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Abstract

DDoS attacks have for the last two decades been among the greatest threats
facing the internet infrastructure. Mitigating DDoS attacks is a particularly
challenging task. It is known that ordinary signature based detection tech-
niques are inefficient in undermining DDoS attacks as this type of attacks has
the ability to mask itself among legitimate traffic. In this thesis, we present an
paradigm for countering DDoS attacks at the targeted victim by using elements
from data mining and machine learning. Two novel methods that focus on iden-
tifying hidden data structures in historical traffic are proposed, to differentiate
legitimate traffic from abnormal traffic. In the first method, we resort to data
mining techniques to find association rules which are able to describe the part
of traffic that has higher likelihood of re-occurring. As a data structure for
storing those data driven rules, we employ a binary tree structure. The sec-
ond method builds on previously uncharted areas within mitigation techniques,
where clustering techniques are used to create geographical clusters. In order
to summarize the clustering information for real-life traffic filtering scenarios,
we use the concept of bloom filters. The results show that these mitigation
approaches improve the ability to separate between unknown abnormalities in
the dataset and the legitimate traffic structure. Our proposed DDoS filtering
schemes are able to mitigate 99% of the botnet traffic and thus countering sig-
nificantly the magnitude of those attacks.
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Chapter 1

Introduction

A denial of service(DoS) attack can be described as an explicit attempt to
render a server or network incapable of providing normal service to its users.
Although, it is possible to exploit different software vulnerabilities to deny le-
gitimate users access to services, DoS attacks often relay on continuously and
excessively consuming a limited resource such as bandwidth, memory, storage,
or CPU, which is necessary for the targeted service to operate correctly[52][75].
We can differentiate between denial of service(DoS) attacks and distributed de-
nial of service(DDoS) attacks; DoS is where one attacker, with one network
connection, execute an attack. While, a DDoS attack adds a many-to-one di-
mension to the DoS problem. Instead of using one connection, a DDoS attack
often uses thousands of compromised hosts to execute an attack, amplifying
both the available attack resources and the complexity of a DoS attack[27].

There is no doubt that DDoS attacks have over the last decade become
an immense threat to the Internet infrastructure. Attacks have become com-
monplace with a wide range of global victims in everything from commercial
website, educational institutions, public chat servers and government organiza-
tions[57]. DDoS attacks have grown in complexity over the last couple of years
and criminal launch constantly more complicated attack patterns, containing a
multitude of vectors, adapted to specific victims. There is a couple of factors
to consider when trying to understand why DDoS is a rapidly growing problem
and still a major problem for IT professionals, regardless of immense research
and proposed solutions over the last decade. Firstly, the Internet architecture
has originally been designed around openness without taking into account seri-
ous security issues. Attackers often successfully exploit this weakness by using
vulnerable protocols and unpatched services into launching DDoS attacks. Mit-
igation approaches have often focused on designing new protocols to be network
resistant against DDoS attacks. However, the different proposed solutions have
proved insufficient since the approaches have not been implemented in a wide
enough scale.

Internet of things(IoT) devices, refers to inter-networking devices as cameras
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and baby monitors, which can communicate through network communication.
IoT devices are still in its infancy and insecure devices have continued to be a
problem over the last couple of years. Hackers are increasingly taking advantage
of these vulnerabilities to add insecure IoT devices to already well functioning
botnets. These pools of vulnerable devices have added to the capabilities of
botnets which have lead to stronger attacks. In late 2016, high profile DDoS
attacks, containing IoT devices, set new standards for larger and more sophisti-
cated attacks. The largest known DDoS attack to date was reported in late 2016
and targeted Dyn’s DNS servers. The DDoS attack used compromised IoT de-
vices and consisted of an estimated attack size of 1.1 Tbps. The attack affected
large parts of USA, knocking several popular websites offline[68]. Kaspersky
Lab, which is a cybersecurity and anti-virus provider, reported similar attacks
on ISPs in Ireland, United Kingdom and Liberia, all leveraging the use of IoT
devices[40]. Akamai reported, in the fourth quarter of 2016, that 7 out of 12
attacks over 100 gbs, can be directly contributed to IoT botnets[10]. It is ex-
pected that IoT devices will continue to be fuel for more powerful attacks as
devices contains severe and easily exploitable vulnerabilities.

Moreover, DDoS attacks constantly adapt to changes in mitigation tech-
niques, by finding and exploiting new vulnerabilities in protocols and systems.
Attackers no longer require extensive knowledge about the problem domain or
resources to be able to execute attacks. DDoS-for-hire has emerged over the
last couple of years, where attackers can rent cheap botnets. This gives attack-
ers nearly unlimited supply of bandwidth and CPU to attack a single victim.
These services gives attackers an easy and understandable GUI for as little as
25$ an hour. DDoS-for-hire has turned into a highly profitable service and the
profitably can exceed over 95%. Mainly mid-sized websites are attacked today
and attackers often extort victims to pay a ransom[69]. Hence, it is therefore
not hard to understand why DDoS attacks are on the rise and continues to be
the most popular attack mechanisms for attackers.

1.1 Problem statement
This thesis argues that the best way to protect against potential DDoS attacks is
to use data mining and machine learning to find relevant and significant patterns
on traffic history. Based on found traffic correlation, filtering mechanisms can
be dynamically applied to prevent abnormal activity from having access to a
service. This leads to the first problem statement that this thesis will explore:

How can we use data mining to find pattern correlation in data history to
build efficient filtering rules that are able to mitigate DDoS attacks?

Even though DDoS attacks have steadily increased over the last couple
of years, the average peak attack bandwidth and volume have continued to
drop[7][9][4]. In 2015, the average duration of an attack under 10 gbps were
around 39 minutes. This is long enough for a possible attacker to be able to im-
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pact the infrastructure or application. However, it’s not necessarily long enough
to have a huge impact on the availability of the systems[26]. There is however
also a rise in the amounts of DDoS attacks that are over 100 gbps. It’s therefore
important to explore how well the solution is able to deal with DDoS attacks of
different size. This leads to the second and last problem statement this thesis
will explore:

To which extent is our solution resilient to DDoS attacks of varying magni-
tude?
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Chapter 2

Background

To develop a comprehensive and efficient defense mechanism against DDoS at-
tacks it is necessary to have extensive understanding of the problem domain.
The diversity and quantity of information available regarding the DDoS prob-
lem is overwhelming. However, it’s crucial to have a better understanding of
both the problem domain and the current solution space to create efficient and
good defense approaches. This chapter will explore the scope and characteris-
tics of DDoS attacks as well as the components in use. Moreover, the chapter
will highlight relevant defense mechanisms that can be used to address DDoS
attacks.

2.1 DDoS attack techniques
Over the last couple of years, DDoS attacks have focused on attacking the in-
frastructure and application layer, either by overloading the bandwidth capacity
or focusing on depleting some limited network resource. Attackers often suc-
cessfully exploit the open internet infrastructure into launching DoS or DDoS
attacks. Leiwo and Nikander notes that new protocols should be designed to be
more network resistant to DDoS attacks as any statefull protocol is vulnerable
to attacks like SYN and PUSH ACK flooding[47]. The common factor for DDoS
attacks revolve around pushing heavy amounts of traffic into the targeted system
or network, therefore exhausting some specific resource. We can classify DDoS
into different categories based on which layer the attack targets, consequently
network layer, transport layer and application layer attacks. This section will
go through some currently popular and known attack techniques inside of each
category.
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2.1.1 Network layer attacks
Network layer attacks, are DDoS attacks that targets the network layer by at-
tempting to overwhelm the bandwidth and routing infrastructure. The attacker
will often try to accomplish this goal by amplifying the original attack to a
much larger attack, commonly known as an amplification attack. An amplifi-
cation attack is a reflection based DDoS attack, where through various set of
techniques, the attacker turns a small request or payload into a much larger
payload directed at the victim, therefore successfully overloading the victims
bandwidth[72]. Amplification attacks have been heavily favoured by attackers
and is excepted to be one of the preferred attacks as long as misconfigured inter-
net devices and services are available. An amplification attack can be achieved
through a various set of means, among these are a DNS amplification, the misuse
of a broadcast IP address and NTP reflection.

DNS reflection attack

The basic technique in DNS reflection attack is to request a large zone file with
the source IP address spoofed to be the intended victim. The attackers request
is only a fraction of what the DNS server will respond with, efficiently amplifying
the attack to many times the size of the available bandwidth[80]. While a DNS
query consist of approximately 36 bytes, a response message could easily triple
that size. At worst, depending on the request, the response can come up to
a couple thousands bytes. Potentially, the attacker could consume the entire
bandwidth of the victim by only generating a few thousand responses[36].

These situations are often difficult to protect against since it’s the DNS server
that performs the direct attack. In an ordinary DDoS attack, it’s a possibility
to block the different bots that perform the attack. However, blocking a DNS
server might damage the operation of a corporate network. As in a generally
case, DNS is needed by any service, like HTTP and FTP, which requires name
resolution[36]. Furthermore, if the attack successfully manages to exhaust the
victims bandwidth, the software solution in place doesn’t matter as the network
link is completely saturated.

Broadcast reflection attack

The ICMP protocol is a diagnostic tool that can be used to test the reachability
of different computer systems. A host can send an ICMP echo request message
to a computer system. When the receiving system gets this message, the system
will respond by sending an ICMP echo reply message back to the sender[44].
Broadcast reflection attacks or smurf-based attacks exploit this operation by
sending spoofed ICMP echo requests to a router that is configured to relay
ICMP messages to all devices behind the router. When all of the devices receive
the ICMP echo request, the devices will reply with an ICMP reply message to
the victim host, efficiently amplifying the attack[80].
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NTP reflection attack

Network Time Protocol(NTP) is a protocol used for time synchronization be-
tween hosts. An attacker can misuse the monlist command to execute a reflec-
tion attack. The monlist command, in older versions of NTP, lets a user request
600 of the last hosts who connected to this service. This means that a small
request can be amplified to nearly 1000 times larger than the original amount
and thereby clog up network resources and bandwidth capacity.

2.1.2 Transport layer attacks
In transport layer attacks, the attacker misuses the communication protocols to
launch DDoS attacks. Misusing either the UDP protocol or the TCP protocol,
through SYN flooding, is common. This sub-section will go through these two
DDoS techniques.

TCP SYN flooding

In a normal TCP connection, a connection is initiated by sending a SYN mes-
sage to the server. The server will respond with a SYN-ACK message before
the client establishes the connection by responding with an ACK message. Af-
ter this procedure, the client and server can exchange data. TCP SYN attacks
exploit this three-way handshake by sending large amounts of SYN packages to
the server. The receiver will respond with a SYN-ACK packets to establish the
connection. However, the attacker will never respond to this message, therefore
holding up processor and memory resources which could be used to serve legit-
imate users. The server will eventually run out of resources and therefore no
longer be able to respond to legitimate requests.

There are different methods of performing SYN flood attacks[80]. An at-
tacker can either perform a direct attack or take a spoof based approach. In a
direct attack, the approach is to send as many SYN messages to the victim as
possible without spoofing the source IP address. The attacker then prevents the
operating system from responding to SYN-ACKs responses. The attacker can
also take a spoof based approach, where the source IP address is spoofed. This
attack relay on the assumptions that a portion of the chosen spoofed clients
doesn’t respond to the SYN-ACKs messages. Either because no client system
exist at that particular IP address, or that some of the spoofed clients will
not respond to illegitimate SYN-ACKs. Incorporating SYN flooding attacks by
using multiple agents makes the attacks nearly impossible to mitigate [80].

UDP flooding

In an UDP flooding attack, huge amounts of UDP packets are sent to the victim.
UDP flooding attacks often relay on sending packets to random ports at the
targeted victim. This forces the host to look for applications on these ports. If
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the victim isn’t running any service on the chosen port, an ICMP unreachable
message is sent back to the source. The victimized system is forced to send
huge amount of ICMP packets back to the sender. This will both use a large
amount of system resources on the victimized system, as well as saturating
the network link. Eventually, the server will succumb and legitimate request
will no longer have access to the service. Since UDP is a stateless protocol, it
is easy for any attacker to disguise themselves by spoofing their own address.
Most operating system mitigate UDP flooding by limiting the amount of ICMP
responses. Furthermore, some UDP flooding mitigation techniques focus on
rate-limiting the amount of accepted UDP datagrams to a certain destination
over a certain time period[80].

2.1.3 Application layer attacks
Application layer attacks have over the last couple of years grown in both com-
plexity and prevalence. The attacks differs from other types of DDoS attacks, in
the sense that the attacks focuses on sending high rates of seemingly legitimate
request. These type of attacks often consume less bandwidth and are gener-
ally more difficult to protect against as the traffic doesn’t differ from legitimate
requests[80].

HTTP flooding attack

The most common application layer attack is HTTP flooding. HTTP flooding
attacks have become more and more common over the last couple of years[53].
NSFOCUS, which provides security solution, reported HTTP flooding as the
second highest attack type, in 2013, with 36.2% of all monitored attacks[61].
HTTP flood is a sophisticated attack as it doesn’t use malformed packets, spoof-
ing or reflection techniques to execute an attack. Instead an attacker exploits the
seemingly legitimate HTTP GET and HTTP POST requests to attack a victim.
A HTTP flood attack targets web-services, and will often try to charge an ap-
plication with heavy HTTP GET or HTTP POST requests. The attacker often
change and use unique web request. Therefore, request bypass the caching sys-
tem and force the system to render and respond to every single request. Unique
request can either be accomplished by using legitimate URL or by randomizing
the used URL request.

The attacker tries to make a service allocate as many resources as possi-
ble. As the given HTTP service need to respond to every single request. It is
possible to deplete the system resources with few request. The attack rate can
therefore remain fairly low and infrastructure mitigation techniques such as rate-
based detection engines are usually not successful in detecting and mitigating
HTTP flooding attacks. HTTP flooding attacks often require an understanding
of the targeted service, as each attack needs to be specifically crafted. This
makes HTTP flooding attacks extremely difficult to protect against, as the use
of standard URL request makes the attacker behave like a normal user pro-
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file. Standard signatures to mitigate HTTP flooding are often not possible and
commercial solutions out there as SNORT, MINDS and SPADE are not able to
mitigate HTTP flooding[86][28][70].

As normal IDS techniques focus on signature based detection are not able to
detect HTTP flooding attacks, current mitigation techniques often relay on traf-
fic profiling and identifying abnormal traffic pattern behaviour. These mitiga-
tion techniques have a high focus on looking at normal users browser behaviour
before identifying abnormal browser patterns[53][82][85][83].

Yatagai et al. proposed two solutions to mitigate DDoS attacks; firstly,
the correlation between the time a host use on a certain web-page, with the
information size on that web-page can be monitored. The general consensus
is that the browsing time on a web-page is proportionate to the amount of
increased information. Compromised hosts can therefore be removed as it is
expected they don’t follow the normal browsing pattern behaviour. Secondly,
the browsing behaviour of every host can be monitored. compromised hosts
are expected to have a continues stream of the same browsing behaviour. It is
therefore possible to distinguish a compromised host from a normal host[85].

Xie and Yu proposed looking at the structure of how web pages are ac-
cessed. Here it is assumed that normal users access pages sequentially, based
on hyperlinks, while bots don’t follow this pattern. It is therefore possible to
remove users which don’t follow a certain user behaviour[81]. Beitollahi and
Deconinck proposed to measure statistics and behaviour under normal traffic
flow to mitigate DDoS attacks. These statistics include attributes as request
rate, download rate, uptime, hyperlink depth and page popularity. Based on a
normal traffic pattern. A score for any new connection can be determined and
connections with lower scores can be dropped. [15]

The methods on looking at the browsing behaviour is quite simple and can
often be avoided by changing the attack pattern. Moreover, many of these
HTTP mitigation methods focus heavily on the idea that there is enough time
to investigate the data pattern to a high degree. Proposed mitigation techniques
within HTTP flooding attacks often don’t consider the same time constraints as
other DDoS mitigation techniques. With the rise of more common and stronger
attacks, this is not necessarily an ideal scenario, as stronger attacks with HTTP
flooding are becoming more common.

2.2 DDoS trends
DDoS attacks have raised in popularity over the last couple of years and attacks
have become more complex and sophisticated. The profile of a typical DDoS
attacks seems to change each year between different attack methods, attack
volume and attack patterns. Moreover, as new vulnerabilities within protocols
or system are found, new attack methods and techniques are used to initiate
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and deplete some vital and finite resource. This section will look at some of the
attack trends over the last couple of years.

2.2.1 DDoS Attack Vector
Today, infrastructure layer attacks accounts for most of the DDoS activity. This
trend have remained for the last years, as attackers heavily rely on reflection
based techniques as the primary DDoS attack method. Reflection based tech-
niques does not only hide the true identity of the attacker, but also require
fewer attack resources to overload the victim[6]. NTP amplification and DNS
amplification are reported by Akamai and Versign as one of the top DDoS at-
tack vectors in 2016[10][77]. Akamai reported that DNS and NTP reflection
accounted for 34% of all attacks reported in the fourth quarter of 2016[10].

Although NTP amplification attacks have been decreasing over the last cou-
ple of years as servers are being patched or taken out of service, DNS amplifi-
cation attacks have remained the top attack vector and account for 20% of all
reported attacks in the fourth quarter of 2016[10]. Reflection attacks, like DNS,
are heavily favored as it allows attackers to hide their identity and amplify their
own traffic. UDP services like DNS, NTP and SSDP are vulnerable to these re-
flection attacks as the UDP protocol don’t require users to authenticate before
requesting data. Verisign reported that attacks employing the UDP protocol
accounted for 52% in the last quarter of 2016[77].

However, although reflection based techniques remains quite popular. Kasper-
sky lab, reported amplification layer attacks as diminishing over the last couple
of years. The problem domain around amplification attacks is well known and
downward trend has shown less devices that can be used to amplify attacks.
Instead, application layer attacks have had increasingly popularity and have
taken over some of the attack marked previously occupied by amplification at-
tacks[40][39]. Akamai reported Application layer attacks accounting for 10% of
all DDoS attacks in 2015[6]. In the end, DDoS attacks contain a multitude of
different attack vectors and hackers constantly probe the networks to find new
vulnerabilities to exploit. New vectors are therefore constantly emerging and
dis-emerging as vulnerabilities are being discovered and patched.

2.2.2 Mega attacks
Mainly mid-sized websites are today attacked by criminals. This is often with
the intentions of extorting money from victims. An average DDoS attack still
remain quite small and consist of around 900mbs to 1gbs. Moreover, around
half of reported attacks are under 500mbs[20][31]. In 2015, Amazon reported
the average duration of attacks under 10 Gbps to be 39 minutes. This is long
enough for an possible attacker to impact the infrastructure or application.
However, not necessarily long enough to have a huge impact on the availability
of the systems[26]. Furthermore, Verisign reports that an average attack peak
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size increased 63% between 2015 and 2016. In 2016, an average attack peaks
size consisted of 11.2 Gbps, where more than half of all attacks reached over 5
Gbps[77].

Larger attacks are still rare events. However, DDoS attacks are on the
rise and huge attacks containing several hundred gbs are becoming increasingly
common. The last couple of years have seen an increase in the amount of
reported mega attacks. Mega attacks can be defined as attacks which contains
over 100 gbps. Between the fourth quarter of 2015 and the fourth quarter of
2016, Akamai reported a 140% increase in attacks greater than 100 Gbps[10].
Mega attacks have continued to increased in size over the last couple of years.
Akamai reported in the third quarter of 2016, a mega attack consisting of 623
gbps[8]. This was the largest seen mega attack to this date, and builds on a
consisting trend of attacks with a increasing amount of seen traffic. Figure 2.1
shows the largest reported attacks, each quarter, from Akamai over the last two
years.

Figure 2.1: Shows the largest mitigated DDoS attack from Akamai over the last
couple of years. The largest reported attacks is calculated for each quarter.

This trend, with larger and more heavy attacks, can be contributed to several
reasons; Firstly, recent defects and vulnerabilities in Internet of things(IoT) have
involved hackers to take control over millions of devices, ranging in everything
from security cameras to routers, and embedding these devices into botnets.
Secondly, stresser botnets, which can be used to stress test web-sites have in-
creasingly been used for malicious intents. The use of IoT botnets are expected
to become increasingly common, as long as IoT devices contains server security
vulnerabilities [10]. Because of this, mega attacks are expected to continue to
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increase over the next years.

2.2.3 DDoS Attack Source Countries
Since many of the DDoS attacks relay on spoofing, it is practical in-feasible
to determine where all DDoS attacks originates from. However, we can look
at non-spoofed IP addresses to get a certain concept of the problem domain.
The available data and attack countries varies depending on the given data
source. However, some countries resonates in much of the acquired statistics.
Akamai has over the last three years largely reported China and USA in the
top lead in the non-spoofed attacking addresses[6][5][7][9][4]. Combined, China
and United states, accounted for more than 40% of the attacking traffic from
the first Quarter of 2015 to the first quarter of 2016, as seen in Figure 2.2.

Figure 2.2: This figure shows top 10 source countries for non-spoofed attack-
ing IP addresses in the first quarter of 2015 to the first quarter of 2016. The
statistics is gathered from Akamai’s first quarterly report for 2016

It is important to acknowledge that DDoS trends continuously change and
adapt to the environment. Moreover, the acquired data is mainly based on
application layer attacks that requires connection establishment. Attacks that
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targets the infrastructure layer where the authentication of the users cant be
established, is not included in the metric.

2.2.4 Multi-vector attacks
Multi-vectored attacks combine multiple attack techniques to launch a DDoS at-
tack. These attacks do not only focus on attacking a single layer, but can attack
both the application layer, transport layer, as well as the network layer simulta-
neously. A multi-vectored DDoS attack can for example contain a combination
of SYN flood and GET flood. These attacks cause extensive problems as each
vector contains unique attack characteristic and requires a different mitigation
technique. In the first quarter of 2016 Akamai reported that 59% of all mitigated
DDoS attacks were multi-vectored[4]. This is an increase up from fourth quarter
of 2015, where 56% of all mitigated DDoS attacks where multi-vectored. Fur-
thermore, Verisign reports that 86% of all mitigated DDoS attacks use several
vectors in the fourth quarter of 2016[77]. This builds on a trend seen over the
last years, where attackers increasingly use more sophisticated measurements,
such as several vectors, to bring down a server[9][4].

Today, the majority of DDoS attacks use either one or two vectors. However,
an increasing number of attacks also employ three, four or even five vectors at
the same time. These multi-vector attacks are often very efficient in bringing
down a server, as the attack can deliver a large number of different requests and
simultaneous connections to a web server. This can efficiently consume different
resources and crash the server at the weakest link. Existing DDoS solution is
challenged by the complexity and volume of multi-vectored attacks, as multi-
vector attacks often run in a coordinated simultaneously way that constantly
adapt to the environment, making them extremely difficult to protect against.
It is expected that multi-vectored attacks will increase in the following years and
there is increasingly a growing need for fast adaptable solutions that manage to
mitigate highly adaptable attacks[62][4][77].

2.3 DDOS attacks
Since DDoS attacks is such a large problem domain, attacks vary widely by
targeting different resources and employing different attack vectors. This section
will go through some commonly known and large attacks which has been seen
over the last couple of years.

2.3.1 Spamhaus.org
In March 2013 the website Spamhaus.org, which provides anti-spam filtering
services online, experienced one of the largest known DDoS attacks to date.
The attack initially started at 10 gbps, fully saturating Spamhaus network link
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and efficiently knocking the web-site offline. At the highest point Spamhaus
experienced a estimated attack size of 100 gbps. These large attacks are known
as layer 3 attacks where the goal is to exhaust the victims bandwidth. Simply
put, if the victim experience an attack consisting of 15 gbps, while the router
is only able to handle 10 gbps, the software solution in place doesn’t matter as
the network link is completely saturated[65][80].

The largest source of the attacks came from DNS reflection, while a small
sample came from ACK reflection attack. In the Spamhaus case, the attacker
was sending a request for the DNS zone file ripe.net. The open DNS resolver
response consisted of approximately 3000 bytes, which translates to a 100x am-
plification factor. The DDoS attack was mitigated by heavily employing the use
of anycast. Anycast means that the same IP address is announced from several
data centers. This makes the network work as a load balancer by load balanc-
ing request and ensure that each request is routed to the nearest data center in
the network. Under an attack anycast helps in mitigating or thinning out the
attack strength to several data centers. Instead of a DDoS being a many-to-
one problem, it becomes many-to-many. This can help preventing a bottleneck
from happening and the network link from being completely saturated. Once
the attack was diluted, the attack was stopped at each firewall by using traffic
profiling and blocking abnormal traffic[65].

2.3.2 The Dyn attack
In October 2016 two DDoS attacks took place against Dyn. Dyn is a major
domain name system(DNS) provider which provides end-users the possibility of
mapping a domain name to its IP address. The DDoS attack was accomplished
by sending large numbers of seemingly legitimate DNS request and the attack
came from an estimate of 100 000 infected devices. The botnet who orchestrate
the attack, contained mostly IoT devices and the attack has been the largest
DDoS attack on record with an estimate size of 1,2 Tbps. The attack affected
large parts of the traffic on the USA east and west coast. During parts of
the attack. Users where unable to reach some of the customer sites that DYN
provided DNS mapping for. DYN reacted to the attack by using anycast to
dilute the traffic before using traffic profiling and shaping to mitigate and remove
the attack traffic.

