
Destruction Testing: Ultra-Low
Delay using Dual Queue Coupled

Active Queue Management

Henrik Steen

Thesis submitted for the degree of
Master in Informatics: Programming and Networks

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2017

Destruction Testing: Ultra-Low
Delay using Dual Queue Coupled

Active Queue Management

Henrik Steen

© 2017 Henrik Steen

Destruction Testing: Ultra-Low Delay using Dual Queue Coupled Active
Queue Management

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Large queues on the Internet are traditionally needed to provide high
utilization of network traffic, however it comes at the cost of high
delay. DualPI2 is an Active Queue Management (AQM) proposal which
attempts to allow scalable TCP traffic to co-exist with traditional TCP,
allowing both high utilization and low delay. This thesis presents a test
framework that can be used to evaluate AQMs and congestion controls,
being capable of simulating a full testbed on a single machine. The test
framework is used to evaluate DualPI2 trying to find areas where it
might break and need improvements. I find that the test framework
is very useful in investigating and analyzing the behaviour of DualPI2,
and that there are still some scenarios that should be considered for
improvements.

i

ii

Contents

Glossary 1

I Introduction 3

1 Introduction 5
1.1 Motivation . 5
1.2 Main contributions . 5
1.3 Outline . 6

2 Technology background 7
2.1 IP . 7
2.2 Transmission Control Protocol 7

2.2.1 Congestion control 7
2.2.2 Reno . 8
2.2.3 CUBIC . 8

2.3 Explicit congestion notification 9
2.3.1 Using ECN for scalable marking 10

2.4 Data center TCP . 10
2.5 User Datagram Protocol . 11

3 Queueing 13
3.1 Relation between rate and delay 13

3.1.1 Common round-trip delay time 14
3.2 Queueing in routers . 14
3.3 Tail drop . 15
3.4 Active queue management 15
3.5 RED - Random Early Detection 16
3.6 PIE - Proportional Integral controller Enhanced 17
3.7 DualPI2 . 19

3.7.1 Keeping queueing delay low 19
3.7.2 Coupling between classical and scalable TCP 20
3.7.3 Multiple queues . 20
3.7.4 Priority scheduler . 20
3.7.5 Overload handling 21

iii

II Testbed design and setup 23

4 Topology 25

5 Collecting metrics 27
5.1 Measuring actual queueing delay and drops at the AQM . 27

5.1.1 Modifying existing schedulers to add reporting . . . 27
5.1.2 Improving the precision of reporting 31
5.1.3 Drop statistics . 33

5.2 Saving the metrics . 33

6 Test framework 39
6.1 Building test definitions . 39

6.1.1 Building test tree . 42
6.2 Built in metrics . 43
6.3 Other features . 43

7 Traffic generation tools 47
7.1 Greedy . 47
7.2 SSH and SCP . 47
7.3 iperf2 for TCP . 48
7.4 iperf2 for UDP . 48

7.4.1 A note about iperf3 for UDP traffic 48
7.5 Comparing traffic generators 48

8 Virtualized testing with Docker 51
8.1 Introduction to Docker and containers 51
8.2 Defining the containers and network topology for Docker . 52
8.3 Networking in containers 52

8.3.1 Initializing networks in the container 53
8.3.2 Setting congestion control and ECN feature 53

9 Pitfalls 55
9.1 Segmentation offloading . 55
9.2 ARP requests causing silent periods 55
9.3 Buffer limits testing high BDP 57

9.3.1 Buffer size for base RTT 57
9.3.2 Kernel TCP memory limits 57

9.4 Implicit delay at low bandwidth 58

10 Improving the DualPI2 implementation 59
10.1 Moving the drop from enqueue to dequeue 59

III Evaluation 61

11 Default parameters 63
11.1 Default parameters unless otherwise noted 63

iv

12 Overload in DualPI2 65
12.1 Response to simple overloading 65
12.2 Impact of overload in existing traffic 65

13 Ultra-low queueing delay threshold 79

14 Comparing virtual tests against the physical testbed 83

IV Conclusion 87

15 Conclusion 89

16 Future Work 91
16.1 Testing scenarios . 91
16.2 Easier instrumentation of other AQMs 91
16.3 Malicious users . 91
16.4 Segmentation offloading . 92
16.5 Stability and accuracy of using a virtual testbed 92

Appendices 97

A Source code 99
A.1 Greedy . 99
A.2 Testbed setup . 108
A.3 Docker setup . 116
A.4 Python framework for testing AQMs 121
A.5 Test code . 146

B ‘Data Centre to the Home’: Deployable Ultra-Low Queuing
Delay for All 159

v

vi

List of Figures

2.1 Reno’s response to congestion signals. 8
2.2 CUBIC’s response to congestion signals. 9
2.3 DCTCP traffic over 100 Mbit/s with 20 ms base RTT with

a target queue delay of 3 ms. Showing full utilization
while keeping low delay. DualPI2 used as AQM. 11

2.4 DCTCP co-existing with Reno in a single queue with
classical ECN marking. The DCTCP flow starts after a
short moment and is stopped for a moment durent the
test. DCTCP starves the Reno flow. 12

3.1 Tail dropping with a buffer size of 50 packets. 1 Reno flow.
Link rate: 50 Mbit/s. Base RTT: 50 ms. 16

3.2 Tail dropping with a buffer size of 200 packets. 1 Reno
flow. Link rate: 50 Mbit/s. Base RTT: 50 ms. 17

3.3 Tail dropping with a buffer size of 50 packets. 1 CUBIC
flow. Link rate: 50 Mbit/s. Base RTT: 50 ms. 18

3.4 Dual Queue Coupled AQM. Figure from the original paper. 19

4.1 The topology used in the testbed. 25

5.1 Testing lower values of queueing delay - using previous
integer version. 34

5.2 Testing lower values of queueing delay - using improved
floating point version. 35

5.3 Testing high values of queueing delay - using previous
integer version. 36

5.4 Testing high values of queueing delay - using improved
floating point version. 37

6.1 HTML file generated for the test. 42
6.2 Default comparison plot . 45

7.1 Comparing traffic generators. 50

9.1 DualPI2 as AQM. 2 Mbit/s link rate. 10 ms base RTT. One
DCTCP flow. 58

12.1 PIE as AQM with 10 000 packets limit. 500 Mbit/s link
rate. 800 Mbit/s UDP traffic with no ECN. Results with
ECN show similar results. 69

vii

12.2 PIE as AQM with 1 000 packets limit. 500 Mbit/s link
rate. 800 Mbit/s UDP traffic with no ECN. Results with
ECN show similar results. 70

12.3 DualPI2 as AQM with 1 000 packets limit. 500 Mbit/s link
rate. 800 Mbit/s UDP traffic with no ECN. 71

12.4 DualPI2 as AQM with 10 000 packets limit. 500 Mbit/s
link rate. 800 Mbit/s UDP traffic with no ECN. 72

12.5 DualPI2 as AQM with 1 000 packets limit. 500 Mbit/s link
rate. 800 Mbit/s UDP traffic with ECT(1). 73

12.6 Testing overload with existing traffic. Overload is done
without ECT, i.e. with the classic (non-ECN) traffic. RTT
is 10 ms. Linkrate 100 Mbit/s. The red line represents
UDP traffic at link rate. 74

12.7 Addition to figure 12.6. The first plot shows the utilization
again but with only the lower 10 percent in a logarithmic
scale. 75

12.8 Testing overload with existing traffic. Overload is done
with ECT(1), i.e. with the scalable (ECN) traffic. RTT is
10 ms. Linkrate 100 Mbit/s. The red line represents UDP
traffic at link rate. 76

12.9 Addition to figure 12.8. The first plot shows the utilization
again but with only the lower 10 percent in a logarithmic
scale. 77

13.1 Testing threshold for marking of DualPI2. One flow
DCTCP. Threshold is set to the default of 1 ms. 80

13.2 Testing threshold for marking of DualPI2. One flow
DCTCP. Threshold is set to 5 ms. 81

14.1 Testing threshold for marking of DualPI2. One flow
DCTCP. Threshold is set to the default of 1 ms. Run in
the physical testbed. 84

14.2 Comparison against figure 12.8 which is run in Docker.
This figure shows the test run in the physical testbed. . . 85

viii

List of Tables

2.1 Codepoints for ECN . 9

3.1 Window size for various combinations of rates and RTTs
in bytes. 13

3.2 Window size for various combinations of rates and RTTs
in number of packets of 1 448 bytes. 13

ix

x

List of Listings

1 Patch to PIE to add metrics reporting. PIE available in
Linux kernel as of version 4.10 is used. Full code available
at https://github.com/henrist/aqmt-pie-scheduler. 29

2 C header file used as an API in the schedulers used in the
testbed. 31

3 C header file for encoding/decoding queueing delay and
drop numbers. 33

4 Simple example of how the framework is used. 41
5 A over-simlified middleware that causes a branch in the

tree for testing RTT 10 and RTT 50. 43
6 Shell script to disable offloading. 55
7 Shell script to add static entries to the ARP tables. 56
8 A simple client/server which attempts to always have

data in the Linux TCP stack available to dequeue to the
network. It basicly tries to fill the TCP window at all times.108

9 Shell script written to provide functions to configure the
testbed. 114

10 entrypoint.sh: Initialization script for the Docker contain-
ers to configure routing and proper network setup. 116

11 docker-compose.yml: Definition of Docker containers. . . . 119
12 Dockerfile: Definition of Docker image used to run tests. . 121
13 aqmt/__init__.py: Python module for running a test

definition. 123
14 aqmt/steps.py: Python module with components to build

the test structure and branching of the test parameters. . 127
15 aqmt/testbed.py: Python module to define the testbed. . . . 132
16 aqmt/plot/collectionutil.py: Python module with utilities

for plotting a collection/tree. 138
17 aqmt/plot/treeutil.py: Python module for manipulating

the tree structure of collections from a test. 145
18 generate_hierarchy_data_from_folder(): Python function

for reconstructing the test definition used at test time into
a tree representing the test. 146

19 overload-simple.py . 148
20 overload-mixed.py . 153
21 Test for threshold of ultra-low delay. See chapter 13. . . . 157

xi

https://github.com/henrist/aqmt-pie-scheduler

xii

Glossary

AIMD Additive increase/multiplicative decrease. The classical way for
congestion controls to behave.. 8

AQM Active queue management. 1, 2

base RTT The roundtrip without congestion. vii, 10, 11, 15, 26, 57, 58

BDP Bandwidth Delay Product. A network with a high BDP is often
called a long fat network. 8, 19, 48, 79

Congestion avoidance State when the congestion window reaches
ssthresh. Halves cwnd to recover, then rate increases by a fixed
amount each RTT interval (AIMD). 7, 8, 15

CUBIC A TCP congestion control. The default in Linux. See
section 2.2.3 for details. 8, 10, 39, 48, 66, 67

DCTCP Data Center TCP. A scalable congestion control algorithm. See
section 2.4 for details. 10, 20

drop probability Same as loss probability. 21, 65

DualPI2 An AQM, see section 3.7. i, vii, viii, 6, 11, 19–21, 25, 27, 31,
58, 59, 63, 65–67, 71–73, 79–81, 84, 89, 92

ECN Explicit Congestion Notification. A flag in the TCP header
indicating there is building congestion. See section 2.3. 9, 10,
20, 39

greedy A TCP utility to generate greedy traffic and attempt to fill
queues to ensure there is always data available to be sent. See
section 7.1. 5, 47

MSS Maximum segment size. The maximum amount of data that can
be transmitted in a single TCP segment. This equals the TCP
packet excluding the header. With an MTU of 1 500 bytes, MSS is
at most 1460 bytes, but usually a timestamp option is present in
the TCP header so the MSS then becomes 1 448 bytes. 57

1

MTU Maxmimum transmission unit. The maximum size of the
network layer when sending data. Using Ethernet as the
underlying protocol this is usually limited to 1 500 bytes. 1

PIE Proportional Integral controller Enhanced. An AQM, see sec-
tion 3.6 for details. vii, viii, 17–19, 27, 63, 65–67, 69, 70

RED Random Early Detection. An AQM, see section 3.5 for details. 10,
16, 17

Reno A TCP congestion control. See section 2.2.2 for details. 8, 10

slow start cwnd doubles each RTT interval. Normally starts at 3
packages. Google experimenting of starting at 10. This is
the starting point of a TCP connection, and keeps going till it
reaches ssthresh, loss or rwnd. When it reaches ssthresh it enters
congestion avoidance. 7

TCP Transmission Control Protocol. 5

2

Part I

Introduction

3

Chapter 1

Introduction

1.1 Motivation

The bandwidth capacity on Internet has increased greatly over the
years, and bandwidth-intensive services such as Youtube and Netflix
have become common to use. Delay is in many situations the critical
factor limiting performance. Bandwidth is often easy to increase, while
improvements in delay often requires changes to protocols and are more
difficult to implement. There are no central control of the Internet, and
the way communication between nodes works must in most cases be
backward compatible not to exclude existing traffic.

Delay mainly occurs due to increasing buffers and queueing or data
that is lost in the route from sender to receiver. This is often caused by
the network transmitting more data than its capacity. Transmission
Control Protocol (TCP), the most common protocol used on Internet,
has mechanisms to control the send rate to accommodate this. The
adopted mechanisms today do not have any understanding of the
actual queueing in the network and is dependant upon package loss
to adjust its sending rate, which itself cause delay due to timeouts and
retransmissions.

Recently a proposal to resolve this was outlined, by having the
network give feedback to the sender when the queue builds up, without
causing loss, while still supporting old clients without causing bias in
the traffic. This is resolved by using a dual queue active queue manager
with a special scheduling algorithm.

1.2 Main contributions

The contributions of this thesis consists of:

• A TCP utility named greedy that provides insight into sending
TCP data and ensures we maximize utilization and fill queues, in
order to ensure we can fight against it.

• Improvements into instrumentation code that can be built into
AQMs to provide metrics about queueing delay and drop statistics.

5

• A test framework that can be used to evaluate AQMs and
congestion control algorithms under a varietly of parameters, also
without requireing a physical testbed.

• Improvements to the DualPI2 reference implementation.

• An evaluation of the DualPI2 AQM.

1.3 Outline

The parts of this thesis consists of:

• Chapter 2 gives an overview of the fundamental technology and
protocol details that is required to understand the next parts.

• Chapter 3 introduces the main topic of queueing, giving a brief
introduction to the essential parts, the issues it causes, some
relevant ways of handling it and introducing the DualPI2 active
queue management that we will be evaluating.

• Part II presents the testbed we will use for evaluations, as well
as describing my way of using it. The part also presents the test
framework developed as part of this thesis, gives a overview of
running tests in a virtual environment and presents pitfalls to be
aware of during testing.

• Part III presents my evaluations of the DualPI2 AQM.

• Part IV concludes my results and lists future work not covered by
this thesis.

6

Chapter 2

Technology background

2.1 IP

Internet Protocol (IP) is the core protocol for modern networking and
which the whole modern internet is built on. Its position in the network
stack is the internet layer, above the link layer and below the transport
layer.

IP consists of IPv4[20] and IPv6[8] as the two current versions.
IP has the responsibility to route packets between networks and IP
addresses.

2.2 Transmission Control Protocol

Transmission Control Protocol (TCP)[21], commonly referred to as
TCP/IP, is the most widely used protocol on the Internet to allow
computers to communicate. TCP provides statefull connections, ensures
packets arrive in the correct order, retransmits packet loss and provides
congestion and flow control.

TCP maintains a so called congestion window. The congestion
window defines how much traffic that can be in-flight and not yet
acknowledged. The maintaining of this window provides congestion
control. Flow control is the term used when the receiver is limiting
the traffic in-flight by announcing a receiving window limit.

2.2.1 Congestion control

Congestion control is a result of the problem observed in 1986 called
congestion collapse [16]. Congestion collapse happens when queues fills
up and connections are retransmitting data, causing eventually only
some data to arrive at the receiver. The original problem for this was
resolved in 1986 by introducing Congestion avoidance. [15]

Congestion control works primarily by having a congestion window
which controls how many packets are allowed to be in the network.
When a connection starts, the window is rapidly increased in a state
called slow start, until either a threshold is reached or a congestion

7

signal is detected, normally by a packet being dropped. Outside slow
start the phase is called Congestion avoidance. In this phase the
connection is probing for more capacity by increasing its congestion
window. When a congestion signal is observed the congestion window
will reduce, originally by half its size.

A number of congestion control algorithms have been developed, and
they all use slighly different ways of controlling the congestion window.
However, to co-exist with existing implementations and the original
definition, they usually have to respond to congestion in a similar way
to avoid stavation of other flows.

2.2.2 Reno

TCP New Reno[13], from now just called Reno, is a loss based congestion
control. Reno is considered the reference congestion control algorithm to
compare to, to achieve what is called TCP friendliness. However, Reno
no longer represents the majority of the congestion control algorithms
in use.[29]

Reno’s algorithm for controlling the congestion window in Conges-
tion avoidance phase works by increasing the window by one for each
RTT, and upon each ongestion signal within a RTT halving the window.
This is referred to as additive increase/multiplicative decrease (AIMD).

0
100
200
300
400
500
600
700

 0 50 100 150 200 250Sample #:

W
in

d
o
w

 s
iz

e
(E

st
im

a
te

d
)

[1
4

4
8

 B
]

ECN

Non-ECN

Figure 2.1: Reno’s response to congestion signals.

2.2.3 CUBIC

CUBIC[11] is also a loss based congestion control. It is optimized for
high speed networks, and its window update algorithm is independent
of RTT making it a good fit having a high BDP. CUBIC is the default
congestion control algorithm in Linux as of kernel version 2.6.19
released in 2006[17].

CUBIC’s window growth function is not linear as with Reno, but
uses a cubic function. The result of this is a congestion control quickly
increasing its window to a threshold (the window size just before the
last congestion signal), staying close to this threshold before quickly
probing for more capacity. Upon a congestion signal the window is
modified with a factor of 0.7. Having only a small congestion window,
CUBIC will fall back to reno-like behaviour to ensure TCP friendliness.

8

CUBIC also supports ECN instead of drops. Marks with ECN
provides the same signal as a drop, except the impairment of drop is
avoided.

0
100
200
300
400
500
600
700

 0 50 100 150 200 250Sample #:

W
in

d
o
w

 s
iz

e
(E

st
im

a
te

d
)

[1
4

4
8

 B
]

ECN

Non-ECN

Figure 2.2: CUBIC’s response to congestion signals.

2.3 Explicit congestion notification

Explicit congestion notification (ECN) is a feedback mechanism altern-
ative to drops. When ECN is in use and the congested path supports it,
packets will be marked with a flag which is returned to the sender in
an ACK paket. Classical ECN states that a marked packet should be
threated the same as a dropped packet.[23]

When using ECN the congestion control algorithim don’t need to
wait for a packet drop or selective ACKs to determine a packet was
dropped. And most important it don’t have to retransmit any packets,
which would cause further delay for the connection.

ECN with IPv4

The bits 15 and 16 of the IPv4 header is used for ECN. The codepoints
ECT(1) and ECT(0) is currently threated the same. The router can
choose to set the CE codepoint instead of dropping if the packet has
any of the ECN codepoints.

ECT CE RFC 2481 names for the ECN bits

0 0 Not-ECT

0 1 ECT(1)

1 0 ECT(0)

1 1 CE - congestion experienced

Table 2.1: Codepoints for ECN

9

ECN with IPv6

The last two (least significant) bits of the Traffic Class is used similar
as ECN fields.

2.3.1 Using ECN for scalable marking

The downside with current ECN is that a marked packet gives the same
response than a dropped packet. This means that the queues still has to
build up to the level a packet would be dropped before it will be marked.

Work is going on to change this such that ECN can be used to signal
incipient congestion without the congestion control backing off as it
would getting a drop.[4] This is called scalable ECN marking.

2.4 Data center TCP

Data center TCP (DCTCP)[2], is a TCP congestion control algorithm
which utilizes ECN to provide the extent of queueing rather than only
the presence of it as with classical TCP such as Reno and CUBIC,
and thus responding more frequently to the congestion signals reducing
variance in the sending rate.

DCTCP provides low queueing delay while also giving high utiliza-
tion, all at the same time without causing impairments such as drops.
See figure 2.3 for a visualization. Due to the agressiveness of DCTCP it
is currently mainly being used in data centers where the whole network
is under control. DCTCP is a lot more agressive than Reno because it
expects many congestion signals to reduce the rate as much as Reno.
So having DCTCP co-exist with Reno without any other changes would
cause Reno traffic to effectively starve. Figure 2.4 shows an example of
this.

[7] shows the relation between scalable congestion controls such as
DCTCP and classical congestion controls such as Reno and how they
can work together by applying different signalling probabilities.

DCTCP requires a change in both the receiver and the router to work
properly. The receiver needs to properly echo the CE codepoints so that
the sender can receive the proper extent of congestion. The router needs
to mark the ECN packets more frequently that it would for a classical
TCP connection.

A limitation for using DCTCP outside a data center is its congestion
window increase algorithm, which works like Reno increasing by one
segment for each RTT. This makes DCTCP less suited having noticable
delay caused by base RTT.

DCTCP currently uses the ECT(0) codepoint, while the experimental
work on scalable ECN marking is targeting ECT(1). DCTCP today is
usually used by configuring the RED AQM to provide proper marking.

10

0

20

40

60

80

100

120

 0 20 40 60 80 100 120 140Sample #:

U
ti

liz
a
ti

o
n
 [

%
]

DCTCP

0

1

2

3

4

5

6

 0 20 40 60 80 100 120 140Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets

Non-ECN packets

0

50

100

150

200

250

 0 20 40 60 80 100 120 140Sample #:

W
in

d
o
w

 s
iz

e
(E

st
im

a
te

d
)

[1
4

4
8

 B
]

ECN

Non-ECN

Figure 2.3: DCTCP traffic over 100 Mbit/s with 20 ms base RTT with a
target queue delay of 3 ms. Showing full utilization while keeping low
delay. DualPI2 used as AQM.

2.5 User Datagram Protocol

User Datagram Protocol (UDP)[22] is a very simple protocol used as
an alternative for TCP. UDP is non-responsive, stateless and give no
guarantee on ordered data as with TCP. UDP provides no congestion
control. The properties of UDP makes it suitable in situations for real
time traffic that can handle loss.

As UDP is non-responsive, it can also easily cause overload of not
used correctly. In this thesis UDP is the basis of overload, as we can
precisely control the rate it is sending, while for TCP the congestion
control algorithm will maintain the rate for us.

11

0

20

40

60

80

100

120

 0 20 40 60 80 100 120 140Sample #:

U
ti

liz
a
ti

o
n
 [

%
]

DCTCP

Reno

0

50

100

150

200

250

 0 20 40 60 80 100 120 140Sample #:

W
in

d
o
w

 s
iz

e
(E

st
im

a
te

d
)

[1
4

4
8

 B
]

ECN

Non-ECN

Figure 2.4: DCTCP co-existing with Reno in a single queue with
classical ECN marking. The DCTCP flow starts after a short moment
and is stopped for a moment durent the test. DCTCP starves the Reno
flow.

12

Chapter 3

Queueing

3.1 Relation between rate and delay

The rate and delay in combination gives the number of bits that can
be in flight. Using the Bandwidth Delay Product-formula this can be
calculated:

bandwidth (b/s) × RTT s = bits in-flight

This formual also gives the window size a TCP connection need to
support to be able to utilize the full bandwidth. In Table 3.1 a few
example is given to give an understanding of this. Table 3.2 shows what
this equals when each packet in the window is of 1 448 bytes.

Achieving 1 Gbit/s while having a RTT of 20 ms will need a window
of 2,4 MB. The same value in number of packets of 1 448 bytes is 1 727
packets.

rate \ rtt 1 ms 5 ms 10 ms 20 ms 50 ms 100 ms 200 ms 500 ms
1 Mbit/s 0,1 KB 0,6 KB 1,2 KB 2,4 KB 6,1 KB 12,2 KB 24,4 KB 61,0 KB

50 Mbit/s 6,1 KB 30,5 KB 61,0 KB 122,1 KB 305,2 KB 610,4 KB 1,2 MB 3,0 MB
100 Mbit/s 12,2 KB 61,0 KB 122,1 KB 244,1 KB 610,4 KB 1,2 MB 2,4 MB 6,0 MB
500 Mbit/s 61,0 KB 305,2 KB 610,4 KB 1,2 MB 3,0 MB 6,0 MB 11,9 MB 29,8 MB

1 Gbit/s 122,1 KB 610,4 KB 1,2 MB 2,4 MB 6,0 MB 11,9 MB 23,8 MB 59,6 MB
10 Gbit/s 1,2 MB 6,0 MB 11,9 MB 23,8 MB 59,6 MB 119,2 MB 238,4 MB 596,0 MB

Table 3.1: Window size for various combinations of rates and RTTs in
bytes.

rate \ rtt 1 ms 5 ms 10 ms 20 ms 50 ms 100 ms 200 ms 500 ms
1 Mbit/s 0,1 0,4 0,9 1,7 4,3 9 17 43

50 Mbit/s 4,3 22 43 86 216 432 863 2 158
100 Mbit/s 9 43 86 173 432 863 1 727 4 316
500 Mbit/s 43 216 432 863 2 158 4 316 8 633 21 581

1 Gbit/s 86 432 863 1 727 4 316 8 633 17 265 43 163
10 Gbit/s 863 4 316 8 633 17 265 43 163 86 326 172 652 431 630

Table 3.2: Window size for various combinations of rates and RTTs in
number of packets of 1 448 bytes.

13

3.1.1 Common round-trip delay time

Light in vacuum travel at 300,000 kilometers per second, while in fiber
this is typically reduced by a factor around 1.44[19], resulting around
207 756km

s . As a rule of thumb the communication will travel at around
200,000 kilometers per second. This equals to one millisecond for every
250 km in fiber. In addition there is processing time throughout the
path which adds further time.

According to network details from Verizon[26], traffic between
London and New York have an average RTT around 74 ms as of May
2016. According to their statistics the RTT can be as high as above 400
ms (average RTT September 2015 from New Zealand to UK) in their
core network. In addition to this there is delay between core network
and end points.

3.2 Queueing in routers

Queueing in routes is usually a result of congestion. If the incoming rate
is higher than the outgoing rate, there will be queueing. Equation 3.1
shows Little’s law which defines average queueing length, L, as the
arrival rate, λ, multiplied with the average time each item stay in the
queue, W . Queueing causes delay as the data has to use time to sit
throught the queue. The amount of queueing depends on the amount of
buffer space available, as well as how the queue is managed.

L = λW (3.1)

Classical TCP (Reno) increase its congestion window by 1 every
RTT, and halves the window upon receiving a congestion signal (drop)
within a RTT. Without any buffer spacing allowing for queueing within
a router, packets will have to be dropped at any congestion. If having
perfect pacing of packets this would occur when the link goes above
full utilization. Classical TCP would then halve it’s congestion window,
effectiveley halving the utilization before building up its window again.
Without any queueing it would be impossible for classical TCP to utilize
the link capacity.

To be able to utilize the link fully, the router need to queue up enough
packets so that when a congestion is signalled, the half of the congestion
window of the sender still causes full utilization.

Buffer capacity also allows for bursty traffic, without signalling
congestion in all cases. This might happen due to wireless links, routing
changes, scheduling or other reasons. Scheduling might cause micro
bursts that is so short it is not noticable, however the queue will quickly
grow and decrease. Without any capacity, packets will be dropped even
though there are no real congestion.

Queueing in general might occur other places than in the router
itself, such as in the application layer, the TCP implementation in
the kernel, ethernet driver and network card, wireless traffic and

14

more. This thesis only focus on the queues caused in the router due
to incoming traffic being higher than outgoing link capacity.

3.3 Tail drop

Tail drop is the simplest way of managing a queue. It drops packets
trying to enter the queue when it is full, hence the term tail drop.
A huge problem with tail drop is that it might cause the queue to
remain almost full. Having a big buffer space will allow high utilization,
however the delay caused by it is also be very high. Another problem
with tail drop is that it might cause synchronization between flows, e.g.
multiple flows backing off at the same time, causing under-utilization.
[5]

As a simple example of how tail drop works, figure 3.1 shows tail
dropping using a small buffer and figure 3.2 shows the same traffic
but having a higher buffer. As can be seen from this is the under-
utilization with a small buffer and full utilization when the buffer
always have data. The queueing delay without much buffer space keeps
low, while having a lot of buffer gives a very high queueing delay. The
problem with classical TCP is you can’t get both high utilization and low
queueing delay. In the second example having full utilization, the RTT
is varying by a factor of two by the base RTT, from 50 ms to 100 ms only
because of queueing.

However, the example shows the best condition for full utilization
and queueing. As can be seen from figure 3.2 the queueing delay is close
to zero on drops without causing under-utilization. Having a higher
buffer size would cause the queueing delay to always be higher than 0
with a long-running flow.

Figure 3.3 shows the same example as figure 3.1, but with CUBIC
instead of Reno. Because CUBIC has a more agressive Congestion
avoidance algorithm the average utilization is greater than that of Reno.

The examples show only having one single flow at the same time.
Having multiple flows will usually improve the utilization as long as
the flows don’t get a synchronized congestion signal. E.g. if having two
flows with similar congestion window and one receiving a congestion
signal, the overall window will only reduce by one fourth, not by half.

3.4 Active queue management

Active queue management (AQM) is an advanced form of queue
management, an algorithm managing the length of packets queued
by marking packages when necessary or appropriate. The algorithm
causes congestion signals by the marking which the sender can use to
adjust its rate. An AQM also helps ensure there is available buffer
capacity for handling burst and avoiding global synchronization. [3]
gives recommendations for developing an AQM in today’s Internet.

15

0

20

40

60

80

100

120

 0 50 100 150 200Sample #:
U

ti
liz

a
ti

o
n
 [

%
]

Total utilization

0
2
4
6
8

10
12
14

 0 50 100 150 200Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets

Non-ECN packets

0

50

100

150

200

250

300

 0 50 100 150 200Sample #:

W
in

d
o
w

 s
iz

e
(E

st
im

a
te

d
)

[1
4

4
8

 B
]

ECN

Non-ECN

Figure 3.1: Tail dropping with a buffer size of 50 packets. 1 Reno flow.
Link rate: 50 Mbit/s. Base RTT: 50 ms.

As apposed to tail dropping, an AQM signals congestion before the
queue is full. It also allows for larger buffers for handling bursts, but
only using them when needed.

A lot of different AQMs have been developed throughout the years.
RED is considered the first AQM, being developed in 1993. An extensive
list and insight into different AQMs developed between 1993 and 2011
is given in [1].

3.5 RED - Random Early Detection

In 1993, S. Floyd and V. Jacobsen proposed a mechanism called Random
Early Detection (RED) as a possible mechanism for solving the issues
caused by tail dropping.[10] RED is an active queue management
algorithm which gives feedback to the sender about the network
congestion by marking or dropping packages with a probability related
to the average queue size.

The RED algorithm is designed where a single marked or dropped
package is enough to signal congestion, and as an algorithm that can
be deployed gradually. It also ensures a bias against bursty traffic. The

16

0

20

40

60

80

100

120

 0 50 100 150 200Sample #:

U
ti

liz
a
ti

o
n
 [

%
]

Total utilization

0

10

20

30

40

50

 0 50 100 150 200Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets

Non-ECN packets

0
50

100
150
200
250
300
350
400
450

 0 50 100 150 200Sample #:

W
in

d
o
w

 s
iz

e
(E

st
im

a
te

d
)

[1
4

4
8

 B
]

ECN

Non-ECN

Figure 3.2: Tail dropping with a buffer size of 200 packets. 1 Reno flow.
Link rate: 50 Mbit/s. Base RTT: 50 ms.

design also cause the probability of being signalled proportional to that
connection’s share of the throughput.

The algorithm computes the average queue size. If this is between
two thresholds it will calculate a marking probability, linearly between
these thresholds related to the average queue size, and increasing
the probability more for the count since last marked packet. If this
probability occurs the packet will be marked, signalling congestion.
If the average queue length is larger than the upper threshold all
packages will be marked.

A weakness with RED is that it needs to be properly configured
for the case it is deployed. Different link rates and sites will require
different configuration. The main problem is that the queue is
measured in bytes, not in time.

3.6 PIE - Proportional Integral controller En-
hanced

Proportional Integral controller Enhanched (PIE) is an AQM that
attempts to keep the queueing delay to a configured value in time. It is

17

0

20

40

60

80

100

120

 0 50 100 150 200Sample #:
U

ti
liz

a
ti

o
n
 [

%
]

Total utilization

0
2
4
6
8

10
12
14
16

 0 50 100 150 200Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets

Non-ECN packets

0

50

100

150

200

250

300

 0 50 100 150 200Sample #:

W
in

d
o
w

 s
iz

e
(E

st
im

a
te

d
)

[1
4

4
8

 B
]

ECN

Non-ECN

Figure 3.3: Tail dropping with a buffer size of 50 packets. 1 CUBIC flow.
Link rate: 50 Mbit/s. Base RTT: 50 ms.

self-tuning and works out of the box in most deployment scenarios.[18]
PIE is also the reference AQM for DOCSIS-PIE[28] which is mandatory
in DOCSIS 3.1[12], which is the standard used by cable network
providers. PIE was made available in the mainline Linux kernel as
of January 2014.1

PIE uses a Proportional Integral (PI)[14] algorithm as its core
to maintain a target queueing delay. It maintains an estimation of
dequeue rate and periodically measures the queueing delay from the
number of packets in the queue, which is used in the PI controller
to calculate a signalling probability. For each packet enqueued the
probability is used to determine if a packet should receive a congestion
signal.

PIE includes a number of heuristics, e.g. tuning of the probability
if it is low to avoid instability, limiting the change in probability and
more. Some if these heuristics are discussed in [7].

1https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
d4b36210c2e6ecef0ce52fb6c18c51144f5c2d88

18

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d4b36210c2e6ecef0ce52fb6c18c51144f5c2d88
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d4b36210c2e6ecef0ce52fb6c18c51144f5c2d88

3.7 DualPI2

DualPI2, presented in [6], is the AQM being evaluated for this thesis.
DualPI2 attempts to solve the problem with queueing delay for all users
while keeping the utilization near full. It requires ECN to be able
to signal more frequently about congestion without the impairment of
drop. To be able to coexist with todays classical TCP it uses a seperate
queue for the improved ECN capable traffic. DualPI2 should work
under a varietly of conditions, from low-speed networks to high-speed
networks with a high delay.

As with PIE, DualPI2 uses the PI controller as its core for controlling
the signalling probability. However, while PIE has a tuning table for
controlling the PI algorithm, DualPI2 squares the probability before
applying it to classical TCP traffic. The analysis in [7] shows that the
squaring of the probability achieves the same as the heuristic tune table
used in PIE.

Figure 3.4 shows how packets in DualPI2 are processed from
enqueue to dequeue. The next sections explains the different parts.

Figure 3.4: Dual Queue Coupled AQM. Figure from the original paper.

3.7.1 Keeping queueing delay low

The rate of congestion signals for classical TCP do not grow as the
bandwidth increases. This makes the congestion signalling not scalable,
causing a higher variation of the window with a high BDP. Classical
TCP signals one congestion signal for each RTT.

To keep queueing delay low, while also having a high utilization,
DualPI2 uses a ‘scalable’ congestion controller in combination of ECN to
signal more frequently about congestion. A ‘scalable’ congestion control
algorithm receives a linearly equal amount of congestion signals as the
BDP increases. The result is a system that gives a more fine-graded
response to congestion, instead of the classical way of responding two
one signal for each RTT.

19

DCTCP is one such algorithm, and is used to test the DualPI2
algorithm, both in the DualPI2 paper and in this thesis.

