from the prediction error between the generated regression, and the
testing data. The feature window is set as the previous three time steps (30
minutes), and the prediction distance is one, which means it will predict the
power generation in 10 minutes.

Each of the regressions will be generating predictions for the entirety of the
test data, which is close to 31500 data-points. Looking at this many data-points
at the same time is hard, as well as not really helping understanding the results.
An example of this is shown on page 26. As such the example graphs in this
chapter has been adjusted to show examples of predictions along the time-line.
The error values reported is the error value for the prediction of the entire time-
line, not just the parts shown. The size of the test data is close to the number of
wind parks in the Western Wind data-set, but this appears to be a coincidence.
On page 26 there is a graph showing the complete time-line of the testing data
for location 4155.
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Figure 11: Full timeline. Park 4155
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6.1 Linear Regression

The graph on page 27 illustrates Linear Regression predicting the power output
from park 4155 by using its own previous wind energy generation as input data.
The last half hour of power generation is used, with the goal of prediction power
in the next time-step (10 minutes). The predictions created by the regression
seem to trail the observed values, but the quality of the prediction is far better
than in the previous chapter. The Mean Square Error was found to be 0.00369.

Figure 12: Prediction using Linear Regression. Park 4155. Feature window of
3. Error: 0.00369
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6.2 K Nearest Neighbours

The graph on page 28 illustrates K Nearest Neighbours predicting the power
output from park 4155 by using its own previous wind energy generation as
input data. The last half hour of power generation is used, with the goal of
prediction power in the next time-step (10 minutes). The K values was set to
be 500. The prediction, like with Linear Regressions trail the observed values
closely, but the actual prediction is a tiny bit better with a Mean Square Error
of 0.0361

Figure 13: Prediction using K Nearest Neighbours regression. Park 4155. Fea-
ture window of 3. K is 500 Error: 0.00361
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6.3 Support Vector Regression

The graph on page 29 illustrates Support Vector Regression predicting the power
output from park 4155 by using its own previous wind energy generation as input
data. The last half hour of power generation is used, with he goal of predicting
power in the next time-step (10 minutes). The Epsilon value was set to be
0.01, which means it does not adjust based on values inside this range when
training. The Support Vector Regression takes a long time to train, on this
amount of data, but generated as better prediction than K Nearest Neighbours
with a Mean Square Error of 0.00351.

Figure 14: Prediction using Support Vector regression. Park 4155. Feature
window of 3. Epsilon of 0.01. Error: 0.00351
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6.4 Multi-Layer Perceptron Regression

The graph on page 30 illustrates a Multi-Layer Perceptron regression predicting
the power output from park 4155 by using its own previous wind energy genera-
tion as input data. The last half hour of power generation is used, with the goal
of predicting power in the next time-step (10 minutes). The Perceptron used
two hidden layers of 200 neurons each. The Perceptron was randomly initialized,
which leads to slightly different results each run. The Multi-Layer Perceptron
did a better job than any of the other methods, but not significantly so. It’s
possible that there just isn’t enough information present to create accurate re-
sults. The next chapter will go more into depth with the tuning parameters for
the Multi-Layer-Perceptron. In this run the Mean Square Error was found to
be 0.00345

Figure 15: Prediction using Multilevel Perceptron regression. Park 4155. Fea-
ture window of 3. Two hidden layers of 200 neurons each. Error: 0.00345
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7 Predicting Power Generation - Information
from Local Parks

While the predictions in the previous chapter was an improvement over the ones
in the chapter before it, there are still a lot of information that can be used to
generate better graphs. This chapter will focus on adding power generation
information from nearby parks in addition to the history data added in the
previous chapter. The prediction will then be based on history data equal to
the feature window of the park for which we want a predicting. As well as the
history data equal to the feature window of all the parks defines as nearby. As
with the size of the feature window itself, there’s a drop in relevance as the parks
are further and further away from the park we’re trying to predict. Including
other wind parks in the immediate vicinity will likely have data that are good
for improving predictions. However wind parks that are far away may have little
to no effect on the predictions.

Since the wind parks are roughly placed on a grid with a distance of roughly
two kilometers between wind parks the it was decided that using a radius of
three kilometers from the initial wind parks would include a set of wind parks
sufficient to illustrate the value of the idea of including nearby wind parks. A
three kilometer radius covers eight neighbouring parks if the park locations are
densely packed.

In the following four groups of regressions the groups of wind data from
location 4155 from the years 2004 to 2006 has been used used. Each of the
regression methods have been trained on the first 80% of the data, with the
remaining 20% being used for testing. The error value is being generated as the
Mean Square Error generated from the prediction errors between the generated
regression, and the testing data. The feature window is set to three time steps
(30 minutes), and the prediction distance is one, which meant it will predict the
power generation for the next time step (10 minutes). Wind parks within three
kilometers, including the target wind park, will be used as input data.

Each of the regressions will be generating predictions for the entirety of the
test data, which is close to 31500 data-point. Looking at this many data-points
at the same time is hard, as well as not really helping understanding the results.
An example of this is shown on page 26, which contains the testing data for park
4155. The error values reported is the Mean Square Error for the prediction of
the entire time-line, not just the parts shown.

7.1 Linear Regression

The graph on page 32 illustrates Linear Regression predicting the power output
from park 4155 by using its own previous wind energy generation as input, as
well as using the wind power generation of neighbouring parks within a distance
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of three kilometers. For all the parks, 4155 and its neighbours, the last half hour
of power generation is used, and is used to generate a prediction for the next
time-step (ten minutes). The prediction created by the regression seem to be
better better than the comparable Linear Regression created by only using the
history data from park 4155. The Mean Square Error found when only using
park the local park was 0.00369, but with the addition of the neighbouring
parks the Mean Square Error was found to be 0.0278. This is a significant
improvement over the one-park regression.

Figure 16: Prediction using Linear Regression. Park 4155. Feature window of
3, Park radius of 3km. Error: 0.00278

7.2 K Nearest Neighbours Regression

The graph on page 33 illustrates K Nearest Neighbours regression predicting the
power output from park 4155 by using its own previous wind energy generation
as input, as well as using the wind power generation of neighbouring wind
parks within a distance of three kilometers. For all the parks, 4155 and its
neighbours, the last half hour of power generation was used, and is used to
generate a prediction for the next time-step (ten minutes). A K value of 500
was used. The prediction in this case does not appear to be better than the
prediction generated in the previous chapter. In fact it is slightly worse with its
Mean Square Error of 0.0039 vs the error from the previous chapter which was
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0.00361. This suggests K Nearest Neighbours was not able to take into account
the extra data from the neighbouring parks in any meaningful way.

Figure 17: Prediction using K Nearest Neighbours regression. Park 4155. Fea-
ture window of 3. Park radius of 3km. K is 500. Error: 0.0039

7.3 Support Vector Regression

The graph on page 34 illustrates Support Vector Regression predicting the power
output from park 4155 by using its own previous wind energy generation as
input, as well as using the wind power generation of neighbouring wind parks
within a distance of three kilometers. For all the parks, 4155 and its neighbours,
the last half hour of power generation was used, and is used to generate a
prediction for the next time-step (ten minutes). The epsilon value was set to
be 0.01, which means it does not count values inside this range as errors to
adjust when training on the data-set. This Support Vector Regression takes
a very long time to train due to the size of data, though the Support Vector
Regression could well have been trained on less data to achieve similar results.
The regression shown does in this case better than both Linear Regression and
K Nearest Neighbours Regression with an error of 0.0262.
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Figure 18: Prediction using Support Vector Regression. Park 4155. Feature
window of 3. Park radius of 3km. Epsilon value is 0.01. Error: 0.00262

7.4 Multi-Layer Perceptron Regression

The graph on page 35 illustrates a Multi-Layer Perceptron regression predicting
the power output from park 4155 by using its own previous wind angry gen-
eration as input, as well as using the wind power generation of neighbouring
wind parks within a distance of three kilometers. For all the parks, 4155 and
its neighbours, the last half hour of power generation was used, and is used to
generate a prediction for the next time-step (ten minutes). The perceptron was
set to use two hidden layers with 200 neurons each, this seemed to be enough
to capture a lot of the information found in the training data, while still com-
pleting in a reasonable time. The Multi-Layer perceptron takes a shorter time
to generate predictions than the Support vector regressions, which allowed for
looking at some interesting tinkering with the amount of data used to generate
regressions. The first regression shown, displays the results of using a prediction
distance of one, a feature window of three, and to include neighbouring parks
within three kilometers.

It is important to reiterate that the perceptron uses random initialization of
weights between the neurons. This means that the results from each run to the
next may not be the same, as the neurons will trend towards the correct solution
from slightly different directions, and possibly find different local optimums.
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The results of the Mult-Layer Perceptron was found to be better than any of
the other regressions at a Mean Square Error of 0.002545. Though we do not
know if a prediction of this quality will be generated every time the algorithm
is run.

Figure 19: Prediction using Multi-Layer Perceptron Regression. Park 4155.
Feature window of 3. Park Radius of 3km. two hidden layers of 200 neurons
each. Error: 0.002544
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7.4.1 Varying Input Settings

Since the Multi-Layer Perceptron regression takes less time to run than the
Support Vector Regression we can do some tinkering with the input values.
The following four graphs have checked for the effects of increasing the size of
the Wind Park Radius to nine kilometers, the increase of window size to five
(50 minutes or nine steps (90 minutes). All the graphs use two hidden layers of
200 neurons each.

The first graph shows the effects of increasing park radius to nine kilometers,
and achieves a Mean Square Error of 0.00255. The second graph shows the
effects of increasing the window size to nine (previous 90 minutes), while going
back to a park radius of three kilometers. This lead to a mean Square error of
0.00274. The third graph shows the effects of increasing both window size and
park radius to nine. It achieved a Mean Square Error of 0.00264. In the final
graph the window size is set to be nine, while the park radius is set to a value
inbetween the two previous values at five (50 minutes). This graph achieved a
Mean Square Error of 0.00267.

