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Abstract

This thesis presents an in-depth contrastive error analysis of a set of semantic
dependency parsing systems. Based on the empirical results of our analysis we
found semantic frame classification to be an interesting case study. As part of this
thesis we have made a semantic frame classifier that outperforms previous results.
The semantic frame classifier is the result of rigorous experimentation with four
set of features: (1) lexical, (2) morphological, (3) syntactic, and (4) semantic. We
show that our results outperform previous results. We also show that our classifier
can be used to extend and improve the frame semantic classification accuracy of
two existing state-of-the-art semantic dependency parsing systems.





Acknowledgements

This thesis is submitted for the degree of Master of Science at the University of
Oslo. My supervisors have been Stephan Oepen and Lilja Øvrelid. I am thankful
for their insights, helpful advice and patience.

I want to thank my good friend, fellow student, and co-worker Petter Hohle
for his encouragement. I thank my girlfriend Marit for everything.





Contents

Contents i

List of Tables v

List of Figures vii

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 5
2.1 Dependency Grammar . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Defining Dependencies . . . . . . . . . . . . . . . . . . . 7
2.1.2 Criteria for Dependencies . . . . . . . . . . . . . . . . . 8

2.2 Dependency Parsing . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Grammar-Driven Approaches . . . . . . . . . . . . . . . 11
2.2.2 Data-Driven Approaches . . . . . . . . . . . . . . . . . . 12

2.3 From Syntactic to Semantic Parsing . . . . . . . . . . . . . . . . 15
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Semantic Dependency Parsing with Frames 19
3.1 Target Representations . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Semantic frames . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Quantitative Analysis of Data Sets . . . . . . . . . . . . . 25
3.3 Submissions and Teams . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Peking . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Riga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Turku . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.4 Lisbon . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

i



Contents

4 In-depth Contrastive Error Analysis 33
4.1 Overall Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Type of Errors . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Measuring parsing accuracy . . . . . . . . . . . . . . . . 37

4.2 Length factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.1 Sentence length . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Dependency length . . . . . . . . . . . . . . . . . . . . . 41

4.3 Graph factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Singletons . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Linguistic factors . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.1 Dependency types . . . . . . . . . . . . . . . . . . . . . 47

4.5 Semantic Frames . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Semantic Frame Classification 57
5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Feature Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 Lexical and Morphological Features . . . . . . . . . . . . 63
5.2.2 Syntactic Features . . . . . . . . . . . . . . . . . . . . . 63
5.2.3 Semantic . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Classification Algorithms . . . . . . . . . . . . . . . . . . . . . . 64
5.3.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 Support Vector Machines . . . . . . . . . . . . . . . . . . 66
5.3.3 Logistic Regression . . . . . . . . . . . . . . . . . . . . . 67
5.3.4 K-nearest neighbors . . . . . . . . . . . . . . . . . . . . 67

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Experiments 69
6.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.1 Lexical Features . . . . . . . . . . . . . . . . . . . . . . 71
6.2.2 Morphological Features . . . . . . . . . . . . . . . . . . 75
6.2.3 Syntactic Features . . . . . . . . . . . . . . . . . . . . . 79
6.2.4 Semantic Features . . . . . . . . . . . . . . . . . . . . . 80

6.3 Final Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.1 Feature sets . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.2 Running on Test Set . . . . . . . . . . . . . . . . . . . . 83
6.3.3 Extending the Lisbon and Peking Parsing Systems . . . . 83
6.3.4 Comparative Perspective . . . . . . . . . . . . . . . . . . 84

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

ii



Contents

7 Conclusion 87
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

References 89

iii





List of Tables

3.1 High-level statistics on the SemEval-2015 data sets . . . . . . . . 25
3.2 SemEval-2015 results from the gold track (marked #), open track

(marked *) and closed track (unmarked) of the in-domain (top)
and out-of-domain (bottom). LF.av indicates the average LF score
across all representations, and is used to rank the systems in their
overall performance. . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 SemEval-2015 results from the closed track (unmarked) and open
track (marked *) of the in-domain (top) and out-of-domain (bot-
tom) data for the three parsers included our the analysis. . . . . . 35

4.2 Results for singletons on the DM (top) and PSD (bottom) target
representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 The frequency distribution of frames in the training and test id
(marked *) id for the DM target representation. . . . . . . . . . . 51

4.4 The frequency distribution of frames in the training and test id
(marked *) id for the PSD target representation. . . . . . . . . . . 51

5.1 The data sets used for training, development and testing. The test
set consists of in domain (id) and out of domain (ood) data. The
columns signify number of sentences, number of unique frames,
and number of occurences of frames. . . . . . . . . . . . . . . . . 59

5.2 The data sets used for training, development and testing, but ex-
cluding frames on the basis of the rules of the SemEval-2015 eval-
uation criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Baseline score with a most frequent frame per lemma approach. . 70
6.2 Results for form as the sole feature. . . . . . . . . . . . . . . . . . 71
6.3 Results for lemma as the sole feature . . . . . . . . . . . . . . . . 72
6.4 Results for form and lemma as features . . . . . . . . . . . . . . . 72
6.5 Results for form and lemma on the main verb token, and a context

window of n = 3 where we use token form as the window. . . . . 73

v



List of Tables

6.6 Results for experiments with context windows of {n|n > 2 ∧ n < 6}
using only form as the context window. . . . . . . . . . . . . . . 75

6.7 Results for experiments with context windows of {n|n > 2 ∧ n < 6}
using only lemma as the context window. . . . . . . . . . . . . . 76

6.8 Results for experiments with context windows of {n|n > 2 ∧ n < 6}
using lemma and form as the context window. . . . . . . . . . . . 76

6.9 Results for adding part of speech tags: concatenated to form (first),
concatenated to lemma (second), concatenated to both form and
lemma (third), as a feature on its own (fourth), and concatenated
to both form and lemma, form and lemma as features on their
own, and part of speech tag as a feature on its own (fifth). . . . . . 78

6.10 Results for adding part of speech tags to the context window, con-
catenating to lemma (top), as their own separate features (middle),
and a combination of both, where we have lemma as their own
features, part of speech as their own features, and part of speech
tags concatenated to the lemma (bottom). . . . . . . . . . . . . . 78

6.11 Results for adding prefix to the main form (first), suffixes to main
form (second), both prefixes and suffixes to main form (third). . . 79

6.12 Results for adding <lemma_label> syntactic dependencies: only
dependents (top), only the head (middle), and a combination of
both (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.13 Results for adding <pos_label> (top) and <label> (bottom) of syn-
tactic dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.14 Results for adding <pos_label> (top) and <label> (bottom) of se-
mantic dependencies. . . . . . . . . . . . . . . . . . . . . . . . . 81

6.15 Final results on the test data. The classifier using syntactic depen-
dencies on the in-domain (top) and out-of-domain (bottom) data
sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.16 Final results on the test data. The classifier using semantic depen-
dencies on the in-domain (top) and out-of-domain (bottom) data
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.17 Running our second classifier using semantic dependencies from
the Lisbon (top) and Peking (bottom) parsing systems. For each
system we have run both on the in-domain and out-of-domain data
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.18 The highest F-scores of the SemEval-2015 submissions for the in-
domain (top) and out-of-domain (bottom) data sets on the closed
track, and gold track (*) for semantic frames. . . . . . . . . . . . 85

vi



List of Figures

2.1 Example dependency graph with labeled edges. . . . . . . . . . . 8
2.2 A projective dependency graph. . . . . . . . . . . . . . . . . . . 10
2.3 A non-projective dependency graph. . . . . . . . . . . . . . . . . 10

3.1 PCEDT target representation. . . . . . . . . . . . . . . . . . . . . 21
3.2 PAS target representation. . . . . . . . . . . . . . . . . . . . . . . 22
3.3 DM target representation. . . . . . . . . . . . . . . . . . . . . . . 22
3.4 PSD target representation. . . . . . . . . . . . . . . . . . . . . . 22

4.1 Distribution of sentence lengths and their frequency in the training
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Distribution of sentence lengths and their frequency in the test data. 40
4.3 Precision relative to sentence length in bins of size 10. Precision

for the DM target representation. . . . . . . . . . . . . . . . . . . 41
4.4 Recall relative to sentence length in bins of size 10. Recall for the

PSD target representation. . . . . . . . . . . . . . . . . . . . . . 42
4.5 The number of dependencies for the Lisbon parsing system ac-

cording to their length (where 0 denotes top nodes) for the DM tar-
get representation. The graph shows the number of dependencies
in the gold data set, the predicted dependencies, and the matches
between predicted and gold. . . . . . . . . . . . . . . . . . . . . 43

4.6 The number of dependencies for the Lisbon parsing system ac-
cording to their length (where 0 denotes top nodes) for the PSD
target representation. The graph shows the number of depen-
dencies in the gold data set, the predicted dependencies, and the
matches between predicted and gold. . . . . . . . . . . . . . . . . 44

4.7 F-score for the three parsing systems on the DM target represen-
tations for dependency length in bins of 3. . . . . . . . . . . . . . 45

4.8 F-score for the three parsing systems on the PSD target represen-
tations for dependency length in bins of 3. . . . . . . . . . . . . . 46

vii



List of Figures

4.9 Singletons broken down by punctuation and part-of-speech tags
for Lisbon on the DM target representation. . . . . . . . . . . . . 48

4.10 Singletons broken down by punctuation and part-of-speech tags
for Lisbon on the PSD target representation. . . . . . . . . . . . . 49

4.11 The 20 most frequent dependency types for Lisbon on the DM tar-
get representations. The graph shows the number of dependencies
in the gold data set, the predicted dependencies, and the matches
between predicted and gold. . . . . . . . . . . . . . . . . . . . . 50

4.12 The 20 most frequent dependency types for Lisbon on the PSD
target representations. The graph shows the number of depen-
dencies in the gold data set, the predicted dependencies, and the
matches between predicted and gold. . . . . . . . . . . . . . . . . 52

4.13 F-score for the three parsing systems for the 20 most frequent
dependency types for the DM target representations. . . . . . . . . 53

4.14 F-score for the three parsing systems for the 20 most frequent
dependency types for the PSD target representations. . . . . . . . 54

4.15 The distribution of the 30 most frequent semantic frames for Peking
on the DM target representation. The graph shows the number of
frames in the gold data set, the predicted frames, and the matches
between predicted and gold. . . . . . . . . . . . . . . . . . . . . 55

4.16 Precision, recall and F-score of the 30 most frequent semantic
frames for Peking on the DM target representation. . . . . . . . . 56

5.1 DM target representation with tokens, lemma, part of speech tags,
semantic frames and labeled semantic dependencies. . . . . . . . 61

5.2 An example of syntactic dependencies, taken from the training
data, and annotated with dependencies and labels with the so-
called Stanford Basic scheme. . . . . . . . . . . . . . . . . . . . 61

viii



Chapter 1

Introduction

Semantic dependency parsing is a Natural Language Processing (NLP) task that
aims at producing meaning representations at the sentence level. Its outcome is to
express predicate-argument relations in order to answer the question of Who did
What to Whom? In this regard there is an overlap between semantic dependency
parsing and semantic role labeling (SRL).

The task of SRL is concerned with detecting the arguments of a predicate in
a given sentence, and is often limited to only verbal predicates. Semantic depen-
dency parsing has a broader scope than argument detection. In addition to the
goals of SRL, semantic dependency parsing attempts to identify various seman-
tic phenomena, such as negation, topicalization, relative clauses, and other scopal
dependencies that are usually left out in SRL.

An examination of recent research and publications in the field of dependency
parsing shows a growing interest in the semantic aspect of dependency parsing.
This increasing popularity stems both from advances made in the accuracy of
state-of-the-art parsers, successful applications of such parsers and their represen-
tations in a wide range of computational tasks, such as Information Extraction,
Textual Inference, Machine Translation, Semantic Search, and Sentiment Analy-
sis. A set of so-called shared tasks on semantic dependency parsing, which we
will present in this thesis, have also stimulated the research community towards
more research on this specific type of dependency parsing.

An second focus of this thesis is semantic frame classification. A semantic
frame is intricately linked to the sense distinctions of a word, i.e. how a singular
term and its arguments are to be interpreted. This task is related to the NLP task
of word sense disambiguation, where different sets of classes are used in order
to differentiate words into classes of meaning representation. Where semantic
dependency parsing adds a layer of semantics to a sentence by adding connections
between words, semantic frames adds a layer by adding several interpretations to
individual words.

1



1. INTRODUCTION

This thesis aims to contribute to the field of semantic dependency parsing and
frame classification by performing a high-level contrastive error analysis of vari-
ous state-of-the-art semantic dependency parsing systems. The analysis will con-
sist of a close examination and comparison of these systems, which will provide
insight to, and serve as an empirical foundation and basis for our own research.
The area that we found most promising as a focal point for our own research
proved to be semantic frame classification.

In order to build a state-of-the-art semantic frame classifier, we will, firstly,
examine a set of machine learning algorithms, and secondly, perform an in-depth
feature selection based on available data sets for semantic frame classification.
We hope to demonstrate that the results of our classifier can be used as a basis
for improving the accuracy of current semantic dependency parsers by improving
their frame classification accuracy.

1.1 Overview
Chapter 2 provides background for our thesis. In this chapter we briefly out-
line dependency grammar, and examine various approaches to dependency based
parsing. We differentiate between grammar- and data-driven dependency parsing,
and formally describe both of these approaches. We divide data-driven depen-
dency parsing in two main classes: transition-based and graph-based models. We
examine these two models and give examples of their implementation. Finally, we
define semantic dependency parsing, and demonstrate how this approach differs
from syntactic dependency parsing.

Chapter 3 examines a few selected state-of-the-art semantic dependency pars-
ing systems. We have chosen to focus on a set of data-driven parsers that par-
ticipated in Task 18 at SemEval 2015 on Broad-Coverage Semantic Dependency
Parsing (SemEval-2015) (Oepen et al., 2015). We present the parsing systems
that where part of this task, and provide the reader with their technical details. We
will also examine the target representations used for training and testing that were
part of SemEval-2015. Here we also examine Task 8 at SemEval 2014 (see Oepen
et al. (2014)), which was the predecessor to SemEval-2015.

Chapter 4 builds on the previous chapter by examining the results submitted by
a subset of the parsing systems participating in SemEval-2015. We perform an
in-depth contrastive error analysis of the parsing systems in order to gain insights
into common errors shared by these systems. We examine four factors of semantic
dependency parsing: (1) length factors, (2) graph factors, (3) linguistic factors

2



1.1. Overview

and (4) frames accuracy. The insights from this analysis will be the empirical
foundation for our experiments.

Chapter 5 presents the experimental setup we use as basis for our semantic
frame classification task. We present the data sets used for training, development
and testing. We then present the type of features that we will focus on in our
experiments, and the reasoning behind the feature selection. Lastly we present a
description of the machine learning algorithms we employ in our experiments.

Chapter 6 presents the results of our experiments. We start the chapter by es-
tablishing a baseline score for semantic frame classification that we use as the
comparative basis for evaluating the effects of our feature selection. We then
present the results of each set of features and their impact on the overall accuracy
of our classifier. In our final experiments we show that we can achieve state-of-
the-art accuracy using an experimental approach where a large feature space is
explored. We show that the results of our semantic frame classifier can be used in
conjunction with the highest scoring semantic dependency parsers participating
in SemEval-2015. We demonstrate that we can increase these system’s seman-
tic frame classification accuracy. We thus conclude that our results have proved
fruitful in pushing the state-of-art in semantic dependency parsing one small step
forward.

Chapter 7 functions as concluding remarks to our thesis. We summarize our
main contributions, and discuss possible future work.

3





Chapter 2

Background

This chapter provides an introduction to dependency grammar and reviews the
state-of-the-art in dependency-based parsing. Firstly, we will look at the topic of
dependency grammar in order to provide the reader with some background, and
additionally as a means to formally define a set of properties that will be used
as basis for our thesis. Secondly, we will examine the two main approaches to
dependency-based parsing: the grammar-driven and the data-driven approach.
These two approaches are not mutually exclusive. Lastly, we will shed some light
on a few models that are based on a combination of both.

The focus of this chapter will be on the data-driven approaches to dependency
parsing, as most of the recent research on dependency-based parsing use this ap-
proach. In addition, the contrastive errors analysis that we present in chapter 4 use
data-driven parsers and their results as its empirical foundation. The experiments
that we present in chapter 5 similarly rely on data-driven models for classifying
semantic frames.

We will focus on two main approaches to data-driven parsing: transition-
based and graph-based. The transition-based approach, also commonly referred
to as shift-reduce dependency parsing, is based on finite state machines for map-
ping a sentence to a dependency graph. The learning aspect of this approach is
to parametrize over local transition states: a model for predicting the next state
given previous states. The parsing use this model to construct the most optimal
sequence of transitions for a given sentence in order to reach a dependency struc-
ture. The graph-based approach to parsing, also known as maximum spanning tree
parsing, create a space of candidate dependency graphs for a given sentence. This
approach to learning is global, and the parsing aspect is to search through a set of
dependency graphs and carry out a weighted selection in order to reach the most
probable dependency structure.

We differentiate between two classes of dependency-based parsing: syntactic
dependency parsing and semantic dependency parsing. As a superficial starting

5



2. BACKGROUND

point we can state that the dependency relations in the former are represented
predominantly as tree data structures, while the latter are represented as graph
data structures. In section 2.3, we examine the hypothesis claiming that tree-based
data structures are suited for the analysis of grammatical structure, but often lack
the expressiveness needed to capture semantics due to the limitations imposed by
its structure. We will argue that semantic dependency parsing deserves further
investigation in light of these observations.

In order to simplify our discussion, we will use the term graph when discussing
dependency grammar in section 2.1. This is based on two assumptions:

1. A tree can be defined as an acyclic directed graph; all possible trees are a
subset of all possible graphs.

2. The difference between tree-based and graph-based dependency structures
are only of interest to our discussion when dealing with parsing techniques
and algorithms, and not when discussing dependency grammar.

We do not attempt at providing a comprehensive review of dependency gram-
mar, nor an in-depth formal description of the various approaches and algorithms
to dependency-based parsing. Our main objective in this chapter is, however, to
present the reader with the necessary background and context for our research
and analysis in subsequent chapters. Firstly, we will provide a brief review of
dependency grammar.

2.1 Dependency Grammar
The early roots of dependency grammar can possibly be traced back to Pān. ini’s
grammar of Sanskrit written in approximately 350-250 BC (Kruijff, 2002). How-
ever, the modern study of dependency grammar is first presented in the works
of Tesnière (2015 [1959]). In his seminal work, Elements of Structural Syntax,
Tesnière presents a theory of syntax by focusing on what he calls a connection
and a dependency:

The sentence is an organized whole; its constituent parts are the words.
Every word that functions as part of a sentence is no longer isolated as
in the dictionary: the mind perceives connections between the word
and its neighbors; the totality of these connections forms the scaf-
folding of the sentence. The structural connections establish relations
of dependency among the words. Each such connection in principle
links a superior term and an inferior term. The superior term receives
the name governor (régissant); the inferior term receives the name
dependent (subordonné) (Tesnière, 2015 [1959]).