Using ECN as signalling is essential for DualPI2. ECN effectively
gives the same signal as a drop, however by not dropping packets no
harm is caused for the flow, such as needing to retransmit data or wait
for a possible timeout. Increasing the signalling rate by using drop
would cause too much harm to the flows and make them unstable.

To keep queueing delay ultra-low, DualPI2 also uses a low queue
threshold for scalable traffic which will mark (never drop) packets that
exceed the threshold. The reference implementation uses a value of 1
ms as threshold.

3.7.2 Coupling between classical and scalable TCP

For scalable congestion controls such as DCTCP, the output of the PI
algorithm can be used directly for signalling congestion. However,
to achieve a balance between unscalable (classical) and scalable TCP,
the probability need to be coupled between the two to achieve a fair
window balance. The DualPI2 paper shows how this is calculated, and
recommends using the coupling factor of 2.

The coupling causes the following probability relationship:

pclassic =
(pscalable

k

)2

With a coupling factor of 2, the probability of 25 % for classical
TCP gives the probability of 100 % for scalable TCP. For the reference
implementation used in this thesis the probability being calculated is
equal to p′

2 , so it is multiplied by k to to get pscalable and squared to get
pclassic.

3.7.3 Multiple queues

DualPI2 divides traffic into two queues:

Classic queue for packets that do not use scalable congestion controls.
I.e. congestion controls suck as Reno and CUBIC, which upon
marking/dropping is expected to half the congestion window, or
as with CUBIC attempt to provide fairness to Reno halving.

L4S queue, also termed scalable queue, for packets that uses a
scalable congestion control, which will measure the amount of
signalling feedback and adjust the congestion window by it. Traffic
which uses ECT(1), as described in 2.3.1, is used to classify traffic
to this queue.

3.7.4 Priority scheduler

DualPI2 uses a time shifted scheduler to allow low queueing in the L4S
queue. Without a time shifted scheduler the queueing delay for the two

20

queues would be similar, and it would not allow low latency while still
preserving fairness to classic traffic.

The time shifted part of the scheduler work so that if there are
packets in both queues, the packet that has spent the longest time is
picked, but with an added time shift for L4S traffic:

• The time of the classic packet is kept as is.

• The time of the L4S packet is added the time shift. In the reference
implementation of DualPI2 the default time shifted value is 40 ms.
This means that a packet in the classic queue has been there 40
ms longer than the packet in the L4S queue the classic packet is
dequeued first.

3.7.5 Overload handling

Overload happens due to unresponsive flows causing congestion. The
main concern with overload in DualPI2 is the effect it gives for the
different queues. Because of the priority scheduler, traffic in the L4S
queue will be prioritized as long as the delay in the classic queue is
within a specified difference.

Overloading the classic queue will cause the probability to increase
causing more drops in the classic queue and more marks in the L4S
queue. The L4S queue switches to drop when the marking probability
in the L4S queue reaches 100 %, equaling a drop probability of 25 % in
the classic queue (having a coupling of 2, see section 3.7.2).

Overloading the L4S queue causes packets in the classic queue to be
delayed. Without any traffic in the classic queue, the probability will
use the delay in the L4S queue. The increased delay will cause the
probability to rise and the overload mechanism will eventually switch
from marking to dropping traffic in the L4S queue.

The exact observed behaviour of overloading is part of the main
evaluations of this thesis.

21

22

Part II

Testbed design and setup

23

Chapter 4

Topology

To be able to evaluate the DualPI2 AQM I am setting up a simulation
network which we can run traffic in and monitor for statistics.
Figure 4.1 show how the testbed is structured. The testbed consist of:

• Two clients: Each client is connected to a switch and all clients
share the same subnet.

• Two servers: Each server is connected to a seperate interface on
the AQM machine and are in different subnets.

• AQM: Machine acting as a router. Has three interfaces. The
clients subnet has one interface which is connected to the clients
switch. This interface is used to simulate the bottleneck, and is
where the scheduler is added.

In additional there is a management network not shown in the
figure, where all the machines are directly connected. This is used for
control traffic for easier seperation from test traffic.

Testing is done both on a physical testbed as well as in a virtualized
environment futher explained in chapter 8. The physical testbed uses
1 GigE network cards and a 1 GigE switch for the clients network. All
machines run Ubuntu using 4.10 kernel.

Listing 9 shows the script written used to configure the testbed.
Usage of this is shown in the setup method in listing 15. The usage
of this is further explained in chapter 6 presenting our test framework.

Router (AQM)

← rate limited

Client A

Client B

Server A

Emulated RTT

Server B

Emulated RTTThe AQM is applied here
and works in egress

for traffic to the clients

Figure 4.1: The topology used in the testbed.

25

Simulating a bottleneck

To limit the bandwidth and cause a bottleneck towards the clients, the
queueing discipline Hierarchical Token Bucket (HTB) is used. It allows
to specify a specific bandwidth and will rate limit the connection.

Simulating base RTT

To simulate base RTT I use netem, which will delay packets for a
specified time before sending them. Netem is used in each direction
on the link to the servers. The servers can be configured with different
base RTT independently from each other.

26

Chapter 5

Collecting metrics

5.1 Measuring actual queueing delay and drops
at the AQM

For measuring the actual delay for packets to sit through the AQM as
well as dropped packets at the AQM, the packets that leave the AQM
have reporting metics added that is then stored when analyzing the
packets that leave the interface.

The intial code for this was given me by the people who have
performed earlier tests on DualPI2, which I have rewritten and further
improved.

To store metrics, the identification field of the IPv4 header is
replaced. This field consists of 16 bits and is used for segmentation
of packets and features not needed. This allows us to inject metrics into
the packet and let us analyze this later, without increasing the packet
or doing file system operations from the kernel module.

5.1.1 Modifying existing schedulers to add reporting

All the schedulers/AQMs to be tested need to be instrumented to report
queueing delay when a packet dequeues as well as incrementing the
drop counter which is reported on next dequeued packet.

To make this more easily I have made an API that can be hooked
into from the AQMs. Listing 1 shows an example of changes needed to
PIE to support the reporting and listing 2 shows the API itself.

1 diff --git a/sch_pie.c b/sch_pie.c
2 index 5c3a99d..6d57db8 100644
3 --- a/sch_pie.c
4 +++ b/sch_pie.c
5 @@ -30,6 +30,7 @@
6 #include <linux/skbuff.h>
7 #include <net/pkt_sched.h>
8 #include <net/inet_ecn.h>
9 +#include "testbed.h" /* see README for where this is located */

10

11 #define QUEUE_THRESHOLD 10000

27

12 #define DQCOUNT_INVALID -1
13 @@ -74,6 +75,9 @@ struct pie_sched_data {
14 struct pie_vars vars;
15 struct pie_stats stats;
16 struct timer_list adapt_timer;
17 +#ifdef IS_TESTBED
18 + struct testbed_metrics testbed;
19 +#endif
20 };
21

22 static void pie_params_init(struct pie_params *params)
23 @@ -158,6 +162,12 @@ static int pie_qdisc_enqueue(struct sk_buff

*skb, struct Qdisc *sch,↪→

24

25 /* we can enqueue the packet */
26 if (enqueue) {
27 +#ifdef IS_TESTBED
28 + /* Timestamp the packet so we can calculate the queue

length↪→

29 + * when we collect metrics in the dequeue process.
30 + */
31 + __net_timestamp(skb);
32 +#endif
33 q->stats.packets_in++;
34 if (qdisc_qlen(sch) > q->stats.maxq)
35 q->stats.maxq = qdisc_qlen(sch);
36 @@ -167,6 +177,9 @@ static int pie_qdisc_enqueue(struct sk_buff

*skb, struct Qdisc *sch,↪→

37

38 out:
39 q->stats.dropped++;
40 +#ifdef IS_TESTBED
41 + testbed_inc_drop_count(skb, &q->testbed);
42 +#endif
43 return qdisc_drop(skb, sch, to_free);
44 }
45

46 @@ -445,6 +458,9 @@ static int pie_init(struct Qdisc *sch, struct
nlattr *opt)↪→

47 pie_params_init(&q->params);
48 pie_vars_init(&q->vars);
49 sch->limit = q->params.limit;
50 +#ifdef IS_TESTBED
51 + testbed_metrics_init(&q->testbed);
52 +#endif
53

54 setup_timer(&q->adapt_timer, pie_timer, (unsigned long)sch);
55

56 @@ -517,6 +533,9 @@ static struct sk_buff
*pie_qdisc_dequeue(struct Qdisc *sch)↪→

57 return NULL;
58

59 pie_process_dequeue(sch, skb);
60 +#ifdef IS_TESTBED
61 + testbed_add_metrics(skb, &((struct pie_sched_data *)

qdisc_priv(sch))->testbed);↪→

62 +#endif
63 return skb;
64 }

28

Listing 1: Patch to PIE to add metrics reporting. PIE available in
Linux kernel as of version 4.10 is used. Full code available at https:
//github.com/henrist/aqmt-pie-scheduler.

1 /* This file contains our logic for reporting drops to traffic
analyzer↪→

2 * and is used by our patched versions of the different schedulers
3 * we are using.
4 *
5 * It is only used for our testbed, and for a final implementation

it↪→

6 * should not be included.
7 */
8

9 #include <net/inet_ecn.h>
10 #include "numbers.h"
11

12 /* This constant defines whether to include drop/queue level
report and other↪→

13 * testbed related stuff we only want while developing our
scheduler.↪→

14 */
15 #define IS_TESTBED 1
16

17 struct testbed_metrics {
18 /* When dropping ect0 and ect1 packets we need to treat

them the same as↪→

19 * dropping a ce packet. If the scheduler is congested,
having a seperate↪→

20 * counter for ect0/ect1 would mean we need to have
packets not being↪→

21 * marked to deliver the metric. This is unlikely to
happen, and would↪→

22 * cause falsy information showing nothing being dropped.
23 */
24 u16 drops_ecn;
25 u16 drops_nonecn;
26 };
27

28 void testbed_metrics_init(struct testbed_metrics *testbed)
29 {
30 testbed->drops_ecn = 0;
31 testbed->drops_nonecn = 0;
32 }
33

34 void testbed_inc_drop_count(struct sk_buff *skb, struct
testbed_metrics *testbed)↪→

35 {
36 struct iphdr* iph;
37 struct ethhdr* ethh;
38

39 ethh = eth_hdr(skb);
40

41 /* TODO: make IPv6 compatible (but we probably won't going
to use it in our testbed?) */↪→

29

https://github.com/henrist/aqmt-pie-scheduler
https://github.com/henrist/aqmt-pie-scheduler

42 if (ntohs(ethh->h_proto) == ETH_P_IP) {
43 iph = ip_hdr(skb);
44

45 if ((iph->tos & 3))
46 testbed->drops_ecn++;
47 else
48 testbed->drops_nonecn++;
49 }
50 }
51

52 u32 testbed_get_drops(struct iphdr *iph, struct testbed_metrics

*testbed)↪→

53 {
54 u32 drops;
55 u32 drops_remainder;
56

57 if ((iph->tos & 3)) {
58 drops = int2fl(testbed->drops_ecn, DROPS_M,

DROPS_E, &drops_remainder);↪→

59 if (drops_remainder > 10) {
60 pr_info("High (>10) drops ecn remainder:

%u\n", drops_remainder);↪→

61 }
62 testbed->drops_ecn = (__force __u16)

drops_remainder;↪→

63 } else {
64 drops = int2fl(testbed->drops_nonecn, DROPS_M,

DROPS_E, &drops_remainder);↪→

65 if (drops_remainder > 10) {
66 pr_info("High (>10) drops nonecn

remainder: %u\n", drops_remainder);↪→

67 }
68 testbed->drops_nonecn = (__force __u16)

drops_remainder;↪→

69 }
70 return drops;
71 }
72

73 /* add metrics used by traffic analyzer to packet before
dispatching */↪→

74 void testbed_add_metrics(struct sk_buff *skb, struct
testbed_metrics *testbed)↪→

75 {
76 struct iphdr *iph;
77 struct ethhdr *ethh;
78 u32 check;
79 u16 drops;
80 u16 id;
81 u32 qdelay;
82 u32 qdelay_remainder;
83

84 ethh = eth_hdr(skb);
85 if (ntohs(ethh->h_proto) == ETH_P_IP) {
86 iph = ip_hdr(skb);
87 id = ntohs(iph->id);
88 check = ntohs((__force __be16)iph->check);
89 check += id;
90 if ((check+1) >> 16) check = (check+1) & 0xffff;
91

30

92 /* queue delay is converted from ns to units of 32
us and encoded as float */↪→

93 qdelay = ((__force __u64)(ktime_get_real_ns() -
ktime_to_ns(skb_get_ktime(skb)))) >> 15;↪→

94 qdelay = int2fl(qdelay, QDELAY_M, QDELAY_E,
&qdelay_remainder);↪→

95 if (qdelay_remainder > 20) {
96 pr_info("High (>20) queue delay remainder:

%u\n", qdelay_remainder);↪→

97 }
98

99 id = (__force __u16) qdelay;
100 drops = (__force __u16) testbed_get_drops(iph,

testbed);↪→

101 id = id | (drops << 11); /* use upper 5 bits in id
field to store number of drops before the
current packet */

↪→

↪→

102

103 check -= id;
104 check += check >> 16; /* adjust carry */
105 iph->id = htons(id);
106 iph->check = (__force __sum16)htons(check);
107 }
108 }

Listing 2: C header file used as an API in the schedulers used in the
testbed.

5.1.2 Improving the precision of reporting

The initial code I was given for collecting metrics added the queueing
delay in number of milliseconds. The default queueing threshold for
DualPI2 is 1 ms, meaning all packets with a queue delay above 1 ms
should be marked. The queueing delay uses 11 bits of the identification
field, giving 2048 different combinations.

To be able to get statistics below 1 ms I implemented a floating point
encoding for the numbers being reported. The code implemented for this
is given in listing 3. For low queueing delays it reports with a precision
of 32 us. As can be seen in figure 5.1, without this encoding the queueing
delay could either report 0 ms or 1 ms, and as the decimals are cut off,
a lot of numbers were reported as 0 ms. Figure 5.2 show the improved
reporting where detailed numbers is given.

As a side effect of this also higher queueing delays can be reported,
however the precision will be lower. Figure 5.3 shows how the queueing
delay was capped at 2047 ms before, but after adding the encoding
figure 5.4 shows queueing delay above this. The example test is limited
at 1 000 packets due to the TCP buffer being set equal to 1 000 packets.

1 /* we store drops in 5 bits */
2 #define DROPS_M 2
3 #define DROPS_E 3
4

31

5 /* we store queue length in 11 bits */
6 #define QDELAY_M 7
7 #define QDELAY_E 4
8

9 /* Decode float value
10 *
11 * fl: Float value
12 * m_b: Number of mantissa bits
13 * e_b: Number of exponent bits
14 */
15 u32 fl2int(u32 fl, u32 m_b, u32 e_b)
16 {
17 const u32 m_max = 1 << m_b;
18

19 fl &= ((m_max << e_b) - 1);
20

21 if (fl < (m_max << 1)) {
22 return fl;
23 } else {
24 return (((fl & (m_max - 1)) + m_max) << ((fl >> m_b) -

1));↪→

25 }
26 }
27

28 /* Encode integer value as float value
29 * The value will be rounded down if needed
30 *
31 * val: Value to convert into a float
32 * m_b: Number of mantissa bits
33 * e_b: Number of exponent bits
34 * r: Variable where the remainder will be stored
35 */
36 u32 int2fl(u32 val, u32 m_b, u32 e_b, u32 *r)
37 {
38 u32 len, exponent, mantissa;
39 const u32 max_e = (1 << e_b) - 1;
40 const u32 max_m = (1 << m_b) - 1;
41 const u32 max_fl = ((max_m << 1) + 1) << (max_e - 1);
42 *r = 0;
43

44 if (val < (1 << (m_b + 1))) {
45 /* possibly only first exponent included, no encoding

needed */↪→

46 return val;
47 }
48

49 if (val >= max_fl) {
50 /* avoid overflow */
51 *r = val - max_fl;
52 return (1 << (m_b + e_b)) - 1;
53 }
54

55 /* number of bits without leading 1 */
56 len = (sizeof(u32) * 8) - __builtin_clz(val) - 1;
57

58 exponent = len - m_b;
59 mantissa = (val >> exponent) & ((1 << m_b) - 1);
60 *r = val & ((1 << exponent) - 1);
61

32

62 return ((exponent + 1) << m_b) | mantissa;
63 }

Listing 3: C header file for encoding/decoding queueing delay and drop
numbers.

5.1.3 Drop statistics

When a packet is dropped in the scheduler, two counters are kept
representing the number of drops. One for non-ECN packets dropped,
and one for ECN capable packets dropped, i.e. a packet with ECT(0),
ECT(1) or CE.

On dequeue the number of drops not yet reported will be added
as a metric in the packet. The counter this packet belongs to will be
used. The counter is then decreased so it will not report the same drop
multiple times.

When analyzing the traffic how many packets before the current
packet was dropped can be seen.

5.2 Saving the metrics

When running a test, a program is run in the background capturing
the traffic going out to the clients.1 This program decodes the metrics
added by the AQM to the packets, and stores data over each sample
period specified when running the test.

The program stores files that is later used to plot and derive
more statistics from. E.g. the queueing delay is reported for each
sample by the number of packets observed in each of the 2048 different
combinations of queueing delay that can be reported. Also statistics for
each flow is saved so detailed per-flow statistics can be generated.

1Available at https://github.com/henrist/aqmt/blob/aef08aa4a8140d28e2689d2be10989c5e96a737a/
aqmt/ta/analyzer.cpp. The program contains derived work from an older testbed.

33

https://github.com/henrist/aqmt/blob/aef08aa4a8140d28e2689d2be10989c5e96a737a/aqmt/ta/analyzer.cpp
https://github.com/henrist/aqmt/blob/aef08aa4a8140d28e2689d2be10989c5e96a737a/aqmt/ta/analyzer.cpp

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

 0 10 20 30 40 50 60 70 80 90Sample #:

R
a
te

 p
e
r
fl
o
w

 [
b

/s
]

nonecn - TCP 10.25.2.21 5500 10.25.1.11 36174

ecn - TCP 10.25.2.21 5500 10.25.1.11 36174

0

10

20

30

40

50

60

70

 0 10 20 30 40 50 60 70 80 90
Sample #:

E
st

im
a
te

d
 w

in
d

o
w

 s
iz

e
[1

5
0

0
 B

]

ECN Non-ECN

0

1

2

3

4

5

 0 10 20 30 40 50 60 70 80 90
Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets Non-ECN packets

0

100

200

300

400

500

600

700

800

900

 0 10 20 30 40 50 60 70 80 90
Sample #:

Pa
ck

e
ts

 p
e
r

sa
m

p
le

D

o
tt

e
d

 l
in

e
s

a
re

 m
a
x

p
a
ck

e
ts

 i
n

 t
h

e
 q

u
e
u

e

Drops (ECN) Marks (ECN) Drops (Non-ECN)

Figure 5.1: Testing lower values of queueing delay - using previous
integer version.

34

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

 0 10 20 30 40 50 60 70 80 90Sample #:

R
a
te

 p
e
r
fl
o
w

 [
b

/s
]

nonecn - TCP 10.25.2.21 5500 10.25.1.11 36172

ecn - TCP 10.25.2.21 5500 10.25.1.11 36172

0

10

20

30

40

50

60

70

80

 0 10 20 30 40 50 60 70 80 90
Sample #:

E
st

im
a
te

d
 w

in
d

o
w

 s
iz

e
[1

5
0

0
 B

]

ECN Non-ECN

0

1

2

3

4

5

 0 10 20 30 40 50 60 70 80 90
Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets Non-ECN packets

0

100

200

300

400

500

600

700

800

900

 0 10 20 30 40 50 60 70 80 90
Sample #:

Pa
ck

e
ts

 p
e
r

sa
m

p
le

D

o
tt

e
d

 l
in

e
s

a
re

 m
a
x

p
a
ck

e
ts

 i
n

 t
h

e
 q

u
e
u

e

Drops (ECN) Marks (ECN) Drops (Non-ECN)

Figure 5.2: Testing lower values of queueing delay - using improved
floating point version.

35

0

500000

1000000

1500000

2000000

2500000

 0 20 40 60 80 100 120Sample #:

R
a
te

 p
e
r
fl
o
w

 [
b

/s
]

ecn - TCP 10.25.2.21 5500 10.25.1.11 36098

nonecn - TCP 10.25.2.21 5500 10.25.1.11 36098

0

50

100

150

200

250

300

350

400

 0 20 40 60 80 100 120
Sample #:

E
st

im
a
te

d
 w

in
d

o
w

 s
iz

e
[1

5
0

0
 B

]

ECN Non-ECN

0

500

1000

1500

2000

2500

 0 20 40 60 80 100 120
Sample #:Q

u
e
u
e
in

g
 d

e
la

y
 p

e
r

q
u
e
u
e
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets Non-ECN packets

0

1000

2000

3000

4000

5000

6000

7000

0 s 5 s 10 s 15 s 20 s 25 s 30 s
Time:R

T
T
 r

e
p
o
rt

e
d

 a
t

se
n
d

e
r

[m
s]

Avg. RTT node A

Figure 5.3: Testing high values of queueing delay - using previous
integer version.

36

0

500000

1000000

1500000

2000000

2500000

 0 20 40 60 80 100 120Sample #:

R
a
te

 p
e
r
fl
o
w

 [
b

/s
]

ecn - TCP 10.25.2.21 5500 10.25.1.11 36096

nonecn - TCP 10.25.2.21 5500 10.25.1.11 36096

0

200

400

600

800

1000

1200

 0 20 40 60 80 100 120
Sample #:

E
st

im
a
te

d
 w

in
d

o
w

 s
iz

e
[1

5
0

0
 B

]

ECN Non-ECN

0

1000

2000

3000

4000

5000

6000

7000

 0 20 40 60 80 100 120
Sample #:Q

u
e
u
e
in

g
 d

e
la

y
 p

e
r

q
u
e
u
e
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets Non-ECN packets

0

1000

2000

3000

4000

5000

6000

7000

0 s 5 s 10 s 15 s 20 s 25 s 30 s
Time:R

T
T
 r

e
p
o
rt

e
d

 a
t

se
n
d

e
r

[m
s]

Avg. RTT node A

Figure 5.4: Testing high values of queueing delay - using improved
floating point version.

37

38

Chapter 6

Test framework

A contribution by this thesis is a framework that can be used to test
and compare different AQMs. I’ve called it Test framework for AQMs
and have released it on GitHub.1 Part of the source code is given in
appendix A.4 for further references. The project consists of approx.
9 000 lines of code. The framework itself is mainly written in Python,
but uses several bash scripts and additional compiled programs written
in C++. It combines all tools for setting up the testbed, generating
traffic, collecting results and plotting results.

The main parts of the framework consists of:

• Tools for constructing all the test parameters and initiating a test.

• Modification of the network configuration.

• Traffic capturing/analysis.

• Analyzing the raw test results.

• Plotting the results.

6.1 Building test definitions

Listing 4 shows a minimal example of how the test framework can be
used.

• The example will build a test tree of all the parameters resulting
in 18 different tests.

• Each test consists of two flows running greedy (see section 7.1),
one using normal CUBIC and one using CUBIC with ECN.

• Each test collects minimum 50 samples and uses 250 ms sample
time. The framework actually runs the test a bit longer to let the
test stabilize. This can be further customized.

1https://github.com/henrist/aqmt

39

https://github.com/henrist/aqmt

• The test is saved to results/example folder and will contain a html
file for easy overview of the test.

• A plot comparing the tests will be generated. By default all tests
also is plotted individually.

This example uses a high-level abstraction above the framework
which wire the different parts of the framework together for easier use.
One might also use only part of the framework directly for more control
of it.

Listing 13 shows the code that takes such test definitions and
transforms it into an actual test using the other components provided
by the framework.

1 #!/usr/bin/env python3
2 #
3 # This is a very simple example of how to use the
4 # AQM test framework.
5 #
6

7 import sys
8

9 from aqmt import Testbed, TestEnv, run_test, steps
10 from aqmt.plot import collection_components, flow_components
11 from aqmt.traffic import greedy
12

13

14 def test(result_folder):
15

16 def my_test(testcase):
17 testcase.traffic(greedy, node='a', tag='CUBIC')
18 testcase.traffic(greedy, node='b', tag='ECN-CUBIC')
19

20 testbed = Testbed()
21 testbed.ta_samples = 50
22 testbed.ta_delay = 250
23

24 testbed.cc('a', 'cubic', testbed.ECN_ALLOW)
25 testbed.cc('b', 'cubic', testbed.ECN_INITIATE)
26

27 run_test(
28 folder=result_folder,
29 title='Just a simple test to demonstrate usage',
30 testenv=TestEnv(testbed),
31 steps=(
32 steps.html_index(),
33 steps.plot_compare(),
34 steps.branch_sched([
35 # tag, title, name, params
36 ('pie', 'PIE', 'pie', 'ecn'),
37 ('fq_codel', 'fq_codel', 'fq_codel', ''),
38 ('pfifo', 'pfifo', 'pfifo', ''),
39]),
40 steps.branch_bitrate([
41 10,
42 50,

40

43]),
44 steps.branch_rtt([
45 2,
46 10,
47 50,
48], title='%d'),
49 my_test,
50)
51)
52

53 if __name__ == '__main__':
54 test("results/example")

Listing 4: Simple example of how the framework is used.

41

Analysis files
Just a simple test to demonstrate usage

Scheduler: PIE
Linkrate: 10 Mb/s

RTT: 2: analysis, details
RTT: 10: analysis, details
RTT: 50: analysis, details

Linkrate: 50 Mb/s
RTT: 2: analysis, details
RTT: 10: analysis, details
RTT: 50: analysis, details

Scheduler: fq_codel
Linkrate: 10 Mb/s

RTT: 2: analysis, details
RTT: 10: analysis, details
RTT: 50: analysis, details

Linkrate: 50 Mb/s
RTT: 2: analysis, details
RTT: 10: analysis, details
RTT: 50: analysis, details

Scheduler: pfifo
Linkrate: 10 Mb/s

RTT: 2: analysis, details
RTT: 10: analysis, details
RTT: 50: analysis, details

Linkrate: 50 Mb/s
RTT: 2: analysis, details
RTT: 10: analysis, details
RTT: 50: analysis, details

Aggregated
comparison

Figure 6.1: HTML file generated for the test.

6.1.1 Building test tree

The core of test definitions is the steps provided to the run_test function.
These acts as middlewares that can create branches in the tree. Python
generators2 is used to achieve this. Each step either yield a empty
value simply passing control to next middleware, or it can yield one
or multiple objects defining a node in the tree. For each yield control is
passed to next middleware. The middlewares mutate the test definition,
so that when the actual test function is reached as the last step, it will

2 https://wiki.python.org/moin/Generators

42

https://wiki.python.org/moin/Generators

use the previous defined parameters.
Listing 5 shows how this can be implemented. The framework

includes a few usefull middleware creators that accept the parameters
in a functional style. See listing 14 for the included middlewares that
can be used out of the box.

1 def branch_rtt(testdef):
2 for rtt in [10, 50]:
3 testdef.testenv.testbed.rtt_servera = rtt
4 testdef.testenv.testbed.rtt_serverb = rtt
5 yield {
6 'tag': 'rtt-%d' % rtt,
7 'title': rtt,
8 'titlelabel': 'RTT',
9 }

Listing 5: A over-simlified middleware that causes a branch in the tree
for testing RTT 10 and RTT 50.

6.2 Built in metrics

The framework can be extended to provide further metrics. Most likely
the interesting metrics is already provided as ready to be graphed:

• Utilization for non-ECN vs ECN traffic.

• Utilization per flow, optionally grouped by a specified identifier.

• Queueing delay.

• Estimated window sizes.

• Drop and mark numbers.

• Window ratio between non-ECN and ECN flows.

• CPU usage statistics.

• Actual RTT observed at the sender.

6.3 Other features

• The test structure saved to disk can be reconstructed through the
meta files stored with the tests. This is actually done when using
the default plotting.

• The idle time in the tests can be moved in time after the test is run.
This is usefull when running a huge test, and later discovering
the idle time was not enough to let the test stabilize, causing
the comparison plots to be unstable. Simply rerunning the test
definition on top of the existing test data with a reanalyze flag
after increasing the idle time will generate new derived data.

43

• The included plot functions is optional to use. Custom plottings
can easily be added through the use of custom middlewares,
or adding custom plot functions to the existing plot framework.
E.g. two plugins for collecting dstat3 statistics and plotting this,
and collecting RTT reported from the sender side is included,
implementing such features.

• The test structure can be restructured after the test is done, e.g.
to group parameteres differently. See listing 17 for more details
about this. The function in listing 18 shows how the initial tree is
built by using the test results stored to disk.

• The traffic generators are simply functions you provide to the
framework, and custom ones can be created.

• By having open sourced the framework the idea is that it will be
further improved and be used for later work.

• A lot of utility scripts are provided to monitor the state of the
testbed. E.g. watching statistics from the qdiscs, graphing the
current traffic rates, inspecting statistics from ss, monitoring the
interfaces for drop status, and more.

See the GitHub page for a more complete walkthrough for how the
framework works and how to get started using it.

3http://dag.wiee.rs/home-made/dstat/

44

http://dag.wiee.rs/home-made/dstat/

Just a simple test to demonstrate usage

 0

 20

 40

 60

 80

 100

2 1
0

5
0

2 1
0

5
0

2 1
0

5
0

2 1
0

5
0

2 1
0

5
0

2 1
0

5
0

Linkrate: 10 Mb/s 50 Mb/s
Scheduler: PIE

10 Mb/s 50 Mb/s
fq_codel

10 Mb/s 50 Mb/s
pfifo

RTT:

U
ti

liz
a
ti

o
n
 p

e
r

q
u
e
u
e
 [

%
]

(p
1
,

m
e
a
n

,
p

9
9
)

Total utilization ECN utilization Non-ECN utilization

 0

 20

 40

 60

 80

 100

2 1
0

5
0

2 1
0

5
0

2 1
0

5
0

2 1
0

5
0

2 1
0

5
0

2 1
0

5
0

Linkrate: 10 Mb/s 50 Mb/s
Scheduler: PIE

10 Mb/s 50 Mb/s
fq_codel

10 Mb/s 50 Mb/s
pfifo

RTT:

U
ti

liz
a
ti

o
n
 o

f
cl

a
ss

ifi
e
d

 t
ra
ffi

c
[%

]
(p

2
5
,

m
e
a
n

,
p

7
5
)

Total utilization ECN-CUBIC CUBIC

 0

 200

 400

 600

 800

 1000

 1200

 1400

2 1
0

5
0

2 1
0

5
0

2 1
0

5
0

2 1
0

5
0

2 1
0

5
0

2 1
0

5
0

Linkrate: 10 Mb/s 50 Mb/s
Scheduler: PIE

10 Mb/s 50 Mb/s
fq_codel

10 Mb/s 50 Mb/s
pfifo

RTT:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(p
1
,

p
2
5
,

m
e
a
n

,
p

7
5
,

p
9
9
)

ECN packets Non-ECN packets

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

2 1
0

5
0

2 1
0

5
0

2 1
0

5
0

2 1
0

5
0

2 1
0

5
0

2 1
0

5
0

Linkrate: 10 Mb/s 50 Mb/s
Scheduler: PIE

10 Mb/s 50 Mb/s
fq_codel

10 Mb/s 50 Mb/s
pfifo

RTT:

D
ro

p
/m

a
rk

s
p

e
r

q
u
e
u
e
 [

%
]

(o
f

to
ta

l
tr

a
ff

ic
 i

n
 t

h
e
 q

u
e
u

e
)

(p
1
,

p
2
5
,

m
e
a
n

,
p

7
5
,

p
9
9
)

Drops (ECN) Marks (ECN) Drops (Non-ECN)

Figure 6.2: Default comparison plot

45

46

Chapter 7

Traffic generation tools

7.1 Greedy

Greedy is a client/server test application written by me for this thesis in
order to generate TCP traffic, and has also been open sourced.1 The goal
of greedy is to fill available buffer space in Linux so that data can always
be transmitted as long as the kernel is ready. This way application
behaviour should likely not influence the test results.

One of the ways greedy manages to fill the buffers is not to use
blocking writes. The first version used blocking writes which caused
bursty behaviour when there were no room in the buffer and all packets
where in flight. The kernel would block while freeing up buffer space
(receiving ACKs), and then on next unblock a lot of packets would get
queued and instantly sent because there were room in the congestion
window. The non-blocking version manages to buffer small amount of
data as long as there is free space in the buffer.

The application also emits information from tcp_info structure
available through the kernel API yielding numbers such as buffers,
ECN flags, window size, lost packets, packets in flight and more, similar
to what ss command gives. However, this is currently only used for
visual monitoring, not for analysis.

Most of the tests in this thesis using TCP is done with greedy. The
source code for greedy is given in listing 8.

7.2 SSH and SCP

Initially SCP over SSH was used to generate data. However while
testing various parameter it showed that this was not reliable at all.
SSH is a multiplexing application having its own flow control and
window implementation limiting performance.[24] Considering it also
adds additional overhead caused by encryption, it should be no surprise
it should avoided in order to get reliable results.

1https://github.com/henrist/greedy

47

https://github.com/henrist/greedy

SCP should in all cases be avoided as it need to read/write from/to
disk and it might cause iowait and blocking.

7.3 iperf2 for TCP

Support for using iperf2 in the test is added. But in the final tests I
have only used greedy. Testing has shown that iperf2 is not reliable and
stable with a high BDP. iperf2 fails to keep the maximum congestion
window allowed by the TCP kernel memory settings.

7.4 iperf2 for UDP

For generating UDP traffic I have used iperf2. iperf2 also takes an
argument for the TOS-field, which can be used to set the ECN flags
and control which queue it goes into.

7.4.1 A note about iperf3 for UDP traffic

Initially iperf3 was used, but as of currently the timer implementation
in iperf3 only sends UDP data every 100 ms 2, causing extremely bursty
behaviour. The bursts caused a on/off pattern in the AQM. iperf2 does
not have this problem, so I have sticked to it.

7.5 Comparing traffic generators

To evaluate the different traffic generators I have run a few tests to see
how they perform when reaching the limit of their congestion window.
The parameters set for this test:

• The TCP kernel buffer size is set to the default value giving a
maximum window size of 965 full packets, as discussed later in
section 9.3.2.

• Bitrate is set to 200 Mbit/s.

• Base RTT is set to 50 ms.

• CUBIC is used as congestion control.

• pfifo is used as scheduler. In this test example no drops or marks
is occuring.

The results from this test is shown in figure 7.1 and can be
summarized as following:

greedy Due to constantly trying to fill the kernel TCP buffer, greedy
maintains a high congestion window and gets a high utilization.

2https://github.com/esnet/iperf/pull/460

48

https://github.com/esnet/iperf/pull/460

SCP and SSH SCP and SSH gets the lowest utilization, as well as
lowest queueing delay. In this result SCP and SSH-only gives
similar results, but using higher bandwidth will cause greater
iowait using SCP causing unstability.

iperf2 and netcat The two give similar results. The window seems
to not get above 820 packets in average. The queueing delay is
also a lot higher than the others, and quite unstable, even though
the utilization is lower. This is most likely because the kernel
runs out of buffer space while all packets are in flight, causing
the TCP application to sleep, and suddenly being able to buffer
lots of packets causing a burst. This was discussed when in the
presentation of greedy in section 7.1.

Greedy clearly outperforms the others. One might argue this isn’t
a realistic way of filling the TCP buffers, however this avoids having
another factor that might cause errors in the testing. Instability of TCP
senders is not of interest for the questions I am exploring.

From testing higher window sizes by increasing the TCP memory,
testing shows that SSH and SCP is limited to a window size of approx.
1 500 packets and refuses to buffer more data. This is probably due to
the multiplexing in SSH and the internal window it maintains.