Figure 20: Window = 3. Radius = 9. Hidden layers = 2x200. Error = 0.00255
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Figure 21: Window = 9. Radius = 3. Hidden layers = 2x200. Error = 0.00274

Figure 22: Window = 9. Radius = 9. Hidden layers = 2x200. Error = 0.00264

Figure 23: Window = 9. Radius = 5. Hidden layers = 2x200. Error = 0.00267
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8 Discussion

The central goal of this thesis is to answer the following question: Can the
methods from Machine Learning improve our ability to predict energy genera-
tion from wind parks over older methods? To be able to answer this question
the thesis have created predictions using some older methods as well as predic-
tions for some Machine Learning methods. This discussion chapter will discuss
these results and findings as well as discussing the quality of the methods used
in this thesis relative to those used that may have been used current or previous
production environments.

The thesis will not look at algorithms that have already been fine tuned from
wind park production environments, but uses approximate methods instead.
These methods can be improved upon, but to which degree has not been looked
upon in this thesis. The thesis will look at, and use, methods created from us-
ing the Python program library for Machine Learning called scikit-learn. This
library provides standard implementation for several Machine Learning algo-
rithms, as well as access to several traditional methods such as Linear Regres-
sion and K Nearest Neighbours. All the methods/algorithms in the library has
already been set up to be accessed in a single standardized way that simplifies
development and testing of the methods.

8.1 Relevance of the Data

When predicting the power generation for the wind parks it was found that
some data was more relevant for the predictions than other data. Some of the
data could be safely ignored, without impacting the predictive quality of the
algorithms, while other parts were very important. While running the second
and the third tests it was observed that using more historic data did not nec-
essarily increase the predictive power of the regressions. It was also observed
that using data from more distant wind parks behaved similarly in not directly
improving the predictions. This is shown in 7.4.1 where it is illustrated on the
Multi-Layer Perceptron, the algorithm deemed best at filtering out the irrele-
vant data, because of its system of updating internal weighting. This decrease
in relevance happened for all the algorithms, but illustrations for the other re-
gression methods have not been included.

8.1.1 The First Test - Power Generation from Current Wind Speed

When creating regressions in chapter 5 about predicting the power generation it
became clear from the graphs that a regression based only on wind speed data
would not generate a satisfactory result, because of the problem with wind parks
shutting down in too high wind speeds. These parks would not start generating
power again before the wind speed dropped significantly due to engineering
constraints. The data used, which was only the wind speed in the current time
step, could not provide enough information to discern whether the turbine was
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in operation or had been shut down due to previously high wind speeds. This
can be seen in the graph on page 39, duplicated from chapter 5, where the
regression line is trying to figure out the regression between findings close to
one and exactly zero, which represents a wind park with offline turbines.

While not shown in the graphs it was discovered that by cutting out the zero
values from about 20 to 27 meters/second the predictions could generate better
predictions than when the zero values were included. This, however, would
necessitate a separate way to track whether the wind parks were about to turn
off or on, to avoid the data from becoming misleading. The results of these
regressions could when the zero values were handled separately function as a
simple mechanism for predicting power generation in production systems.

Figure 24: KNN regression. Park 4155. K=500. Error: 0.00403

8.1.2 The Second Test - Power Generation From Recent Power Gen-
eration

In the second test the input data of wind speed was replaced with data con-
taining wind power generation for the given wind park for multiple time steps.
This means that unlike in test one, it was possible for algorithms to know if the
wind parks were turned off or on immediately before the time we are predicting
for. This means it’s possible to know the status of the wind park for a period of
time before the time we are predicting for. This has clear advantages relative
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to the first test, because it allows the algorithms to correctly handle situations
where the turbines in the wind parks are turning off and on, as well as knowing
the current state of the wind park, with their set of ten turbines.

The most important piece of data provided from the wind park history is
the most recent power generation reading. This piece of data contains the
information that allows us to determine whether the wind park is active or not.
While creating the regressions it was observed that as the data reached further
into the past its relevance decreased significantly, because how the weather
changes tends to be affected most strongly by recent trends.

The graphs in chapter 7.4.1 compares the use of the three most recent data-
points (30 minutes), relative to the use of the nine most recent data-points
(90 minutes) for predicting power generation. The 90 minute prediction was
actually worse than the 30 minute prediction, but only slightly. With a small
difference in predictive quality a Mean Square Error of 0.002738 for the 90
minute window and a Mean Square Error of 0.002544 for the 30 minute feature
window. This is likely in part due to how the Multi-Layer Perceptron has some
randomly assigned starting settings, and does not come to the exact some result
every time. Repeated generations of the graphs did not show any significant
deviations from the provided graphs.

This means the inclusion of history data improves the predictions relative
to only using the wind speed for predicting power generation, but since the
relevance of the data decreases it has no practical value past a certain point.
While not directly shown in the graph it seemed this point was somewhere
around 30 to 50 minutes of history data.

8.1.3 The Third Test - Power Generation from Recent Power Gen-
eration of Nearby Parks

Using the same principle as in test two, which added wind power generation
information from the near past, test three looks at the inclusion of the inclusion
of information from nearby wind parks.

The graphs in chapter 7.4.1 compares the use of the wind parks within a
radius of three kilometers, versus using a greater radius of up to nine kilometers.
Similar to the results in test two this thesis found that the inclusion of more
wind parks did not improve the quality of the predictions further out than a few
kilometers. When the range was set to three kilometers the Mean Square Error
was found to be 0.002544, while when the range was set to nine kilometers the
Mean Square Error was found to slightly higher at 0.00274. The Multi-Layer
Perceptron does not generate exactly the same results each time, and these two
values are close enough to each other to be the cause of random variation, but
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it seems that the inclusion of more data did not improve the quality of the
predictions.

When it comes to deciding the range of local wind parks to use there are
several variables that impact how much we can get out of using the data from
distant wind parks. One of them is that the computations may take a long time
to complete, if the remote parks are simply included in the data-set. The impact
of this is changes based on the algorithm, but some handle such increases better
than others. In the case of the Multi-Layer perceptron, one of the algorithms
that are good at reducing the weight of irrelevant variables. The number of
neurons used to generate the regressions may have been to few. This would
lead to each neuron attempting to capture too much information at the same
time, and as a result of this not being able to create an estimate as good as if
there were less data per neuron. According to the book Machine Learning - An
Algorithmic Perspective there is no good way to know how many neurons are
needed when creating the Multi-Layer Perceptron, only that it has to be found
by trial and error[1, p. 86]. When creating the regressions in this thesis it was
found that more neurons were likely needed, but this impacted the generation
time significantly.

There are some aspects to as to how predictive wind power generation in one
location affects the wind power generation in another. One of these is how the
changes in wind speed moves across the land. An increase in wind speed found in
one wind park, will only affect the next when the wind has traversed the distance
between the two parks. As well as the wind direction. By looking at high wind
speeds such as 25 meters per second, the highest wind speed where the turbines
inside the wind parks are operational[7], it can be shown that within a single
10 minute time-step, the wind can reach from outside the furthest measuring
point, to reaching and passing the wind park we are creating a prediction for.
This can be seen by calculating that 25 meters per second equals 90 kilometers
per hour, and the 9 kilometers radius used in the third test will be too short a
distance to take this into account since these 9 kilometers takes only 6 minutes
to blow from the edge of the sensing radius to the center of the wind park.

We can see that that going from a radius of three kilometers to nine kilometers
could theoretically give an improvement, but the regressions used in this thesis
could not find an improvement, and instead found a slight worsening. This
could likely be from the particular settings used, either due to the number of
neurons used in the Multi-Layer Perceptron, or due to the nine kilometer range
being too small to capture changes in wind speeds in time.

8.1.4 Including Wind Speed as Separate Set of Data

The Western Wind data-set provides both wind speed and power generation
data for all the wind parks from 2004 to 2006, but in this thesis only the wind
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power generation data was used in chapter six and seven. These were the
chapters that used historical data, as opposed to trying to generate a prediction
for the same time-step.

The wind speed data was not used to generate these regressions. This is in
part because the inclusion of wind speed data would increase the size of the
data-set by a factor of two. This increase in data-set size would then in turn
increase the generation time for the regressions, for most of them by more than
double. In addition to this, the inclusion of the wind speed data would likely
not improve the quality of the predictions significantly, because the information
conveyed are already partially covered by the wind energy generation data. The
wind energy generation data was generated from several data sources, one of
which was the wind speed data accessible in the Western Wind data-set[4].

Keeping in mind the increase in the data-set size it was determined that it
would be preferable to attempt the inclusion of a higher number of nearby wind
parks, instead of adding more information for a lower number of wind parks.

8.2 The Methods’ Ability to Handle the Data

This section will discuss how well the various methods managed to create pre-
dictions for the three tests, as well as how the methods’ abilities to create
predictions are affected by the increase in input data. The first two methods
are the traditional non-Machine Learning algorithms, Linear Regression, and K
Nearest Neighbours regression. Followed by a discussion of the performance of
two Machine Learning algorithms, Support Vector Regression and Multi-Layer
Perceptron Regression.

8.2.1 Linear Regression

The Linear Regression struggles particularly bad with test one where the goal
was to predict power generation using only wind speed. With a Mean Square
Error of 0.0356 the error was significantly greater than for all the other regres-
sions. The size of the Mean Square Error in test one is large enough to make
the results entirely unusable. The cause of the large error is mainly due to the
Linear Regression generating its regression as a straight line, something which
is a poor fit for the data

For test two with prediction based on historic wind power generation data,
the linear regression does a decent job at generating predictions, and the results
appears close to accurately predicting the power generation in the next step.
The Mean Square Error was found to be 0.00369.

In test three where both history data and data from nearby parks were used
the Mean Square Error got even smaller with a value of 0.00278. This result is
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around the lower end of observed errors across all the methods, and substantially
better than for test one and two. However this does not necessarily mean that
Linear Regression is the best method for predicting power generated by wind
parks by using historical wind parks data from the local and nearby parks.
This is because when running the generation for other locations, the predictions
tended to give somewhat higher error values. They were still generally lower
than observed in test two.

The results from these tests show that Linear Regression can service as an
initial approximation of how well the various methods can predict power gener-
ation.

8.2.2 K Nearest Neighbours Regression

In the first test, where the goal was to predict power generation using only wind
speed, K Nearest Neighbours Regression does a far better job at predicting wind
park power generation than the Linear Regression. The Mean Square Error was
found to be 0.00417, which is substantially better than the Linear Regression
on the same data, and can function as a decent prediction.

The second test, where the goal was to predict power generation using historic
wind power generation data, the K Nearest Neighbours algorithms did slightly
better with a Mean Square Error of 0.00361. This result is pretty similar to
the Linear Regression for test two, which had a Mean Square Error of 0.00369.
So K Nearest Neighbours offers little advantage over Linear Regression for this
test.