6



2.1. Dependency Grammar

It is these connections, according to Tesnière, that make a sentence mean-
ingful: “[W]ithout them the sentence would not be intelligible” (Tesnière, 2015
[1959]). The connections are used to create a hierarchy between the words in a
sentence, where one word is dependent on another, hence the term dependency.
This is a different approach than for instance constituency grammar, where the
relationships between lexical units are formed under grammatical constituents.
In constituency grammar there are also no hierarchical relationship between the
lexical units, instead the hierarchy is formed as grammatical groups such as the
sentence, noun-phrase, verb-phrase, etc. In dependency grammar the lexical units
are always atomic, and the dependency relations are all bi-lexical.

From the works of Tesnière, the field of dependency grammar has grown into
a wide range of traditions that have explored the notion of dependency from a
variety of different perspectives. Among these are the Prague School’s Func-
tional Generative Description, Meaning-Text Theory, and Hudson’s Word Gram-
mar (Sgall, Hajic̆ovà, & Panevovà, 1986; Mel’čuk, 1988; Hudson, 1990). We
will not provide a detailed exposition on the differences and similarities between
the various approaches to dependency grammar, but rather focus on the aspects
that are informative as a precursor to our section on dependency parsing. What
follows is a concise and formal definition of dependency grammar, and a set of
criteria that can be used for determining dependencies in a sentence. We also in-
troduce important terminology, that will be used throughout our thesis, relating to
dependency grammar.

2.1.1 Defining Dependencies
A dependency can be described as a binary asymmetrical relation between the
lexical units of a sentence, i.e. as arrows pointing from one lexical unit to another.
Formally, we describe the dependencies in a sentence ~w = w1...wn as a directed
graph on the set of positions ~w that contain an edge i → j if and only if wj
depends on wi (Kuhlmann, 2010). Directed edges between the lexical units are
used in order to represent a dependency going from one lexical unit to another.

The common term used in the research literature for the lexical unit that stands
at the beginning of the arrow is head. For the lexical unit that is pointed to by
the arrow-head the term dependent is the most common. An exception to the
description thus far is the lexical unit that acts as the entry-point of the graph,
usually the main verb of the sentence. In order for this lexical unit to have a head,
a common strategy is to add an artificial unit to the sentence, often named root.
The edges in the graph can have labels added, which signify the type of relation
that exists between heads and dependents.

If we examine the dependency graph in figure 2.1, we can visualize the de-
scription above: the verb ‘brought’ that is the entry-point of the graph, the ar-
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2. BACKGROUND

Bob brought the cake to Alice .

root

nsubj

obj

det

prep

pobj

punct

Figure 2.1: Example dependency graph with labeled edges.

tificially added unit root that acts as the head of the verb, and several labeled
dependencies between the heads and dependents in the sentence. If we examine
the dependency between the verb ‘brought’ and the noun ‘Bob’: we see that the
head of this dependency is the verb ‘brought’, the dependent is the noun ‘Bob’,
and the edge that connects them has the label ‘subj’. The label in this example
is used to encode syntactic information; ‘Bob’ acts as the nominal subject of the
verb ‘brought’. Now that we have briefly defined the dependency graph, we turn
our attention to a set of criteria that has been proposed for determining heads and
dependents in a sentence.

2.1.2 Criteria for Dependencies
The criteria for establishing the dependencies, i.e. determining which lexical units
should be head and dependents in a sentence, are of central concern to dependency
grammar. Nivre (2005a) proposes a set of criteria, with reference to Zwicky and
Hudson, for establishing dependencies and determining the head H and dependent
D in a construct C (Zwicky, 1985; Hudson, 1990; Nivre, 2005a):

1. (H) determines the syntactic category of (C) and can often replace (C).

2. (H) determines the semantic category of (C), whereas (D) gives semantic
specification.

3. (H) is mandatory, whereas (D) can be optional.

4. (H) selects the category of (D) and whether it is mandatory or optional.

5. The form of (D), whether it is agreement or government, depends on (H).

6. The position of (D) is specified in relation to (H).
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2.1. Dependency Grammar

Different traditions of dependency grammar diverge in their interpretation and
use of a specific set of criteria for identifying dependencies. The list above en-
compasses a set of syntactic and semantic criteria for establishing dependencies,
and there have been attempts at providing a single coherent notion of dependency
that include all of the criteria above.

Hudson has proposed the usage of the concept of a prototype structure that
satisfies all or most of the criteria above, and then using special cases for depen-
dencies that only satisfy one or few criteria (Hudson, 1990). In contrast, Mel’čuk
proposes a set of three dependency types: morphological, syntactic, and semantic
(Mel’čuk, 1988). Lastly, Nikula suggests two categories of constructions, namely
endocentric and exocentric, for determining dependencies (Nikula, 1986). Va-
lency is another term that is used as criteria for determining dependencies. We
will now define the terminology thus far, and add additional terms that are used in
the subsequent chapters relating to dependency grammar.

Endocentric Construction This is a term used for constructions where the de-
pendent is optional and not selected by its head, and where the head can replace
the whole without affecting the syntactic structure of the sentence. In terms of
the categories above, they are all endocentric with the exception of number 4.
(Kübler, McDonald, & Nivre, 2009). The term head-modifier is often used in the
research literature to describe a construct where the head modifies the dependent
either syntactically or semantically. Head-modifier constructs usually fall within
the definition of an endocentric construction (Nivre, 2005a).

Exocentric Construction These are constructions that fail on the first criteria,
where the head can substitute the whole construct, but may satisfy the others. The
term head-complement is often used in recent syntactic theories to describe an
endocentric construct (Nivre, 2005a).

Valency The term valency is used to determine the distinction between comple-
ments and modifiers. In most theoretical frameworks the term valency is used in
relation to the semantic predicate-argument structure that is associated with verbs,
nouns and adjectives (for the most part). It is used as a way to describe a construct
where the lexeme impose some type of requirement on its dependent that deter-
mines how to interpret it as a semantic predicate (Nivre, 2005a).

Projectivity This is a technical term that sets a boundary on the type of depen-
dencies that are permissible in a graph. A dependency graph is projective if and
only if for all its edges wi → wj in a sentence ~w = w1...wn, they adhere to the
restriction that if wi → wk then i < k < j when i < j, or j < k < i when j < i
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w0 w1 w2 w3

Figure 2.2: A projective dependency graph.

w0 w1 w2 w3

Figure 2.3: A non-projective dependency graph.

(Kübler et al., 2009). We can see the difference by examining the projective graph
in figure 2.2, and the non-projective graph in figure 2.3.

Single-head constraint This term is used to define a constraint where the de-
pendents in a sentence are prohibited from having more than one head. This limi-
tation reduces the flexibility of a dependency graph, and as we shall see in section
2.3 on syntactic and semantic dependency parsing, this constraint reduces the pos-
sibilities of capturing certain semantic information.

There are a range of different traditions and theoretical frameworks of depen-
dency grammar. What we have presented here is a short introduction to some
aspects of these theories as a foundation for section 2.2 on dependency-based
parsing, and section 2.3 where we examine the difference between syntactic and
semantic parsing. We do not dive into the finer details of dependency grammar as
these are not seen as relevant for our thesis. As Nivre points out, the theories of de-
pendency grammar are only indirectly linked to the techniques used in dependency
parsing, and the connection between dependency grammar and dependency-based
parsing is largely indirect. Nivre states that one should think of dependency-based
parsing as parsing with dependency representations rather than with a dependency
grammar (Nivre, 2005a). In addition, the work presented in our thesis is based on
practical considerations such as the effectiveness and accuracy of different pars-
ing techniques. The grammatical aspects are of interest as they can add to our
discussion regarding these aspects of dependency-based parsing, but they are not
of central concern to our thesis.

Now that we have given an outline of dependency grammar, we turn our at-
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tention to dependency-based parsing. In doing so, we follow Carroll (2000) in
distinguishing between two main approaches to dependency parsing, a grammar-
driven approach and a data-driven approach. both approaches aim to produce a
dependency structure for a given sentence by algorithm (an example of which is
seen in table 2.1). The methods applied to reach this goal are, however, different.

2.2 Dependency Parsing
The early approaches to dependency parsing were based on formal grammars in
order to automatically assign a dependency structure for a given sentence. How-
ever, as Nivre points out, even though some dependency parsers are intimately
tied with a particular theory of dependency grammar, it is more often the case that
a parser is based on a representation rather than a formal theory. Constituency
based parsing, in contrast, is often more tied to a particular theoretical approach
(Nivre, 2005a).

In the more recent literature on dependency parsing there has been a shift
towards data-driven approaches. This is due to the fact that these approaches
have consistently shown progress in both accuracy, speed and robustness. The
data-driven approaches are based on statistical modeling or machine learning al-
gorithms for inducing probabilistic or predictive models. We start this section by
giving a short review of grammar-driven dependency parsing, before we move on
to examining the data-driven approach.

2.2.1 Grammar-Driven Approaches
Grammar-driven dependency parsing relies on explicitly defined grammars for
producing a dependency graph. Given a sentence, a strategy is deployed in order
to find a dependency structure that belongs to the language defined by a specific
grammar. This grammar can be made manually, by means of statistical modelling
or machine learning, or a fusion of both.

The earliest works on dependency parsing were closely related to context-
free grammars (Kübler et al., 2009). These methods use production rules in a
context-free grammar in order to produce dependencies. Standard chart parsing
methods are used for implementation, examples of which are the Cocke-Kasami-
Younger (CKY) (Younger, 1967) and Earley’s algorithm (Earley, 1970). The rules
themselves can take the form of production or constraint rules; see Kübler et al.
(2009) for details.

Gaifman proposes a set of three rules for a dependency system. The rules
are similar to context-free grammars in that they map a sentence ~w = w1...wn
to a sequence of categories X1, ..., Xn, and they add a relation of dependency d
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between two lexical units wi → wj as long as a set of conditions or constraints
are upheld. The rules that Gaifman propose lead to a dependency structure that
is a projective directed tree which upholds the single-head constraint (Gaifman,
1965). These approaches produce unlabeled dependency structures.

Nivre points out that the results from these early approaches, and the attempts
of Gaifman to show that dependency grammar is only a restricted variant of
context-free grammars, led to a period of approximately twenty-five years with
a relative lack of interest in dependency parsing among researchers working in
the field of NLP (Nivre, 2005a).

Another common approach to grammar-driven dependency parsing is based on
what is commonly referred to as eliminative parsing. This approach, as opposed
to the systems based on context-free grammars, produce dependency structures
by continuously eliminating dependencies that violate a set of constraints. The
elimination process is repeated until there are no violations. As Nivre notes, the
eliminative approach is a constraint satisfaction problem, where all dependency
structures that are not in violation with the constraints, would be considered. This
approach poses two problems. The first problem is that the result might not be a
dependency structure at all, i.e. all suggestions break some constraint. The second
problem arises when more than one dependency structure remains (Nivre, 2005a).
The latter problem can be solved using a disambiguation step. We will take a
closer look at disambiguation in section 2.2.2 below.

Recent research on dependency parsing suggests a move away from grammar-
driven approaches, as data-driven parsing, increasingly, show improvements in
both accuracy, speed and robustness. In light of this observation, and secondly,
because both the analysis in chapter 4, and our own experiments in chapter 5,
are based on data-driven approaches, we will not examine the grammar-driven
approach in any great detail. Instead, we turn our attention to the data-driven
models of dependency parsing.

2.2.2 Data-Driven Approaches
Early attempts at data-driven dependency parsing used a grammar-driven part to
produce multiple dependency graphs, and added a data-driven model trained on
corpora to select the most probable structure from a set of possibilities. Eisner
presented one of the first successful approaches using this methodology. This
approach use three models for probabilistic parsing, trained on manually anno-
tated data, where both part-of-speech tags and unlabeled dependency structures
are assigned to a sentence (Eisner, 1996). The algorithm used, similar to the CKY
method, is a bottom-up method that predicts the most probable parse from the bot-
tom up. It ensures that there are no cycles in the graph, and adheres to the single-
head constraint defined in section 2.1.1. Even though this parser is data-driven,
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in the sense that no hand-written grammar is required, the bottom-up strategy is
based on a learned grammar that in combination with a generative probabilistic
model attempts to predict the most likely parse for a given sentence.

As Nivre points out, the work of Eisner has been influential in two ways. It
proved that statistical modeling and machine learning could be used for depen-
dency parsing with an accuracy comparable to the best performing constituency-
based parsers of the time. Secondly, it revealed that efficient parsing techniques
exploiting the special properties of dependency structure could be developed (Nivre,
2005a). More recent approaches have moved towards data-driven models where
the dependency graph is induced without any explicitly defined grammar. We will
now take a closer look at the two main classes of data-driven dependency parsing.

Transition-Based Parsing

Purely deterministic discriminative data-driven models with no need for a gram-
mar were first proposed by Kudo and Matsumoto (2000) and Yamada and Mat-
sumoto (2003). These models use Support Vector Machines (SVMs) for learning,
and rely on the machine learning algorithms’ ability to cope with large scale fea-
ture spaces. The parsers presented by Kudo and Matsumoto and Yamada and
Matsumoto construct dependency trees in a left-to-right fashion by way of three
transitions: Shift, Right, and Left. Yamada and Matsumoto use three binary clas-
sifiers in order to solve these transitions as a multi-class classification problem.
One model is made for handling each possible action given a state: Left vs. Right,
Left vs. Shift and Right vs. Shift (Yamada & Matsumoto, 2003). This method
managed to produce substantially higher accuracy than the models proposed by
Eisner (1996).

The models developed by Kudo and Matsumoto and Yamada and Matsumoto
have been further developed in many directions under the umbrella of transition-
based parsing. A transition-based parser consists of a set of configurations (or
states) that include a set of transitions for producing a dependency structure.

We follow Kübler et al. (2009) in describing transition-based parsing as a con-
figuration of triples, consisting of a stack, an input buffer, and a set of dependency
arcs. Given a set R of dependency types and a vocabulary V , a configuration for
sentence S = w0w1, ..., wn is a triple c = (α, β,A), where:

1. α is a stack of words wi ∈ VS ,

2. β is a buffer of words wi ∈ VS ,

3. A is a set of dependency arcs (wi, r, wj) ∈ VS ×R× VS .

The configuration represents a partial analysis. The words on the stack α
are partially processed words from the input, and the words in the buffer β are
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the remaining words from the input. For any input sentence there is an initial
state, and a termination state. The initial state starts with the artificially added
unit root (w0) on the stack α, the input sentence S in the buffer, and an empty
set of dependency arcs in the last place of the triple: ([w0]α, [w1, w2, ..., wn]β, ∅).
The process ends in the termination state: (α, []β, A). There are three types of
transitions from the initial to the termination state:

1. Left− Arcr (α|wi, wj|β,A)⇒ (α,wj|β,A ∪ {(wj, r, wi)}

2. Right− Arcr (α|wi, wj|β,A)⇒ (α,wi|β,A ∪ {(wi, r, wj)}

3. Shift (α,wi|β,A)⇒ (α|wi, β, A)

Each of these transitions can be described informally as:

1. Left-Arc: add a dependency arc (wi, r, wj) to the setA, wherewi is a lexical
unit on top of stack α and wj is the first lexical unit in buffer β. Then pop
the top lexical unit from stack α.

2. Right-Arc :add a dependency arc (wj, r, wi) to the set A, where wi is a
lexical unit on top of stack α and wj is the first lexical unit in buffer β.
Then pop the top lexical unit from stack α. Then replace wj by wi at the
head of buffer.

3. Shift: remove the first lexical unit wi in the buffer β and push it on top of
the stack α.

The transitions are performed according to a set of permissible transitions in
a sequence T . This includes a sequence of configurations C0,m = (c0, c1, ..., cm)
for sentence S where:

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that
ci = t(ci−1)

An example of a transition-based dependency parser is the openly available
MaltParser (Nivre et al., 2007). This parser is an implementation of the inductive
dependency parsing techniques developed by Nivre (2005b). Given a treebank
that follows the specific dependency format of the MaltParser, it can induce a
parser for the language of that treebank. MaltParser itself includes two basic pars-
ing algorithms, but it also provides an interface so that a variety of shift-reduce
based algorithms can be used for parsing. For more details on the algorithms and
the interface see Nivre et al. (2007).
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Graph-Based Parsing

Graph-based parsing employ already established and extensively studied graph
processing algorithms to generate a dependency graph for a sentence. In contrast
to the transition-based approach where the learning is locally trained, graph-based
approaches parametrize models globally on substructures of a dependency struc-
ture. The main aspect of the parsing is then to give a score to each substructure,
and return the structure with the highest score.

The scoring function is at the core of the graph-based approach. Scores can
be calculated using linear classifiers, or use conditional or joint probabilities. The
arc-factored model is the simplest of the graph-based dependency parsing ap-
proaches. It is often referred to as a first-order model, due to its scoring function
where possible graphs are evaluated one edge at a time. There are also second-
and third-order models where the scoring function decompose the graph in larger
fragments, and calculate the value of each graph in more complex manners. The
scoring also has a set of restrictions that prohibits the parser from producing in-
valid outputs (Kübler et al., 2009).

The Mate parser (Bohnet, 2010) is an openly available second-order graph-
based dependency parser. The parser employs a second order maximum spanning
tree algorithm, a modification of the algorithm found in Carreras (2007), and com-
bine this with a passive-aggressive perceptron algorithm. The Mate parser, as we
will see in chapter 3, has proven to consistently show exceptionally high accuracy
for semantic dependency parsing of the English language.

There are a number of parsers, and descriptions of systems, that follow on the
transition- or graph-based approaches described above. Different statistical mod-
eling or machine learning algorithms are used for the learning, the same which
applies for the parsing actions. In Chapter 3, we will take a closer look at several
state-of-the-art semantic dependency parsing systems. Before diving into this dis-
cussion, we will give an overview of semantic parsing, and show how it differs
from syntactic dependency parsing.

2.3 From Syntactic to Semantic Parsing
The most common representations in dependency parsing in the research com-
munity are based on tree data structures. Some scholars argue that such repre-
sentations are insufficient, in that they restrict the type of dependency structures
that are possible, and do not fully capture what can be expressed in natural lan-
guage. Hudson claims that representations of relative clauses, control relations,
and other long-distance dependencies, can only be represented properly by us-
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ing more general graphs (Hudson, 1990). Similarly, Sagae and Tsujii argue that
tree data structures cannot fully capture linguistic phenomena beyond so-called
shallow syntactic structures (Sagae & Tsujii, 2008).

Oepen et al. (2014) argues that tree-oriented parsers are ill-suited for produc-
ing meaning representations, as such parsers lack the ability to capture some as-
pects of semantic analysis. This is particularly evident in cases where a lexical
unit is the argument of multiple predicates, or when dealing with semantically
vacuous word classes that should be left out of the dependency structure. Oepen
et al. (2014) argue for a move towards semantic dependency parsing using graph
data structures to enable a more direct analysis of Who did What to Whom?

Approaches to semantic dependency parsing are very similar to those of syn-
tactic dependency parsing, and many of the successful ones are based on a varia-
tion of the models described in this chapter. An early such approach is the mod-
ified shift-reduce algorithm proposed by Sagae and Tsujii (2008). They intro-
duce a data-driven approach to dependency parsing where directed acyclic graphs
(DAGs) are produced directly from an input string by introducing a modified ver-
sion of the transition-based model described in section 2.2.2. Two new transitions
are introduced to the three transitions that we have already described above: left-
attach and right-attach. These transitions can be described informally as:

1. Left-Attach: add a dependency arc (wi, r, wj) to the set A between the top
two items on the stack α, making the top item wi the head and the item be-
low it wj the dependent, if and only if there is no arc between them already.