49

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

greedy scp sshstream iperf2 netcat

U
ti

liz
a
ti

o
n
 [

%
]

(p
1
,

m
e
a
n

,
p

9
9
)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

greedy scp sshstream iperf2 netcat

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(p
1
,

p
2
5
,

m
e
a
n

,
p

7
5
,

p
9
9
)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

greedy scp sshstream iperf2 netcatE
st

.
w

in
d

o
w

 s
iz

e
 [

1
4

4
8

 B
]

(p
1
,

p
2
5
,

m
e
a
n

,
p

7
5
,

p
9
9
)

 0
 10
 20
 30
 40
 50
 60
 70

greedy scp sshstream iperf2 netcatR
T
T
 r

e
p
o
rt

e
d
 a

t
se

n
d
e
r

[m
s]

 (
p

1
,

m
e
a
n

,
p

9
9
)

Figure 7.1: Comparing traffic generators.

50

Chapter 8

Virtualized testing with
Docker

8.1 Introduction to Docker and containers

As part of this thesis I wanted to investigate whether I could run
tests without needing a full physical testbed. As I had experience
with Docker[27], it came up as a possibility to investigate. Docker is
a platform used to manage containers running on a host system. It
acts as an abstraction layer on top of the operating system to manage
containers. Containers are not fully virtual machines, such as QEMU1

or KVM2, but uses namespacing capabilities of the host system to form
isolation between containers. Even though Docker can be used on other
systems such as Windows, only Linux is in scope for this thesis.

A side effect of using Docker and isolating all the test infrastructure
the experiments are more easily reproducable. Instead of manually
configuring a physical testbed, we can use one definition everywhere.

A concern using Docker is that all containers and processes running
inside it shares the host kernel, as well as running on the same CPU.
In Linux only some configuration options are namespaced and hence
can be specified differently for the containers. E.g. the buffer limits for
TCP connections are not exported to the container. The containers can
neither manage kernel modules, and is using what the host system has
loaded.

The goal of using Docker is to show that it can be used as an
alternative to a physical testbed.

1http://www.qemu.org/
2https://www.linux-kvm.org/

51

http://www.qemu.org/
https://www.linux-kvm.org/

8.2 Defining the containers and network topo-
logy for Docker

To define the testbed containers with Docker I use a tool called Docker
Compose3. The tool allows us to define containers and network in a
configuration file which is used to provision the containers, networking
and other needed features.

My definition used for defining a similar topology as with the
physical testbed is given in listing 11. As containers run in a seperate
file system, we also mount a few directories to be available inside the
containers.

8.3 Networking in containers

Each container is put in a namespaced network stack forming isolation.
Docker manages all this for us, but similar could have been done
manully using the ip-netns - process network namespace management4

commands.
As the network is isolated, it cannot communicate outside its

isolation. To resolve this Docker manages a virtual Ethernet interface
which acts as a connection between two namespaced network. This can
be seen similar to a physical cable connecting two machines. For each
network in a container there is:

• A virtual Ethernet interface with one end acting as an interface
inside the container, and the other end connected to a bridge on
the host system.

Containers can communicate with each other by being connected
to the same bridge (same network in Docker context). To match the
topology there are four networks:

• Management network. All containers are connected to it. The
management network allows us to control the machines without
using the interfaces under testing.

• Clients network. All clients and the AQM machine is connected.
This is the network that acts as a bottleneck for data from the
AQM machine.

• Server A network. Only the AQM and server A is connected.

• Server B network. Only the AQM and server B is connected.

3https://docs.docker.com/compose/overview/
4 http://man7.org/linux/man-pages/man8/ip-netns.8.html

52

https://docs.docker.com/compose/overview/
http://man7.org/linux/man-pages/man8/ip-netns.8.html

8.3.1 Initializing networks in the container

When the containers are started they will perform the neccessary
initialization to set up the network. The script performing this is given
in listing 10.

• Disable segmentation offloading. See Section 9.1.

• Add static routes to the other machines through the AQM to allow
them machines to talk to each other using the AQM as a router.

• Set txqueuelen interface option to the normal 1 000. As the
interfaces are virtual, the default is to not allow any queueing in
the interface.

• Add static ARP entries to the gateway to avoid APR lookups as
seen in section 9.2.

• Reset queuing disciplines

• Collect information about the network interfaces name etc. for
later use.

8.3.2 Setting congestion control and ECN feature

The net.ipv4.tcp_congestion_control option cannot be changed from
inside a container, and is global for all traffic on the host. However,
as of iproute2 v4.6 the congctl option was added as per route option.
In addition, ecn can be enabled per route the same way. The
configure_host_cc function in listing 15 shows how this is done.

53

54

Chapter 9

Pitfalls

9.1 Segmentation offloading

Segmentation offloading lets the kernel move some TCP/IP processing
to the network card, giving a performance improvement. A side effect
of offloading the packets is they are also combined into larger segments.
A 1500 byte segment might be combined with other segments causing
larger packets.

Offloading makes it confusing to inspect packets, and packets
handled by the AQM will actually be grouped into one packet, causing
wrong behaviour. Offloading also cause different testing results
depending on the underlying hardware.

The following offloading features have been disabled in all tests:

• gso - generic segmentation offload

• gro - generic receive offload

• tso - tcp segmentation offload

The segmentation offloading is changed by using the ethtool utility,
as shown in listing 6.

1 #!/bin/bash
2 iface=eth0
3 ethtool -K $iface gro off
4 ethtool -K $iface gso off
5 ethtool -K $iface tso off

Listing 6: Shell script to disable offloading.

9.2 ARP requests causing silent periods

During testing I encountered silent periods in the tests, basicly time
where there were no traffic. Using wireshark I identified that there
were ARP[9] requests going on at the same time.

55

ARP requests looks up which ethernet address to send traffic for
a given IP address. Requests are sent out on the network, and a
neighbour that wants to receive this traffic announces itself. Traffic
for a specific IP is then sent to that ethernet address.

For some reason not investigated, this happened quite often, both on
the physical testbed as well as in the virtualized.

This was resolved by explicitly adding ARP tables for the different
machines, as shown in listing 7.

1 #!/bin/bash
2 source aqmt-vars.sh
3

4 mac_clienta=$(ssh $IP_CLIENTA_MGMT "ip l show $IFACE_ON_CLIENTA |
grep ether | awk '{ print \$2 }'")↪→

5 mac_clientb=$(ssh $IP_CLIENTB_MGMT "ip l show $IFACE_ON_CLIENTB |
grep ether | awk '{ print \$2 }'")↪→

6 mac_servera=$(ssh $IP_SERVERA_MGMT "ip l show $IFACE_ON_SERVERA |
grep ether | awk '{ print \$2 }'")↪→

7 mac_serverb=$(ssh $IP_SERVERB_MGMT "ip l show $IFACE_ON_SERVERB |
grep ether | awk '{ print \$2 }'")↪→

8

9 mac_aqm_clients=$(ip l show $IFACE_CLIENTS | grep ether | awk '{
print $2 }')↪→

10 mac_aqm_servera=$(ip l show $IFACE_SERVERA | grep ether | awk '{
print $2 }')↪→

11 mac_aqm_serverb=$(ip l show $IFACE_SERVERB | grep ether | awk '{
print $2 }')↪→

12

13 # clients -> aqm
14 ssh root@$IP_CLIENTA_MGMT "arp -i $IFACE_ON_CLIENTA -s $IP_AQM_C

$mac_aqm_clients"↪→

15 ssh root@$IP_CLIENTB_MGMT "arp -i $IFACE_ON_CLIENTB -s $IP_AQM_C
$mac_aqm_clients"↪→

16

17 # aqm -> clients
18 sudo arp -i $IFACE_CLIENTS -s $IP_CLIENTA $mac_clienta
19 sudo arp -i $IFACE_CLIENTS -s $IP_CLIENTB $mac_clientb
20

21 # servers -> aqm
22 ssh root@$IP_SERVERA_MGMT "arp -i $IFACE_ON_SERVERA -s $IP_AQM_SA

$mac_aqm_servera"↪→

23 ssh root@$IP_SERVERB_MGMT "arp -i $IFACE_ON_SERVERB -s $IP_AQM_SB
$mac_aqm_serverb"↪→

24

25 # aqm -> servers
26 sudo arp -i $IFACE_SERVERA -s $IP_SERVERA $mac_servera
27 sudo arp -i $IFACE_SERVERB -s $IP_SERVERB $mac_serverb

Listing 7: Shell script to add static entries to the ARP tables.

56

9.3 Buffer limits testing high BDP

9.3.1 Buffer size for base RTT

As can be seen from table 3.1, having a high RTT requires a larger
buffer. netem is used to simulate delay on path. The base RTT is split in
two, half in each direction. Netem needs to buffer all the data that sits
through this intended delay.

The default limits on Linux is 1000 packets of queueing. As
offloading is disabled, each packet (or more correctly, each segment)
contains 1448 bytes of data, equaling 1,38 MiB for 1000 packets. Given
the RTT and limit, when this limit will be exceeded can be calculated:

packets × (8× 1 448) b
rtt s

=
1 000× (8× 1 448) b

0.05 s
= 220 Mbit/s

Notice this is the rate of the application data, not the link rate.
Exceeding rate will cause drops that is not seen by the AQM. When

adding the netem qdisc this has to be taken into consideration and
highter limits applied if needed. This is done by adding a limit option
specifying the limit in packets.

9.3.2 Kernel TCP memory limits

Linux has a limit to how much buffer space it has allocated to a TCP
connection. The buffer has to hold on to all packets since the last
consecutive received ACK in case it has to retransmit data. The TCP
window size is hence limited to the buffer allocated in the kernel.

The buffer sizes can be controlled through sysctl changing the
net.ipv4.tcp_rmem (for receive buffer) and net.ipv4.tcp_wmem (for send
buffer) settings. In addition to holding on to packets not yet ACKed,
the kernel will buffer data from the application that will be ready for
transmission when the TCP window allows it.

By default on Linux, the receiving buffer is max 6 MiB and the send
buffer is max 4 MiB. 1 Through testing I have noticed that this limits
the window in number of packets as such:

• tcp_rmem has to be double the maximum window times MSS.

• tcp_wmem has to be tripple the maximum window times MSS.

Given a MSS of 1 448 bytes, the default maximum values yield:

• tcp_rmem gives a maximum window size of
tcp_rmem

1 448 bytes×2 = 6 MiB
1 448 bytes×2 = 2 172 packets

• tcp_wmem gives a maximum window size of
tcp_rmem

1 448 bytes×3 = 6 MiB
1 448 bytes×3 = 965 packets

1https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/
networking/ip-sysctl.txt

57

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/ip-sysctl.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/ip-sysctl.txt

If this buffer is filled up, and all packets are in flight, no data will be
ready in the kernel for transmission when ACKs are received.

Note that when using the ss command the congestion window will
actually be higher, but it will not be allowed to send more packets even
though the window is higher. By looking at the unacked number you
will see number of packets in flight.

9.4 Implicit delay at low bandwidth

When simulating a slow connection, e.g. by using netem, it will give a
higher noticeable base RTT due to the fact that the rate limiting has to
block packets to keeping down the rate.

Using a bitrate of 2 Mbit/s for 1500 bytes gives the following
propagation delay:

packet size b
bitrate b/s

=
12 000 b

2 000 000 b/s
= 0.006 s = 6 ms

Figure 9.1 shows an example of this. As can be seen the reported
RTT by the server is 20 ms, while the average queueing delay in
DualPI2 is between 3 ms or 4 ms. The difference not seen by DualPI2 is
6 ms.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80
Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets Non-ECN packets

0
5

10
15
20
25
30
35
40
45
50

0 s 5 s 10 s 15 s 20 s
Time:

R
T
T
 r

e
p

o
rt

e
d
 a

t
se

n
d
e
r

[m
s]

Avg. RTT node A

Figure 9.1: DualPI2 as AQM. 2 Mbit/s link rate. 10 ms base RTT. One
DCTCP flow.

58

Chapter 10

Improving the DualPI2
implementation

During working with my thesis I have also contibuted to improving the
DualPI2 reference implementation.

10.1 Moving the drop from enqueue to dequeue

The paper describing DualPI2 specifies the dropping to be done at
dequeue. However, the reference implementation used in the paper for
evaluation, and which I have used, have the drop applied when packets
are enqueued.

I have moved the drop to be applied on dequeue as specified, and the
tests in this paper reflects this change.

59

60

Part III

Evaluation

61

Chapter 11

Default parameters

11.1 Default parameters unless otherwise noted

DualPI2 limit 1000p target 15.0ms tupdate 16.0ms alpha 5 beta 50
dc_dualq dc_ecn k 2 l_drop 100 l_thresh 1.0ms t_shift 30.0ms

PIE limit 1000p target 15.0ms tupdate 16.0ms alpha 1 beta 10 ecn

63

64

Chapter 12

Overload in DualPI2

12.1 Response to simple overloading

The very simplest overload is running overload alone, without any other
traffic. I have compared PIE vs DualPI2 for these tests. The code for
running the tests are given in listing 19.

Testing high link rates, figure 12.1 shows PIE generates a on/off
pattern trying to handle the overload when the buffer size is high.
Using a low buffer size, shown in figure 12.2, the problem is not so
visible. However, with a smaller buffer, the queue delay is limited
because excessive traffic is tail dropped, causing a slow response by the
PI controller. This is also visible using DualPI2, as seen in figure 12.3.
DualPI2 do not have the issue with on/off pattern, see figure 12.4.

Putting overload in the L4S of DualPI2 with similar parameters, see
figure 12.5, shows the point where overload handling is being effective
when the probability reaches 100 % marking for the L4S, causing drops
instead, which causes the delay to decrease.

From these results, we can also see that DualPI2 is quicker than PIE
to respond to high queueing, while it uses approx. 1 second to linearly
reduce 10 % of drop probability when the queue is empty.

The results show that having a small buffer when being overloaded
leads to a slow handling of the feedback because the PI controller is
responding slowly and no packets are being dropped.

12.2 Impact of overload in existing traffic

Overload alone is interesting in itself, but introducing other traffic at
the same time shows a more realistic case where other flows are affected
by it. DualPI2 is targeting no poorer performance than PIE, which
makes it appropriate to use as a reference.

To evaluate overload with mixed traffic we run different combina-
tions of greedy TCP traffic and introducing overload by running a UDP
flow at constant rate. To test how and when the overload handling in
DualPI2 takes effect, we run the test over a variety of overload rates.
We also run UDP flows below the linkrate without generating overload,

65

but the UDP flow is still un-responsive. The complete test script is given
in listing 20.

All these tests are run with 10 ms RTT on top of 100 Mbit/s link
rate. We test with UDP traffic in the classic queue and comparing it
against running UDP in the L4S using ECT(1). When testing PIE we
use CUBIC with ECN enabled instead of DCTCP. The comparison plot
contains data after the flows has stabilized.

1. Figure 12.6 and 12.7 show UDP traffic in the classic queue.

2. Figure 12.8 and 12.9 show UDP traffic using ECN, going in the
same queue for PIE but in the L4S for DualPI2.

Interpreting the results

The statistics shown in the graph helps us explaining what is going
on. Because of the amount of different test cases and individual tests
(554 to be exact), we go through each one comparing DualPI2 with PIE.
Each item in the list represents the UDP queue, number of non-ECN
TCP flows and number of ECN-capable TCP flows, same as the plot is
ordered:

Non-ECT, 0 vs 1 Common for all plots, we can see that having ECN-
traffic with DualPI2, the marking stats is extremely high. This is
natural due to the DCTCP algorithm receiving constant feedback.

At approx. 130 Mbit/s UDP the 50 % probability causes the
overload mechanism in DualPI2 to kick in. This switches to
square dropping the ECN packets similar to the classic queue. Any
packets leaving the queue will still be marked.

However, the graph shows no ECN packets are actually being
marked. The most likely explanation of this is because of the
combination of a priority scheduler and dropping on dequeue. The
few ECN packets not being dropped has been prioritied such that
their queueing delay is below the threshold for marking.

Also, recall that the drop probability in DualPI2 is squared, so e.g.
the drop probability at 120 Mbit/s UDP in PIE of approx. 20 %
matches the square of DualPI2 drop probability of approx. 45 %.

Comparing with PIE it seems DualPI2 gets quite similar results.
However, before the overload mechanism kicks in more capacity
is left for the DCTCP traffic. Also the DCTCP traffic gets much
lower latency while the overload is going on. PIE actually gets
a lower average queueing delay, however it fails to maintain its
actual target, which DualPI2 achieves.

Common for almost all scenarious is that the capacity left for other
flows than the UDP flow is very little.

66

Non-ECT, 1 vs 0 Having all traffic in the classic queue shows almost
identical results between DualPI2 and PIE. Only noticable is that
DualPI2 keeps a more stable average queueing delay.

Non-ECT, 5 vs 5 Introducing normal TCP traffic in both queues shows
how the priority queue gives the ECN traffic more capacity. The
RTT plots confirms that the ECN traffic maintains a very low
queue.

Looking at the drop probabilities we can see that PIE gets very
unstable. Its p1 value stays consistent, while the average and
p99 grows. For DualPI2 the p1 value follows the increase of the
average.

As we are having more traffic in the test, the overload switch for
DualPI2 happens earlier, where we have more data points, so we
can clearly see the marking reduces as in the first test. Otherwise,
the results are not that far from the first two tests.

ECT(1), 0 vs 1 When overload traffic is sent to the L4S queue things
change quite a bit. For utilization, it seems like DualPI2 compares
with PIE. The queueing delay is far more stable for DualPI2. In
PIE a lot of non-ECN drops is reported, which is due to CUBIC
with ECN retransmitting packets without ECN.

Introducing UDP traffic with ECN means there is no random
dropping of the packets until the overload mechanism kicks in.
Having overload just above the link rate (or at or slightly under
with many other flows) will cause the queue to grow, activating the
overload mechanism. As such the overload mechanism in these
cases kicks in when we send UDP just about the same as the link
rate.

As with the previous test, PIE has a very high variation of drop
probabilities. This also happens in the next two tests. The result
from this test shows that DualPI2 seems to be more stable than
PIE in this test.

ECT(1), 1 vs 0 Introducing classic traffic while overloading the L4S
queue shows DualPI2 getting very unstable. By looking at
the probability plot we can see that during this unstability the
probability seems to oscilliate with a on/off overload behaviour.
When overload is enabled, so many packets in the L4S queue
is dropped that the classic queue reduces, and when overload is
disabled, the queue grows and causing the L4S queue to grow
when the time shifted priority scheduler reaches its threshold.

Comparing with PIE, the utilization of the TCP traffic in DualPI2
is considerable worse. A possible solution for this that might
be worth investigating is to look into whether the time shifted
priority scheduler should work otherwise during overload.

67

ECT(1), 5 vs 5 The results of having both classic and ECN traffic at
the same time seems to be comparable with the two previous
tests. From the queueing delay and RTT plots we can see that
ECN traffic still maintains low delay. The utilization seems to be
comparable with the similar test having UDP in the classic queue.

68

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets

Non-ECN packets

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets

Non-ECN packets

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

0 s 5 s 10 s 15 s 20 s 25 s 30 s 35 s 40 sTime:

D
ro

p
 p

ro
b

a
b
ili

ty
 [

m
s]

 1

 10

 100

 1000

 10000

 100000

0 s 5 s 10 s 15 s 20 s 25 s 30 s 35 s 40 sTime:

Q
u
e
u
e
 b

a
ck

lo
g

 [
p
kt

s]

Figure 12.1: PIE as AQM with 10 000 packets limit. 500 Mbit/s link
rate. 800 Mbit/s UDP traffic with no ECN. Results with ECN show
similar results.

69

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets

Non-ECN packets

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets

Non-ECN packets

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

40 %

0 s 5 s 10 s 15 s 20 s 25 s 30 s 35 s 40 sTime:

D
ro

p
 p

ro
b

a
b
ili

ty
 [

m
s]

 1

 10

 100

 1000

 10000

0 s 5 s 10 s 15 s 20 s 25 s 30 s 35 s 40 sTime:

Q
u
e
u
e
 b

a
ck

lo
g

 [
p
kt

s]

Figure 12.2: PIE as AQM with 1 000 packets limit. 500 Mbit/s link rate.
800 Mbit/s UDP traffic with no ECN. Results with ECN show similar
results.

70

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets

Non-ECN packets

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets

Non-ECN packets

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

0 s 5 s 10 s 15 s 20 s 25 s 30 s 35 s 40 sTime:

D
ro

p
 p

ro
b
a
b
ili

ty
 [

m
s]

 1

 10

 100

 1000

 10000

0 s 5 s 10 s 15 s 20 s 25 s 30 s 35 s 40 sTime:

Q
u
e
u
e
 b

a
ck

lo
g
 [

p
kt

s]

Figure 12.3: DualPI2 as AQM with 1 000 packets limit. 500 Mbit/s link
rate. 800 Mbit/s UDP traffic with no ECN.

71

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 20 40 60 80 100 120 140 160Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets

Non-ECN packets

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets

Non-ECN packets

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

0 s 5 s 10 s 15 s 20 s 25 s 30 s 35 s 40 sTime:

D
ro

p
 p

ro
b
a
b
ili

ty
 [

m
s]

 1

 10

 100

 1000

 10000

 100000

0 s 5 s 10 s 15 s 20 s 25 s 30 s 35 s 40 sTime:

Q
u
e
u
e
 b

a
ck

lo
g
 [

p
kt

s]

Figure 12.4: DualPI2 as AQM with 10 000 packets limit. 500 Mbit/s
link rate. 800 Mbit/s UDP traffic with no ECN.

72

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets

Non-ECN packets

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160Sample #:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(m
in

,
p

2
5
,

m
e
a
n

,
p

9
9
,

m
a
x)

ECN packets

Non-ECN packets

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

0 s 5 s 10 s 15 s 20 s 25 s 30 s 35 s 40 sTime:

D
ro

p
 p

ro
b
a
b
ili

ty
 [

m
s]

 1

 10

 100

 1000

 10000

0 s 5 s 10 s 15 s 20 s 25 s 30 s 35 s 40 sTime:

Q
u
e
u
e
 b

a
ck

lo
g
 [

p
kt

s]

Figure 12.5: DualPI2 as AQM with 1 000 packets limit. 500 Mbit/s link
rate. 800 Mbit/s UDP traffic with ECT(1).

73

 0

 20

 40

 60

 80

 100

80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

U
ti

liz
a
ti

o
n
 [

%
]

(p
2
5
,

m
e
a
n

,
p

7
5
)

All flows
DCTCP (ECN)

UDP=Non ECT
ECN-CUBIC

Other
CUBIC (no ECN)

 0

 5

 10

 15

 20

 25

 30

 35

 40

80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(p
1
,

p
2
5
,

m
e
a
n

,
p

7
5
,

p
9
9
)

ECN packets Non-ECN packets

 0

 20

 40

 60

 80

 100

80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

D
ro

p
/m

a
rk

s
[%

]
(o

f
to

ta
l

tr
a
ff

ic
 i

n
 t

h
e
 q

u
e
u

e
)

(p
1
,

p
2
5
,

m
e
a
n

,
p

7
5
,

p
9
9
)

Drops (ECN) Marks (ECN) Drops (Non-ECN)

Figure 12.6: Testing overload with existing traffic. Overload is done
without ECT, i.e. with the classic (non-ECN) traffic. RTT is 10 ms.
Linkrate 100 Mbit/s. The red line represents UDP traffic at link rate.

74

 0.01

 0.1

 1

 10

80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

U
ti

liz
a
ti

o
n
 [

%
]

(p
2
5
,

m
e
a
n

,
p

7
5
)

All flows
DCTCP (ECN)

UDP=Non ECT
ECN-CUBIC

Other
CUBIC (no ECN)

 0

 20

 40

 60

 80

 100

 120

 140

80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

R
T
T
 a

t
se

n
d

e
r

E
xc

lu
d

in
g

 b
a
se

 R
T

T
[m

s]
 (

p
1
,

m
e
a
n

,
p

9
9
)

 0

 10

 20

 30

 40

 50

 60

 70

 80
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

D
ro

p
 p

ro
b
a
b
ili

ty
[%

]
(p

1
,

m
e
a
n

,
p

9
9
)

 0

 200

 400

 600

 800

 1000

80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

Q
u
e
u
e
 b

a
ck

lo
g
 [

p
kt

s]
(p

1
,

m
e
a
n

,
p

9
9
)

Figure 12.7: Addition to figure 12.6. The first plot shows the utilization
again but with only the lower 10 percent in a logarithmic scale.

75

 0

 20

 40

 60

 80

 100

80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

U
ti

liz
a
ti

o
n
 [

%
]

(p
2
5
,

m
e
a
n

,
p

7
5
)

All flows
DCTCP (ECN)

Other
UDP=ECT(1)

ECN-CUBIC
CUBIC (no ECN)

 0

 5

 10

 15

 20

 25

 30

 35

 40

80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(p
1
,

p
2
5
,

m
e
a
n

,
p

7
5
,

p
9
9
)

ECN packets Non-ECN packets

 0

 20

 40

 60

 80

 100

80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

D
ro

p
/m

a
rk

s
[%

]
(o

f
to

ta
l

tr
a
ff

ic
 i

n
 t

h
e
 q

u
e
u

e
)

(p
1
,

p
2
5
,

m
e
a
n

,
p

7
5
,

p
9
9
)

Drops (ECN) Marks (ECN) Drops (Non-ECN)

Figure 12.8: Testing overload with existing traffic. Overload is done
with ECT(1), i.e. with the scalable (ECN) traffic. RTT is 10 ms. Linkrate
100 Mbit/s. The red line represents UDP traffic at link rate.

76

 0.01

 0.1

 1

 10

80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

U
ti

liz
a
ti

o
n
 [

%
]

(p
2
5
,

m
e
a
n

,
p

7
5
)

All flows
DCTCP (ECN)

Other
UDP=ECT(1)

ECN-CUBIC
CUBIC (no ECN)

 0

 20

 40

 60

 80

 100

 120

 140

80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

R
T
T
 a

t
se

n
d

e
r

E
xc

lu
d

in
g

 b
a
se

 R
T

T
[m

s]
 (

p
1
,

m
e
a
n

,
p

9
9
)

 0

 10

 20

 30

 40

 50

 60

 70

 80
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

D
ro

p
 p

ro
b
a
b
ili

ty
[%

]
(p

1
,

m
e
a
n

,
p

9
9
)

 0

 200

 400

 600

 800

 1000

80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

Q
u
e
u
e
 b

a
ck

lo
g
 [

p
kt

s]
(p

1
,

m
e
a
n

,
p

9
9
)

Figure 12.9: Addition to figure 12.8. The first plot shows the utilization
again but with only the lower 10 percent in a logarithmic scale.

77

78

Chapter 13

Ultra-low queueing delay
threshold

DualPI2 uses a shallow threshold for targeting scalable traffic in the
L4S queue. Packets are marked as soon as they go above the threshold.
The default threshold in the reference implementation and from the
DualPI2 paper uses a threshold of 1 ms.

To evaluate how this threshold impact the behaviour, I run a series
of tests across different link rates and RTTs to see how stable the
connection is and what utilization we can achieve. The test written
for this is given in listing 21.

The results are given in figure 13.1. The results clearly shows there
are issues with this threshold. At very low BDP the flow achieves near
100 % link utilization, but e.g. at 100 Mbit/s the utilization starts to
drop between 2 and 5 ms of RTT. There is also an odd behaviour where
the utilization seem to rise after first dropping, and then going down
again. The location of this seems not to happen at a fixed RTT, as it
happens at around 14 ms RTT at 100 Mbit/s, and at 10 ms RTT at 200
Mbit/s. At 400 Mbit/s the flow seems unstable even at very low RTTs. I
have not been able to understand why this drop is happening.

As can be seen from the plot estimating the window size of the flows,
the link utilization usualy drops when the window goes above above
12-13 packets, nontheless what the RTT or bitrate is.

One possible reason for this behaviour is that the threshold is based
on the idea that all packets are paced perfectly. However, most likely
there will be a variation in queueing delay due to scheduling,

[25] gives insight into using an instantaneously queue length for
marking ECN packets, and shows that it causes under-utilization, much
like what we are experiencing here.

Setting the threshold to 5 ms instead of 1 ms, as shown with the
results in figure 13.2, the utilization greatly improves.

79

 0

 20

 40

 60

 80

 100

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

Linkrate [Mb/s]: 10 50 100 200 400

RTT:

U
ti

liz
a
ti

o
n
 [

%
]

(p
1
,

m
e
a
n

,
p

9
9
)

 0

 1

 2

 3

 4

 5

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

Linkrate [Mb/s]: 10 50 100 200 400

RTT:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(p
1
,

p
2
5
,

m
e
a
n

,
p

7
5
,

p
9
9
)

 0
 100
 200
 300
 400
 500
 600
 700
 800

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

Linkrate [Mb/s]: 10 50 100 200 400

RTT:

W
in

d
o
w

 s
iz

e
(E

st
im

a
te

d
)

[1
4

4
8

 B
]

(p
1
,

p
2
5
,

m
e
a
n

,
p

7
5
,

p
9
9
)

 0
 10
 20
 30
 40
 50
 60
 70

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

Linkrate [Mb/s]: 10 50 100 200 400

RTT:

D
ro

p
/m

a
rk

s
[%

]
(o

f
to

ta
l

tr
a
ff

ic
 i

n
 t

h
e
 q

u
e
u

e
)

(p
1
,

p
2
5
,

m
e
a
n

,
p

7
5
,

p
9
9
)

Drops (ECN) Marks (ECN) Drops (Non-ECN)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

Linkrate [Mb/s]: 10 50 100 200 400

RTT:

R
T
T
 a

t
se

n
d

e
r

E
xc

lu
d

in
g

 b
a
se

 R
T

T
[m

s]
 (

p
1
,

m
e
a
n

,
p

9
9
)

Figure 13.1: Testing threshold for marking of DualPI2. One flow
DCTCP. Threshold is set to the default of 1 ms.

80

 0

 20

 40

 60

 80

 100

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

Linkrate [Mb/s]: 10 50 100 200 400

RTT:

U
ti

liz
a
ti

o
n
 [

%
]

(p
1
,

m
e
a
n

,
p

9
9
)

 0
 1
 2
 3
 4
 5
 6
 7
 8

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

Linkrate [Mb/s]: 10 50 100 200 400

RTT:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(p
1
,

p
2
5
,

m
e
a
n

,
p

7
5
,

p
9
9
)

 0
 100
 200
 300
 400
 500
 600
 700
 800

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

Linkrate [Mb/s]: 10 50 100 200 400

RTT:

W
in

d
o
w

 s
iz

e
(E

st
im

a
te

d
)

[1
4

4
8

 B
]

(p
1
,

p
2
5
,

m
e
a
n

,
p

7
5
,

p
9
9
)

 0
 5

 10
 15
 20
 25
 30
 35
 40

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

Linkrate [Mb/s]: 10 50 100 200 400

RTT:

D
ro

p
/m

a
rk

s
[%

]
(o

f
to

ta
l

tr
a
ff

ic
 i

n
 t

h
e
 q

u
e
u

e
)

(p
1
,

p
2
5
,

m
e
a
n

,
p

7
5
,

p
9
9
)

Drops (ECN) Marks (ECN) Drops (Non-ECN)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

Linkrate [Mb/s]: 10 50 100 200 400

RTT:

R
T
T
 a

t
se

n
d

e
r

E
xc

lu
d

in
g

 b
a
se

 R
T

T
[m

s]
 (

p
1
,

m
e
a
n

,
p

9
9
)

Figure 13.2: Testing threshold for marking of DualPI2. One flow
DCTCP. Threshold is set to 5 ms.

81

82

Chapter 14

Comparing virtual tests
against the physical testbed

The previous results are run in a Docker environment, on top of a
mostly idle server. However, running the same test in the physical
testbed, we get slightly different results. Figure 14.1 shows results that
can be compared about the test in the virtual environment shown in
figure 13.1.

Similar, for the overload tests, figure 14.2 gives a comparison against
figure 12.8. From the tests of overload it seems the results gives the
same understanding of the test.

83

 0

 20

 40

 60

 80

 100

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

Linkrate [Mb/s]: 10 50 100 200 400

RTT:

To
ta

l
u
ti

liz
a
ti

o
n
 [

%
]

(p
1,

m
ea

n,
 p

99
)

 0

 1

 2

 3

 4

 5

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

Linkrate [Mb/s]: 10 50 100 200 400

RTT:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(p
1,

p 2
5,

m
ea

n,
 p

75
, p

99
)

 0
 100
 200
 300
 400
 500
 600
 700
 800

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

Linkrate [Mb/s]: 10 50 100 200 400

RTT:

W
in

d
o
w

 s
iz

e
(E

sti
m

at
ed

) [
14

48
 B

]
(p

1,
p 2

5,
m

ea
n,

 p
75

, p
99

)

 0
 10
 20
 30
 40
 50
 60

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

Linkrate [Mb/s]: 10 50 100 200 400

RTT:

D
ro

p
/m

a
rk

s
[%

]
(o

f t
ot

al
 tr

affi
c

in
 th

e
qu

eu
e)

(p
1,

p 2
5,

m
ea

n,
 p

75
, p

99
)

Drops (ECN) Marks (ECN) Drops (Non-ECN)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

3
0

12 5 8 1
0

1
2

1
4

1
5

1
7

2
0

2
5

Linkrate [Mb/s]: 10 50 100 200 400

RTT:

R
T
T
 a

t
se

n
d

e
r

Ex
cl

ud
in

g
ba

se
 R

TT
[m

s]
 (p

1,
m

ea
n,

 p
99

)

Figure 14.1: Testing threshold for marking of DualPI2. One flow
DCTCP. Threshold is set to the default of 1 ms. Run in the physical
testbed.

84

 0

 20

 40

 60

 80

 100

80 100
120
140
160
180
200
80 100
120
140
160
180
200

80 100
120
140
160
180
200
80 100
120
140
160
180
200

80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

U
ti

liz
a
ti

o
n
 [

%
]

(p
2
5
,

m
e
a
n

,
p

7
5
)

All flows
DCTCP (ECN)

UDP=ECT(1)
ECN-CUBIC

CUBIC (no ECN)
Other

 0

 5

 10

 15

 20

 25

 30

 35

 40

80 100
120
140
160
180
200
80 100
120
140
160
180
200

80 100
120
140
160
180
200
80 100
120
140
160
180
200

80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

Q
u
e
u
e
in

g
 d

e
la

y
 [

m
s]

(p
1
,

p
2
5
,

m
e
a
n

,
p

7
5
,

p
9
9
)

ECN packets Non-ECN packets

 0

 20

 40

 60

 80

 100

80 100
120
140
160
180
200
80 100
120
140
160
180
200

80 100
120
140
160
180
200
80 100
120
140
160
180
200

80 100
120
140
160
180
200
80 100
120
140
160
180
200

Scheduler: DualPI2 PIE
Flow combination: 0 Non-ECN vs 1 ECN

DualPI2 PIE
1 Non-ECN vs 0 ECN

DualPI2 PIE
5 Non-ECN vs 5 ECN

UDP Rate [Mb/s]:

D
ro

p
/m

a
rk

s
[%

]
(o

f
to

ta
l

tr
a
ff

ic
 i

n
 t

h
e
 q

u
e
u

e
)

(p
1
,

p
2
5
,

m
e
a
n

,
p

7
5
,

p
9
9
)

Drops (ECN) Marks (ECN) Drops (Non-ECN)

Figure 14.2: Comparison against figure 12.8 which is run in Docker.
This figure shows the test run in the physical testbed.