The final test, where the goal was to predict power generation using historic
wind power generation data based on the target wind park, and its neighbours
the K, Nearest Neighbours achieved a Mean Square Error of 0.0039. This num-
ber is higher than when less data was included in the regression, which suggests
we are including data that is irrelevant for the prediction, and their inclusion is
degrading the prediction quality.

K Nearest Neighbours offers a decent way of generating predictions, but falls
short of the methods from Machine Learning which is discussed below in 8.2.3
and 8.2.4.

8.2.3 Support Vector Regression

In the first test, where the goal was to predict power generation using wind
speed, Support Vector Regression does a better job than Linear Regression, but
slightly worse than K Nearest Neighbours. The results are still not too bad with
a Mean Square Error 0.00499.
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The second test, where the goal was to predict power generation using historic
wind power generation data, the Support Vector Regression generates a predic-
tion that is on par with both Linear Regression and K Nearest neighbours. The
Mean Square Error was found to be 0.00351.

In the final test, where the goal was to predict power generation using his-
torical wind power generation data based on the target wind park, and its
neighbours, the Support Vector Regression achieved a Mean Square Error of
0.00262. This result is the best prediction found so far in the thesis.

Since the amount of outliers changes from wind park to wind park special
tuning of the variables per park may be needed. While an epsilon value of 0.01
was used for park 4155 this may not be the best for a different park.

Particularly on the third test the Support Vector Regression does better than
all the previously discussed methods, because of its increased ability to deal
with outliers relative to Linear Regression and K Nearest Neighbours.

8.2.4 Multi-Level Perceptron Regression

In the first test, where the goal was to predict power generation using wind
speed, Multi-Level Perceptron Regression does a passable job of generating pre-
dictions with a Mean Square Error of 0.00475.

In the second test, where the goal was to predict power generation using
historic wind power generation data, the Multi-Layer Perceptron regression does
a comparable job to the previously discussed methods with a Mean Square Error
of 0.00345.

In the final test, where the goal was to predict power generation using histor-
ical wind power generation data based on the target wind park, and its neigh-
bours the Multi-Layer Perceptron managed to score the lowest error value seen
so far with a Mean Square Error of 0.002544. This was also the best prediction
among the tested algorithms found in the thesis.

Like the Support Vector Regression the Multi-Layer Perceptron may need
some tuning per park. For some wind parks it may be necessary to use a
higher number of neurons to generate good predictions, while for other more
predictable parks time can be saved by reducing the number of neurons, and by
that decrease the time needed to generate a prediction.

The Multi-Layer Perceptron does not generate the exact same results every
time the algorithm is run. The algorithm is internally initialized with random
numbers, from which the numbers that happen to align well are emphasized
until a prediction can be made. Each time the algorithm is run it will tend
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to find a new combination of internal descriptions of the data unlike those of
the previous runs. These various runs will often not have time to converge, or
get stuck with descriptions for which it cannot find a direct improvement from.
This last problem is called finding a local optimum.

The Multi-Layer Perceptron regression offers a good way to generate pre-
dictions for wind parks, and are better than the other methods at sorting out
irrelevant data.

8.3 Sources of Errors

There are several ways in which errors can have affected the results found in
this thesis. The first, and possibly most important, is the possible bias in the
selection of data. The selection of wind park 4155 is done based on the park
appearing to the writer as being representative of a large number of other wind
parks. This was based on the idea that this would be one of the harder parks
to predict, due to the volatile wind speeds at that location, and that the wind
speeds in the park at times surpassed the wind speeds needed to cause the
turbines in the wind park to shut down. The winds can be seen in the graphs to
pass 33 meters per second, while the turbines cut out at 25 meters per second[7].

By the very nature of predictions looking at past data to predict future out-
comes it is also hard to deal with extreme situations that have not been seen in
the input data. This could lead to predictions that are very misleading in such
cases. In particular we do not know traits the Multi-Layer Perceptron is looking
at when generating its results, and it is possible they cause weird results when
presented with input not present in their training data.

8.4 Final Thoughts

The Machine Learning algorithms showed promise for getting good predictions,
but they are computationally expensive. And truly great results may require a
more efficient implementation of the algorithms than used in this thesis.
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9 Conclusion

The goal of this thesis was to conclude upon the following question: Can the
methods from Machine Learning improve our ability to predict energy genera-
tion from wind parks over older methods?

In the case of which input data was relevant for the various methods, the
thesis found that some amounts of historic data, as well as some amount of
wind power data from neighbouring wind parks was enough to generate good
results. However simply supplying more data further back in time, or from wind
parks further away did not necessarily improve the predictions. The thesis did
not find that including 90 minutes of historic data was better than including
only 30. It also found that including wind parks nine kilometers away from
the target park was not shown to be better than only including those three
kilometers away.

In the case of how well the four methods did when changing the amount
of input data. It was found that the Linear Regression could not create pre-
diction when only using Wind Speed data for same-time prediction. However
Linear Regression could generate decent results, when it got some more data.
K Nearest Neighbours decent predictions throughout, but was surpassed by the
Machine Learning algorithms. The Support Vector Regression did better than
both Linear Regression and K Nearest Neighbours, particularly as the data-set
got larger with the inclusion of both historic data, and data from neighbouring
wind parks. Finally the Multi-Layer Perceptron offers a pretty good way of pre-
diction the power generation data for the wind parks, and generates prediction
with lower error value than the other methods presented.

To answer the thesis question, this thesis concludes that in the case for pre-
dicting the power generation in a single wind park, the Machine Learning al-
gorithms did a good job at generating predictions. As shown in the thesis in
all but one illustrated case where Linear Regression generated a great predic-
tion, the Machine Learning algorithms could generate better results than Linear
Regression and K Nearest Neighbours. The non-Machine Learning algorithms
Linear Regression and K Nearest Neighbours are not generally the best meth-
ods for creating wind power generation predictions, but they do generate decent
predictions. However these predictions were generally surpassed by the Machine
Learning algorithms used in this thesis.

With proper tuning of the input variables, which is possibly location depen-
dent, the Machine Learning algorithm Multi-level Perceptron could generate
better predictions than Linear Regression and K Nearest Neighbours, because
of its ability to identify which parts of the input data is the most predictive.
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9.1 Future Research

While writing this thesis the following questions, among others, came to mind,
and have been left unexplored.

Would it be possible to set up a Mult-Layer Perceptron Regression that con-
tinually updates its data by including data generated by wind parks after they
have been set up and are operational? Could this improve the predictions for
that park?

How far into the future is it possible to generate good results? To look into this
in any meaningful way, a better understanding which error values are acceptable
for use would be needed.
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Appendices

A Code

A.1 LRSpeedPower.py - LR prediction of power using
speed

1 import math
2 import sys
3 import matp lo t l i b . pyplot as p l t
4 import numpy as np
5 from windml . da ta s e t s . n r e l import NREL
6 from windml . mapping . power mapping import PowerMapping
7 from windml . mapping . speed mapping import SpeedMapping
8
9 from s k l e a rn import l i n ea r mode l

10 from s k l e a rn . met r i c s import mean squared error
11
12
13 def bu i l d spe ed power p l o t ( speed , power , name , ∗ f u n c t i o n s

) :
14 for f unc t i on in f u n c t i o n s :
15 p l t . p l o t ( speed . reshape (−1 ,1) , f unc t i on . p r e d i c t (

speed . reshape (−1 ,1) ) , c o l o r=’ 0 .05 ’ , lw =3.0)
16
17 p l t . s c a t t e r ( speed . reshape (−1 ,1) , power , c o l o r=’ 0 .25 ’ ,

lw =0.0)
18 p l t . x l a b e l ( ”Wind Speed” )
19 p l t . y l a b e l ( ”Wind Power” )
20 p l t . xl im ( [ 0 , 4 0 ] )
21 p l t . yl im ( [ 0 , 1 ] )
22 p l t . s a v e f i g (name , bbox inches=’ t i g h t ’ )
23
24 def r e m o v e o u t l i e r s (x , y ) :
25 to remove = [ ]
26 for i in range (0 , len ( x ) ) :
27 i f x [ i ] > 25 :
28 to remove . i n s e r t (0 , i )
29 i f x [ i ] > 10 and y [ i ] == 0 :
30 to remove . i n s e r t (0 , i )
31 x = np . d e l e t e (x , to remove )
32 y = np . d e l e t e (y , to remove )
33 return (x , y )
34
35 def r e m o v e t u r b i n e o f f (x , y ) :
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36 to remove = [ ]
37 for i in range (0 , len ( x ) ) :
38 i f y [ i ] == 0 :
39 to remove . i n s e r t (0 , i )
40 x = np . d e l e t e (x , to remove )
41 y = np . d e l e t e (y , to remove )
42 return (x , y )
43
44
45 def r e t r i e v e s p e e d p o w e r d a t a ( park id ) :
46 #g e t t u r b i n e at the c e n t e r o f the wind park
47 turb ine = NREL( ) . g e t t u r b i n e ( park id , 2004 , 2006)
48
49 S Mapping = SpeedMapping ( )
50 P Mapping = PowerMapping ( )
51
52 speed = S Mapping . g e t l a b e l s t u r b i n e ( turbine , 1 , 1)
53 power = P Mapping . g e t l a b e l s t u r b i n e ( turbine , 1 , 1)
54
55 return ( speed , power )
56
57 def s p l i t d a t a ( data , r a t i o ) :
58 da ta l en = len ( data )
59 s p l i t p o s= int ( da ta l en ∗ r a t i o )
60 out 1 = data [ : s p l i t p o s ]
61 out 2 = data [ s p l i t p o s : ]
62 return ( out 1 , out 2 )
63
64 def s o r t d a t a p a i r s (x , y ) :
65 s h u f f l e = x . a r g s o r t ( )
66 x = x [ s h u f f l e ]
67 y = y [ s h u f f l e ]
68 return (x , y )
69 i f len ( sys . argv ) != 2 :
70 print ”Give a wind park ID as argument”
71 sys . e x i t ( )
72
73 print ” This s c r i p t gene ra t e s a p l o t us ing Linear