2.4 Cloud computing
The national institute of standards and technology in United States(NIST) de-
fine cloud computing as a model for enabling convenient and on-demand network
access to a shared pool of configurable computing resources[54]. These resources
can range in everything from services and applications to networks and storage
resources. In simpler terms, cloud computing refers to the applications that are
delivered as services over the Internet, and the hardware and system software in
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data centers which provide these services[12]. This translates into on-demand
services where a consumer can take unlimited use of computing resources and
only pay for the resources they consume.

As application demands varies over time this normally cause a serious issue
when planning the infrastructure. For example, if the infrastructure have an
average need for 100 servers throughout the day, but at peak hours need 500
servers, the company would often plan for the highest peak window to provide
good and reliable service to the users. The company would therefore decide to
provision for 500 servers. In normal computing this would cause the issue that
substantially amounts of resources are idle throughput the day, causing immense
waste for the company. If however, the company decide to underprovision, by
provisioning for 100 servers throughout the day, this can be equally serious, if
not more fatal than overprovisioning. Where the cost of overprovisioning is at
least measurable. The cost of rejecting users not only cause loss in revenue, but
users might also not come back.

Therefore, it is not hard to understand why cloud computing is on the
rise[24]. The rise of cloud computing offers new aspects which were not available
before. Cloud computing allow start-up companies and enterprises the ability
to use nearly unlimited resources on demand, therefore eliminating the need
to plan in advance. Companies can now start small and increase the use of
resources when there is also an increase in needs. For example, a new web-site
often won’t need to use a considerable amount of resources in the beginning.
However, the web-site needs to have the ability to support a spike in the de-
mand if the services become popular, followed by a lowering in demand when
some users leave. Cloud computing comes with this ability to pay for use and
allows a flexible solution for consumer, where they only need to pay for the
direct resources they consume[12].

Cloud computing is an ideal component to prevent or limit the damage from
DDoS or DoS attacks, since cloud computing give the ability to scale up or down
depending on demand. Cloud computing can be used to scale considerable up
when the traffic load start to increase substantially. This can help in limit or at
best prevent a DoS or DDoS attack from succeeding.

2.5 Botnets
The term botnets are used to define networks of infected hosts called bots.
Botnets, can at any given moment, be composed of a few hundred to several
thousands infected hosts. According to Rajab et al. botnets represent a huge
part of unwanted contribution to the network traffic, as up to 27% of unwanted
or malicious connection attempts comes from botnets[1]. Botnets can be seen
as one of the larger cyberthreats for the IT community today. With the rise
of DDoS-for-hire- models, There is no doubt that the threshold for criminals
to acquire necessary resources and skills to attack their victims have been low-
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ered[17].

Botnets will in theory give criminals nearly an unlimited set of resources,
as a botnet can control millions of computer processors, countless gigabytes of
storage and memory, as well as having access to enough bandwidth to overwhelm
even the largest cooperation’s[23]. This gives criminals an efficient platform to
perform illegal activities that range in everything from identity theft, click-fraud,
espionage, spamming or phising to DDoS attacks against a service [3][1].

When dealing with DDoS attacks, there are often thousands, to hundreds of
thousands of compromised hosts, that attack a single server at once. Since bots
and botnets are the main reason for why DDoS attacks succeed, it is important
to know certain characteristics which botnets carry, for us to efficiently being
able to protect against potential attacks. Can we for example assume, when a
single botnet attack a web server, that the IP addresses the bots use are for the
most part in the same geographical region?

To understand the answer to this questions, we need to know how bot-
nets operate and spread over time. A botnets ability to cause damage to its
environments through malicious actions, will often depend on the botnets abil-
ity to propagate to new nodes as well as retaining access of already acquired
nodes[3][1]. The most critical and necessary phase for a botnet is therefore dur-
ing the distribution phase[17]. Botnets will try to infect new hosts by exploiting
a known software vulnerability, exploiting a weak security policy or by using
social engineering to trick users into downloading and executing malware[60].

Hachem et al. notes that botnets increasingly use several techniques to
propagates further on to new nodes[33]. If a botnet only exploited a single
vulnerability and this vulnerability was fixed once and for all, the botnet will be
unable to propagate to new nodes, and the expansion will come to a halt[3]. If
nodes that have been infected also manages to recover from the infection, the bot
population will slowly start to decline. However, if the botnet can mutate and
exploit different vulnerabilities, the botnet can continue to retake new nodes,
as well as re-infect old nodes that have recovered from previous infections.

Botnets will therefore employ several methods to continuously infect new
nodes. Botnets borrow strategies from several classes of malware. This can
include malware such as self-replicating worms and e-mail viruses. Infected hosts
can be programmed to randomly scan a given IP block, to scanning the local
subnet for known vulnerabilities. Some botnets propagates via email worms and
web server worms. Social engineering can for example be used to trick users to
go to a malicious website, where the website then searches for vulnerabilities in
the users machine. If a vulnerability is found, this is exploited to gain access to
the host. Social engineering can also be used to trick victims into downloading
certain malicious files[60][33].

Dagon et al. concludes that victims of a botnet often are spread quite
geographically apart. However, that victims may be concentrated in particu-
lar regions[25]. This depends on the propagation mechanisms the botnet use.
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However, since some attacks may use a particular language as part of social en-
gineering scheme, or a vulnerability that only exist in some parts of the world.
It is reasonable to assume that these factors might help the botnet in having
a higher concentration of bots in some geographical regions. Rajab et al. was
able to capture this structural features of a botnet seen in Figure 2.3 [1].

Figure 2.3: Shows the DNS cache hits for one of the tracked botnets by Rajab et
al. The star indicates the location of the IRC server for the botnet.

Different Time-zones and locations play also an unexpected role into how well
different botnets manages to propagate to new nodes[25]. When an end-host is
turned off, it is not possible for other bots to exploit different vulnerabilities at
the host and therefore gain access. Similarly, when a bot is turned off, it is not
possible for the bot to infect new nodes. Therefore, we could partly assume that
if a botnet have a high concentration of hosts in time zone x. The probability
of the botnet having a high concentration of hosts in time zone x+ 1, is higher
than the probability of the botnet having a high concentration in time zone
x+ 10.

Overall, findings seem to confirm that botnets in general propagate in a
diversity of ways[1]. It is important to acknowledge that each botnet is different.
However, in general, we can assume that botnets will use different technique to
spread and this will result in a spread demographic where bots reside. We could
also assume that some part of a botnet will form several hot-spots of infected
hosts. By being aware of botnets propagation characteristics, we can easier
develop solutions and preventive measures that manages to minimize or stop
the damage caused by DDoS attacks.
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2.6 Anomaly detection techniques
In DDoS attacks, illegitimate traffic tries to mask itself among the legitimate
traffic to deplete some vital system resource. This makes it substantially harder
to filter out the illegitimate traffic without substantially affecting the legitimate
traffic. Substantially amount of research have been done in analyzing traffic
data to overcome this problem. Kim et al. conducted extensive analysis from
real life traffic data, where the packet attributes were analyzed. The traffic
distribution rate changed over a period of 18 hours, however, the rate of the
monitored attributes values often just changed within a few percentage points
of the original value[42].

Other research conducted by Kim et al. included collecting data traffic from
several different web sites over a 90 seconds period. The analysis showed that
the same website had a nearly equal percentage use of the different attributes
values over a series of 10 seconds windows. However, if data was compared
between different website, there was a distinct difference between the data com-
position[41]. Liu et al. also conducted research in collecting data traffic from
routers located on the U.S west and U.S east coast[51]. The traffic composition
showed little variation over time. However, the composition collected from dif-
ferent locations where considerable unique in both size, transport protocols and
application protocols use.

This leads to the conclusion noted by Kim et al, that there are some packet
characteristics which are different in an attack period versus a normal traffic
period for any given site[42]. Based on this premises, the different characteristics
in the normal traffic can be calculated and compared against attack traffic. This
will enable the system to take intelligent choices in deciding which packets to
either accept or drop. There are two common methods in detecting system
intrusion; anomaly-based detection and signature-based detection. Signature-
based detection techniques is able to detect attacks based on signatures of known
attacks. This detection mechanism has a very low false positive rate. However,it
also has the disability that it can’t detect new types of attacks[63][13][48].

In comparison, anomaly-based detection techniques builds on the principle
that traffic distribution of a service will change under an attack. Anomaly-
based detection first analyses traffic based on a traffic model the system defines
as normal. The system will go through a training phase to define the normal be-
haviour before the system enters the detection phase. Since anomaly intrusion
detection compares traffic against the normally defined behaviour, the system
has the ability to detect unknown attacks. However, anomaly based detection is
highly dependant on training on a set of normal data. If the training data con-
tains malicious activities the system might be unable to detect these activities
when it enters the detection phase.

There exist several approaches inside of data collection, processing and fil-
tering within anomaly detection techniques. Whereas, statistical analysis and
machine learning are two of the more common approaches[58].
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2.6.1 Statistical analysis
. Both statistical analysis and machine learning are concerned with the same
question; how to learn from data. The biggest differences between statistical
analysis and machine learning, is that they emphasis different points. Statistical
analysis look at statistical inference and is a field within mathematics. Statistical
analysis deals with finding relationships between variables to predict a certain
outcome. The goal of statistical analysis is to identify trends within a data
pattern which then can be used to make new predictions[58]

Both Entropy and Chi-Square techniques can be seen as statistical analysis
methods within anomaly detection techniques[58]. Entropy can be computed
on a sample of packets before comparing the entropy value to a new sample
of packets. As noted by Feinstein et al. entropy levels between normal packet
samples changes only narrowly. However, under an attack, these entropy levels
changes to a detectable degree. This means that it is possible to detect anomalies
in the traffic pattern[30].

Detection mechanisms within statistical analysis needs, to larger degree, to
understand the underlying data structure. This includes statistical properties
and the underlying distribution of data that is investigated. Statistical analysis
relay on the analyzer to correctly identify parameters that will provide the
correct data output. Because of this, statistical analysis are often concerned
with low dimensional problems.

2.6.2 Machine learning
Machine learning is another approach to detecting anomalies and changes in
network traffic and is about learning and making future predictions based on
earlier observed data. Machine learning approaches builds on the foundation
that a system can learn from data without being explicitly programmed. To
accomplish this, machine learning approaches goes through a training phase
before making decision on new data. Unlike statistical analysis, where a fixed
filter decide what is normal and abnormal. Machine learning are able to update
its filtering criteria based on new traffic[58].

While statistical analysis requires knowledge about the underlying data pat-
tern, machine learning approaches require no prior assumption or knowledge of
relationships between different variables. Machine learning is therefore often ap-
plied to high dimensional datasets. Since both machine learning and statistical
analysis are concerned with learning from data and making future predictions,
there are today little differences between the two approaches. Because of this,
machine learning and statistical analysis has merged over the last couple of years
and the use of either approaches have become interchangeable.
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2.7 Learning techniques
Inside anomaly detection techniques, there exist different techniques which are
used to learn the normal traffic distribution, this is mainly unsupervised learning
and supervised learning. This section will go through the different learning
techniques that is used as well as the weaknesses and strengths of the different
approaches.

2.7.1 Supervised learning
Supervised learning is the most common branch of anomaly detection tech-
niques, where the idea is to learn the normal pattern distribution by looking at
labelled data. The system should then, based on knowledge of previous known
data, be able to classify new and unknown data. This would mean that the
training phase already should know that packet X is either a normal or an
abnormal packet. To classify new data, the system can, based on the known
behaviour, inspect different attributes and determine which category a packet
fits best.

If we for example imagine that we want to classify fruits into different cat-
egories we first gather a large set of known fruits. All of the fruits are labelled
with its category as for example an apple or an orange. During the training
phase the machine is shown each fruit independently, a score is created for each
possible category that the fruit can belong to. In the perfect scenario we would
like the fruits to be given the highest score in the category it belongs to. How-
ever, as this is often not the case, a function will in the end measure the distance
between the given scores and the desired pattern of scores. The machine will
then modify its internal parameters, called weights, to reduce this error as close
to the optimal pattern as possible[46].

As noted by Chapelle, labelled data is considerable more expensive and
harder to acquire than unlabelled data[21]. It is a huge lack of labelled data in
the industry. In intrusions like DDoS, it’s even harder to find labelled data, as
it is often just the intent of the users that differs an attacker from a legit user.
A different possibility would then be to use an unsupervised learning approach.

2.7.2 Unsupervised learning
Unsupervised learning is approaches that learn the normal data distribution
by looking at unlabelled data. Opposite of supervised learning, unsupervised
learning allow us to look at the data with little to none known idea what the
result should look like. This means that no error or reward signal would be given
to evaluate a potential answer. As noted by Chapelle, It is normally assumed
that the data distribution is independently and identically distributed from a
common distribution point x[21]. Essentially meaning that it is assumed that
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the data should follow a pattern or a structure. Based on this structure we
should be able to classify new data and detect anomalies in the data pattern.

However, according to Srihari and Anitha there is often a large uncertainty
associated with modeling data set based on unlabelled data[73]. It has been
argued that the problem of unsupervised learning, is fundamentally that of
estimating a density which is likely to have generated X[21]. In an ideal scenario
we should be able to different between packets from legal users and packets from
illegal users. However, in case of DDoS attacks this become considerable harder
as only the intent differs a legal user from an attacker. When a DDoS attack is
detected, it is therefore still a hard task to actually filter out the correct packets
without affecting the legal users as Unlabeled data only makes this uncertainty
greater.

This problem only escalates when considering the issue with required nor-
malized data input. It’s theoretical impossible to know for sure that the system
is only given normal data as input[79]. If traces of the training traffic con-
tains abnormalities, it might lead to the system classifying attack packets as
legitimate, leading to a high false negative. Depending on the approach it is
essential that additional work is done to eliminate possible abnormalities which
may be present in traffic supplied to the learning phase. However, as discussed,
this is often not a simple task, as there is either a lack of labelled data, or the
unlabelled data is unreliable as we don’t know if the traffic are contaminated.

2.8 Machine learning algorithms
A machine learning algorithm is the driving force behind deciding which pack-
ets to drop or accept. Algorithms can be classified into the broad categories;
clustering or classification. This section will go through some relevant machine
learning algorithms.

2.8.1 Classification approaches
An algorithm that implements classification is known as a classifier. A classifier
can classify data into several predefined categories[43], however classification is
often done into two categories; normal or abnormal. Classification will often
run on a set of training data where the category is known, this can also be seen
as supervised learning. This section will present some common and relevant
classification techniques.

Naive Bayes

Bayesian Algorithms bases itself on the Bayes theorem. In a Bayesian model
there is a hypothesis that a given data belongs to a particular class. A Bayesian
model is not singular algorithm. But rather a term for all algorithms that bases
themselves on a common principle that each considered attribute is independent
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from all other attributes in the mix. The model gives answer to questions such
as; if one or several independent events are observed, what is the probability
for this object to belong to a certain class[63]. If we for example have a basket
of fruits we can look at each fruit to determine what kind of fruit this is. If
we see that a fruit is red, round and have a certain diameter, we could assume
from prior knowledge of fruits that this fruit is an apple. A Bayesian algorithm
will look at these attributes independently to determine this. This means that
each attribute will contribute and increase the probability that the fruit is an
apple. However, the correlation between the attributes is not considered. This
means that the algorithm doesn’t see the correlation between that the fruit is
both round and red and therefore it must be an apple.

The Naive Bayes model is a heavily simplified Bayesian probability model[63].
The model is based on assigning a case or an event to the class that have
largest posterior probability[56]. During the training phase the method stores
a probabilistic summary for each class or category. This summary contains the
conditional probability of each attribute value, as well as the base rate (prior
probability) of the class. Each time the algorithm encounters a new instance, it
updates the probabilistic stored with that specific class[45]. When the system
now is given an unclassified object, the classifier use a function to check which
of the classes the object most likely belongs to. The function or the Naive Bayes
rule that is used can be seen under:

Probability =
likelihood · prior

evidence
(2.1)

Prior is here based on previous knowledge about that specific class. If we
know that we saw 20 apples and 50 oranges in the testing phase, it is more likely
that the new object is an orange. This gives the prior probability of 20

70 for an
apple, and the prior probability of 50

70 for an orange. Moreover, the likelihood is
the evidence that supports the notion that the object belongs to a certain class,
while the evidence is all the evidence considered in total. The algorithm can
further be written as:

P (ci|A) =
P (A|c1) ∗ P (C1)

P (A)
(2.2)

Here Ci is a possible value in the session class and A is the total evidence
on that attribute. Since all attribute values are independent of each other, the
evidence A can be divided into pieces. Therefore dividing the function P (A|c1)
into P (a1|ci) · P (a2|ci), ..., P (an|ci)[11]. This will result in the algorithm:

P (ci|A) =
P (a1|ci) · P (a2|ci), ..., P (an|ci) ∗ P (C1)

P (A)
(2.3)
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If we have for example an unclassified apple that is round, green and with a
diameter of 9 centimeters, we can insert the knowledge into the formula and ask
ourselves what is the probability that an apple and an orange is round, green
and with a diameter of 9 cm. The class that gets the highest probability is
where the object will be placed.

Naive Bayes classifications are often robust to attributes that are irrele-
vant as the classification mechanism takes into account evidence from many
attributes to make the final verdict. The downside of Naive Bayes, is that it re-
quires strong independent assumptions of data[43]. Assuming that each feature
is not correlated against any other feature in the set is not necessary correct
and may have a negative influence on the end result. However, Naive Bayes is
still very competitive against other machine learning algorithms[11].

2.8.2 Clustering approaches
In those cases where it is not possible to acquire sufficient knowledge about
the underlying data to efficiently model new and unknown data, algorithms can
instead use distance or similarity among data samples as a means for classifying
new objects[38]. Clustering is one such method, where data is divided into
groups or cluster of similar objects. The data pattern that forms a cluster
should contain objects that are similar to each other, but dissimilar to objects
in different clusters[2][84]. The goal of clustering, is to represent a finite set
of unlabeled data into a finite set of natural hidden data structures[84]. Most
clustering algorithms require some type of input, for example how many clusters
or groups that you want. There are a various algorithms and techniques that can
be used to perform clustering and in this section we will present some common
known and relevant clustering techniques.

K-nearest neighbor clustering

The K-nearest neighbor (k-NN) classification approach is one of the more sim-
ple classifications methods within clustering. The algorithm makes use of sim-
ilarities between objects as a means of classification new and unknown ob-
jects[64][38]. The decision on where to classify a new object depends on the
K-closest neighbor classes to that object, where the value K is pre-defined.
Given N training vectors, K-NN identifies the K nearest neighbors of any new
vector. For example if K is 3 and a new object is in the close proximity of two
objects of class Y and one objects of class X, the object will be classified into
belonging to class Y. An example of K-nearest neighbor classification can be
seen in Figure 2.4 :

One of the possible problems that arise when using K-NN classification is
that each sample vector or data point is given equal importance in deciding the
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Figure 2.4: Here two of the closest objects belong to the green class, while one
object belong to the red class, therefore classifying the unknown object(white) in
being in the green class.

class of any new object. This problem often emerge when data points for each
class overlap or are in close proximity of each other. If a data point in class Y,
deviates from where the cluster points are normally situated. This data point
should probably not be given the same strength in deciding new objects, as
those data points that are truly representative for cluster Y[38]. This problem
can arise when the class distribution is skewed. If a class is more dominate in
the training vectors, there is a higher likability that this class will dominate in
an algorithm that focuses on the majority of a data points in a class, which is
close proximity to any new object.

A way to overcome this problem would be to give each data point a weight
in how strong affiliation it has to each possible cluster. The cluster that has
the strongest affiliation will be the cluster that the object is assigned to. When
assigning a new data point to a cluster, this weight can be used to prevent un-
representative data points to have as much say as a representative data point.

K-means clustering

K-means is one of the most widely used clustering techniques. The clustering
approach aims to divide N observations into K clusters, where each observation
belong to the cluster with the nearest mean[50]. The approach can be used with
K-NN clustering, where K-means is used to obtain the clusters before K-NN is
used to classify new and unknown data into existing clusters.

One of the more popular algorithms inside K-means clustering is to use a
iterative solution to find the local minimal solution. This algorithm is often
called the k-means algorithm or the Lloyd’s algorithm[37]. There are several
variants of this algorithm. However, Lloyd’s algorithm is based on the observa-
tion that the optimal placement of a mean is at the centroid of the associated
cluster[37]. The approach begins with choosing the different cluster centers or
means. When the cluster centers have been chosen, the algorithm follows two
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steps; The first step determines which data belongs to which cluster via nearest
distance calculation from the different points to the different means. The posi-
tion of the cluster centers is then recomputed and moved based on finding the
nearest center from all points in a cluster. The K-means algorithm will follow
these two steps until convergence is reached[34][50].

Even though this technique is able to find the local minimal solution, it’s
not necessary the global minimal solutions, as the Lloyd’s algorithm does not
specify the initial starting placement of the clustering centers[37]. This is a
serious weakness as the iterative technique is sensitive to the initial starting
positions of the cluster centers. In other terms, how well the clustering is,
heavily depends on where the initial cluster centers are set[50][18].

There is currently no known efficient and widely accepted solutions to this
problem. However, in order to obtain optimal clusters or solutions using the k-
means algorithm, the algorithm is often ran several times with different starting
positions for the cluster centers[50]. However, it is important to acknowledge
that this is not an ideal solutions and several other techniques have been pro-
posed. Among these solutions is an approach that tries to find a better starting
condition so the algorithm can converge to a better local minimal. This can be
done by trying to calculate different vector areas where the density is strongest,
before setting these areas as the starting positions[18].

DBSCAN

DBSCAN is a density-clustering algorithm which builds clusters based on points
that are closely linked together. The algorithm takes two parameters; minpts
and distance d. If a point Y can reach minpts in a radius, based on distance d,
point Y is considered a core-point. If point Y then have a path p1, p2, ..., pn−1, pn
to point N, where each point between point Y and point N is a core-point, all
points px on the path needs to be density-reachable to px+1. Density-reachable
means px need to have px+1 within distance d. These core-points on the path
p1, p2, ..., pn−1, pn, including the points that is density-reachable to a core-point
in this path, is considered as a cluster. Points that are density-reachable to
a core-point, but is not considered as a core-point because it doesn’t contain
minpts within radius d are considered outliers of a cluster[16][29].

DBSCAN is a popular density-based clustering algorithm which allows clus-
ters to expand in any shape and form. Unlike K-means, which assume all points
in a dataset are legitimate, DBSCAN is resistant against noise, as any point
which can’t satisfy the minpts criteria, and is not connected to a core-point, is
considered as a outlier in the dataset. Since DBSCAN builds clusters based on
points that are linked together, the algorithm doesn’t need to define the amount
of start-clusters. However, since the clustering algorithm needs to define minpts
and distance d this can cause several weaknesses. Either, if the dataset are not
understood correctly to choose meaningful parameters, or that it is impossible
to cluster data with a high differences in densities[16][29].
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2.9 Data mining
Data mining is a process of finding and discovering interesting patterns in large
amounts of data. The goal is often to use different pattern techniques to extract
interesting information and hidden structures from large datasets. Data mining
techniques are similar to both statistical analysis and machine learning. The
differences between the techniques have become blurred over the last couple of
years. However, while machine learning focuses to create a model for predicting
new data, data mining often focuses on finding and explaining pre-existing data
patterns in a dataset.

2.9.1 Apriori
Apriori is an algorithm that uses data mining to find frequent itemsets and is
a method for discovering interesting relationship between data variables. The
apriori principle states that if an item or collection of items is frequent, then all
of its subsets must also be considered frequent. The algorithm bases itself on
identifying frequent itemsset k, before using the frequent itemset of k to find
the frequent itemset of k + 1. The itemsets is extended with one item as long
as the itemset is considered frequent. When all k itemsets have been considered
not frequent, itemset k − 1 is returned and can be used to create association
rules[67].

As an example, if we have a set of all possible items I = {i1, i2, i3, ...im}.
And a set of all transactions or incoming data T = {t1, t2, t3, ...tn}, where every
transaction tx is a set of one or more items from I. The algorithm will find
all frequent items k in T , before extending all the found items with k+1. All
frequent items of k+1 will then be used to find k+2. This means that if we have
an itemset of 2 items, consecutively {i1, i2}. Then i1 and i2 must be considered
frequent for {i1, i2} to be considered frequent[67].

2.10 Relevant research
Several techniques can be used to combat DDoS attack. Everything from pri-
oritizing different clients based on time that they have waited, to give different
clients a reputation value that they can rely on. This section we will present
some relevant research that can be used to help combat DDoS attacks. .

2.10.1 History-based IP Filtering
Peng et al suggested to use a database of previously seen legitimate IP addresses
to counter DDoS attacks. This method bases itself on the common assumption
that normal traffic differentiates itself from traffic under an attack. The idea is
that the network should learn from previous network connections, before under
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an attack, the learned behaviour is used to characterize incoming packets as nor-
mal or abnormal[74]. This mechanism known as History-based IP filtering(HIF)
use an IP address database(IAD) containing previously seen IP addresses over
a certain time period. Under an attack, only IP addresses from the IAD are
allowed to access the network or service. Only a small number of source IP
addresses, which is considered frequent is kept in the IAD. IP addresses are
considered frequent based on two factors; The number of days the address have
appeared in the network and the number of packets the IP address has sent to
the network, as Peng et al. assumes frequent IP addresses is expected to send
a certain number of packets to the network[74].