85

86

Part IV

Conclusion

87

Chapter 15

Conclusion

In this thesis I presented my test framework developed for running a
large variety of tests against DualPI2. Far from all tests found its
way into this thesis, but the tool has proven very useful to evaluate
and investigate the different properties various configuration yields. By
open sourcing the framework I hope others will find use for it.

I have used the test framework to present overload results of
DualPI2 as well as evaluating the queueing threshold of scalable traffic
such as DCTCP. The results shows there are some cases DualPI2 have
issues, but overall the results looks very promising.

89

90

Chapter 16

Future Work

16.1 Testing scenarios

In this thesis I have focused mostly on greedy long-living TCP flows as
part of overloading. It would be interesting to also include thin flows
and other short living flows such as simulating HTTP traffic. Especially
how the AQM performs with varying packet sizes is interesting. This is
however left as future work.

Our testbed have been limited to 1 GigE hardware, and as such I
have only ran tests with a bitrate lower than this. Testing the different
scenarious on 10 GigE hardware is left as future work.

16.2 Easier instrumentation of other AQMs

A concern with the current test framework is that it requires modific-
ations to the existing schedulers. The modifications are also prone to
errors if trying to instrument an advanced scheduler. One idea that is
left as possible future work is to create a instrumentation qdisc that can
be put outside the scheduler/AQM being tested. This way no modifica-
tions would be required. This would make it possible to add queueing
delay instrumentation. Drop instrumentation however is more difficult,
as which packets are being dropped is unknown, and might not be pos-
sible to instrument correctly between ECN and non-ECN traffic.

16.3 Malicious users

I have not been investigating how to handle a malicious user. All though
overload can be seen similar to a malicious user, such a user is probably
able to cause a higher degree of overload and unstability in the system,
than what I have investigated. Security concerns such as this has not
been investigated.

91

16.4 Segmentation offloading

All test cases has been run without various segmentation offloading, as
described in section 9.1. Enabling such options might cause a change in
how the AQM behaves, especially due to the larger packets that will be
present in the queue. [25] also shows us that segmentation offloading
also causes micro-burst that might further affect the behaviour of
DualPI2 and should be investigated.

16.5 Stability and accuracy of using a virtual
testbed

The tests that have been presented in this thesis have mostly been run
both in the physical testbed and in Docker. I have seen some situations
where results might be different, e.g. the one described in chapter 14. I
have not extensively evaluated in which conditions it migth fail, and to
what extent it can be used for accurate evaluations.

My theory is however that it probably is comparable within the same
machine, but that comparing with other testbeds might yield different
results. The same uncertainty relies with the physical testbed, as the
results might be different between physical testbeds as well.

92

Bibliography

[1] Richelle Adams. ‘Active Queue Management: A Survey’. In: IEEE
Communications Surveys & Tutorials 15.3 (2013), pp. 1425–1476.
DOI: http://dx.doi.org/10.1109/SURV.2012.082212.00018.

[2] Mohammad Alizadeh et al. ‘Data center TCP (DCTCP)’. In:
SIGCOMM Comput. Commun. Rev. 41.4 (Aug. 2010). ISSN: 0146-
4833. URL: http://dl.acm.org/citation.cfm?id=2043164.1851192.

[3] Fred Baker and Gorry Fairhurst. IETF Recommendations Re-
garding Active Queue Management. Request for Comments
RFC7567. RFC Editor, July 2015. URL: https:/ / tools. ietf.org/html/
rfc7567.

[4] David Black. Explicit Congestion Notification (ECN) Experi-
mentation. Internet Draft draft-ietf-tsvwg-ecn-experimentation-
00. (Work in Progress). Internet Engineering Task Force, Dec.
2016. URL: http : / / tools . ietf . org / html / draft - black - tsvwg - ecn -
experimentation.

[5] B. Braden et al. Recommendations on Queue Management and
Congestion Avoidance in the Internet. Request for Comments
2309. RFC Editor, Apr. 1998. URL: http://www.ietf.org/rfc/rfc2309.txt.

[6] Koen De Schepper et al. ‘‘Data Centre to the Home’: Deployable
Ultra-Low Queuing Delay for All’. In: (Under Submission). Jan.
2017.

[7] Koen De Schepper et al. ‘PI2 : A Linearized AQM for both Classic
and Scalable TCP’. In: Proc. ACM CoNEXT 2016. New York, NY,
USA: ACM, Dec. 2016, pp. 105–119. ISBN: 978-1-4503-4297-1.

[8] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. Request for Comments 2460. RFC Editor, Dec.
1998. URL: http://www.ietf.org/rfc/rfc2460.txt.

[9] Ethernet Address Resolution Protocol: Or Converting Network
Protocol Addresses to 48.bit Ethernet Address for Transmission
on Ethernet Hardware. RFC 826. Nov. 1982. DOI: 10.17487/rfc826.
URL: https://rfc-editor.org/rfc/rfc826.txt.

[10] Sally Floyd, Ramakrishna Gummadi and Scott Shenker. ‘Adapt-
ive RED: An Algorithm for Increasing the Robustness of RED’s
Active Queue Management’. http://www.icir.org/floyd/papers/adaptiveRed.pdf.
Aug. 2001.

93

https://doi.org/http://dx.doi.org/10.1109/SURV.2012.082212.00018
http://dl.acm.org/citation.cfm?id=2043164.1851192
https://tools.ietf.org/html/rfc7567
https://tools.ietf.org/html/rfc7567
http://tools.ietf.org/html/draft-black-tsvwg-ecn-experimentation
http://tools.ietf.org/html/draft-black-tsvwg-ecn-experimentation
http://www.ietf.org/rfc/rfc2309.txt
http://www.ietf.org/rfc/rfc2460.txt
https://doi.org/10.17487/rfc826
https://rfc-editor.org/rfc/rfc826.txt

[11] Sangtae Ha, Injong Rhee and Lisong Xu. ‘CUBIC: a new TCP-
friendly high-speed TCP variant’. In: SIGOPS Operating Systems
Review 42.5 (July 2008), pp. 64–74. ISSN: 0163-5980. DOI: 10.1145/
1400097.1400105. URL: http://doi.acm.org/10.1145/1400097.1400105.

[12] B. Hamzeh et al. ‘DOCSIS 3.1: scaling broadband cable to Gigabit
speeds’. In: IEEE Communications Magazine 53.3 (Mar. 2015),
pp. 108–113. ISSN: 0163-6804. DOI: 10.1109/MCOM.2015.7060490.

[13] Tom Henderson and Sally Floyd. The NewReno Modification to
TCP’s Fast Recovery Algorithm. RFC 2582. Apr. 1999. DOI: 10 .
17487/rfc2582. URL: https://rfc-editor.org/rfc/rfc2582.txt.

[14] C. V. Hollot et al. ‘On Designing Improved Controllers for AQM
Routers Supporting TCP Flows’. In: Proc. INFOCOM 2001. 20th
Annual Joint Conf. of the IEEE Computer and Communications
Societies. 2001, pp. 1726–1734. URL: http://www.ieee- infocom.org/
2001/paper/792.pdf.

[15] Van Jacobson. ‘Congestion Avoidance and Control’. In: Proc. ACM
SIGCOMM’88 Symposium, Computer Communication Review
18.4 (Aug. 1988), pp. 314–329. URL: http : / / citeseer . ist . psu . edu /
jacobson88congestion.html.

[16] J. Nagle. Congestion control in IP/TCP internetworks. Request for
Comments 896. (Status: unknown). RFC Editor, Jan. 1984. URL:
http://www.ietf.org/rfc/rfc896.txt.

[17] Linux Kernel Newbies. Linux 2.6.19. Nov. 2006. URL: https : / /
kernelnewbies.org/Linux_2_6_19.

[18] Rong Pan et al. ‘PIE: A Lightweight Control Scheme To Address
the Bufferbloat Problem’. In: High Performance Switching and
Routing (HPSR’13). IEEE. 2013.

[19] Heather J. Patrick, Alan D. Kersey and Frank Bucholtz. ‘Analysis
of the Response of Long Period Fiber Gratings to External Index
of Refraction’. In: J. Lightwave Technol. 16.9 (Sept. 1998), p. 1606.
URL: http://jlt.osa.org/abstract.cfm?URI=jlt-16-9-1606.

[20] Jon Postel (Ed.) Internet Protocol. STD 5. RFC 791. RFC Editor,
Sept. 1981. URL: http://www.ietf.org/rfc/rfc791.txt.

[21] Jon Postel (Ed.) Transmission Control Protocol. STD 7. RFC 793.
RFC Editor, Sept. 1981. URL: http://www.ietf.org/rfc/rfc793.txt.

[22] Jon Postel. User Datagram Protocol. STD 6. RFC 768. RFC Editor,
Aug. 1980. URL: http://www.ietf.org/rfc/rfc768.txt.

[23] K. K. Ramakrishnan, Sally Floyd and David Black. The Addition
of Explicit Congestion Notification (ECN) to IP. Request for
Comments 3168. RFC Editor, Sept. 2001. URL: http : / / www. ietf .
org/rfc/rfc3168.txt.

94

https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/1400097.1400105
http://doi.acm.org/10.1145/1400097.1400105
https://doi.org/10.1109/MCOM.2015.7060490
https://doi.org/10.17487/rfc2582
https://doi.org/10.17487/rfc2582
https://rfc-editor.org/rfc/rfc2582.txt
http://www.ieee-infocom.org/2001/paper/792.pdf
http://www.ieee-infocom.org/2001/paper/792.pdf
http://citeseer.ist.psu.edu/jacobson88congestion.html
http://citeseer.ist.psu.edu/jacobson88congestion.html
http://www.ietf.org/rfc/rfc896.txt
https://kernelnewbies.org/Linux_2_6_19
https://kernelnewbies.org/Linux_2_6_19
http://jlt.osa.org/abstract.cfm?URI=jlt-16-9-1606
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc3168.txt
http://www.ietf.org/rfc/rfc3168.txt

[24] Chris Rapier and Benjamin Bennett. Enabling High performance
Bulk Data Transfers With SSH. 2008. URL: https://www.slideshare.
net/datacenters/enabling-high-performance-bulk-data- transfers-with-
ssh.

[25] Danfeng Shan and Fengyuan Ren. ‘Improving ECN Marking
Scheme with Micro-burst Traffic in Data Center Networks’. In:
(May 2017).

[26] Verizon. IP Latency Statistics. URL: http : / /www.verizonenterprise.
com/about/network/latency/.

[27] What is Docker. 2017. URL: https://www.docker.com/what-docker.

[28] Greg White and Rong Pan. Active Queue Management (AQM)
Based on Proportional Integral Controller Enhanced PIE) for
Data-Over-Cable Service Interface Specifications (DOCSIS) Cable
Modems. RFC 8034. Feb. 2017. DOI: 10.17487/rfc8034. URL: https:
//rfc-editor.org/rfc/rfc8034.txt.

[29] P. Yang et al. ‘TCP Congestion Avoidance Algorithm Identific-
ation’. In: IEEE/ACM Transactions on Networking 22.4 (Aug.
2014), pp. 1311–1324. ISSN: 1063-6692. DOI: 10.1109/TNET.2013.
2278271.

95

https://www.slideshare.net/datacenters/enabling-high-performance-bulk-data-transfers-with-ssh
https://www.slideshare.net/datacenters/enabling-high-performance-bulk-data-transfers-with-ssh
https://www.slideshare.net/datacenters/enabling-high-performance-bulk-data-transfers-with-ssh
http://www.verizonenterprise.com/about/network/latency/
http://www.verizonenterprise.com/about/network/latency/
https://www.docker.com/what-docker
https://doi.org/10.17487/rfc8034
https://rfc-editor.org/rfc/rfc8034.txt
https://rfc-editor.org/rfc/rfc8034.txt
https://doi.org/10.1109/TNET.2013.2278271
https://doi.org/10.1109/TNET.2013.2278271

96

Appendices

97

Appendix A

Source code

A.1 Greedy

See also https://github.com/henrist/greedy for the complete release.

1 #include <errno.h>
2 #include <linux/tcp.h>
3 #include <netdb.h>
4 #include <netinet/in.h>
5 #include <pthread.h>
6 #include <signal.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <stdlib.h>

10 #include <string.h>
11 #include <strings.h>
12 #include <sys/socket.h>
13 #include <sys/types.h>
14 #include <sys/utsname.h>
15 #include <time.h>
16 #include <unistd.h>
17

18 #define DEFAULT_REPORT_MS 250
19 #define DEFAULT_BUF_SIZE 524288
20

21 char *buffer;
22 int buffer_size = DEFAULT_BUF_SIZE;
23 int exit_program = 0;
24 char *hostname;
25 int keep_running = 0;
26 int listen_sockfd = -1;
27 int log_running = 0;
28 pthread_t log_thread;
29 enum { MODE_CLIENT, MODE_SERVER } mode = MODE_CLIENT;
30 int nonblock = 1;
31 int portno;
32 int report_ms = DEFAULT_REPORT_MS;
33 int syscall_started;
34 int syscall_finished;
35 int tcp_notsent_capability = 0;
36 long long total_bytes;
37 long long total_bytes_buf;

99

https://github.com/henrist/greedy

38 int verbose = 0;
39

40 struct bytes_report {
41 float val;
42 char suffix[4];
43 char repr[50];
44 };
45

46 void logging_thread_run(void *arg);
47

48 void int_handler(int dummy) {
49 exit_program = 1;
50

51 if (listen_sockfd != -1) {
52 close(listen_sockfd);
53 listen_sockfd = -1;
54 }
55 }
56

57 void print_usage(char *argv[]) {
58 fprintf(stderr,
59 "Usage client: %s <host> <port>\n"
60 "Usage server: %s -s <port>\n"
61 "Options:\n"
62 " -b n buffer size in bytes to read/write call (default:

%d)\n"↪→

63 " -r keep server running when client disconnect\n"
64 " -t n report every n milliseconds, implies -vv

(default: %d)\n"↪→

65 " -v verbose output (more verbose if multiple -v)\n"
66 " -w block on tcp send\n",
67 argv[0],
68 argv[0],
69 DEFAULT_BUF_SIZE,
70 DEFAULT_REPORT_MS);
71 }
72

73 void parse_arg(int argc, char *argv[]) {
74 int opt;
75

76 while ((opt = getopt(argc, argv, "b:rst:vw")) != -1) {
77 switch (opt) {
78 case 'b':
79 buffer_size = atoi(optarg);
80 break;
81 case 'r':
82 keep_running = 1;
83 break;
84 case 's':
85 mode = MODE_SERVER;
86 break;
87 case 't':
88 report_ms = atoi(optarg);
89 if (verbose < 2) {
90 verbose = 2;
91 }
92 break;
93 case 'v':
94 verbose += 1;

100

95 break;
96 case 'w':
97 nonblock = 0;
98 break;
99 default:

100 print_usage(argv);
101 exit(1);
102 }
103 }
104

105 if (argc - optind < (mode == MODE_SERVER ? 1 : 2)) {
106 print_usage(argv);
107 exit(1);
108 }
109

110 if (mode == MODE_SERVER) {
111 portno = atoi(argv[optind]);
112 } else {
113 hostname = malloc(strlen(argv[optind]));
114 memcpy(hostname, argv[optind], strlen(argv[optind]));
115

116 portno = atoi(argv[optind+1]);
117 }
118 }
119

120 void start_logger(int sockfd) {
121 int pret;
122 pret = pthread_create(&log_thread, NULL, (void *)

&logging_thread_run, (void *) (intptr_t) sockfd);↪→

123 if (pret != 0) {
124 fprintf(stderr, "Could not create logging thread\n");
125 } else {
126 log_running = 1;
127 }
128 }
129

130 void stop_logger() {
131 if (log_running) {
132 pthread_cancel(log_thread);
133 }
134 }
135

136 void set_tcp_nodelay(int sockfd) {
137 int enable = 1;
138 if (setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (void *)

&enable, sizeof(enable)) < 0) {↪→

139 fprintf(stderr, "setsockopt(TCP_NODELAY) failed");
140 exit(1);
141 }
142 }
143

144 void get_bytes_format(long long value, struct bytes_report *br,
int align) {↪→

145 char fmt[20];
146 br->val = value;
147

148 if (br->val > 1024) {
149 if (br->val > 1024) {
150 br->val /= 1024;

101

151 strcpy(br->suffix, "KiB");
152 }
153

154 if (br->val > 1024) {
155 br->val /= 1024;
156 strcpy(br->suffix, "MiB");
157 }
158

159 if (br->val > 1024) {
160 br->val /= 1024;
161 strcpy(br->suffix, "GiB");
162 }
163

164 if (align > 0) {
165 sprintf(fmt, "%%%d.3f %%s", align-4);
166 } else {
167 sprintf(fmt, "%%.3f %%s");
168 }
169

170 sprintf(br->repr, fmt, br->val, br->suffix);
171 }
172

173 else {
174 strcpy(br->suffix, "B");
175

176 if (align > 0) {
177 sprintf(fmt, "%%%d.0f %%s", align-8);
178 } else {
179 sprintf(fmt, "%%.0f %%s");
180 }
181

182 sprintf(br->repr, fmt, br->val, br->suffix);
183 }
184 }
185

186 void report_closed() {
187 if (total_bytes > 0) {
188 struct bytes_report br;
189 get_bytes_format(total_bytes, &br, 0);
190

191 printf("finished, a total number of %s was %s, %.2f %% of
%s buffer used\n",↪→

192 br.repr,
193 mode == MODE_SERVER ? "written" : "read",
194 (float) total_bytes / (float) total_bytes_buf * 100,
195 mode == MODE_SERVER ? "write" : "read");
196 }
197 }
198

199 void run_client() {
200 int read_bytes;
201 struct sockaddr_in serv_addr;
202 struct hostent *server;
203 int sockfd;
204

205 server = gethostbyname(hostname);
206 if (server == NULL) {
207 fprintf(stderr, "No such host %s\n", hostname);
208 exit(1);

102

209 }
210

211 sockfd = socket(AF_INET, SOCK_STREAM, 0);
212 if (sockfd < 0) {
213 fprintf(stderr, "Error opening socket\n");
214 exit(1);
215 }
216

217 set_tcp_nodelay(sockfd);
218

219 bzero((char *) &serv_addr, sizeof(serv_addr));
220 serv_addr.sin_family = AF_INET;
221 bcopy((char *) server->h_addr, (char *)

&serv_addr.sin_addr.s_addr, server->h_length);↪→

222 serv_addr.sin_port = htons(portno);
223

224 if (connect(sockfd, (struct sockaddr *) &serv_addr,
sizeof(serv_addr)) < 0) {↪→

225 fprintf(stderr, "Error connecting to server\n");
226 exit(1);
227 }
228

229 if (verbose >= 2) {
230 start_logger(sockfd);
231 }
232

233 syscall_started = 0;
234 syscall_finished = 0;
235 total_bytes = 0;
236 total_bytes_buf = 0;
237

238 //bzero(buffer, buffer_size);
239 do {
240 syscall_started++;
241 read_bytes = read(sockfd, buffer, buffer_size);
242 syscall_finished++;
243

244 if (read_bytes > 0) {
245 if (verbose >= 4) {
246 printf(".");
247 }
248 total_bytes += read_bytes;
249 total_bytes_buf += buffer_size;
250 } else if (verbose >= 3) {
251 printf(" read=0 ");
252 }
253 } while (read_bytes > 0 && !exit_program);
254

255 if (verbose) {
256 report_closed();
257 }
258

259 close(sockfd);
260 }
261

262 void run_server() {
263 struct sockaddr_in cli_addr;
264 int clilen;
265 struct sockaddr_in serv_addr;

103

266 int sockfd;
267 int wrote_bytes;
268

269 listen_sockfd = socket(AF_INET, SOCK_STREAM, 0);
270 if (listen_sockfd < 0) {
271 fprintf(stderr, "Error opening socket\n");
272 exit(1);
273 }
274

275 int enable = 1;
276 if (setsockopt(listen_sockfd, SOL_SOCKET, SO_REUSEADDR,

&enable, sizeof(enable)) < 0) {↪→

277 fprintf(stderr, "setsockopt(SO_REUSEADDR) failed");
278 exit(1);
279 }
280

281 bzero((char *) &serv_addr, sizeof(serv_addr));
282 serv_addr.sin_family = AF_INET;
283 serv_addr.sin_addr.s_addr = INADDR_ANY;
284 serv_addr.sin_port = htons(portno);
285

286 if (bind(listen_sockfd, (struct sockaddr *) &serv_addr,
sizeof(serv_addr)) < 0) {↪→

287 fprintf(stderr, "Error binding socket\n");
288 exit(1);
289 }
290

291 listen(listen_sockfd, 5);
292 clilen = sizeof(cli_addr);
293

294 do {
295 if (verbose) {
296 printf("waiting for client to connect\n");
297 }
298

299 sockfd = accept(listen_sockfd, (struct sockaddr *)
&cli_addr, &clilen);↪→

300 if (exit_program) {
301 return;
302 }
303 if (sockfd < 0) {
304 fprintf(stderr, "Error accepting socket\n");
305 exit(1);
306 }
307

308 set_tcp_nodelay(sockfd);
309

310 if (verbose >= 2) {
311 start_logger(sockfd);
312 }
313

314 syscall_started = 0;
315 syscall_finished = 0;
316 total_bytes = 0;
317 total_bytes_buf = 0;
318

319 struct timespec sleeptime;
320 sleeptime.tv_sec = 0;
321

104

322 bzero(buffer, buffer_size);
323 int zerosends = 0;
324 int backoff;
325 while (!exit_program) {
326 syscall_started++;
327 wrote_bytes = send(sockfd, buffer, buffer_size,

nonblock ? MSG_DONTWAIT : 0);↪→

328 syscall_finished++;
329

330 if (wrote_bytes == 0) {
331 fprintf(stderr, "unexpected send of 0 bytes\n");
332 break;
333 } else if (wrote_bytes < 0) {
334 if (errno == EAGAIN || errno == EWOULDBLOCK) {
335 zerosends++;
336

337 backoff = zerosends * 10; // base of 10 ms
338 if (backoff >= 1000) backoff = 999;
339 sleeptime.tv_nsec = backoff * 1000000;
340

341 if (verbose >= 4) {
342 printf(" send=0, backoff=%d ", backoff);
343 }
344

345 nanosleep(&sleeptime, NULL);
346 continue;
347 } else {
348 fprintf(stderr, "send failed with errno:

%d\n", errno);↪→

349 break;
350 }
351 }
352

353 zerosends = 0;
354 total_bytes += wrote_bytes;
355 total_bytes_buf += buffer_size;
356

357 if (verbose >= 4) {
358 printf(".");
359 }
360 }
361

362 if (verbose) {
363 report_closed();
364 }
365

366 stop_logger();
367 close(sockfd);
368 } while (keep_running && !exit_program);
369

370 if (listen_sockfd != -1) {
371 close(listen_sockfd);
372 }
373 }
374

375 void detect_tcp_notsent_capability() {
376 struct utsname unamedata;
377 int v1, v2;
378

105

379 // tcp_info.tcpi_notsent_bytes is available since Linux 4.6
380 if (uname(&unamedata) == 0 && sscanf(unamedata.release,

"%d.%d.", &v1, &v2) == 2) {↪→

381 if (v1 > 4 || (v1 == 4 && v2 >= 6)) {
382 tcp_notsent_capability = 1;
383 }
384 }
385 }
386

387 int main(int argc, char *argv[])
388 {
389 detect_tcp_notsent_capability();
390 signal(SIGINT, int_handler);
391 signal(SIGPIPE, SIG_IGN);
392 parse_arg(argc, argv);
393

394 buffer = malloc(buffer_size);
395 if (buffer == NULL) {
396 fprintf(stderr, "Could not allocate memory for buffer (%d

bytes)\n", buffer_size);↪→

397 exit(1);
398 }
399

400 if (mode == MODE_SERVER) {
401 run_server();
402 } else {
403 run_client();
404 }
405

406 free(buffer);
407 return 0;
408 }
409

410 void logging_thread_run(void *arg)
411 {
412 int sockfd = (intptr_t) arg;
413 long long prev_total_bytes = 0;
414 int prev_syscall_finished = 0;
415 long long cur_total_bytes;
416 int cur_syscall_finished;
417 struct timespec sleeptime;
418 struct bytes_report br;
419 int s_rcv, s_snd, len;
420

421 sleeptime.tv_sec = report_ms / 1000;
422 sleeptime.tv_nsec = (report_ms % 1000) * 1000000;
423

424 printf("stats: reports every %d ms, sb = SO_SNDBUF, rb =
SO_RCVBUF\n", report_ms);↪→

425 printf("R = RTT, F = packets in flight, L = loss, W = window
size\n");↪→

426

427 while (1) {
428 struct tcp_info info;
429 len = sizeof(struct tcp_info);
430 if (getsockopt(sockfd, IPPROTO_TCP, TCP_INFO, &info, &len)

!= 0) {↪→

431 fprintf(stderr, "getsockopt(TCP_INFO) failed, errno:
%d\n", errno);↪→

106

432 break;
433 }
434

435 int in_flight = info.tcpi_unacked - (info.tcpi_sacked +
info.tcpi_lost) + info.tcpi_retrans;↪→

436

437 int syscall_in_progress = syscall_finished !=
syscall_started;↪→

438 cur_total_bytes = total_bytes;
439 cur_syscall_finished = syscall_finished;
440

441 get_bytes_format(cur_total_bytes - prev_total_bytes, &br,
12);↪→

442

443 len = sizeof(s_rcv);
444 if (getsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, &s_rcv,

&len) < 0) {↪→

445 fprintf(stderr, "getsockopt(SO_RCVBUF) failed");
446 break;
447 }
448

449 len = sizeof(s_snd);
450 if (getsockopt(sockfd, SOL_SOCKET, SO_SNDBUF, &s_snd,

&len) < 0) {↪→

451 fprintf(stderr, "getsockopt(SO_SNDBUF) failed");
452 break;
453 }
454

455 printf("%4d%s %s",
456 cur_syscall_finished - prev_syscall_finished,
457 mode == MODE_SERVER
458 ? (syscall_in_progress ? "W" : "w")
459 : (syscall_in_progress ? "R" : "r"),
460 br.repr);
461

462 printf(" R=%7.2f/%5.2f F=%5d",
463 (double) info.tcpi_rtt/1000,
464 (double) info.tcpi_rttvar/1000,
465 in_flight);
466

467 if (info.tcpi_lost == 0) {
468 printf(" L=%5s", "-");
469 } else {
470 printf(" L=%5u", info.tcpi_lost);
471 }
472

473 printf(" rto=%7.2f", (double) info.tcpi_rto / 1000);
474

475 printf(" W=%5d retrans=%3u/%u",
476 info.tcpi_snd_cwnd,
477 info.tcpi_retrans,
478 info.tcpi_total_retrans);
479

480 if (tcp_notsent_capability) {
481 printf(" notsent=%7d b", info.tcpi_notsent_bytes);
482 }
483

484 if (info.tcpi_options & TCPI_OPT_ECN)
485 printf(" ecn");

107

486

487 if (info.tcpi_options & TCPI_OPT_ECN_SEEN)
488 printf("S");
489

490 printf(" rb=%d sb=%d", s_rcv, s_snd);
491

492 printf("\n");
493

494 prev_total_bytes = cur_total_bytes;
495 prev_syscall_finished = cur_syscall_finished;
496 nanosleep(&sleeptime, NULL);
497 }
498 }

Listing 8: A simple client/server which attempts to always have data
in the Linux TCP stack available to dequeue to the network. It basicly
tries to fill the TCP window at all times.

A.2 Testbed setup

1 configure_host_cc() {(set -e
2 local host=$1
3 local tcp_congestion_control=$2
4 local tcp_ecn=$3
5

6 local feature_ecn=""
7 if ["$tcp_ecn" == "1"]; then
8 feature_ecn=" features ecn"
9 fi

10

11 # the 10.25. range belongs to the Docker setup
12 # it needs to use congctl for a per route configuration
13 # (congctl added in iproute2 v4.0.0)
14 ssh root@$host '
15 set -e
16 if [-f /proc/sys/net/ipv4/tcp_congestion_control]; then
17 sysctl -q -w

net.ipv4.tcp_congestion_control='$tcp_congestion_control'↪→

18 else
19 # we are on docker
20 . /aqmt-vars-local.sh
21 if ip a show $IFACE_AQM | grep -q 10.25.1.; then
22 # on client
23 ip route replace 10.25.2.0/24 via 10.25.1.2 dev

$IFACE_AQM congctl '$tcp_congestion_control$feature_ecn'↪→

24 ip route replace 10.25.3.0/24 via 10.25.1.2 dev
$IFACE_AQM congctl '$tcp_congestion_control$feature_ecn'↪→

25 else
26 # on server
27 ip_prefix=$(ip a show $IFACE_AQM | grep "inet 10"

| awk "{print \$2}" | sed "s/\.[0-9]\+\/.*//")↪→

28 ip route replace 10.25.1.0/24 via ${ip_prefix}.2
dev $IFACE_AQM congctl '$tcp_congestion_control$feature_ecn'↪→

29 fi
30 fi

108

31 sysctl -q -w net.ipv4.tcp_ecn='$tcp_ecn
32) || (echo -e "\nERROR: Failed setting cc $2 (ecn = $3) on node

$1\n"; exit 1)}↪→

33

34 configure_clients_edge_aqm_node() {(set -e
35 local testrate=$1
36 local rtt=$2
37 local aqm_name=$3
38 local aqm_params=$4
39 local netem_params=$5 # optional
40

41 local delay=$(echo "scale=2; $rtt / 2" | bc) # delay is half
the rtt↪→

42

43 # htb = hierarchy token bucket - used to limit bandwidth
44 # netem = used to simulate delay (link distance)
45

46 if [$rtt -gt 0]; then
47 if tc qdisc show dev $IFACE_CLIENTS | grep -q "qdisc netem

2:"; then↪→

48 tc qdisc change dev $IFACE_CLIENTS handle 2: netem
delay ${delay}ms $netem_params↪→

49 tc class change dev $IFACE_CLIENTS parent 3: classid
10 htb rate $testrate↪→

50 else
51 tc qdisc del dev $IFACE_CLIENTS root 2>/dev/null ||

true↪→

52 tc qdisc add dev $IFACE_CLIENTS root handle 1:
prio bands 2 priomap 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1

↪→

↪→

53 tc filter add dev $IFACE_CLIENTS parent 1:0 protocol
ip prio 1 u32 match ip src $IP_AQM_C flowid 1:1↪→

54 tc qdisc add dev $IFACE_CLIENTS parent 1:2 handle 2:
netem delay ${delay}ms $netem_params↪→

55 tc qdisc add dev $IFACE_CLIENTS parent 2: handle 3:
htb default 10↪→

56 tc class add dev $IFACE_CLIENTS parent 3: classid 10
htb rate $testrate #burst 1516↪→

57 fi
58 else
59 if ! tc qdisc show dev $IFACE_CLIENTS | grep -q "qdisc

netem 2:" && \↪→

60 tc qdisc show dev $IFACE_CLIENTS | grep -q "qdisc
htb 3:"; then↪→

61 tc class change dev $IFACE_CLIENTS parent 3: classid
10 htb rate $testrate↪→

62 else
63 tc qdisc del dev $IFACE_CLIENTS root 2>/dev/null ||

true↪→

64 tc qdisc add dev $IFACE_CLIENTS root handle 1:
prio bands 2 priomap 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1

↪→

↪→

65 tc filter add dev $IFACE_CLIENTS parent 1:0 protocol
ip prio 1 u32 match ip src $IP_AQM_C flowid 1:1↪→

66 tc qdisc add dev $IFACE_CLIENTS parent 1:2 handle 3:
htb default 10↪→

67 tc class add dev $IFACE_CLIENTS parent 3: classid 10
htb rate $testrate #burst 1516↪→

68 fi

109

69 fi
70

71 if [-n "$aqm_name"]; then
72 # update params if possible
73 if tc qdisc show dev $IFACE_CLIENTS | grep -q "qdisc

$aqm_name 15:"; then↪→

74 tc qdisc change dev $IFACE_CLIENTS handle 15:
$aqm_name $aqm_params↪→

75 echo "Updated params on existing aqm"
76 else
77 tc qdisc add dev $IFACE_CLIENTS parent 3:10 handle

15: $aqm_name $aqm_params↪→

78 fi
79 fi
80) || (echo -e "\nERROR: Failed configuring AQM clients edge (aqm =

$3)\n"; exit 1)}↪→

81

82 configure_clients_node() {(set -e
83 local rtt=$1
84 local netem_params=$2 # optional
85

86 local delay=$(echo "scale=2; $rtt / 2" | bc) # delay is half
the rtt↪→

87

88 # netem = used to simulate delay (link distance)
89

90 if [$rtt -gt 0]; then
91 hosts=($IP_CLIENTA_MGMT $IP_CLIENTB_MGMT)
92 ifaces=($IFACE_ON_CLIENTA $IFACE_ON_CLIENTB)
93 for i in ${!hosts[@]}; do
94 ssh root@${hosts[$i]} "
95 set -e
96 # if possible update the delay rather than

destroying the existing qdisc↪→

97 if tc qdisc show dev ${ifaces[$i]} | grep -q
'qdisc netem 12:'; then↪→

98 tc qdisc change dev ${ifaces[$i]} handle 12:
netem delay ${delay}ms $netem_params↪→

99 else
100 tc qdisc del dev ${ifaces[$i]} root

2>/dev/null || true↪→

101 tc qdisc add dev ${ifaces[$i]} root
handle 1: prio bands 2 priomap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1

↪→

↪→

102 tc qdisc add dev ${ifaces[$i]} parent 1:2
handle 12: netem delay ${delay}ms $netem_params↪→

103 tc filter add dev ${ifaces[$i]} parent 1:0
protocol ip prio 1 u32 match ip dst $IP_AQM_C flowid 1:1↪→

104 fi"
105 done
106 else
107 # no delay: force pfifo_fast
108 hosts=($IP_CLIENTA_MGMT $IP_CLIENTB_MGMT)
109 ifaces=($IFACE_ON_CLIENTA $IFACE_ON_CLIENTB)
110 for i in ${!hosts[@]}; do
111 ssh root@${hosts[$i]} "
112 set -e
113 # skip if already set up

110

114 if ! tc qdisc show dev ${ifaces[$i]} | grep -q
'qdisc pfifo_fast 1:'; then↪→

115 tc qdisc del dev ${ifaces[$i]} root
2>/dev/null || true↪→

116 tc qdisc add dev ${ifaces[$i]} root handle 1:
pfifo_fast 2>/dev/null || true↪→

117 fi"
118 done
119 fi
120) || (echo -e "\nERROR: Failed configuring client nodes\n"; exit

1)}↪→

121

122 configure_clients_edge() {(set -e
123 local testrate=$1
124 local rtt=$2
125 local aqm_name=$3
126 local aqm_params=$4
127 local netem_params=$5 # optional
128

129 configure_clients_edge_aqm_node $testrate $rtt $aqm_name
"$aqm_params" "$netem_params"↪→

130 configure_clients_node $rtt "$netem_params"
131)}
132

133 configure_server_edge() {(set -e
134 local ip_server_mgmt=$1
135 local ip_aqm_s=$2
136 local iface_server=$3
137 local iface_on_server=$4
138 local rtt=$5
139 local netem_params=$6 # optional
140

141 local delay=$(echo "scale=2; $rtt / 2" | bc) # delay is half
the rtt↪→

142

143 # put traffic in band 1 by default
144 # delay traffic in band 1
145 # filter traffic from aqm node itself into band 0 for priority

and no delay↪→

146 if tc qdisc show dev $iface_server | grep -q 'qdisc netem
12:'; then↪→

147 tc qdisc change dev $iface_server handle 12: netem delay
${delay}ms $netem_params↪→