Regres s ion ”
74 print ” I t uses wind speed to p r e d i c t power gene ra t i on ”
75
76 park id = 4155
77 i f sys . argv [ 1 ] . i s d i g i t ( ) :
78 print ”Wind park used as argument : ” + sys . argv [ 1 ]
79 park id =int ( sys . argv [ 1 ] )
80 else :
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81 print ”No wind park number supp l i ed . Using d e f a u l t
4155”

82
83 speed , power = r e t r i e v e s p e e d p o w e r d a t a ( park id )
84
85
86 #Normal izat ion
87 power = power /30
88
89 #r e d u c t i o n and trimming o f data . Opt iona l
90 #speed , power = speed [ : 1 0 0 0 0 ] , power [ : 1 0 0 0 0 ]
91 #speed , power = r e m o v e o u t l i e r s ( speed , power )
92 #speed , power = r e m o v e t u r b i n e o f f ( speed , power )
93
94 #s p l i t t i n g i n t o t r a i n i n g and t e s t i n g data
95 speed t ra in , s p e e d t e s t = s p l i t d a t a ( speed , 0 . 8 )
96 power tra in , power te s t = s p l i t d a t a ( power , 0 . 8 )
97
98 #s o r t i n g d a t a p o i n t s from low to h igh wind speed . To make

order o f e v e n t s i r r e l l e v a n t
99 speed t ra in , power t ra in = s o r t d a t a p a i r s ( speed t ra in ,

power t ra in )
100 s p e e d t e s t , power te s t = s o r t d a t a p a i r s ( s p e e d t e s t ,

power te s t )
101
102 LR = l inea r mode l . L inearRegre s s i on ( ) . f i t ( s p e e d t r a i n .

reshape (−1 ,1) , power t ra in )
103 e r r o r = mean squared error ( power test , LR. p r e d i c t (

s p e e d t e s t . reshape (−1 ,1) ) )
104 print ” Error S i z e \n” + str ( e r r o r )
105 name = ”LRSpeedPowerPark” + str ( park id ) + ” e r r o r ” + str (

e r r o r ) + ” . png”
106 bu i l d spe ed power p l o t ( spe ed t e s t , power test , name , LR)
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A.2 KNNSpeedPower.py - KNN prediction of power us-
ing speed

1 import math
2 import sys
3 import matp lo t l i b . pyplot as p l t
4 import numpy as np
5 from windml . da ta s e t s . n r e l import NREL
6 from windml . mapping . power mapping import PowerMapping
7 from windml . mapping . speed mapping import SpeedMapping
8
9 from s k l e a rn import l i n ea r mode l

10 from s k l e a rn . ne ighbors import KNeighborsRegressor
11 from s k l e a rn . met r i c s import mean squared error
12
13
14 def bu i l d spe ed power p l o t ( speed , power , name , ∗ f u n c t i o n s

) :
15 for f unc t i on in f u n c t i o n s :
16 p l t . p l o t ( speed . reshape (−1 ,1) , f unc t i on . p r e d i c t (

speed . reshape (−1 ,1) ) , c o l o r=’ 0 .05 ’ , lw =1.0)
17
18 p l t . s c a t t e r ( speed . reshape (−1 ,1) , power , c o l o r=’ 0 .25 ’ ,

lw =0.0)
19 p l t . x l a b e l ( ”Wind Speed” )
20 p l t . y l a b e l ( ”Wind Power” )
21 p l t . xl im ( [ 0 , 4 0 ] )
22 p l t . yl im ( [ 0 , 1 ] )
23 p l t . s a v e f i g (name , bbox inches=’ t i g h t ’ )
24
25 def r e m o v e o u t l i e r s (x , y ) :
26 to remove = [ ]
27 for i in range (0 , len ( x ) ) :
28 i f x [ i ] > 25 :
29 to remove . i n s e r t (0 , i )
30 i f x [ i ] > 10 and y [ i ] == 0 :
31 to remove . i n s e r t (0 , i )
32 x = np . d e l e t e (x , to remove )
33 y = np . d e l e t e (y , to remove )
34 return (x , y )
35
36 def r e m o v e t u r b i n e o f f (x , y ) :
37 to remove = [ ]
38 for i in range (0 , len ( x ) ) :
39 i f y [ i ] == 0 :
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40 to remove . i n s e r t (0 , i )
41 x = np . d e l e t e (x , to remove )
42 y = np . d e l e t e (y , to remove )
43 return (x , y )
44
45
46 def r e t r i e v e s p e e d p o w e r d a t a ( park id ) :
47 #g e t t u r b i n e at the c e n t e r o f the wind park
48 turb ine = NREL( ) . g e t t u r b i n e ( park id , 2004 , 2006)
49
50 S Mapping = SpeedMapping ( )
51 P Mapping = PowerMapping ( )
52
53 speed = S Mapping . g e t l a b e l s t u r b i n e ( turbine , 1 , 1)
54 power = P Mapping . g e t l a b e l s t u r b i n e ( turbine , 1 , 1)
55
56 return ( speed , power )
57
58 def s p l i t d a t a ( data , r a t i o ) :
59 da ta l en = len ( data )
60 s p l i t p o s= int ( da ta l en ∗ r a t i o )
61 out 1 = data [ : s p l i t p o s ]
62 out 2 = data [ s p l i t p o s : ]
63 return ( out 1 , out 2 )
64
65 def s o r t d a t a p a i r s (x , y ) :
66 s h u f f l e = x . a r g s o r t ( )
67 x = x [ s h u f f l e ]
68 y = y [ s h u f f l e ]
69 return (x , y )
70
71 i f len ( sys . argv ) != 3 :
72 print ”Give a wind park ID and a number f o r K as

argument”
73 sys . e x i t ( )
74
75 print ” This s c r i p t gene ra t e s a p l o t us ing K Nearest

Neighbours ”
76 print ” I t uses wind speed to p r e d i c t power gene ra t i on ”
77
78 park id = 4155
79 i f sys . argv [ 1 ] . i s d i g i t ( ) :
80 print ”Wind park used as argument : ” + sys . argv [ 1 ]
81 park id =int ( sys . argv [ 1 ] )
82 else :
83 print ”No wind park number supp l i ed . Using d e f a u l t
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4155”
84
85 speed , power = r e t r i e v e s p e e d p o w e r d a t a ( park id )
86
87 ne ighbours = 10
88 i f sys . argv [ 2 ] . i s d i g i t ( ) :
89 print ”number o f ne ighbours used : ” + sys . argv [ 2 ]
90 ne ighbours = int ( sys . argv [ 2 ] )
91 else :
92 print ”No number o f ne ighbours supp l i ed . Using

d e f a u l t 10”
93
94
95 #Normal izat ion
96 power = power /30
97
98 #r e d u c t i o n and trimming o f data . Opt iona l
99 #speed , power = speed [ : 1 0 0 0 0 ] , power [ : 1 0 0 0 0 ]

100 #speed , power = r e m o v e o u t l i e r s ( speed , power )
101 #speed , power = r e m o v e t u r b i n e o f f ( speed , power )
102
103 #s p l i t t i n g i n t o t r a i n i n g and t e s t i n g data
104 speed t ra in , s p e e d t e s t = s p l i t d a t a ( speed , 0 . 8 )
105 power tra in , power te s t = s p l i t d a t a ( power , 0 . 8 )
106
107 #s o r t i n g d a t a p o i n t s from low to h igh wind speed . To make

order o f e v e n t s i r r e l l e v a n t
108 speed t ra in , power t ra in = s o r t d a t a p a i r s ( speed t ra in ,

power t ra in )
109 s p e e d t e s t , power te s t = s o r t d a t a p a i r s ( s p e e d t e s t ,

power te s t )
110
111 KNN = KNeighborsRegressor ( neighbours , ’ uniform ’ ) . f i t (

s p e e d t r a i n . reshape (−1 ,1) , power t ra in )
112 e r r o r = mean squared error ( power test , KNN. p r e d i c t (

s p e e d t e s t . reshape (−1 ,1) ) )
113 print ”Mean Squared Error \n” + str ( e r r o r )
114 name = ”KNNpeedPowerPark” + str ( park id ) + ” Neighbours ” +

str ( ne ighbours ) + ” e r r o r ” + str ( e r r o r ) + ” . png”
115 bu i l d spe ed power p l o t ( spe ed t e s t , power test , name , KNN)
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A.3 SVRSpeedPower.py - SVR prediction of power using
speed

1 import math
2 import sys
3 import matp lo t l i b . pyplot as p l t
4 import numpy as np
5 from windml . da ta s e t s . n r e l import NREL
6 from windml . mapping . power mapping import PowerMapping
7 from windml . mapping . speed mapping import SpeedMapping
8
9 from s k l e a rn . met r i c s import mean squared error

10 from s k l e a rn . svm import SVR
11
12 def bu i l d spe ed power p l o t ( speed , power , name , ∗ f u n c t i o n s

) :
13 for f unc t i on in f u n c t i o n s :
14 p l t . p l o t ( speed . reshape (−1 ,1) , f unc t i on . p r e d i c t (

speed . reshape (−1 ,1) ) , c o l o r=’ 0 .05 ’ , lw =1.0)
15
16 p l t . s c a t t e r ( speed . reshape (−1 ,1) , power , c o l o r=’ 0 .25 ’ ,

lw =0.0)
17 p l t . x l a b e l ( ”Wind Speed” )
18 p l t . y l a b e l ( ”Wind Power” )
19 p l t . xl im ( [ 0 , 4 0 ] )
20 p l t . yl im ( [ 0 , 1 ] )
21 p l t . s a v e f i g (name , bbox inches=’ t i g h t ’ )
22
23 def r e m o v e o u t l i e r s (x , y ) :
24 to remove = [ ]
25 for i in range (0 , len ( x ) ) :
26 i f x [ i ] > 25 :
27 to remove . i n s e r t (0 , i )
28 i f x [ i ] > 10 and y [ i ] == 0 :
29 to remove . i n s e r t (0 , i )
30 x = np . d e l e t e (x , to remove )
31 y = np . d e l e t e (y , to remove )
32 return (x , y )
33
34 def r e m o v e t u r b i n e o f f (x , y ) :
35 to remove = [ ]
36 for i in range (0 , len ( x ) ) :
37 i f y [ i ] == 0 :
38 to remove . i n s e r t (0 , i )
39 x = np . d e l e t e (x , to remove )
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40 y = np . d e l e t e (y , to remove )
41 return (x , y )
42
43
44 def r e t r i e v e s p e e d p o w e r d a t a ( park id ) :
45 #g e t t u r b i n e at the c e n t e r o f the wind park
46 turb ine = NREL( ) . g e t t u r b i n e ( park id , 2004 , 2006)
47
48 S Mapping = SpeedMapping ( )
49 P Mapping = PowerMapping ( )
50
51 speed = S Mapping . g e t l a b e l s t u r b i n e ( turbine , 1 , 1)
52 power = P Mapping . g e t l a b e l s t u r b i n e ( turbine , 1 , 1)
53
54 return ( speed , power )
55
56 def s p l i t d a t a ( data , r a t i o ) :
57 da ta l en = len ( data )
58 s p l i t p o s= int ( da ta l en ∗ r a t i o )
59 out 1 = data [ : s p l i t p o s ]
60 out 2 = data [ s p l i t p o s : ]
61 return ( out 1 , out 2 )
62
63 def s o r t d a t a p a i r s (x , y ) :
64 s h u f f l e = x . a r g s o r t ( )
65 x = x [ s h u f f l e ]
66 y = y [ s h u f f l e ]
67 return (x , y )
68
69 i f len ( sys . argv ) == 0 :
70 print str ( sys . argv [ 0 ] ) + ” <park ID> <Training in fo>