When updating the IAD, a sliding window is used to remove expired IP
addresses based on timestamp which is saved in the IAD with the IP address.
This ensures that only the most relevant IP addresses is kept in the database.
When the network experience a DDoS attacks, the IAD is used to decide which
packets to drop or accept. The HIF database was built using Auckland data
traces and managed at most to acquire an accuracy of around 90%[74][35].
HIF have the advantages of being easily and efficiently commutable. However,
this advantage also means that the approach can’t differentiate between users
who visit the server more often than other user, therefore giving less accurate
results[32].

2.10.2 Adaptive History IP filtering
Goldstein et al suggested using an adaptive history-based IP filtering (AHIF)
algorithm against DDOS attacks. The approach rely on observing data and
using the Bayesian theory to derive optimal IP networks rules from this data,
which then decides which packet to accept and drop based on the dynamically
assigned threshold[31].

Pattern recognition is used to derive the normal traffic distribution based on
previously observed data. Based on the observed data the proposed approach
creates a binary tree with access control lists containing IP networks to accept.
The IP addresses are stored without the last 8 bits as many users often change IP
address over a 24 hour time, as well as spoofing the last 8 bits are still common
today. In the binary tree each leaf represent an accept of a x bit network. If two
leafs share the same father, the leafs are deleted and the father node becomes a
new leaf with one lesser bit in the network mask. This algorithm results in the
minimum number of possible rules[31].

The approach was tested by simulating a bot network compromised of 100
000 bots. Due to the lack of real bot network data, the source addresses of the
bots are randomly distributed over the whole IP space, except for IP addresses
such as private networks, multicast addresses. The setup was able to process
about 100 000 firewall rules at the rate of 40 000 packets per second[31].

The approach is compared against the HIF algorithm proposed by Peng et
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al that also relied on history based IP filtering. The proposed method is shown
to be superior. A big reason for this is that the firewall rules are prepared
before a DDoS attack takes place. It allows the system to react faster to detect
attacks and it frees up more resources for the firewall to use in filtering the
traffic. The algorithm also goes out of of the premises that the server can only
handle a limited amount of request at any given time and therefore only drops
the necessary packets to be able to prevent a server overload[31].

2.10.3 Source IP addresses prediction using density Esti-
mation

Today, most DDoS mitigation techniques employ source IP addresses to esti-
mate the normal traffic behaviour. However, gathered IP address distribution
or data is often under-sampled due to small or limited amounts of observations,
which creates a problem when creating dynamically approaches which drops
traffic based on the given data observation. To overcome this problem Gold-
stein suggested taking advantage of IP neighborhood relations by using density
estimation[32]. The idea is that IP addresses that are close or similar to each
other, share similar characteristics. For example if an IP address 56.81.12.10
appears in the normal traffic distribution, we can also assume that 56.81.12.19
is a part of the normal traffic distribution and will appear later.

To evaluate the distances between the different objects, both Xor+ and
euclidean distance is used, Xor is where the highest bit that reach 1 within two
objects, is the distance between the two corresponding objects[32]. Euclidean

distances is added to the distance calculation. To avoid that distances within
the given network mask is always constant, regardless of the variation within the
subnet, the approach used a modified k-means clustering algorithm to compute
the clustering centers. Once the clustering centers where computed, an area
was defined around the clusters, which would be the IP addresses the model
expected to see in the future. A growing algorithm was used to grow the areas
larger around the clusters that represented more data points. The method
was evaluated using 90 days of real world dataset consisting of up to 1.3 million
different source IP addresses, where the approach then tried to predict the users
the next following 10 days[32].
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Chapter 3

Methods

This chapter will discuss and determine the structures and approaches which
will be used to mitigate a DDoS attack. Both the approaches taken and the
different phases that will be used are discussed and determined.

3.1 DDoS mitigation point
In a general sense, it’s preferable to mitigate DDoS attacks as close to the source
as possible, in order to reduce as much of the collateral damage. However, this
is difficult for a number of reasons; it’s generally hard to identify attack traffic
close to the source, and the Internet is highly build around a authorization-free
nature. Which makes it hard to implement any solution to a high degree. It
is therefore a strong need to mitigate DDoS attacks near the target victim, as
this seems to be the only solution for the current Internet infrastructure[31].
Mitigation techniques can then filter out traffic at the server which provides the
service, or closer to the access ISP.

3.2 Attack vector
DDoS attacks is a complex and vast problem domain which often relay on mul-
tiple vectors to bring down a service. These vectors include everything from
attacking the network layer to attacking and misusing the application layer.
Different attack techniques often require separate defense mechanisms. Some
popular attack techniques such as SYN, UDP and ICMP have identifiable pat-
terns which have lead to some of the attacks to be successfully mitigated[31].

This thesis will instead focus on one of the more upcoming and advanced
attack methods, HTTP flooding attack. A HTTP flooding attack is an ap-
plication layer denial of service attack which targets online web-services and
websites. HTTP flooding attack is one of the more advanced methods available.

30



Since flooding attack focuses on sending HTTP request which follows a legiti-
mate patterns it is extremely hard to mitigate as it is often just the intent of the
connection that differs. These sophisticated threats can consume a high amount
of resources from the web-server by using a small number of compromised hosts.
A HTTP flooding attack will accomplish this by charging an application with
heavy HTTP GET or HTTP POST requests. This means that an attacker can
create a low traffic rate which appear legitimate.

3.3 Mitigation technique
Several different approaches can be taken to mitigate a HTTP flooding attack
near the targeted system. Since HTTP flooding attack mimics real user’s be-
haviour, it is difficult to use statistical approaches to identify a pattern and
thereby mitigate the attack. Instead we can build on the foundation from last
section, that a normal traffic profile of a system differs from a traffic profile dur-
ing an attack. Based on this known premises, different characteristics in normal
traffic can be calculated and compared against new unknown traffic. This can
enable the system to make intelligent choices when deciding which packets to
either accept or drop.

Our proposed algorithms then need to go through a training phase and a
testing phase. Machine learning techniques and data mining can first be used to
learn the underlying traffic profile in the training phase before the state of any
new unknown packet can be identified. Different packet attributes can be used
for defining the traffic profile in the training phase. These attributes include IP
addresses, protocols, packet size, server port numbers, source and destination
IP prefixes, Time to live, header lengths, TCP flag patterns, IP fragmentation
and incorrect check sums. When deciding the attributes to use in the profiling,
it is important to choose a set of attribute values that correctly represent the
traffic distribution of the system. A normal traffic profile will usually consist of
single and joint distributions of the packet attributes. As noted by Kim et al.
deciding to use joint distributions will often give a better way to represent the
uniqueness of the traffic distribution[41].

Since we would like to calculate the legitimacy of any packets quickly, it
would be unfeasible to look at all attributes. Looking at the most relevant at-
tributes would be more natural. Kim et al suggested using an iceberg style to
decide the profiling. The iceberg style will only store the most frequently occur-
ring attribute values along with their ratio in the traffic profile[41]. However,
as we are dealing with DDoS attacks, we would prefer to minimize the compu-
tation power usage. As DDoS attacks rely on overflowing a server with traffic,
we don’t have a long time to decide the fate of any new packet. Therefore, we
could base the categorization of normal traffic versus abnormal traffic on one
of the most unique attributes; the source IP address. The source IP addresses
are today an essential component in classifying normal traffic behaviour. This
is primarily because IP addresses are a characteristic that is exceedingly unique
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for different web servers and services[32].

Based on the knowledge from the traffic profiling, several different approaches
can be used to determine the legitimacy of a new packet. This will vary between
different algorithms and can be everything from defining score based on each
incoming packet, known as conditional legitimate probability(CLP), to simply
accepting networks which have been pre-defined to be legitimate in the training
phase. In this thesis, we should preferably investigate both scenarios.

It is important to note that if the attacker manages to follow the attribute
distribution of the normal traffic profile, it would essentially be impossible to
differentiate between legitimate and illegitimate traffic. In practice, it is often
difficult for an attacker to know the traffic profile of the system. However
as noted by Li et al, it is fair to assume that an attacker might be able to
learn sufficient information about the policy, if the attacker is able to know
which packets are dropped and accepted[49]. However, HTTP flooding attacks
requires that the attacker starts and finalizes a request. This will make it hard
for an attacker to adapt to an accepted pattern, as attributes, such as source
IP address can’t be changed. It should be assumed that if we properly identify
a unique pattern based on machine learning and data mining, a HTTP flooding
attack can be mitigated..
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Chapter 4

Data mining

This chapter will investigate different algorithms and hypothesis which can be
used to define a normal traffic pattern. The chapter will first go through different
datasets, before investigating different hypothesis and algorithms. .

4.1 Datasets
To ensure an optimal solution and test environment, the proposed approaches
are tested on different datasets. The applied datasets, as discussed below,
are obtained from web-server logs in Norway where the last 8-bit have been
anonymized.

4.1.1 Dataset 10
The first dataset, dataset 10 or D10, is obtained from cs.hioa.no and is gathered
from October 2015 to October 2016. The dataset consists of approximately 10
million requests and contains 262 thousand unique networks. The dataset is
divided into three different subsets, containing a variation in the amount of
data used for the training and testing phase.

Dataset 10A

The first sub-dataset, Dataset10A or D10A, employs the entire D10 set from
cs.hioa.no. The first 2

3 or 7,1 million web requests are used as training data,
while the remaining 1

3 or 3,4 million requests are used in the testing set. Of
the first 2

3 requests, there are around 182 thousand unique networks, while the
remaining 1

3 requests consist of around 124 thousand unique networks, where
80 thousands of the networks has not been seen before.

Figure 4.1 shows the amount of requests in D10A training set that belong to
a network y which contains at least x amount of request, noted as the threshold.
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From the graph it is possible to see that only 40% of the traffic from the training
phase belong to a network with a threshold of 1000. Essentially meaning that
only 40% of the training data is networks with 1000 or more request. It would
be preferable to cover as much of the training data as possible to be able to
efficiently represent the data distribution. However, to be able to cover 80% of
the data distribution it is necessary to go down to a threshold of 50 packets.
While to cover 90% of the data distribution, its necessary to go down to a
threshold of 20 packets. This means that there are a huge amount of networks
containing few packets, while a smaller amount of networks containing a larger
amounts of the network traffic. For example there are 45 000 networks with 20
or more packets, while only 380 networks with 1000 or more packets.

Figure 4.1: The graph shows how much training data is covered with different
thresholds for the D10A training set. A threshold x, means that a /24 bit network
needs to have at least this amount of requests in total to be covered.

Dataset 10B

The second sub-dataset, Dataset 10B or D10B, consist of 6 million requests and
stretches over 6 months, from October 2015 to April 2016. D10B is as the above
example, divided into two sets, where the first 2/3 is used as a training set and
the remaining 1/3 is used as a part of the testing set. The training phase which
lasts from October 2015 to February 2016, consist of 105 172 unique networks.
While the testing phase, which lasts from from February to April 2016, contains
75 340 unique networks where 49 972 Networks have not been seen under the
training phase.
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Dataset 10C

The third and last sub-dataset from D10, Dataset 10C or D10C, consists of 1.5
million web-request. The dataset stretches from 4 October 2015 to 10 November
2015. D10C is divided into a training set which consist of 2

3 or 1 million request.
The training lasts 23 days, from 4 October to 27 October. The remaining 500
thousands requests are used as a testing set and lasts to November 10. 32 891
unique networks are seen in the training set and 20 204 unique networks are
seen in the testing set. Of the 20 204 networks seen in the testing set, 13
356 networks have not been seen in the training set. This means, 66% of the
networks from the testing set are new networks.

4.1.2 Dataset 11
The second dataset, dataset 11 or D11 is obtained from Hioa.no and is gath-
ered from December 2016 to March 2017. The dataset consist of 3.2 million
request, with 39 335 unique networks. D11 is further divided into two subsets,
subsequently; D11A and D11B.

Dataset 11A

Dataset 11A or D11A is the first sub-dataset from D11. The dataset consist of
1.6 million requests, where the first 1.1 million are used in the training phase,
while the last 500 thousand are used in the testing phase. D11A lasts little over
one and a half month, from December 4. 2016, to January 26. 2017, with the
training phase lasting 5 weeks until January 11, and the testing phase lasting the
remaining 2 weeks. The entire D11A set, consists of 24 154 unique networks,
with 18 920 of the networks appearing in the training phase and 11 069 of the
networks again appearing in the testing phase. Of the 11 069 networks from the
testing phase, around 5 234 or 21.66% was not previously seen in the training
phase.

Dataset 11B

Dataset 11B or D11B is the second and last sub-dataset from D11. The dataset
also consists of 1.6 million requests, where the first 1.1 million are used in the
training phase and the last 500 thousand are used in the testing phase. D11B
lasts from January 27. 2017 to March 14. 2017, with the training phase lasting
1 month from January 27. to February 28, and the testing phase lasting the
last 2 weeks from February 28. to March 14. D11B closely resembles D11A,
and consist of 24 075 unique networks, with 18 239 networks appearing in the
training phase and 11 619 networks appearing in the testing phase. Of the 11
619 networks appearing in the testing phase, 5 836 networks was not previously
seen in the training phase
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4.2 Apriori-based frequent networks
The first proposed algorithm, Apriori-based frequent networks or AFN, builds
on the principle that common or known prefixes which occur in the training
set also occur later, under new and unknown data traffic. AFN is based on
Apriori, which is an algorithm for finding frequent itemsets. Apriori focuses
on finding frequent itemsets by first identifying individual frequent items in a
database, before extending the items to larger items as long as the itemsets are
considered frequent. Seen from training set of D10A, there exist some networks
which contains high amount of data traffic. Therefore, it is reasonable to assume
that traffic will reoccur from these networks under a new and unknown traffic
pattern. The hypothesis for AFN states; If several packets from network X
reaches a server under a training phase, there is a higher chance that packets
from network X, will reach the server under new incoming traffic, instead of a
unknown network Y.

AFN determines the normal network composition by going through a database
of IP addresses that have previously requested resources from the server. The
IP addresses are represented as a binary format. AFN first checks if bit 0 and
1 is frequent, meaning if they contain more than Y listings, determined by a
threshold. If both of them do, the bit pattern 00, 01, 10 and 11 is checked.
AFN continues to add 0 and 1 to every frequent bit pattern until the algorithm
has gone 24 levels down, essentially meaning that only /24 bit networks which
contains Y listing are left. Pseudo code for AFN can be seen in algorithm 1 :

Algorithm 1 Pseudo code for AFN where T is the transaction database con-
sisting of all IP addresses, F is the database consisting of all frequent items
that should be returned, C is the support count that each itemset or bit format
must satisfy to be considered frequent, and L is the current set of items that is
checked against frequency for level k.
function AFN(T, C)

L1 ← T (Items ≥ C) . On first iteration an item is either 0 or 1
k ← 2
while Lk−1 6= 0 and k ≥ 24 do

Lk ← Lk−1 + 0 ∧ Lk−1 + 1
for transaction in T do

bits← transaction.subset(k)
if bits ∈ Lk then

Lk ← Lk(bits) + 1
end if

end for
Lk ← Lk(Item ≥ C)
k ← k + 1

end while
return F

end function
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How well AFN manages to represent new and unknown data depends mainly
on the given data pattern. Services that have a consistent set of visitors will
do well with an algorithm like this. However servers, or services that have a
changing data pattern, will do moderately worse as the hypothesis no longer fit.
The next section investigates to what degree AFN is able to represent traffic in
the training and the testing phase with different applied thresholds.

4.2.1 Dataset 10A
If every network seen under the training phase are considered frequent for D10A,
AFN are able to represent 60% of the traffic from the testing phase. Figure
4.2 shows the amount of covered data in the testing and training phase with
applied thresholds from 20 to 1000. The distances between the data covered in
the training and testing set decreases, as the threshold increases. This implies
a correlation between frequent networks occurring in the training set, also oc-
curring in the testing set. However, the hypothesis is not wide enough to cover
a high amount of traffic from the testing set unless the threshold is set low.
Further setting the threshold low, gives a high differences between the amount
of covered data in the testing and training set.

Figure 4.2: This figure shows how much of D10A training and testing set is
covered with different thresholds. The threshold is applied on the training set,
before the amount of traffic from the training and testing set, which belongs to
a 24-bit network, and can satisfy this criteria is counted.
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4.2.2 Dataset 10B
As both D10A and D10B contains much of the same datasets. D10B performs
similar to D10A for the same considered thresholds. D10B performs with dif-
ferent thresholds only slightly better in form of 1-3 percentage points. Figure
4.3 shows the amount of covered data in the D10B training and testing set if
AFN is calculated on the training period with thresholds from 20 to 1000. If
AFN employs a threshold of 1, 62,11% of the testing set is covered. Although
D10B is 4 million request shorter than D10A and the training phase goes over
a period of 4 months, which is a decrease of 4 months from D10A, AFN is
still only able to cover 2 percentage points more than in D10A. This implies
that the captured data period and the subsequently data analyzes, doesn’t play
a significant role in deciding if a pattern is more or less legitimate. Therefore
AFN doesn’t seem to have a better ability to determine a pattern with a shorter
training and testing phase.

Figure 4.3: Shows how much of D10B training and testing set is covered with
different thresholds. AFN is computed with a threshold x on the training phase,
before the amount of traffic from the training and testing phase, which belongs
to a 24-bit network who can satisfy the threshold x is counted.

4.2.3 Dataset 10C
Considering the same applied thresholds, D10C, performs worse than bothD10A
and D10B. AFN calculation on D10C training set with different applied thresh-
olds can be seen in Figure 4.4. An applied threshold of 1000 in AFN, covers
17,22% of testing pattern from D10C. This is a decrease from D10A, where a
threshold of 1000 is able to cover 25,04%.
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Figure 4.4: Shows how much of D10C training and testing set is covered with
different thresholds. AFN is computed with a threshold x on the training phase,
before the amount of traffic from the training and testing phase, which belongs to
a 24-bit network who can satisfy threshold x from the training phase is counted.

Since D10C is substantial smaller than previously examined datasets its
expected that D10C needs a lower threshold to accomplish the same amount
of accepted data. To D10C reach a coverage of 25%, AFN needs to employ
a threshold of 400. This is over half the threshold applied for D10A. Its hard
to estimate if a dataset collected over a shorter time period is more efficient in
representing new data. We can expect that some networks, regardless of time
period, will continue to re-appear, while other networks will appear in periods
and disappear over time. Therefore, it might be assumed that D10C would at
least, to some degree, be able to represent new traffic better. However, alg1 is
never able to reach the same percentage of covered data regardless of threshold.
For example, with a threshold of 1, alg1 is still only able to cover 54,38% of
traffic from the testing phase.

4.2.4 Dataset 11A
D11A performs remarkably better than sub-sets from D10. Figure 4.5 shows
the amount of covered data in the testing and training set when AFN is used
to calculate frequent networks. D11A, as well as D11B, contains noticeably less
noise and AFN is better equipped to recognize a data pattern from the training
phase. With a threshold of 1000, AFN is able to identify 59,61% of data from
the testing phase. This stands in stark contrast to D10, where a threshold of 1,
applied on different D10-subset are able to compete with D11A. Lowering the
threshold to 1, makes AFN correctly identify 86,28% of traffic from the training
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phase, which is an increase of around 20-30 percentage points when measured
against D10 sub-datasets. The hypothesis; If several packets from network X
reach a server under a training phase, there is a higher chance that packets from
network X will reach the server under new traffic, instead of a network Y, which
was not seen in the training phase, fits better for D11A than it did for D10. This
means that D11A, to a higher degree, is more localized than datasets from D10.

Figure 4.5: Shows how much of D11A training and testing set is covered with
different thresholds. AFN is computed with a threshold x on D11A training
phase, before the amount of traffic from the training and testing phase, which
belongs to a 24-bit network who can satisfy threshold x is counted.

Comparing D11A against D10C, which is similar to D11A, in forms of the
collected data period. D11A is able to cover 32 percentage points more than
D10C. Following the hypothesis of frequent networks reoccurring, AFN is able
to cover 42 percentage points more in D11A with a threshold of 1000. Although
D11A have a larger dataset than D10C. AFN is still better equipped to identify
a data pattern in D11A than D10C. This is largely due to D11A containing
both less noise, more IP address locality and a lower amount of seen networks
in the training phase than D10C.

4.2.5 Dataset 11B
D11B performs slightly weaker thanD11A, still impressively better than datasets
from D10. Figure 4.6 shows the amount of covered data in the D11B training
and testing set if AFN is calculated on the training period with thresholds from
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20 to 1000. With a frequent threshold of 1000, AFN is able to identify 57,27%
of all new traffic from the testing phase. While with a threshold of 1, AFN is
able to identify 81,66% of all new traffic.

Figure 4.6: Shows how much of the 11B training and testing set is covered with
different thresholds. Alg1 is computed with a threshold x on 11B training phase,
before the amount of traffic from the training and testing phase, which belongs
to a 24-bit network who can satisfy threshold x is counted.

Although, AFN works well on datasets from D11 it doesn’t manage to
achieve a high acceptance rate for D10. The solution might be to use a more
complex hypothesis. We could assume if traffic are seen in network x, new and
unknown traffic have a higher likelihood of occurring in some networks close to
network x. An easy way to see if this hypothesis have any grounds, would be to
do AFN calculations with lower bit levels of y<24. This means with an y bit
threshold. The first y bits, needs to be over a set frequency, to be considered
frequent. Figure 4.7 shows AFN calculations on D10C with y values of 16, 18,
20 and 22. The covered data pattern from D10C testing phase is counted with
different y values and frequent thresholds applied on the training phase.

A lower bit amount covers more data in the testing phase. Letting AFN
count down to 16 bits and accepting all 16-bit networks with 1 packet, 86,63%
of data from the testing phase are accepted. The high amount of accepted data
is not an indication that the hypothesis is wrong, as simply counting down to a
lower bit amount will naturally cover more data regardless of the traffic pattern.
Therefore, we should ask the question; Is the new percentage of accepted data,
with a lower bit-threshold, acceptable in terms of being able to represent an equal
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Figure 4.7: Shows how much of D10C testing set is covered with different thresh-
olds and different levels applied on D10C training set. Instead of forcing AFN
to find frequent 24 bit networks as earlier version, AFN is computed with 16,
18, 20 and 22 bit networks.

number of data from the testing phase, in proportion to the higher number of
accepted data in an overall sense?. 9474 16 -bit networks is accepted with a
threshold of 1. This translates into 14,45% of all possible 16 -bit networks. By
looking at the same bit-threshold value in a 23 -bit network 57,21% of the testing
set is accepted, whereas 22 972 23-bit networks are accepted. This amounts to
around 0,27% of all possible networks.

Therefore, even though this hypothesis have the ability to increase the per-
centage of accepted data, the amount of accepted data from D10C is highly
disproportionate to the amount of overall accepted traffic. The hypothesis, that
traffic reoccurs close to networks which have previously been seen, has some
truth to it. However, it does not define an accurate pattern which limits the
overall acceptance of data and heightens the acceptance of legitimate traffic.
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4.3 Density-based geographical clustering
Although AFN, to some degree, depending on the dataset, is able to classify
new traffic, the hypothesis, that frequent networks reoccurs, lacks the ability
to cover a high pattern unless the threshold is set low. Setting the threshold
to a low value, further risks that networks, which are not necessarily a good
representative for the data pattern, are accepted. Therefore, a second method
which tries to overcome the shortcomings of AFN is proposed. The new density-
based geographical clustering algorithm, DGC, tries to estimate a data pattern
based on location and builds on the hypothesis; If network x from location y
reach the server under the training phase, there is a higher chance for network
z from location y+1 to reach the server, than network q that doesn’t belong to a
location close to network x.

DGC begins by defining core points or start points from where a cluster can
continue to expand. The core points will then look in their close proximity based
on distance x to see if there are more points that can belong to this cluster. If
a core point finds a point y that is within distance x, it will include the point
to its own cluster. Point y will then look in its close proximity to find any new
points that can be included in the cluster. If any points that are a part of a
cluster is within the given distance to other points that is a part of a different
cluster, the two clusters will merge and become one cluster. The pseudo code
for this density-based clustering can be seen in algorithm 2 below:

Algorithm 2 Pseudo code for this density-based clustering algorithm, DGC.
The algorithm takes three arguments; the dataset containing a list of lati-
tude/longitude locations with the frequency of packets from that locations. D,
which is the maximum distance from a point to a cluster for this point to still
be considered a part of that cluster and T which is the frequency threshold for
a point to be considered a core point.
1: function Density_clustering(dataset, D, T)
2: all_clusters← (dataset.points >= T)
3: for cluster in all_cluster doy
4: cluster ← (dataset.points <= cluster.D)
5: while cluster 6= converged do
6: points← (dataset.points <= cluster.D)
7: if points in all_cluster.points then
8: cluster.merge(points in all_cluster.points)
9: end if

10: end while
11: end for
12: return all_cluster
13: end function
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The clustering algorithm, DGC, is based on DBSCAN. Unlike other clus-
tering algorithms, where a points association to a certain cluster heavily relays
on a centroids initial start positions, as well as the subsequently re-position of
centroids based on expansion. Density-based clustering, ensures that a points
association to a cluster is based on the points ability to be density-connected to
a certain cluster, and not based on the points closest centroid.