148 else
149 tc qdisc del dev $iface_server root 2>/dev/null || true
150 tc qdisc add dev $iface_server root handle 1: prio

bands 2 priomap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1↪→

151 tc qdisc add dev $iface_server parent 1:2 handle 12:
netem delay ${delay}ms $netem_params↪→

152 tc filter add dev $iface_server parent 1:0 protocol ip
prio 1 u32 match ip src $ip_aqm_s flowid 1:1↪→

153 fi
154

155 ssh root@$ip_server_mgmt "
156 set -e
157 if tc qdisc show dev $iface_on_server | grep -q 'qdisc

netem 12:'; then↪→

158 tc qdisc change dev $iface_on_server handle 12: netem
delay ${delay}ms $netem_params↪→

111

159 else
160 tc qdisc del dev $iface_on_server root 2>/dev/null ||

true↪→

161 tc qdisc add dev $iface_on_server root handle
1: prio bands 2 priomap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1↪→

162 tc qdisc add dev $iface_on_server parent 1:2 handle
12: netem delay ${delay}ms $netem_params↪→

163 tc filter add dev $iface_on_server parent 1:0 protocol
ip prio 1 u32 match ip dst $ip_aqm_s flowid 1:1↪→

164 fi"
165) || (echo -e "\nERROR: Failed configuring server edge for server

$1\n"; exit 1)}↪→

166

167 reset_aqm_client_edge() {(set -e
168 # reset qdisc at client side
169 tc qdisc del dev $IFACE_CLIENTS root 2>/dev/null || true
170 tc qdisc add dev $IFACE_CLIENTS root handle 1: pfifo_fast

2>/dev/null || true↪→

171)}
172

173 reset_aqm_server_edge() {(set -e
174 # reset qdisc at server side
175 for iface in $IFACE_SERVERA $IFACE_SERVERB; do
176 tc qdisc del dev $iface root 2>/dev/null || true
177 tc qdisc add dev $iface root handle 1: pfifo_fast

2>/dev/null || true↪→

178 done
179)}
180

181 reset_host() {(set -e
182 local host=$1
183 local iface=$2 # the iface is the one that test traffic to aqm

is going on↪→

184 # e.g. $IFACE_ON_CLIENTA
185 ssh root@$host "
186 set -e
187 tc qdisc del dev $iface root 2>/dev/null || true
188 tc qdisc add dev $iface root handle 1: pfifo_fast

2>/dev/null || true"↪→

189)}
190

191 reset_all_hosts_edge() {(set -e
192 hosts=($IP_CLIENTA_MGMT $IP_CLIENTB_MGMT $IP_SERVERA_MGMT

$IP_SERVERB_MGMT)↪→

193 ifaces=($IFACE_ON_CLIENTA $IFACE_ON_CLIENTB $IFACE_ON_SERVERA
$IFACE_ON_SERVERB)↪→

194

195 for i in ${!hosts[@]}; do
196 reset_host ${hosts[$i]} ${ifaces[$i]}
197 done
198)}
199

200 reset_all_hosts_cc() {(set -e
201 for host in CLIENTA CLIENTB SERVERA SERVERB; do
202 name="IP_${host}_MGMT"
203 configure_host_cc ${!name} cubic 2
204 done
205)}
206

112

207 set_offloading() {(set -e
208 onoff=$1
209

210 hosts=($IP_CLIENTA_MGMT $IP_CLIENTB_MGMT $IP_SERVERA_MGMT
$IP_SERVERB_MGMT)↪→

211 ifaces=($IFACE_ON_CLIENTA $IFACE_ON_CLIENTB $IFACE_ON_SERVERA
$IFACE_ON_SERVERB)↪→

212

213 for i in ${!hosts[@]}; do
214 ssh root@${hosts[$i]} "
215 set -e
216 ethtool -K ${ifaces[$i]} gro $onoff
217 ethtool -K ${ifaces[$i]} gso $onoff
218 ethtool -K ${ifaces[$i]} tso $onoff"
219 done
220

221 for iface in $IFACE_CLIENTS $IFACE_SERVERA $IFACE_SERVERB; do
222 sudo ethtool -K $iface gro $onoff
223 sudo ethtool -K $iface gso $onoff
224 sudo ethtool -K $iface tso $onoff
225 done
226)}
227

228 kill_all_traffic() {(set -e
229 hosts=($IP_CLIENTA_MGMT $IP_CLIENTB_MGMT $IP_SERVERA_MGMT

$IP_SERVERB_MGMT)↪→

230

231 for host in ${hosts[@]}; do
232 ssh root@$host '
233 set -e
234 killall -9 iperf 2>/dev/null || :
235 killall -9 greedy 2>/dev/null || :'
236 done
237)}
238

239 get_host_cc() {(set -e
240 local host=$1
241

242 # see configure_host_cc for more details on setup
243

244 ssh root@$host '
245 set -e
246 if [-f /proc/sys/net/ipv4/tcp_congestion_control]; then
247 sysctl -n net.ipv4.tcp_congestion_control
248 sysctl -n net.ipv4.tcp_ecn
249 else
250 # we are on docker
251 . /aqmt-vars-local.sh
252 if ip a show $IFACE_AQM | grep -q 10.25.1.; then
253 # on client
254 route=10.25.2.0/24
255 else
256 route=10.25.1.0/24
257 fi
258

259 ip route show $route | awk -F"congctl " "{print \$2}"
| cut -d" " -f1↪→

260 ip route show $route | grep -q "ecn" && echo "1" ||
echo "2"↪→

113

261 fi'
262)}
263

264 check_port_in_use() {(set -e
265 # output to stdout: 0 if free, or else the number of open

sockets↪→

266 local host=$1
267 local port=$2
268

269 ssh root@$host "
270 set -e
271 ss -an src :$port | tail -n +2 | wc -l
272 "
273)}

Listing 9: Shell script written to provide functions to configure the
testbed.

1 #!/bin/bash
2 set -e
3

4 # we mount ssh setup in a specific template directory
5 # now we copy this so it is effective
6 mkdir -p /root/.ssh/
7 cp /ssh-template/* /root/.ssh/
8 chown -R root:root /root/.ssh/
9 chmod 600 /root/.ssh/*

10

11 # arp config is done to avoid arp lookups that causes loss
12

13 disable_so() {
14 iface=$1
15 # disable segmentation offload
16 # see

http://rtodto.net/generic_segmentation_offload_and_wireshark/↪→

17 (set -x && ethtool -K $iface gro off)
18 (set -x && ethtool -K $iface gso off)
19 (set -x && ethtool -K $iface tso off)
20 }
21

22 setup_client() {
23 local iface=$(ip route show to 10.25.1.0/24 | awk '{print

$3}')↪→

24 echo "Adding route to servers through aqm-machine"
25 (set -x && ip route add 10.25.2.0/24 via 10.25.1.2 dev $iface)
26 (set -x && ip route add 10.25.3.0/24 via 10.25.1.2 dev $iface)
27 (set -x && tc qdisc add dev $iface root handle 1: pfifo_fast)
28 (set -x && ip link set $iface txqueuelen 1000)
29 (set -x && arp -i $iface -s 10.25.1.2 02:42:0a:19:01:02)
30

31 disable_so $iface
32

33 echo "export IFACE_AQM=$iface" >/aqmt-vars-local.sh
34 }
35

36 setup_server() {

114

37 local iface=$(ip route show to ${1}.0/24 | awk '{print $3}')
38

39 echo "Adding route to clients through aqm-machine"
40 (set -x && ip route add 10.25.1.0/24 via ${1}.2 dev $iface)
41 (set -x && tc qdisc add dev $iface root handle 1: pfifo_fast)
42 (set -x && ip link set $iface txqueuelen 1000)
43

44 disable_so $iface
45

46 (set -x && arp -i $iface -s ${1}.2 02:42:0a:19:0${1/*.}:02)
47

48 echo "export IFACE_AQM=$iface" >/aqmt-vars-local.sh
49

50 #echo "Adding route to other servers through aqm-machine"
51 #if ["$(ip route show to 10.25.2.0/24)" == ""]; then
52 # (set -x && ip route add 10.25.2.0/24 via ${1}.2 dev

$iface)↪→

53 #else
54 # (set -x && ip route add 10.25.3.0/24 via ${1}.2 dev

$iface)↪→

55 #fi
56 }
57

58 setup_aqm() {
59 echo "Setting up AQM-variables"
60

61 local iface=$(ip route show to 10.25.0.0/24 | awk '{print
$3}')↪→

62 echo "export IFACE_MGMT=$iface" >/aqmt-vars-local.sh
63

64 local iface=$(ip route show to 10.25.1.0/24 | awk '{print
$3}')↪→

65 echo "export IFACE_CLIENTS=$iface" >>/aqmt-vars-local.sh
66 (set -x && tc qdisc add dev $iface root handle 1: pfifo_fast)
67 (set -x && ip link set $iface txqueuelen 1000)
68 (set -x && arp -i $iface -s 10.25.1.11 02:42:0a:19:01:0b)
69 (set -x && arp -i $iface -s 10.25.1.12 02:42:0a:19:01:0c)
70

71 disable_so $iface
72

73 local iface=$(ip route show to 10.25.2.0/24 | awk '{print
$3}')↪→

74 echo "export IFACE_SERVERA=$iface" >>/aqmt-vars-local.sh
75 (set -x && tc qdisc add dev $iface root handle 1: pfifo_fast)
76 (set -x && ip link set $iface txqueuelen 1000)
77 (set -x && arp -i $iface -s 10.25.2.21 02:42:0a:19:02:15)
78

79 disable_so $iface
80

81 local iface=$(ip route show to 10.25.3.0/24 | awk '{print
$3}')↪→

82 echo "export IFACE_SERVERB=$iface" >>/aqmt-vars-local.sh
83 (set -x && tc qdisc add dev $iface root handle 1: pfifo_fast)
84 (set -x && ip link set $iface txqueuelen 1000)
85 (set -x && arp -i $iface -s 10.25.2.31 02:42:0a:19:03:1f)
86

87 disable_so $iface
88

115

89 # wait a bit for other nodes to come up before we try to
connect↪→

90 sleep 2
91

92 names=(CLIENTA CLIENTB SERVERA SERVERB)
93 nets=(10.25.1.0/24 10.25.1.0/24 10.25.2.0/24 10.25.3.0/24)
94 for i in ${!names[@]}; do
95 (
96 . /aqmt-vars.sh
97 local ip_name="IP_${names[$i]}"
98 local iface
99 iface=$(ssh ${!ip_name} "ip route show to ${nets[$i]}

| awk '{print \$3}'")↪→

100 echo "export IFACE_ON_${names[$i]}=$iface"
>>/aqmt-vars-local.sh↪→

101)
102 done
103 }
104

105 # add routes through aqm-machine
106 if ["$(ip addr show to 10.25.0.2)" == ""]; then
107 if ip a | grep -q "inet 10.25.1."; then
108 setup_client
109 elif ip a | grep -q "inet 10.25.2."; then
110 setup_server 10.25.2
111 elif ip a | grep -q "inet 10.25.3."; then
112 setup_server 10.25.3
113 fi
114 else
115 setup_aqm
116 fi
117

118 echo "Initialization finished"
119

120 exec "$@"

Listing 10: entrypoint.sh: Initialization script for the Docker containers
to configure routing and proper network setup.

A.3 Docker setup

1 version: '2'
2

3 services:
4

5 aqm:
6 build: .
7 image: testbed
8 cap_add:
9 - NET_ADMIN

10 #privileged: true
11 hostname: aqm
12 networks:
13 management:
14 ipv4_address: 10.25.0.2

116

15 clients:
16 ipv4_address: 10.25.1.2
17 servera:
18 ipv4_address: 10.25.2.2
19 serverb:
20 ipv4_address: 10.25.3.2
21 volumes:
22 - /etc/hostname:/.dockerhost-hostname # to get real hostname

inside docker↪→

23 - ../:/opt/aqmt/
24 - ./.vars.sh:/aqmt-vars.sh
25 - ./container/id_rsa:/ssh-template/id_rsa
26 - ./container/id_rsa.pub:/ssh-template/id_rsa.pub
27 - ./container/id_rsa.pub:/ssh-template/authorized_keys
28 - $TEST_PATH:/opt/testbed
29

30 clienta:
31 build: .
32 image: testbed
33 cap_add:
34 - NET_ADMIN
35 privileged: true
36 hostname: clienta
37 networks:
38 management:
39 ipv4_address: 10.25.0.11
40 clients:
41 ipv4_address: 10.25.1.11
42 volumes:
43 - ../:/opt/aqmt/
44 - ./.vars.sh:/aqmt-vars.sh
45 - ./container/id_rsa:/ssh-template/id_rsa
46 - ./container/id_rsa.pub:/ssh-template/id_rsa.pub
47 - ./container/id_rsa.pub:/ssh-template/authorized_keys
48 - $TEST_PATH:/opt/testbed
49

50 clientb:
51 build: .
52 image: testbed
53 cap_add:
54 - NET_ADMIN
55 privileged: true
56 hostname: clientb
57 networks:
58 management:
59 ipv4_address: 10.25.0.12
60 clients:
61 ipv4_address: 10.25.1.12
62 volumes:
63 - ../:/opt/aqmt/
64 - ./.vars.sh:/aqmt-vars.sh
65 - ./container/id_rsa:/ssh-template/id_rsa
66 - ./container/id_rsa.pub:/ssh-template/id_rsa.pub
67 - ./container/id_rsa.pub:/ssh-template/authorized_keys
68 - $TEST_PATH:/opt/testbed
69

70 servera:
71 build: .
72 image: testbed

117

73 cap_add:
74 - NET_ADMIN
75 privileged: true
76 hostname: servera
77 networks:
78 management:
79 ipv4_address: 10.25.0.21
80 servera:
81 ipv4_address: 10.25.2.21
82 volumes:
83 - ../:/opt/aqmt/
84 - ./.vars.sh:/aqmt-vars.sh
85 - ./container/id_rsa:/ssh-template/id_rsa
86 - ./container/id_rsa.pub:/ssh-template/id_rsa.pub
87 - ./container/id_rsa.pub:/ssh-template/authorized_keys
88 - $TEST_PATH:/opt/testbed
89

90 serverb:
91 build: .
92 image: testbed
93 cap_add:
94 - NET_ADMIN
95 privileged: true
96 hostname: serverb
97 networks:
98 management:
99 ipv4_address: 10.25.0.31

100 serverb:
101 ipv4_address: 10.25.3.31
102 volumes:
103 - ../:/opt/aqmt/
104 - ./.vars.sh:/aqmt-vars.sh
105 - ./container/id_rsa:/ssh-template/id_rsa
106 - ./container/id_rsa.pub:/ssh-template/id_rsa.pub
107 - ./container/id_rsa.pub:/ssh-template/authorized_keys
108 - $TEST_PATH:/opt/testbed
109

110 fix_permissions:
111 build: .
112 image: testbed
113 volumes:
114 - ../:/opt/aqmt/
115 - $TEST_PATH:/opt/testbed
116 network_mode: none
117 entrypoint: /opt/aqmt/docker/fix-permissions.sh
118

119 networks:
120 management:
121 driver: bridge
122 ipam:
123 config:
124 - subnet: 10.25.0.0/24
125 clients:
126 driver: bridge
127 ipam:
128 config:
129 - subnet: 10.25.1.0/24
130 servera:
131 driver: bridge

118

132 ipam:
133 config:
134 - subnet: 10.25.2.0/24
135 serverb:
136 driver: bridge
137 ipam:
138 config:
139 - subnet: 10.25.3.0/24

Listing 11: docker-compose.yml: Definition of Docker containers.

1 FROM ubuntu:xenial
2 MAINTAINER Henrik Steen <henrist@henrist.net>
3

4 # set up ssh and custom packages
5 ADD container/speedometer.patch /opt/
6 RUN apt-get update \
7 && apt-get install -y --no-install-recommends \
8 bc \
9 ca-certificates \

10 dstat \
11 ethtool \
12 git \
13 gnuplot \
14 inotify-tools \
15 iputils-ping \
16 iperf \
17 iperf3 \
18 iptraf \
19 ipython3 \
20 less \
21 net-tools \
22 netcat-openbsd \
23 nmap \
24 openssh-server \
25 patch \
26 psmisc \
27 python \
28 python-urwid \
29 python3-numpy \
30 python3-plumbum \
31 sudo \
32 tcpdump \
33 tmux \
34 vim \
35 wget \
36 && rm -rf /var/lib/apt/lists/* \
37 && mkdir /var/run/sshd \
38 \
39 && wget -O /usr/bin/speedometer

https://raw.githubusercontent.com/wardi/speedometer/9211116e8df11fc6458489b209de2900ab2e3e84/speedometer.py
\

↪→

↪→

40 && (cd /usr/bin; patch </opt/speedometer.patch) \
41 && chmod +x /usr/bin/speedometer \
42 \
43 # dont check host keys when connecting

119

44 && sed -i 's/# StrictHostKeyChecking .*/
StrictHostKeyChecking no/' /etc/ssh/ssh_config \↪→

45 \
46 # SSH login fix. Otherwise user is kicked off after login
47 && sed 's@session\s*required\s*pam_loginuid.so@session

optional pam_loginuid.so@g' -i /etc/pam.d/sshd \↪→

48 \
49 # optimize ssh connection by persisting connection
50 && echo "Host 10.25.0.*" >>/etc/ssh/ssh_config \
51 && echo " ControlMaster auto" >>/etc/ssh/ssh_config \
52 && echo " ControlPersist yes" >>/etc/ssh/ssh_config \
53 && echo " ControlPath ~/.ssh/socket-%r@%h:%p"

>>/etc/ssh/ssh_config \↪→

54 && echo " AddressFamily inet" >>/etc/ssh/ssh_config \
55 \
56 && echo ". /aqmt-vars.sh" >>/etc/bash.bashrc \
57 && echo "cd /opt/testbed" >>/etc/bash.bashrc \
58 && echo ". /aqmt-vars.sh" >>/etc/profile.d/aqmt.sh \
59 && echo 'PATH="/opt/aqmt/bin:$PATH"' >>/etc/bash.bashrc \
60 && echo 'export PYTHONPATH="/opt/aqmt:$PYTHONPATH"'

>>/etc/bash.bashrc↪→

61

62 COPY container/iproute2-patches /opt/iproute2-patches
63 RUN apt-get update \
64 && apt-get install -y --no-install-recommends \
65 bison \
66 build-essential \
67 flex \
68 git \
69 iptables-dev \
70 libdb5.3-dev \
71 patch \
72 pkg-config \
73 && rm -rf /var/lib/apt/lists/* \
74 \
75 # set up custom iproute2 (we need at least v4.6.0 for 'ip

route congctl' support↪→

76 && cd /opt \
77 && git clone --depth=1 --branch=v4.10.0

git://git.kernel.org/pub/scm/linux/kernel/git/shemminger/iproute2.git
iproute2 \

↪→

↪→

78 && cd iproute2 \
79 && find /opt/iproute2-patches -name "*.patch" -print0 | sort

-z | \↪→

80 xargs --no-run-if-empty -0 -l patch -p1 -f --fuzz=3 -i \
81 && make \
82 && make install \
83 && cd /opt \
84 && rm -rf /opt/iproute2 \
85 \
86 # set up greedy
87 && wget -O /usr/bin/greedy

https://github.com/henrist/greedy/releases/download/v0.1/greedy
\

↪→

↪→

88 && chmod +x /usr/bin/greedy \
89 \
90 && apt-get remove -y bison build-essential flex git

iptables-dev libdb5.3-dev patch pkg-config \↪→

91 && apt-get autoremove -y

120

92

93 # create a file that can be used to identify we are in Docker
94 RUN touch /.dockerenv
95

96 ADD container/entrypoint.sh /entrypoint.sh
97

98 EXPOSE 22
99 ENTRYPOINT ["/entrypoint.sh"]

100 CMD ["/usr/sbin/sshd", "-D"]

Listing 12: Dockerfile: Definition of Docker image used to run tests.

A.4 Python framework for testing AQMs

This is part of the relevant code developed by me during the thesis. The
code for plotting and analyzing is not included. The complete source
code of the framework can be found at:

• https://github.com/henrist/aqmt

• https://github.com/henrist/aqmt-example

• https://github.com/henrist/aqmt-fq-codel-scheduler

• https://github.com/henrist/aqmt-pfifo-scheduler

• https://github.com/henrist/aqmt-pie-scheduler

1 class Testdef:
2 def __init__(self, testenv):
3 self.collection = None # set by run_test
4 self.dry_run = False # if dry run no side effects should

be caused↪→

5 self.post_hook = None
6 self.pre_hook = None
7 self.testbed = testenv.testbed # shortcut to above
8 self.testenv = testenv
9 self.level = 0

10 self.test_plots = {
11 'analysis': {}, # the value represents **plot_args
12 }
13

14 def testcase_analyze(self, testcase, samples_to_skip):
15 analyze_test(testcase.test_folder, samples_to_skip)
16

17 def testcase_plot(self, testcase):
18 for name, plot_args in self.test_plots.items():
19 plot_test(testcase.test_folder, name=name,

**plot_args)↪→

20

21

22 def run_test(folder=None, testenv=None, title=None, subtitle=None,
steps=None,↪→

23 ask_confirmation=None):

121

https://github.com/henrist/aqmt
https://github.com/henrist/aqmt-example
https://github.com/henrist/aqmt-fq-codel-scheduler
https://github.com/henrist/aqmt-pfifo-scheduler
https://github.com/henrist/aqmt-pie-scheduler

24 """
25 Run a complete test using list of steps.
26

27 See steps.py for example steps.
28 """
29 require_on_aqm_node()
30 testdef = Testdef(testenv)
31

32 # Save testdef to testenv so we can pull it from the test case
we are running.↪→

33 # We use this to hold internal parameters.
34 testenv.testdef = testdef
35

36 num_tests = 0
37 estimated_time = 0
38 num_tests_total = 0
39

40 def get_metadata(testcollection, testenv):
41 nonlocal estimated_time, num_tests, num_tests_total
42 meta = testcollection.get_metadata(testenv)
43 estimated_time += meta['estimated_time'] if

meta['will_test'] else 0↪→

44 num_tests += 1 if meta['will_test'] else 0
45 num_tests_total += 1
46

47 def walk(parent, steps, level=0):
48 testdef.collection = parent
49

50 # The last step should be the actual traffic generator
51 if len(steps) == 1:
52 if testdef.dry_run:
53 get_metadata(parent, testenv)
54 else:
55 parent.run_test(
56 test_fn=steps[0],
57 testenv=testenv,
58 analyze_fn=testdef.testcase_analyze,
59 plot_fn=testdef.testcase_plot,
60 pre_hook=testdef.pre_hook,
61 post_hook=testdef.post_hook,
62)
63

64 else:
65 # Each step should be a generator, yielding metadata

for new branches.↪→

66 # If the generator yields nothing, we jump to next
level.↪→

67 testdef.level = level
68 for step in steps[0](testdef):
69 if not step:
70 walk(parent, steps[1:], level)
71 continue
72

73 child = parent
74 if len(steps) > 1:
75 child = TestCollection(
76 title=step['title'],
77 titlelabel=step['titlelabel'],
78 folder=step['tag'],

122

79 parent=parent
80)
81 walk(child, steps[1:], level + 1)
82

83 # the walk function have replaced our collection,
so put it back↪→

84 testdef.collection = parent
85

86 def get_root():
87 return TestCollection(
88 folder=folder,
89 title=title,
90 subtitle=subtitle,
91)
92

93 testdef.dry_run = True
94 walk(get_root(), steps)
95 print('Estimated time: %d seconds for running %d (of %d) tests

(average %g sec/test)\n' % (↪→

96 estimated_time, num_tests, num_tests_total, estimated_time
/ num_tests if num_tests > 0 else 0))↪→

97

98 if ask_confirmation is None:
99 ask_confirmation = True

100 if 'TEST_NO_ASK' in os.environ and
os.environ['TEST_NO_ASK'] != '':↪→

101 ask_confirmation = False
102

103 should_run_test = not ask_confirmation
104 if ask_confirmation:
105 sys.stdout.write('Start test? [y/n] ')
106 should_run_test = input().lower() == 'y'
107

108 if should_run_test:
109 testdef.dry_run = False
110 walk(get_root(), steps)

Listing 13: aqmt/__init__.py: Python module for running a test
definition.

1 """
2 This module contains predefined steps that can be applied
3 when composing a test hiearchy. Feel free to write your own
4 instead of using these.
5

6 A step is required to yield (minimum one time) in two different
ways:↪→

7

8 - Yield nothing: This does not cause a branch in the test
hierarchy.↪→

9

10 - Yield object: Should be an object with the following properties,
and↪→

11 will cause a new branch with these properties:
12 - tag
13 - title

123

14 - titlelabel
15 """
16

17 import os.path
18

19 from .plot import generate_hierarchy_data_from_folder, \
20 plot_folder_flows, plot_folder_compare, \
21 reorder_levels
22 from .testcollection import build_html_index
23

24 MBIT = 1000*1000
25

26

27 def branch_sched(sched_list, titlelabel='Scheduler'):
28 def step(testdef):
29 for tag, title, sched_name, sched_params in sched_list:
30 testdef.testenv.testbed.aqm(sched_name, sched_params)
31 testdef.sched_tag = tag # to allow substeps to filter

it↪→

32

33 yield {
34 'tag': 'sched-%s' % tag,
35 'title': title,
36 'titlelabel': titlelabel,
37 }
38 return step
39

40

41 def branch_custom(list, fn_testdef, fn_tag, fn_title,
titlelabel=''):↪→

42 def step(testdef):
43 for item in list:
44 fn_testdef(testdef, item)
45 yield {
46 'tag': 'custom-%s' % fn_tag(item),
47 'title': fn_title(item),
48 'titlelabel': titlelabel,
49 }
50 return step
51

52

53 def branch_define_udp_rate(rate_list, title='%g', titlelabel='UDP
Rate [Mb/s]'):↪→

54 """
55 This method don't actually change the setup, it only sets a

variable↪→

56 that can be used when running the actual test.
57 """
58 def branch(testdef):
59 for rate in rate_list:
60 testdef.udp_rate = rate
61 yield {
62 'tag': 'udp-rate-%s' % rate,
63 'title': title % rate,
64 'titlelabel': titlelabel,
65 }
66 return branch
67

68

124

69 def branch_repeat(num, title='%d', titlelabel='Test #'):
70 def step(testdef):
71 for i in range(num):
72 yield {
73 'tag': 'repeat-%d' % i,
74 'title': title % (i + 1),
75 'titlelabel': titlelabel,
76 }
77 return step
78

79

80 def branch_rtt(rtt_list, title='%d', titlelabel='RTT'):
81 def step(testdef):
82 for rtt in rtt_list:
83 testdef.testenv.testbed.rtt_servera = rtt
84 testdef.testenv.testbed.rtt_serverb = rtt
85 yield {
86 'tag': 'rtt-%d' % rtt,
87 'title': title % rtt,
88 'titlelabel': titlelabel,
89 }
90 return step
91

92

93 def branch_bitrate(bitrate_list, title='%d', titlelabel='Linkrate
[Mb/s]'):↪→

94 def step(testdef):
95 for bitrate in bitrate_list:
96 testdef.testenv.testbed.bitrate = bitrate * MBIT
97 yield {
98 'tag': 'linkrate-%d' % bitrate,
99 'title': title % bitrate,

100 'titlelabel': titlelabel,
101 }
102 return step
103

104

105 def branch_udp_ect(ect_set):
106 def branch(testdef):
107 for node, ect, title, traffic_tag in ect_set:
108 testdef.udp_node = node
109 testdef.udp_ect = ect
110 testdef.udp_tag = traffic_tag
111

112 yield {
113 'tag': 'udp-%s' % ect,
114 'title': title,
115 'titlelabel': 'UDP ECN',
116 }
117 return branch
118

119

120 def branch_runif(checks, titlelabel='Run if'):
121 def step(testdef):
122 for tag, fn, title in checks:
123 prev = testdef.testenv.skip_test
124 testdef.testenv.skip_test = not fn(testdef.testenv)
125

126 yield {

125

127 'tag': 'runif-%s' % tag,
128 'title': title,
129 'titlelabel': titlelabel,
130 }
131

132 testdef.testenv.skip_test = prev
133 return step
134

135

136 def skipif(fn):
137 def step(testdef):
138 prev = testdef.testenv.skip_test
139 testdef.testenv.skip_test = fn(testdef.testenv)
140

141 yield
142

143 testdef.testenv.skip_test = prev
144

145 return step
146

147

148 def add_pre_hook(fn):
149 """
150 Add a pre hook to the testcase. Passed to TestCase's run

method.↪→

151 """
152 def step(testdef):
153 old_hook = testdef.pre_hook
154 def new_hook(*args, **kwargs):
155 if callable(old_hook):
156 old_hook(*args, **kwargs)
157 fn(*args, **kwargs)
158 testdef.pre_hook = new_hook
159 yield
160 testdef.pre_hook = old_hook
161 return step
162

163

164 def add_post_hook(fn):
165 """
166 Add a post hook to the testcase. Passed to TestCase's run

method.↪→

167 """
168 def step(testdef):
169 old_hook = testdef.post_hook
170 def new_hook(*args, **kwargs):
171 if callable(old_hook):
172 old_hook(*args, **kwargs)
173 fn(*args, **kwargs)
174 testdef.post_hook = new_hook
175 yield
176 testdef.post_hook = old_hook
177 return step
178

179

180 def plot_compare(**plot_args):
181 def step(testdef):
182 yield

126

183 if not testdef.dry_run and
os.path.isdir(testdef.collection.folder):↪→

184 plot_folder_compare(testdef.collection.folder,

**plot_args)↪→

185 return step
186

187

188 def plot_flows(**plot_args):
189 def step(testdef):
190 yield
191 if not testdef.dry_run and

os.path.isdir(testdef.collection.folder):↪→

192 plot_folder_flows(testdef.collection.folder,

**plot_args)↪→

193 return step
194

195

196 def plot_test(name='analysis', **plot_args):
197 """
198 Define a named plot on the test.
199

200 plot_args is sent to plot_test()
201 """
202 def step(testdef):
203 yield
204 testdef.test_plots[name] = plot_args
205 return step
206

207

208 def html_index(level_order=None):
209 def step(testdef):
210 yield
211

212 if not testdef.dry_run and
os.path.isdir(testdef.collection.folder):↪→

213 tree = reorder_levels(
214

generate_hierarchy_data_from_folder(testdef.collection.folder),↪→

215 level_order=level_order,
216)
217

218 out = build_html_index(tree,
testdef.collection.folder)↪→

219

220 with open(testdef.collection.folder +
'/analysis.html', 'w') as f:↪→

221 f.write(out)
222

223 return step

Listing 14: aqmt/steps.py: Python module with components to build the
test structure and branching of the test parameters.

1 """
2 This module contains the testbed logic
3 """

127

4

5 import math
6 import os
7 from plumbum import local, FG
8 from plumbum.cmd import bash
9 from plumbum.commands.processes import ProcessExecutionError

10

11 from . import logger
12 from .terminal import get_log_cmd
13

14

15 def get_testbed_script_path():
16 return "aqmt-testbed.sh"
17

18

19 def require_on_aqm_node():
20 testbed_script = get_testbed_script_path()
21 bash['-c', 'set -e; source %s; require_on_aqm_node' %

testbed_script] & FG↪→

22

23

24 class Testbed:
25 """
26 A object representing the desired testbed configuration and

utilities↪→

27 to apply the configuration. This object is used throughout
tests↪→

28 and is mutated and reapplied before tests to change the setup.
29 """
30 ECN_DISABLED = 0
31 ECN_INITIATE = 1
32 ECN_ALLOW = 2
33

34 def __init__(self, duration=250*1000, sample_time=1000,
idle=None):↪→

35 self.bitrate = 1000000
36

37 self.rtt_clients = 0 # in ms
38 self.rtt_servera = 0 # in ms
39 self.rtt_serverb = 0 # in ms
40

41 self.netem_clients_params = ""
42 self.netem_servera_params = ""
43 self.netem_serverb_params = ""
44

45 self.aqm_name = 'pfifo_aqmt' # we need a default aqm to
get queue delay↪→

46 self.aqm_params = ''
47

48 self.cc_a = 'cubic'
49 self.ecn_a = self.ECN_ALLOW
50 self.cc_b = 'cubic'
51 self.ecn_b = self.ECN_ALLOW
52

53 self.ta_delay = sample_time
54 self.ta_samples = math.ceil(duration / sample_time)
55

56 # time to skip in seconds when building aggregated data,
default to be RTT-dependent↪→

128

57 self.ta_idle = idle
58

59 self.traffic_port = 5500
60

61 def aqm(self, name='', params=''):
62 if name == 'pfifo':
63 name = 'pfifo_aqmt' # use our custom version with

aqmt↪→

64

65 self.aqm_name = name
66 self.aqm_params = params
67

68 def cc(self, node, cc, ecn):
69 if node != 'a' and node != 'b':
70 raise Exception("Invalid node: %s" % node)
71

72 if node == 'a':
73 self.cc_a = cc
74 self.ecn_a = ecn
75 else:
76 self.cc_b = cc
77 self.ecn_b = ecn
78

79 def rtt(self, rtt_servera, rtt_serverb=None, rtt_clients=0):
80 if rtt_serverb is None:
81 rtt_serverb = rtt_servera
82

83 self.rtt_clients = rtt_clients # in ms
84 self.rtt_servera = rtt_servera # in ms
85 self.rtt_serverb = rtt_serverb # in ms
86

87 def get_ta_samples_to_skip(self):
88 time = self.ta_idle
89 if time is None:
90 time = (max(self.rtt_clients, self.rtt_servera,

self.rtt_serverb) / 1000) * 40 + 4↪→

91

92 samples = time * 1000 / self.ta_delay
93 return math.ceil(samples)
94

95 def setup(self, dry_run=False, log_level=logger.DEBUG):
96 cmd = bash['-c', """
97 # configuring testbed
98 set -e
99 source """ + get_testbed_script_path() + """

100

101 set_offloading off
102

103 configure_clients_edge """ + '%s %s %s "%s" "%s"' %
(self.bitrate, self.rtt_clients, self.aqm_name,
self.aqm_params, self.netem_clients_params) + """

↪→

↪→

104 configure_server_edge $IP_SERVERA_MGMT $IP_AQM_SA
$IFACE_SERVERA $IFACE_ON_SERVERA """ + '%s "%s"' %
(self.rtt_servera, self.netem_servera_params) + """

↪→

↪→

105 configure_server_edge $IP_SERVERB_MGMT $IP_AQM_SB
$IFACE_SERVERB $IFACE_ON_SERVERB """ + '%s "%s"' %
(self.rtt_serverb, self.netem_serverb_params) + """

↪→

↪→

106

129

107 configure_host_cc $IP_CLIENTA_MGMT """ + '%s %s' %
(self.cc_a, self.ecn_a) + """↪→

108 configure_host_cc $IP_SERVERA_MGMT """ + '%s %s' %
(self.cc_a, self.ecn_a) + """↪→

109 configure_host_cc $IP_CLIENTB_MGMT """ + '%s %s' %
(self.cc_b, self.ecn_b) + """↪→

110 configure_host_cc $IP_SERVERB_MGMT """ + '%s %s' %
(self.cc_b, self.ecn_b) + """↪→

111 """]
112

113 logger.log(log_level, get_log_cmd(cmd))
114 if not dry_run:
115 try:
116 cmd & FG
117 except ProcessExecutionError:
118 return False
119

120 return True
121

122 @staticmethod
123 def reset(dry_run=False, log_level=logger.DEBUG):
124 cmd = bash['-c', """
125 # resetting testbed
126 set -e
127 source """ + get_testbed_script_path() + """
128

129 kill_all_traffic
130 reset_aqm_client_edge
131 reset_aqm_server_edge
132 reset_all_hosts_edge
133 reset_all_hosts_cc
134 """]
135

136 logger.log(log_level, get_log_cmd(cmd))
137 if not dry_run:
138 try:
139 cmd & FG
140 except ProcessExecutionError:
141 return False
142

143 return True
144

145 def get_next_traffic_port(self, node_to_check=None):
146 while True:
147 tmp = self.traffic_port
148 self.traffic_port += 1
149

150 if node_to_check is not None:
151 if 'CLIENT' not in node_to_check and 'SERVER' not

in node_to_check:↪→

152 raise Exception('Expecting node name like
CLIENTA. Got: %s' % node_to_check)↪→

153 host = '$IP_%s_MGMT' % node_to_check
154 import time
155 start = time.time()
156 res = bash['-c', """
157 set -e
158 source """ + get_testbed_script_path() + """

130

159 check_port_in_use """ + host + """ """ +
str(tmp) + """ 2>/dev/null↪→

160 """]()
161 if int(res) > 0:
162 # port in use, try next
163 logger.warn('Port %d on node %s was in use -

will try next port' % (tmp,
node_to_check))

↪→

↪→

164 continue
165

166 break
167

168 return tmp
169

170 @staticmethod
171 def get_aqm_options(name):
172 testbed_script = get_testbed_script_path()
173 res = bash['-c', 'set -e; source %s; get_aqm_options %s' %

(testbed_script, name)]()↪→

174 return res.strip()
175

176 def get_setup(self):
177 out = ""
178

179 out += "Configured testbed:\n"
180 out += " rate: %s (applied from router to clients)\n" %

self.bitrate↪→

181 out += " rtt to router:\n"
182 out += " - clients: %d ms\n" % self.rtt_clients
183 out += " - servera: %d ms\n" % self.rtt_servera
184 out += " - serverb: %d ms\n" % self.rtt_serverb
185

186 if self.aqm_name != '':
187 params = ''
188 if self.aqm_params != '':
189 params = ' (%s)' % self.aqm_params
190

191 out += " aqm: %s%s\n" % (self.aqm_name, params)
192 out += " (%s)\n" %

self.get_aqm_options(self.aqm_name)↪→

193 else:
194 out += " no aqm\n"
195

196 for node in ['CLIENTA', 'CLIENTB', 'SERVERA', 'SERVERB']:
197 ip = 'IP_%s_MGMT' % node
198

199 out += ' %s: ' % node.lower()
200 testbed_script = get_testbed_script_path()
201 out += (bash['-c', 'set -e; source %s; get_host_cc

"$%s"' % (testbed_script, ip)] |
local['tr']['\n', ' '])().strip()

↪→

↪→

202 out += '\n'
203

204 return out.strip()
205

206 def get_hint(self, dry_run=False):
207 hint = ''
208 hint += "testbed_rtt_clients %d\n" % self.rtt_clients
209 hint += "testbed_rtt_servera %d\n" % self.rtt_servera

131

210 hint += "testbed_rtt_serverb %d\n" % self.rtt_serverb
211 hint += "testbed_cc_a %s %d\n" % (self.cc_a, self.ecn_a)
212 hint += "testbed_cc_b %s %d\n" % (self.cc_b, self.ecn_b)
213 hint += "testbed_aqm %s\n" % self.aqm_name
214 hint += "testbed_aqm_params %s\n" % self.aqm_params
215 if dry_run:
216 hint += "testbed_aqm_params_full UNKNOWN IN DRY RUN\n"
217 else:
218 hint += "testbed_aqm_params_full %s\n" %

self.get_aqm_options(self.aqm_name)↪→

219 hint += "testbed_rate %s\n" % self.bitrate
220 return hint.strip()

Listing 15: aqmt/testbed.py: Python module to define the testbed.