<gamma> <c>”
71 print ”Give a wind park ID and t r a i n i n g i n f o as

arguments”
72 print ” the t r a i n i n g i n f o ad j u s t s the s i z e o f the

t r a i n i n g data ”
73 print ”1 −> a l l the data . 2 −> h a l f the data . 3 −> a

th i rd , and so on”
74 sys . e x i t ( )
75
76 print ” This s c r i p t gene ra t e s a p l o t us ing Support Vector

Regres s ion ”
77 print ” I t uses wind speed to p r e d i c t power gene ra t i on ”
78 park id = 4155
79 i f sys . argv [ 1 ] . i s d i g i t ( ) :
80 print ”Wind park used as argument : ” + sys . argv [ 1 ]
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81 park id =int ( sys . argv [ 1 ] )
82 else :
83 print ”No wind park number supp l i ed . Using d e f a u l t

4155”
84
85 speed , power = r e t r i e v e s p e e d p o w e r d a t a ( park id )
86
87 t r a i n i n g r e d u c t i o n = 10
88 i f len ( sys . argv ) > 2 :
89 print ” Train ing Reduction used as argument : ” + sys .

argv [ 2 ]
90 t r a i n i n g r e d u c t i o n = int ( sys . argv [ 2 ] )
91 else :
92 print ”No t r a i n i n g reduct ion suppl ied , us ing 10”
93
94 e p s i l o n = 0.01
95 i f len ( sys . argv ) > 3 :
96 print ” e p s i l o n used as argument : ” +sys . argv [ 3 ]
97 e p s i l o n = f loat ( sys . argv [ 3 ] )
98 else :
99 print ”No e p s i l o n suppl ied , us ing 0 .01 ”

100
101 c = 1
102 i f len ( sys . argv ) > 4 :
103 print ”c used as argument : ” + sys . argv [ 4 ]
104 c = f loat ( sys . argv [ 4 ] )
105 else :
106 print ”No C suppl ied , us ing 1”
107
108 #Normal izat ion
109 power = power /30
110
111 #r e d u c t i o n and trimming o f data . Opt iona l
112 speed , power = speed [ : len ( speed ) : t r a i n i n g r e d u c t i o n ] ,

power [ : len ( speed ) : t r a i n i n g r e d u c t i o n ]
113 #speed , power = r e m o v e o u t l i e r s ( speed , power )
114 #speed , power = r e m o v e t u r b i n e o f f ( speed , power )
115
116 #s p l i t t i n g i n t o t r a i n i n g and t e s t i n g data
117 speed t ra in , s p e e d t e s t = s p l i t d a t a ( speed , 0 . 8 )
118 power tra in , power te s t = s p l i t d a t a ( power , 0 . 8 )
119
120 #s o r t i n g d a t a p o i n t s from low to h igh wind speed . To make

order o f e v e n t s i r r e l l e v a n t
121 speed t ra in , power t ra in = s o r t d a t a p a i r s ( speed t ra in ,

power t ra in )
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122 s p e e d t e s t , power te s t = s o r t d a t a p a i r s ( s p e e d t e s t ,
power te s t )

123
124 SVR = SVR( e p s i l o n=eps i l on , C=c ) . f i t ( s p e e d t r a i n . reshape

(−1 ,1) , power t ra in )
125 e r r o r = mean squared error ( power test , SVR. p r e d i c t (

s p e e d t e s t . reshape (−1 ,1) ) )
126 print ”Mean Squared Error \n” + str ( e r r o r )
127 name = ”SVRSpeedPowerPark” + str ( park id ) + ”

TrainingReduct ion ” + str ( t r a i n i n g r e d u c t i o n ) + ”
Eps i lon ” + str ( e p s i l o n ) + ”c” + str ( c ) + ” e r r o r ” + str
( e r r o r ) + ” . png”

128 bu i l d spe ed power p l o t ( spe ed t e s t , power test , name , SVR)
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A.4 MLPRSpeedPower.py - MLPR prediction of power
using speed

1 import math
2 import sys
3 import matp lo t l i b . pyplot as p l t
4 import numpy as np
5 from windml . da ta s e t s . n r e l import NREL
6 from windml . mapping . power mapping import PowerMapping
7 from windml . mapping . speed mapping import SpeedMapping
8
9 from s k l e a rn . met r i c s import mean squared error

10 from s k l e a rn . neura l network import MLPRegressor
11
12 def bu i l d spe ed power p l o t ( speed , power , name , ∗ f u n c t i o n s

) :
13 for f unc t i on in f u n c t i o n s :
14 p l t . p l o t ( speed . reshape (−1 ,1) , f unc t i on . p r e d i c t (

speed . reshape (−1 ,1) ) , c o l o r=’ 0 .05 ’ , lw =1.0)
15
16 p l t . s c a t t e r ( speed . reshape (−1 ,1) , power , c o l o r=’ 0 .25 ’ ,

lw =0.0)
17 p l t . x l a b e l ( ”Wind Speed” )
18 p l t . y l a b e l ( ”Wind Power” )
19 p l t . xl im ( [ 0 , 4 0 ] )
20 p l t . yl im ( [ 0 , 1 ] )
21 p l t . s a v e f i g (name , bbox inches=’ t i g h t ’ )
22
23 def r e m o v e o u t l i e r s (x , y ) :
24 to remove = [ ]
25 for i in range (0 , len ( x ) ) :
26 i f x [ i ] > 25 :
27 to remove . i n s e r t (0 , i )
28 i f x [ i ] > 10 and y [ i ] == 0 :
29 to remove . i n s e r t (0 , i )
30 x = np . d e l e t e (x , to remove )
31 y = np . d e l e t e (y , to remove )
32 return (x , y )
33
34 def r e m o v e t u r b i n e o f f (x , y ) :
35 to remove = [ ]
36 for i in range (0 , len ( x ) ) :
37 i f y [ i ] == 0 :
38 to remove . i n s e r t (0 , i )
39 x = np . d e l e t e (x , to remove )
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40 y = np . d e l e t e (y , to remove )
41 return (x , y )
42
43
44 def r e t r i e v e s p e e d p o w e r d a t a ( park id ) :
45 #g e t t u r b i n e at the c e n t e r o f the wind park
46 turb ine = NREL( ) . g e t t u r b i n e ( park id , 2004 , 2006)
47
48 S Mapping = SpeedMapping ( )
49 P Mapping = PowerMapping ( )
50
51 speed = S Mapping . g e t l a b e l s t u r b i n e ( turbine , 1 , 1)
52 power = P Mapping . g e t l a b e l s t u r b i n e ( turbine , 1 , 1)
53
54 return ( speed , power )
55
56 def s p l i t d a t a ( data , r a t i o ) :
57 da ta l en = len ( data )
58 s p l i t p o s= int ( da ta l en ∗ r a t i o )
59 out 1 = data [ : s p l i t p o s ]
60 out 2 = data [ s p l i t p o s : ]
61 return ( out 1 , out 2 )
62
63 def s o r t d a t a p a i r s (x , y ) :
64 s h u f f l e = x . a r g s o r t ( )
65 x = x [ s h u f f l e ]
66 y = y [ s h u f f l e ]
67 return (x , y )
68
69 i f len ( sys . argv ) == 0 :
70 print str ( sys . argv [ 0 ] ) + ” <park ID> <Training in fo>

<gamma> <c>”
71 print ”Give a wind park ID and t r a i n i n g i n f o as

arguments”
72 print ” the t r a i n i n g i n f o ad j u s t s the s i z e o f the

t r a i n i n g data ”
73 print ”1 −> a l l the data . 2 −> h a l f the data . 3 −> a

th i rd , and so on”
74 sys . e x i t ( )
75
76 print ” This s c r i p t gene ra t e s a p l o t us ing A m u l t i l ay e r

Perceptron ”
77 print ” I t uses wind speed to p r e d i c t power gene ra t i on ”
78 park id = 4155
79 i f sys . argv [ 1 ] . i s d i g i t ( ) :
80 print ”Wind park used as argument : ” + sys . argv [ 1 ]
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81 park id =int ( sys . argv [ 1 ] )
82 else :
83 print ”No wind park number supp l i ed . Using d e f a u l t

4155”
84 speed , power = r e t r i e v e s p e e d p o w e r d a t a ( park id )
85
86 t r a i n i n g r e d u c t i o n = 1
87 i f len ( sys . argv ) > 2 :
88 print ” Train ing Reduction used as argument : ” + sys .