Because of the algorithm, two essential parameters; Subsequently core-point
threshold and maximum distance, needs to be pre-defined. The definition of
these attributes will vary greatly between different datasets and the conse-
quently data pattern that these clusters cover, will have different strength and
weaknesses based on the chosen attributes. The next sections will to a certain
degree investigate the optimal choice of core-point thresholds and the best max-
imum distance. Before, both the optimal result of a solution that accepts the
seen IP addresses in a cluster and the optimal result of a solution where the
location of all new traffic is correctly identified, are calculated.

4.3.1 Deciding core-point threshold
Defining start points is a hard computationally task, as this definition will essen-
tially define how and where the cluster will expand, and how well the clustering
algorithm will be able to represent new and unknown data. From the last sec-
tion, we have concluded that frequent networks, often in some form recur, in the
data pattern. Since frequent networks represent a huge portion of the incoming
traffic it is reasonable to assume that every frequent network or in this case
location, is automatically assumed as a start point or core point.

Since this definition of frequent locations, or core points, is just the defi-
nition of an initial cluster, which is just a single start point for a cluster to
continue to expand, it is essential to decide a threshold for when a location
point is considered frequent. This threshold would vary greatly between differ-
ent datasets. For our own dataset D10C, the amount of initial clusters, with
different thresholds, can be seen in Figure 4.8. A low threshold will, as seen by
the graph, exceptionally increase the amount of initial clusters, compared to a
high threshold. However, this is not necessarily a good thing as this will create
clusters where there are seen considerable little data traffic.

For D10C, an initial core-point threshold of 60, 80 or 100, creates 3742, 2826
or 1141 initial clusters. Setting an exceptional higher threshold of 1000, will
create 141 initial clusters and setting the threshold to 1720, will further divide
this amount in half and give an initial clusters amount of 71. When deciding
the initial core point threshold, we should chose a point in the graph, from
Figure 4.8, where the exceptional decrease of clusters, more or less have flat-
lined. From the graph, we can conclude that a high decrease of initial clusters,
flat-lines either around a core-point threshold of 700-1000, or even around 1500,
when only 85 initial clusters are left.
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Figure 4.8: This figure shows the amount of initial clusters, for D10C, with
different core-point thresholds. Initial clusters are singular points which have a
frequency of the same, or higher, than the given core-point threshold.

The amount of initial clusters should be seen in correspondence with the
amount of initial covered data. Since we want clusters to expand, we don’t
need to cover most of the training pattern from the beginning, as we assume,
most of the relevant data pattern, will still be covered, when the cluster expand
to points nearby. As seen in Figure 4.9, by looking at D10C, a low applied
core-point threshold will cover most of the initial training data, while a high
core-point threshold will contain notably less data. A subsequent low threshold
of 100, 280 and 520, will cover 85,15%, 75,27% and 65,24% of the given data
pattern. While a notably higher threshold of 700, 1000, 1400, 1800 or 2600 will
cover 60,47%, 55,49%, 50,53%, 45,10% and 40,47% of the data pattern from
D10C.

As very high thresholds are able to cover a substantial amount from the
training phase, as well as lowering the amount of initial clusters, a high threshold
above 1000 would be preferable, as a threshold from 1000-2600 is still able to
cover 40-60% of the data pattern. Although the threshold most likely will be
similar for D11A and D11B, a higher threshold, should in most cases be set for
D10A and D10B. As in these instances, the training period lasts over a longer
time and therefore a higher threshold should be set to cover the most essential
data pattern.
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Figure 4.9: This figure shows how much training data that is covered with dif-
ferent DGC cluster computations. DGC clusters are created with different core-
point thresholds and a km distance of 0. Therefore, only the initial cluster start
is covered and not the later cluster expansion. The cluster computation are done
on D10C. Before the amount of covered data in the training phase are counted.

4.3.2 Deciding maximum distance
As we are assuming, from the hypothesis, a lot of lower networks or locations
with less frequent packets, will still be covered as they exist in the surrounding
area of the defined core points. This leads to the question; what is the maximum
distance for point x to point y, for point x to still be a part of point y’s cluster?
We have previously stated that every core point is automatically assumed as a
cluster, the question now is; What is the maximum distance for 1 or more cluster
points to any new point, for the point to be a part of the given cluster? The
answer to this question would vary widely based on the training data. However,
we should try to minimize the maximum distances, so we don’t end up with
clusters where data have little to none similarities with other data in the same
cluster. Based on our hypothesis, we can assume that data points exist close to
our cluster in all directions of the initial core points. Therefore we can, based
on this, get a certain view of the necessary distance, by measuring how much
training pattern is covered with different maximum distances.

Figure 4.10 shows how much data, for D10C, which is covered with different
thresholds and maximum distances. A lower threshold will cover more of the
training data, regardless of the maximum distance. It would be preferable to
cover a high degree of the training as this will result in a higher coverage for the
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test data. However, the coverage of new points should be proportionate to the
higher maximum distance. In other words, we should be able to assume that
a cluster does not expand forever. Therefore, when the percentage increase of
new covered data decline radically with a higher maximum distance, there is
little to none reason to continue to increase the maximum distance.

Figure 4.10: This figure shows how much of training data, for D10C, which is
covered with different DGC cluster computations. Clusters are computed with
core-point thresholds of 3000, 2600, 1800, 1400, 1000 and 700 and km distances
between 5 and 50.

Figure 4.11 gives a clearer view of the difference in increased percentage
points for each threshold. The figure shows the increased percentage points of
accepted training data for different thresholds. The calculations is done with
km distances between 5 and 50. Most clusters have a good increase in the
amount of covered data until around 20-25 km. At this point, the different
calculated clusters have managed to increase around 10 percentage points. At
the remaining calculated distances of 30-50 km, clusters have a high variance,
with no particular pattern for the remaining increased percentage points. It
would therefore, for most clusters, be beneficial to have a maximum km distance
between 20-25 km.
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Figure 4.11: This figure shows the increase in amount of accepted training data
with different DGC cluster computations. DGC clusters are computed on D10C
with core-point thresholds of 3000, 2600, 1800, 1400, 1000, 700 and km distances
between 5 and 50. The graph starts on 5 km, which means the increase in covered
percentage points from the initial cluster start of 0 km.

4.3.3 Optimal result
To find the optimal result for a solution that is able to look up IP addresses and
identify if it fits in a cluster, we should not only count the direct points that have
appeared in the training phase, but also count points that fits inside a cluster,
which has not necessarily been seen in the training phase. To accomplish this,
we can create polygons based on each cluster before checking if data points fit
within each polygon. An example of this computation can be seen Figure 4.12.

Since polygons are created based on the outer most points in each cluster,
creating polygons imposes a weakness when clusters have points that lie in
the outlier of the corresponding cluster. A stricter algorithm can be applied
which will ensure that outliers don’t affect the accepted data pattern. However,
an accepted data pattern, with loosely constructed polygons, only increases a
couple of percentage points between a solution that only counts points that have
been directly seen in the training phase. For example, if cluster computations
is done on D10C with a threshold of 1000 and a km distance of 25. 64,96% of
the testing set is covered, when counting only the direct accepted points. On
the other hand, if we count clusters as a polygon, 68,5% of the traffic from the
testing phase is covered. These few percentages will accounts for around 20 000
requests.
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Figure 4.12: Shows one small cluster created from an initial cluster threshold of
1000 with a maximum distance of 25 km. The cluster is created from D10C. In
an optimal result all new data within the grey zone is accepted as a part of this
cluster.

This next sub-section will investigate both the optimal result and non-
optimal result that different DGC cluster computations are able to accept in
the testing set. An optimal result, will be if a packet can be directly identified
in a cluster based on its own locations. A non-optimal result is if packets lo-
cation can’t be identified. Therefore, only clusters in the training phase with
those clusters identified networks are accepted in the testing phase.

D10C

Figure 4.13 shows the amount of optimal accepted data in the D10C testing
set with different calculate DGC clusters. The DGC clusters are created with
km distances between 5 and 50, and core-point thresholds of 3000, 2600, 1800,
1400, 1000 and 700. Optimal DGC clusters are able to achieve an acceptance
rate of around 43% to 77% for the testing phase. AFN managed to achieve an
acceptance rate of 54,38% in the testing phase. This means that optimal cluster
calculation are able to achieve over 20 percentage points more than AFN on the
same dataset. Lower cluster calculations have a harder time of reaching the same
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amount of accepted data as AFN. While more loosely constructed parameters
with higher km distances or lower core-point thresholds have a easier time of
reaching or even surpassing the amount of accepted data as AFN.

Figure 4.13: This figure shows an optimal amount of accepted testing data, when
DGC clusters are created on D10C training set. Clusters are here compute with
the high core-point thresholds of 3000, 2600, 1800, 1400, 1000 and 700 and
km distances between 5 and 50 on the training set. The amount of accepted
packets from the testing set which belong to a cluster based on its location are
then counted.

For the non-optimal amount of accepted data, the amount ranges between
36% to 50%. Therefore, an optimal solution which are able to identify if a
packet fits within a cluster, will perform 7 to 27 percentage points better than
a non-optimal solution.

D11A

D11 is more localized than D10. This means D11A is better equipped to cover a
high data pattern without needing to cover a high amount of location points and
the subsequent networks that these points have. Figure 4.14 shows the amount
of optimal covered testing data when DGC clusters are created on D11A. DGC
clusters are created on the training phase with different km distances and core-
point thresholds of 3000, 2600, 1800, 1400, 1000, 700. When packets can be
correctly identified in a cluster based on its own location, DGC are able to
cover between 86% and 93% of the testing set. Most DGC clusters are able to
cover around 90%. As AFN are able to cover 86%, DGC clusters are able to
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cover 7 percentage points more than AFN.

Figure 4.14: This figure shows an optimal amount of accepted testing data, when
DGC clusters are created on D11A training set. Clusters are here compute with
the high core-point thresholds of 3000, 2600, 1800, 1400, 1000 and 700 and km
distances between 5 and 50. The amount of accepted packets from the testing
set, which belongs to a cluster based on its location, are then counted.

The low increase in accepted optimal data between AFN and DGC can
be contributed to several reasons; DGC clusters in D11A already cover a high
amount of data, which makes it harder to cover remaining percentages, as some
traffic might be anomalies. Secondly, D11A are more localized than D10. Be-
cause of this, the dataset doesn’t have a high increase in covered data pattern
with more loosely constructed parameters. For a non-optimal amount, DGC
clusters are able to accept from 79% to 83% when only counting networks which
have been seen in the training phase and is a part of a cluster. Between an non-
optimal amount and an optimal amount, DGC clusters are able to increase the
amount of accepted data with 7 to 9 percentage points.

D11B

D11B follows much of the clustering trend from D11A. D11B has also little
to none expansion in accepted traffic for higher km distances. This is mainly
because D11B is highly localized and higher km distances will often not affect
the data pattern to a high degree. D11 points often lay in tighter cluster and
singular points contain more data than what was seen for D10C. The D11 set
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therefore doesn’t need to expand to a notable degree to contain a high amount
of data. An optimal amount of accepted testing data for D11B can be seen in
Figure 4.15. DGC clusters are here created on D11B training set with core-
point thresholds of 3000, 2600, 1800, 1400, 1000, 700 and km distances between
5 and 50. The amount of accepted data from D11B testing set, which fits within
a cluster based on its location, is then counted. DGC clustering manages to
cover between 77% to 88% of the testing phase. In comparison, AFN manages
to cover 81,70% of traffic from the testing set. DGC clustering are therefore
able to cover around 7 percentage points more than AFN.

Figure 4.15: This figure shows an optimal amount of accepted testing data, when
DGC clusters are created on D11B training set. Clusters are computed with the
high core-point thresholds of 3000, 2600, 1800, 1400, 1000, 700 and km distances
between 5 and 50. The amount of accepted packets from the testing set, which
belongs to a cluster based on its location, are then counted.

In comparison, we should consider the amount of non-optimal accepted data.
If we only accept networks which have been seen in a cluster under the training
phase, DGC clustering manages to cover between 71% to 78%. An optimal
acceptance rate for DGC, therefore manages to cover 2% to 10% more than a
non-optimal solution. DGC clustering manages to overcome some of the short-
comings of AFN. While AFN depends on the exact network in the training
phase repeating in the testing phase, DGC relays on a packets location repeat-
ing. This can amplify the amount of data which can be covered. Moreover, DGC
clustering often manages to cover a close amount to AFN when only accepting
networks, which have been seen in the training phase, and which are a part
of a cluster. DGC Clustering are therefore better equipped to define a unique
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pattern. DGC clustering will also differ between lower amount of seen networks
based on its location and can therefore more correctly remove anomalies in the
traffic pattern.
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4.4 Reduced-density geographical clustering
Although, DGC has a potential of acquiring a unique pattern and performing
well under unknown traffic, the algorithm doesn’t define any considerations
when defining a pattern. In a sense the algorithm’s simplistic approach is also
the algorithm’s greatest weakness. The previous algorithm simply states; If a
point x is near one or more points that are a part of cluster y, point x should
also be stated as a part of y’s cluster. This is not necessarily ideal, as multiple
issues are raised in regards to the algorithm’s ability to sustain a pattern and
the algorithm’s ability to achieve the requirements set by the hypothesis.

The hypothesis; If network x from location y reach the server under the
training phase, there is a higher chance for network z from location y+1 to
reach the server, than network q which doesn’t belong to a location close to
network x, empathizes important points that can be used to create a better
algorithm. First and foremost, we should make sure that clusters only expand
to points that are most likely to occur later. We can build on the hypothesis
and make the assumption that a request is more likely to occur in a point x, if
it has at least y points in its near area. Only points that satisfy this criteria,
are allowed to be a part of a cluster. However, the point will only be a part of a
cluster, if the point is connected to a core point based on normal density based
estimation.

Secondly, to prevent the pattern composition in clusters from deteriorating
when clusters are merged, merging of clusters is overlooked. Instead, clusters
are forced to expand and converge separately. This raises important issues in
how a cluster is allowed to expand, that would best confirm and acknowledge
the hypothesis. Seen in Figure 4.16, after placements of the core points, a
point x might fit with several clusters based on only density estimation and the
minimum amount of required nearby points.

Figure 4.16: Shows several initial clusters before expansion. All points are den-
sity connected to all other core points, which makes it hard to decide what point
should be with which cluster.

The problem bounds down to the issue; If point x based on density based
clustering would fit in both cluster Y and cluster Z, which cluster should the
point be considered a part of? The entire hypothesis builds on the principle that
data will recur around locations that have occurred often. Therefore, it would
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be sensible to group an unknown point x, to the closest core point, if it satisfies
the constraint set by density-based clustering for this core point. Therefore,
if x1, x2, ..., xn−1, xn is a set of data points in a two dimensional space and
c1, c2, ..., cn−1, cn is a set of core-points which contains at least y amount of
seen request. Then, if d(xm, cz) is the geographical distances between point
xm and core point cz. While b(xm, cn, r), ) is a core-point that xm is density
based to based on radius r. Meaning that there exist a point xn within xm’s
radius which also are density connected to cz. xm will be a part of cluster
cz if d(xm, cz) < d(xm, c1), ..., d(xm, cn−1), d(xm, cn) for all core points which
support the notion of b(xm, cn, r).

Figure 4.17: The first picture shows the end result of a cluster computation where
all points which fit with the minpts constraint is set to be a part of its closest
core point, regardless of the points ability to be density estimated to this core
point. The second picture shows the end result, when points also are required
to be density estimated to this core point. The clusters are computed with a
threshold of 1000, distance of 20 km and a minpts constraint of 4. At this point
the minimum length is zero, which means that single core points are allowed.

If all points were able to be connected to their closest core point, the result
would look like the first picture in Figure 4.17. Here, points that support the
notion of minimum required points is connected automatically to the closest
core point. However, as the second constraint needs to be fulfilled with points
being density-based to their own core point, the final result will look like the last
picture in Figure 4.17. As seen by the graph, some initial core points that first
got points to their cluster, will not get any points when the cluster computation
is finished. This raises issues in regard to a third constraint; How to deal with
initial clusters if they don’t receive any or few points. Simply maintaining the
initial clusters as independent clusters is a possibility. However, this can cause
issues if many points are not able to expand. Even though there is a higher
chance for a request to reoccur in the same frequent location. Singular clusters
heavily favors large cities. Instead, a third and last constraint is therefore em-
ployed to remove or relocate clusters which are not able to expand. Therefore,
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if a cluster does not exist of x points, the cluster should be dismantled. The
points, including the core point, should be re-positioned to other clusters nearby.
The re-positioning of dismantled points should then be done in regards to the
points closest core point, excluding the core point for the dismantled cluster.

Figure 4.18: Shows one end result RDGC clustering in Norway. The clustering
algorithm was computed with a maximum distance of 20, core point threshold of
1000, a minimum nearby points of 4 and a minimum length of zero.

This modified DGC algorithm are further denoted as RDGC or Reducedr-
density geographical clustering. The end result of RDGC can be seen in figure
4.18. It’s important to note, that clusters often don’t form a sphere in high
density areas. Core-points, in high density areas, lay fairly close to each other,
which make core-points compete about nearby points. Clusters are instead
forced to expand outwards.

RDGC goes through an iterative phase for all points that can satisfy the
minimum points constraint. The points, that are able to satisfy this constraint
are first checked for density to its closest core point. When there are no more
points that are able to be density based to its closest core point, the second
closest core point is checked. This process continues, until either all points have
found to be density based against a core point, or if there are no more core
points left to check. After the cluster expansion is finished, all clusters are
checked for minimum length. If a cluster doesn’t satisfy this criteria, cluster
points are, if possible, relocated to other clusters nearby. RDGC is still able to
keep the gained strength from density based clustering, as it largely still enables
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clusters to expand in any shape. The different clusters are only constrained if
there are other core points nearby, or if the cluster tries to add points that lay
in the outlier of its own cluster.

With this new proposed clustering algorithm, two different areas need to
be investigated to ensure an optimal result; First, what amount of minimum
required points would ensure the most optimal result? And secondly, is it ben-
eficial for RDGC to remove clusters that are not able to expand properly? If it
is, what minimum length should a cluster be to be considered legitimate? The
next sub-section, will investigate these issues, before the amount of data, both
an optimal and non-optimal solution are able to accept, are calculated.

4.4.1 Deciding minimum required points
To check the first problem statement, clusters are computed with same threshold
and km distance, but with different minimum required points. RDGC clusters
are computed on D10C training set with km distance of 20, core-point threshold
of 1000 and minpts variables between 1 and 10. The amount of accepted data
in the training phase which fits within a cluster are counted and can be seen in
Figure 4.19.

Figure 4.19: Shows the amount of accepted D10C training and testing data, when
RDGC clusters are calculated with different minpts values, core point threshold
of 1000 and a km distance of 20. The optimal result is calculated for the testing
set. This means data only needs to fit location wise with a cluster.

minimum required points variable considered here doesn’t mean points need
to have this amount of points in z distance, which is a part of the same cluster.
It simply means that a point x, needs to have y amounts of points in distance
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z to be considered legitimate. Therefore, other points relationship to a cluster
is considered when deciding if a point is legitimate.

The minimum required points value is meant to prevent outliers in the
dataset. Therefore, we should choose a value that removes most possible points
in the training set, compared to the least amount of data covered in the testing
set. A clearer view of the amount of lost covered data with higher minimum
required points can be seen in Figure 4.20 for D10C. The training set continues
to lose more points, in form of percentage points, until the minimum required
points is set to 4. This implies the best minpts value is 3. At this point, the
training set has lost 1.60% of the covered data, while the testing set only have
lost 0,86% of the covered data. This means DGC clusters on D10C, calculated
with a core point threshold of 1000, km distance of 20, minimum required points
of 3, are able to remove 354 cluster points. The 354 cluster points can therefore
be removed without noticeable affecting the covered data in the testing phase.

Figure 4.20: Shows how much covered data in the training and testing set for
D10C decreases, in forms of percentage points, with different minpts values.
Minpts value x, means the percentage point decrease from minpts value x-1.
Clusters are calculated with different minpts values, a km distance of 20 and a
core point threshold of 1000. The optimal result is calculated for the testing set.
This means data only needs to fit location wise with a cluster.

The calculated training set will regardless of different minimum required
points always lose more covered data in total. However, since D10C training
set consist of 1 million requests, while D10C testing set consist of 500 thousand
requests, the training set will in most cases always lose more data than the
testing set. It’s therefore important to look at the lost percentage points of
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covered data, in regards to the amount of data in total to get a correct view of
how different minpts values affects the data pattern.

4.4.2 Deciding minimum length
Secondly, we should calculate if it’s beneficial to remove clusters that are not able
to expand. Both previous figures; Figure 4.19 and Figure 4.20, are calculated
without the considerations of relocating points or removing clusters that are not
able to expand. For an efficient solution to represent a unique and narrowed
down data pattern, we should preferable remove clusters that are not able to
expand, as long as this does not extensively, and in a negatively way, affect the
covered data traffic. There are two different approaches to decide the minimum
length; We can either remove singular core points that are not able to expand,
or we can remove or relocate clusters which don’t have a certain length.

Removing singular core points

When only considering the event of removing singular core points, the amount of
covered data doesn’t change much from DGC. RDGC clusters still largely cover
the same amount of data, as most points, which exist in a merged clustering
algorithm, also exist in a non-merged clustering algorithm.

When DGC clusters and RDGC clusters are computed on D10C, with a km
distance between 15 and 30, core-point threshold of 1000, and RDGC clusters
have added an extra limitation of minimum required points 3 and minimum
length 2. DGC clusters are able to cover between 63,52% and 70,10% of data
from the training phase. RDGC clusters are able to cover 57,80% to 66,35%
of data from the training phase. This is a slight decrease of 4 of 6 percentage
points from DGC. However, RDGC is still able to cover a large representation
of the traffic pattern.

Remove cluster without a certain length

Although simply removing singular core points might be enough, it would be
interesting to investigate a solution which removes or relocates clusters without
a certain length; Both how optimal a solution would perform, and if it is better
than just removing singular core points.

A RDGC clustering, with just removing singular points, can still give a large
area of unnecessary clusters. Figure 4.21 shows a RDGC clustering result for
D10C, when clusters are computed with km distance of 20, minimum required
points of 3 and minimum length of 2. When a major data pattern of traffic is
situated in Norway, we should preferable remove clusters from places like India.
Removing only singular clusters will not necessarily accomplish this. This might
not be a large problem with a solution that just accepts 24-bit binary addresses
which have occurred in the clusters. However, for an optimal solution, which
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are able to identify the location of any new packet, a solution should preferable
accept data from as few locations as possible.

Figure 4.21: Shows the end result of clustering with RDGC in India. The clus-
ters are computed with a core point threshold of 700, km distance of 20 and
a minimum required value of 3. Only single core points, that are not able to
expand, is either removed or relocated.

RDGC clusters calculated with km distance of 20, core-point threshold of
1000, minimum points of 3 and different minimum applied lengths, can be seen in
Figure 4.22. Clusters are computed on D10C. The amount of optimal accepted
testing data and the amount of accepted training data, are calculated and shown
in the graph. Different minimum applied lengths do radically and fast diminishes
the amount of accepted data. Both the training and testing phase decrease fast
with a higher minimum cluster length. However, the amount of covered data
in the training phase decreases faster than the amount of covered data in the
testing phase. At a minimum length of 10, the amount of covered data in D10C
training set decreases below the amount of covered data in the testing set. This
means there is no longer a difference between the amount of accepted data in
the training and testing phase.

With a minimum length of 10, 56,11% of traffic from the testing phase is
accepted. This is a decrease of around 9 percentage points compared to DGC,
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Figure 4.22: Shows, for D10C, the amount of covered data in the training and
testing phase with different minimum lengths constraints set for a RDGC cluster.
RDGC Clusters are created with a core-point threshold of 1000, km distance of
20 and a minimum required value of 3

which have around 65,63% of testing data accepted. Limiting the amount of
clusters this way, can be a good way to prevent unnecessary geographical areas
from having access to a service. However, limiting based on the amount of
cluster points, will in most instances also have a negative effect on the data
pattern. As limiting simply based on points, and not based on the amount of
seen data in a cluster, will, to a certain degree, risk that clusters with a lot of
data, but few points are eliminated.

4.4.3 Optimal result
It’s important to note that values such as minimum length, core point thresh-
old, minimum required points and km distances would vary between different
datasets. Stricter requirements will make it harder for unwanted traffic to get
access to a system. However, it will also prevent more legitimate traffic from
entering. Easier requirements will include more traffic, as well as being more
prone to letting in more unwanted traffic under an attack. The trade-of between
how strict a cluster creation is, with the correlation of letting in less traffic, will
change between each dataset and the amount of traffic that is considered. Web-
servers which have traffic from few locations can in a higher degree have a more
strict threshold, than services which have traffic from a lot of small geograph-
ically areas. This section will investigate both the optimal result and binary
result for different datasets, when clusters are computed with the different ex-
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amined parameters.