2. Right-Attach: add a dependency arc (wi, r, wj) to the set A between the top
two items on the stack α, making the top item wi the dependent and the item
below it wj the head, if and only if there is no arc between them already.
Remove the top item on the stack α and place it back on the buffer β.

This novel approach makes it possible to represent certain semantic aspects
of a sentence that is not possible with syntactic dependency parsing, where such
restrictions such as the single-head constraint is put in place. As Sagae and Tsujii
(2008) explain, there are also other semantic aspects of a sentence that semantic
dependency parsing manages to capture, such as anaphoric reference and seman-
tically motivated predicate-argument relations. Until recently, transition-based
parsing was mainly restricted to tree based parsing. In Chapter 3 we will examine
modifications to transition-based systems that make it possible to handle graphs.

2.4 Conclusions
In this chapter we have briefly outlined the history of dependency grammar and
parsing, with particular emphasis on grammar-driven and data-driven dependency
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parsing, in addition to an introduction to the different approaches within these two
parsing traditions. We have provided definitions for certain technical aspects of
dependency parsing that are deemed as central to our thesis.

In the following chapter, we will examine the state-of-the art in semantic de-
pendency parsing. We will focus on a group of parsers that are state-of-the-art
in terms of their accuracy. We will also review the annotated data that have been
used for training, development and testing of these parsers.
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Chapter 3

Semantic Dependency Parsing with
Frames

This chapter presents the state-of-the-art in semantic dependency parsing. The
goal of semantic dependency parsing can be superficially defined as a represen-
tation of ‘Who did what to whom’, possibly adding ‘when’ and ‘where’ to the
equation. This is similar to the aims of Semantic Role Labeling (SRL), which
according to Jurafsky and Martin (2009) is a shallow semantic representation of
semantic roles. They define semantic roles as the abstract role that the argument
of a predicate can take in an event. Semantic dependency parsing usually has
a broader scope in its representation. In addition to the goals of SRL, seman-
tic dependency parsing attempts to identify various semantic phenomena, such as
negation, topicalization, relative clauses, and other scopal dependencies that are
not part of the scope of SRL.

More specifically, this chapter will discuss the definition of Broad Coverage
Semantic Dependency Parsing made by Oepen et al. (2015), which reads as fol-
lows:

... [T]he problem of recovering sentence-internal predicate-argument
relationships for all content words, i.e. the semantic structure consti-
tuting the relational core of sentence meaning.

The emphasis on predicate-argument dependencies for all content words is
the reason for focusing on dependency parsing techniques that can output a graph
structure instead of a tree. In Chapter 2 we ended with a note on this aspect of
dependency parsing, and in this chapter we will clarify and expand further upon
where we left off.

As previously discussed, the target representations used in the research on
syntactic dependency parsing, and the results that such parsers are able to produce,
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have been largely limited to tree data structures. A tree can be defined as an
acyclic directed graph, i.e. every node is reachable from a root node by exactly
one directed path. This structure impose certain restrictions, such as a unique root,
connectedness, and lack of reentries (the so-called single-head constraint), on the
type of dependencies that can be represented.

As a result, the restrictions that trees impose limit certain aspects of semantic
analysis, such as the analysis of dependents with more than one head, and the
possibility to leave certain semantically void lexemes outside of the dependency
structure.

In order to mitigate the restrictions imposed by tree-based parsing, efforts have
been made to develop graph-structured target representations. Data-driven parsing
techniques have been developed that can be trained on representations where the
annotations of a sentence establish a dependency graph. These parsing techniques
are therefore capable of producing dependency structures that are better apt at
capturing sentence semantics than parsing techniques that output a tree structure.

We will argue our case by presenting the results of SemEval-2014 Task 8 and
SemEval-2015 Task 18 on Broad Coverage Semantic Dependency Parsing (re-
ferred to as SemEval-2014 and SemEval-2015 from now on respectively) (Oepen
et al., 2014, 2015). The two shared tasks have provided a large annotated cor-
pora in 4 different annotation schemes for training and testing. These are anno-
tations on the Wall Street Journal (WSJ) corpus of the Penn Treebank (PTB) for
SemEval-2014, and the added Brown corpus of the same Treebank for SemEval-
2015 (Marcus, Santorino, & Marcinkiewicz, 1993). Several researchers submitted
their results to the two shared tasks, with many achieving state-of-the-art accuracy
on their results.

We will first examine the target representations made available for SemEval-
2014 and 2015, and then move on to a presentation of the technical aspects of the
various submissions. We restrict the technical presentation to the SemEval-2015
task, which we will also do when examining higher level statistics on the data sets.
Since the SemEval-2015 task is an extension of the previous year, we find it more
useful to focus our attention on the data sets and submissions of that year. The
results also saw an increase in overall performance in the SemEval-2015 shared
task than the previous year. In Chapter 4 we follow the same suit and focus solely
on the SemEval-2015 results in our contrastive error analysis of the results of a
selected group of teams and their submissions.

Though SemEval-2015 include annotated corpora for Czech and Chinese (Man-
darin) languages, in addition to English, we have decided to limit our research and
analysis to the English language, and will therefore not include these results in our
thesis. It is, however, worth mentioning that these target representations exist, and
that several submissions to the SemEval-2015 task also submitted results from
parsers trained on the target representations in these two languages.
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Bramalea said it expects to complete the issue by the end of the month .

TWHEN
root APP

PAT

PATACT

ACT

EFF

Figure 3.1: PCEDT target representation.

3.1 Target Representations
Target representations are an integral part of data-driven parsing. They are the
foundation on which data-driven parsers are trained on in order to predict the
most plausible dependency structure for a given sentence. The four distinct rep-
resentations we will examine use different annotation schemes. The first three
representations we will examine are called DM, PAS and PCEDT, which were
used for the SemEval-2014 shared tasks. For the SemEval-2015 task, the PCEDT
target representation was replaced by PSD, and so-called Frames where added to
the DM and PSD representations. In Tables 3.3, 3.2, 3.1 and 3.4 we have visually
represented the annotations of DM, PAS, PCEDT and PSD on the sentence:

Bramalea said it expects to complete the issue by the end of the
month.

This sentence has been chosen in order to highlight certain aspects of a se-
mantic dependency graph: some lexical units are left unattached, we have a few
examples of lexical units with more than one head (breaking the so-called single-
head constraint that a tree would impose), and dependencies that cross, making
the graphs non-projective. It is worth noting that a tree can be non-projective, and
that this is not a special case for graph representations, but is often desired in or-
der to fully represent longer predicate-argument dependencies that create crossing
dependencies across a sentence.

The data-sets that we will examine are all represented in the SDP format1.
We will now examine how these target representations have been constructed, and
present some higher-level statistics on their content.

1See http://sdp.delph-in.net/2014/data.html and http://sdp.delph
-in.net/2015/data.html for the technical details on the data format of SemEval-2014
and 2015 respectively.
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Bramalea said it expects to complete the issue by the end of the month .

root

verb_ARG1

verb_ARG1

verb_ARG2 verb_ARG2

verb_ARG1

prep_ARG1

verb_ARG2

comp_ARG1 det_ARG1

prep_ARG2

det_ARG1

prep_ARG2

prep_ARG1 det_ARG1

Figure 3.2: PAS target representation.

Bramalea said it expects to complete the issue by the end of the month .
named:x-c v_to:e-i-h-i pron:x v:e-i-h _ v:e-i-p q:i-h-h n:x p:e-u-i q:i-h-h n_of:x-i _ q:i-h-h n:x _

root

ARG1

ARG1

ARG1

ARG2

ARG1

ARG2 ARG2

BV

ARG2

BV

ARG1

BV

Figure 3.3: DM target representation.

Bramalea said it expects to complete the issue by the end of the month .
_ ev-w2833f1 _ ev-w1239f1 _ ev-w620f1 _ _ _ _ _ _ _ _ _

root

ACT-arg

ACT-arg

ACT-arg

EFF-arg PAT-arg PAT-arg
TWHEN

APP

Figure 3.4: PSD target representation.
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PCEDT: Prague Tectogrammatical Bi-Lexical Dependencies This target rep-
resentation is based on the Prague Czech-English Dependency Treebank (Hajič et
al., 2012)2. It is a dependency treebank over the WSJ from the PTB. The orig-
inal English texts have been annotated along with annotated Czech translations.
Similar to other treebanks from the PTB, these texts have been annotated with
two layers of syntactic information: analytical (a-layer) and tectogrammatical (t-
layer) (Oepen et al., 2014). The a-layer represents the so-called surface syntax,
where the labels in the dependencies represent the syntactic information of the
sentence. The t-layer is a layer representing syntax and semantic dependencies
are represented, and is based on the framework of the Functional Generative De-
scription (Sgall et al., 1986). A conversion has been used in order to reach the
SDP data format from this t-layer; see Miyao, Oepen, and Zeman (2014) for de-
tails on the conversion from the t-layer of the PCEDT representation to the SDP
representation.

PAS: Enju Predicate–Argument Structures The Enju representation is based
on Head-driven phrase structure grammar (HPSG), and is derived from the Enju
HPSG treebank. This treebank is made by way of conversions from the phrase
structure and predicate-argument representation of the PTB (Oepen et al., 2014).
The PAS representation is extracted from the predicate-argument structures of the
HPSDG Treebank. This predicate-argument structure represent bi-lexical seman-
tic dependencies. As the PCEDT format, we refer the reader to Miyao et al. (2014)
for the technical details on the conversion to the SDP data format.

DM: DELPH-IN MRS-Derived Bi-Lexical Dependencies The semantic de-
pendency graphs of the DM format are derived from the output of the ERG parser.
This parser adds syntactic and semantic analysis by using the LinGO English
Resource Grammar (LERG). LERG is, in a similar fashion to PAS, based on
HPSG. It adds to the standard framework of HPSG by using Minimal Recursion
Semantics for specifying semantic attributes, but does so without implementing
the binding theory of HPSG (Flickinger, 2000). The DM representations are de-
rived through a two-step ‘lossy’ conversion. The first step in this conversion is to
convert the MRSs to variable-free Elementary Dependency Structures. The sec-
ond step is to transform the results of the previous step to the strictly bi-lexical
SDP data format. During this last step some information may be lost (Miyao et
al., 2014).

2See http://ufal.mff.cuni.cz/pcedt2.0/
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PSD: Prague Semantic Dependencies The PCEDT target representation is used
as basis for arriving at the PSD3 target representation. This is made using a con-
version. The PCEDT representation consists of dependency structures that are
always rooted trees. This is due to technical aspects of the conversion from the
t-layers mentioned above, to the PCEDT data format. For the SemEval-2015 task,
a conversion of the PCEDT data’s t-layer was performed in order to reach true
bi-lexical dependencies.

3.1.1 Semantic frames
The SemEval-2015 introduced frames, also referred to as sense distinctions, to
the DM and PSD target representations. These are added as an extra layer to the
sentence where multiple classes are used in order to add additional information on
the content words of a sentence. If we examine the semantic dependency graphs
in Figure 3.3 and 3.4, we see these classes below the sentence.

According to Oepen et al. (2016), DM frames encode more general ‘link-
ing patterns’, which are mappings from syntactic to semantic arguments, whereas
PSD represents actual sense identifiers and show different values for distinct lex-
emes. They note further that PSD only annotates senses on verbal predicates,
while DM provide frame identifiers for all semantically contentful nodes. Ad-
ditionally, Oepen et al. (2015) note that the DM frames are limited to argument
structure distinctions, e.g. causative vs. inchoative contrasts or differences in
the arity or coarse semantic typing of argument frames. They further note that
the PSD frames draw on much richer sense inventory, based on the EngValLex
database (Cinková, 2006).

As we will see in Chapter 4, our analysis of the results of SemEval-2015 will
lead us to further explore semantic frames and build our own frame classifier. The
details of this classifier and its results will be presented in Chapter 5.

3.2 Data sets
The data-sets for the SemEval-2014 and 2015 vary slightly. In the SemEval-2014,
the three annotations are over the same set of texts: Sections 00-21 of the WSJ
corpus. A set of sentences where excluded from the data sets where (a) no gold-
standard analysis existed; (b) it was not possible to align the tokens of each sen-
tence on-to-one for all three representations; (c) there where cycles in at least on
of the graphs of a sentence. After this cleanup, the SemEval-2014 data set counts

3See http://tinyurl.com/h8dfkcz for more technical details on the PSD target rep-
resentation and conversion from PCEDT.
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In-domain Out-of-domain

DM PAS PSD DM PSD PSD

# labels 59 42 91 47 41 74
% singletons 22.97 4.38 35.76 25.40 5.84 39.11
edge density 0.96 1.02 1.01 0.95 1.02 0.99
%g trees 2.30 1.22 42.19 9.68 2.38 51.43
%g noncrossing 69.03 59.57 64.58 74.58 65.28 74.26
%g projective 2.91 1.64 41.92 8.82 3.46 54.35
%g fragmented 6.55 0.23 0.69 4.71 0.65 1.73
%n reentrancies 27.44 29.36 11.42 26.14 29.36 11.46
%g topless 0.31 0.02 – 1.41 – –
% top nodes 0.996 0.999 1.127 0.985 1.000 1.264
%n non-top roots 44.91 55.98 4.35 39.89 50.93 5.27
average treewidth 1.30 1.72 1.61 1.31 1.69 1.50
maximum treewidth 3 3 7 3 3 5

# frames 297 – 5426 172 – 1208
%n frames 13.52 – 16.77 15.79 – 19.50

Table 3.1: High-level statistics on the SemEval-2015 data sets

34,004 sentences (or a total of 745,543 tokens) for the training split (Sections 00-
20), and 1,348 sentences (or a total of 29,808 tokens) for the test split (Section
21) (Oepen et al., 2014). The SemEval-2015 shared tasks used the same data set,
but added a balanced corpus from the Brown Corpus. Also, the DM graphs where
extracted from a later and improved release of the DeepBank (version 1.1). The
exclusion of sentences from the data sets where a bit lower for SemEval-2015,
and the training set counts 35,657 sentences (or a total of 802,717 tokens; roughly
8% more than for SemEval-2014). For the test set 1,410 sentences (or a total of
31,948 tokens) from the WSJ Section 21 was reserved for in-domain testing, and
1,849 sentences (or a total of 31,583 tokens) from the Brown Corpus was reserved
for out-of-domain testing (Oepen et al., 2015).

3.2.1 Quantitative Analysis of Data Sets
In Figure 3.1 we present some high-level statistics on the SD 2015 data set. The
data are reproduced from Oepen et al. (2015). The PSD representation is the
most fine-grained in terms of the linguistic variation of dependency labels with 91
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unique labels. DM and PAS are in this respect more coarse-grained and similar,
also sharing a more similar naming and type convention.

When examining the percentage of trees, projective vs. non-projective graphs,
and reentrancies, we see that PSD is the most ‘tree-oriented’ of the three target
representations. As previously mentioned, the PSD target representation is based
on the PCEDT representation, which only consists of dependency structures that
are rooted trees.

As we can observe in Figure 3.1, the number of frames in PSD is approxi-
mately 18 times that of the DM data set.

3.3 Submissions and Teams
In this section we will examine a set of state-of-the art semantic dependency
parsers. As previously stated, we will examine the submissions from the SemEval-
2015 exclusively, disregarding the results from SemEval-2014. This choice is
based on the observation that many of the same teams submitted for both tasks,
and furthermore, that the SemEval-2015 shared tasks are an extension of the pre-
vious year, and lastly, because the scores of the SemEval-2015 submitted results
saw an increase in overall performance.

We can observe the performance of the SemEval-2015 parsers in Table 3.2,
which have been reproduced from Oepen et al. (2015). There where 6 teams that
submitted results from their parsing systems. Each team could submit two runs per
track. In Table 3.2, we present the best run (if more than one run were submitted).

The submissions could be made to different tracks. There was a closed track:
where systems could only use gold-standard semantic dependencies distributed
by the organizers of the SemEval-2015 shared task for training. In addition, there
was an open track: here the teams could use other resources, such as a syntac-
tic parser, as long as these did not use any methodology where the gold-standard
syntactic or semantic analysis of the tasks’ test data had been used in any way.
For the open track, the organizers made available already parsed syntactic anal-
ysis of the training data. There was also a so-called idealized gold track where
gold-standard syntactic companion files in a variety of formats where provided
for training (Oepen et al., 2015).

The evaluation of each parser is based on the accuracy of the dependency
graphs that they produce on the test set mentioned above, measured against the
gold-standard testing data. The evaluation itself is based on the metrics:

1. Labeled precision, recall, and F1, referred to as LP, LR and LF.

2. Complete predications: Which for the DM and PAS target representation
means measuring all outgoing dependency edges, and for the PSD target
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representation to the ones where the label has an ‘-arg’ suffix. Here too
precision, recall and F1 score is used, referred to as PP, PR, and PF.

3. Semantic frames: This is comprised of a complete predication with scores
for the frame (or sense) identifier. As other scores, this score is also repre-
sented by precision, recall and F1 score, referred to as FP, FR, and FF.

4. Both complete predications and semantic frame evaluations are limited to
those predicates that correspond to verbal parts of speech, as determined by
the gold-standard part of speech.

We will now examine the parsing systems of the four best performing teams
of SemEval-2015. We turn to the results of three of these systems in Chapter 4,
where we will examine, compare and contrast their results in a comprehensive
manner.

3.3.1 Peking
The Peking team used two main approaches to solving the problem of semantic
dependency parsing. The first approach consists of modifying transition-based
models that are designed for handling trees to handle graphs. The second ap-
proach converts the training data, consisting of semantic dependency graphs, into
tree structures using so-called tree approximation models. After the conversion
is done, well-established methods for parsing dependency trees are used in order
to train a parser. When predicting, a tree dependency structure is created, which
is then converted to a graph dependency structure in order to reach the semantic
dependency graph structure of the SemEval-2014 and 2015 data sets. This ap-
proach managed to produce high-quality parsing results. Du, Zhang, Sun, and
Wan (2014) note that their experiments demonstrated that graph-based models are
more effective than transition-based models, and that a parser ensemble can boost
parsing accuracy by taking the multiple outputs of several parsers and picking the
most plausible results by way of a voting method.

The transition-based models for SemEval-2014 consist of 5 different transi-
tion models, which includes a so-called naive approach using the shift-reduce
method described in Section 2.2.2, but with a popk transition added: remove any
element from the stack α. They also use a transition based approach described
in (Titov, Henderson, Merlo, & Musillo, 2009), which adds to the standard shift-
reduce method a pop transition: remove the top element from the stack α, and a
swap transition: remove two top elements from the stack α. The transition-based
systems where trained twice on the training data, each sentence trained from start
to end, but also backwards, from the last to the first element. With the 5 models,
the system can thus return 10 parses of a given sentence.
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The graph-based models for SemEval-2014 presented by the Peking team use
tree approximations. Du et al. (2014) argue that parsing based on graph spanning
is a challenging task due to the fact that the graph structures represented by the
data sets of SemEval-2014 are still relatively unexplored. In light of this observa-
tion, they developed a graph-to-tree transformation which was used to transform
the SemEval-2014 data sets to trees. A tree parser is then used to train a model
on the transformed data, and finally a tree-to-graph transformation was developed
in order to transform the result of the parser back to the graph data structure of
the SemEval-2014 data sets. These steps are lossy, i.e. information is possibly
degradable in the transformation processes, and can be lost, added or modified in
the process.