argv [ 2 ]
89 t r a i n i n g r e d u c t i o n = int ( sys . argv [ 2 ] )
90 else :
91 print ”No t r a i n i n g reduct ion suppl ied , us ing 1”
92
93 l a y e r s = 300
94 i f len ( sys . argv ) > 3 :
95 print ” Layers used as argument : ” +sys . argv [ 3 ]
96 l a y e r s = int ( sys . argv [ 3 ] )
97 else :
98 print ”No l a y e r number supp l i ed suppl ied , us ing ” +

str ( l a y e r s )
99

100
101 #Normal izat ion
102 power = power /30
103
104 #r e d u c t i o n and trimming o f data . Opt iona l
105 speed , power = speed [ : len ( speed ) : t r a i n i n g r e d u c t i o n ] ,

power [ : len ( speed ) : t r a i n i n g r e d u c t i o n ]
106 #speed , power = r e m o v e o u t l i e r s ( speed , power )
107 #speed , power = r e m o v e t u r b i n e o f f ( speed , power )
108
109 #s p l i t t i n g i n t o t r a i n i n g and t e s t i n g data
110 speed t ra in , s p e e d t e s t = s p l i t d a t a ( speed , 0 . 8 )
111 power tra in , power te s t = s p l i t d a t a ( power , 0 . 8 )
112
113 #s o r t i n g d a t a p o i n t s from low to h igh wind speed . To make

order o f e v e n t s i r r e l l e v a n t
114 speed t ra in , power t ra in = s o r t d a t a p a i r s ( speed t ra in ,

power t ra in )
115 s p e e d t e s t , power te s t = s o r t d a t a p a i r s ( s p e e d t e s t ,

power te s t )
116
117 MLPR = MLPRegressor ( h i d d e n l a y e r s i z e s=l a y e r s ) . f i t (

s p e e d t r a i n . reshape (−1 ,1) , power t ra in )
118 e r r o r = mean squared error ( power test , MLPR. p r e d i c t (
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s p e e d t e s t . reshape (−1 ,1) ) )
119 print ”Mean Squared Error \n” + str ( e r r o r )
120 name = ”MLPRSpeedPowerPark” + str ( park id ) + ”

TrainingReduct ion ” + str ( t r a i n i n g r e d u c t i o n ) + ”
LayerS ize ” + str ( l a y e r s ) + ” e r r o r ” + str ( e r r o r ) + ” .
png”

121 bu i l d spe ed power p l o t ( spe ed t e s t , power test , name , MLPR
)
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A.5 LRPrediction.py - LR prediction of power using same
or nearby park power

1 import math
2 import sys
3 import matp lo t l i b . pyplot as p l t
4 import numpy as np
5 from windml . da ta s e t s . n r e l import NREL
6 from windml . mapping . power mapping import PowerMapping
7 from windml . mapping . speed mapping import SpeedMapping
8
9 from s k l e a rn import l i n ea r mode l

10 from s k l e a rn . met r i c s import mean squared error
11
12 #s p l i t s a numpy array in two to a s e t r a t i o ex . 0 .8
13 def s p l i t d a t a ( data , r a t i o ) :
14 da ta l en = len ( data )
15 s p l i t p o s= int ( da ta l en ∗ r a t i o )
16 out 1 = data [ : s p l i t p o s ]
17 out 2 = data [ s p l i t p o s : ]
18 return ( out 1 , out 2 )
19
20
21 print ” LRPrediction . py <park id> <Tra in ing reduct ion> <

wind park radius> <p r e d i c t i o n d i s t a n c e > <window size>”
22
23 park id = 4155
24 i f len ( sys . argv ) > 1 :
25 print ”Wind park used as argument : ” + sys . argv [ 1 ]
26 park id =int ( sys . argv [ 1 ] )
27 else :
28 print ”No wind park number supp l i ed . Using d e f a u l t

4155”
29
30 t r a i n i n g r e d u c t i o n = 1
31 i f len ( sys . argv ) > 2 :
32 print ” Train ing Reduction used as argument : ” + sys .

argv [ 2 ]
33 t r a i n i n g r e d u c t i o n = int ( sys . argv [ 2 ] )
34 else :
35 print ”No t r a i n i n g reduct ion suppl ied , us ing 1”
36
37 wind park rad ius = 1
38 i f len ( sys . argv ) > 3 :
39 print ”Wind park Radius used as argument : ” + sys .
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argv [ 3 ]
40 wind park rad ius = int ( sys . argv [ 3 ] )
41 else :
42 print ”No wind park rad iu s suppl ied , us ing 1”
43
44 p r e d i c t i o n d i s t a n c e = 1
45 i f len ( sys . argv ) > 4 :
46 print ” Pred i c t i on d i s t anc e used as argument : ” + sys .

argv [ 4 ]
47 p r e d i c t i o n d i s t a n c e = int ( sys . argv [ 4 ] )
48 else :
49 print ”No p r e d i c t i o n d i s t anc e suppl ied , us ing 1”
50
51 window size = 3
52 i f len ( sys . argv ) > 5 :
53 print ” window size used as argument : ” + sys . argv [ 5 ]
54 window size = int ( sys . argv [ 5 ] )
55 else :
56 print ”No window size suppl ied , us ing 3”
57
58
59
60 #d e f i n e a windpark us ing a t u r b i n e ID . t e c h a p i = 4155
61 #s i z e in km and d a t e s as arguments
62 windpark = NREL( ) . get windpark ( park id ,
63 wind park radius ,
64 2004 ,
65 2006)
66
67 #the t u r b i n e in the e x a c t c e n t e r o f the windpark i s the

one we ’ re t r y i n g to p r e d i c t
68 t a r g e t t u r b i n e = windpark . g e t t a r g e t ( )
69
70 p mapping = PowerMapping ( )
71
72 print ”number o f 10 minute t imes teps in to the fu tu r e : ” +

str ( p r e d i c t i o n d i s t a n c e )
73
74 #r e t r i e v e power generated by t u r b i n e s in park
75 turb ine power matr ix = p mapping . g e t f e a t u r e s p a r k (

windpark , window size , p r e d i c t i o n d i s t a n c e )
76 t a r g e t v a l u e s = p mapping . g e t l a b e l s t u r b i n e (

t a r g e t t u r b i n e , window size , p r e d i c t i o n d i s t a n c e )
77
78 #normal ize to 0−1
79 turb ine power matr ix = turb ine power matr ix /30
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80 t a r g e t v a l u e s = t a r g e t v a l u e s /30
81
82
83 #r e d u c t i o n in data s i z e us ing t r a i n i n g r e d u c t i o n 1 i s a l l

, 2 i s h a l f and so on
84 turb ine power matr ix = turb ine power matr ix [ : len (

turb ine power matr ix ) : t r a i n i n g r e d u c t i o n ]
85 t a r g e t v a l u e s = t a r g e t v a l u e s [ : len ( t a r g e t v a l u e s ) :

t r a i n i n g r e d u c t i o n ]
86
87 turb ine power mat r ix t ra in , t u r b in e po we r m at r i x t e s t =

s p l i t d a t a ( turb ine power matr ix , 0 . 8 )
88 t a r g e t v a l u e s t r a i n , t a r g e t v a l u e s t e s t = s p l i t d a t a (

t a r g e t v a l u e s , 0 . 8 )
89
90 #t r a i n a r e g r e s s o r based on the t r a i n i n g data
91 #Linear Regress ion
92 LR = l inea r mode l . L inearRegre s s i on ( ) . f i t (

tu rb ine power mat r ix t ra in , t a r g e t v a l u e s t r a i n )
93 p r e d i c t i o n = LR. p r e d i c t ( tu rb in e po we r m at r i x t e s t )
94 e r r o r = mean squared error ( t a r g e t v a l u e s t e s t , p r e d i c t i o n

)
95 print ”MSE LR ” + str ( e r r o r )
96
97 time = np . array ( range (0 , len ( t u rb in e po we r m at r i x t e s t ) ) )
98 p l t . p l o t ( time , t a r g e t v a l u e s t e s t , l a b e l=” observed va lue s

” , c o l o r=’ 0 .0 ’ , lw =1.5)
99 p l t . p l o t ( time , p r ed i c t i on , l a b e l=” pred i c t ed va lue s LR” ,

c o l o r=’ 0 . 0 ’ , lw =1.5 , l s=’−− ’ )
100 p l t . x l a b e l ( ”Time” )
101 p l t . y l a b e l ( ”Wind Power” )
102 p l t . yl im ( [ 0 , 1 ] )
103 p l t . xl im ( [ 1 0 0 0 , 1100 ] )
104 p l t . l egend ( )
105 #p l t . show ( )
106
107 name = ” LRPredictionPark ” + str ( park id ) + ”

TrainingReduct ion ” + str ( t r a i n i n g r e d u c t i o n ) + ”
ParkRadius” + str ( wind park rad ius ) + ”
Pred i c t i onDi s tance ” + str ( p r e d i c t i o n d i s t a n c e ) + ”
WindowSize” + str ( window size ) + ” Error ” + str ( e r r o r )
+ ” . png”

108
109 p l t . s a v e f i g (name , bbox inches=’ t i g h t ’ )
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A.6 KNNPrediction.py - KNN prediction of power using
same or nearby park power

1 import math
2 import sys
3 import matp lo t l i b . pyplot as p l t
4 import numpy as np
5 from windml . da ta s e t s . n r e l import NREL
6 from windml . mapping . power mapping import PowerMapping
7 from windml . mapping . speed mapping import SpeedMapping
8
9 from s k l e a rn . ne ighbors import KNeighborsRegressor

10 from s k l e a rn . met r i c s import mean squared error
11
12 #s p l i t s a numpy array in two to a s e t r a t i o ex . 0 .8
13 def s p l i t d a t a ( data , r a t i o ) :
14 da ta l en = len ( data )
15 s p l i t p o s= int ( da ta l en ∗ r a t i o )
16 out 1 = data [ : s p l i t p o s ]
17 out 2 = data [ s p l i t p o s : ]
18 return ( out 1 , out 2 )
19
20
21 print ” LRPrediction . py <park id> <Tra in ing reduct ion> <

wind park radius> <p r e d i c t i o n d i s t a n c e > <window size>
<S i z e f o r K>”

22
23 park id = 4155
24 i f len ( sys . argv ) > 1 :
25 print ”Wind park used as argument : ” + sys . argv [ 1 ]
26 park id =int ( sys . argv [ 1 ] )
27 else :
28 print ”No wind park number supp l i ed . Using d e f a u l t

4155”
29
30 t r a i n i n g r e d u c t i o n = 1
31 i f len ( sys . argv ) > 2 :
32 print ” Train ing Reduction used as argument : ” + sys .

argv [ 2 ]
33 t r a i n i n g r e d u c t i o n = int ( sys . argv [ 2 ] )
34 else :
35 print ”No t r a i n i n g reduct ion suppl ied , us ing 1”
36
37 wind park rad ius = 1
38 i f len ( sys . argv ) > 3 :
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39 print ”Wind park Radius used as argument : ” + sys .
argv [ 3 ]