D10C

the optimal covered testing data for D10C can be seen in Figure 4.23 for RDGC
clusters. RDGC clusters are computed on the training set with km distances
between 5 and 50, core-point threshold of 3000, 2600, 1800, 1400, 1000, 700,
minimum points of 3 and minimum length of 10. RDGC clusters can accept
between 24% and 68% of testing data, while most RDGC clusters will accept
between 40% to 55% depending on the parameters.

Figure 4.23: This figure shows the optimal amount of accepted D10C testing
data when RDGC clusters are created on the training phase. RDGC clusters
are computed on the D10C training set with minimum required length of 10,
minimum required point of 3, km distances between 5 and 50 and core point
thresholds 3000, 2600, 1800, 1400. All traffic from D10C testing set, which
exist location wise in a calculated cluster, are counted as a part of the optimal
amount.

The most differences seen between DGC and RDGC are with very low km
distances of 5. There is then around 18 to 29 percentage points differences be-
tween DGC and RDGC. RDGC clusters will have a problem with expanding to
a minimum of 10 points with very low km distances. Hence, the high differences
between DGC and RDGC. For the remaining km distances between DGC and
RDGC there is an average distance of 7 percentage points in covered testing
data.

The perhaps most important point is to see the differences between an op-
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timal solution and a non-optimal solution. In a non-optimal solution, a packets
location can’t be identified. Therefore, only networks which appear in the train-
ing phase, and is a part of a cluster, can be accepted. RDGC clusters are created
with the same parameters above, but with a non-optimal acceptance of testing
data. The amount of covered testing data for a non-optimal solution can be
seen in Figure 4.24.

Figure 4.24: This figure shows the amount of accepted data from D10C testing
set which was seen in a cluster. Clusters are computed on a D10C training
set with a minimum required length of 10, minimum required points of 3, km
distances between 5 to 50 and core point thresholds 3000, 2600, 1800, 1400,
1000 and 700. Traffic from D10C testing set, is only accepted as a part of a
cluster, if the 24-bit network is also seen in this cluster.

An optimal solution are able to accept between 3 to 20 percentage points
more than a non-optimal solution. At an average, an optimal cluster are able
to accept 12 percentage points more than a non-optimal cluster. This means
an optimal solution can, depending on the parameters, accept a high degree of
new data which has not been seen in the training phase. Moreover, considering
a minimum length of 2, most RDGC clusters have a small differences of 1 to 4
percentage less than DGC.

D11A

RDGC clusters created on D11A training set with km distances between 5 and
50, core-point threshold of 2600, 1800, 1400, 1000, 700, minimum length of
10 and minimum required points of 3, before the amount of optimal accepted
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testing data is counted, can be seen in Figure 4.25. The optimal amount of
accepted testing data ranges between 70% to 84%. Most RDGC clusters on
D11A have little differences with lower thresholds, and it is mostly different
km distances which affects the covered data pattern. RDGC clusters with a
minimum length of 10, covers 8 to 15 percentage points less than DGC. Clusters
with low km distances of 5 to 25 will cover around 13 to 15 percentage points
less than DGC. Higher km distances will cover around 8 to 9 percentage points
less than DGC.

Figure 4.25: This figure shows the optimal amount of accepted D11A testing
data when RDGC clusters are created on the training phase. RDGC clusters
are computed on the D11A training set with minimum required length of 10,
minimum required point of 3, km distances between 5 and 50 and core point
thresholds 3000, 2600, 1800, 1400. All traffic from D11A testing set, which
exist location wise in a calculated cluster, are counted as a part of the optimal
amount.

When RDGC clusters are computed with the same parameters as above,
but with only a non-optimal acceptance, then only networks which appear in
the training phase and is a part of a cluster, is accepted. The acceptance
rate diminish with 3 to 8 percentage points compared to an optimal result.
Furthermore, most clusters with low km distance, lose 3 to 4 percentage points
in a non-optimal solution. This RDGC calculation, with a minimum length of
10 and with a non-optimal acceptance rate for the testing set, can be seen in
Figure 4.26.

D11A is a highly localized pattern and strict requirements might not be the
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Figure 4.26: This figure shows the non-optimal amount of accepted D11A test-
ing data when RDGC clusters are created on the training phase. Clusters are
computed with a minimum required length of 10, minimum required points of 3,
km distances between 5 to 50 and core point thresholds 3000, 2600, 1800, 1400,
1000 and 700. Traffic from D11A testing set, is only accepted as a part of a
cluster, if the 24-bit network is also seen in this cluster.

best solution. Instead of applying a high minimum length, we can only remove
singular core-points. A RDGC clustering algorithm which removes singular core
points and have a minimum required points of 3, before the amount of optimal
covered testing data is counted, have an acceptance rate of around 71% to 89%.
RDGC clusters with km distance of 10 to 20 have an acceptance rate of around
77% to 83%.

RDGC clusters which removes singular core-points and have a minimum
points of 3 will still lose around 7 to 15 percentage points, against a DGC
clustering algorithm. However, removing singular core-points makes RDGC
not diminishing a high degree of data with low km distances. While RDGC
clustering with a minimum length of 10, removes 13 to 15 percentage points for
km distances between 10 and 25, RDGC clustering with a minimum length of
2, only removes around 8 percentage points. This is around half the amount
with a high minimum length and shows that a lower minimum length, is better
suited to represent a localized data pattern.

D11B

RDGC clustering on D11B, performs even worse than on previous datasets, even
when RDGC clusters only are computed with a minimum length of 2. A RDGC
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cluster calculation on D11B with a minimum length of 2, minimum points of 3,
core-points of 3000, 2600, 1800, 1400, 700 and km distances between 5 and 50,
can be seen in Figure 4.27. Here, the amount of optimal accepted D11A testing
data that fits within a cluster location wise, is counted.

The amount of accepted testing data ranges between 28% to 82%. However,
most clusters accept only between 30% to 40%. First, when the km distances
is 50, 70% to 80%, testing data is accepted. D11B seems to have a high degree
of location points which are singular points with no possibility of expanding.
Singular points can’t therefore not support the notion of minimum points or
minimum length.

Figure 4.27: This figure shows the optimal amount of accepted D11B testing
data when RDGC clusters are created on the training phase. RDGC clusters
are computed on the D11B training set with minimum required length of 2,
minimum required point of 3, km distances between 5 and 50 and core point
thresholds 3000, 2600, 1800, 1400. All traffic from D11B testing set, which
exist location wise in a calculated cluster, are counted as a part of the optimal
amount.

DGC clusters without these extra constraints, cover over 40 percentage
points more than RDGC. Moreover, RDGC clusters between an optimal and a
non-optimal solution only changes with around 2 to 4 percentage points. D11B
is a great example of the highest weaknesses with RDGC. RDGC builds on the
principle that more location points in a certain area, automatically confirms
the legitimacy of points or clusters in this area. However, the hypothesis lacks
the ability to differ between location points with a high amount of request and
location points with a low amount of request. Therefore, even if a location point
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have 70 000 seen requests, the location point is not seen as legitimate if it can’t
expand further. This is a massive weakness as we would preferably like to accept
location points with a high amount of requests, regardless of the points ability
to expand.

4.5 Classifying new objects
These two clustering algorithms depends on the ability that locations of new
traffic can be located. In a normal scenario, we could check if any new unknown
packet would fit in any of the predefined clusters. However, since we have defined
clusters based on location and not on already known attributes, we are unable
to calculate the location without using some external resource. Under an attack
it would be indefeasible to use a solution that would look up all incoming IP
addresses to see if the IP address fits in any of the predefined clusters. A lookup
can fast take a couple of seconds to complete and the amount of processing
power required to process several thousands packets pr second would be too
massive for the solution to scale properly.

To avoid this issue, it would be preferable to either identify some attributes
that can tell us something about the location, or identify a pattern within each
cluster that separates itself from other clusters and from data that is not within a
cluster. However, opposite of identifying this pattern based on location, the pat-
tern should be identified by the already known attributes. We can take several
approaches to solve this issue and this section will investigate two approaches
in how to best define a new object into a cluster.

4.5.1 Naive Bayes
As mentioned from the background chapter, Naive Bayes is not a singular al-
gorithm, but rather all algorithms based on applying the Bayes theorem. The
Bayes theorem which tells the probability of an event to occur based on prior
knowledge of this event, is mathematically stated as the equation below. The
theorem is built on the principle that every feature considered is independent
from all other available features. This means each feature will independently
heighten the chance for the object to be in a certain class. However, the rela-
tionship between the features will not heighten or diminish the chances for the
object to be in a certain class.

P (ci|A) =
P (A|c1) ∗ P (C1)

P (A)
(4.1)

The equation above states that P (A|c1) is the evidence that supports the
notion of this event to be in a certain class. Since there can be several different
evidence to consider, we can further expand the equation as below.
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P (ci|A) =
P (a1|ci) · P (a2|ci), ..., P (an|ci) ∗ P (C1)

P (A)
(4.2)

The Bayes theorem can be employed to try and identify if a packet is likely to
belong to a cluster based on its own IP address, formatted as a binary address.
A straight Naive Bayes implementation, which calculates what cluster a new
incoming packet is likely to belong, based on previously seen information, might
case problems for several reason; Firstly, large clusters will have problems with
identifying bits that are more common than other bits. In an ideal scenario,
nearly all of the seen IP addresses will share some common bits. However, for
large clusters that expand over many location points or ISPs, this will often not
be the case. Secondly, large networks or locations will often override small loca-
tions. Even though small locations might fit better in a small cluster. Thirdly,
small points within a large cluster will often be ignored.

To evaluate how well a directly implemented Naive Bayes approach per-
forms, a Bayesian probability is calculated for each cluster, where each bit is
computed independently from every other bit. A new IP address checks against
all clusters to find the highest possible probability that this IP address are able
to get. As an example, if we have several classes or clusters that amount to a
total of 5000 requests, where one cluster Y have 4 seen networks in a simplified
form as 01110, 01111, 10100 and 10110. These networks then have a frequency
of 500, 495, 300 and 60. We can calculate a new packet with network address
11010 probability of being a part of cluster Y as below:

P (ci|11110) =
P (1|c1) ∗ P (1|c1) ∗ P (0|c1) ∗ P (1|c1) ∗ P (0|c1) ∗ P (C1)

P (11110)
(4.3)

The equation can further be expanded or rewritten with the different con-
sidered probabilities in mind:

P (ci|11110) =
360
1355 ∗

995
1355 ∗

1355
1355 ∗

1055
1355 ∗

860
1355 ∗

1355
5000

P (11110)
=

0, 025

P (11110)
(4.4)

We also need to factor in the probability of this certain combination of
events, to occur independently from the class. The value 0,025 gained from
the algorithm only gives the likelihood of this pattern to be in this particular
cluster, and is not the same as the probability. Therefore, to normalize the
likelihood we need to divide 0,025 with the probability of P(11110) to occur
independently of the given class. This can be accomplish by dividing 0,025 with
the probability for P(11110) to occur in class or cluster ci + ci+1+, ...,+cn as
seen below:
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0, 025

P (11110|ci) + P (11110|ci+1) + P (11110|ci+2, ..., P (11110|cn)
(4.5)

Figure 4.28 Shows one of the probability distribution gained by Naive Bayes.
The probability distribution is calculated on DGC clustering. DGC clusters
are created on D10C with core-point threshold 1000 and km distance 5 . It’s
interesting to note, when Naive Bayes is calculated on clusters created with a
small km distance, Naive Bayes is still incapable of achieving a high likelihood or
probability for most of the seen request. Only 16,48% of the seen requests have
a computed probability over 80%. In comparison 40,45% of the seen requests
have a probability under 30%. In an ideal scenario, a calculated cluster with
maximum distance of 5 km and core point threshold of 1000 should be able to
cover around 55,84% of D10C testing data. To achieve this goal, every request
with a probability over 30% needs to be accepted as legitimate traffic.

Figure 4.28: Shows the probability distribution in D10C testing set with a Naive
Bayes calculation based on DGC clusters with a maximum allowed distance of
5 km and a core point threshold of 1000. For each request, the highest computed
probability is counted as the most likely for the object to belong to.

Even though smaller clusters performs slightly better than larger clusters
in a Bayesian probability model, a straight Bayesian implementation is unable
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to perform close to an ideal scenario and is insufficient to represent the data
pattern.

4.5.2 Reverse search
It is hard to estimate a pattern on each cluster which can identify if any unknown
source address belong to a cluster. This can largely be contributed to the fact
that networks which lay close geographically, don’t need to lay close in the
address range. Therefore, identifying a pattern based on geographical clusters,
will be harder, than identifying a pattern for clustering in the address range.
Using Bayesian calculation on geographical clusters will therefore in most cases
not work.

Instead of using machine learning to identify a pattern on each cluster, we
can simply use the found clusters to identify more networks. This can be ac-
complished by doing a reverse search on a geographical IP database. Table
4.1, shows the amount of accepted networks in DGC and RDGC clustering,
against D11A, when a reverse search is used to populate the database with
more networks. Clusters are created with a core-point threshold of 3000 and
a km distance between 5 and 20. Moreover, RDGC clusters have an added
constraint of a minimum length of 2 and a minimum points of 3.

Km distance DGC RDGC
5 608117 107788
10 683489 279804
15 927265 360763
20 941675 376277

Table 4.1: Shows the amount of accepted networks for DGC and RDGC clus-
tering, on D11A, when reverse search is used to populate the clusters with more
networks.Clusters are created with a core-point threshold of 3000 and km dis-
tances between 5 and 20. RDGC clusters have an added constraint of a minimum
length of 2 and a minimum points of 3.

Reverse search is able to find new networks for both RDGC and DGC. Since
DGC don’t have any limitation for the cluster calculation, a heavier amount
of networks are found. Although DGC clusters are able to cover 7 percentage
points more testing data than RDGC, the differences between covered data in
an optimal and non-optimal solution is around 7 percentage points for both
clustering algorithms. This means RDGC clustering have managed to find the
most relevant location points to accept, which resulted in the heightening of
7 percentage points. RDGC are furthermore able to accomplish this by only
accepting a fraction of networks that DGC accepts. The amount of accepted
testing data between an optimal solution and a solution that populates the
database can be seen in Table 4.2 for RDGC cluster calculated on D11A. RDGC
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clusters are calculated with a core-point threshold of 3000, minimum length of
2, minimum points of 3 and km distances between 5 and 20.

Km distance Optimal RDGC Populated RDGC
5 355423 356867
10 388904 389374
15 403089 402627
20 406477 405458

Table 4.2: Shows the amount of accepted data between a optimal solution and
solution which looks up new networks. RDGC clusters are created on D11A with
core-point threshold of 3000, minimum length of 2, minimum points of 3 and
km distances between 5 and 20.

A solution that populates the database performs nearly identical with the
amount of accepted testing data of an ideal solution. This data can be used to
decide if packets are legitimate or illegitimate.
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Chapter 5

Approach

This chapter will be based on the 3 proposed algorithms from last chapter, I
will discuss different features which will be used to test the proposed algorithms.
These features include; The virtual environment setup, the external tools in use
and how the mitigation technique is built up and which data structures in use.

5.1 Testbed environment
The virtual environment is used to simulate a DDoS attack and consist of sev-
eral hosts in a closed testbed environment. The architecture of the simulated
environment can be seen in Figure 5.1 and contains 4 hosts in the 11.11.11.0/24
address range. The servers have different responsibilities in the execution of a
real life simulation, which include gathering statistics, simulating a DDoS at-
tack, mitigate a DDoS attack and answering web-requests which are accepted
by a mitigation solution.

Figure 5.1: This figure shows the architecture of the testbed environment.
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DDoS server

The DDoS server, contains 4 Intel Xeon 5130 processors running at a max speed
of 3600 MHz. The server runs Linux Ubuntu 16.04, x86_64 architecture with
version 4.4.0-66-generic. The DDoS server is in charge of simulating both HTTP
flood and normal traffic flow. To ensure that simulated requests with different
source addresses are not sent to the real world. A default route on the web-
server sends all return traffic to the DDoS server. Moreover, the DDoS server
has routing turned off, so requests are not sent out to the real world.

Client host

The client server runs Linux Ubuntu version 4.4.0-36-generic with x86_64 ar-
chitecture and consist of 2 CPUs with a max speed of 5200 MHz. The client
host sends requests to the web server to measure different statistics. These
statistics include the round trip time for legitimate requests and the drop rate
for requests that should be accepted, but which might be dropped because the
web-server are not able to handle the amount of incoming requests.

Web-server

The web-server also contains 4 Intel Xeon 5130 processors running at a max
speed of 3600 MHz. The web-server runs Linux Ubuntu, 64 bit architecture
with version 4.4.0-64-generic. In our simulated environment, the web-server is
responsible for two tasks; answering legitimate HTTP request and mitigating a
possible attack. The mitigation technique makes a decision on each incoming
packet independently. Packets which are accepted will have access to the web-
service where requests are completed as normal.

5.2 External tools
To be able to simulate this environment, the mitigation techniques and the
subsequently attacks, several tools are used. This section goes through the
different tools and libraries which are used to test the proposed algorithms.

5.2.1 Repache
Repache or Apache Traffic Replay Generator is a tool that are able to use the
Apache log-files to generate HTTP requests based on recorded IP addresses.
Repache is used on the DDoS server to simulate real life connections to the
web-server and the tool is able to establish TCP connections, request data and
tear down different connections. Since Repache use previously recorded data,
the tool is able to simulate a system under realistic circumstances

73



5.2.2 BoNeSi
BoNeSi is an open source botnet simulator for simulating TCP based HTTP-
GET flood against a web-server. BoNeSi are able to establish thousands of
HTTP connections from different IP addresses from just a single server. BoNeSi
are used on the DDoS server and takes four arguments; The rate per second
of traffic that BoNeSi should send, a file which contains the IP addresses that
BoNeSi pretends is the source, the destination address, port number, and the
interface which BoNeSi listens to.

5.2.3 Python3
The mitigation techniques and solutions on the web-server are coded in Python.
Python is a high-level programming language, with focus on readability and to
give an easy way to express concepts in fewer lines of code. As python is a
high level language, mitigation techniques in python is not the best solution.
This is mainly because code written in a high level language, like python, is not
optimized compared to a low level language.

5.2.4 Nfqueue
The mitigation techniques on the web-server needs to have access to each packet
independently to make a choice whether the packet should be accepted or
dropped. Since Python is a high level problem solving language it is not possible
to get access to these packets directly, as Python runs in user space and don’t
have access to kernel space, where packets are processed.

Instead, Nfqueue, which is a C extension module, delegates the decisions
on packets to userspace software. Nfqueue can therefore be used to simulate
Python handling the packets. Nfqueue links against LibnetFilter queue, which
provides a way of altering packets that have been queued by the kernel packet
filter. When Nfqueue provides access to these packets from the kernelspace to
the userspace, a mark can be set on each packet to be dropped or accepted.
Nfqueue provide access to packets which have been matched by a iptables rule
in Linux. In our mitigation technique, all packets which have a destination port
of 80 is sent to Nfqueue, Nfqueue then further sends the data to our mitigation
technique which decides the fate of each packet.

5.2.5 Pybloom
Pybloom is a python implementation of the bloom filter probabilistic data struc-
ture. The bloom filter takes an error rate and the amount of elements in the
bloom filter. Pybloom can be used to add elements and check if an element
exist in the data structure.
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5.3 Data structures
Because we have proposed 3 different algorithms, it would be beneficial to test
several solutions or data structures to use in mitigating a possible attack. From
last chapter, we get 24 bit networks which should be accepted. We can store
these networks several ways before a solution makes a decision on each indepen-
dent packet. This section will investigate two different methods we can use to
store and decide the fate of any new packet.

5.3.1 Tree structure
Using arrays or linked lists to store gained data from different algorithms can
pose several risks with regards to the efficiency. Since both arrays and lists
are linear data structures, it might be necessary to search the entire structure
to look for an element. At worst, a search for element x, will go through N
elements, where N is the amount of elements in the set. Therefore, instead of
using linear structures to store data, we can expand the notion of lists, which
only points to 1 object, to lists which points to several relations.

This structure, known as a tree structure, is a hierarchical data structure
and can consist of several nodes or data items which have direct or indirect
relations to new nodes. A tree structure exist of a start node, known as the root
node, which further points to new nodes. A tree structure contains no cycles
where nodes relates back to itself. A nodes relation to new nodes is known as
the nodes children nodes. The bottom of the tree, or nodes that don’t have any
children, are further known as leaf nodes.

Figure 5.2: This Figure shows the tree structure used for storing found 24-bit
networks from AFN.

Tree structures are efficient data structures which can fast and easily look up
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new data. In our algorithms, where we have found 24-bit networks that should
be accepted, we can use a tree structure to store the found networks. As seen in
Figure 5.2, the data can be stored as 0’s and 1’s. When a new packet comes in,
the packets 24-bit source address will be looked for in the binary tree structure.
If for example, a packets source address starts on bit 0, while the tree only
contains 24 bit networks which starts on bit 1, the packet can be determined to
not exist in the tree on the first node.

Moreover, a tree structure of N levels will, if packets are accepted, have a
time complexity of O(n). For packets that are dropped, the best scenario for
traversing is O(1), while the worst scenario is O(n−1). Since the tree structure
is an efficient data structure which should quickly determine the fate of any new
packet. We can use the tree structure for AFN. AFN will then find frequent
24-bit networks on the training phase, before a tree structure is used to store
the found 24-bit networks.

5.3.2 Bloom filter
The remaining algorithms DGC and RDGC will, if reverse search is used, need
to store a high amount of networks. It might be beneficial to use a different
structure than trees to preserve memory space. Instead of using trees, we can
employ a bloom filter. Bloom filters have previously been used within anomaly
detection[78] and is a space efficient probabilistic structure which use hashing
to determine if elements is in a list S. If an element x is determined to be in the
set S, x is in set S with a known probability. If x is determined to not be in the
set, x is with a 100% certainty not in the set. This means that bloom filters
don’t allow false negatives but allow false positives. Higher false positive will
often lead to more space savings. However, the drawbacks of false positives are
often out-weight by the saved space[76][19].

Three parameters define the bloom filter; The length of the bloom filter,
noted as m bits, number of hash functions known as n, and number of inserted
elements. A bloom will start with all m bits set to 0. As elements are added
to the filter, each element will be checked against k hash functions which will
results in k positions that should be set to 1. To determine if an element x is
in the bloom filter the same K hash functions are executed. If all k positions
points to 1 the element, is with a certain probability, determined to be in the
set[76]. An illustration of this data structure can be seen in Figure 5.3.

Bloom filters have several weaknesses which include the lookup time for any
element is highly dependent on the false positive rate. Lower false positives
will often require a higher amount of hash functions, which again mean more
memory accesses[71]. Hash functions are a demanding element to calculate and
the time complexity of a bloom filter is not based on the amount of elements
in the set, but the number of hash functions. The time complexity of a bloom
filter is noted as O(k), where k is the number of hash functions. Mitzenmacher
M. considered this issue, by increasing the amounts of bits m, it was possible to
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Figure 5.3: This figure shows the structure of a bloom filter with N amount of
hash functions and with M available bits data can be stored in.

reduce the number of hash functions, and therefore the time complexity of any
new lookup[55].

In our mitigation technique we can employ a bloom filter on both DGC
and RDGC. How fast the bloom filter are able to determine the fate of any
new packet then depends widely on the error rate. Instead of constructing an
own Bloomfilter, we can employ the Pybloom library, which is just a python
implementation of a bloom filter.

77



Chapter 6

Results

This chapter will, based on the data mining from last section, investigate, to a
certain degree, if the proposed algorithms are able to deal with mitigating DDoS
attacks. Both how fast the solutions employing the algorithms can decide the
fate of any new packet, as well as how narrowed down the data pattern is to
prevent the most illegitimate traffic, are calculated. Furthermore, the proposed
solutions, which employ the information from the different algorithms, will be
tested against a varies amount of load from different botnets. The calculated
data pattern from datasets D10 and D11, will be tested on a range of simulated
botnets, ranging it both size and where bots are situated geographically.

6.1 Load test
We should calculate the amount of load, both the web-servers, and a solution
that tries to filter out packets on the web-server are able to handle. The load,
that both the web.server and other proposed solutions will handle, will vary
based on configuration and how much traffic a solution have decided to accept.
For example, with more accepted traffic, different solutions, like a tree structure,
used with AFN, might use longer time to decide which traffic that can’t be
accepted, as some illegitimate traffic needs to travel longer down the tree before
finding out that it can’t be accepted.

6.1.1 Load test on Apache web-server
As seen in Figure 6.1, with a default Apache configuration and a time-out value
of 500 milliseconds, Apache are able to handle 500 request per second, before
beginning to drop or queue request. At this point, with a request per second
of 600 or above, Apache, still doesn’t use 100% of the CPU. As Apache, by
default, is only allowing 150 concurrent connections at any given time moment.
This means, that any remaining request are queued for an available slot to open.
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Figure 6.1: Shows how many requests per second, noted by the percentage,
Apache is able to handle. If a request have not gotten a response in 500 mil-
liseconds, the request is assumed dropped by the web-server. Bonesi is used to
simulate the amount of request per second, before a singular process on a differ-
ent host starts a web request against the web-server every second for 20 minutes.