1 """
2 Module for utils for plotting collections
3

4 See treeutil.py for details of how the tree is structured
5 """
6

7 from collections import OrderedDict
8 import math
9

10 from .common import PlotAxis
11 from . import treeutil
12

13

14 def get_tree_details(tree):
15 """
16 Returns a tuple containing:
17 - number of leaf branches
18 - number of tests
19 - depth of the tree
20 - number of x points
21 """
22

23 leafs = 0
24 tests = 0
25 depth = 0
26 nodes = 0
27

28 def traverse(branch, depthnow=0):
29 nonlocal leafs, tests, depth, nodes
30

31 if len(branch['children']) == 0:
32 return
33

34 f = branch['children'][0]
35

36 if depthnow > depth:
37 depth = depthnow
38

39 # is this a set of tests?
40 if len(f['children']) == 1 and 'testcase' in

f['children'][0]:↪→

41 tests += len(branch['children'])

132

42 leafs += 1
43 nodes += len(branch['children'])
44

45 # or is it a collection of collections
46 else:
47 for item in branch['children']:
48 nodes += 1
49 traverse(item, depthnow + 1)
50

51 traverse(tree)
52 return leafs, tests, depth, nodes - depth
53

54

55 def get_gap(tree):
56 """
57 Calculate the gap that a single test can fill in the graph.
58 This tries to make the gap be visually the same for few/many

tests.↪→

59 """
60 _, _, _, n_nodes = get_tree_details(tree)
61 return min(0.8, (n_nodes + 2) / 100)
62

63

64 def get_testcases(leaf):
65 """
66 Get list of testcases of a test collection
67

68 Returns [(title, testcase_folder), ...]
69 """
70 return [(item['title'], item['children'][0]['testcase']) for

item in leaf['children']]↪→

71

72

73 def get_all_testcases_folders(tree):
74 """
75 Get a list of all testcase folders in a given tree
76 """
77 folders = []
78

79 def parse_leaf(leaf, first_set, x):
80 nonlocal folders
81 folders += [item[1] for item in get_testcases(leaf)] #

originally list of (title, folder)↪→

82

83 treeutil.walk_leaf(tree, parse_leaf)
84 return folders
85

86

87 def make_xtics(tree, xoffset, x_axis):
88 """
89 Generate a list of xtics
90

91 This can be passed on to `set xtics add (<here>)` to add xtics
92 to the graph.
93 """
94

95 arr = []
96

133

97 minval, maxval, count = get_testmeta_min_max_count(tree,
x_axis)↪→

98

99 numxtics = 10
100

101 def frange(start, stop, step):
102 i = start
103 while i < stop:
104 yield i
105 i += step
106

107 #print(minval, maxval)
108 #step = ((maxval - minval) / numxtics)
109 step = 20 # FIXME: this need to adopt to input
110 minval = math.ceil(minval / step) * step
111 maxval = math.floor(maxval / step) * step
112

113 #print(minval, maxval)
114

115 for x in frange(minval, maxval + step, step):
116 arr.append('"%s" %g' % (
117 round(x, 2),
118 get_x_coordinate(tree, x, x_axis) + xoffset
119))
120

121 return ', '.join(arr)
122

123

124 def get_testmeta_min_max_count(leaf, x_axis):
125 """
126 This function expects all x label titles to be numeric value
127 so we can calculate the minimum and maximum of them.
128 """
129 testcases = get_testcases(leaf)
130

131 # logaritmic, we need to calculate the position
132 minval = None
133 maxval = None
134 for title, testcase_folder in testcases:
135 x = float(title)
136 if minval is None or x < minval:
137 minval = x
138 if maxval is None or x > maxval:
139 maxval = x
140

141 return minval, maxval, len(testcases)
142

143

144 def get_x_coordinate(leaf, value, x_axis):
145 """
146 Calculates the linear x position that a value will
147 be positioned"""
148

149 minval, maxval, count = get_testmeta_min_max_count(leaf,
x_axis)↪→

150

151 pos = float(value)
152 if x_axis == PlotAxis.LOGARITHMIC:
153 minval = math.log10(minval)

134

154 maxval = math.log10(maxval)
155 pos = math.log10(pos)
156

157 return (pos - minval) / (maxval - minval) * (count - 1) if
minval != maxval else 0↪→

158

159

160 def merge_testcase_data_set_x(testcases, x_axis):
161 """
162 Takes in an array of data points for x axis for a single
163 series and appends the x position of the data points.
164

165 Each element in the array is an array itself:
166 - xvalue (might be text if linear scale)
167 - line (rest of line that is passed on)
168

169 It also concatenates the array and return a final string
170 """
171

172 # for category axis we don't calculate anything
173 if not PlotAxis.is_logarithmic(x_axis) and not

PlotAxis.is_linear(x_axis):↪→

174 out = []
175 i = 0
176 for xval, line in testcases:
177 out.append('%d %s' % (i, line))
178 i += 1
179 return ''.join(out)
180

181 # calculate minimum and maximum value
182 minval = None
183 maxval = None
184 for xval, line in testcases:
185 x = float(xval)
186 if minval is None or x < minval:
187 minval = x
188 if maxval is None or x > maxval:
189 maxval = x
190

191 if PlotAxis.is_logarithmic(x_axis):
192 minval = math.log10(minval)
193 maxval = math.log10(maxval)
194

195 out = []
196 for xval, line in testcases:
197 pos = float(xval)
198 if PlotAxis.is_logarithmic(x_axis):
199 pos = math.log10(pos)
200 x = (pos - minval) / (maxval - minval) * (len(testcases) -

1) if maxval != minval else 0↪→

201 out.append('%f %s' % (x, line))
202 return ''.join(out)
203

204

205 def get_leaf_tests_stats(leaf, statsname):
206 """
207 Build data for a specific statistic from all testcases in a

leaf↪→

208

135

209 The return value will be a list of tupples where first
210 element is the title of this test and second element is
211 the lines from the statistics with the title appended.
212 """
213 res = []
214 for title, testcase_folder in get_testcases(leaf):
215 added = False
216

217 if callable(statsname):
218 for line in statsname(testcase_folder).splitlines():
219 if line.startswith('#'):
220 continue
221

222 res.append((title, '"%s" %s\n' % (title, line)))
223 added = True
224 break # only allow one line from each sample
225

226 else:
227 with open(testcase_folder + '/' + statsname, 'r') as

f:↪→

228 for line in f:
229 if line.startswith('#'):
230 continue
231

232 res.append((title, '"%s" %s' % (title, line)))
233 added = True
234 break # only allow one line from each sample
235

236 if not added:
237 res.append((title, '"%s"' % title))
238

239 return res
240

241

242 def merge_testcase_data(leaf, statsname, x_axis):
243 """
244 statsname might be a function. It will be given the folder

path↪→

245 of the test case and should return one line.
246 """
247 res = get_leaf_tests_stats(leaf, statsname)
248 return merge_testcase_data_set_x(res, x_axis)
249

250

251 def merge_testcase_data_group(leaf, statsname, x_axis):
252 """
253 Similar to merge_testcase_data except it groups all data by

first column↪→

254

255 There should only exist one data point in the files for each
group↪→

256 """
257 out = OrderedDict()
258

259 i_file = 0
260 for title, testcase_folder in get_testcases(leaf):
261 with open(testcase_folder + '/' + statsname, 'r') as f:
262 for line in f:
263 if line.startswith('#') or line == '\n':

136

264 continue
265

266 if line.startswith('"'):
267 i = line.index('"', 1)
268 group_by = line[1:i]
269 else:
270 group_by = line.split()[0]
271

272 if group_by not in out:
273 out[group_by] = [[title, '"%s"\n' % title]] *

i_file↪→

274

275 out[group_by].append([title, '"%s" %s' % (title,
line)])↪→

276

277 i_file += 1
278 for key in out.keys():
279 if len(out[key]) != i_file:
280 out[key].append([title, '"%s"\n' % title])
281

282 for key in out.keys():
283 out[key] = merge_testcase_data_set_x(out[key], x_axis)
284

285 return out
286

287

288 def get_xlabel(tree):
289 """
290 Get the label that are used for the x axis.
291

292 This is taken from the titlelabel of a test collection.
293 """
294 xlabel = None
295

296 def fn(leaf, first_set, x):
297 nonlocal xlabel
298 if xlabel is None and len(leaf['children']) > 0 and

leaf['children'][0]['titlelabel'] != '':↪→

299 xlabel = leaf['children'][0]['titlelabel']
300

301 treeutil.walk_leaf(tree, fn)
302 return xlabel
303

304

305 def pt_generator():
306 """
307 Building point styles for use in plots.
308 """
309 pool = [1,2,3,8,10,12,14]
310 i = 0
311 tags = {}
312

313 def get_val(tag):
314 nonlocal i
315 if tag not in tags:
316 tags[tag] = pool[i % len(pool)]
317 i += 1
318

319 return tags[tag]

137

320

321 return get_val

Listing 16: aqmt/plot/collectionutil.py: Python module with utilities for
plotting a collection/tree.

1 """
2 Module for manipulating the tree structure of collections
3

4 Definitions:
5 - Tree: the root node being handled)
6 - Branch: a branch inside the tree that contains other

collections)↪→

7 - Leaf branch: the last branch that contains test collections
8

9 Example tree:
10

11 Abstract view:
12

13 root ("root", "tree",
"branch", "collection")↪→

14 / \ (root contains
plot title)↪→

15 | |
16 (possible more levels) ("branch",

"collection")↪→

17 / \
18 linkrate: 10 mbit 20 mbit ("branch", "leaf

branch", "collection")↪→

19 / \ / \
20 rtt: 2 ms 10 ms 2 ms 10 ms ("collection",

"leaf collection")↪→

21 | | | | (only one
collection inside leaf branches)↪→

22 | | | |
23 test test test test ("test")
24 (only one test in

leaf collections)↪→

25

26 The reason for having tests as children similar as normal
27 branches is to allow easy manipulation of the tree, e.g.
28 swapping levels.
29

30 Actual structure:
31

32 {
33 'title': 'Plot title',
34 'titlelabel': '',
35 'subtitle': '',
36 'children': [
37 {
38 'title': '10 Mb/s',
39 'titlelabel': 'Linkrate',
40 'subtitle': '',
41 'children': [
42 {

138

43 'title': '2',
44 'titlelabel': 'RTT',
45 'subtitle': '',
46 'children': [
47 {'testcase':

'results/plot-tree/linkrate-10/rtt-2/test'}↪→

48],
49 },
50 {
51 'title': '10',
52 'titlelabel': 'RTT',
53 'subtitle': '',
54 'children': [
55 {'testcase':

'results/plot-tree/linkrate-10/rtt-10/test'}↪→

56],
57 },
58],
59 },
60 {
61 'title': '20 Mb/s',
62 'titlelabel': 'Linkrate',
63 'subtitle': '',
64 'children': [
65 {
66 'title': '2',
67 'titlelabel': 'RTT',
68 'subtitle': '',
69 'children': [
70 {'testcase':

'results/plot-tree/linkrate-20/rtt-2/test'}↪→

71]
72 },
73 {
74 'title': '10',
75 'titlelabel': 'RTT',
76 'subtitle': '',
77 'children': [
78 {'testcase':

'results/plot-tree/linkrate-20/rtt-10/test'}↪→

79]
80 },
81],
82 },
83],
84 }
85

86 X offsets:
87 X offsets in the tree are increased so that they cause natural
88 gaps betweep test branches. So between branches at a deep

level↪→

89 there is a small gap, while close to the root branch there
will↪→

90 be more gap.
91

92 In the example above the tests would have the following x
offsets↪→

93 - test 1: 0
94 - test 2: 1

139

95 - test 3: 3 (new branch, so x is increased to form a gap)
96 - test 4: 4
97 """
98

99 from collections import OrderedDict
100

101

102 def get_depth_sizes(tree):
103 """
104 Calculate the number of branches at each tree level
105 """
106 depths = {}
107

108 def check_node(item, x, depth):
109 if depth not in depths:
110 depths[depth] = 0
111 depths[depth] += 1
112

113 walk_tree(tree, check_node)
114 return depths
115

116

117 def walk_leaf(tree, fn):
118 """
119 Walks the tree and calls fn for every leaf branch
120

121 The arguments to fn:
122 - object: the leaf branch
123 - bool: true if first leaf branch in tree
124 - number: the x offset of this leaf branch
125 """
126

127 x = 0
128 is_first = True
129

130 def walk(branch):
131 nonlocal is_first, x
132

133 if len(branch['children']) == 0:
134 return
135

136 first_child = branch['children'][0]
137

138 is_leaf_branch = 'testcase' in
branch['children'][0]['children'][0]↪→

139 if is_leaf_branch:
140 fn(branch, is_first, x)
141 is_first = False
142 x += len(branch['children'])
143

144 # or is it a collection of collections
145 else:
146 for item in branch['children']:
147 walk(item)
148

149 x += 1
150

151 walk(tree)
152

140

153

154 def walk_tree_reverse(tree, fn):
155 """
156 Walks the tree and calls fn for every branch in reverse order
157

158 The arguments to fn:
159 - object: the branch
160 - number: the x offset of this branch
161 - number: depth of this branch, 0 being root
162 - number: the number of tests inside this branch
163 """
164 x = 0
165

166 def walk(branch, depth=0):
167 nonlocal x
168

169 is_leaf_branch = 'testcase' in
branch['children'][0]['children'][0]↪→

170 if is_leaf_branch:
171 x += len(branch['children'])
172

173 # or else it is a non-leaf branch
174 else:
175 for item in branch['children']:
176 y = x
177 walk(item, depth + 1)
178 fn(item, y, depth, x - y)
179

180 x += 1
181

182 walk(tree, 0)
183

184

185 def walk_tree(tree, fn, include_leaf_collection=False):
186 """
187 Walks the tree and calls fn for every branch, and also for

every↪→

188 leaf collection if include_leaf_collection is True.
189

190 The arguments given to fn:
191 - object: the collection
192 - number: the x offset related to number of tests/levels
193 - number: depth of this collection, 0 being root
194 """
195 x = 0
196

197 def walk(collection, depth=0):
198 nonlocal x
199

200 for subcollection in collection['children']:
201 fn(subcollection, x, depth)
202

203 if include_leaf_collection:
204 is_leaf_collection = 'testcase' in

subcollection['children'][0]↪→

205 if is_leaf_collection:
206 x += 1
207 continue
208

141

209 # If input to walk_tree was a leaf branch, we can't
look↪→

210 # if we have leaf branch inside
211 elif 'children' not in subcollection['children'][0]:
212 continue
213

214 else:
215 is_leaf_branch = 'testcase' in

subcollection['children'][0]['children'][0]↪→

216 if is_leaf_branch:
217 x += len(subcollection['children']) + 1
218 continue
219

220 walk(subcollection, depth + 1)
221

222 x += 1
223

224 walk(tree)
225

226

227 def swap_levels(tree, level=0):
228 """
229 Rearrange vertical position of elements in the tree.
230

231 This swaps collections in the tree so their level
232 in the tree is changed.
233

234 For the plotting, this will change the way tests
235 are grouped and presented.
236 """
237

238 if level > 0:
239 def walk(branch, depth):
240 if len(branch['children']) == 0:
241 return
242

243 # is this a set of tests?
244 if 'testcase' in branch['children'][0]:
245 return
246

247 for index, item in enumerate(branch['children']):
248 if depth + 1 == level:
249 branch['children'][index] = swap_levels(item)
250 else:
251 walk(item, depth + 1)
252

253 walk(tree, 0)
254 return tree
255

256 titles = []
257

258 def check_level(node, x, depth):
259 nonlocal titles
260 if depth == 1 and node['title'] not in titles:
261 titles.append(node['title'])
262

263 walk_tree(tree, check_level, include_leaf_collection=True)
264

265 if len(titles) == 0:

142

266 return tree
267

268 new_children = OrderedDict()
269 parent = None
270

271 def build_swap(node, x, depth):
272 nonlocal parent, new_children
273 if depth == 0:
274 parent = node
275 elif depth == 1:
276 parentcopy = dict(parent)
277 if node['title'] in new_children:
278

new_children[node['title']]['children'].append(parentcopy)↪→

279 else:
280 childcopy = dict(node)
281 childcopy['children'] = [parentcopy]
282 new_children[node['title']] = childcopy
283

284 parentcopy['children'] = node['children']
285

286 walk_tree(tree, build_swap, include_leaf_collection=True)
287

288 tree['children'] = [val for key, val in new_children.items()]
289 return tree
290

291

292 def build_swap_list(level_order):
293 """
294 Build a list of levels that should be swapped to achieve
295 a specific ordering of levels.
296 """
297

298 # assert the values
299 distinct = []
300 for val in level_order:
301 if val in distinct:
302 raise Exception("Duplicate value: %s" % val)
303 if not isinstance(val, int):
304 raise Exception("Invalid type: %s" % val)
305 if val < 0:
306 raise Exception("Value out of bounds: %s" % val)
307 distinct.append(val)
308

309 # fill any missing values
310 for i in range(max(level_order)):
311 if i not in level_order:
312 level_order.append(i)
313

314 # work through the list and build a swap list
315 swap_list = []
316 to_process = list(range(len(level_order))) # same as an

sorted version of the list↪→

317 for i in range(len(level_order)):
318 # find offset of this target
319 to_swap = 0
320 while level_order[i] != to_process[to_swap]:
321 to_swap += 1
322

143

323 # pull up the target so it become the current level
324 for x in range(to_swap):
325 swap_list.append(i + (to_swap - x - 1))
326

327 # remove the level we targeted
328 to_process.remove(level_order[i])
329

330 return swap_list
331

332

333 def reorder_levels(tree, level_order=None):
334 """
335 Order the tree based on an ordering of levels
336 (number of branches in height in the tree)
337

338 E.g. a tree of 3 levels where we want to reorder the levels
339 so that the order is last level, then the first and then the
340 second:
341

342 level_order=[2,0,1]
343

344 Example reversing the order of three levels:
345

346 level_order=[2,1,0]
347 """
348

349 if level_order is None or len(level_order) == 0:
350 return tree
351

352 # get the depth of the tree only counting branches
353 levels = len(get_depth_sizes(tree))
354

355 swap_list = build_swap_list(level_order)
356 if len(swap_list) > 0 and max(swap_list) >= levels:
357 raise Exception("Out of bound level: %d. Only have %d

levels" % (max(swap_list), levels))↪→

358

359 # apply the calculated node swapping to the tree
360 for level in swap_list:
361 tree = swap_levels(tree, level)
362

363 return tree
364

365

366 def skip_levels(tree, number_of_levels):
367 """
368 Select the left node number_of_levels deep and
369 return the new tree
370 """
371

372 # allow to select specific branches in a three instead of
default first↪→

373 if type(number_of_levels) is list:
374 for branch in number_of_levels:
375 tree = tree['children'][branch]
376 return tree
377

378 while number_of_levels > 0:
379 tree = tree['children'][0]

144

380 number_of_levels -= 1
381

382 return tree

Listing 17: aqmt/plot/treeutil.py: Python module for manipulating the
tree structure of collections from a test.

1 def generate_hierarchy_data_from_folder(folder):
2 """
3 Generate a dict that can be sent to CollectionPlot by

analyzing the directory↪→

4

5 It will look in all the metadata stored while running test
6 to generate the final result
7 """
8

9 def parse_folder(subfolder):
10 if not os.path.isdir(subfolder):
11 raise Exception('Non-existing directory: %s' %

subfolder)↪→

12

13 metadata_kv, metadata_lines = read_metadata(subfolder +
'/details')↪→

14

15 if 'type' not in metadata_kv:
16 raise Exception('Missing type in metadata for %s' %

subfolder)↪→

17

18 if metadata_kv['type'] in ['collection']:
19 node = {
20 'title': metadata_kv['title'] if 'title' in

metadata_kv else '',↪→

21 'subtitle': metadata_kv['subtitle'] if 'subtitle'
in metadata_kv else '',↪→

22 'titlelabel': metadata_kv['titlelabel'] if
'titlelabel' in metadata_kv else '',↪→

23 'children': []
24 }
25

26 for metadata in metadata_lines:
27 if metadata[0] == 'sub':
28 node['children'].append(parse_folder(subfolder

+ '/' + metadata[1]))↪→

29

30 elif metadata_kv['type'] == 'test':
31 node = {
32 'testcase': subfolder
33 }
34

35 else:
36 raise Exception('Unknown metadata type %s' %

metadata_kv['type'])↪→

37

38 return node
39

40 root = parse_folder(folder)
41 return root

145

Listing 18: generate_hierarchy_data_from_folder(): Python function
for reconstructing the test definition used at test time into a tree
representing the test.

A.5 Test code

1 #!/usr/bin/env python3
2 #
3 # Test for simple overloading using only UDP traffic.
4 #
5

6 import math
7 import sys
8 import time
9

10 from aqmt import MBIT, Testbed, TestEnv, archive_test, run_test,
steps↪→

11 from aqmt.plot import collection_components, flow_components
12 from aqmt.traffic import udp
13

14 import _plugin_tc
15

16

17 def test(result_folder):
18 def my_test(testcase):
19 testdef = testcase.testenv.testdef
20

21 # split UDP rate in multiple connections
22 # to avoid high rates being limited
23 udp_rate = testdef.udp_rate
24 to_kill = []
25 while udp_rate > 0:
26 this_rate = min(200, udp_rate)
27 udp_rate -= this_rate
28

29 flow = testcase.traffic(
30 udp,
31 node=testdef.udp_node,
32 bitrate=this_rate * MBIT,
33 ect=testdef.udp_ect,
34 tag=testdef.udp_tag,
35)
36 to_kill.append(flow)
37

38 time.sleep(30)
39 for flow in to_kill:
40 flow()
41

42 testbed = Testbed(40*1000, 250, idle=0)
43 testbed.rtt(0) # doesn't really matter for UDP-only test
44

45 level_order = [
46 1, # bitrate
47 0, # scheduler

146

48 2, # udp rate
49 3, # udp queue
50]
51

52 archive_test(__file__, result_folder)
53

54 run_test(
55 folder=result_folder,
56 title='Overload testing with only UDP',
57 testenv=TestEnv(testbed, replot=True),
58 steps=(
59 steps.add_pre_hook(_plugin_tc.pre_hook),
60 steps.html_index(level_order=level_order),
61 steps.plot_compare(level_order=level_order,

components=[↪→

62 collection_components.utilization_total_only(),
63 collection_components.queueing_delay(),
64 collection_components.drops_marks(),
65 _plugin_tc.plot_comparison_prob(),
66 _plugin_tc.plot_comparison_backlog_pkts(),
67]),
68 steps.plot_test(name='thesis', title=None,

components=[↪→

69 flow_components.queueing_delay(),
70 flow_components.queueing_delay(range_to='40'),
71 _plugin_tc.plot_flow_prob(),
72

_plugin_tc.plot_flow_backlog_pkts(y_logarithmic=True),↪→

73], skip_sample_line=True, x_scale=0.6, y_scale=0.6),
74 steps.plot_test(components=[
75 flow_components.utilization_queues(),
76 flow_components.rate_per_flow(),
77 flow_components.queueing_delay(),
78 flow_components.drops_marks(),
79 _plugin_tc.plot_flow_prob(),
80 _plugin_tc.plot_flow_backlog_pkts(),
81]),
82 steps.branch_sched([
83 # tag, title, name, params
84 ('dualpi2-1000',
85 'dualpi2 1000p',
86 'dualpi2', 'dc_dualq dc_ecn target 15ms

tupdate 15ms alpha 5 beta 50 k 2 t_shift
30ms l_drop 100 limit 1000'),

↪→

↪→

87 ('pie-1000', 'PIE 1000p', 'pie', 'ecn target 15ms
tupdate 15ms alpha 1 beta 10 limit 1000'),↪→

88 ('dualpi2-10000',
89 'dualpi2 10000p',
90 'dualpi2', 'dc_dualq dc_ecn target 15ms

tupdate 15ms alpha 5 beta 50 k 2 t_shift
30ms l_drop 100 limit 10000'),

↪→

↪→

91 ('pie-10000', 'PIE 10000p', 'pie', 'ecn target
15ms tupdate 15ms alpha 1 beta 10 limit
10000'),

↪→

↪→

92 #('pie-def', 'PIE default', 'pie', 'ecn'),
93]),
94 steps.branch_bitrate([
95 100,
96 300,

147

97 500,
98]),
99 steps.branch_define_udp_rate([

100 #50,
101 100,
102 200,
103 400,
104 800,
105]),
106 steps.branch_udp_ect([
107 # node, flag, title, traffic tag
108 ['a', 'nonect', 'Non-ECT', 'UDP=Non ECT'],
109 ['b', 'ect1', 'ECT(1)', 'UDP=ECT(1)'],
110]),
111 my_test,
112)
113)
114

115 if __name__ == '__main__':
116 if len(sys.argv) < 2:
117 print('Provide an argument for where to store results')
118 sys.exit(1)
119

120 test(sys.argv[1])

Listing 19: overload-simple.py

1 #!/usr/bin/env python3
2

3 import math
4 import sys
5 import time
6

7 from aqmt import MBIT, Testbed, TestEnv, archive_test, run_test,
steps↪→

8 from aqmt.plot import PlotAxis, collection_components,
flow_components↪→

9 from aqmt.plugins import dstat, ss_rtt
10 from aqmt.traffic import greedy, udp
11

12 import _plugin_tc
13

14

15 def test(result_folder):
16

17 def custom_cc(testdef):
18 testdef.testbed.cc('a', 'cubic', testbed.ECN_ALLOW)
19 testdef.flows_a_tag = 'CUBIC (no ECN)'
20 testdef.flows_a_title = 'C'
21 if testdef.testbed.aqm_name in ['pi2', 'dualpi2']:
22 testdef.testbed.cc('b', 'dctcp-drop',

testbed.ECN_INITIATE)↪→

23 testdef.flows_b_tag = 'DCTCP (ECN)'
24 testdef.flows_b_title = 'D'
25 else:
26 testdef.testbed.cc('b', 'cubic', testbed.ECN_INITIATE)
27 testdef.flows_b_tag = 'ECN-CUBIC'

148

28 testdef.flows_b_title = 'EC'
29

30 # no yield value as we don't cause a new branch
31 yield
32

33 def branch_flow_set(flow_list):
34 def branch(testdef):
35 for flows_a_num, flows_b_num in flow_list:
36 testdef.flows_a_num = flows_a_num
37 testdef.flows_b_num = flows_b_num
38 yield {
39 'tag': 'flow-%d-%d' % (flows_a_num,

flows_b_num),↪→

40 #'title': '%d x %s vs %d x %s' % (
41 # flows_a_num,
42 # testdef.flows_a_title,
43 # flows_b_num,
44 # testdef.flows_b_title,
45 #),
46 'title': '%d Non-ECN vs %d ECN' % (
47 flows_a_num,
48 flows_b_num,
49),
50 'titlelabel': 'Flow combination',
51 }
52 return branch
53

54 def my_test(testcase):
55 testdef = testcase.testenv.testdef
56

57 for x in range(testdef.flows_a_num):
58 testcase.traffic(greedy, node='a',

tag=testdef.flows_a_tag)↪→

59

60 for x in range(testdef.flows_b_num):
61 testcase.traffic(greedy, node='b',

tag=testdef.flows_b_tag)↪→

62

63 if testdef.udp_rate > 0:
64 time.sleep(1)
65 testcase.traffic(
66 udp,
67 node=testdef.udp_node,
68 bitrate=testdef.udp_rate * MBIT,
69 ect=testdef.udp_ect,
70 tag=testdef.udp_tag,
71)
72

73 testbed = Testbed()
74

75 testbed.bitrate = 100 * MBIT
76

77 t = 20
78 #testbed.ta_idle = 0
79 testbed.ta_delay = 250
80 testbed.ta_samples = math.ceil(t / (testbed.ta_delay/1000))
81

82 archive_test(__file__, result_folder)
83

149

84 level_order = [
85 3, # udp queue
86 0, # rtt
87 2, # flow combination
88 1, # shed
89 4, # udp rate
90]
91

92 run_test(
93 folder=result_folder,
94 title='Overload in mixed traffic',
95 subtitle='Testrate: 100 Mb/s - D = DCTCP, C = CUBIC, EC =

ECN-CUBIC',↪→

96 testenv=TestEnv(testbed, retest=False, reanalyze=False),
97 steps=(
98 steps.add_pre_hook(_plugin_tc.pre_hook),
99 steps.add_pre_hook(dstat.pre_hook),

100 steps.add_pre_hook(ss_rtt.pre_hook),
101 steps.add_pre_hook(lambda testcase: time.sleep(2)),
102 steps.html_index(level_order=level_order),
103 steps.plot_compare(level_order=level_order,

x_axis=PlotAxis.LOGARITHMIC, components=[↪→

104 collection_components.utilization_tags(),
105 collection_components.queueing_delay(),
106 collection_components.drops_marks(),
107 dstat.plot_comparison_cpu(),
108 dstat.plot_comparison_int_csw(),
109 ss_rtt.plot_comparison_rtt(),
110 _plugin_tc.plot_comparison_prob(),
111 _plugin_tc.plot_comparison_backlog_pkts(),
112], lines_at_x_offset=[100], x_scale=3), # 3
113 steps.plot_compare(
114 name='thesis-nonect-a', title=False,

subtitle=False,↪→

115 level_order=level_order,
x_axis=PlotAxis.LOGARITHMIC,↪→

116 skip_levels=[0, 0],
117 components=[
118 collection_components.utilization_tags(),
119

collection_components.queueing_delay(range_to='40'),↪→

120 collection_components.drops_marks(),
121],
122 lines_at_x_offset=[100],
123 x_scale=0.7, y_scale=1,
124),
125 steps.plot_compare(
126 name='thesis-nonect-b', title=False,

subtitle=False,↪→

127 level_order=level_order,
x_axis=PlotAxis.LOGARITHMIC,↪→

128 skip_levels=[0, 0],
129 components=[
130

collection_components.utilization_tags(y_logarithmic=True,↪→

131 range_from_log='0.01', range_to_log='10'),
132

ss_rtt.plot_comparison_rtt(subtract_base_rtt=True,
keys=False),

↪→

↪→

150

133 _plugin_tc.plot_comparison_prob(),
134 _plugin_tc.plot_comparison_backlog_pkts(),
135],
136 lines_at_x_offset=[100],
137 x_scale=0.7, y_scale=0.7,
138),
139 steps.plot_compare(
140 name='thesis-ect1-a', title=False, subtitle=False,
141 level_order=level_order,

x_axis=PlotAxis.LOGARITHMIC,↪→

142 skip_levels=[1, 0],
143 components=[
144 collection_components.utilization_tags(),
145

collection_components.queueing_delay(range_to='40'),↪→

146 collection_components.drops_marks(),
147],
148 lines_at_x_offset=[100],
149 x_scale=0.7, y_scale=1,
150),
151 steps.plot_compare(
152 name='thesis-ect1-b', title=False, subtitle=False,
153 level_order=level_order,

x_axis=PlotAxis.LOGARITHMIC,↪→

154 skip_levels=[1, 0],
155 components=[
156

collection_components.utilization_tags(y_logarithmic=True,↪→

157 range_from_log='0.01', range_to_log='10'),
158

ss_rtt.plot_comparison_rtt(subtract_base_rtt=True,
keys=False),

↪→

↪→

159 _plugin_tc.plot_comparison_prob(),
160 _plugin_tc.plot_comparison_backlog_pkts(),
161],
162 lines_at_x_offset=[100],
163 x_scale=0.7, y_scale=0.7,
164),
165 steps.plot_test(components=[
166 flow_components.utilization_queues(),
167 flow_components.rate_per_flow(),
168 flow_components.rate_per_flow(y_logarithmic=True),
169 flow_components.queueing_delay(),
170

flow_components.queueing_delay(y_logarithmic=True),↪→

171 flow_components.drops_marks(),
172 flow_components.drops_marks(y_logarithmic=True),
173 dstat.plot_flow_cpu(),
174 dstat.plot_flow_int_csw(),
175 ss_rtt.plot_flow_rtt(initial_delay=2),
176 _plugin_tc.plot_flow_prob(initial_delay=2),
177