40 wind park rad ius = int ( sys . argv [ 3 ] )
41 else :
42 print ”No wind park rad iu s suppl ied , us ing 1”
43
44 p r e d i c t i o n d i s t a n c e = 1
45 i f len ( sys . argv ) > 4 :
46 print ” Pred i c t i on d i s t anc e used as argument : ” + sys .

argv [ 4 ]
47 p r e d i c t i o n d i s t a n c e = int ( sys . argv [ 4 ] )
48 else :
49 print ”No p r e d i c t i o n d i s t anc e suppl ied , us ing 1”
50
51 window size = 3
52 i f len ( sys . argv ) > 5 :
53 print ” window size used as argument : ” + sys . argv [ 5 ]
54 window size = int ( sys . argv [ 5 ] )
55 else :
56 print ”No window size suppl ied , us ing 3”
57
58 K = 25
59 i f len ( sys . argv ) > 6 :
60 print ”K used as argument : ” + sys . argv [ 6 ]
61 K = int ( sys . argv [ 6 ] )
62 else :
63 print ”No K suppl ied , us ing ” + str (K)
64
65 #d e f i n e a windpark us ing a t u r b i n e ID . t e c h a p i = 4155
66 #s i z e in km and d a t e s as arguments
67 windpark = NREL( ) . get windpark ( park id ,
68 wind park radius ,
69 2004 ,
70 2006)
71
72 #the t u r b i n e in the e x a c t c e n t e r o f the windpark i s the

one we ’ re t r y i n g to p r e d i c t
73 t a r g e t t u r b i n e = windpark . g e t t a r g e t ( )
74
75 p mapping = PowerMapping ( )
76
77 print ”number o f 10 minute t imes teps in to the fu tu r e : ” +

str ( p r e d i c t i o n d i s t a n c e )
78
79 #r e t r i e v e power generated by t u r b i n e s in park
80 turb ine power matr ix = p mapping . g e t f e a t u r e s p a r k (
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windpark , window size , p r e d i c t i o n d i s t a n c e )
81 t a r g e t v a l u e s = p mapping . g e t l a b e l s t u r b i n e (

t a r g e t t u r b i n e , window size , p r e d i c t i o n d i s t a n c e )
82
83 #normal ize to 0−1
84 turb ine power matr ix = turb ine power matr ix /30
85 t a r g e t v a l u e s = t a r g e t v a l u e s /30
86
87
88 #r e d u c t i o n in data s i z e us ing t r a i n i n g r e d u c t i o n 1 i s a l l

, 2 i s h a l f and so on
89 turb ine power matr ix = turb ine power matr ix [ : len (

turb ine power matr ix ) : t r a i n i n g r e d u c t i o n ]
90 t a r g e t v a l u e s = t a r g e t v a l u e s [ : len ( t a r g e t v a l u e s ) :

t r a i n i n g r e d u c t i o n ]
91
92 turb ine power mat r ix t ra in , t u r b in e po we r m at r i x t e s t =

s p l i t d a t a ( turb ine power matr ix , 0 . 8 )
93 t a r g e t v a l u e s t r a i n , t a r g e t v a l u e s t e s t = s p l i t d a t a (

t a r g e t v a l u e s , 0 . 8 )
94
95 #t r a i n a r e g r e s s o r based on the t r a i n i n g data
96 #Linear Regress ion
97 KNN = KNeighborsRegressor (K) . f i t (

tu rb ine power mat r ix t ra in , t a r g e t v a l u e s t r a i n )
98 p r e d i c t i o n = KNN. p r e d i c t ( t u r b i n e po w er ma t r i x t e s t )
99 e r r o r = mean squared error ( t a r g e t v a l u e s t e s t , p r e d i c t i o n

)
100 print ”MSE LR ” + str ( e r r o r )
101
102 time = np . array ( range (0 , len ( t u rb in e po we r m at r i x t e s t ) ) )
103 p l t . p l o t ( time , t a r g e t v a l u e s t e s t , l a b e l=” observed va lue s

” , c o l o r=’ 0 .0 ’ , lw =1.5)
104 p l t . p l o t ( time , p r ed i c t i on , l a b e l=” pred i c t ed va lue s KNN” ,

c o l o r=’ 0 . 0 ’ , lw =1.5 , l s=’−− ’ )
105 p l t . x l a b e l ( ”Time” )
106 p l t . y l a b e l ( ”Wind Power” )
107 p l t . yl im ( [ 0 , 1 ] )
108 p l t . xl im ( [ 3 7 5 0 , 3950 ] )
109 p l t . l egend ( )
110 #p l t . show ( )
111
112 name = ”KNNPredictionPark” + str ( park id ) + ”

TrainingReduct ion ” + str ( t r a i n i n g r e d u c t i o n ) + ”
ParkRadius” + str ( wind park rad ius ) + ”
Pred i c t i onDi s tance ” + str ( p r e d i c t i o n d i s t a n c e ) + ”
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WindowSize” + str ( window size ) + ”K” + str (K) + ” Error
” + str ( e r r o r ) + ” . png”

113
114 p l t . s a v e f i g (name , bbox inches=’ t i g h t ’ )
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A.7 SVRPrediction.py - SVR prediction of power using
same or nearby park power

1 import math
2 import sys
3 import matp lo t l i b . pyplot as p l t
4 import numpy as np
5 from windml . da ta s e t s . n r e l import NREL
6 from windml . mapping . power mapping import PowerMapping
7 from windml . mapping . speed mapping import SpeedMapping
8
9 from s k l e a rn . svm import SVR

10 from s k l e a rn . met r i c s import mean squared error
11
12 #s p l i t s a numpy array in two to a s e t r a t i o ex . 0 .8
13 def s p l i t d a t a ( data , r a t i o ) :
14 da ta l en = len ( data )
15 s p l i t p o s= int ( da ta l en ∗ r a t i o )
16 out 1 = data [ : s p l i t p o s ]
17 out 2 = data [ s p l i t p o s : ]
18 return ( out 1 , out 2 )
19
20
21 print ” SVRPrediction . py <park id> <Tra in ing reduct ion> <

wind park radius> <p r e d i c t i o n d i s t a n c e > <window size>
<e p s i l o n value> <c value>”

22
23 park id = 4155
24 i f len ( sys . argv ) > 1 :
25 print ”Wind park used as argument : ” + sys . argv [ 1 ]
26 park id =int ( sys . argv [ 1 ] )
27 else :
28 print ”No wind park number supp l i ed . Using d e f a u l t

4155”
29
30 t r a i n i n g r e d u c t i o n = 5
31 i f len ( sys . argv ) > 2 :
32 print ” Train ing Reduction used as argument : ” + sys .

argv [ 2 ]
33 t r a i n i n g r e d u c t i o n = int ( sys . argv [ 2 ] )
34 else :
35 print ”No t r a i n i n g reduct ion suppl ied , us ing ” + str (

t r a i n i n g r e d u c t i o n )
36
37 wind park rad ius = 1
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38 i f len ( sys . argv ) > 3 :
39 print ”Wind park Radius used as argument : ” + sys .

argv [ 3 ]
40 wind park rad ius = int ( sys . argv [ 3 ] )
41 else :
42 print ”No wind park rad iu s suppl ied , us ing 1”
43
44 p r e d i c t i o n d i s t a n c e = 1
45 i f len ( sys . argv ) > 4 :
46 print ” Pred i c t i on d i s t anc e used as argument : ” + sys .

argv [ 4 ]
47 p r e d i c t i o n d i s t a n c e = int ( sys . argv [ 4 ] )
48 else :
49 print ”No p r e d i c t i o n d i s t anc e suppl ied , us ing 1”
50
51 window size = 3
52 i f len ( sys . argv ) > 5 :
53 print ” window size used as argument : ” + sys . argv [ 5 ]
54 window size = int ( sys . argv [ 5 ] )
55 else :
56 print ”No window size suppl ied , us ing 3”
57
58 e p s i l o n = 0.01
59 i f len ( sys . argv ) > 6 :
60 print ” e p s i l o n used as argument : ” + sys . argv [ 6 ]
61 e p s i l o n = f loat ( sys . argv [ 6 ] )
62 else :
63 print ”No e p s i l o n suppl ied , us ing ” + str ( e p s i l o n )
64
65 c = 1
66 i f len ( sys . argv ) > 7 :
67 print ”c used as argumetn : ” + sys . argv [ 7 ]
68 c = int ( sys . argv [ 7 ] )
69 else :
70 print ”No c suppl ied , us ing ” + str ( c )
71
72 #d e f i n e a windpark us ing a t u r b i n e ID . t e c h a p i = 4155
73 #s i z e in km and d a t e s as arguments
74 windpark = NREL( ) . get windpark ( park id ,
75 wind park radius ,
76 2004 ,
77 2006)
78
79 #the t u r b i n e in the e x a c t c e n t e r o f the windpark i s the

one we ’ re t r y i n g to p r e d i c t
80 t a r g e t t u r b i n e = windpark . g e t t a r g e t ( )
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81
82 p mapping = PowerMapping ( )
83
84 print ”number o f 10 minute t imes teps in to the fu tu r e : ” +

str ( p r e d i c t i o n d i s t a n c e )
85
86 #r e t r i e v e power generated by t u r b i n e s in park
87 turb ine power matr ix = p mapping . g e t f e a t u r e s p a r k (

windpark , window size , p r e d i c t i o n d i s t a n c e )
88 t a r g e t v a l u e s = p mapping . g e t l a b e l s t u r b i n e (

t a r g e t t u r b i n e , window size , p r e d i c t i o n d i s t a n c e )
89
90 #normal ize to 0−1
91 turb ine power matr ix = turb ine power matr ix /30
92 t a r g e t v a l u e s = t a r g e t v a l u e s /30
93
94
95 #r e d u c t i o n in data s i z e us ing t r a i n i n g r e d u c t i o n 1 i s a l l

, 2 i s h a l f and so on
96 turb ine power matr ix = turb ine power matr ix [ : len (

turb ine power matr ix ) : t r a i n i n g r e d u c t i o n ]
97 t a r g e t v a l u e s = t a r g e t v a l u e s [ : len ( t a r g e t v a l u e s ) :

t r a i n i n g r e d u c t i o n ]
98
99 turb ine power mat r ix t ra in , t u r b in e po we r m at r i x t e s t =

s p l i t d a t a ( turb ine power matr ix , 0 . 8 )
100 t a r g e t v a l u e s t r a i n , t a r g e t v a l u e s t e s t = s p l i t d a t a (

t a r g e t v a l u e s , 0 . 8 )
101
102 #t r a i n a r e g r e s s o r based on the t r a i n i n g data
103 SVR = SVR( e p s i l o n=eps i l on , C=c ) . f i t (

tu rb ine power mat r ix t ra in , t a r g e t v a l u e s t r a i n )
104
105 p r e d i c t i o n = SVR. p r e d i c t ( t u r b i n e po w er ma t r i x t e s t )
106 e r r o r = mean squared error ( t a r g e t v a l u e s t e s t , p r e d i c t i o n