The ensemble method that Du et al. (2014) employ examines the output of
10 transition-based models, and 9 graph-based models, and use a simple voting
scheme in order to combine their outputs. This is based on the frequency of the
dependencies when combining all models, and given a threshold, if a dependency
exceeds it, it is chosen to be part of the result. For the edges that have been chosen,
the most frequent label from the 19 models is added. The models are scored by
a weighting scheme, so that the graph-based models have a higher score on their
edges and labels, since these proved to produce better overall results.

For SemEval-2015, the Peking team further developed this ensemble method,
focusing to a larger extent on graph-based models. Du, Zhang, Zhang, Sun, and
Wan (2015) developed a weighted tree approximation model, where the graph-
to-tree transformation is based on weights for the type of transformation that is
to take place. When the weights have been calculated, the transformation from a
graph to a tree is solved by using maximum spanning tree (MST) algorithms. For
SemEval-2015 the transformation is improved by adding additional labels to the
trees for a set of specific cases when an edge is lost in the transformation. This
allows for a more accurate tree-to-graph reversal. See (Du et al., 2015) for the
details on the transformations.

The same type of voting ensemble used in SemEval-2014 is used to combine
the outputs of the 10 transition-based models, 9 tree approximation models, and 4
new weighted models added for SemEval-2015. The results revealed an increase
in overall accuracy, demonstrating that the improvements to the tree approxima-
tion models were fruitful.

3.3.2 Riga
The team behind the Riga system used the system developed by the Peking team
for SemEval-2014 as basis for implementing their own semantic dependency parser
with a model for predicting semantic frames for SemEval-2015. According to
Barzdins, Paikens, and Gosko (2015), the Riga teams approach involves taking
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the Peking system, removing some less essential components, and adding a rule-
based classifier for both graph parsing and frame labeling. The added system has
been dubbed the C6.0 rule-based classifier, and used for both graph parsing and
frame labeling. See Barzdins, Gosko, Rituma, and Paikens (2014) for the techni-
cal details on the classifier.

The Riga team further developed the approach of Peking by modifying the tree
approximation model. Instead of the lossy method described above, the Riga team
developed a fully reversible depth-first transformation. As a baseline they used the
Mate parser, see technical details of this parser here: (Bohnet, 2010), which imme-
diately produced results on par with the highest results from SemEval-2014. For
SemEval-2015, the Riga team describe three approaches that improved upon this
baseline. These three approaches revolve around the lossless tree-approximation
method, where the information that might be lost in the graph-to-tree transforma-
tion is stored in the edges of the dependency tree. The Mate parser is then used
to train a parser given these trees with additional edge information. A restructure
algorithm is then used to transform the trees back to graphs (Barzdins et al., 2015).

As already mentioned, a rule-based classifier dubbed C6.0 was used as a basis
for developing a classifier for predicting frames. This approach involves a refining
of the C6.0 classifier from performing an exhaustive search to a greedy search
algorithm with a multi-class classifier as a basis. For training, a simple Laplace
ratio prediction method is used to count the number of instances that a feature
occurs and does not occur with any given frame in the data set. A greedy search is
performed over all classes in order to predict frames. See Barzdins et al. (2015) for
the specific technical descriptions on the semantic parsing and frame prediction.

3.3.3 Turku
For SemEval-2014 the Turku team developed a semantic dependency parser by
combining several classifiers trained with different machine learning algorithms.
The LIBSVM package: see Chang and Lin (2011) for a description, which is a
binary support vector machine classifier, is used for detecting dependencies. For
the dependency labels the SVM-multiclass package by Joachims (1999) is used to
predict the semantic label of the edges predicted in the previous step. The Turku
team participated in the open track of the SemEval-2014 task and used a large
corpus of syntactic n-grams, and a word2vec word similarity model, to improve
the classification of labels by using the cosine similarity measures in the word2vec
model: see Kanerva, Luotolahti, and Ginter (2014) for specification on the models
and training. The last step in this pipeline involves a classification of top nodes,
since these are not classified in the first step. A support vector machine classifier
is trained in order to predict the top nodes (Kanerva et al., 2014).

For SemEval-2015 the Turku team improved upon the combined classifier ap-
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proach from the previous year. Adding a so-called structured support vector ma-
chine, the new classifier would get a higher score by taking into account a more
global view while training and classifying, instead of the local view of just the
head-dependent relationships between lexical units that had been the previous ap-
proach. As Kanerva et al. (2014) explain, their approach when dealing with the
dependency relations is to predict each predicate independently, i.e. no other pred-
icates or arguments affect the prediction. However, when predicting arguments for
one predicate, a global view is kept for the already predicted arguments for this
particular predicate.

The Turku team were the only team that submitted results in both the open
and gold tracks of SemEval-2015. They have made their parser openly available
for others to use as an off-the-shelf parser4, which in itself is based on the parser
of Bohnet and Kuhn (2012). As we can see in Table 3.2, the Turku parser has the
overall highest score of the parsing systems. However, this is in part attributed
to the fact that the Turku team where the only team participating the gold track,
and thus use gold-standard syntactic companion files as part of the training. If we
examine the results for the open track, we see that the Turku submission performed
substantially lower than the Lisbon team.

3.3.4 Lisbon
The Lisbon team managed to produce state-of-the art results from their parsing
system. As Table 3.2 demonstrates, for the in-domain data set it produced the
second highest score in the open track, and fourth highest score in the closed
track, and for the out-of-domain data set it produced the second highest score in
the open track, and third highest score in the closed track. The Turku parser got a
higher score in both data sets, but this can be attributed to the fact that those scores
were in the gold track.

The Lisbon team’s semantic dependency system is named the TurboSemantic-
Parser5, and is available as open source software. This system is the basis for the
submissions for both SemEval-2014 and SemEval-2015.

The TurboSemanticParser consists of a feature-rich linear model that parametrize
globally over first and second order dependencies (arcs, siblings, grandparents and
co-parents). As noted by Martins and Almeida (2014), the Lisbon system cast
parsing as a structured prediction problem: “Let x be a sentence and Y (x) the set
of possible dependency graphs. We assume each candidate graph y ∈ Y (x) can
be represented as a set of substructures (called parts) in an underlying set S (e.g.,
predicates, arcs, pairs of adjacent arcs)”. A score function f will then decom-

4https://github.com/jmnybl/Turku-Dependency-Parser
5http://labs.priberam.pt/Resources/TurboSemanticParser
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DM PAS PSD

LF.av LF LP LR FF LF LP LR PF LF LP LR FF

Turku# 86.81 88.29 89.52 87.09 58.39 95.58 95.94 95.21 87.99 76.57 78.24 74.97 56.85
Lisbon* 86.23 89.44 90.52 88.39 00.20 91.67 92.45 90.90 84.18 77.58 79.88 75.41 00.06
Peking 85.33 89.09 90.93 87.32 63.08 91.26 92.90 89.67 79.08 75.66 78.60 72.93 49.95
Lisbon 85.15 88.21 89.84 86.64 00.15 90.88 91.87 89.92 81.74 76.36 78.62 74.23 00.03
Riga 84.00 87.90 88.57 87.24 58.12 90.75 91.50 90.02 80.03 73.34 75.25 71.52 52.54

Turku* 83.47 86.17 87.80 84.60 54.67 90.62 91.38 89.87 80.60 73.63 76.10 71.32 53.20
Minsk 80.74 84.13 86.28 82.09 54.24 85.24 87.28 83.28 64.66 72.84 74.65 71.13 51.63

In-House* 61.61 92.80 92.85 92.75 83.79 92.03 92.07 91.99 87.24 – – – –

DM PAS PSD

LF.av LF LP LR FF LF LP LR PF LF LP LR FF

Turku# 83.50 82.11 84.26 80.07 42.89 92.92 93.52 92.33 83.80 75.47 77.77 73.31 42.37
Lisbon* 82.53 83.77 85.79 81.84 00.35 87.63 88.88 86.41 80.19 76.18 80.12 72.61 02.25
Lisbon 81.15 81.75 84.81 78.90 00.27 86.88 88.52 85.30 78.47 74.82 78.68 71.31 02.09
Peking 80.78 81.84 84.29 79.53 47.49 87.23 89.47 85.10 74.75 73.28 77.36 69.61 34.28
Riga 79.23 80.69 81.69 79.72 41.88 86.63 87.56 85.72 76.26 70.37 73.23 67.71 40.76

Turku* 78.85 79.01 81.54 76.63 39.15 85.95 86.95 84.98 76.38 71.59 74.92 68.55 38.75
Minsk 75.79 77.24 80.24 74.46 42.18 80.44 83.07 77.96 62.00 69.68 72.26 67.27 41.25

In-House* 59.24 89.69 89.80 89.58 76.39 88.03 88.10 87.96 81.69 – – – –

Table 3.2: SemEval-2015 results from the gold track (marked #), open track
(marked *) and closed track (unmarked) of the in-domain (top) and out-of-domain
(bottom). LF.av indicates the average LF score across all representations, and is
used to rank the systems in their overall performance.

pose a sum over the substructures, and the highest scoring semantic graph is then
chosen for a given sentence using dynamic programming.

A so-called alternating directions dual decomposition is used in order to
approximate the highest scoring graph in order to reduce the search field. This
reduces the original problem of finding the highest scoring dependency graph into
sub-problems. These sub-problems are predicate and arc-factored parts, unique
roles, grandparents, arbitrary siblings and co-parents, predicate automata and
argument automata. For the technical details on training and parsing see: Martins
and Almeida (2014).

3.4 Conclusions
In this chapter we have reviewed state-of-the-art semantic dependency parsers by
examining a chosen set of parsing systems from SemEval-2015. Overall, we can
state that our review demonstrates that the highest scoring systems are based on
graph-based models rather than transition-based models among our chosen set.
Tree-approximation models that use already well studied and highly developed
syntactic dependency parsing systems can create highly accurate semantic depen-
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dency parsers with an intermediary step where graphs are transformed to trees.
We will now perform an in-depth study of the results of three parsing systems

among the ones presented in this chapter, namely the Peking, Turku and Lisbon
parsing systems. This choice is grounded in the fact that these parsing systems
have the highest accuracy among the SemEval-2015 submissions. The choice
of disregarding the Riga system also stems from the fact that it is based on the
Peking system, and the assumption that the type of errors that this system makes
would resemble the Peking system seems legitimate. We now turn to our in-depth
contrastive error analysis.
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Chapter 4

In-depth Contrastive Error Analysis

In this chapter we present an in-depth contrastive error analysis of the results of
SemEval-2015 for the Peking, Turku and Lisbon submissions. After examining
several aspects of the results of the submissions, we present our most interesting
findings, and use this as a basis for our experiments in the next two chapters.

The analysis of this chapter showed that for the purpose of our thesis an in-
teresting task would be to examine semantic frame classification. Based on our
analysis we will explore a set of features for training a semantic frame classifier,
and setup an experiment which shows results of a hypothetical classifier that could
be an extension of two of the parsing systems examined in this chapter: Lisbon
and Peking.

Another interesting observation in our analysis is that singletons, i.e. nodes
that are not attached to any other node in the semantic dependency graph, could
potentially be an interesting case to study further. A binary classifier for predicting
singletons could help improve the accuracy of semantic dependency parsing by
using its output as additional features to the parser, or as a post-processing step
after the parsing.

A description of the parsing systems that are part of our analysis can be found
in Chapter 3. There where 6 submissions to SemEval-2015, including an ‘un-
official’ submission by a sub-set of the task organizers. We have made the choice
of focusing on three of these parsing systems in our analysis. This is based on two
criteria:

1. The chosen systems should be among those that produce the highest accu-
racy scores in SemEval-2015.

2. The technical approach of the three parsing systems should differ from one
another: both the local transition-based and global graph-based models that
we introduced in Chapter 2 should be represented. We can thus explore
whether different technical approaches produce different types of errors.
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The aim of our in-depth contrastive error analysis is to gain insights to the
performance and errors that current state-of-the-art semantic dependency parsing
systems make. The study is performed in order to:

1. Find similarities and differences in the results among a chosen set of parsing
systems.

2. Compare and contrast their strengths and weaknesses.

3. Empirically identify and verify which types of errors that can be the focus of
future research on improving the accuracy of semantic dependency parsing.

4. Examine the possibility of using the results of our study to modify and im-
prove upon an existing system, or create a new system, in order to improve
existing parsing systems.

In our analysis we draw inspiration from three similar studies made by McDonald
and Nivre (2007), McDonald and Nivre (2011), and Choi, Tetreault, and Stent
(2015). In these studies a comparative analysis of a set of syntactic parsers are
presented, and various types of errors that these parsers produce are highlighted.
The first and second study focus on three types of errors: (1) length factors, (2)
graph factors, and (3) linguistic factors. The third study, in addition to these three
factors, also examine the time complexity of parsing systems: both training and
parsing time is taken into consideration. We will structure our analysis in a similar
fashion, but exclude time complexity, and include the multi-classification task of
semantic frame classification introduced in SemEval-2015. Our focus will thus be
on four factors: (1) length factors, (2) graph factors, (3) linguistic factors, and (4)
semantic frames.

In addition to narrowing down the scope in terms of choosing three parsing
systems, we also exclude results for the PAS target representation. The reasoning
behind this is that the DM and PAS target representations are relatively similar.
Examining Table 3.1 in Chapter 3, we observe that DM and PAS are close to
identical in the number of labels, percentage of graphs being trees, and percentage
of dependencies being projective. The major difference between the two target
representations is the percentage of so-called singletons, i.e. nodes not connected
to any other node in the dependency graph. The DM target representation has
approximately 5 times as many singletons as PAS.

With the exception of singletons, we assume that our analysis of the results for
the DM target representation will yield similar results as for PAS. This hypothesis
was confirmed by running the error analysis on the PAS target representation,
and observing that for most types of errors there is a strong correlation in the
performance of the parsing systems we have examined for DM and PAS.
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DM PSD

LF.av LF LP LR LF LP LR

Peking 85.33 89.09 90.93 87.32 75.66 78.60 72.93
Lisbon 85.15 88.21 89.84 86.64 76.36 78.62 74.23

Lisbon* 86.23 89.44 90.52 88.39 77.58 79.88 75.41
Turku* 83.47 86.17 87.80 84.60 73.63 76.10 71.32

DM PSD

LF.av LF LP LR LF LP LR

Lisbon 81.15 81.75 84.81 78.90 74.82 78.68 71.31
Peking 80.78 81.84 84.29 79.53 73.28 77.36 69.61

Lisbon* 82.53 83.77 85.79 81.84 76.18 80.12 72.61
Turku* 78.85 79.01 81.54 76.63 71.59 74.92 68.55

Table 4.1: SemEval-2015 results from the closed track (unmarked) and open track
(marked *) of the in-domain (top) and out-of-domain (bottom) data for the three
parsers included our the analysis.

Before embarking on our in-depth contrastive error analysis, we will first recap
and further examine some overall statistics on the three parsing systems that we
will use examine in our study.

4.1 Overall Accuracy
In Chapter 3, we presented an overview of the technical aspects of the three pars-
ing systems used for our analysis in this chapter. The Peking system: an ensem-
ble of transition-based and graph-based models, the Turku system: a combina-
tion of several classifiers for classifying specific aspects of the semantic depen-
dency graphs, and the Lisbon system: a graph-based feature-rich linear model
that parametrize globally over first and second order dependencies.

In Table 4.1 we see data on the accuracy of the three parsing systems. The table
has been reproduced from Oepen et al. (2015). The LF.av score is the averaged
score across the three target representations: DM, PSD and PAS. We are interested
in the LF scores as they relate to DM and PSD.
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Examining Table 4.1, we observe that the Peking parser performs slightly bet-
ter than Lisbon on average in the closed track. The Lisbon parser has a higher
overall accuracy in the open track, which attests to the fact that using a syntactic
parser as additional features for the parsing can increase the overall accuracy of
semantic dependency parsing. However, The Peking parser has a higher accuracy
in the closed track for PSD in comparison to Peking. We can conclude that the
Lisbon and Peking systems show comparable results. An ensemble method where
both these parsing systems are used may be an interesting case study for future
work.

Even though the Turku parser participated in the open track, its overall accu-
racy is lower than that of Peking and Lisbon in the closed track. Another obser-
vation is that the Peking parsing system has a higher accuracy on the DM target
representation, but lower than Lisbon on the PSD target representation. On the
out-of-domain data we see that the Lisbon parsing system has the overall highest
score.

It is worth noting that all three parsing systems have a substantially lower
accuracy on the PSD target representation. One of the reasons for this lower
overall accuracy on the PSD target representation can be attributed to the higher
number of dependency types relative to DM. This is also true for semantic frames,
where the PSD target representation has a higher number of frames.

4.1.1 Type of Errors
A somewhat obvious aspect of these results is that the parsing systems perform
better on the in-domain versus the out-of-domain data sets. This is to be expected,
as data-driven parsing will yield better results on data that is within the domain of
the data used for training.

In terms of the specific types of errors we examine: length, graph and linguis-
tic factors, there is an overall drop from in-domain to out-of-domain data, but we
do not observe significant changes in the specific type of errors we have studied.
So we expect the results of our analysis to yield similar results had we chosen
to examine the out-of-domain data sets. The significant difference would have
been an overall lower score for the factors examined. We do not prove this as-
sumption, and more in-depth examination could yield results that contradict our
observations.

We have, for the reasons mentioned above, chosen to solely focus on the re-
sults for the in-domain data. Our research has set out to explore the specific errors
that different parsing systems make. We are therefore less interested in the er-
rors that are related to factors that might be attributed to corpora, such as type
of vocabulary, size of vocabulary, differences in sentence structure, and so forth.
Such analysis would demand a different type of study where the corpora would be
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subject to more in-depth analysis.
In SemEval-2015, the parsing could be run in an open and closed track. We

refer the reader to Chapter 3 for details on the different tracks, and the approaches
used by the parsing systems participating in the open tracks. Lisbon is the only
team that participated in both tracks, Peking participated only in the closed track,
and Turku only in the open track.1

For our analysis we have chosen to use data from the open track for Turku,
since there are no data for Turku in the closed track, and the closed track for
Lisbon and Peking. It is therefore important to note that the comparisons in our
analysis must bear in mind that the Turku parsing system has the added benefit
of using additional resources such as a syntactic parser: see Kanerva, Luotolahti,
and Ginter (2015) for specific details on the additional resources used by Turku.

4.1.2 Measuring parsing accuracy
The measures used for determining the scores of the submission are precision,
recall, and F-score. When calculating these, we use the measures true positives:
instances that have been correctly predicted, false positives: instances that have
been falsely identified, and false negatives: instances that should have been pre-
dicted, but have not been predicted.