Even though the acceptance rate of accepted requests decreases when the
amount of packets per second against the web-server increases, users might still
be able to get a response, if they wait longer than 500 milliseconds. As seen
in Figure 6.2, when an average request time for all requests is calculated with
the same data, as from Figure 6.1, we can draw a trend-line, with the function
Y = 0, 0615x2 + 1.5071x. This function can estimate the amount of seconds
that it will take to receive a response from the web-server when the server is
experiences a certain rate of packets per second. Y is here the average time in
seconds and X is the current amount of packets per second. However, in an ideal
scenario and in the ongoing experiments with traffic load against the server, we
should try not to let in over 500 request every second if we don’t want users to
get heavily affected by the DDoS attack.
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Figure 6.2: Shows the average time, in seconds, a request takes to complete with
different packet rates against the Apache web-server. Since Apache, by default,
only can handle 150 concurrent connections at any given moment. Requests will
eventually need to wait for an open slot to be served by the web-server.

6.1.2 Load test on proposed structure
As discussed in the approach chapter, to mitigate a DDoS attack, both a tree
structure containing binary networks and a bloom filter, which use hashing, to
decide if a network should be accepted, are used. This sub-section will therefore
investigate, how fast these solutions can decide the fate of any new packet as
well as how much load these proposed solutions are able to handle before packets
are being queued and dropped.

Tree structure

As mentioned, the binary tree structure, used by AFN, contains nodes repre-
senting either a zero or one. Every new packet then need to travel down the
binary tree to check if the binary representation of their 24 bit network exist in
the tree. If it does, the packet is accepted, if not, the packet is dropped by the
solution.

If any new legitimate packet arrive and is handled by a thread immediately,
it will on average take 39,55 microseconds for the packet to be processed and
accepted. However, if the packet on the other hand, doesn’t exist in the tree and
is rejected at the first level, the average processing time is 22,61 microseconds.
This means, that it takes on average 39, 55 − 22, 61 = 16, 94 microseconds to
traverse the tree. The main reason for the processing time to not diminish below

80



this, results from the fact that the solution is coded in python and operates in
the user mode. For the solution to then decide the fate of any new packet,
the source address, encoded as a bytes array, needs to be translated into a 24
bit binary address, before the packet can traverse the tree. This calculating,
takes on average 8,77 microseconds, which is a little under 1/3 of the time for
a packet that is dropped right away and a little under 1/5 of the time for a
packet that needs to traverse the entire tree.

How many packets per second, a solution that uses a binary tree are able to
handle, will not only vary based on available resources at the targeted system,
but also based on the amount of 24-bit networks represented in the tree and the
given attack pattern. In the best scenario, a solution would drop all illegitimate
traffic by the first checked bit or first node, while at the worst scenario, illegit-
imate packets, if not accepted, are dropped at node 23. Figure 6.3 shows the
amount of overall CPU usage, with different simulated packets per second, for
a binary tree, which either drops all illegitimate traffic at the first or at the last
node. A tree which needs to drop illegitimate traffic at the last node, will at
worst increase the CPU usage by around 10 percentage points against a binary
tree which drops all illegitimate traffic at the first node.

Figure 6.3: Shows the amount of CPU usage for a binary tree solutions, at our
targeted system, which drops all illegitimate traffic at either the first or last node.
The binary tree are able to process from 10 000 to 130 000 packets per second
without a huge issue.

As seen in Figure 6.3, our simulation of botnet traffic, with BoNeSi, against
our targeted system, are not able to bring down the binary tree solution. As
the tree, regardless of the length a packet needs to travel, are still efficiently
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able to decide the fate of any new packet. Moreover, even though the average
number of elements in the queue, as seen in Figure 6.4, increase with a higher
amount of packets per second, the queue never reach a high amount of packets.
Therefore, the attack effect on new incoming requests, is minimal to none. As
seen in Figure 6.5, in a binary tree solution which drops all packets immediately
on the first node, does not notices an increase in RRT for a legitimate request.
Moreover, with a huge amount of nodes, that might force all packets to go down
to level 23 in the tree, the amount of time a request needs to wait will only
increase by a couple of milliseconds.

Figure 6.4: Shows the average amount of elements in the queue, for a binary
tree solution, when all processed packets, which should not be accepted, either are
dropped at the first node or at the last node in the tree. The queue will increase
with some amounts, however, as seen in figure 1.5, the effects are minimal.

Therefore, in our constrained environment, it is not possible to bring down
the web server with HTTP flood, as the attacking server are only able to send
130 000 request per second. Although a higher packet rate might increase
the likelihood of the server going down, the proposed solution of a binary tree
structure can also be heavily improved by coding directly into the kernel, and
avoiding the need for Nfqueue to send packets to user space. Therefore, with
later botnet simulation and real life datasets, the binary tree solution, needs to
at least, accept around 500-600 illegitimate packets before being able to affect
the legitimate traffic more than necessary.
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Figure 6.5: Shows the average amount of time, in milliseconds, a legitimate
request takes with different packet rates of illegitimate traffic. The average time
for a legitimate request will change depending on the amount of illegitimate
traffic and how much of the illegitimate traffic which are dropped at the first and
last node in the binary tree.

Bloom filter

A bloom filter is a space-efficient probabilistic data structure, which is designed
to quickly and memory efficiently decide if a new and unknown element is preset
in a set of elements. The price paid for this efficiency are false positives in the
set. This means that if an element x, based on a hash function is determined
to not be in the set, the element is with a 100% certainty not in the given set.
However, on the other hand, if an element y is determined, based on a hash
function, to be in a set, element y is likely to exist in the set. However, the
element might also, based on an error rate, not be in the set and therefore be a
false positive.

The average time a request will use to be processed with a bloom filter differs
between different error rates and the amount of networks in the bloom filter.
On average, if a thread processes the request immediately, a request will use
around 50 to 60 microseconds. As seen in Figure 6.6, the different error rates
of 0,001, 0,0001 and 0,00001 will increase the processed time with around 2
to 8 microseconds. For example, an error rate of 0,0001 will make a request
without considering other processing aspects, take around 27,62 microseconds
to be processed.

The bloom filter is slight more inefficient, regardless of the tree structures
ability to accept a packet at the first or last node, in deciding the state of any
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Figure 6.6: Shows the different processing times for a bloom filter with a cer-
tain error rate against a certain amount of networks in the set. The processing
time measured, is the time from the packet is checked against the bloom filter
and not the entire processing time. As the entire processing time would also in-
clude converting the IP address to binary and dropping or accepting an incoming
packet.

new element than a tree structure. However, a bloom filter use considerable less
space than a tree structure and with subsequently 10 000, 20 000, 50 000, 100
000, 150 000 and 200 000 networks that need to be accepted, a tree structure will
use around 24, 28, 36, 49, 56 and 68 MiB, while a bloom filter will use around
13 MiB regardless of the amount of networks which need to be accepted.

Moreover, as it takes longer time for a packet to be processed, both the
average queue amount and the overall CPU usage is higher than a tree structure.
As seen in Figure 6.7, for a bloom filter with an 0,0001 error rate, the average
CPU usage, when the filter needs to process 130 000 packets per seconds, is
55,76%. This is an increase of 9 to 46 percentage points from a tree structure.
As a tree structure would use 37,26% when discarding 130 000 packets at the
first node and 46,54% when discarding 130 000 packets at the last node in the
tree. However, the bloom filter is still a rather efficient structure and a botnet,
in our simulated environment, will, as also seen in a tree structure, not single
handily be able to bring the web-server down by simply trying to overload the
proposed solutions with the amount of packets that needs to be processed.

The average amount of queue elements in Nfqueue which are waiting to be
processed, also increase from a tree structure. At best, when traffic is dropped
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Figure 6.7: Shows, for a bloom filter with an 0,0001 error rate, the average
percentage of CPU usage, when the bloom filter needs to process from 10 000
to 130 000 packets per second. Although the bloom filter is less efficient than a
tree structure, the bloom filter still manages to process huge amount of packets
without a massive issue.

at the first node, a tree structure, with 130 000 seen packets per second, have
on average only 45 elements in the queue. At worst, when all processed packets
are dropped at the last node, the average queue consist of 74 elements. When
a tree structure is compared against a bloom filter, the average queue elements
for 130 0000 packets per second, as seen in figure 1.8, is 87. Although this is
higher than for a tree structure, the amount of time a request needs to wait,
for bloom filter, doesn’t increase notably for different packet rates, even though
different packet rates affect the number of elements in the queue. For example,
with a packet rate of 30 000, 60 000, 90 000 and 120 000 per seconds, the average
time for a request is 5,6, 5,9, 5,9 and 6,3 milliseconds, which is well within any
possible error rates. Comparing this value against a tree structure, the value is
similar to a tree structure which are able to drop all illegitimate traffic at the
first node.

A bloom filter produces a certain error rate. Using a bloom filter, in the
wider sense, over a tree structure, in a DDoS mitigation technique, means that
the trade-of between the amount of false positive and the strength of more
available memory, should be heavily investigated. Moreover, as a bloom filter
seems to use more CPU usage than a normal tree structure this should as well
be considered when deciding to use a bloom filter or a tree structure.
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Figure 6.8: Shows, for a bloom filter with an 0,0001 error rate, the average
elements in Nfqueue waiting to be processed when the bloom filter gets from 10
0000 to 130 000 packets per second.

6.2 Botnets
As discussed from the background chapter, botnets vary in both size and where
bots are geographical situated. Botnets will often have areas with a higher and
lower densities. It’s therefore important to check a possible solution against
several botnets with different geographical patterns. This section, will therefore
investigate different simulated botnets, to see how much data from each botnet
is accepted as legitimate with the use of different algorithms and structures.

6.2.1 B1
The first simulated botnet or B1 contains 100 000 unique IP addresses and are
randomized over the IP address space. All proposed algorithms should be able
to easily sort out the illegitimate traffic.

AFN

AFN is well equipped to sustain an attack from a B1. At worst 1.17% of B1 are
able to gain access to a service if D10A is used to calculate frequent networks. As
D10A is the biggest dataset with its 7.1 million, its naturally that this dataset
will accept more traffic regardless of threshold. With smaller datasets of D10C,
D11A and D11B, which only contains 1 and 1.1 million training data, 0.21%,
0,12% and 0.1% of data from B1 is accepted.
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Frequent threshold D10A D10B D10C D11A D11B
1 1177 682 206 123 105
5 500 294 89 55 48
10 389 231 65 34 34
20 289 179 50 26 21
50 110 66 22 11 12
100 58 33 8 6 8
250 26 14 5 1 3
500 7 5 1 0 2
1000 5 2 0 0 1

Table 6.1: This table shows the IP addresses from B1, which is let in if AFN is
used to find frequent networks. First, A frequent threshold is used to find 24 bit
networks in the training phase which have this amount of seen traffic. Frequent
networks are calculated on the datasets D10A, D10B, D10C, D11A and D11B.
Then a binary tree structure is applied to enforce that only B1 IP addresses,
which can be considered frequent, are accepted. Calculated frequent thresholds
are 1, 5, 20, 50 100, 250 and 1000.

DGC

As seen in Table 6.2, DGC is used to calculate density based geographical clus-
tering with a threshold of 3000 and different km distances. Before the amount
of accepted B1 address is counted based on a bloom filter with a 0,0001 error
rate. Reverse search is not used on the clusters to populate the database with
more networks. DGC clustering perform quite well and achieve similar results
as seen for AFN.

However, Although DGC performs quite well, DGC are not able to cover as
few addresses as AFN. This primarily stems from the notion that DGC finds
more networks in its area, based on density-based clustering, than AFN. AFN
is only able to reach a high amount of accepted botnet traffic if the frequent
threshold is set low. Therefore, both DGC and RDGC will usually have in-
stances where they accept more botnet traffic than AFN. This is still true, even
though reverse search is not used to populate the database with more IP ad-
dresses. Moreover, the error rate also have a play in how much bot traffic which
are accepted. AFN don’t use a bloom filter to accept new data and therefore
don’t deal with unnecessary false positive rates.
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Km distance D10C D11A D11B
5 49 40 40
10 62 43 48
15 75 55 57
20 81 55 56
25 77 56 48
30 86 66 58
35 95 73 59
40 102 63 53
45 99 69 64
50 97 73 62

Table 6.2: This table shows the IP addresses from B1, which is let in if DGC is
used to find and accept data from geographical clusters. First, DGC is used to
find geographical clusters in training data from D10C, D11A and D11B. 24-bit
addresses in the geographical clusters are used to create a bloom filter, before
B1 addresses are checked against this filter. The bloom filter is created with an
error rate of 0,0001 and the amount of accepted B1 addresses are then counted.
Clusters are created with a core-point threshold of 3000 and km distances between
5 and 50. Reverse search is not used to re-populate the database.

RDGC

Since DGC was easily able to handle B1 traffic, RDGC, with its stricter require-
ments, should as well have a low acceptance rate for the same botnet traffic.
RDGC is in Table 6.3 used to calculate geographical clusters with core-point
thresholds of 3000, km distances between 5 and 50, minimum points of 3 and
minimum length of 10. The clusters are calculated on D10A, D10B, D10C, D11A
and D11B. A bloom filter with an error rate of 0,0001 is used to store the found
networks. Then, B1 traffic is checked against the bloom filter and the amount
of covered IP addresses is shown in the table. There is some slight differences
between the amount of accepted B1 traffic in DGC and RDGC. However, the
differences is not big enough to matter significantly and the small differences is
well within the bloom error rate of 0,0001.
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Km distance D10C D11A D11B
5 31 35 39
10 45 36 48
15 62 42 49
20 73 52 54
25 68 58 53
30 74 63 53
35 84 71 59
40 89 71 63
45 91 64 71
50 101 73 63

Table 6.3: This table shows the amount of accepted B1 addresses when RDGC
is used to find geographical clusters. First, RDGC is used to find geographical
clusters in the training set of D10C, D11A and D11B. Geographical clusters are
calculated with a threshold of 3000, minimum points of 3, minimum length of 10
and km distances between 5 and 50. A bloom filter with an error rate of 0,0001
is used to store the found 24 bit networks. Then, the IP addresses from B1 is
checked against this filter. The amount of accepted addresses are shown in the
table. Reverse search is not used to re-populate the database.

6.2.2 B2
The second simulated botnet is B2 and contains 118 000 IP addresses. The
botnet is situated in Europe and stretches mainly over central Europe. Bots are
for the most part situated in Great Britain, France, Spain, Italy, Germany and
Poland. Unlike B1 which are a randomized botnet, B2 have a unique geograph-
ical pattern and B2 fits more with the way botnets are actually geographical
situated than B1.

Datasets which have clusters, or frequent networks, in countries that B2
traffic originate from, will have a harder task to mitigate DDoS attacks, than
datasets which don’t have traffic from these regions. However, as B2 don’t have
traffic from Norway, where most of the datasets have a major traffic pattern
from, all algorithms should be able to easily mitigate a DDoS attack from this
botnet.

AFN

As B2 is placed in central Europe, more traffic is accepted than for B2, where
the traffic pattern is randomized. Seen in Table 6.4, when different frequent
thresholds are applied for AFN, before the amount of accepted data from B2 is
counted. Accepted bots ranges from 0 to 2904. At most 2,46% of botnet traffic
is allowed. Compared to AFN on B1, most accepted botnet traffic is 1.17% or
1177 bots. This means, that when we specifically try to create a pattern in
Europe, there is a 1 percentage points increase from when we specifically don’t
simulate a more accurate botnet pattern.
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Frequent threshold D10A D10B D10C D11A D11B
1 2904 1616 419 379 349
5 872 535 168 114 138
10 658 442 149 38 63
20 480 307 71 24 35
50 171 104 29 4 4
100 70 47 15 0 4
250 41 26 9 0 0
500 18 7 1 0 0
1000 14 5 0 0 0

Table 6.4: This Table shows the amount of accepted B2 addresses when AFN
is used to find frequent 24 bit networks. Frequent networks are found based on
threshold 1, 5, 10, 20, 50 100, 250, 500 and 1000 for datasets D10A, D10B,
D10C, D11A and D11B. Next, B2 addresses are checked against a 24-bit tree
structure with the found 24-bit address. The amount of accepted B3 addresses
is counted and shown in the table.

DGC

Seen in Table 6.5, DGC clusters with a core points threshold of 3000 and km
distances between 5 and 50, before the amount of accepted B2 traffic is counted,
against a bloom filter with an error rate of 0,0001. DGC is extraordinary able to
remove B3 traffic and most datasets don’t have over 20 accepted B2 addresses,
which amounts to only 0,017% of all bots from B2.

Km distance D10C D11A D11B
5 7 4 18
10 8 8 156
15 15 9 26
20 8 1 15
25 10 11 12
30 12 25 7
35 17 9 3
40 26 43 9
45 16 14 17
50 13 34 20

Table 6.5: This table shows the amount of accepted B2 address when DGC is
used to create clusters. DGC clusters are created with a a core point threshold
of 3000 and km distance between 5 and 50. Clusters are created on datasets
D10C, D11A and D11B. Next a bloom filter with an error rate of 0,0001 is used
to store the found 24 bit networks. B2 traffic is then checked against this bloom
filter. The accepted botnet traffic is counted and the amount is shown in the
able. Reverse search is not used to re populate the database.
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As bots are created based on geography and not randomized as before, it’s
possible to see a higher correlation between the hypothesis applied on AFN
and DGC. When botnets are simulated based on geography, a greater differ-
ence between AFN and DGC emerges. With randomized botnets seen in B1,
the differences between these algorithms is not necessarily as clear. However,
with geographical clustering in B2, the differences becomes easier to see. Geo-
graphical clusters often accept more networks, compared to an algorithm which
just accept frequent networks. This means that with the previous botnets, see-
ing a difference between a frequent networks algorithm and an algorithm which
use clustering, clustering algorithms will often have a higher acceptance rate of
botnet traffic, largely due to the fact that the clustering accepts more overall
networks.

For B2, the correlation of more accepted networks in the training phase, with
more accepted botnet traffic, becomes flawed. AFN, which generally accepts
less networks, has a higher B2 acceptance rate than DGC. If AFN is used to
estimate frequent networks with a threshold of 20 in D11A, AFN will accept
3063 networks. AFN will also accept 24 bots from B2. In comparison, DGC
will, with a km distance of 20 and a core-point threshold of 3000, accept 7249
networks and 15 bots. This means that DGC are able to accept twice the
amount of networks without the accepted B2 traffic being proportionate to the
amount of accepted networks.

RDGC

When RDGC cluster are created with a threshold of 3000, km distances between
5 and 50, minimum point of 3 and minimum length of 2, before the found 24 bit
networks are stored in a bloom filter and the amount of accepted B2 traffic is
counted against this bloom filter, the rate of accepted B2 data remains largely
the same as the amount of accepted B2 traffic for DGC. The amount of accepted
B2 traffic, which can be seen in Table 6.6, for a bloom filter with 0,0001 error
rate, makes it difficult to see if the added constraints pay a difference in the
amount of accepted botnet traffic. The bloom filter affects the amounts of
accepted data for each cell differently. However, the acceptance rate is still
impressively low and RDGC is exceptionally able to mitigate a DDoS attack
from B2.
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Km distance D10C D11A D11B
5 21 8 13
10 7 10 7
15 11 4 6
20 32 11 9
25 13 20 6
30 12 14 7
35 40 26 15
40 29 17 8
45 19 13 12
50 14 13 15

Table 6.6: This table shows the amount of accepted B2 traffic when RDGC is
used to create clusters. RDGC clusters are created with a core point thresholds
of 3000, km distances between 5 and 50, minimum points of 3 and minimum
length of 2. A bloom filter with an 0,0001 error rate is used to store the found
networks and B2 addresses are checked against this bloom filter. The amount
of accepted B2 addresses are counted and shown in the table. Reverse search is
not used to populate the database with more networks.

6.2.3 B3
The third simulated botnet B3, is located in large parts of Asia and consist of
82000 unique IP addresses. The botnet stretches over countries as China, India,
Japan and Bangladesh. B3 is even further away from where the normal traffic
pattern is located. All algorithms should therefore be easily able to mitigate
this attack without any particular problem.

AFN

AFN accepts more botnet traffic when a botnet is located in Asia than for a
botnet in Europe. This have a correlation with B3 managing to have more bots
in areas of normal traffic pattern. However, it doesn’t mean all botnets in Asia
are able to accept more traffic than botnets from Europe. It simply means that
this exact botnet are able to correctly identify more networks which AFN also
identified. Table 6.7 shows the amount of accepted B3 traffic when AFN is used
to find frequent networks. Frequent networks are found for D10A, D10B, D10C,
D11A and D11B. AFN calculates frequent thresholds from 1 to 1000.

AFN follows the same acceptance pattern on B3 as previous botnets. AFN
manages to efficiently remove botnet traffic when employing high thresholds and
struggles more with low thresholds.
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Frequent threshold D10A D10B D10C D11A D11B
1 8984 5715 2083 436 476
5 4990 3168 1156 192 191
10 4003 2679 952 109 120
20 3254 2165 735 60 52
50 1651 1079 350 23 5
100 983 574 147 2 2
250 419 190 15 2 1
500 175 68 1 1 0
1000 55 11 0 0 0

Table 6.7: This table shows the amount of accepted B3 traffic when AFN is used
to find frequent networks. First, AFN is used to find frequent 24 bits networks
in the training set of D10A, D10B, D10C D11A and D11B. Then the amount of
data from B4, that fits within the found networks, are counted. AFN is counted
with the frequent thresholds 1, 5, 10, 20, 50, 100, 250 and 1000.

DGC

DGC clusters created with a threshold of 3000 and km distances between 5
and 50, before the found 24 bit networks, are stored in a a bloom filter with
an 0,0001 error rate, then the amount of accepted B3 traffic is counted against
this bloom filter. This clustering and the accepted botnet traffic can be seen in
Figure 6.8.

Km distance D10C D11A D11B
5 526 10 6
10 606 14 29
15 631 15 7
20 627 15 8
25 624 11 6
30 634 25 25
35 632 18 6
40 635 13 11
45 660 28 7
50 630 15 15

Table 6.8: This table shows the amount of accepted B3 traffic when DGC is used
to create clusters. DGC clusters are created with a core point thresholds of 3000,
km distances between 5 and 50, minimum points of 3 and minimum length of
2. A bloom filter with an 0,0001 error rate is used to store the found networks
and B3 addresses are checked against this bloom filter. The amount of accepted
B3 addresses are counted and shown in the table. Reverse search is not used to
populate the database.
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The amount of accepted B3 traffic follows much of same hypothesis as B2.
When a botnet is created based on geographical approaches and a solution is
also created based on geographical patterns, the accepted botnet traffic remains
low, even though a geographical approach might accept more networks in total.
geographical approaches have some weaknesses when the geographical pattern
align with botnet traffic. D10C have some clusters in India. Therefore, when
B3 traffic also comes from India,the amount of accepted B3 traffic gets higher.

RDGC

RDGC clusters created with a threshold of 3000, km distances between 5 and
50, minimum required points of 3 and minimum length of 10. Manages to accept
much of the same botnet traffic as DGC. A major difference between DGC and
RDGC, is that RDGC accepts less botnet traffic for D10C. This is largely due to
the extra constraints which prevents some cluster creations in China and India.
These extra constraints remove 200 to 300 bots from B4.

6.2.4 B4
The fourth and last simulated botnet, B4, is located in Norway and consist
of 38000 unique IP addresses. B4 is not necessarily representative for where
botnets are located geographically, as botnets are normally situated in larger
areas than just a single country. Moreover, since both D10 and D11 are largely
located in Norway, mitigating a DDoS attack from this location is practical
impossible, unless heavy constraints is set on the found data pattern. Setting
heavy constraints on any data pattern, when bots are located in the area of
normal traffic, will give a trade-of between the amount of accepted legitimate
traffic and the amount of accepted botnet traffic.

AFN

When AFN is used to find frequent networks before the amount of accepted
B44 traffic is counted, AFN has very high amounts of accepted traffic before the
frequent threshold reaches 100 to 250. Table 6.9 shows the amount of accepted
B4 traffic, when AFN are used to determine frequent networks. AFN are able to
mitigate DDoS attacks from a botnet which is located in Norway, or from areas
with high amount of seen traffic in the training phase, if the algorithm keeps high
thresholds. Since AFN builds on the common hypothesis that frequent networks
reoccur, AFN is able to determine networks which have high amount of seen
traffic with the least amount of seen networks. Therefore, with a threshold of
500, AFN accepts a fraction of networks than with a threshold of 1. Accepting
a small amount of networks makes it hard for a DDoS attack to render a service
incapable. This is mainly contributed by the smaller probability for bots to
have access to a service and knowing the legitimate pattern.
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Frequent threshold D10A D10B D10C D11A D11B
1 30502 27461 15770 17353 15212
5 25467 19318 7306 8890 8304
10 21502 15113 5277 5650 5562
20 16485 10397 3299 3688 3390
50 8277 4917 1285 1572 1329
100 3963 2398 674 608 584
250 1591 896 225 174 156
500 663 448 47 59 75
1000 245 159 9 34 44

Table 6.9: This table shows the amount of accepted B4 traffic when AFN is used
to find frequent networks. First, AFN is used to find frequent 24 bits networks
in the training set of D10A, D10B, D10C D11A and D11B. Then the amount
of data from B3 that fits within the found networks is counted. AFN is counted
with the frequent thresholds 1, 5, 10, 20, 50, 100, 250 and 1000.