)
107 print ”MSE LR ” + str ( e r r o r )
108
109 time = np . array ( range (0 , len ( t u rb in e po we r m at r i x t e s t ) ) )
110 p l t . p l o t ( time , t a r g e t v a l u e s t e s t , l a b e l=” observed va lue s

” , c o l o r=’ 0 .0 ’ , lw =1.5)
111 p l t . p l o t ( time , p r ed i c t i on , l a b e l=” pred i c t ed va lue s SVR” ,

c o l o r=’ 0 . 0 ’ , lw =1.5 , l s=’−− ’ )
112 p l t . x l a b e l ( ”Time” )
113 p l t . y l a b e l ( ”Wind Power” )
114 p l t . yl im ( [ 0 , 1 ] )
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115 p l t . xl im ( [ 1 3 0 0 , 1500 ] )
116 p l t . l egend ( )
117 #p l t . show ( )
118
119 name = ”SVRPredictionPark” + str ( park id ) + ”

TrainingReduct ion ” + str ( t r a i n i n g r e d u c t i o n ) + ”
ParkRadius” + str ( wind park rad ius ) + ”
Pred i c t i onDi s tance ” + str ( p r e d i c t i o n d i s t a n c e ) + ”
WindowSize” + str ( window size ) + ” Eps i lon ” + str (
e p s i l o n ) + ”C” + str ( c ) + ” Error ” + str ( e r r o r ) + ” . png
”

120
121 p l t . s a v e f i g (name , bbox inches=’ t i g h t ’ )

73



A.8 MLPRPrediction.py - MLPR prediction of power us-
ing same or nearby park power

1 import math
2 import sys
3 import matp lo t l i b . pyplot as p l t
4 import numpy as np
5 from windml . da ta s e t s . n r e l import NREL
6 from windml . mapping . power mapping import PowerMapping
7 from windml . mapping . speed mapping import SpeedMapping
8
9 from s k l e a rn . neura l network import MLPRegressor

10 from s k l e a rn . met r i c s import mean squared error
11
12 #s p l i t s a numpy array in two to a s e t r a t i o ex . 0 .8
13 def s p l i t d a t a ( data , r a t i o ) :
14 da ta l en = len ( data )
15 s p l i t p o s= int ( da ta l en ∗ r a t i o )
16 out 1 = data [ : s p l i t p o s ]
17 out 2 = data [ s p l i t p o s : ]
18 return ( out 1 , out 2 )
19
20
21 print ”MLPRPrediction . py <park id> <Tra in ing reduct ion> <

wind park radius> <p r e d i c t i o n d i s t a n c e > <window size>
<Hidden l a y e r s i z e> <hidden l a y e r depth>”

22
23 park id = 4155
24 i f len ( sys . argv ) > 1 :
25 print ”Wind park used as argument : ” + sys . argv [ 1 ]
26 park id =int ( sys . argv [ 1 ] )
27 else :
28 print ”No wind park number supp l i ed . Using d e f a u l t

4155”
29
30 t r a i n i n g r e d u c t i o n = 5
31 i f len ( sys . argv ) > 2 :
32 print ” Train ing Reduction used as argument : ” + sys .

argv [ 2 ]
33 t r a i n i n g r e d u c t i o n = int ( sys . argv [ 2 ] )
34 else :
35 print ”No t r a i n i n g reduct ion suppl ied , us ing ” + str (

t r a i n i n g r e d u c t i o n )
36
37 wind park rad ius = 1
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38 i f len ( sys . argv ) > 3 :
39 print ”Wind park Radius used as argument : ” + sys .

argv [ 3 ]
40 wind park rad ius = int ( sys . argv [ 3 ] )
41 else :
42 print ”No wind park rad iu s suppl ied , us ing 1”
43
44 p r e d i c t i o n d i s t a n c e = 1
45 i f len ( sys . argv ) > 4 :
46 print ” Pred i c t i on d i s t anc e used as argument : ” + sys .

argv [ 4 ]
47 p r e d i c t i o n d i s t a n c e = int ( sys . argv [ 4 ] )
48 else :
49 print ”No p r e d i c t i o n d i s t anc e suppl ied , us ing 1”
50
51 window size = 3
52 i f len ( sys . argv ) > 5 :
53 print ” window size used as argument : ” + sys . argv [ 5 ]
54 window size = int ( sys . argv [ 5 ] )
55 else :
56 print ”No window size suppl ied , us ing 3”
57
58 h i d d e n l a y e r s i z e = 100
59 i f len ( sys . argv ) > 6 :
60 print ” hidden l a y e r s i z e used as argument : ” + sys .

argv [ 6 ]
61 h i d d e n l a y e r s i z e = int ( sys . argv [ 6 ] )
62 else :
63 print ”No hidden l a y e r s i z e suppl ied , us ing ” + str (

h i d d e n l a y e r s i z e )
64
65 h idden laye r depth = 1
66 i f len ( sys . argv ) > 7 :
67 print ” hidden l a y e r depth used as argumetn : ” + sys .

argv [ 7 ]
68 h idden laye r depth = int ( sys . argv [ 7 ] )
69 else :
70 print ”No hidden l a y e r depth suppl ied , us ing ” + str (

h idden laye r depth )
71
72 #d e f i n e a windpark us ing a t u r b i n e ID . t e c h a p i = 4155
73 #s i z e in km and d a t e s as arguments
74 windpark = NREL( ) . get windpark ( park id ,
75 wind park radius ,
76 2004 ,
77 2006)
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78
79 #the t u r b i n e in the e x a c t c e n t e r o f the windpark i s the

one we ’ re t r y i n g to p r e d i c t
80 t a r g e t t u r b i n e = windpark . g e t t a r g e t ( )
81
82 p mapping = PowerMapping ( )
83
84 print ”number o f 10 minute t imes teps in to the fu tu r e : ” +

str ( p r e d i c t i o n d i s t a n c e )
85
86 #r e t r i e v e power generated by t u r b i n e s in park
87 turb ine power matr ix = p mapping . g e t f e a t u r e s p a r k (

windpark , window size , p r e d i c t i o n d i s t a n c e )
88 t a r g e t v a l u e s = p mapping . g e t l a b e l s t u r b i n e (

t a r g e t t u r b i n e , window size , p r e d i c t i o n d i s t a n c e )
89
90 #normal ize to 0−1
91 turb ine power matr ix = turb ine power matr ix /30
92 t a r g e t v a l u e s = t a r g e t v a l u e s /30
93
94
95 #r e d u c t i o n in data s i z e us ing t r a i n i n g r e d u c t i o n 1 i s a l l

, 2 i s h a l f and so on
96 turb ine power matr ix = turb ine power matr ix [ : len (

turb ine power matr ix ) : t r a i n i n g r e d u c t i o n ]
97 t a r g e t v a l u e s = t a r g e t v a l u e s [ : len ( t a r g e t v a l u e s ) :

t r a i n i n g r e d u c t i o n ]
98
99 turb ine power mat r ix t ra in , t u r b in e po we r m at r i x t e s t =

s p l i t d a t a ( turb ine power matr ix , 0 . 8 )
100 t a r g e t v a l u e s t r a i n , t a r g e t v a l u e s t e s t = s p l i t d a t a (

t a r g e t v a l u e s , 0 . 8 )
101
102 #c r e a t e t u p l e o f pe rcre p t ro n hidden l a y e r s
103 h i d d e n l a y e r s t u p l e = ( h i d d e n l a y e r s i z e , )
104 for i in range (1 , h idden laye r depth ) :
105 h i d d e n l a y e r s t u p l e = h i d d e n l a y e r s t u p l e + (

h i d d e n l a y e r s i z e , )
106
107 print ”Hidden l a y e r layout ”
108 print h i d d e n l a y e r s t u p l e
109
110 #t r a i n a r e g r e s s o r based on the t r a i n i n g data
111 MLPR = MLPRegressor ( h i d d e n l a y e r s i z e s=

h i d d e n l a y e r s t u p l e ) . f i t ( tu rb ine power mat r ix t ra in ,
t a r g e t v a l u e s t r a i n )
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112
113 p r e d i c t i o n = MLPR. p r e d i c t ( tu rb i n e po we r m at r i x t e s t )
114 e r r o r = mean squared error ( t a r g e t v a l u e s t e s t , p r e d i c t i o n

)
115 print ”MSE ” + str ( e r r o r )
116
117 time = np . array ( range (0 , len ( t u rb in e po we r m at r i x t e s t ) ) )
118 p l t . p l o t ( time , t a r g e t v a l u e s t e s t , l a b e l=” observed va lue s

” , c o l o r=’ 0 .0 ’ , lw =1.5)
119 p l t . p l o t ( time , p r ed i c t i on , l a b e l=” pred i c t ed va lue s MLPR” ,

c o l o r=’ 0 .0 ’ , lw =1.5 , l s=’−− ’ )
120 p l t . x l a b e l ( ”Time” )
121 p l t . y l a b e l ( ”Wind Power” )
122 p l t . yl im ( [ 0 , 1 ] )
123 p l t . xl im ( [ 5 0 5 0 , 5250 ] )
124 p l t . l egend ( )
125 #p l t . show ( )
126
127 name = ”MLPRPredictionPark” + str ( park id ) + ”

TrainingReduct ion ” + str ( t r a i n i n g r e d u c t i o n ) + ”
ParkRadius” + str ( wind park rad ius ) + ”
Pred i c t i onDi s tance ” + str ( p r e d i c t i o n d i s t a n c e ) + ”
WindowSize” + str ( window size ) + ”HLSize” + str (
h i d d e n l a y e r s i z e ) + ”HLDepth” + str (
h idden laye r depth ) + ” Error ” + str ( e r r o r ) + ” . png”

128
129 p l t . s a v e f i g (name , bbox inches=’ t i g h t ’ )
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