Precision, also known as positive predictive value, is a measure for the reliabil-
ity of a system’s predictions. These are the dependencies that have been correctly
assigned during parsing. We calculate this as follows:

Precision =
true positives

true positives + false positives

Recall, also known as sensitivity, is the measure for how robust a system is.
These are the fraction of relevant dependencies that have been assigned during
parsing. This measure is calculated as follows:

Recall =
true positives

true positives + false negatives

F-score is the so-called harmonic mean of the precision and recall. The har-
monic mean is used as a way to weight the precision and recall of a system towards
the lower end of both scores. This is done in order to create a balance between
precision and recall so that we do not rely too heavily on either when determining
the performance of a system. The F-score is used as the primary evaluation metric
in our analysis of the results of SemEval-2015. It is calculated as follows:

1Turku also participated in the gold track, as the only team. We exclude the gold track from our
analysis as it does not provide any significant insights to the comparative nature of our analysis.
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F-score = 2 ∗ precision * recall
precision + recall

We will now start our error analysis by first examining errors related to length
factors, which for our purposes include sentence and dependency langths.

4.2 Length factors
As McDonald and Nivre (2007) point out, it is well known that syntactic parsing
systems produce results with lower accuracy for longer sentences. We observe
the same phenomena in the results of our three parsing systems: parsing accuracy
has an inverse correlation with sentence length. As McDonald and Nivre (2011)
observe, this is primarily due to more complex constructions in longer sentences,
such as prepositions, conjunctions, and multi-class sentences.

Another type of length factor is the length of the dependencies themselves. We
observe a decrease in parsing accuracy as the length of the dependencies increase.
We define the length of a dependency from wordwi towj as |j−i|. In our analysis
a length of 0 is used to denote a top node dependency. For the English language,
and from examining the data sets used in SemEval-2015, we can generally state
that short dependencies are modifiers of nouns, such as determiners, adjectives
or pronouns. Longer dependencies are in most cases words that modify the main
verb or root of the sentence.

4.2.1 Sentence length
In this section we will examine sentence length as a factor of parsing. Firstly,
we point out the distribution of sentence lengths in the training and test data in
Figure 4.1, and 4.2 respectively. The distribution approximates the Bell curve,
and the average sentence length is 22.51 lexical units for the training, and 22.66
for the test data. However, the test data has a distribution where the approximation
towards the Bell curve is more crude due to its relatively smaller size.

In Figures 4.3 and 4.4 we see the precision and recall for the three parsing
systems for sentence length. The graphs in these Figures show precision and
recall for sentences in bins of 10. If we look at the DM target representation,
we see that the results of Lisbon and Peking are quite similar, where there is a
correlation of precision and recall in relation to sentence length. The overall trend
is that for longer sentences, the precision and recall of the parsing decreases. This
overall trend was also observed by McDonald and Nivre (2007), McDonald and
Nivre (2011), and Choi et al. (2015) when examining syntactic parsers.
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Figure 4.1: Distribution of sentence lengths and their frequency in the training
data.

In comparison to the results from the syntactic dependency parsers examined
in the studies of McDonald and Nivre (2007), McDonald and Nivre (2011), and
Choi et al. (2015), in our analysis we see a slight upwards bump in precision and
recall for the last bin that includes sentences that are longer than 50 lexical units.
This can be explained by the fact that there are very few sentences with more than
50 lexical units in the testing data set, and that a slight bump might be attributed
to the relatively smaller size of that bin, and thus an artifact. It is therefore worth
noting that changing bin sizes would give us slightly different graphs, but that
the overall trend would nonetheless be a slight decrease in accuracy as sentence
lengths grow.

Another factor that can impact the bump in the last bin is that for semantic
dependency graphs we might actually be dealing with two or more disjoint graphs.
For sentences that have more than 50 lexical units, a sentence might produce a
semantic dependency graph that would be similar to that of two sentences, and
we thus would expect a higher accuracy on the combined accuracy of these two
graphs for one long sentence. This would not be possible in syntactic dependency
parsers, where we don’t have the possibility of disjoint trees.

Studying the graphs in Figures 4.3 and 4.4, we observe that the Lisbon and
Peking systems share quite a similar trajectory for both the DM and PSD target
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Figure 4.2: Distribution of sentence lengths and their frequency in the test data.

representations, with only subtle differences. The Peking parsing system performs
better on the DM target representation, while the Lisbon parsing system performs
better on the PSD target representation. However, for sentences smaller than 10
lexical units, the Peking parsing system has a higher precision and recall than
Lisbon on the PSD target representation. On the DM target representation the
trend is opposite; the Lisbon parsing system outperforms Peking on sentences
that are longer than 50 lexical units. These difference might be attributed to the
differences in the technical aspects of these parsing systems.

The Lisbon parsing system use a technique where several graphs are created,
and then an approximation is used to select the highest scoring graph. For longer
sentences this technique may result in higher accuracy as it may be more capa-
ble of producing the disjoint graphs that are possible for longer sentences. See
Martins and Almeida (2014) for a detailed description of the Lisbon parser. The
Peking system, on the other hand, use a transition-based model, and as such,
longer sentences can be more challenging. This is due to the nature of transition-
based models, where longer dependencies are more difficult to parse due to the
linear nature of its transitions in the parsing.

Turku on the other hand has an overall different trajectory in comparison to the
other two parsing systems on the DM target representation. The largest deviation
from the overall trend is that the Turku system, when parsing on the DM target
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Figure 4.3: Precision relative to sentence length in bins of size 10. Precision for
the DM target representation.

representation, show a particularly low precision and recall on sentences that have
lower than 10 lexical units. This is not present when parsing on the PSD target
representation, and should be considered an anomaly that might be attributed to
some technical detail of the Turku parsing system. Since the Turku parsing system
use a Support Vector Machine for its parsing, shorter sentences might pose an
issue if the features used depend on more information than what is present for
shorter sentences. More analysis is needed in order to clarify the reasoning behind
this anomaly in the Turku parsing system.

4.2.2 Dependency length
Another interesting phenomena is the accuracy of a parsing system related to the
length of dependencies. The parsing systems we examine have lower accuracy
for longer dependencies. This is due to several reasons. One reason is sparsity,
there are fewer longer dependencies than shorter. Another reason is that longer
dependencies often represent more complex linguistic phenomena.

Observing the graphs in Figures 4.5, 4.6, we see two graphs representing the
number of dependencies of each length for the Lisbon parsing system. The graphs
have a distribution over the dependencies in the gold data, the predicted dependen-
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Figure 4.4: Recall relative to sentence length in bins of size 10. Recall for the
PSD target representation.

cies, and the matches between the gold and predicted data (the correct predictions
made by the parser).

The most obvious observation is that the Lisbon parsing system makes fewer
predictions than what is found in the gold standard data set on both the DM and
PSD target representations. The exception occurs when dealing with shorter de-
pendencies, and examining dependencies of length 1 (a dependency between ad-
jacent words), we observe that there are more dependencies in the predictions than
gold standard data on both DM and PSD. As the length of dependencies increase,
the number of predictions and matches decrease. These same observations hold
for the Peking and Turku parsing systems.

To further elaborate on this point, we introduce the F-score of all parsing sys-
tems in relation to dependency length in Tables 4.7 and 4.8 for both target rep-
resentations. Here we have divided dependency lengths in bins of 3 in order to
make the graphs more readable. The F-score of the parsing systems for depen-
dency length show a substantial decrease as dependency lengths increases.

The performance of Lisbon is noteworthy in this regard, and this may be part
of the explanation as to why its overall performance is better than Peking and
Turku. The Lisbon system has a substantially higher F-score for longer depen-
dencies. Peking and Turku have somewhat similar results, with Peking having
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Figure 4.5: The number of dependencies for the Lisbon parsing system accord-
ing to their length (where 0 denotes top nodes) for the DM target representation.
The graph shows the number of dependencies in the gold data set, the predicted
dependencies, and the matches between predicted and gold.

higher F-scores for dependency lengths that are between 1 and 12, but lower for
dependencies above 12 (overall). This might be explained by the fact that Turku
participated in the open track, and thus had access to other resources such as a
syntactic parser. It might also be due to technical details of the parsing systems.

All three parsing systems demonstrate a decline in F-score as dependency
lengths increase on both the DM and PSD target representations. However, there
is a slight return to higher F-scores once the dependencies reach lengths ranging
from 12 to 18. This is most prevalent for the Lisbon parser, but is also observed
in the Turku and Peking parsing systems.

Both sentence and dependency length have a distribution in the data sets where
the frequency of a length factor is correlated with the accuracy for parsing that
specific length. Overall we can state that the higher the frequency of a given length
factor, the more likely it is that the parsing system has a higher accuracy when
parsing a sentence or dependency with a given length. It is therefore important not
to exaggerate the importance of the length factor itself, but also take into account
the distribution with which it occurs in the data used for training and testing. A
different data set and distribution would result in, if our assumptions are correct,
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Figure 4.6: The number of dependencies for the Lisbon parsing system according
to their length (where 0 denotes top nodes) for the PSD target representation.
The graph shows the number of dependencies in the gold data set, the predicted
dependencies, and the matches between predicted and gold.

parsing systems with a different correlation between length and accuracy.
However, since we are dealing with natural language, we can also assume that

a relatively similar distribution of sentence and dependency lengths observed in
the SemEval-2015 data sets will be prevalent in other corpora. It is therefore im-
portant for any research on dependency parsing to consider length factors. It is
also important to further explore the linguistic factors that may impact the accu-
racy in relation to the length factors. Longer sentences include more complex sen-
tence structure, and longer dependencies may include more complex grammatical
structures.

We will now turn our attention to specific graph factors: singletons, and ex-
amine the accuracy of the three parsing systems in relation to these aspects of
semantic dependency parsing.
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Figure 4.7: F-score for the three parsing systems on the DM target representations
for dependency length in bins of 3.

4.3 Graph factors
As for graph factors we will examine the accuracy of the parsing systems of our
analysis in relation to singletons, i.e. nodes that have been left outside of the
dependency graph. This factor is specific to semantic dependency parsing, as
with syntactic dependency parsing all lexical units are connected. In the semantic
dependency graphs of the DM and PSD target representations, so-called semanti-
cally vacuous lexical units are left outside the dependency graph. We will examine
how the three parsing systems perform in accurately predicting these.

4.3.1 Singletons
Examining Table 4.2, we can see the results of the three parsing systems in ac-
curately predicting singletons. To be precise, the prediction of singletons in the
three parsing systems are the result of nodes left out from the dependency struc-
ture rather. This is a step that could be considered as a binary classification task
in its own right. However, the three parsing systems that we examine do not make
any explicit classification of singletons, and the nodes left outside the graph are a
side-effect of the parsing.
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Figure 4.8: F-score for the three parsing systems on the PSD target representations
for dependency length in bins of 3.

Looking closer at Figure 4.2, we see that for both target representation, Turku
is the parser that has the highest number of singletons as the byproduct of its
parsing, but a large portion of these should in fact be part of the dependency
structure. The other two parsing systems also have a higher number of singletons
than the gold standard. All parsing systems could therefore increase the accuracy
of their parsing by attempting to parse more lexical units as part of the dependency
structure.

A few cases do stand out regarding singletons. Examining Graphs 4.9 and
4.10, we observe that for certain part of speech tags, the accuracy is quite dramat-
ically different than the others. The two graphs show the number of singletons,
the predicted singleton by the parsing systems, and the match between these two,
i.e. correctly established a lexical unit as a singleton.

For the DM target representation we observe substantial deviation in gold,
predicted and match for ‘VBZ’ (verb, 3rd person singular present), ‘VBD’ (verb,
past tense), ‘POS’ (possessive ending), ‘RP‘ (particle) and ‘RB’ (adverb) tags.
For the PSD target representation the ‘RB’ (adverb) tag stand out.

It is not clear as to why certain type of singletons are more difficult to parse
than others, however, we suspect that it is connected to ambiguous words that have
a wide range of different functions in a semantic dependency graph. Classifying
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Gold Test Match Precision Recall F-score

Peking 7678 7681 7406 96.42 96.46 96.44
Lisbon 7678 7727 7425 96.09 96.70 96.40
Turku 7678 7850 7371 93.90 96.00 94.94

Peking 11600 11736 11508 98.06 99.21 98.63
Lisbon 11600 11912 11494 96.49 99.09 97.77
Turku 11600 12173 11474 94.26 98.91 96.53

Table 4.2: Results for singletons on the DM (top) and PSD (bottom) target repre-
sentations.

singletons could be seen as a distinct binary classification task. Pursuing this task
one could examine closely the specific type of singletons that are problematic for
the parsing systems. A singleton classifier could then possibly be used as a pre-
processing step before parsing, or as a post-processing step to clean up possible
errors made by the parsing systems. However, since we have decided to pursue the
task of semantic frame classification, we leave this task open for future work. The
F-score of the systems for predicting singletons is also quite high, so it might be
difficult to reach a more accurate system if we would pursue the task as a binary
classification task.

4.4 Linguistic factors
The linguistic aspects of semantic dependency parsing that we will include in our
analysis are dependency types. When dealing with dependency types, the analysis
will differ to a higher degree between the target representations than other factors.
This is due to the fact that the annotation schemes used in different target repre-
sentations can be based on very different set of labels, and the number of unique
labels can vary greatly. This is the case for the DM and PSD target representa-
tions. It is therefore important to note that the analysis in this section may not be
as general as other findings such as the length factors.

4.4.1 Dependency types
The dependency types found in the DM and PSD target representations follow
different annotations schemes. This is true for both the number of dependencies,
their distribution and what they signify. In the test data set, the DM target rep-
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Figure 4.9: Singletons broken down by punctuation and part-of-speech tags for
Lisbon on the DM target representation.

resentation has 43 dependency types and 24813 dependencies, whereas the PSD
target representation has 77 types and 22258 dependencies.

If we examine Figures 4.11 and 4.12, we have two graphs with data for the 20
most frequent dependency types for both the DM and PSD target representation.
The graphs present the number of dependencies in the gold data, the predictions
made by the Lisbon parser, and the number of matches between the predicted and
gold. We see that for the DM target representation the first two dependency types,
‘ARG1’ and ‘ARG2’, account for 14884 of the 24813 dependencies, while for the
PSD target representation the distribution is more evenly spread across the most
frequent types. In terms of the parsing accuracy, we see that the number of gold
and predicted dependencies are more similar for DM than for PSD, where there
are more fluctuations.

From the Figures 4.11 and 4.12, we observe that the parsing of the Lisbon
parser is relatively conservative, i.e. there are less dependencies in the output than
there are in the gold standard data. This is particularly evident for dependencies
that are less frequent.

As we observed with singletons, there are a few dependency types that stand
out with a larger margin of error. Examining Figure 4.11 we see that for Lisbon
on the DM target representation, there is a great mismatch between the number
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Figure 4.10: Singletons broken down by punctuation and part-of-speech tags for
Lisbon on the PSD target representation.

of frames in the gold data, the predicted dependencies, and the match, for certain
type of dependencies such as ‘conj’ (conjunction) and ‘subord’ (subordination).
These are more complex grammatical structures than for instance ‘ARG1’ and
‘ARG2’.

In Figures 4.13 and 4.14 we see the F-scores of our parsers over the same
distribution of the top 20 most frequent dependencies. There is a large discrepancy
between the three parsers for each dependency type, indicating that the technical
differences play a great role in this regard. The differences are less pronounced
for the most frequent dependency types, but for ‘_and_c’, ‘ARG3’, ‘_or_c’, ‘part’,
and ‘_but_c’, the variations are substantial. Although less extreme, we see the
same tendencies for the PSD target representation.

An ensemble method of the semantic dependency parsing systems of our anal-
ysis might be an interesting approach if one is able to exploit the relative strengths
of each system. An approach could be to take the output of all three parsers and
by way of some heuristics choose the most probably dependencies based on the
information of their respective error rates for each dependency type.

However, we would still face low scores for the type of dependencies where
all three parsing systems have an equally low F-score. We also observe that for
the most part, the Lisbon parser has a higher F-score on the individual dependency
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Figure 4.11: The 20 most frequent dependency types for Lisbon on the DM target
representations. The graph shows the number of dependencies in the gold data
set, the predicted dependencies, and the matches between predicted and gold.

types. An ensemble method would thus only boost the scores of those dependency
types where the other parsers have a higher score. We will therefore not attempt
such an approach as the results may not be any substantial increase compared to
that of the Lisbon parsing system.

We now turn to the last aspect of our analysis, namely semantic frames. We
will show that in relation to the other factors that we have examined in this chapter,
semantic frames show the most potential for an increase in accuracy from the
previous results.

4.5 Semantic Frames
Similar to dependency types, there is also a high degree of divergence between
the two target representations that we are examining. In Table 4.3 and 4.4, we
see some statistics on the frames in the data sets. It is important to note that we
exclude a range of semantic frames in this study. This is done so that we may
follow the scoring scheme set forth by the SemEval-2015 organizers, which the
semantic frame scores for all the parsing systems are based upon.
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Frame Total Percent Frame* Total* Percent*

n:x 115049 18.64 n:x 4529 18.69
q:i-h-h 72278 11.71 q:i-h-h 2891 11.93
named:x-c 62208 10.08 named:x-c 2549 10.52
p:e-u-i 54513 8.83 p:e-u-i 2061 8.51
n_of:x-i 45542 7.38 n_of:x-i 1614 6.66
v:e-i-p 34475 5.59 v:e-i-p 1342 5.54
a:e-p 27802 4.5 a:e-p 988 4.08
card:i-i-c 27128 4.39 card:i-i-c 902 3.72
pron:x 14187 2.3 pron:x 647 2.67
n_of:x 12701 2.06 n_of:x 510 2.1

Total 465883 75.48 Total 18033 74.43

Table 4.3: The frequency distribution of frames in the training and test id (marked
*) id for the DM target representation.

Frame Total Percent Frame* Total* Percent*

ev-w218f2 8355 9.35 ev-w218f2 374 10.18
ev-w2833f1 7482 8.37 ev-w2833f1 350 9.53
ev-w1566f3 1731 1.94 ev-w1566f3 74 2.01
ev-w1239f1 845 0.95 ev-w2888f2 51 1.39
ev-w218f3 821 0.92 ev-w218f3 38 1.03
ev-w2888f2 810 0.91 ev-w410f1 31 0.84
ev-w2772f1 801 0.9 ev-w2875f4 29 0.79
ev-w218f7 657 0.73 ev-w1239f1 28 0.76
ev-w410f1 612 0.68 ev-w2671f1 24 0.65
ev-w3525f6 567 0.63 ev-w3586f1 22 0.6

Total 22681 25.37 Total 1021 27.8

Table 4.4: The frequency distribution of frames in the training and test id (marked
*) id for the PSD target representation.
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Figure 4.12: The 20 most frequent dependency types for Lisbon on the PSD target
representations. The graph shows the number of dependencies in the gold data set,
the predicted dependencies, and the matches between predicted and gold.

The SemEval-2015 scoring scheme reduces the number of frames to be part of
evaluation by only including frames for tokens that have a part of speech tag that
starts with the letter ’V’2, and are classified as being predicates3, i.e. a node with
outgoing dependency edges in the semantic dependency graph. This was done in
order to only score frames on potentially ambiguous verbs.