DGC

DGC clusters created with a core-point threshold of 3000 and km distances
between 5 and 50, have little to no possibility to mitigate a DDoS attack, if bots
are located directly where a major normal traffic pattern is. Seen in Table 6.10,
if geographical clusters are created where a high amount of bots also originates
from, it is nearly impossible to filter out the botnet traffic. At this point, the
botnet has managed to infiltrate the exact pattern which DGC creates cluster
by. Therefore, trying to drop traffic based on the same pattern, is practical
unfeasible.

Km distance D10B D10C D11A D11B
5 15843 8420 8511 5925
10 19155 9560 10216 8093
15 22555 11788 11803 8998
20 22899 12802 12389 9953
25 23614 12910 12551 10477
30 25938 13069 13939 12863
35 26072 13086 15593 14298
40 26157 14082 15624 14406
45 26226 14107 15619 14436
50 26261 14326 15627 14397

Table 6.10: This table shows the amount of accepted B4 traffic if DGC is used to
create geographical clusters. Geographical clusters are created with a core-point
threshold of 3000 and km distances between 5 and 50. The found networks are
stored in a bloom filter with an 0,0001 error rate and B4 addresses are checked
against this filter. The amount of accepted B4 addresses are counted and shown
in the table. Reverse search is not used to populate the database.
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The main reason for AFN being able to succeed in mitigating a DDoS attack,
when the botnet pattern is located in the exact area of normal traffic flow, is that
AFN can cover few networks, while still allowing a large amount of legitimate
traffic. However, DGC builds on a separate hypothesis, that initial clusters
should expand to find other points nearby. This hypothesis will often cause
a huge amount of networks to be covered, as long as the networks lay close
geographical. This means that if a network have only a couple of seen packets,
while still being close to a core point, this network will as well be covered by the
hypothesis. Therefore, the amount of accepted B4 traffic is highly correlated
to the amount of accepted networks. This same correlation can be seen in B1.
B2 and B3, which is created by a different hypothesis, where traffic originates
from specific areas, where major clusters are not located, the amount of covered
networks are not necessarily correlated with the amount of covered botnet traffic.

RDGC

RDGC clusters created with a core point threshold of 3000, km distances be-
tween 5 and 50, minimum point of 3 and minimum length of 10 have also a hard
time of mitigating a DDoS attack from B4. Seen in Table 6.11, with stricter
requirements, RDGC manages to remove some of the excess botnet traffic. How-
ever, the added constraints is not nearly enough, and the removed botnet traffic,
of a dozen to a couple hundred bots, give nearly no differences.

Km distance D10C D11A D11B
5 7884 8075 5883
10 9079 9365 7885
15 10897 11631 8833
20 12707 12293 9306
25 12834 12439 10432
30 12962 13807 12756
35 13043 15480 13309
40 14106 15519 14274
45 14078 15547 14310
50 14295 15548 14309

Table 6.11: This table shows the amount of accepted B4 traffic, if RDGC is
used to create geographical clusters. Geographical clusters are created with a
core-point threshold of 3000, minimum length of 10, minimum points of 3 and
km distances between 5 and 50. The found networks are stored in a bloom
filter with an 0,0001 error rate and B4 addresses are checked against this bloom
filter. The amount of accepted B4 addresses are counted and shown in the table.
Reverse search is not used to populate the database with more IP addresses.

One could except that RDGC would be better able to mitigate a DDoS attack
from Norway because of the added constraints. However, adding a constraints
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of a minimum length, don’t necessarily mean that RDGC will cover less traffic
in this area as long as other clusters can take over the dismantled points. The
minimum length, simply states that clusters need to consist of a certain amounts
of points to be considered legitimate. If a cluster then is dismantled because of
few points, the points are still allowed to relocate to other clusters. Since Norway
is a high density area, the area consist of several core points, and removed
clusters will have a higher possibility of being a part of new clusters. This
means that the added constraint will have a harder time of removing traffic,
unless the cluster area is in a region where there is few clusters from before.

6.3 Reverse search
The previously discussed algorithms, DGC and RDGC, haven’t accounted for
a reverse search to populate the database with more networks. This means
that only found networks from the training phase, which exist in a cluster, are
allowed to access the service under the testing phase. However, the benefits
of geographical clustering is to also allow new address under the testing phase.
Table 6.12 shows the accepted botnets addresses for B1, B2 and B3 when RDGC
clusters are calculated on D11A. RDGC clusters are calculated with a core-point
threshold of 3000, minimum length of 2 and minimum points of 3.

Km distance B1 B2 B3
5 591 56 37
10 1683 57 46
15 2176 84 49
20 2267 92 49

Table 6.12: This table shows the amount of accepted botnet traffic for RDGC
clusters on D11A. RDGC clusters are created with a minimum length of 2,
minimum points of 3, core-point threshold of 3000 and km distances between 5
and 20. Reverse search is used to populate the database with more networks.

Reverse search is used to populate the database with more networks. The
amount of accepted botnet addresses remains quite small for D11A in B2 and
B3. This is mainly contributed to the fact that D11A have most clusters in
Norway. A reverse search to populate these clusters will therefore not con-
tribute to an increase in accepted botnet traffic for botnets in Asia and Europe.
However, populating B1 with more IP addresses will also have an increased
risk of allowing more botnet addresses. How much a reverse search affects the
risk of allowing more botnet traffic differs widely between different datasets and
whøpere an attack pattern is located. Widely distributed clusters have a large
risk of allowing more botnet traffic and elements as constraints where a cluster
can expand, should help in mitigating the effects of populating a database with
more networks.
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6.4 Real life simulation
This section will go through 3 different real life simulations which use the bot-
nets from last section to execute an attack against different datasets. Both
AFN, DGC and RDGC are used to mitigate a DDoS attack and allow as much
legitimate traffic as possible. Based on the previous section which tackles prob-
lems statement as; how much data traffic different structures can handle, the
amount of allowed traffic in the testing phase and the amount of allowed botnet
traffic with different structures. The real life experiments should be straight
forward and not give any surprise in how well the technique is able to mitigate
and deal with high amounts of traffic.

6.4.1 Real life simulation 1
The first real life simulation noted as RL1 is run from B2, located in Europe,
against D11A. A small D11A dataset is used to simulate the real traffic pattern
under the attack. The small D11A subset consist of 50 000 requests, which last
over 24 hours. DGC clusters calculated with a km distance of 10 and a core-
point threshold of 3000 are used to accept new data. This DGC cluster consist of
5800 networks which should be accepted. If no reverse search is used to populate
the database, 28800 of the 50 000 requests should be accepted. This amounts
to 57,6% of the data pattern. This sub-set of D11A have a lower acceptance
rate than the entire testing set of D11A, as with a core-point threshold of 3000
and km distance 10, 80,34% of the entire testing set is accepted.

For the simulation, 120 thousand requests are sent every second from B2
situated in Europe. Both the acceptance rate of legitimate request, bot request
and the average time in millisecond a requests takes, are monitored. The CPU
statistics and memory processing power are as well monitored on the web-server.
A bloom filter with a 0,0001 error rate is used to store the found 24-bit networks
that should be accepted. Table 6.13 shows the amount of accepted legitimate
and illegitimate traffic under the entire attack period. In total, more botnet
traffic is accepted. However, this is mainly because B2 sends a high amount of
traffic every second. When counted as an average of the entire attack period,
8.072 bot requests are allowed to access the service every second of the 120 000
possible requests.

Traffic Accepted Dropped
Legitimate traffic 28 793 21 202
Illegitimate traffic 969 317 14 313 921 586

Table 6.13: This table shows the amount of accepted legitimate and illegitimate
traffic under the RL1 simulation. The RL1 simulation consisted of B2 attacking
a web-server with normal traffic pattern from a subset of D11A.

To get a better view, we should look at the percentage of accepted and non-
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accepted data pattern. At this point, 99,99% of all botnet traffic is dropped and
57.59% of all legitimate traffic is accepted. This data is shown in Table 6.14.
The amount of accepted legitimate traffic correlates with how much data that
should be covered in total for this subset of D11A. Data mining determines that
28800 addresses from the sub-set of D11A should be accepted with a core-point
threshold of 3000 and km distance of 10. In our simulation 7 requests that
should be accepted, was not accepted.

Traffic Accepted Dropped
Legitimate traffic 57.59% 42,41%
Illegitimate traffic 0,0067% 99,993%

Table 6.14: This table shows the total amount of accepted and dropped requests
noted by percentage points of all monitored legitimate and illegitimate requests
in RL1. The RL1 simulation consisted of B3 attacking a web-server with normal
traffic pattern from a subset of D11A.

Statistics from the client server , which monitors the throughput to the web-
sever, shows that the average request time for a request was 15,63 millisecond.
Under the bloom filter section, an average request should take 5 to 6 millisec-
onds. This means that the heavy amount of attack traffic over an 24 hour
period makes the round trip time of a request to take 10 milliseconds longer.
The maximum, minimum, average and median time for a legitimate request to
be processed and accepted, can be seen in Table 6.15.

Minimum Maximum Average Median
4 ms 7,02 sec 15,64 ms 11 ms

Table 6.15: This table shows the average, maximum, minimum and median
request time that was seen for legitimate requests under the attack period from
RL1.

Although the highest measured time of a legitimate request is 7 second, this
is only a minority of the monitored request. 1 legitimate request was sent from
the client server to the web-server every second. Over the attack period, this
amount to around 119 800 requests. The time distribution for the different
monitored requests can be seen in Figure 6.9. This figure indicates the same as
seen in Table 6.15, that most legitimate request use around 8 to 15 milliseconds
to be processed. Of the 119 800 monitored requests over this time period, 99%
used less then 53 milliseconds. Only 45 requests seen under this period, used
over 100 milliseconds to be processed.

Moreover, the average NFQUEUE queue elements waiting to be processed
was 211 elements. NFQUEUE has a max queue line of 65 556 elements before
elements are dropped. If elements are dropped they will not be processed by
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Figure 6.9: This figure shows the request time for all legitimate request that the
client server issued against the web-server under RL1.

our solution and we can risk getting a high drop rate of legitimate requests
that should be accepted. NFQUEUE never dropped an element during the
24 hour simulation. However, it was reported a drop rate of 105 170 packets
because netlink was not able to send packets to userspace. This might imply
that either the netlink buffer size was too small or that NFQUEUE was not able
to handle this amount of traffic over a larger period of time. The amount of
dropped messages between NFQUEUE and user-space has nothing to do with
the mitigation techniques on our side. However, a solution that operation in
the kernel-mode would have avoided this problem all together.

The Apache server never got a constraint in the amount of necessary packets
to process and the CPU usage remained close to 0,9%. The average CPU
usage on the mitigation techniques that processed 120 000 packets every second
remained at 82%. This includes the measured CPU usage of the 4 different
threads that had the task of mitigating the DDoS attacks. The average CPU
usage in total remained at around 52,357%

Overall the DGC mitigation technique has been successful in mitigating a
DDoS attack from B2. This knowledge should already be clear by looking at the
previous sections. In overall with a B2 botnet located in Europe, DGC clusters
with core-point threshold 3000 and km distance of 10, should let in 8 botnet
addresses for D11A. Moreover, the average acceptance score of D11A should
be around 80%. Although this is not the case, the acceptance rate will mostly
increase to 80% with a higher amount of tested data pattern.
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6.4.2 Real life simulation 2
The second real life simulation is noted as RL2. The real life simulation is
run on botnet B3, situated in Asia, against a sub-dataset of D11A. Unlike the
previous real life experiment, reverse search is used to populate the database.
RDGC clusters are calculated with a minimum required points of 3, minimum
length of 2, km distance of 15 and a core-point threshold of 3000. Without a
reverse search, 6 487 unique networks are identified and accepted in the testing
phase. 354 276 more networks are identified during a reverse search. Of the
newly identified networks, 1483 networks which were seen in the training phase
were not re-identified during a reverse search. This means that a bloom filter
should accept 355 759 networks. The bloom filter use an error rate of 0,0001.

The sub-dataset D11A contains 150 000 requests over a time-spam of 8
hours. 111 886 requests should be accepted in solution which accept seen net-
works from the training phase which also exist in a cluster. However, in a
solution that are able to accept a packet as long as it belong to a cluster based
on its location, 117 188 should be accepted. Over the 8 hour experiment 100
000 request was sent from B3 every second. The amount of accepted legitimate
and illegitimate traffic can be seen in Table 6.16.

Traffic Accepted Dropped
Legitimate traffic 116 313 33 687
Illegitimate traffic 2 113 845 3 059 007 969

Table 6.16: This table shows the amount of accepted legitimate and illegitimate
traffic under the RL2 simulation. The RL2 simulation consisted of B3 attacking
a web-server with normal traffic pattern from a subset of D11A. RDGC clusters
with core-point threshold of 3000, minimum length of 2, km distance of 15 an
minimum required points of 3 was used to mitigate the attack.

Table 6.16 shows that 116 313 legitimate request was accepted under RL2.
This is around 875 requests shorter than the expected amount of 117 188.
Netlink has a reported drop rate 218 713 packets between kernelspace and
userspace. This can be a large factor to why the solution was not able to
achieve the optimal rate. The percentage score of accepted legitimate and il-
legitimate traffic can be seen in Table 6.17. Very little traffic is accepted from
B3 even though reverse search is used to populate the database. At an aver-
age 66.89 bot request are accepted every second. D11A is mainly situated in
Norway and don’t have any clusters in Asia where most of B3 traffic arrives
from. This means, even when re-populating the database, a solution is easily
able to mitigate an attack. Moreover, this solution with reverse search, makes
the optimal amount of 77,542% from D11A-subset to be accepted. This is 3
percentage points higher than a solution which can’t look up new addresses.

Based on statistic from the client server, which sends 1 legitimate request
to the web-server every second, a request used an average of 13.15 milliseconds.
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Traffic Accepted Dropped
Legitimate traffic 77,542% 22,548%
Illegitimate traffic 0,0690% 99,9309%

Table 6.17: This table shows the amount of accepted legitimate and illegitimate
traffic under the RL2 simulation. The acceptance rate is noted as the percentage
point of either all accepted botnet traffic or all accepted legitimate traffic. The
RL2 simulation consisted of B4 attacking a web-server with normal traffic pat-
tern from a subset of D11A. RDGC clusters with core-point threshold of 3000,
minimum length of 2, km distance of 15 an minimum required points of 3 was
used to mitigate the attack.

The minimum time a request made was 5 milliseconds and the maximum time a
request took was 3,01 seconds. Figure 6.10 shows this distribution of execution
time for requests under RL2. The execution time is slightly better than RL1.
Which is mainly due to the decrease of bot request every second.

Figure 6.10: This figure shows the request time for all legitimate requests that
the client server issued against the web-server under RL2.

As RL2 allowed more botnet traffic than RL1, the Apache server got a
slightly heavier load and the CPU usage remained at 5,7%. However, since the
mitigation solution dealt with 20 000 less packets each second than RL1, the
average total CPU usage remained at 49,7%. RDGC clustering on D11A, with
the use of reverse search to populate the database, manages to mitigate DDoS
attacks when the attack comes from specific areas where geographical clusters
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don’t exist.

6.4.3 Real life simulation 3
The last real life simulation RL3 is done using B1 to send 130 000 HTTP
requests every second against a sub-set of D11B. AFN is used with a threshold
of 1 to find frequent networks. A tree structure is used to contain the networks
which should be accepted. AFN with a threshold of 1 will accept all networks
which was seen in the training phase. This amounts to 18093 networks. Under
the simulation, 100 000 request is sent from D11B sub-set over a timespan of
5 hours. Data mining shows with a AFN threshold of 1, 93811 of the 100 000
legitimate requests should be accepted. This amount to 93,81% and are 12
percentage points higher than for the entire D11B set, where the acceptance
rate would be 81%. Table 6.18, shows the amount of accepted legitimate and
illegitimate traffic over this simulation period.

Traffic Accepted Dropped
Legitimate traffic 92.8348% 7,1652%
Illegitimate traffic 0,104% 99,896%

Table 6.18: This table shows the amount of accepted and dropped legitimate
requests under RL3. The amount is shown as a percentage points of either all
legitimate or illegitimate traffic.

Of the 130 000 requests sent from B1 every second, 134 packets are on
average accepted. This B1 acceptance rate causes both higher wait periods for
legitimate requests, and higher CPU usage in total. Instead of AFN accepting
93811 legitimate requests, AFN accepted 92832 legitimate requests. This is
around 1000 fewer requests than the expected amount. This decrease can be
contributed to several reasons; Firstly, Netlink reported a drop rate of 43 million
packets between the kernelspace and userspace, and this can have caused some
packets to not be processed. Secondly, longer waiting periods can have caused
some legitimate requests to be dropped. The reported drop rate by Netlink
has nothing to do with the actually mitigation technique. Instead, the problem
stems from the fact that the solution is created in user-space and not kernel
space, which would have avoided the issue of transporting packets to userspace.
Table 6.19 and Table 6.20 shows different request times and CPU usages seen
under RL3. The average time for a request have increased to 123 ms. Moreover,
the Apache usage have increased to 12% from 5,7% in RL2.

The higher bot traffic of 130 000 every second caused longer waiting peri-
ods in NFQUEUE. At an average, the queue had 2306 elements waiting to be
processed. The queue never got overfilled and dropped 0 elements. Except for
a slight inconvenience with Netlink, AFN seems to be successful in mitigating
attacks from B1. The three simulations are mostly successful in mitigating large
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Minimum Maximum Average Median
4 ms 5,2 sec 123 ms 33 ms

Table 6.19: This table shows the average, maximum, minimum and median
request time that was seen for legitimate requests under the attack period from
RL3.

amounts of data traffic without overflowing the CPU. The highest problem with
AFN, DBGC and RDGC relays mostly to the acceptance rate of illegitimate
traffic. This acceptance rate will vary greatly between different botnets. How-
ever, we should be able to assume that as long as an attack pattern differentiates
from a legitimate pattern, the attack pattern is possible to mitigate.

Total CPU usage Apache CPU usage Tree CPU usage
51,3% 12,237% 75%

Table 6.20: This table shows the average of the total CPU usage, the apache
CPU usage and the tree/solution CPU usage. The CPU usage is calculated
under the attack period of RL3.
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Chapter 7

Discussion

This chapter will discuss the presented algorithms and results. Emphasis will
be put on how credible the results are and what strengths and weaknesses the
different algorithms have. Moreover, both future works and changes that should
be applied to ensure an optimal solution, are discussed.

7.1 Algorithms
This thesis have proposed 3 algorithms. The first algorithm, AFN, builds on the
idea that frequent networks will repeat to a high degree. Results from the data
mining chapter acknowledge that higher threshold applied in AFN decreases
the distance between covered data in the training and testing phase. AFN
have the ability, to cover the least amount of networks for the most amount
of covered data. This is because, AFN, will always accept networks which
have the highest applied previously seen traffic. This makes AFN an effective
algorithm to mitigate large DDoS attacks, since the accepted data pattern can
be narrowed down to a high degree. From the result chapter, AFN are able to
mitigate DDoS attacks even though the botnet traffic is directly in the area of
where normal traffic flow is located. AFN strongest disability, is that it requires
a network to be seen enough times to be considered legitimate. Moreover, AFN
don’t have the ability to differentiate between legitimate and abnormal traffic
from networks which has small amounts of seen traffic. This can be seen in the
data mining chapter, where lower thresholds applied in AFN, gives an increase
in the amount of differences between covered data in the training phase and
testing phase. Moreover, AFN, might need to set a threshold low to accept
enough legitimate traffic, and this can cause abnormalities in the dataset to be
accepted.

The second and third algorithm builds on traffic reoccurring in geographical
areas of previously seen traffic. Geographical clustering within anomaly detec-
tion techniques have not been previously proposed. However, this thesis argues
that geographical clustering gives great benefits which have not been seen be-

105



fore. Geographical clustering have the ability to determine legitimate networks
which have little seen traffic and can easier differentiate between anomalies in
the traffic pattern. Although, this is a strength, this is also a weakness within ge-
ographical clustering. The algorithm might accept too many networks and this
can cause issues for services with very widespread patterns. However, compar-
ing the amount of accepted data in the training and testing phase, density-based
clustering are able to cover less data in the training set, while covering larger
amount of data in the testing set. This shows a trend, that geographical clus-
tering are easier able to identify a unique pattern which have a higher likelihood
of occurring.

Moreover, geographical clustering will be more resistant against DDoS traf-
fic, as long as the attack pattern is not directly located within a cluster. Geo-
graphical clustering have the ability to determine new networks within a clus-
ter. This gives great opportunities for services, when there is a small amount of
known data. This approach of populating the database, have some weaknesses
by not determining areas which are more likely to occur. However, the approach
shows promising results which can be used to create better algorithms. More-
over, the second proposed clustering algorithm, RDGC, shows that by simply
adding some constraints, the algorithm are still able to achieve the same amount
of new seen networks in the testing phase as DGC, while still keeping a lower
amount of accepted networks in total.

7.2 Attack vector
This thesis has primarily been concerned with HTTP flooding attacks. The
real life experiment with BoNeSi have only been tested against HTTP flooding.
However, this doesn’t mean that the proposed techniques won’t work against
different attack vectors. The mitigation technique will have no effect on DDoS
attacks which targets the network layer and overflow the network link before
the mitigation technique. However, the system will be able to mitigate SYN
flooding or other attack vectors, which focus on depleting a limited server re-
source. The success of mitigating these attacks depends only on two factors;
The normal traffic pattern needs to follow the proposed hypothesis from the
data mining chapter, and the attack pattern needs to be distinct from normal
traffic flow. Therefore, for the AFN(Apriori-based frequent networks) algorithm
to successfully mitigate other attack vectors, the normal traffic flow, needs to
repeat to a high degree. While for density-based clustering to succeed in mit-
igating different attack vectors, the normal traffic flow needs to repeat in the
same geographical area as before. The mitigation techniques are therefore only
dependent on these factors to successfully mitigate new and different attacks,
which focus on depleting server resources.
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7.3 Datasets
The datasets D10 and D11 are taken from Oslo and Akershus University College
of Applied Sciences(HiOA). D10 shows sign of being a distributed dataset and
contains a high amount of noise, while D11 is more localized and contains less
noise. The datasets are collected from web-servers, and the sets show signs
of having a repeated data pattern. This follows remarks from the background
chapter, where a data pattern, within a service, is often very consistent. Because
of this, our two hypothesis mentioned in chapter 4.2 and 4.3, has been verified,
and we have managed to classify new data. More research should be concluded
to determine if different services, with different datasets, also have a consistent
data pattern, as only datasets with consistent data patterns are able to follow
the hypothesis and perform well when categorizing new data.

Moreover, although AFN only needs a data pattern to emerge within the
same network, density-based geographical clustering needs a data pattern to
emerge in geographical regions. Geographical clustering works well for datasets
with regions of traffic hot spots, and worse for datasets with highly distributed
traffic. However, as remarked by Chapelle[21], on unsupervised learning, it is
assumed that a data pattern is identically distributed from a distribution point
x. Meaning that a data pattern should follow an unknown structure. It should
be assumed that finding this unknown structure based on geographical regions
is more legitimate than finding the structure based on different attributes.

7.4 Data structure
The networks found from the different algorithms are stored in two different
data structures; A Bloom filter and a binary tree structure. Both data struc-
tures manage to quickly decide the fate of any new packet. However, the binary
tree structure is slightly faster. This is primarily because a Bloom filter with
low error rate has a high time complexity. The time complexity of a Bloom
filter is not related to the amounts of packets in the filter, but the number of
hash functions. The trade-off between more available memory and a higher
time complexity will differ between different datasets and anomaly detection
approaches. Anomaly detection methods, where the time issue isn’t as severe
as for DDoS attacks, might do well with a structure that saves memory. How-
ever, if a detection mechanism needs to handle a high amount of packets every
second, the trade-off with more memory, against higher error rate and higher
time complexity, will often not work.

7.5 Mitigation point
Mitigating techniques can be applied at three different points in the internet
infrastructure; source-end, core-end and victim-end[14]. Source-end means close
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to the source of the attacker. Core-end is at high-performance backbone routers
on the internet. Victim-end is close to the targeted server. These mitigation
points have different weaknesses and strengths. Our own mitigation technique is
applied at the victim-end. Filtering mechanisms applied at the victim-end can
easier discriminate between legitimate and illegitimate traffic. However, victim-
end mechanisms will often suffer from having a saturated bandwidth link.

Source-end filtering would technically be the best point to filter malicious
traffic. Any source-end mechanism will only experience small amount of the
malicious traffic. The source-end defense also needs less processing power to
process incoming packets. However, filtering mechanisms applied at the source-
end, have a harder time of filtering suspicious traffic. Moreover, source-end
mechanisms are not able to detect its effect on the data traffic and can suffer
from a high number of false positives and false negatives. An example of a
filtering mechanism applied close to the source end is ingress filtering. Due
to large amounts of traffic, high-performance backbone routers, are unlikely to
use a part of their own processing power to filter illegitimate traffic. Backbone
routers also have a harder time of filtering out illegitimate traffic[14].