_plugin_tc.plot_flow_backlog_pkts(initial_delay=2),↪→

178]),
179 steps.branch_rtt([
180 #2,
181 10,
182 #50,
183]),

151

184 steps.branch_sched([
185 # tag, title, name, params
186 ('dualpi2',
187 'DualPI2',
188 'dualpi2', 'dc_dualq dc_ecn target 15ms

tupdate 15ms alpha 5 beta 50 k 2 t_shift
30ms l_drop 100'),

↪→

↪→

189 ('pie', 'PIE', 'pie', 'ecn target 15ms tupdate
15ms alpha 1 beta 10'),↪→

190 #('fq_codel', 'FQ-CoDel', 'fq_codel', 'ecn'),
191 #('pfifo', 'pfifo', 'pfifo', ''),
192]),
193 custom_cc,
194 branch_flow_set([
195 # num normal in a, num normal in b
196 [0, 1],
197 [1, 0],
198 #[1, 1],
199 #[1, 2],
200 #[2, 1],
201 [5, 5],
202 #[10, 10],
203]),
204 steps.branch_udp_ect([
205 # node, flag, title, traffic tag
206 ['a', 'nonect', 'Non-ECT', 'UDP=Non ECT'],
207 ['b', 'ect1', 'ECT(1)', 'UDP=ECT(1)'],
208]),
209 #steps.plot_flows(),
210 steps.branch_define_udp_rate([x + 0 for x in [
211 70,
212 80,
213 90,
214 93,
215 95,
216 96,
217 97,
218 97.5,
219 98,
220 98.5,
221 99,
222 99.5,
223 100,
224 100.5,
225 101,
226 102,
227 103,
228 104,
229 105,
230 106,
231 107,
232 108,
233 109,
234 110,
235 111,
236 112,
237 113,
238 114,
239 115,

152

240 116,
241 117,
242 118,
243 119,
244 120,
245 121,
246 122,
247 123,
248 124,
249 125,
250 128, ##
251 130, ##
252 135, ##
253 140, ##
254 150,
255 160, ##
256 180, ##
257 200,
258]], title='%d'),
259 my_test,
260),
261)
262

263 if __name__ == '__main__':
264 if len(sys.argv) < 2:
265 print('Provide an argument for where to store results')
266 sys.exit(1)
267

268 test(sys.argv[1])

Listing 20: overload-mixed.py

1 #!/usr/bin/env python3
2 #
3 # Test for testing the rate we can achieve using DCTCP
4 # on DualPI2.
5 #
6

7 import math
8 import sys
9 import time

10

11 from aqmt import MBIT, Testbed, TestEnv, archive_test, run_test,
steps↪→

12 from aqmt.plot import PlotAxis, collection_components,
flow_components↪→

13 from aqmt.plugins import ss_rtt
14 from aqmt.traffic import greedy, udp
15

16 def test(result_folder):
17

18 def branch_num_flows(flow_set):
19 def branch(testdef):
20 for num in flow_set:
21 testdef.num_flows = num
22

23 yield {

153

24 'tag': 'num-flows-%s' % num,
25 'title': num,
26 'titlelabel': '# flows',
27 }
28 return branch
29

30 def set_idle(testdef):
31 testbed = testdef.testenv.testbed
32 est_window = (testbed.rtt_servera / 1000) *

testbed.bitrate / 8 / 1448↪→

33 inc_per_sec = 1000 / (testbed.rtt_servera + 2)
34

35 testbed.ta_idle = 1 + est_window / inc_per_sec * 1.5
36 yield
37

38 def skip_large_window(testenv):
39 limit = 900 * 1448 * 8
40 rtt = testenv.testbed.rtt_servera / 1000
41 if rtt * testenv.testbed.bitrate > limit:
42 return True
43

44 #est_window = rtt * testbed.bitrate / 8 / 1448
45 #inc_per_sec = 1000 / (testbed.rtt_servera + 2)
46 #if est_window / inc_per_sec > 15:
47 # print(est_window / inc_per_sec)
48 # return True
49

50 return False
51

52

53 def my_test(testcase):
54 for x in range(testcase.testenv.testdef.num_flows):
55 testcase.traffic(greedy, node='a', tag='DCTCP')
56

57 testbed = Testbed(10*1000, 250)
58 testbed.cc('a', 'dctcp-drop', testbed.ECN_INITIATE)
59

60 level_order = [
61 3, # num flows
62 0, # threshold
63 1, # bitrate
64 2, # rtt
65]
66

67 archive_test(__file__, result_folder)
68

69 run_test(
70 folder=result_folder,
71 title='Testing DCTCP rate on DualPI2',
72 testenv=TestEnv(testbed),
73 steps=(
74 steps.add_pre_hook(ss_rtt.pre_hook),
75 steps.html_index(level_order=level_order),
76 steps.plot_compare(level_order=level_order,

components=[↪→

77 collection_components.utilization_queues(),
78 collection_components.utilization_tags(),
79

collection_components.window_rate_ratio(y_logarithmic=True),↪→

154

80 collection_components.window_rate_ratio(),
81 collection_components.queueing_delay(keys=False),
82 collection_components.drops_marks(),
83 ss_rtt.plot_comparison_rtt(subtract_base_rtt=True,

keys=False),↪→

84]),
85 steps.plot_test(name='thesis', title=None,

components=[↪→

86 flow_components.utilization_queues(ecn=False,
flows=False),↪→

87 flow_components.window(),
88 flow_components.queueing_delay(),
89 flow_components.drops_marks(show_total=False),
90 ss_rtt.plot_flow_rtt(subtract_base_rtt=True),
91], x_scale=0.5, y_scale=0.5),
92 steps.plot_test(components=[
93 flow_components.utilization_queues(),
94 flow_components.rate_per_flow(),
95 flow_components.rate_per_flow(y_logarithmic=True),
96 flow_components.window(),
97 flow_components.window(y_logarithmic=True),
98 flow_components.queueing_delay(),
99

flow_components.queueing_delay(y_logarithmic=True),↪→

100 flow_components.drops_marks(),
101 flow_components.drops_marks(y_logarithmic=True),
102 ss_rtt.plot_flow_rtt(initial_delay=2,

subtract_base_rtt=True),↪→

103]),
104 steps.branch_sched([
105 # tag, title, name, params
106 #('dualpi2-500',
107 # '0.5',
108 # 'dualpi2', 'dc_dualq dc_ecn target 15ms

tupdate 15ms alpha 5 beta 50 k 2 t_shift 30ms
l_drop 100 l_thresh 500'),

↪→

↪→

109 ('dualpi2-1000',
110 '1',
111 'dualpi2', 'dc_dualq dc_ecn target 15ms

tupdate 15ms alpha 5 beta 50 k 2 t_shift
30ms l_drop 100 l_thresh 1000'),

↪→

↪→

112 #('dualpi2-2000',
113 # '2',
114 # 'dualpi2', 'dc_dualq dc_ecn target 15ms

tupdate 15ms alpha 5 beta 50 k 2 t_shift 30ms
l_drop 100 l_thresh 2000'),

↪→

↪→

115 #('dualpi2-3000',
116 # '3',
117 # 'dualpi2', 'dc_dualq dc_ecn target 15ms

tupdate 15ms alpha 5 beta 50 k 2 t_shift 30ms
l_drop 100 l_thresh 3000'),

↪→

↪→

118 ('dualpi2-5000',
119 '5',
120 'dualpi2', 'dc_dualq dc_ecn target 15ms

tupdate 15ms alpha 5 beta 50 k 2 t_shift
30ms l_drop 100 l_thresh 5000'),

↪→

↪→

121 #('dualpi2-10000',
122 # '10',

155

123 # 'dualpi2', 'dc_dualq dc_ecn target 15ms
tupdate 15ms alpha 5 beta 50 k 2 t_shift 30ms
l_drop 100 l_thresh 10000'),

↪→

↪→

124], titlelabel='Threshold [ms]'),
125 steps.plot_compare(
126 name='thesis', x_axis=PlotAxis.LINEAR_XTICS,
127 title=False, level_order=[2,0,1], skip_levels=1,

components=[↪→

128

collection_components.utilization_total_only(),↪→

129

collection_components.queueing_delay(keys=False),↪→

130 collection_components.window(keys=False),
131 collection_components.drops_marks(),
132

ss_rtt.plot_comparison_rtt(subtract_base_rtt=True,
keys=False),

↪→

↪→

133], x_scale=0.7, y_scale=0.6
134),
135 steps.branch_bitrate([
136 10,
137 50,
138 100,
139 200,
140 400,
141 #800,
142]),
143 steps.branch_rtt([
144 1,
145 2,
146 5,
147 8,
148 10,
149 12,
150 14,
151 15,
152 17,
153 20,
154 25,
155 30,
156]),
157 branch_num_flows([
158 1,
159 #2,
160 #3,
161 #15,
162 #30,
163]),
164 steps.skipif(skip_large_window),
165 set_idle,
166 my_test,
167)
168)
169

170 if __name__ == '__main__':
171 if len(sys.argv) < 2:
172 print('Provide an argument for where to store results')
173 sys.exit(1)
174

156

175 test(sys.argv[1])

Listing 21: Test for threshold of ultra-low delay. See chapter 13.

157

158

Appendix B

‘Data Centre to the Home’:
Deployable Ultra-Low
Queuing Delay for All

The paper is included as an appendix as it is still under submission and
not yet published.

159

‘Data Centre to the Home’:
Deployable Ultra-Low Queuing Delay for All

Koen De Schepper† Olga Bondarenko
∗ ‡ Ing-Jyh Tsang† Bob Briscoe‡

†Nokia Bell Labs, Belgium ‡Simula Research Laboratory, Norway
†{koen.de_schepper|ing-jyh.tsang}@nokia.com ‡{olgabo|bob}@simula.no

ABSTRACT
Traditionally, ultra-low queueing delay and capacity-
seeking are considered mutually exclusive. We intro-
duce an Internet service that offers both: Low Latency
Low Loss Scalable throughput (L4S). Therefore it can
incrementally replace best efforts as the default service.
It uses ‘Scalable’ congestion controls, e.g. Data Centre
TCP. Under a wide range of conditions emulated on a
testbed using real residential broadband equipment, it
proved hard not to get remarkably low (sub-millisecond)
average queuing delay, zero congestion loss and full uti-
lization. To realize these benefits we had to solve a
hard problem: how to incrementally deploy controls like
DCTCP on the public Internet. The solution uses two
queues at the access link bottleneck, for Scalable and
‘Classic’ (Reno, Cubic, etc.) traffic. It is like a semi-
permeable membrane, isolating their latency but cou-
pling their capacity into a single resource pool. We im-
plemented this ‘DualQ Coupled AQM’ as a Linux qdisc
to test our claims. Although Scalable flows are much
more aggressive than Classic, the AQM enables balance
(TCP ‘fairness’) between them. However, it does not
schedule flows, nor inspect deeper than IP. L4S packets
are identified using the last ECN codepoint in the IP
header, which the IETF is in the process of allocating.

CCS Concepts
�Networks → Cross-layer protocols; Packet
scheduling; Network performance analysis; Pub-
lic Internet; Network resources allocation;

∗The first two authors contributed equally

Under submission. Please do not distribute.
© 2017, the authors/owners

ACM ISBN .

DOI:

Keywords
Internet, Performance, Queuing Delay, Latency, Scal-
ing, Algorithms, Active Queue Management, AQM,
Congestion Control, Congestion Avoidance, Congestion
Signalling, Quality of Service, QoS, Incremental De-
ployment, TCP, Evaluation

1. INTRODUCTION
With increases in bandwidth, latency is becoming the

critical performance factor for many, if not most, appli-
cations, e.g. Web, voice, conversational and interactive
video, finance apps, online gaming, cloud-based apps,
remote desktop. Latency is a multi-faceted problem
that has to be tackled on many different fronts [9] and
in all the different stages of application delivery—from
data centres to access links and within end systems.

The aspect this paper addresses is the variable de-
lay due to queuing. Even state-of-the art Active Queue
Management (AQM) [38, 23] can only bring this down
to roughly the same order as a typical base round-trip
delay. This is because bottlenecks are typically in the
most numerous edge access links where statistical flow
multiplexing is lowest. And a single TCP flow will un-
derutilize a link unless it can buffer about a round trip
flight of data.

Queuing delay is intermittent, only occurring when
a sufficiently long-running capacity-seeking flow (e.g.
TCP) happens to coincide with interactive traffic [24].
However, intermittent delays dominate experience, and
many real-time apps adapt their buffering to these in-
termittent episodes.

Our main contribution is to keep queueing delay
extremely low (sub-millisecond) for all of a user’s In-
ternet applications. A differentiated service (Diffserv)
class such as EF [15] can provide low delay if limited to
a fraction of the link’s traffic. Instead, we propose a new
service that accommodates ‘greedy’ (capacity-seeking)
applications that want both full link utilization and low
queuing delay, so it can incrementally replace the de-
fault best efforts service. The new service effectively
removes congestion loss as well, so it is called Low La-
tency, Low Loss, Scalable throughput (L4S).

L4S works because senders use one of the family of

‘Scalable’ congestion controls (§ 2.1 for the rationale).
In contrast, we use the term ‘Classic’ for controls like
TCP Reno and Cubic, where control becomes slacker as
rate scales.

For evaluation we configure the host OS to use Data
Centre TCP (DCTCP [1]), which is a widely available
scalable control. We emphasize that the L4S service is
not just intended for DCTCP, but also for a range of
Scalable controls, e.g. Relentless TCP [34] and future
scalable variants of QUIC, SCTP, real-time protocols,
etc. In order to test one change at a time, we focus this
paper on network-only changes, and use DCTCP, ‘as
is’. Our extensive experiments over a testbed using real
data-centre and broadband access equipment and mod-
els of realistic traffic strengthen confidence that DCTCP
would work very well over the public Internet.

However, DCTCP will need some safety (and per-
formance) enhancements for production use, so a large
group of DCTCP developers has informally agreed a
list dubbed the ‘TCP Prague’ requirements (§ 5.2) to
generalize from the otherwise confusing name.

Our second contribution is a solution to the de-
ployability of Scalable controls like DCTCP. It is a com-
mon misconception that DCTCP is tailored for data
centres, but the name merely emphasizes that it should
not be deployed outside a controlled environment; it is
too aggressive to coexist with existing ‘Classic’ traffic
so a single admin is expected to upgrade all senders,
receivers and bottlenecks at once.

We propose the ‘Dual Queue Coupled AQM’ that can
be incrementally added at path bottlenecks to solve this
‘coexistence’ problem. It acts like a semi-permeable
membrane. For delay it uses two queues to isolate L4S
traffic from the Classic queue. But for throughput, the
queues are coupled to appear as a single resource pool.
So, for n aggressive L4S flows and m TCP-friendly Clas-
sic flows, each flow gets roughly 1/(n+m) of the capac-
ity. The high-level idea of coupling is that the L4S queue
emits congestion signals more aggressively to counter-
balance the more aggressive response of L4S sources.

Balance between microflows should be a policy choice
not a network default (§ 2.3), so we enable but do not en-
force it. And coexistence between DCTCP and Classic
flows is achieved without the network inspecting flows
(no deeper than the IP layer). We have also tested that
the L4S service can cope with a reasonable proportion
of unresponsive traffic, just as best efforts copes with
unresponsive streaming, VoIP, DNS etc.

The two queues are for transition, not scheduling pri-
ority. So low L4S delay is not at the expense of Classic
performance and delay remains low even if a high load
of solely L4S traffic fills the link.

Given access networks are invariably designed to bot-
tleneck in one known location, the AQM does not have
to be deployed in every buffer. Most of the benefit
can be gained by deployment at the downstream queue
into the access link, and home gateway deployment ad-
dresses the upstream. § 5 discusses how a Scalable con-

trol like DCTCP falls back to Reno if it encounters
a non-L4S bottleneck. It also discusses wider deploy-
ment considerations, including other deployment sce-
narios such as coexistence between DCTCP and Classic
TCP in heterogeneous or interconnected data centres.

L4S faces a very similar deployment problem to clas-
sic Explicit Congestion Notification (ECN [39]). How-
ever, we have learned from the ECN experience. To
overcome the risk a first mover faces in kick-starting a
multi-party deployment, we have attempted to ensure
that the performance gain is dramatic enough to enable
valuable new applications, not just a relatively marginal
performance improvement.

The dramatic improvement of L4S has been demon-
strated [7] by simultaneously running many apps that
are both bandwidth-hungry and latency-sensitive over
a regular 40Mb/s broadband access link. Two apps
transmitted a user’s physical movements (virtual reality
goggles and pan/zoom finger gestures on a panoramic
interactive video display) to cloud-based video servers
over a broadband access (base delay 7 ms). The queuing
delay of every packet was so low that the scenes that
were generated on the fly and streamed back to the user
seemed as if they were local and natural. Whereas with-
out L4S, there was considerable lag and jerkiness. Other
users were downloading streaming video, bulk files and
running a gaming benchmark, all in the same queue,
and mean per-packet queuing delay was around 500µs.

Our third contribution is to ensure that the low
queuing delay of L4S packets is preserved during over-
load from either L4S or Classic traffic, and neither can
harm the other more than they would in a single queue.

Our fourth contribution is to ensure that the
AQM can be deployed in any public Internet access net-
work with zero configuration.

Our fifth contribution is extensive quantitative
evaluation of the above claims: i) dramatically reduced
delay and variability without increasing other impair-
ments; ii) ‘do no harm’ to Classic traffic; iii) window
balance between competing Scalable and Classic flows;
and iv) overload handling (see § 4).

2. RATIONALE

2.1 Why a Scalable Congestion Control?
A congestion controller is defined as ‘Scalable’ if the

rate of congestion signals per round trip, c, does not
decrease as bandwidth-delay product (BDP or window)
scales. The flow rate saw-tooths down whenever a con-
gestion signal is emitted. So, by definition, the average
sawtooth duration (a.k.a. recovery time) of a scalable
control does not grow as rate scales.

TCP Cubic scales better than Reno, but it is still
not fully scalable. For instance, for every 8-fold rate
increase the average Cubic sawtooth duration doubles
while its amplitude increases 8-fold, which is the cause
ofgrowing delay variation. For instance, between 100

and 800 Mb/s, Cubic’s sawtooth recovery time expands
from 250 round trips to 500 round trips (assuming base
RTT=20 ms). In contrast, whatever the rate, the av-
erage recovery time of a DCTCP sawtooth remains in-
variant at just half a round trip.

We use a Scalable congestion control because, unlike
Classic TCP algorithms, this implies:

1. control does not slacken as the window scales;
2. variation of queuing and/or under-utilization,

need not increase with scale (Figure 1).

Figure 1: Data Centre TCP: Intuition

In the steady state, the number of signals per round is
the product of segments per round W and the proba-
bility p that a segment carries a signal, i.e. c = pW .
Formulas for the steady-state window, W , can be de-
rived for each congestion controller (see § 3.1). Each
formula is of the form W ∝ 1/pB , where B is a char-
acteristic constant of the algorithm [4] (e.g. B = 1/2 for
TCP Reno). So it is straightforward to state the above
scalability condition in terms of B by substituting for p
in the above formula for c:

c ∝W (1 − 1/B).

Therefore, B ≥ 1 defines a control as Scalable.
For DCTCP, B ≥ 1, and DCTCP with probabilistic

marking has B = 1 (see § 3.1) so the signalling rate is
scale-invariant. DCTCP does not solve all scaling prob-
lems, e.g. its window update algorithm is unscalable by
the definition in [29]. However, our AQM supports any
scalable control, so we are confident that solutions to
DCTCP’s problems (e.g. [44]) will be able to evolve and
co-exist with today’s DCTCP, without a need for fur-
ther network changes.

2.2 Why ECN?
Explicit Congestion Notification (ECN [39]) is purely

a signal, whereas drop is both an impairment and a
signal, which compromises signalling flexibility. ECN is
essential to the L4S service, because:

1. A Scalable control’s finer (more aggressive) saw-
teeth imply a higher signalling rate, which would
be untenable as loss, particularly during high load;

2. If the queue grows, a drop-based AQM holds back
from introducing loss in case it is just a sub-RTT
burst, whereas it can emit ECN immediately, be-
cause it is harmless.

This last point significantly reduces typical signalling
delay, because with drop, the network has to add
smoothing delay but it does not know each flow’s RTT,
so it has to smooth over a worst-case (inter-continental)
RTT, to avoid instability for worst-case RTT flows.
Whereas, the sender knows its own RTT, which it can
use as the appropriate time constant to smooth the net-
work’s unsmoothed ECN signals [2] (and it can choose
to respond without smoothing, e.g. in slow start).

Therefore, we require that Scalable traffic is ECN-
capable, which we can also use to classify Scalable pack-
ets into the L4S queue (see § 3).

Irrespective of L4S, ECN also offers the obvious la-
tency benefit of near-zero congestion loss, which is of
most concern to short flows [40]. This removes retrans-
mission and time-out delays and the head-of-line block-
ing that a loss can cause when a single TCP flow carries
a multiplex of streams.

2.3 Why Not Per-Flow Queues?
Superficially, it might seem that per-flow queuing (as

in FQ-CoDel) would fully address queuing delay; it is
designed to isolate a latency-sensitive flow from the de-
lays induced by other flows. However, that does not
protect a latency-sensitive flow from the saw-toothing
queue that a Classic TCP flow will still inflict upon it-
self. This is important for the growing trend of interac-
tive video-based apps that are both extremely latency-
sensitive and capacity-hungry, e.g. virtual and aug-
mented reality, remote presence.

It might seem that self-inflicted queuing delay should
not count. To avoid delay in a dedicated remote queue,
a sender would have to hold back the data, causing the
same delay, just in a different place. It seems preferable
to release the data into a dedicated network queue; then
it will be ready to go as soon as the queue drains.

However, this logic applies i) if and only if the sender
somehow knows that the bottleneck in question imple-
ments per-flow queuing and ii) only for non-adaptive
applications. Modern applications, e.g. HTTP/2 [5] or
the panoramic interactive video app described in § 1,
suppress lower priority data, depending on the progress
of higher priority data sent already. To adapt how much
they send, they need to maintain their self-induced
send-queue locally, not remotely; because once optional
data is in flight, they cannot suppress it.

As well as not solving self-induced latency, there
are further well-rehearsed arguments against per-flow
scheduling: i) it cannot know whether flow rate varia-
tions are deliberate, e.g. complex video activity ; ii) it
cannot know (without prohibitive complexity) whether
a flow using more, or less, than an equal share of a user’s
own capacity is intentional, or even mission-critical; iii)
it needs to inspect transport layer headers (prevent-

ing transport evolution); and iv) it requires many more
queues and supporting scheduling structures.

Therefore we aim to reduce queuing delay without
per-flow queuing. That does not preclude adding a per-
flow policer, as a separate policy option.

3. SOLUTION DESIGN
The first design goal is ultra-low queuing delay for

L4S traffic. However, if the number of flows at the bot-
tleneck is small, Classic congestion controllers (CCs)
need a significant queue to avoid under-utilization. One
queue cannot satisfy two different delay goals so we clas-
sify any Classic traffic into a separate queue.

An L4S CC such as DCTCP achieves low latency, low
loss and low rate variations by driving the network to
give it frequent ECN marks. A Classic CC (TCP Reno,
Cubic, etc.) would starve itself if confronted with such
frequent signals.

So the second design goal is coexistence between Clas-
sic and L4S congestion controllers [26], meaning rough
balance between their steady-state packet rates per
RTT (a.k.a. TCP-fairness or TCP-friendliness). There-
fore, we couple the congestion signals of the two queues
and reduce the intensity for Classic traffic to compen-
sate for its greater response to each signal, in a similar
way to the single-queue coupled AQM in [16].

Packets are classified between the two queues based
on the 2-bit ECN field in the IP header. Classic sources
set the codepoints ‘ECT(0)’ or ‘Not-ECT’ depending on
whether they do or do not support standard (‘Classic’)
ECN [39]. L4S sources ensure their packets are classified
into the L4S queue by setting ‘ECT(1)’, which is an
experimental ECN codepoint being redefined for L4S
(see § 5.1).

Introducing two queues creates a new problem: how
often to schedule each queue. We do not want to sched-
ule based on the number of flows in each, which would
introduce all the problems of per-flow queuing (§ 2.3).
Instead, we allow the end-systems to ‘schedule’ them-
selves in response to the congestion signals from each
queue. However, whenever there is contention we give
the L4S queue strict priority, because L4S sources can
tightly control their own delay. Nonetheless, to prevent
Classic starving, priority is conditional on the delay dif-
ference between the two queues. Also, if either or both
queues become overloaded, low delay is preserved for
L4S, but dropping behaves like a single queue AQM so
that a misbehaving source can cause no more harm than
in a single queue (see § 3.3).

The schematic in Figure 2 shows the whole DualQ
Coupled AQM. with the classifier and scheduler as the
first and last stages. In the middle, each queue has its
own native AQM that determines dropping or marking
even if the other queue is empty. The following sub-
sections detail each part of the AQM, starting with the
algorithm that couples the congestion signalling of L4S
to that of the Classic AQM (for coexistence).

Figure 2: Dual Queue Coupled AQM

3.1 Coupled AQM for Window Balance
To support co-existence between the Classic (C) and

L4S (L) congestion control families, we start with the
equations that characterize the steady-state window,
W , of each as a function of the loss or ECN-marking
probability p. Then, like [16], we set the windows to be
equal to derive the coupling relationship between the
congestion signals for C and L.

We use Reno and DCTCP for C and L. We use Reno
because it is the worst case (weakest). We can ignore
dynamics, so we use the simplified Reno equation from
[35]. For L4S, we do not use the equation from the
DCTCP paper [1], which is only appropriate for step
marking. Instead, we use the DCTCP equation that
is appropriate to our coupled AQM, where marking is
probabilistic, as derived in Appendix A of [16]. For
balance between the windows, Wreno = Wdc, which be-
comes (1) by substituting from each window equation.
Then we rearrange into a generalized relationship for
coupling congestion signals in the network (2):

√
3

2preno
=

2

pdc
(1) pC =

(pL
k

)2
, (2)

where coupling factor k = 2
√

2/3 = 1.64 for Reno.
Appendix A of [16] shows that TCP Cubic [22] will be

comfortably within its Reno compatibility mode for the
‘Data Centre to the Home’ scenarios that are the focus
of this paper. The coupling formula in (2) also applies
when the Classic traffic is TCP Cubic in Reno mode
(‘CReno’), except it should use k = 2/1.68 = 1.19.

To avoid floating point division in the kernel we round
to k = 2. In all our experiments this proves to be a suffi-
ciently accurate compromise for any Reno-friendly CC.
It gives a slight window advantage to Reno, and a little
more to CReno. However, any L4S source gives itself a
counter-advantage by virtue of its shallower queue. So
L4S achieves a higher packet rate with the same window
because of it lower RTT. We do not expend effort coun-
tering this rate imbalance in the network—the proper
place to address this is to ensure L4S sources will be
less RTT-dependent (see § 5.2).

The coupling is implemented by structuring the AQM
for Classic traffic in two stages (Figure 2). First what
we call a ‘Base AQM’ outputs the internal probability

p′. This is used directly for L4S traffic (pL = p′), but
also transformed as per equation (2) to determine the
dropping/marking probability for Classic packets (pC).

Diversity of Base AQMs is possible and encouraged.
Two have been implemented and tested [17]: a variant
of RED and a proportional integral (PI) AQM. Both
control queuing time not queue size, given the rate of
each queue varies considerably [33, 37]. This paper uses
the latter, because it performs better.

[16] also couples two AQMs to enable coexistence of
different CCs, but within one queue, not across two. It
proves theoretically and experimentally that a PI con-
troller is a robust base AQM. It directly controls a scal-
able control like DCTCP (rate proportional to 1/p′).
And it shows that squaring the output of a PI controller
is a more effective, more principled and simpler way
of controlling TCP Reno (rate proportional to 1/

√
p′)

than PI Enhanced (PIE [38]). It shows that the piece-
wise lookup table of scaling values used by PIE was just
a heuristic way of achieving the same effect as squaring.

3.2 Dual Queue for Low Latency
Often, there will only be traffic in one queue, so each

queue needs its own native AQM. The L4S queue keeps
delay low using a shallow marking threshold (T), which
has already been proven for DCTCP. T is set in units of
time [33, 3] with a floor of two packets, so it auto-tunes
as the dequeue rate varies. On-off marking may [13] or
may not [32, §5] be prone to instability. But to test one
change at a time we deferred this to future research.

If there is traffic in both queues, an L4S packet can
be marked either by its native AQM or by the coupled
AQM (see the OR symbol in Figure 2). However, the
coupling ensures that L4S traffic generally only touches
the threshold when it is bursty or if there is insufficient
Classic traffic.

Note that the L4S AQM emits ECN marks imme-
diately and the sender is expected to do any necessary
smoothing. Whereas Classic congestion signals are sub-
ject to smoothing delay in the network.

We use what we call a time-shifted FIFO sched-
uler [36] to decide between the head packets of the two
queues. It selects the packet with the earliest arrival
timestamp, after subtracting a constant timeshift to
favour L4S packets. Normally, this behaves like a strict
priority scheduler, but an L4S packet loses its priority
if the extra delay of the leading Classic packet exceeds
the timeshift. This protects Classic traffic from unre-
sponsive L4S traffic or long L4S bursts, even ensuring a
new Classic flow can break into a standing L4S queue.

3.3 Overload Handling
Having introduced a priority scheduler, during over-

load we must ensure it does no more harm to lower
priority traffic than a single queue would.

Unresponsive traffic below the link rate just subtracts
from the overall capacity, irrespective of whether it clas-
sifies itself as low (L4S) delay or regular (Classic) delay.

Then the coupled AQM still enables other responsive
flows to share out the remaining capacity by inducing
the same balanced drop/mark probability as they would
in a single queue with the same capacity subtracted.

To handle excessive unresponsive traffic, we simply
switch the AQM over to using the Classic drop proba-
bility for both queues once the L4S marking probability
saturates at 100%. By equation (2), if k = 2 this occurs
once drop probability reaches (100%/k)2 = 25%. When
a DCTCP source detects a drop, it already falls back to
classic behaviour, so balance between flow rates is pre-
served. The native L4S AQM also continues to ECN-
mark packets whenever its queue exceeds the threshold,
so any responsive L4S traffic maintains the ultra-low
queuing delay of the L4S service.

If there are no packets in the Classic queue, the base
AQM continues to evolve p′ using the L4S queue. As
soon as something starts to overload the L4S queue,
this ensures the correct level of drop, given L4S sources
fall back to a Classic response on detecting a drop.
Nonetheless, with solely normal L4S sources, the L4S
queue will stay shallow and drive the contribution from
the base AQM (p′) to zero.

3.4 Linux qdisc Implementation

Algorithm 1 Enqueue for Dual Queue Coupled AQM

1: stamp(pkt) . Attach arrival time to packet
2: if lq.len() + cq.len() >L then
3: drop(pkt) . Drop packet if Q is full
4: else
5: if lsb(ecn(pkt))==0 then . Not ECT or ECT(0)
6: cq.enqueue(pkt) . Classic
7: else . ECT(1) or CE
8: lq.enqueue(pkt) . L4S

Algorithm 2 Dequeue for Dual Queue Coupled AQM

1: while lq.len() + cq.len() >0 do
2: if lq.time() + D ≥ cq.time() then
3: lq.dequeue(pkt) . L4S
4: if (lq.time() > T) ∨ (p > rand()) then
5: mark(pkt)

6: else
7: cq.dequeue(pkt) . Classic
8: if p > k ∗ max(rand(),rand()) then
9: if ecn(pkt)==0 then . Not ECT

10: drop(pkt) . Squared drop
11: continue . Redo loop
12: else . ECT(0)
13: mark(pkt) . Squared mark

14: return(pkt) . return the packet, stop here

Algorithms 1 & 2 summarize the per packet enqueue
and dequeue implementations of DualPI2 as pseudocode
For clarity, overload and saturation logic are omitted.
The full code is available as the Dualq option to the
PI2 Linux qdisc implementation.1 On enqueue, packets
are time-stamped and classified. On dequeue, line 2
implements the time-shifted FIFO scheduler. It takes

1Open source at https://github.com/olgabo/dualpi2

the packet that waited the longest, after adding time-
shift D to the L4S queuing time. If an L4S packet is
scheduled, line 4 marks the packet either if the L4S
threshold is exceeded, or if a random marking decision is
drawn according to the probability p. If a Classic packet
is scheduled, line 8 implements the squared probability
p2 without multiplication by dropping (or marking) the
packet if both of two random comparisons are true. A
useful aide memoire for this approach is “Think once to
mark, twice to drop”.
p is kept up to date by the core PI Algorithm (3)

which only needs occasional execution [25]. The pro-
portional gain factor β is multiplied by the change in
queuing time. The integral gain factor α is typically
smaller, to restore any persistent standing queue to the
target delay. These factors, which can be negative, are
added to the previous p every Tupdate (default 16 ms).

Algorithm 3 PI core: Every Tupdate p is updated

1: curq = cq.time()
2: p = p+ α ∗ (curq − TARGET) + β ∗ (curq − prevq)
3: prevq = curq

4. EVALUATION

4.1 Testbed Setup
We used a testbed to evaluate the proposed DualQ

AQM mechanism in a realistic setting, and to run re-
peatable experiments in a controlled environment. The
testbed was assembled using carrier grade equipment in
the same enviroment as for testing customer solutions.
Figure 3 depicts the testbed, which consists of a clas-
sical residential service delivery network composed of
Residential Gateway, xDSL DSLAM (DSL Access Mul-
tiplexer), BNG (Broadband Network Gateway), Service
Routers (SR) and application servers. The Residential
Gateway is connected by VDSL to a DSLAM, which is
connected to the BNG through an aggregation network,
representing a local ISP or access wholesaler. Traffic is
routed to another network representing a global ISP
that hosts the application servers and offers breakout
to the Internet. The client computers in the home net-
work and the application servers at the global ISP are
Linux machines, which can be configured to use any
TCP variant, start applications and test traffic. The
two client-server pairs (A and B) are respectively con-
figured with the same TCP variants and applications.

Figure 3: Testbed configuration

In a production access network, per-customer queues
form the leaves of a hierarchical scheduling tree and they
are deliberately arranged as the downstream bottleneck
for each customer. Traffic from the client-server pairs
is routed from the BNG through a Linux box (‘AQM
server’), which acts as the rate bottleneck where we
configure the different AQMs being evaluated for the
BNG. This server also emulates extra delay, controls
the experiments, captures the traffic and analyses it. In
practice it would also be important to deploy an AQM
in the home gateway, but in our experiments the ACK
traffic was below the upstream capacity.

The two client computers were connected to a modem
using 100 Mbps Fast Ethernet; the xDSL line was con-
figured at 48 Mbps downstream and 12 Mbps upstream;
the links between network elements consisted of at least
1GigE connections. The base RTT (T0) between the
clients and servers was 7 ms, which was primarily due to
the interleaved Forward Error Correction (FEC) config-
ured for xDSL. We configured the different bottlenecks
on the AQM server at the BNG on the downstream in-
terface where the AQM was configured. Extra delay
was configured on the upstream interface using a netem
qdisc, to compose the total base RTTs tested.

To support higher bottleneck rates and lower RTTs
all experiments were performed with the clients con-
nected directly to the BNG with 1GigE connections.
Those experiments fitting within xDSL limits were val-
idated on the full testbed and compared, showing near
identical results. All Linux computers were Ubuntu
14.04 LTS with kernel 3.18.9, which contained the im-
plementations of the TCP variants and AQMs.

We used DCTCP for the Scalable congestion control
and both Reno and Cubic for Classic, all with their
default configurations2. In this paper we do not show
Reno because the Cubic results were generally similar
but not always as good. For ECN-Cubic, we enable
TCP ECN negotiation. We compared DualPI2 with
PIE and FQ-CoDel, all configured as in Table 1.