Both the number of unique frames and instances in the data sets have been
reduced substantially by the scoring scheme, and the number of frames in DM
and PSD are closer to each other. The DM and PSD in-domain data have 3459
and 3584 instances of frames to classify respectively, and 3750 and 3919 on the
out-of-domain test data respectively. This makes it possible to have a more empir-
ically similar base for comparing the results when classifying semantic frames on

2Part of speech tags that are equal to ‘MD’ should also have been included in this selection if
the goal is to check for all possibly ambiguous verbs. Since we are interested in comparing our
results to that of the SemEval-2015 submissions, we follow the scoring practices of the organizers.

3Some details on evaluation can be found here: https://tinyurl.com/msh6jr8.
However, the specific details on the exclusion of frames not starting with ‘V’ and being a predi-
cate are not present in any of the scientific papers that we have examined. The scoring scheme was
revealed by examining the scoring files included in the package with the training and testing data
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Figure 4.13: F-score for the three parsing systems for the 20 most frequent depen-
dency types for the DM target representations.

both target representations. However, the number of unique frames are still some-
what skewed, where the unique number of frames in both training and testing are
substantially higher for PSD in comparison to DM.

Examining Tables 4.3 and 4.4, we see the frequency and percentage of the top
10 most frequent frames in both target representations. It is important to note that
the DM target representation has a much higher percentage of its total number of
frames (75.48% in the training) in the top 10 in comparison with PSD (25.37% in
the training). Another interesting phenomena to notice is that the distribution of
frames in the training and test data for DM has a very similar distribution. The
top 10 frames share approximately similar percentages, and have the exact same
rank. For the PSD target representation we see that there are some variations on
the top 10 frames. Some of the most frequent frames in the top ten for the training
data does not appear in the testing data.

In Figure 4.15 we see a graph for the 30 most frequent frames in the DM
target representation and the predictions made by the Peking parsing system. We
observe that with the exception of a few frames, the Peking system is quite conser-
vative, i.e. making fewer predictions than the gold data. As the frequency of the
frames decrease, this gets more pronounced, and the number of correct matches
also decrease substantially.
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Figure 4.14: F-score for the three parsing systems for the 20 most frequent depen-
dency types for the PSD target representations.

In Figure 4.16 we can observe the precision, recall, and F-score over the same
distribution for the Peking system. The results are very interesting in the sense
that there is quite a large fluctuation in scores for the 30 most frequent frames.
There is a large discrepancy in precision and recall, at times very low scores, and
as such we are left with low F-scores for a number of frames.

The fluctuations and relative distribution of precision, recall and F-score was
also observed in Turku. The Lisbon team did not participate in the task of frame
classification. The same type of numbers was also observed for the PSD tar-
get representation, i.e. quite similar graphs, and we therefore omit reporting the
graphs visually.

From these observations we think that it would be interesting to examine frame
classification as its own task. We will base the decision to do so on a solid em-
pirical founding after having examined a wide variety of factors connected to the
semantic dependency parsing systems of our study.
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Figure 4.15: The distribution of the 30 most frequent semantic frames for Peking
on the DM target representation. The graph shows the number of frames in the
gold data set, the predicted frames, and the matches between predicted and gold.

4.6 Conclusions
In this chapter we have examined the results of Peking, Turku and Lisbon parsing
systems as submitted to SemEval-2015. Our examinations have uncovered some
interesting phenomena, such as the fact that the overall accuracy of all parsing
systems drop in correlation to sentence and dependency length. That the parsing
systems are more prone to errors in regards to certain graph and linguistic factors.
We have shown that, although some parsing errors can be attributed to lower fre-
quency in the training data, there are also other factors that impact parsing where
an increase in training data would not necessarily translate to better results. These
type of errors are more related to the technical aspects of the parsing systems
themselves. We have seen that different parsing systems produce different types
of errors. The results of such an overall analysis could lead the way for ensemble
methods where an error analysis is used as basis for weighting.

However, the error analysis did not produce enough evidence to build an
overall strategy for improving upon the results of the three semantic dependency
parsers examined in this chapter. As mentioned previously, we have instead cho-
sen to focus on improving the accuracy of the classification task of predicting
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Figure 4.16: Precision, recall and F-score of the 30 most frequent semantic frames
for Peking on the DM target representation.

semantic frames. This aspect of semantic dependency parsing is not well re-
searched, and the results of our analysis seem to indicate that there can be room
for improvement. In the next chapter we present a set of experiments where we
attempt to improve upon the results of SemEval-2015.
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Chapter 5

Semantic Frame Classification

The task that we embark upon is to build a semantic frame classifier. The steps
involved in this process are threefold:

1. Find a machine learning algorithm for the classification task.

2. Investigate the effects of using different types of linguistically motivated
features as input for training.

3. Present the results of our classifier and compare our results with the current
state-of-the-art.

The motivating force behind our endeavours is the analysis presented in Chap-
ter 4. Our explorations led us to the conclusion that an interesting aspect of se-
mantic dependency parsing would be to elevate the accuracy of semantic frame
classification. The potential that resides in a more accurate semantic frame classi-
fier is the possibility of using its results to get better semantic dependency parsing
results. The output of our semantic frame classifier could be used as additional
features for a semantic dependency parser.

We start this chapter by taking a closer look at the data sets that we use for
training, developing and testing, through a set of experiments, a classifier for pre-
dicting semantic frames. The experiments and results of the classification will be
presented in Chapter 6. In this chapter we will focus on the different types of
feature selection that we will examine, and the machine learning algorithms that
we will use, as part of of our experiments in Chapter 6.

We use the DM and PSD target representations as basis for our experiments,
and leave out PAS as it does not have semantic frames as part of its annotation
scheme. This aligns with the analysis of the SemEval-2015 submissions from the
previous chapter.

57



5. SEMANTIC FRAME CLASSIFICATION

The main part of this chapter will be dedicated to presenting the features that
we use as parameters for training our classifier. Features are individual properties
that are either derived directly from the data sets, or by way of some transfor-
mation which can also include additional resources. We split our semantic frame
classification into two different classifiers where the feature sets used for training
differentiates their outcome and usage:

1. Classifying semantic frames based on lexical, morphological and syntactic
features.

2. Classifying semantic frames based on lexical, morphological and semantic
features.

The first set of experiments make use of features that do not rely on semantic
dependency graphs. Our end result is a classifier where the predictions can be used
as part of the input to a semantic dependency parser. This could possibly increase
the accuracy of state-of-the-art semantic dependency parsers. The second set of
experiments leads to a classifier that relies on the results of a semantic dependency
parser for its classification. We leave out syntactic information in this set of ex-
periments in order to compare our results to the SemEval-2015 submissions that
participated in the closed track. The last set of experiments would be a semantic
frame classifier that relies on both a syntactic and semantic parser, and would be
comparable to the parsing systems that participated in the SemEval-2015 open
track.

In this chapter we will also present our experimental setup, i.e. how we prepare
the data for training, development and testing. We will also provide overviews of
the machine learning algorithms used in our experiments. We have experimented
with 4 machine learning algorithms: Decision Trees, Support Vector Machines,
Logistic Regression and K-nearest neighbors. This ensures that we have a com-
parative basis for the choice of a machine learning algorithm for frame classifica-
tion.

5.1 Experimental setup
We have already explored the details of our data sets in Chapter 3. In this section
we focus on how we use the data to train, develop and evaluate our machine learn-
ing models. As part of SemEval-2015, an official test data set was made available,
and as such we do not need to set aside a test set for our final evaluation. In order
to have a data set for tuning while we are experimenting with our feature selection,
we need to set aside part of the training data for development purposes.
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Type # Sentences Frames # Frames

DM training 28525 466 494122
DM development 7131 378 123128
DM test id 1410 290 24229
DM test ood 1849 299 23486

PSD training 28525 5074 72006
PSD development 7131 2705 17387
PSD test id 1410 1174 3673
PSD test ood 1849 1265 3882

Table 5.1: The data sets used for training, development and testing. The test set
consists of in domain (id) and out of domain (ood) data. The columns signify
number of sentences, number of unique frames, and number of occurences of
frames.

Type # Sentences Frames # Frames

DM training 28525 294 67493
DM development 7131 231 16295
DM test id 1410 162 3459
DM test ood 1849 173 3750

PSD training 28525 4951 69669
PSD development 7131 2634 16761
PSD test id 1410 1141 3584
PSD test ood 1849 1209 3919

Table 5.2: The data sets used for training, development and testing, but excluding
frames on the basis of the rules of the SemEval-2015 evaluation criteria.
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In Table 5.1 we can observe some higher order statistics on the training, devel-
opment and test data sets. We have split the original training set using a commonly
used 80-20 split, where we extract 20% of the training data for tuning and devel-
opment purposes during our experimentation. This is to ensure that we do not run
our experiments on the test data set, and thus avoid overfitting our machine learn-
ing models by selecting features that increase the accuracy of our models directly
on the test data.

Once we are ready to run a final set of tests, we will train our classifiers on
the whole training set, including the held out development set used for tuning
purposes, and observe the accuracy of our models on the official held-out test set.
This will then be presented as the final results of our classification task.

In Table 5.1 we observe that the test data consists of in-domain (id) and out-
of-domain data (ood). We will test our machine learning models on both these
data sets in the final rounds of testing. Our hypothesis, based on the results of
the SemEval-2015 submissions, and general knowledge about machine learning
algorithms, is that the accuracy of our classifier will be lower on the out-of-domain
data sets.

Examining Table 5.1 further, we see that the training data consists of 28525
sentences, the development data set of 7131 sentences, the in-domain test set of
1410 sentences and out-of-domain test set of 1849 sentences. For the DM target
representation we observe a total of 494122 occurrences of frames in the training
set, consisting of 466 unique frames. For the PSD training set, we observe 72006
occurrences of frames and a total number of 5074 unique frames. It is therefore
important to note that due to the higher number of unique frames in the PSD data
set, we can hypothesize that we will observe a relative drop in the accuracy of our
classifier in comparison to the DM target representation.

In evaluating the performance of our models, we follow the SemEval-2015
scoring scheme, which was presented in Chapter 4. The scoring scheme excludes
all tokens that are singletons, and only evaluates those that have a part of speech
tag that starts with the character ‘V’. However, it is worth mentioning that that dur-
ing training and prediction, we do not use this information. It is only at evaluation
time that we exclude all the tokens that do not fit the scoring scheme.

Now that we have some further insight into the data, and the experimental
setup for our classification task, we present the feature design that we will use
in our experiments. It is worth noting that we are mainly interested in feature
design in our experiments, and leave out parameter tuning of machine learning
algorithms.
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Bramalea said it expects to complete the issue by the end of the month .
g_p_n say it expect to complete the issue by the end of the month _
NNP VBD PRP VBZ TO VB DT NN IN DT NN IN DT NN .

named:x-c v_to:e-i-h-i pron:x v:e-i-h _ v:e-i-p q:i-h-h n:x p:e-u-i q:i-h-h n_of:x-i _ q:i-h-h n:x _
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Figure 5.1: DM target representation with tokens, lemma, part of speech tags,
semantic frames and labeled semantic dependencies.

Bramalea said it expects to complete the issue by the end of the month .

root

nsubj
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punct
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dobj
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det
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Figure 5.2: An example of syntactic dependencies, taken from the training data,
and annotated with dependencies and labels with the so-called Stanford Basic
scheme.

5.2 Feature Design
Feature design is the process of selecting the data that will be given to our machine
learning algorithms as basis for its learning. For each token in the data, we extract
a set of features that are used as input data for the machine learning algorithms as
parameters for learning. During the training, each feature set has a corresponding
semantic frame as its correct class. The machine learning will use this as basis
for learning a mapping from a set of features to a correct semantic frame. Once
a model has been trained, we can evaluate its performance by predicting classes
for unseen tokens in the data used for development purposes. The score from this
evaluation will be the basis for tuning, i.e. adjusting the set of features used for
training.

There are no well defined methods by which we can empirically select the
features that will result in the most accurate machine learning model. This is due
to the fact that the feature space that is possible to construct is not finite, and we
therefore have no way of testing all possible feature sets in order to find the set that
will produce the most accurate classifier. We must therefore heuristically select
our features by examining their impact on the accuracy of our classifiers.
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When choosing features for our classifier we consider two factors:

1. Improving accuracy: We aim for features that increase overall accuracy of
our model.

2. Reducing overfitting: We create a development set to ensure that we do not
over-fit our features to the data.

We have chosen to base our feature extraction on 4 sets of feature types: lexi-
cal, morphological, syntactic and semantic.

Examining Figure 5.1, we have an example sentence taken from the training
data which includes most of the information we will use as features. This example
has been taken from the DM target representation. The first layer of information
in Figure 5.1 is the labeled semantic dependencies. We will use these labeled
dependencies as part of our feature space in the second classifier.

In the next layer of information we have the token forms, i.e. the words in their
original form. The word forms are the units of information that are closest to the
actual data (corpora), and the processing that has been performed in this layer is a
tokenization step. For frame classification, we will use the token form as basis for
our first set of experiments. However, as we will show in our experiments, using
token form as our sole feature has its limitations, and with the size of our data and
choice of machine learning algorithms, additional features are necessary in order
to achieve state-of-the-art accuracy.

In the next layer of Figure 5.1, we have the token lemma. The lemma of a
word is its base form representation. An example of this are the verbs ‘run’,
‘runs’, ‘ran’ and ‘running’, which are different word forms that share the same
lemma ‘run’. Lemmatisation is a lossy processing step whereby we lose some
information by transforming words from one form to another. What we gain from
processing tokens to find their base representation is a reduced vocabulary size,
which in turn presents us with more coarse representations of a token and its
context. The usage of lemma as features can thus increase classification accuracy
for a set of tasks. However, some information is lost in this process, which for the
case of semantic frame classification can lead to lower precision for tokens that
are possibly mapped to a large set of semantic frames.

In the layer below the token lemma, we have part of speech tags. These are
grammatical categories, such as nouns, verbs, and adverbs, that have been as-
signed to the tokens of a sentence. Part of speech tags can help in disambiguation
tasks when there is a possible link to a semantic frame for a token that has a set of
possible frames where token form, or token lemma, fall short.

In Figure 5.2 we have an example of syntactic dependencies. For the syntac-
tic dependencies we use the companion files distributed as part of SemEval-2015,
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where syntactic dependencies on the training and test data have been produced us-
ing the so-called Stanford Basic scheme derived from the Penn Treebank (Taylor,
Marcus, & Santorini, 2003). The parser of Bohnet and Nivre (2012) have been
used for the parsing. Syntactic features will be part of our first classifier.

We will now examine how we will use these features in our experiments, and
give definitions for these feature sets.

5.2.1 Lexical and Morphological Features
The lexical features that we will examine in our experiments are the token forms,
token lemmas themselves, and prefixes and suffixes that we can derive from these.
The information contained in word forms are the most fine grained information
that resides in a sentence, i.e. all other additional layers of information, such as
lemmas, part of speech tags, syntactic and semantic dependencies, are in some
ways an abstraction layer built upon the word forms themselves. However, for
infrequent words, the word form is a sparse feature, and our machine learning
models’ predictive power will suffer as a result.

The lemma of a token will not fully resolve the sparsity connected to infre-
quent word forms. However, it will reduce the vocabulary of a corpus, and pro-
vide learning examples whereby a machine learning algorithm can connect an
infrequent word form with its family of word forms, i.e. its lemma. However,
for more frequent verbs, the disambiguation need to distinguish between many
classes of semantic frames, and we thus have a risk of reducing the accuracy of
our models. A combination of form and lemma, is more likely to produce greater
accuracy, which will be confirmed through our experimentation.

Prefixes and suffixes of word forms may introduce patterns in the data that
may be useful for semantic frame classification. Our hypothesis is that, partic-
ularly suffixes, with such patterns as ‘ing’, ‘ed’, and ‘ang’, may provide some
additional information on the usage and context of a verb. However, these may
also be too general too actually provide useful features for distinguishing between
the correct semantic frame. We will examine the effects of adding prefixes and
suffixes so that we can observe the potential effects such additional features may
have. We compute prefixes and suffixes by extracting n characters from the end
(for suffixes) and from the beginning (for prefixes) of a word form.

5.2.2 Syntactic Features
The syntactic features we will experiment with as part of our feature selection
are the labeled dependencies in a syntactic dependency tree. Each sentence in the
data set has a corresponding syntactic dependency tree. These trees are highly
interesting in relation to our classification task. The semantic frame of a token
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is in many cases connected to the number of arguments a verb can take and the
type of dependency labels they have. Using the dependents of a token as a set
of features may help distinguish between the various frames for ambiguous verbs
where other features may be less relevant. Our experiments will include using the
dependency labels in connection with the token form, token lemma, and the part
of speech tag of the dependent.

We will also examine the impact that the head will have on detecting semantic
frames. The head in a construct, as we described in Chapter 2, determines the
semantic category of a construct, whereas the dependents gives semantic speci-
fication. Our hypothesis is therefore that heads are less informative features in
distinguishing semantic frames. However, it is worthwhile examining this and
empirically verify our hypothesis.

5.2.3 Semantic
For semantic features we are using the gold standard semantic graphs provided by
the SemEval-2015 organizers in the DM and PSD target representations. In the
same way as syntactic features, the semantic graphs can be useful in distinguish-
ing frames by using the dependents in a semantic dependency graph. Examining
Figure 5.1, we can illustrate this by examining the verb ‘complete’, which has
two dependents: ‘it’ and ‘issue’, with the labels ‘ARG1’, and ‘ARG2’ respec-
tively. This indicates that this particular verb can have two dependents that are of
type ‘ARG1’ and ‘ARG2’, which might distinguish it from other verbs used in the
same context.

When using dependents as features, we are faced with the possibility of having
too sparse feature representations. Using the part of speech tags of dependents,
instead of their form or lemma, can possibly help mitigate this, and lead to repre-
sentations that are more informative for our classification.

Now that we have presented the possible feature space that we will use for our
classification task, we will now examine the machine learning algorithms used as
basis for our classification.

5.3 Classification Algorithms
We have chosen a set of four classifiers for predicting semantic frames in order
to have a variety of approaches where we can empirically find a machine learning
approach that yields satisfactory results. We start this chapter by providing a short
description of the four algorithms that we have chosen for our classification task.
These four machine learning algorithms are all implemented and openly available
as part of the scikit-learn toolkit (Pedregosa et al., 2011).

64



5.3. Classification Algorithms

Scikit-learn is a high-level machine learning toolkit written in the Python pro-
gramming language. The authors of scikit-learn describe the toolkit as a set of
state-of-the art machine learning algorithms that have been designed for usage on
medium-scale supervised and unsupervised problems (Pedregosa et al., 2011). It
is a well established machine learning toolkit that is both used in research and the
industry.

It is worth noting that we ran the experiments on all four algorithms to a certain
limit. Once we established the classifier that consistently performed with the high-
est accuracy on our chosen set of initial features, we limited further explorations
to the most accurate algorithm. Since running the experiments on each classifier
is time consuming, this decision was necessary once we started performing more
in-depth feature selections so that we could proceed in a timely fashion. Our aim
is to examine the possibilities of increasing the accuracy of frame detection to ri-
val that of the current state-of-the-art. See Chapter 3 for an overview of the most
accuracy semantic frame classifiers.