Although victim-end mechanisms can suffer from a saturated bandwidth, the
mitigation approach doesn’t need to be situated directly at the targeted victim.
However, it still needs to be rather close to the victim source. Our mitigation
approach can therefore be placed at the gateway or at edge routers of the ISPs.
The edge routers can then be configured to filter traffic independently for each
source address that provides a service. This can minimize the risk of the network
link to be over-saturated, as links further away from the source will have more
available bandwidth.

7.6 Problem statement
Two different problem statements were stated in the introduction chapter. The
first problem statement builds on the foundation that hidden data structures
within datasets can be found: How can we use data mining to find pattern cor-
relations in data history to build efficient filtering rules that are able to mitigate
DDoS attacks?. This statement has been investigated in the data mining chap-
ter. Results show that both density-based geographical clustering and AFN,
manages to find hidden data structures which can determine if new data is le-
gitimate or illegitimate. Both approaches use unlabelled learning techniques to
determine hidden structures. Density-based clustering have the ability to sort
out anomalies based on geographical regions and the clustering algorithms are
able to cover more data in the testing set with less covered data in the training
set. Moreover, density-based geographical clustering also have the ability to
accept relevant networks, although some networks don’t contain a high amount
of traffic. AFN can sort out anomalies in the dataset by relaying on relevant
networks repeating to a high enough degree. AFN are able to cover considerable
less network while still remaining a high acceptance rate of legitimate traffic in
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the testing set. In the end, both these algorithms show that they are heavily
able to find hidden patterns which can be used to determine new traffic.

The second problem statement states; To which extent is our solution re-
silient to DDoS attacks of varying magnitude?. In our simulation, the largest
simulated attack rate is 130 000 requests per second. This resulted in a CPU
usage of around 40-60%, meaning both a Bloom filter and tree structure should
be able to handle 260 000 requests per second with only 4 CPU cores. Sucuri,
which is a company within website security, reports that HTTP flooding at-
tacks generates, on average, 7 282 HTTP requests per second with a peak of
49,795 requests per second. Moreover, attacker botnets used on average 11 634
different IP addresses, where the largest botnet used 89 158 different IP ad-
dresses[22]. Our mitigation techniques, which has a primary focus on removing
application layer flooding attacks, manages easily to deal with this amount of
traffic. Moreover, for attacks which targets the networking layer, the attack
rate is measured in Mbps. The mitigation of these attacks relay on the traffic
reaching the mitigation approach. However, most reflection based attacks can
be mitigated without using traffic profiling, as these attacks contain signatures
which can be used to mitigate the attacks. These attacks themselves don’t care
about a mitigation approach as they focus on exhausting the network bandwidth
before any mitigation approach is reached. Moreover, the efficiency of our ap-
proach can be improved by writing the mitigation code as a part of a kernel
module in order to be able to handle a higher packet amount. The proposed
solution is therefore highly adaptable to deal with high amounts of packets per
second. Additionally, since the mitigation technique only focus on one attribute,
the round trip time for legitimate users can remain fairly low, even with high
packet rates per second.

7.7 Future work
This section will address possible future work, which can make the approach
more robust to application layer attacks. Both better defined populating mech-
anisms and the use of more attributes are discussed.

7.7.1 Populating density-based clustering
Density-based geographical clustering have the extra advantage of being able to
find new relevant networks, if a system has a limited amount of normal traffic.
Populating the database with more networks can be an easy way to ensure that
more legitimate traffic are accepted. However, the database should be populate
to a minimum degree. This is to optimize the acceptance rate of legitimate
traffic without accepting heavy amounts of traffic. Accepting more traffic will
ultimately lead to more illegitimate traffic also being accepted. To keep this
trade-off favorable, clusters should preferable only be populated in the most
relevant regions with new networks.
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RDGC clustering was an attempt of accomplishing this task. Heavier con-
straints on where clusters can expand limit the clusters creation and therefore
the amount of accepted networks, when populating the database. Table 7.1
shows the amount of accepted networks when RDGC and DGC clustering are
used on D11A with a core-point threshold of 3000. DRGC clusters are created
with a minimum length of 2 and minimum points of 3. The clusters are then
populated with more networks.

Km distance DGC RDGC
5 609 339 107 788
10 684 814 279 804
15 928 774 360 763
20 943 322 376 277

Table 7.1: Shows the amount of accepted networks for GC and RGC clustering
when populating the database with more networks.

This is a simplistic process of deciding which geographical areas are deemed
more relevant. However, with the use of heavier constraints, legitimate networks,
which otherwise fit with the hypothesis, are still dropped. Moreover, RDGC
clustering are not able to prevent widespread clusters from not getting a high
degree of new networks. Therefore, even though populating a solution with
more networks might be an efficient way to find new networks, this should be
done carefully.

It is possible to use a different approach to decide what location points are
allowed to be populated with more networks. It can be assumed that heavier
density-areas within clusters are allowed to look for more relevant networks.
The density-areas can be assumed centered around a common core-point x. As
seen in Figure 7.1, if a cluster exists of Y points, with the core-point marked as a
black dot, a high density area around core-point x can be seen as more legitimate
than cluster points, which lay further away from the core-point. Here green dots
are marked as laying closer to other green dots near them. While red dots are
marked as laying further away from other connected red dots.

Although an algorithm might include all points into one cluster, only the
highest density area around the common core-point is included in a possible
reverse search. This can ensure that clusters only include the most relevant new
networks, which has not been seen in the training phase.
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Figure 7.1: The first picture, shows a cluster of X points, with the core-point
remarked as black dot. The second picture shows the distance between the dif-
ferent point towards the points it is density connected to. Green dots have a
shorter distance with their density connected green dots. Red dots are further
away from their density connected red dots.

7.7.2 Different attributes
Within density-based geographical clustering it is possible to easier find relevant
attributes within each cluster. We should be able to assume that these clusters
share other unique attributes. These attributes can include the TTL value and
browser behaviour. A web-server which has several languages could assume
that clusters located in Germany might use the web-site in German, while a
cluster located in England might use the web-site in English. Moreover, for a
college located in Norway, clusters located here, might assume these users work
or study at the college and therefore have a different browser behaviour than
clusters in other countries. Using geographical clustering to achieve this goal
gives an easier way of grouping together these data. Furthermore, this makes it
easier to sort out anomalies in the set and makes it substantially harder for an
attacker to identify a unique pattern to gain access to a service.

7.7.3 Employing time
The discussed algorithms, when employed in a real-life DDoS scenario, use only
the IP address to identify if an address fits within a cluster. The IP address
is therefore the only parameter which decides if a packet should be accepted.
Even though this in most cases works well in practical terms, the algorithms
will struggle to cover a significant pattern without compromising the server,
when dealing with servers which have a high traffic distribution. Moreover, if
reverse search is used to increase the amount of accepted traffic, it will cause
significant issues when dealing with widespread clusters. Therefore, instead of
only relaying on one attribute, clusters can be configured with regards to several
attributes. One of these attributes could be to calculate the time for each cluster
when traffic is most seen, before creating a solution which only accepts traffic
from a cluster, when traffic have a higher probability of occurring.

Employing time builds on the hypothesis that each server has its own sig-
nificant pattern. As seen in figure 7.2, when all requests for the training phase
of D10C is mapped for the time the requests appeared. This shows a pattern
where most requests appear from 10:00 to 20:00 occurs.
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Moreover, considering only clusters in Norway. Traffic for Norwegian clusters
contains unlike the general consensus of the entire traffic pattern. a pattern that
is largely divided into significant traffic during the day, while little to none traffic
during the night. This means that traffic from these clusters, or for Norwegian
cluster as a whole, can be denied during the night, while accepted during the day.
Moreover, if these clusters contain enough traffic to determine a time pattern
from each cluster, an algorithm can independently compute when traffic should
be accepted for a specific cluster.

Figure 7.2: Shows the total amount of incoming traffic, for D10C, during the
training period mapped to the specific time the requests appeared. The number
of requests every 10 minute during the training period, is individual mapped on
the graph. The D10C web server is located in Norway and UTC+01:00 is used
to map the requests to their specific time.
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Chapter 8

Conclusion

Three different algorithms have been proposed in this thesis to mitigate DDoS
attacks. The algorithms are mainly applied to mitigate HTTP flood attacks,
but can also be used to mitigate other attacks at the application layer. The
first algorithm is build on finding frequent networks based on previously seen
data, while the second and the third algorithm are build on creating clusters in
geographical areas.

AFN has the ability to identify networks which have a high amount of seen
traffic. This will allow AFN to accept few networks for a high amount of ac-
cepted traffic. In one way, AFN will more easily mitigate a DDoS attack than
geographical clustering, since it will allow fewer networks. However, if we still
want to accept relevant users, even if they don’t belong to a frequent network,
geographical density-based clustering is a better suited alternative. Geographi-
cal density-based clustering have not previously been proposed within anomaly
intrusion detection and have provided promising results. Previous, clustering
algorithms within anomaly intrusion detection focuses on clustering based on
known attributes, and not based on geographical regions. These attributes in-
clude features from the TCP protocol and IP protocol. The attributes can differ
in everything from source address and destination address to packet size, TTL
and flags[66][32][86].

This thesis argues, that clustering techniques based on these common at-
tributes, can give an incorrect view of the hidden data structure. One of the
most central and unique features to base clustering on, is the source IP address.
Anomaly based mitigation techniques often use this feature in clustering[32][59].
However, these clustering methods build on the hypothesis that if an IP address
appears in address space X, this address is close to IP address X + 1. In other
terms, this clustering technique takes advantage of the IP neighborhood rela-
tionship between networks to cluster them together. This is not necessarily
ideal, as networks which are close in the address space, might not be close ge-
ographically. Moreover, this assumption might lead to networks which are far
away in the address space being assumed to be anomalies, even though they are
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close together geographically.

Geographical density-based clustering overcomes this shortcoming and allow
IP addresses to be clustered together if they lay close geographically. This gives
several advantages that has not been seen with normal IP address clustering;
anomalies can be more correctly determined, new networks and IP addresses
can be found based on defined clusters, and clusters can correctly identify data
which have a higher likelihood of occurring in the testing phase. Moreover, based
on geographical clusters, different attributes can be related to each independent
cluster and can give a more correct view of the hidden data structure. This will
make it harder for an attacker to adapt the attack pattern to the normal traffic
flow.

This thesis has proven that both machine learning techniques and data min-
ing are efficient mechanisms to counter DDoS attacks. Results show that both
AFN and density-based clustering are able to mitigate upwards of 99% of simu-
late botnet traffic. More research should be executed to ensure optimal results
within density-based geographical clustering. However, geographical density-
based clustering has given a new and exciting way to cluster data, and has
given the possibility of overcoming problems with sampling of normal traffic
patterns, and the ability to counter anomalies in the datasets.
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Chapter 9

Appendix

9.1 Algorithms

9.1.1 AFN

1 #!/usr/bin/python3
2 import sys
3 def alg1(T, C,frequency,level):
4 frequency[’1’] = 0
5 frequency[’0’] = 0
6 k = 1
7 while len(frequency) > 0 and k <= 32:
8 #Goes through the list and updates the frequency for every bit-string.
9 with open(T) as sOutput:

10 for line in sOutput:
11 bit = line[0:k]
12 if bit in frequency:
13 frequency[bit] = frequency[bit] + 1
14 #Deletes keys that don’t have over the accepted frequency
15 for key in list(frequency):
16 if frequency[key] <= C:
17 del frequency[key]
18 if k == level:
19 for key in list(frequency):
20 with open("frequentBits_{}".format(C), "a") as f:
21 tekst = "{} \t {}\n".format(key,frequency[key])
22 f.write(tekst)
23 exit()
24 #Creates new keys for k+1
25 for key in list(frequency):
26 del frequency[key]
27 frequency[key+’0’] = 0
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28 frequency[key+’1’] = 0
29 k = k + 1
30 threshold = int(sys.argv[1])
31 lvl = int(sys.argv[2])
32 binary_file=(sys.argv[3])
33 alg1(binary_file, threshold,{}, lvl)

9.1.2 DGC

1 #!/bin/python
2 import sys
3 import os.path
4 from geopy import distance
5 from geopy import Point
6 import re
7 def extend_one_cluster(core_point, dataset, threshold,frequent_threshold,core_points):
8 cluster = [core_point]
9 for cluster_value in cluster:

10 for new_point in reversed(dataset):
11 if find_distance(cluster_value, new_point) <= threshold:
12 cluster.append(new_point)
13 dataset.remove(new_point)
14 if int(new_point[2]) >= frequent_threshold:
15 try:
16 core_points.remove(new_point)
17 except ValueError:
18 pass
19 return cluster
20 def write_cluster(cluster, threshold,km):
21 with open("cluster_{}_mc_{}_alg2_D11A.km".format(threshold,km), "a") as f:
22 for point in cluster:
23 f.write("{} {} {}\n".format(point[0], point[1], point[2]))
24 f.write("\n")
25 def extendCluster(dataset, core_points, threshold,frequent_threshold):
26 clusters = []
27 for core_point in core_points:
28 dataset.remove(core_point)
29 clust = extend_one_cluster(core_point, dataset, threshold, frequent_threshold,core_points)
30 write_cluster(clust, threshold,frequent_threshold)
31 clusters.append(clust)
32 def find_distance(pointX, pointY):
33 try:
34 p1 = Point("{} {}".format(pointX[0], pointX[1]))
35 p2 = Point("{} {}".format(pointY[0], pointY[1]))
36 return distance.distance(p1,p2).kilometers
37 except ValueError:
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38 return 10000
39 def get_corePoints(dataset, threshold):
40 core_points = []
41 for object in reversed(dataset):
42 if len(object) >= 3 and int(object[2]) > threshold:
43 core_points.append(object)
44 return core_points
45 def get_datapoints(datafile):
46 dataset = []
47 with open(datafile) as sOutput:
48 for line in sOutput:
49 ansi_escape = re.compile(r’\x1b[^m]*m’)
50 line_edited = ansi_escape.sub(’’, line)
51 x_regex="[0-9\.\-]{1,50}"
52 val = re.findall(x_regex,line_edited)
53 dataset.append(val)
54 return dataset
55 km=int(sys.argv[1])
56 threshold=int(sys.argv[2])
57 datapoints=(sys.argv[3])
58 dataset = get_datapoints(datapoints)
59 core_points = get_corePoints(dataset, threshold)
60 extendCluster(dataset, core_points,km,threshold)

9.1.3 RDGC

1 #!/bin/python
2 import sys
3 import os.path
4 from geopy import distance
5 from geopy import Point
6 import re
7 def adbc(clusters, dataset,distance,minpts,thoints,file,minLength):
8 all_cores_for_each_point = []
9 all_points = []

10 for dataset_point in reversed(dataset):
11 # print(dataset_point)
12 num_points = 0
13 for checked_point in dataset:
14 if find_distance(dataset_point, checked_point) <= distance:
15 num_points = num_points + 1
16 #every point will match with itself, therefore (minpts+1)
17 if num_points >= (minpts+1): # we now this point have enough points to join a cluster
18 core_points = {}
19 for clust_int in range(0,len(clusters)):
20 new_dist = find_distance(clusters[clust_int][0], dataset_point)
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21 hash = str(clusters[clust_int][0])
22 core_points[hash] = new_dist
23 lists = sorted(core_points.items(), key=lambda x:x[1])
24 all_cores_for_each_point.append(lists)
25 all_points.append(dataset_point)
26 # print("point is: {}".format(all_points[0]))
27 # print("first core are: {}".format(all_cores_for_each_point[0][0][1]))
28 break
29 #All possible cores is computed for all points that satisfy the minpts constraint.
30 #Start computing the core the dataset belong to based on density estimation.
31 #check if the point can belong to closest core, next closest core and so forth.
32 iterations = 0
33 ant_cores = len(clusters)
34 change = False
35 while iterations < ant_cores:
36 change = False
37 for point_int in reversed(range(0, len(all_points))): #All points.
38 point = all_points[point_int]
39 core = all_cores_for_each_point[point_int][iterations]
40 #Find the cluster this core is related to!
41 for cluster in clusters:
42 if str(cluster[0]) == core[0]: #This is the correct cluster for this core point.
43 for cluster_point in cluster: #Check if point is density based to this cluster
44 if find_distance(point, cluster_point) <= distance: #point is dens based.
45 cluster.append(point)
46 del all_points[point_int]
47 del all_cores_for_each_point[point_int]
48 change = True
49 break
50 break
51 if change == False:
52 iterations = iterations + 1
53 recompute_unexpandable_clusters(clusters,distance,minLength)
54 with open(file, ’a’) as f:
55 for cluster in clusters:
56 for point in cluster:
57 f.write("{} {} {}\n".format(point[0], point[1], point[2]))
58 f.write("\n")
59 def recompute_unexpandable_clusters(clusters,distance,minLength):
60 for cluster_check in reversed(range(0, len(clusters))):
61 #This cluster is not long enough
62 if len(clusters[cluster_check]) <= minLength: #The cluster clusters[cluster_int] only exist of 1 point, the core point, check computation to other cores.
63 # core_points = {}
64 all_cores_for_each_point = []
65 all_points = []
66 for remove_point in clusters[cluster_check]: #Goes through all points that should be removed.
67 core_points = {}
68 for clust_int in range(0,len(clusters)): #old clusters
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69 if clusters[cluster_check] is not clusters[clust_int]: #if this cluster is not the cluster we are checking
70 new_dist = find_distance(clusters[clust_int][0], remove_point)
71 hash = str(clusters[clust_int][0])
72 core_points[hash] = new_dist
73 lists = sorted(core_points.items(), key=lambda x:x[1])
74 all_cores_for_each_point.append(lists)
75 all_points.append(remove_point)
76 #Start computing the core the dataset belong to based on density estimation.
77 #check if the point can belong to closest core, next closest core and so forth.
78 iterations = 0
79 ant_cores = len(clusters)
80 change = False
81 while iterations < ant_cores-1: #Need to not count the 1 core we want to remove.
82 change = False
83 for point_int in reversed(range(0, len(all_points))): #All points that should be removed.
84 point = all_points[point_int]
85 core = all_cores_for_each_point[point_int][iterations]
86 #Find the cluster this core is related to!
87 for cluster in clusters:
88 if str(cluster[0]) == core[0]: #correct core!
89 for cluster_point in cluster:
90 if find_distance(point, cluster_point) <= distance:
91 cluster.append(point)
92 del all_points[point_int]
93 del all_cores_for_each_point[point_int]
94 change = True
95 break
96 break
97 if change == False:
98 iterations = iterations + 1
99 del clusters[cluster_check] #The single cluster point is removed in the end, if it is close to an other core, it is already added to that core.

100 def get_corePoints(dataset,core_point_threshold):
101 core_points = []
102 for object in reversed(dataset):
103 if len(object) >= 3 and int(object[2]) > core_point_threshold:
104 core_points.append([object])
105 dataset.remove(object)
106 return core_points
107 def get_datapoints(datafile):
108 dataset = []
109 with open(datafile) as sOutput:
110 for line in sOutput:
111 ansi_escape = re.compile(r’\x1b[^m]*m’)
112 line_edited = ansi_escape.sub(’’, line)
113 x_regex="[0-9\.\-]{1,50}"
114 val = re.findall(x_regex,line_edited)
115 dataset.append(val)
116 return dataset
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117 def find_distance(pointX, pointY):
118 try:
119 p1 = Point("{} {}".format(pointX[0], pointX[1]))
120 p2 = Point("{} {}".format(pointY[0], pointY[1]))
121 return distance.distance(p1,p2).kilometers
122 except ValueError:
123 return 10000
124 minpts = int(sys.argv[4])
125 leng = int(sys.argv[3])
126 threshold=int(sys.argv[2])
127 dist = int(sys.argv[1])
128 file = "cluster_{}_mc_{}_min{}_len{}_alg3_D11A.km".format(dist, threshold,minpts,leng)
129 dataset = get_datapoints("frequent_dataset_11A_training_1.1mil.log")
130 core_points = get_corePoints(dataset, threshold)
131 adbc(core_points, dataset, dist,minpts,thoints,file,leng)

9.2 Mitigation approach

9.2.1 Bloom filter

1 #!/usr/bin/python3
2 import sys
3 from multiprocessing import Process, Queue, Pool
4 from netfilterqueue import NetfilterQueue
5 import socket
6 import _thread
7 import threading
8 import time
9 import queue

10 import struct
11 from collections import deque
12 from bitstring import BitArray
13 from pybloom import ScalableBloomFilter
14 from pybloom import BloomFilter
15 class Bloom:
16 def __init__(self, dataset, error, num):
17 self.f = BloomFilter(capacity=num, error_rate=error)
18 with open(dataset) as yOutput:
19 for line_binary in yOutput:
20 if len(line_binary) > 1:
21 self.f.add(line_binary.rstrip())
22 print("Bloom done")
23 def check(self, ip):
24 return ip in self.f
25 def initate_nfqueue(nfqueue):
26 s = socket.fromfd(nfqueue.get_fd(), socket.AF_UNIX, socket.SOCK_STREAM)
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27 try:
28 nfqueue.run_socket(s)
29 except KeyboardInterrupt:
30 print("Socket failed")
31 self.s.close()
32 def packet_queue(pkt):
33 payload = pkt.get_payload()
34 ip = "{}{}{}".format((bin(payload[12])[2:]).zfill(8),(bin(payload[13])[2:]).zfill(8),(bin(payload[14])[2:]).zfill(8))
35

36 if bloom.check(ip) == True:
37 pkt.accept()
38 else:
39 pkt.drop()
40 if __name__ == ’__main__’:
41 bloom = Bloom(sys.argv[1], 0.0001, sys.argv[2]) # The bloom containing the entire data structure.
42

43 nfqueue = NetfilterQueue()
44 nfqueue.bind(1, packet_queue, max_len=65000, range=20)
45

46 workers=[]
47 for i in range(4):
48 w = Process(target=initate_nfqueue, args=(nfqueue,))
49 workers.append(w)
50 w.start()
51 for w in workers:
52 w.join()
53 nfqueue.unbind()

9.2.2 Binary tree structure

1 #!/usr/bin/python3
2 from multiprocessing import Process, Queue, Pool
3 from netfilterqueue import NetfilterQueue
4 import socket
5 from scapy.all import *
6 from scapy.layers import inet
7 import ipaddress
8 import _thread
9 import threading

10 import time
11 import queue
12 import struct
13 from collections import deque
14 from bitstring import BitArray
15

16 class Node:
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17 """ A node is a value in the tree and contains a reference to the next left and right node """
18 def __init__(self, value):
19 self.left = None # left means 0
20 self.right = None # right means 1
21 class Tree:
22 """ The tree containing the data structure."""
23 def __init__(self):
24 self.root = Node(0)
25 self.mode = True
26 self.sum = 0
27 def buildTree(self,dataset):
28 with open(dataset) as sOutput:
29 for line in sOutput: # root - 0 - 0
30 count = 0
31 n = self.root
32 for i in line:
33 prefix=line[0:(count+1)]
34 if prefix is not "":
35 if i is ’0’:
36 if n.left is None:
37 n.left = Node(prefix)
38 n = n.left
39 elif i is ’1’:
40 if n.right is None:
41 n.right = Node(prefix)
42 n = n.right
43 count = count + 1
44 print("Tree finished")
45 def incr(self, ip):
46 str = ""
47 count=0
48 lth = 24 - len( ip )
49 n = self.root
50 try:
51 #Leading zeros is not acknowledged in the 32 bit binary number. A seperate for loop
52 #Will acknowledge this and go through the leading zeroes. root - 1 - 2 - 3 - 4
53 for i in range(0,lth):
54 n = n.left
55 count=count+1
56 str = str + "0"
57 #Goes through the rest of the IP address(32 Bit).
58 #Needs to be changed for lesser bits(24-31 bit) 1,2
59 for i in ip:
60 if i is ’0’:
61 n = n.left
62 str = str + "0"
63 else:
64 n = n.right
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65 str = str + "1"
66 count=count+1
67 except:
68 return False
69 if n is not None:
70 return True
71 else:
72 return False
73 def initate_nfqueue(nfqueue):
74 s = socket.fromfd(nfqueue.get_fd(), socket.AF_UNIX, socket.SOCK_STREAM)
75 try:
76 nfqueue.run_socket(s)
77 except KeyboardInterrupt:
78 print("Socket failed")
79 self.s.close()
80 def packet_queue(pkt):
81 payload = pkt.get_payload()
82 ip = "{}{}{}".format(bin(payload[12])[2:],(bin(payload[13])[2:]).zfill(8),(bin(payload[14])[2:]).zfill(8))
83 if tree.incr(ip) == True:
84 pkt.accept()
85 else:
86 pkt.drop()
87 if __name__ == ’__main__’:
88 tree = Tree() # The tree containing the entire data structure.
89 tree.buildTree(sys.argv[1]) # file with 24 bit networks
90

91 nfqueue = NetfilterQueue()
92 nfqueue.bind(1, packet_queue, max_len=65000, range=20)
93

94 workers=[]
95 for i in range(4):
96 w = Process(target=initate_nfqueue, args=(nfqueue,))
97 workers.append(w)
98 w.start()
99 for w in workers:

100 w.join()
101 nfqueue.unbind()
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