5.3.1 Decision Trees
Decision Tree Classifiers learn rules by creating a tree structure with simple rules
that are easy to analyze and understand. This can be contrasted to more com-
plex machine learning algorithms such as neural networks. In the latter cases the
learning and predictions made by the algorithm acts like a ‘black-box’ in terms of
comprehensibility.

The decision tree algorithm learns based on a set of labeled instances by in-
ductively setting up a set of rules which form a tree structure. The tree structure
can be visualized by thinking of each node in the tree as a question. Classification
is done by starting at the root node, and based on the rules that have been learned,
classify new data by traversing the tree and reaching a node that is designated by
a specific class. For each node, a check is made on the unseen data that is to be
labeled as the traversing step. As Kotsiantis (2013) notes, the process by which a
decision tree classifier makes predictions is similar to a greedy search.

The decision tree classifier that is part of the scikit-learn toolkit has a small
set of options for creating different types of decision trees. The options include
setting the split criteria, where the options are gini and entropy. As Kotsiantis
note, gini and entropy are two different measures used as the splitting measure
that the learning algorithm uses in order to create the decision trees (Kotsiantis,
2013).

Our experiments showed that decision trees can be a fast and accurate machine
learning algorithm for frame classification. However, it did not score high enough
to be considered for further exploration beyond the morphological features de-
scribed in Section 5.2. We also observed that the high dimensionality of features
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used in our classifier was not suited for a decision tree classifier.

5.3.2 Support Vector Machines
Support vector machines are well suited for multi-class classification tasks, partic-
ularly when dealing with high dimensional feature sets as in our case. As Hsu and
Lin (2002) note, at the time when support vector machines where created it was
initially made for binary classification. However, a number of methods have been
constructed whereby a support vector machine can be extended to handle multiple
classes. Support vector machines take a set of instance-label pairs, and solves an
unconstrained optimization problem by way of different loss functions. We will
not go into the mathematical details of support vector machines, and the reader is
referred to (Fan, Chang, Hsieh, Wang, & Lin, 2008) for details on the theoretical
foundations, and the actual implementation of this algorithm that we will use.

The scikit-learn toolkit has 3 implementations of support vector machines.
After a few experiments, we ended up using the ‘LinearSVC’ class, which is a
wrapper around the ‘LIBLINEAR’ library developed by Fan et al. (2008). With-
out parameter tuning, this implementation proved the most accurate on our initial
set of experiments. We do not include the experiments run on the other imple-
mentations that are part of the scikit-learn tookit.

The ‘LIBLINEAR’ library is an open source library for large-scale linear clas-
sification. It is well suited for large data and feature sets, and it is particularly
recommended for text classification by its developers. In certain cases it is also
known to be faster than many support vector implementations, including the often
used ‘LIBSVM’ library (Fan et al., 2008). The other scikit-learn support vector
machine algorithms are based on ‘LIBSVM’, which proved to be relatively slower
once our feature sets grew to include syntactic and semantic features. We found
that by using the ‘LinearSVC’ class in the scikit-learn toolkit we reduce training
time, which made it possible to run more experiments in comparison with the
other implementations.

Our experiments showed that support vector machines had the highest overall
scores among the four machine learning algorithms on the first set of morphologi-
cal features. It is a versatile algorithm that performed well without any parameter
tuning. We therefore opted for this algorithm once we reached a threshold of
experimentation on the basis of its comparatively higher accuracy. It is not def-
inite that the other machine learning algorithms could not produce comparable,
or even higher accuracy. However, this would have demanded a greater effort in
examining the possible range of parameter tuning for all four algorithms, which
unfortunately was deemed outside the scope of our thesis.
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5.3.3 Logistic Regression
Logistic regression is a machine learning model based on regression analysis. The
implementation used in scikit-learn, like the support vector machine implemen-
tation described above, is based on the ‘LIBLINEAR’ library. The implemen-
tation is of a multivariate logistic regression model with the loss function being
log(1 + eyiw

T xi), which has been derived from a probabilistic model (Fan et al.,
2008).

We achieved relatively high accuracy using the logistic regression model at a
training time that allowed for experimentation with different feature sets. How-
ever, as we saw that the support vector implementation scored relatively higher
for all lexical and morphological features, we did not further test this algorithm
once we started experimenting with syntactic and semantic features. It is our
hypothesis that with devoted analysis to the effects of parameter tuning, logistic
regression could potentially be an interesting rival to support vector machines for
our case. This is based on the fact that logistic regression and support vector ma-
chine implementations showed relatively similar accuracy levels on most of the
experiments we ran using both algorithms.

5.3.4 K-nearest neighbors
Nearest neighbors classification is a type of machine learning method where train-
ing data is stored directly in a model, and a computation is performed by way of
a simple majority vote of the nearest neighbors of each point in the model. It is
a non-parametric method used for both classification and regression, wherein the
classification the output of our model is a class, and in regression the output is the
average of the values of its k neighbors (Altman, 1992). The k-nearest neighbors
algorithm can also be used as an unsupervised learning algorithm, and is often
used as basis for tasks that involve some form of clustering.

We did not achieve comparably high accuracy using the k-nearest neighbors
classifier implemented in the scikit-learn toolkit. We therefore opted to leave out
this algorithm as well once we started our experiments with syntactic and seman-
tic features. In fact, for high feature dimensions, the accuracy of this algorithm
performed well below the other three algorithms we examined.

5.4 Conclusions
In this chapter we have reviewed our experimental setup. We have presented the
training, development, and test data, and given an overview of the distribution of
semantic frames across these sets. We have also presented the feature types that
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we will use as basis for our experiments, and the machine learning algorithms that
we will examine as basis for creating our classifiers. In the next chapter we will
present the results of our feature selection and experiments with different machine
learning techniques. We show that with in-depth feature selection, it is possible
to rival the accuracy of state-of-the-art semantic frame classification, and that our
results can be used as basis for enhancing the best submissions in the closed track
of SemEval-2015.
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Chapter 6

Experiments

In this chapter we will examine and present experimental results for the task of
frame classification. We will use the data sets presented in Chapter 4, and 5 for
training, development and testing. We will examine how each set of features
impacts the precision, recall and F-score of our models. The mathematical def-
initions of these measures can be found in Chapter 4. The end result of our ex-
periments will be two different semantic frame classifiers based on the feature
sets used for training. Both classifiers share the same lexical and morphological
features, but diverge in using syntactic and semantic dependencies as additional
features on top of these. Once we have finished our experiments on the develop-
ment data set, we present our final results on the test data. Our results show that
with rigorous experimentation with different combination of features, we were
able to obtain state-of-the-art results for semantic frame classification. We com-
pare our results with previous results in frame classification. We also show that
by extending two of the participating systems of SemEval-2015, namely Lisbon
and Peking, our results can be used to improve these system’s semantic frame
classification accuracy.

6.1 Baseline
Before we start our experiments, we need to define a baseline in order to have
a common denominator that we can evaluate our results against. There are no
agreed upon standards for defining a baseline for classification tasks such as se-
mantic frame classification. Statistical counting measures have been the standard
in other tasks, such as part of speech tagging. We will draw inspiration from
methods used in part of speech tagging for setting up a baseline for our task.

An often used baseline in part of speech tagging is a most frequent class ap-
proach: given an ambiguous word, assign to it the most frequent part of speech
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Representation Precision Recall F-score

DM 72.09 73.70 71.76
PSD 58.63 66.55 61.47

Table 6.1: Baseline score with a most frequent frame per lemma approach.

tag (Jurafsky & Martin, 2009). In part of speech tagging most words are unam-
biguous (80-86%), and we are therefore left with approximately 14-15% of words
where using the most frequent tag for for said word will results in possible errors.
Running a most frequent class baseline classifier for part of speech tagging on the
WSJ corpus results in an accuracy of 92.34% (Jurafsky & Martin, 2009). State-
of-the art part of speech taggers have been able to achieve accuracy scores above
97%, which is a significant increase from the baseline.

Examining Tables 4.3 and 4.4 in Chapter 4, we observe that the ten most fre-
quent frames in both data sets account for 18.64% and 9.35% of all frames re-
spectively. Given the number of frames and their distribution, we will use the
same approach as part of speech tagging and use a most frequent class per lemma
approach for our baseline. For each lemma in the development set, we assign to
it the most frequent frame encountered for that lemma in the training set. For
lemmas that have not been encountered in the training, we assign the overall most
frequent frame in the training data. This approach results in a strong baseline. A
weak baseline would be a baseline where we assigned the most frequent frame
to all tokens. Another option, which would also be a weak baseline, is a random
baseline where we randomly assign frames to each token.

In Table 6.1, we have listed the baselines using the most frequent frame per
lemma approach. It is worth reminding that we evaluate the baseline, as with all
experiments in this chapter, by only including tokens that have a part of speech
tag that starts with the character ‘V’ and is not a singleton. However, we can only
access the part of speech tag information during training and prediction, and it is
only after classification that we use information that a token is a singleton or not,
based on the gold standard data, for scoring. A detailed description of the scoring
scheme is described in Chapter 4.

We observe that the baseline for DM is significantly higher than PSD. We ex-
plain this discrepancy by noting that the PSD target representation consists of a
much larger set of frames. If we examine frequent lemmas, such as ‘be’, ‘make’,
’have’, ‘take’, ‘say’, we observe that for these verbs, the number of frames as-
signed in the PSD target representations is higher, and the distribution of the
frames assigned are more uniform. A most frequent frame per lemma approach

70



6.2. Experiments

Classifier Precision Recall F-score
D

M

Baseline 72.09 73.70 71.76
Support Vector Machine 70.85 70.98 69.58
Decision Tree 71.05 70.89 69.60
Logistic Regression 67.04 68.00 65.34
K-Nearest Neighbor 69.32 63.44 65.00

P
SD

Baseline 58.63 66.55 61.47
Support Vector Machine 66.91 66.88 64.83
Decision Tree 66.79 66.76 64.72
Logistic Regression 62.11 60.57 59.33
K-Nearest Neighbor 64.34 64.10 62.74

Table 6.2: Results for form as the sole feature.

will therefore be less effective for the PSD target representation.
Now that we have established a baseline we start with our first set of experi-

ments using lexical and morphological features for training. We then go on to ex-
amining syntactic dependencies as features, resulting in our first semantic frame
classifier. After syntactic features we will introduce the results of using semantic
dependencies as features, resulting in our second classifier.

6.2 Experiments
We start things off by examining a set of features in order to establish some basic
information on the results we can obtain on the four machine learning algorithms
we will examine. With this information at hand we choose one of these four algo-
rithms to continue our experiments with. We start by examining lexical features
and observe the scores we can obtain by solely using these so-called surface fea-
tures.

6.2.1 Lexical Features
Token Form The first feature we will examine is the form of verb tokens. For
each token that is a verb, we use its form as the sole feature for classifying the
frame of that token. In Table 6.2 we have listed the results using this feature on
the four machine learning algorithms we are experimenting with. It is interesting
to note that for the PSD target representation we achieve higher F-score than the
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Classifier Precision Recall F-score
D

M

Baseline 72.09 73.70 71.76
Support Vector Machine 71.79 74.20 71.81
Decision Tree 71.67 74.12 71.74
Logistic Regression 69.97 72.98 70.00
K-Nearest Neighbor 69.61 68.18 67.60

P
SD

Baseline 58.63 66.55 61.47
Support Vector Machine 58.55 66.47 61.39
Decision Tree 58.60 66.52 61.44
Logistic Regression 55.43 63.22 58.23
K-Nearest Neighbor 55.69 63.30 58.40

Table 6.3: Results for lemma as the sole feature

Classifier Precision Recall F-score

D
M

Baseline 72.09 73.70 71.76
Support Vector Machine 75.67 74.01 72.68
Decision Tree 75.80 73.78 72.48
Logistic Regression 71.35 72.93 71.00
K-Nearest Neighbor 74.96 72.55 72.23

P
SD

Baseline 58.63 66.55 61.47
Support Vector Machine 70.34 70.86 68.62
Decision Tree 69.86 70.10 68.02
Logistic Regression 67.66 68.55 66.20
K-Nearest Neighbor 66.97 68.70 66.36

Table 6.4: Results for form and lemma as features
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Classifier Precision Recall F-score
D

M

Baseline 72.09 73.70 71.76
Support Vector Machine 85.20 84.44 84.10
Decision Tree 78.49 76.90 76.73
Logistic Regression 82.22 80.69 79.54
K-Nearest Neighbor 64.33 55.83 57.45

P
SD

Baseline 58.63 66.55 61.47
Support Vector Machine 80.09 80.38 79.09
Decision Tree 77.51 74.19 74.53
Logistic Regression 71.31 71.90 69.85
K-Nearest Neighbor 44.14 37.05 37.24

Table 6.5: Results for form and lemma on the main verb token, and a context
window of n = 3 where we use token form as the window.

baseline on all machine learning algorithms with the exception of Logistic Regres-
sion. However, with the exception of Support Vector Machines, we also observe
that we achieve lower recall than the baseline. This might be due to the relative
uniform distribution of frames on ambiguous verbs in PSD, and as such a most
frequent frame per lemma baseline will have a higher recall than precision. In
comparison, we observe that the difference between precision and recall is much
higher for PSD than DM.

The scores for the DM target representation are approximately 3 to 7 percent-
age points lower than the baseline. This is due to the fact that we are using the
tokens form, as opposed to the lemma, which is what we have used in our baseline.

Token Lemma In our next run we will examine how using lemma as the sole
feature, in the same way as in our baseline, impacts the learning. The results are
presented in Table 6.3. We observe that the results are overall higher than using
form as our sole feature for the DM target representation, but lower for PSD. Our
hypothesis is that this is, as with our baseline score, an artifact of the number and
distribution of frames across the target representations.

Combination of Form and Lemma Let us now turn to combining lexical fea-
tures. We start by examining whether the combination of form and lemma results
in a higher score in comparison to using form or lemma in isolation. In Table 6.4
we see that we achieve a slight increase for the DM target representation when
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compared to the results using just lemma, but a significant increase in PSD. The
combination of the form and lemma of a token will has the information needed to
achieve higher scores than the baseline.

Context Window For our next experiment we examine how the context win-
dow of a token, referred to as token n-grams, might impact the accuracy of our
machine learning models. We will present experiments using a context window
of 3 tokens surrounding the main token: ‘form-3’, ‘form-2’, ‘form-1’, ‘form’,
‘form+1’, ‘form+2’, ‘form+3’. The words are added as individual features using
a bag-of-words approach, so order does not have an impact. This is done so that
we avoid too sparse vectors that would have been the results of using concatenated
tokens as features. Had we concatenated the words so that the word order was kept
intact, we would end up with very infrequent strings, i.e. sparse features. In Table
6.5 we see the results of our run with a context window of n = 3, meaning that we
have used 3 tokens to the left, and 3 tokens to the right, of our main verb token.

For the single features that we experimented with previously, the differences
in results between the machine learning algorithms were less obvious. However,
once we use a combination of features we observe that there is a higher degree of
divergence. The Support Vector Machine algorithm achieves the highest score for
both DM and PSD when using a context window by a significant margin. If we
look at Table 6.5, we see that the F-score for DM for Support Vector Machine is
84.10%, an increase from an F-score of 72.68% in the previous experiments where
we used form and lemma of the main token. For PSD we see an increase from
an F-score of 68.62% to 79.09%. It is interesting to note that for the K-Nearest
Neighbor Classifier we observed a decrease in score in comparison with previous
results.

The lower scores for the other algorithms was observed on all the experiments
that are presented in this chapter. We therefore leave out these results from our
presentation in order to keep the tables and presentation more compact and read-
able. However, it is worth noting that parameter tuning has not been performed in
this study. It is therefore not possible to empirically argue that our choice in using
Support Vector Machines leads to the most accurate classifier. For that we would
need to perform an in-depth comparative study where we performed a range of
tuning exercises for each algorithm. However, we deemed this outside the scope
of our thesis.

Increased Context Window Let us now increase the context window with a
larger n, and use both form and lemma as basis for the surrounding n elements. We
will examine their performance both individually and in conjunction. Our context
window for our experiments will be {n|n > 2 ∧ n < 8}. Tables 6.6, 6.7, and 6.8,
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Representation N-gram Precision Recall F-score

DM n = 3 85.20 84.44 84.10
DM n = 4 87.17 86.52 86.32
DM n = 5 86.88 86.20 85.99

PSD n = 3 80.09 80.38 79.09
PSD n = 4 83.20 83.66 82.41
PSD n = 5 82.54 83.09 81.73

Table 6.6: Results for experiments with context windows of {n|n > 2 ∧ n < 6}
using only form as the context window.

show the results for {n|n > 2 ∧ n < 6}, for form, lemma and both respectively.
Table 6.6 shows the results for a context window consisting of form. We see

an increase in F-score from n = 3 to n = 4, for both the DM and PSD target
representations. We then observe a decrease once we reach n = 5 for the context
window. This decrease continued as n increase. We omit these scores so that our
tables are more readable.

In Table 6.7 we observe a similar trend. The best results are for n = 3, and
we observe a higher score in comparison to Table 6.6 where we used form in our
context window. When we combine form and lemma, as seen in Table 6.8, we do
not get higher scores than using just lemma.

For the context window, we observe that the best feature set for our task is
using lemma with a context window of n = 3. For our experiments going for-
ward this will be the base configuration. The results for this set of features are
an F-score of 86.58% for DM and 83.20% for PSD. These are the highest scores
achieved thus far. We now turn to syntactic dependencies and examine their im-
pact on the accuracy of our system.

6.2.2 Morphological Features
The morphological features included in our experiments are part of speech tags,
suffixes and prefixes. We will examine their impact on the accuracy of our clas-
sifier by examining each individually, and then adding the features that have the
highest impact in a similar fashion as the lexical experiments.

Part of Speech Tags with Form and Lemma We will now examine the effects
of adding part of speech tags to the form and lemma tokens. We will concatenate
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Representation N-gram Precision Recall F-score

DM n = 3 87.34 86.67 86.58
DM n = 4 87.07 86.46 86.32
DM n = 5 86.7 86.12 85.97

PSD n = 3 83.88 84.39 83.20
PSD n = 4 83.55 84.07 82.79
PSD n = 5 83.01 83.61 82.25

Table 6.7: Results for experiments with context windows of {n|n > 2 ∧ n < 6}
using only lemma as the context window.

Representation N-gram Precision Recall F-score

DM n = 3 87.08 86.43 86.29
DM n = 4 86.51 86.05 85.79
DM n = 5 86.34 85.86 85.59

PSD n = 3 83.39 83.98 82.71
PSD n = 4 82.80 83.48 82.10
PSD n = 5 82.37 83.26 81.81

Table 6.8: Results for experiments with context windows of {n|n > 2 ∧ n < 6}
using lemma and form as the context window.
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the tags at the end of each token: <form_pos> and <lemma_pos>. The results of
our experiments are presented in Table 6.9. In the first experiment, we concatenate
the part of speech tag to the form token, leaving lemma as a feature on its own.
We then do the opposite, concatenating the part of speech tag to the lemma, but
leaving form as its own feature. We then concatenate the part of speech tag to both
form and lemma. As a final run we combine all of the above: form and lemma
as their own features, form and lemma concatenated with part of speech tag, and
part of speech tag as its own separate feature.

From Table 6.9, we observe that the various strategies of using part of speech
tags yield similar results. We see that the two highest scores, for both DM and
PSD, are when we either concatenate part of speech tags to form, and leave lemma
as a separate feature, or when we leave both form and lemma as a separate fea-
tures, and the part of speech tag as its own separate feature. However, overall, the
increase in precision, recall and F-score are relatively low in both cases, where for
DM we see an increase from the previous best score of 86.58% to 86.92%, and
82.71% to 83.27% for PSD.

The increase is likely caused by the disambiguation possible for verbs that are
assigned a range of different part of speech tags, such as the verb ‘make’, which
have been assigned this set of tags: ‘VB’, ‘VBZ’, ‘VBG’, ‘VBD’, ‘VBN’, ‘VBP’.
The uniform distribution of frames for each token in PSD might account for the
greater increase in f-fscore when using part of speech tags.

Part of Speech Tags Added to the Context Window We will now examine
how part of speech tags may affect the accuracy of our model by adding them to
the context window. We will run 2 set of experiments: (1) adding part of speech
tags to the context window for the token lemma. This is done by concatenating
them to the lemma as in our previous experiments. We also run experiments by
adding the part of speech tags as separate features. The results are reported in
Table 6.10. Similar to the results in Table 6.9, we observe that using part of speech
tags as separate features for the context window results in the highest increase in
F-score.

The score once we have added part of speech tags are 88.08% for DM and
84.02% for PSD. With part of speech tags we have achieved an increase in our
scores with 1.5 for DM and 0.82 percentage points for PSD. We therefore include
these from this point on.

Prefixes and Suffixes We will now consider adding prefixes and suffixes as fea-
tures. For prefixes and suffixes we add character n-grams where {n|n > 2 ∧ n < 5}.
This ensures that we capture various types of prefixes and suffixes that may be
constrained by character length, such as the suffixes ‘ing’ and ‘ed’. It is difficult
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DM PSD
Precision Recall F-score Precision Recall F-score

87.46 86.81 86.71 84.04 84.40 83.30
86.46 85.85 85.69 81.66 81.91 80.76
86.23 85.63 85.45 80.79 80.91 79.81
87.67 87.00 86.92 84.00 84.43 83.27
86.18 85.54 85.37 80.71 80.87 79.76

Table 6.9: Results for adding part of speech tags: concatenated to form (first),
concatenated to lemma (second), concatenated to both form and lemma (third),
as a feature on its own (fourth), and concatenated to both form and lemma, form
and lemma as features on their own, and part of speech tag as a feature on its own
(fifth).

DM PSD
Precision Recall F-score Precision Recall F-score

87.67 87.00 86.92 84.00 84.43 83.27
88.52 88.27 88.08 84.24 85.51 84.02
88.51 88.26 88.07 84.25 85.52 84.02

Table 6.10: Results for adding part of speech tags to the context window, concate-
nating to lemma (top), as their own separate features (middle), and a combination
of both, where we have lemma as their own features, part of speech as their own
features, and part of speech tags concatenated to the lemma (bottom).

estimating the effect of adding such morphological features, as the increase in our
score is minimal. In Table 6.11 we observe that using only prefixes has an impact
where we see an increase in F-score. The other experiments had a negative impact
on the scores.

At this point it is worth mentioning that we may have reached a saturation
point in the effects that new layers of features may have. In fact, if we had added
part of speech tags, or even prefixes and suffixes, at an earlier stage, we might
have concluded that some lexical features did not have an effect on the accuracy.
Another set of experiments would be to test each set of features on their own, and
then examine their cumulative effect after observing their effects on their own.
We decided to run our experiments in sequence by adding features as we ran our
experiments as we observed an effect of adding features for the most part.
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DM PSD
Precision Recall F-score Precision Recall F-score

88.69 88.29 88.20 84.13 85.53 83.99
88.37 88.03 87.89 83.69 85.05 83.50
88.56 88.15 88.06 84.06 85.42 83.89

Table 6.11: Results for adding prefix to the main form (first), suffixes to main
form (second), both prefixes and suffixes to main form (third).

6.2.3 Syntactic Features
Syntactic dependencies are a very interesting set of features for frame detection.
Ambiguous verbs such as ‘be’, ‘make’, ’have’, ‘take’, ‘say’, have a variable set of
syntactic dependencies that may have a relationship with their assigned semantic
frames.

Let us examine two sentences from our training set: (1) ‘It has no bearing on
our work force today’ and (2) ‘They have to do it’. In sentence (1) the frame for the
verb ‘has’ is ‘v:e-i-i’, indicating that it is a verb that can take two objects, whereas
in sentence (2) the verb has been assigned the frame ‘v_qmodal:e-h’, which is an
indication that it is a modal auxiliary verb to the verb ‘do’. The frames are from
the DM target representation. In such examples the syntactic dependencies, i.e.
their edges and labels, can function as parameters for distinguishing between these
two type of frames. If we examine the type of errors that our previous experiments
produce, it is these type of ambiguous verbs that account for a high percentage of
errors.

For syntactic dependencies we will add the dependencies of the target token.
We will add dependents by concatenating lemma and label: <lemma_label>. The
main verb of a dependency usually has several dependents, so we concatenate
them all to a string as its own feature, sorting them by the dependency label in
lexical order.

As an example, for the token ‘join’ we would have the string: <will_aux:
board_obj: Vinken_nsubj>, as a feature. However, concatenating dependency
labels for the lemma will produce sparse features. We will also examine the effect
of adding the head of our main tokens in the same way as our dependents, with
the exception that we always have at most one syntactic head, and we therefore
add the head’s lemma and label concatenated as its own feature.

We also do a combination of adding head and the dependents. The results of
these experiments are seen in Table 6.12. We observe that there is an increase for
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DM PSD
Precision Recall F-score Precision Recall F-score

88.97 88.77 88.50 84.23 85.61 84.00
88.18 88.04 87.81 84.05 85.42 83.86
88.78 88.68 88.35 83.95 85.46 83.77

Table 6.12: Results for adding <lemma_label> syntactic dependencies: only de-
pendents (top), only the head (middle), and a combination of both (bottom).

all experiments for the DM target representation, but a decrease in accuracy for
PSD.

In order to solve the problem of sparse features in our previous experiments,
we examine the effectiveness of adding just the dependency labels of the target
token, concatenated together, and sorted lexically by the dependency label. We
also examine the effects of adding a concatenated version of part of speech tags
and the syntactic dependency label: <pos_label>. For each target token we will,
in the first case, end up with a string of dependency labels, and for the latter a
string of tuples consisting of part of speech tags and dependency labels.

The results of these experiments are found in Table 6.13. We observe that these
experiments improve the scores for the DM target representation, and using just
the labels gives us the best scores, but even there we observe a minimal decrease
in score for PSD.

Syntactic dependencies are not useful features for the PSD target representa-
tion at this stage in our experiments. We could test syntactic dependencies on
their own, but since using syntactic dependencies adds the complexity of using an
additional resource; i.e. a syntactic parser, we decided to run these as the last step
in our experiments for our first classifier.

We will now turn to semantic dependencies as features for our second clas-
sifier. We will not use the syntactic dependencies examined in this section as
features once we examine semantic dependencies. We build upon the previous set
of features that we ended up with before this section.

6.2.4 Semantic Features
We will add semantic dependencies in the same way that we added syntactic de-
pendencies. However, we omit the results for adding heads of the target token
as we observed the same tendency using semantic dependencies as with syntactic
dependencies. There was a slight decrease in our scores when adding heads. We
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DM PSD
Precision Recall F-score Precision Recall F-score
88.98 88.76 88.51 84.21 85.50 83.94
89.30 89.06 88.86 84.27 85.48 83.99

Table 6.13: Results for adding <pos_label> (top) and <label> (bottom) of syntac-
tic dependencies.

DM PSD
Precision Recall F-score Precision Recall F-score
93.77 94.03 93.69 84.66 86.50 84.70
94.12 94.35 94.05 85.68 87.44 85.74

Table 6.14: Results for adding <pos_label> (top) and <label> (bottom) of seman-
tic dependencies.

therefore run two sets of experiments by adding a tuple consisting of the part of
speech tag of the dependent, and the label between target token and dependent to-
ken. We add these as we did the syntactic dependencies by forming concatenated
strings sorted lexically by the dependency label.

In Table 6.14 we observe the results for using semantic dependency parsing
as part of our feature space. We observe an increase in the F-score of both target
representations, with a noteworthy increase from 88.08% to 94.05% for DM, and
from 84.02% to 85.74% for PSD. Particularly for the DM target representation,
where we see an increase of 5.97 percentage points, the results seem dramatic.

However, it is important to note that when using semantic dependencies as our
features, we are testing on a development data set where we have gold standard
annotations, and the correlation between the semantic dependencies and semantic
frames are artificial, i.e. a semantic dependency parser would not produce depen-
dencies that would have the same fit for our classification task.

In the next section we will run our classifiers on the test data set provided to us
by the SemEval-2015 organizers. In order to resolve the issue of using gold stan-
dard semantic dependencies for our classifier, we use the semantic dependencies
from the Lisbon and Peking parsing systems. With these results we can present
a classifier that can be used as part of existing semantic dependency parsing sys-
tems.

The results that have been presented in Table 6.14 can be regarded as an upper
bound to the accuracy of our system. Given an increase in the accuracy of seman-
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DM PSD
Precision Recall F-score Precision Recall F-score

89.05 89.15 88.61 85.12 85.96 84.72
79.50 80.38 79.35 77.60 76.05 75.45

Table 6.15: Final results on the test data. The classifier using syntactic dependen-
cies on the in-domain (top) and out-of-domain (bottom) data sets

tic dependency parsing systems, we can also expect an increase in the accuracy of
our classifier approaching the results presented in Table 6.14.

6.3 Final Results
Before presenting the final results of our classifiers, we recap the feature sets
that we use for training and predication. The final results will be divided into
three sections. We first run our classifiers against the test data set provided by
the SemEval-2015 organizers. When doing so we train the classifiers on all the
training data, which now includes the development data used in our experiments.
After presenting the results against the test data, we then use data produced by the
Lisbon and Peking parsing systems.

6.3.1 Feature sets
We start with the lexical features used by both classifiers. The target tokens form
and lemma are included as features. In addition to this a context window of n = 3
is used. For the context window we use the token lemma as features.

For the morphological features we use the part of speech tag of the token word,
and the part of speech tags of each lemma in the context window.

For the syntactic and semantic features we use the label of the target tokens
dependents. These labels are lexically sorted and concatenated together to form
a string, which is then used as an individual feature. What differentiates the two
classifiers are the usage of dependencies, where the first use syntactic dependen-
cies, whereas the other uses semantic dependencies.
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DM PSD
Precision Recall F-score Precision Recall F-score

94.07 94.20 93.91 87.09 88.03 86.80
87.59 88.03 87.33 80.88 78.44 77.86

Table 6.16: Final results on the test data. The classifier using semantic dependen-
cies on the in-domain (top) and out-of-domain (bottom) data sets.

6.3.2 Running on Test Set
In Table 6.15 we see the results our first classifier running on the test set. Compar-
ing these results with Table 6.13 we observe that we get the same F-score for the
DM target representation as in our development set, and an increase in our scores
for the PSD target representation. Our final scores for the first classifier is thus an
F-score of 88.61% on the DM target representation, and an F-score of 84.72%
for PSD.

The accuracy of our classifier decreases substantially when we run it on the
out-of-domain data set. In Section 6.3.4 we show that the drop in accuracy is seen
in the frame classification accuracy of other systems. We do not go into detail as
to the possible reasons, and leave the analysis of out-of-domain data outside the
scope of our thesis.

Table 6.16 presents the results of our second classifier which uses semantic
dependencies as additional features. We observe that the F-score is comparable
to the results achieved on our development set, with a final F-score of 93.91%
for DM, and 86.80% on PSD. It is worth reminding the reader that we are still
relying on gold standard semantic dependencies. As mentioned previously, this
will most likely act as an upper bound to the possible score that we can reach for
this classifier. We will give the name Oslo to this classifier.

We have now presented the final results for the two semantic frame classifica-
tion systems that is the result the experiments presented in this chapter. We will
now turn our attention to the results we can achieve when using our second clas-
sifier as an extension of the Lisbon and Peking parsing systems that we presented
in Chapter 3.

6.3.3 Extending the Lisbon and Peking Parsing Systems
We will now run our second classifier on the semantic dependencies produced by
the Lisbon and Peking parsing systems. We will use the results from the closed
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DM PSD
Precision Recall F-score Precision Recall F-score

88.67 88.03 87.74 84.65 85.55 84.29
88.13 87.34 86.96 85.28 86.02 84.74
78.95 77.71 77.09 75.04 75.30 74.04
77.83 76.53 76.13 75.88 75.66 74.51

Table 6.17: Running our second classifier using semantic dependencies from the
Lisbon (top) and Peking (bottom) parsing systems. For each system we have run
both on the in-domain and out-of-domain data sets.

track for both parsing systems. This is due to the fact that the Peking system only
submitted scores in the closed track, and to make the results as comparable as
possible. For information on the various tracks of SemEval-2015 see Chapter 3.

We give each of these results the names Lisbon++ and Peking++, as the re-
sults could be viewed as extensions to these two parsing systems, i.e. adding our
classifier as an additional step after the semantic dependency parsing of these two
systems.

6.3.4 Comparative Perspective
In this section we will compare our results with the results of the submissions of
SemEval-2015. We present the scores that we use for our comparisons in Table
6.18. We observe that the scores of using gold standard semantic dependencies for
the Oslo parsing system is substantially higher than the other systems. The Lis-
bon++ and Peking++ systems also outperform all other results that are available
on previous work on semantic frame classification.

In comparison to the Praha system, the technical details of which can be read in
Hajic and Urešová (2015), we also observe a higher score for both Oslo, Lisbon++
and Peking++. The comparison against the Praha system is not completely valid
as the data sets used for training and testing are different, and the Praha system
use additional information such as parallel texts and lexicons. However, in order
to include work outside the submissions to SemEval-2015 we have included the
results as a point of reference. The Praha system also do not have data on the DM
target representation.
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System DM PSD

Oslo* 93.91 86.80
Lisbon++ 86.96 84.74
Peking++ 84.65 84.29
Minsk 84.01 84.22
Praha _ 82.93
Riga 79.65 79.32
Turku* 75.45 77.14
Peking 82.25 71.29

Oslo* 87.33 77.86
Peking++ 77.09 74.04
Lisbon++ 76.13 74.51
Minsk 72.26 77.15
Turku* 61.48 63.62

Table 6.18: The highest F-scores of the SemEval-2015 submissions for the in-
domain (top) and out-of-domain (bottom) data sets on the closed track, and gold
track (*) for semantic frames.

6.4 Conclusions
In this chapter we have presented the main research of our thesis. We have per-
formed a set of experiments where we have examined the effects of different fea-
tures on building a semantic frame classifier. Our results outperform previous
results. The results of the Oslo classifier are interesting as an upper bound to the
accuracy that our system can potentially achieve. However, since we are using the
gold standard semantic dependencies as our test data, the results are based on de-
pendencies that are completely correlated with the semantic frames, and therefore
produce artificially high F-scores.

Lisbon++ and Peking++ on the other hand are results that rely on the semantic
dependencies of existing parsing systems. The results we achieve rival that of
previous work on semantic frame classification, both on the DM and PSD target
representation, and also both on the in-domain and out-of-domain data sets.
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Chapter 7

Conclusion

In this thesis, we have presented an in-depth contrastive error analysis of a selected
set of semantic dependency parsing systems that participated in SemEval-2015.
The analysis of Chapter 4 pointed in the direction of semantic frame classification
as an interesting case to pursue as its own task. This was due to our hypothesis
that the results of previous work showed a possibility of improvement based on
the accuracy observed on the 30 most frequent frames.

In Chapter 5 we presented the experimental setup for our classification task.
We presented the data used for training, development and testing. We also pre-
sented the type of features that we would examine. We showed that our feature
design would be based on lexical, morphological, syntactic and semantic features.

The experiments that we ran in Chapter 6 where designed so that we could
extensively test the features presented in Chapter 5. We selected the best set of
features in an additive manner; testing new features based on the previous set of
features that we included. We also tested 4 different machine learning algorithms,
and finally landed on Support Vector Machines for our classifier.

With the experimental setup in place we set out to create two distinct classi-
fiers; one that would use syntactic dependencies as features, and one that would
use semantic dependencies as features. Both classifiers would share the same
underlying lexical and morphological features. The classifier using semantic fea-
tures would be used as a possible extension to the parsing systems examined in
Chapter 4.

With this in place we ran the classifier based on semantic features on the gold
standard test data, and on the data produced by the Lisbon and Peking parsing
system. The first run produced very accurate results, with a F-score of 93.91% for
DM and 86.80% for PSD. Since we used gold standard semantic dependencies
during classification, this can be considered an upper bound to the accuracy of our
classifier. Using the semantic dependencies produced by Lisbon, we presented
the Lisbon++ system, achieving a F-score of 86.96% for DM and 84.74% for
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PSD. The same run on the semantic dependencies of the Peking parsing system,
resulting in the Peking++ system, we achieved a F-score of 84.65% for DM and
84.29% for PSD. These scores outperform previous results on semantic frame
classification.

7.1 Future Work
There are several experiments that we could run in order to push the accuracy of
our classifiers further. A step that the we would like to pursue is to examine how
Word Representations in Vector Space might improve the accuracy of our classi-
fier. Concatenating the vectors of approaches from Mikolov, Chen, Corrado, and
Dean (2013): Word2Vec, and Pennington, Socher, and Manning (2014): Glove,
with the feature vectors used for our training, would be an interesting approach.
A more recent approach by Trask, Michalak, and Liu (2015): Sence2Vec, which
was used by the authors for word sense disambiguation, would be particularly
interesting for feature enhancement and future endeavours.
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Hajič, J., Hajičová, E., Panevová, J., Sgall, P., Bojar, O., Cinková, S., . . . Žabokrt-
ský, Z. (2012). Announcing Prague Czech-English Cependency Treebank
2.0. In Proceedings of the 8th International Conference on Language Re-
sources and Evaluation (LREC 2012) (pp. 3153–3160). İstanbul, Turkey:
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E. (2007). MaltParser: A Language-Independent System for Data-Driven
Dependency Parsing. Natural Language Engineering, 13(2), 95–135.

Oepen, S., Kuhlmann, M., Miyao, Y., Zeman, D., Cinková, S., Flickinger, D.,
. . . Urešová, Z. (2015). Semeval 2015 Task 18: Broad-coverage Semantic
Dependency Parsing. In Proceedings of the 9th International Workshop on
Semantic Evaluation (SemEval 2015) (pp. 915–926).

Oepen, S., Kuhlmann, M., Miyao, Y., Zeman, D., Cinková, S., Flickinger, D., . . .
Urešová, Z. (2016). Towards comparability of linguistic graph banks for
semantic parsing. In Proceedings of the 10th International Conference on
Language Resources and Evaluation (lrec) (pp. 3991–3995).

Oepen, S., Kuhlmann, M., Miyao, Y., Zeman, D., Flickinger, D., Hajič, J., . . .
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