All Buffer: 40000 pkt, ECN enabled
PIE Target delay: 15 ms, Burst: 100 ms, TUpdate:

16 ms, α: 1/16, β: 10/16, ECN drop: 25%
FQ-CoDel Target delay: 5 ms, Burst: 100 ms
DualPI2 Target delay: 15 ms, L4S T: 1 ms, D: 30 ms, α:

5/16, β: 50/16, k: 2, ECN drop: 100% L4S

Table 1: Default parameters for the different AQMs.

4.2 Experimental Approach
For traffic load we used long-running flows

(§§ 4.3 & 4.4) and/or dynamic short flows (§ 4.5).
We used long flows, not as an example of a realistic
Internet traffic mix, rather to aid interpretation of
various effects, such as starvation.

From all our experiments, we selected a represen-
tative subset to evaluate our two main performance

2Except DCTCP is patched to fix a bug that prevented
it falling back to Reno on detecting a drop.

 0

 10

 20

 30

 40

 50

 60

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

Q
u

eu
e

d
el

ay
 [

m
s]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

PIE (ECN-Cubic - Cubic) DUALPI2 (DCTCP - Cubic) FQCODEL (ECN-Cubic - Cubic)

ECN-Cubic mean, P99 Cubic mean, P99 DCTCP mean, P99

RTT[ms]:

 0.1

 1

 10

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

W
in

d
o

w
 b

al
an

ce
 [

ra
ti

o
]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

PIE (ECN-Cubic - Cubic) DUALPI2 (DCTCP - Cubic) FQCODEL (ECN-Cubic - Cubic)

ECN-Cubic/Cubic ratio DCTCP/Cubic ratio

RTT[ms]:

 90

 92

 94

 96

 98

 100

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

L
in

k
 u

ti
li

sa
ti

o
n

 [
%

]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

PIE (ECN-Cubic - Cubic) DUALPI2 (DCTCP - Cubic) FQCODEL (ECN-Cubic - Cubic)

ECN-Cubic+Cubic P1, mean, P99 DCTCP+Cubic P1, mean, P99

RTT[ms]:

 0.001

 0.01

 0.1

 1

 10

 100

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

D
ro

p
/M

ar
k

 p
ro

b
ab

il
it

y
 [

%
]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

PIE (ECN-Cubic - Cubic) DUALPI2 (DCTCP - Cubic) FQCODEL (ECN-Cubic - Cubic)

Drops Cubic P25, mean, P99
Drops ECN-Cubic P25, mean, P99

Marks ECN-Cubic P25, mean, P99
Drops DCTCP P25, mean, P99

Marks DCTCP P25, mean, P99

RTT[ms]:

Figure 4: Equal RTT with 1 flow for each CC

goals: queuing delay and window balance. We also show
rate balance, link utilization and drop/mark probabil-
ity, as well as flow completion times in short flow ex-
periments. Heavy load scenarios predominate in our se-
lection, again not because they are typical, but because
they do occur and they are the worst case.

We mixed different number of flows, evaluated flows
with different congestion controls (CCs) and RTTs, and
to verify behaviour on overload (§ 4.6), we injected un-
responsive UDP load, both ECN and Not-ECN capable.

We configured PIE and FQ-CoDel with ECN as well
as without, as a control so as not to attribute any per-
formance gains to L4S ECN that are already available
from Classic ECN. In this paper we present those com-
binations of CC and AQM that each AQM is intended

to support: DCTCP with Cubic on DualPI2; and ECN-
Cubic with Cubic on PIE and FQ-CoDel.

4.3 Experiments with long-running flows
Each experiment (lasting 250 s) was performed with

a specified TCP variant configured on each client-server
pair A and B and a specified AQM, bottleneck link
speed and RTT on the AQM server. We performed
a large number of experiments with different combina-
tions of long-running flows, where each client started 0
to 10 file downloads on its matching server, resulting
in 120 flow combinations competing at a common bot-
tleneck for 250 seconds. These 120 experiments were
executed for the 25 combinations of 5 RTTs (5, 10, 20,
50 and 100 ms) and 5 link speeds (4, 12, 40, 120 and

 0.1

 1

 10

1
-1

2
-2

3
-3

4
-4

5
-5

6
-6

7
-7

8
-8

9
-9

1
0
-1

0

1
-9

2
-8

3
-7

4
-6

6
-4

7
-3

8
-2

9
-1

1
-1

2
-2

3
-3

4
-4

5
-5

6
-6

7
-7

8
-8

9
-9

1
0
-1

0

1
-9

2
-8

3
-7

4
-6

6
-4

7
-3

8
-2

9
-1

1
-1

2
-2

3
-3

4
-4

5
-5

6
-6

7
-7

8
-8

9
-9

1
0
-1

0

1
-9

2
-8

3
-7

4
-6

6
-4

7
-3

8
-2

9
-1

W
in

d
o

w
 b

a
la

n
c
e
 [

ra
ti

o
]

Nr of flows (A-B)

PIE (ECN-Cubic - Cubic) DUALPI2 (DCTCP - Cubic) FQCODEL (ECN-Cubic - Cubic)

ECN-Cubic(A)/Cubic(B) ratio DCTCP(A)/Cubic(B) ratio

Figure 5: Different number of flows on a 40 Mbps link with 10 ms RTT.

200 Mbps).
For the 1-1 (one flow on pair A and one on B) combi-

nation Figure 4 shows queue delay, window ratio, link
utilization and mark/drop probability for each AQM
and congestion control. The results are plotted for dif-
ferent combinations of link speeds and RTTs on the
x-axis.

Looking at queuing delay we can clearly see that L4S
delay and delay variance are significantly lower than
the other AQMs. All AQMs roughly hold to their tar-
get(s), except with higher delays for lower rates and
some expected under-utilization for higher base RTTs.
The lower link rates drive the non-ECN AQMs up to
drop probabilities around 10%.

For the medium and high throughputs, L4S achieves
sub-millisecond average delays with 99th percentile
around 2–3 ms. The higher queuing delays for the
smaller throughputs are due to the single packet se-
rialization time of 3 ms (1 ms) on a 4 Mbps (12 Mbps)
link. This is why we set a floor of 2 packets for the
L4S marking threshold otherwise it would always mark
100%. The Cubic flows on the DualPI2 AQM achieve
a similar average queuing delay as with the PIE AQM.
Due to the time-shifted overload mechanism the 99th

percentile of the Cubic flows pushes up the average and
99th percentile of the L4S queue delay.

The drop/mark plot clearly demonstrates the differ-
ence between drop and mark for the DualPI2 AQM. The
squared drop probability results in near-equal windows
for the different CCs, as demonstrated in the window
balance plot. Due to the small queue delay of the L4S
traffic, the total amount of packets in flight is smaller
than with the other AQMs. To compensate, a higher
drop and mark probability is needed. For the 4 Mbps
and 5 ms base RTT, the probabilities sporadically start
to exceed the coupled 25% drop and 100% mark thresh-
olds, with some L4S drop as a result. For the higher
BDPs, the links are less utilized due to the large win-
dow reduction of Cubic, resulting in more on/off-type
marking for DCTCP. Even when DCTCP is not able to
fill this gap due to its additive increase, it still reduces
less than Cubic, with a higher DCTCP window as a
result. For the very high BDPs Cubic starts to switch
out of its Reno mode, resulting in the higher window of
pure Cubic mode.

Figure 5 shows the window ratio for different com-
binations of numbers of long-running flow. The figure
shows the results for a 40 Mbps link and 10 ms RTT,
which was representative of the other link rates and
RTTs. The number of flows for each pair (A and B) is
shown on the x-axis: the first value is the total number
of ECN-capable flows (ECN-Cubic or DCTCP), while
the second is the number of Cubic flows.

The results show that in general window sizes are
well-balanced with all combinations. This confirms that
the simple squared coupling of the DUALPI2 AQM
counterbalances the more aggressive response of DC-
TCP remarkably precisely over the whole range of com-
binations of flows.

Only when there are very few Classic flows compared
to L4S flows does the DCTCP window become smaller.
This is due to the low and bursty queue occupancy of
Classic flows,which causes DCTCP flows to frequently
hit the L4S threshold. This results in additional mark-
ing and a smaller window for DCTCP. A higher L4S-
threshold removes this effect. As the higher throughput
for one Classic flow is spread over multiple L4S flows,
the throughput of the L4S flows is not heavily impacted,
suggesting that if a compromise needs to be struck be-
tween low L4S latency and window balance, a low L4S
threshold will always be preferable.

Throughput variance experiments with more than 2
flows (not shown due to space limitations) illustrate
that, when a Classic flow competes with an L4S, it con-
veys its variations to the L4S flow (which fills up the
gaps). However, when solely DCTCP flows compete
their rates are much more stable.

4.4 Experiments with different RTTs
To evaluate the RTT-dependence of the windows and

rates of different CCs, we conducted additional experi-
ments with one flow per client server pair, each having
different base RTTs. These experiments were repeated
for the 5 link speeds.

Figure 6 shows queue delay and window and rate ra-
tio for flows with unequal RTTs, running concurrently.
We use one flow for each congestion control, labelled
as flow A for ECN congestion controls (ECN-Cubic or
DCTCP) and flow B for Cubic. Different combinations
of RTTs for each of the flows are shown on the x-axis.

 0
 5

 10
 15
 20
 25
 30
 35

5- 5-5
5-10

5-20
5-50

5-100

100-
100-5

100-10

100-20

100-50

100-100

5- 5-5
5-10

5-20
5-50

5-100

100-
100-5

100-10

100-20

100-50

100-100

5- 5-5
5-10

5-20
5-50

5-100

100-
100-5

100-10

100-20

100-50

100-100

Q
u

eu
e

d
el

ay
 [

m
s]

PIE (ECN-Cubic - Cubic) DUALPI2 (DCTCP - Cubic) FQCODEL (ECN-Cubic - Cubic)

ECN-Cubic(A) mean
P99

Cubic(B) mean
P99

DCTCP(A) mean
P99

RTT (flow A - flow B)[ms]:

 0.1

 1

 10

5-5
5-10

5-20
5-50

5-100

100-5

100-10

100-20

100-50

100-100

5-5
5-10

5-20
5-50

5-100

100-5

100-10

100-20

100-50

100-100

5-5
5-10

5-20
5-50

5-100

100-5

100-10

100-20

100-50

100-100

W
in

d
o

w
 b

a
la

n
c
e
 [

ra
ti

o
] PIE (ECN-Cubic - Cubic) DUALPI2 (DCTCP - Cubic) FQCODEL (ECN-Cubic - Cubic)

ECN-Cubic(A)/Cubic(B) ratio DCTCP(A)/Cubic(B) ratio

RTT (flow A - flow B)[ms]:

 0.1

 1

 10

5-5
5-10

5-20
5-50

5-100

100-5

100-10

100-20

100-50

100-100

5-5
5-10

5-20
5-50

5-100

100-5

100-10

100-20

100-50

100-100

5-5
5-10

5-20
5-50

5-100

100-5

100-10

100-20

100-50

100-100

R
a
te

 b
a
la

n
c
e
 [

ra
ti

o
]

PIE (ECN-Cubic - Cubic) DUALPI2 (DCTCP - Cubic) FQCODEL (ECN-Cubic - Cubic)

ECN-Cubic(A)/Cubic(B) ratio DCTCP(A)/Cubic(B) ratio

RTT (flow A - flow B)[ms]:

Figure 6: Mixed RTT with 1 flow for each CC on a 40 Mbps link.

For example, 5-20 means 5 ms base RTT for flow A and
20 ms for flow B.

Looking first at queuing delays in the DualPI2 AQM,
it can be seen that the extremely low latency for L4S
traffic is preserved in all cases, including in the pres-
ence of longer RTT traffic. Large-RTT Classic flows
combined with small-RTT L4S flows result in a longer
average Classic queue (see A-B = 5-100). This is again
due to the bursty character of ACK-clocked Classic
TCP flows, which need to wait until the L4S traffic
has backed off sufficiently to create scheduling oppor-
tunities for the Classic flows. This effect is tempered
by the time-shifted scheduler, which limits the waiting
time for the burst to 30 ms at the expense of higher 99th

percentile delay for the L4S traffic.
In this same 5-100 case, window balance also suffers.

The bursty Classic traffic with its associated higher L4S
threshold marking drags down the L4S window size.

Comparing the bottom two plots, particularly in the
5-100 case, with PIE or DUALPI2 it can be seen that
window balance leads to considerable rate imbalance.
This is not surprising, because it is well known that
competing TCP flows equalize their congestion win-
dows so their bit rates will be inversely proportional
to their RTTs. However, as AQM reduce queueing de-
lay they intensify this effect, because the ratio between

total RTTs tends towards the ratio between base RTTs.
The implications of this trend are discussed in § 5.2.

For instance, in the 5-100 case when the ratio between
base RTTs is 20×, the ratio between flow rates is about
6×. This is because PIE holds queuing delay at about
15 ms, and (100 + 15)/(5 + 15) ≈ 6.

L4S all-but eliminates queuing delay so total RTT
is hardly any greater than base RTT. Therefore even
for the 5-50 case, rate imbalance is already approaching
10×. In the 5-100 case, it can be seen that the rate-
imbalance trend reverses. However, this is due to the
increased variance of the L4S queue in response to in-
creased Cubic burstiness as discussed above. In other
experiments (not shown) with the burstiness of Cubic
removed by using 2 DCTCP flows alone, rate imbal-
ance does indeed tend towards the inverse of the ratio
between the base RTTs of the flows.

Conversely, with FQ-CoDel the Flow Queuing sched-
uler enforces rate balance, which necessarily requires
considerable window imbalance.

4.5 Experiments with dynamic short flows
On top of the long flow experiments, we added em-

ulated web traffic load patterns between each client-
server pair, to evaluate the dynamic behaviour of the
AQMs with their congestion controllers. For this we

 0.1

 1

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

C
o

m
p

le
ti

o
n

 e
ff

ic
ie

n
cy

 [
lo

g
(s

/s
)]

RTT[ms]: 5 10 20 50 100 5 10 20 50 100 5 10 20 50 100

PIE (ECN-Cubic - Cubic) DUALPI2 (DCTCP - Cubic) FQCODEL (ECN-Cubic - Cubic)

ECN-Cubic Cubic DCTCP

Bin
start[KB]:

Figure 8: Heavy dynamic workload: 1 long flow and 300 short requests per second for each CC on a 120 Mbps link
with equal 10 ms base RTT. The bin boundaries are 1 KB, 3 KB, 9 KB, 27 KB, 81 KB, 243 KB, 729 KB and 1 MB.

 0.01

 0.1

 1

 10

1 3 9 27 81 243 729

C
o
m

p
le

ti
o
n
 t

im
e

[l
o
g
(s

ec
)]

Transfer size [KB]

minimal completion time

 0.01

 0.1

 1

1 3 9 27 81 243 729

C
o
m

p
le

ti
o
n
 e

ff
ic

ie
n
cy

[l
o
g
(s

ec
/s

ec
)]

Transfer size [KB]

DCTCP Cubic

Figure 7: Completion time against efficiency represen-
tation for 1 long flow and high dynamic load each on a
40 Mbps link with 10 ms base RTT.

used an exponential arrival process with an average of
1 (low load) or 10 (high load) requested items per sec-
ond for the 4 Mbps link capacity, scaled for the higher
link speeds up to 50 (low) or 500 (high) requests for
the 200 Mbps links. Every request opened a new TCP
connection, closed by the server after sending data with
a size according to a Pareto distribution with α = 0.9
and a minimum size of 1 KB and maximum 1 MB. The
client logged the completion time and downloaded size.
Timing was started just before opening the TCP socket,
and stopped after the close by the server was detected.

The left-hand side of Figure 7 shows a log-log scat-
ter plot of the completion time to item size relation for
the high load DualPI2 AQM test case on a 40 Mbps
link with 10 ms base RTT. The green line is the the-
oretically achievable completion time, taking the RTT
into account but downloading at full link speed from
the start. As can be seen, the L4S short flows (within
the initial window size of 10 packets) closely achieve
this. They leave the TCP stack in a burst and face very
low delay in the network. This same representation also
helps in understanding where Classic download time is
typically lost. Around 1 second a lot of downloads had
to wait for the retransmission time-out after lost SYN
packets. Around 200 ms the minimum retransmission
time-out for tail loss is clearly visible. Long flows share
the throughput better, which is why they are further
from the theoretical completion time for a lone flow.

To better quantify the average and percentiles of the

completion times, we used the Completion Efficiency
representation on the right of Figure 7. To calculate its
completion efficiency for each item we divided actual
by theoretical completion time. We then binned the
samples in log scale bins (base 3) and calculated the
average, 1st and 99th percentiles. The green theoretical
completion time is now at 1 (maximum efficiency).

Figure 8 shows completion efficiency for a high load of
short flows plus a single long-running flow for each con-
gestion control on a 120 Mbps link with different RTTs.

With DualQ or FQ the completion times of short
flows are near-ideal. DualQ achieves this by keeping
the queue very shallow for all L4S flows. In contrast FQ
explicitly identifies and priority-schedules short flows.

In higher BDP cases, and in the high load case shown,
the completion times of larger downloads are longer
with DualPI2 than with the other AQMs. This is partly
due to the additional marking of bursty traffic due to the
shallow L4S threshold, which gives Cubic flows an ad-
vantage (as already discussed). However, the primary
cause is a known problem with DCTCP convergence
time. When a DCTCP flow is trying to push in against
a high load of other DCTCP flows, it drops out of slow
start very early, because of the higher prevailing mark-
ing level. Then it falls back to pushing in very slowly us-
ing only additive increase. Similarly, when another flow
departs, the additive increase of DCTCP takes many
round trips to fill the newly available capacity.

Others have noticed this problem and modified the
additive increase of DCTCP [44]. Nonetheless, DC-
TCP slow start also has to be modified—the aggression
of slow start in one flow has to increase to match the
increased aggression of congestion avoidance in others.
Solving this problem is included in the TCP Prague re-
quirements (see § 5.2), but it is outside the AQM-only
scope of the present paper.

Figure 9 adds further weight to the argument that
DCTCP, not the DualQ AQM, is the cause of the longer
completion times. Average queue delay, queue variance
and link utilization are all better with L4S/DualQ than
with FQ-CoDel. So it seems that DCTCP is just not
exploiting these advantages.

If we now compare the results in Figure 9 with those

 0

 20

 40

 60

 80

 100

 120

 140

 160

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (ECN-Cubic+Cubic)

Q
u

eu
e

d
el

ay
 [

m
s]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

ECN-Cubic mean, P99 Cubic mean, P99 DCTCP mean, P99

RTT[ms]:

 60

 65

 70

 75

 80

 85

 90

 95

 100

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (ECN-Cubic+Cubic)

L
in

k
 u

ti
li

sa
ti

o
n

 [
%

]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

ECN-Cubic+Cubic DCTCP+Cubic

RTT[ms]:

Figure 9: Heavy dynamic workload: 1 long flow and 300 short requests per second for each CC.

for just long-running flows in Figure 4, we see the effect
of adding dynamic flows. They dramatically increase
queue delay variance (note the change in scale), par-
ticularly with FQCODEL and PIE. Nonetheless, L4S
queuing delay is still extremely low, with only a slight
increase in variance.

Comparing the link utilization plots, the added dy-
namic flows universally reduce utilization as arriving
flows take a while to use up the capacity that depart-
ing flows vacate, particularly at higher RTTs. With
DUALPI2, under-utilization is only a little worse than
with PIE, despite DCTCP’s convergence problem (dis-
cussed above). This is because the Classic Cubic traffic
takes up some of the slack.

4.6 Overload experiments
To validate the correct overload behaviour, we added

an unresponsive UDP flow to 5 long-running flows of
each congestion control type (ECN and non-ECN) over
a 100 Mbps bottleneck link with 10 ms base RTT. For
each AQM we ran 2 sets of tests with the UDP traffic
marked as either ECN/L4S or non-ECN. Each set tested
5 different UDP rates (50, 70, 100, 140 and 200 Mbps).

Figure 10 shows the results for the DualQ AQM. The
top plot shows the link output rate for each traffic type.
The more the UDP flow squeezes the responsive flows,
the more they drive up the congestion level (ECN or
drop). Only responsive flows heed ECN marks. So, in
the ECN UDP flow case, before congestion reaches the
level where the AQM starts dropping ECN packets, the
UDP flow is unaffected by congestion.

Once the AQM starts dropping ECN packets (and in
the non-ECN UDP flow case), the drop probability nec-
essary to make the responsive flows fit into the remain-
ing capacity also subtracts from the UDP flow, freeing

up some extra capacity for the responsive traffic.
The capacity left by the UDP flow for responsive traf-

fic is roughly the same whether the UDP flow uses L4S-
ECN or not, but the largest difference is where the ar-
rival rate of the UDP flow is around 100% of the ca-
pacity. Once unresponsive traffic significantly exceeds
100%, it leaves very little capacity for the responsive
traffic.

All this behaviour was exactly the same as with a sin-
gle queue AQM (i.e. PIE), which was our intention. We
wanted to ensure that introducing two queues would
not introduce any new pathologies. Then any appli-
cations relying on unresponsive behaviour should work
the same, and any optional mechanisms to police unre-
sponsive flows should also work the same.

In contrast, flow queuing starts dropping unrespon-
sive traffic when it exceeds an equal share of through-
put. For instance, a 50 Mbps flow experiences about
80% drop, to force it to share the capacity equally with
10 other flows.

The middle plot shows that the windows of the DC-
TCP and Cubic flows balance as long as the unre-
sponsive traffic is no greater than the link capacity.
For higher levels of unresponsive traffic, the through-
put of the responsive traffic is more dominated by long
retransmission time-outs, which results in more equal
rates, causing window imbalance because of the differ-
ent RTTs.

Finally the bottom plot shows the queuing delay for
the DualQ during the same experiments. The most no-
table feature is that, whether the unresponsive traffic is
L4S or Not ECN, average L4S queuing delay remains
below about 2 ms, except in the L4S UDP case, and
then only once it exceeds 140% of capacity.

In the case when the UDP traffic is not ECN, the PI2

50 70 100 140 200 50 70 100 140 200
0%

20%

40%

60%

80%

100%

UDP rate
[Mbps]:

UDP class:

DCTCP Cubic UDP

L4S Not ECN

R
at

e
sh

ar
e

50 70 100 140 200 50 70 100 140 200
0.1

1

10

UDP rate
[Mbps]:

UDP class: L4S Not ECN

Window
balance

[DCTCP/
Cubic]

50 70 100 140 200 50 70 100 140 200
0

10

20

30

40

50

UDP rate
[Mbps]:

UDP class:

DCTCP mean, P99 Cubic mean, P99

L4S Not ECN

Q
ue

ue
 d

el
ay

 [
m

s]

Figure 10: Overload experiments on a 100 Mbps link

AQM holds Classic queue delay to its target by applying
sufficient drop. The coupled AQM translates this to a
high level of L4S marking or, if congestion is high, it
applies the same level of drop to both queues. Given
L4S throughput is relatively low in this case, it is easy
for L4S queuing delay to remain very low.

In the case when the UDP traffic is L4S, the majority
of the load arrives at the L4S queue. The native L4S
threshold only applies marking, which the UDP traffic
ignores. So the overload mechanism described in § 3.3
starts to dominate. This takes over whenever the Clas-
sic queue is empty, which happens increasingly often as
more UDP L4S traffic arrives. At such times, the base
AQM (PI controller) uses the L4S queue delay to drive
its output, still aiming for the Classic 15 ms target. The
more unresponsive traffic that arrives at the L4S queue,
the more the L4S queue shifts from the 1 ms L4S thresh-
old to the 15 ms Classic target. This effect can be seen
between 100% and 200% in the L4S UDP case.

5. DEPLOYMENT CONSIDERATIONS

5.1 Standardization Requirements
The IETF has taken on L4S standardization work,

in principle. It has adopted a proposal [6] to make the
ECT(1) codepoint available for experimental classifica-
tion of L4S packets at the IP layer (v4 and v6), as de-

scribed in § 3. [18] considers the pros and cons of various
candidate identifiers and finds that none are without
problems, but proposes ECT(1) as the least worst.

The main issue is that there is only one spare code-
point, so a queue can distinguish L and C packets, but
congestion marking has to use the same Congestion Ex-
perienced (CE) codepoint for both L & C packets. This
is not a problem for hosts but, in the (unusual) case of
multiple simultaneous bottlenecks, any packet already
marked CE upstream will have to be classified into the
L queue, irrespective of whether it was originally C or
L. This is considered acceptable for TCP given that,
if a few packets arrive early out of order, subsequent
packets still advance the ACK counter.

Operators will be able to classify L4S on additional
identifiers (e.g. by ECN plus address range or VLAN
ID), which they might use for initial exclusivity, without
compromising long-term interoperability.

The IETF also plans to define the semantics of the
new identifier. The ‘Classic’ ECN standard [39] defines
a CE mark as equivalent to a drop, so queuing de-
lay with Classic ECN cannot be better than with drop
(this may be why operators have not deployed Classic
ECN [41, § 5]). The square relationship between an L4S
mark and a drop in this paper (Eqn. (2)) has been pro-
posed for experimental standardization [18]. Nonethe-
less, it has been proposed to recommend rather than
standardize a value for the coupling factor, k, given dif-
ferences would not prevent interoperability.

The IETF is also adopting a specification of the du-
alQ coupled AQM mechanism [17] so that multiple im-
plementations can be built, tested and compared, pos-
sibly using different base AQMs internally.

5.2 Congestion Control Roadmap
This paper uses DCTCP unmodified3 in all experi-

ments i) to focus the parameter space of our experi-
ments on the network mechanism, without which end-
system performance improvements would be moot; and
ii) to emphasize that the end-system side of the multi-
party deployment is already available (in the Linux
mainline and Windows), at least for testing purposes.
Nonetheless, numerous improvements to DCTCP can
be envisaged for this new public Internet scenario. They
are listed below in priority order starting with those
necessary for safety, and ending with performance im-
provements. They are adapted from the congestion
control requirements identified in the IETF L4S archi-
tecture draft [12], which are in turn adapted from the
“TCP Prague requirements”, named after the meeting
in Prague of a large group of DCTCP developers that
informally agreed them [8]:

1. Fall back to Reno/Cubic on loss (Windows does,
but Linux does not due to a bug—fix submitted);

2. Negotiate altered feedback semantics [30, 11];
3. Use of a standardized packet identifier [18];

3See footnote 2.

4. Handle a window of less than 2, rather than grow
the queue if base RTT is low [10];

5. Smooth ECN feedback over a flow’s own RTT, not
the RTT hard-coded for data-centres [2, § 5];

6. Fall back to Reno/Cubic if increased delay of clas-
sic ECN bottleneck detected;

7. Faster-than-additive increase, e.g. Adaptive Accel-
eration (A2DTCP) [44];

8. Less drastic exit from slow-start, similar goal to
Flow-Aware (FA-DCTCP) [27];

9. Reduce RTT-dependence of rate [2, § 5] (see be-
low).

With tail-drop queues, so-called ‘RTT-unfairness’
had never been a great cause for concern because the
RTTs of all long-running flows included a common
queuing delay component that was no less than worst-
case base RTT (due to the historical rule of thumb for
sizing access link buffers4 at 1 worst-case RTT). So,
even where the ratio between base delays was extreme,
the ratio between total RTTs rarely exceeded 2 (e.g. if
worst-case base RTT is 100 ms, worst-case total RTT
imbalance tends to (100 + 100)/(0 + 100).

However, Classic AQMs reduce queuing delay to a
typical, rather than worst-case, RTT. For instance,
with PIE, the queuing delay common to each flow is
15 ms. Therefore, worst-case rate imbalance will be
(100 + 15)/(0 + 15) ≈ 8 (see the explanation in § 4.4
of the rate imbalance in Figure 6).

Because of the cushioning effect of queuing delay,
even when base RTTs are extremely imbalanced rates
are not. But, because L4S all-but eliminates queuing
delay, it exposes the full effect of the ‘RTT-unfairness’
issue.

We do not believe the network needs to be involved
in addressing this problem. RTT-dependence is a fea-
ture of end-to-end congestion controls, so that is where
it should be addressed. Classic CCs will not need to
change, because classic queues will still need to be large
to avoid under-utilization. However, L4S congestion
controls will need to be less RTT-dependent, to avoid
starving any L4S and Classic flows with larger RTTs
(hence reduced RTT-dependence has been added to the
TCP-Prague requirements above).

As a fortunate side-effect, it will be easier to define
the coupling factor k (see § 3.1) to balance throughput
between RTT-independent L4S traffic and large-queued
Classic traffic.

5.3 Deployment Scenarios
The applicability of the DualQ is of course not lim-

ited to fixed public access networks. The DualQ Cou-
pled AQM should also enable DCTCP to be deployed
across multi-tenant data centres or across community
of interest networks connecting private data centres—
anywhere where the lack of a centralized system-admin

4Note that access buffers cannot exploit such high flow
aggregation as in the core [20]

makes coordinated deployment of DCTCP impractical.
The most likely DC bottlenecks could be prioritized for
deployment, e.g. at the ingress and egress of hypervisors
or top-of-rack switches depending on topology, and at
WAN access points.

In mobile networks the bottleneck is usually the radio
access where buffering is more complex, but in principle
an AQM similar to the Coupled DualQ ought to work.

6. RELATED WORK
In 2002, Gibbens and Kelly [21] developed a scheme

to mark ECN in a priority queue based on the combined
length of both queues. However, they were not trying
to serve different congestion controllers as in the present
work. In 2005 Kuzmanovic [32, §5] presaged the main
elements of DCTCP showing that ECN should enable a
näıve unsmoothed threshold marking scheme to outper-
form sophisticated AQMs like the proportional integral
(PI) controller. It assumed smoothing at the sender, as
earlier proposed by Floyd [19].

Wu et al. [42] investigates a way to incrementally de-
ploy DCTCP within data centres, marking ECN when
the temporal queue exceeds a shallow threshold but us-
ing standard ECN [39] on end-systems. Kuhlewind et
al. [31] showed that DCTCP and Reno could co-exist in
the same queue configured with a form of WRED [14]
classifying on ECN not Diffserv. Judd [28] uses Diffserv
scheduling to partition data centre switches between
DCTCP and classic traffic in a financial data centre
scenario, but as already explained this relies on man-
agement configuration based on prediction of the traffic
matrix and its dynamics, which becomes hard on low
stat-mux links. Fair Low Latency (FaLL) [43] is an
AQM for DC switches building on CoDel [37]. Unlike
the DualQ, FaLL inspects the transport layer of sample
packets to focus more marking onto faster flows while
keeping the queue short.

7. CONCLUSION
Classic TCP induces two impairments: queuing de-

lay and loss. A good AQM can reduce queuing delay
but then TCP induces higher loss. In a low stat-mux
link, there is a limit to how much an AQM can reduce
queuing delay without TCP’s sawteeth introducing a
third impairment: under-utilization. Thus TCP is like
a balloon: when the network squeezes one impairment,
another bulges out.

This paper moves on from debating where the net-
work should best squeeze the TCP balloon. It recog-
nizes that the problem is now wholly outside the net-
work: Classic TCP (the balloon itself) is the problem.
But this does not mean the solution is also wholly out-
side the network. This paper has shown that the net-
work plays a crucial role in enabling hosts to transition
away from the Classic TCP balloon. The ‘DualQ Cou-
pled AQM’ detailed in this paper is not notable as some-
how a ‘better’ AQM than others. Rather, it is notable

as a coupling between two AQMs in two queues—as a
transition mechanism to enable hosts to kick out their
old TCP balloon.

Hosts will then be able to transition to a member of
the family of scalable congestion controls. This can still
be likened to a balloon. But it is a tiny balloon (near-
zero impairments) and, importantly, it will stay the
same tiny size (invariant impairments as BDP scales).
Whereas the Classic TCP balloon is continuing to grow
(worsening impairments) as BDP scales. This is why
we call the new Internet service ‘Low Latency Low Loss
Scalable throughput’ (L4S).

The paper provides not just the mechanism but also
the incentive for transition—the tiny size of all the im-
pairments. For link rates from 4–200 Mb/s and RTTs
from 5–100 ms, our extensive testbed experiments with
a wide range of heavy load scenarios have shown near-
zero congestion loss; sub-millisecond average queuing
delay (roughly 500µs) with tight variance; and near-
full utilization.

We have been careful as far as possible to do no harm
to those still using the Classic service. Also, given the
network splits traffic into two queues, when it merges
them back together, we have taken great care that it
does not enforce flow ‘fairness’. Nonetheless, if hosts
are aiming for flow ‘fairness’ they will get it, while re-
maining oblivious to the difference between Scalable
and Classic congestion controls.

We have been careful to handle overload in the same
principled way as normal operation, preserving the
same ultra-low delay for L4S packets, and dropping ex-
cess load as if the two queues were one.

And finally, we have been careful to heed the zero-
config requirement of recent AQM research, not only en-
suring the AQMs inherently auto-tune to link rate, but
also shifting RTT-dependent smoothing to end-systems,
which know their own RTT.

8. REFERENCES
[1] Alizadeh, M., Greenberg, A., Maltz,

D. A., Padhye, J., Patel, P., Prabhakar,
B., Sengupta, S., and Sridharan, M. Data
Center TCP (DCTCP). Proc. ACM
SIGCOMM’10, Computer Communication Review
40, 4 (Oct. 2010), 63–74.

[2] Alizadeh, M., Javanmard, A., and
Prabhakar, B. Analysis of DCTCP: Stability,
Convergence, and Fairness. Proc. ACM
SIGMETRICS’11 (2011).

[3] Bai, W., Chen, K., Chen, L., Kim, C., and
Wu, H. Enabling ECN over Generic Packet
Scheduling. In Proc. Int’l Conf Emerging
Networking EXperiments and Technologies (New
York, NY, USA, 2016), CoNEXT ’16, ACM,
pp. 191–204.

[4] Bansal, D., and Balakrishnan, H. Binomial
Congestion Control Algorithms. In Proc. IEEE

Conference on Computer Communications
(Infocom’01) (Apr. 2001), IEEE, pp. 631–640.

[5] Belshe, M., Peon, R., and Thomson (Ed.),
M. Hypertext Transfer Protocol version 2
(HTTP/2). Request for Comments 7540, RFC
Editor, May 2015.

[6] Black, D. Explicit Congestion Notification
(ECN) Experimentation. Internet Draft
draft-ietf-tsvwg-ecn-experimentation-00, Internet
Engineering Task Force, Dec. 2016. (Work in
Progress).

[7] Bondarenko, O., De Schepper, K., Tsang,
I.-J., Briscoe, B., Petlund, A., and
Griwodz, C. Ultra-Low Delay for All: Live
Experience, Live Analysis. In Proc. ACM
Multimedia Systems; Demo Session (New York,
NY, USA, May 2016), ACM, pp. 33:1–33:4.

[8] Briscoe, B. [tcpPrague] Notes: DCTCP
evolution ’bar BoF’: Tue 21 Jul 2015, 17:40,
Prague. Archived mailing list posting URL:
https://mailarchive.ietf.org/arch/msg/tcpprague/
mwWncQg3egPd15FItYWiEvRDrvA, July 2015.

[9] Briscoe, B., Brunstrom, A., Petlund, A.,
Hayes, D., Ros, D., Tsang, I.-J., Gjessing,
S., Fairhurst, G., Griwodz, C., and Welzl,
M. Reducing Internet Latency: A Survey of
Techniques and their Merits. IEEE
Communications Surveys & Tutorials 18, 3 (Q3
2016), 2149–2196.

[10] Briscoe, B., and de Schepper, K. Scaling
TCP’s Congestion Window for Small Round Trip
Times. Technical report TR-TUB8-2015-002, BT,
May 2015. http://riteproject.eu/publications/.

[11] Briscoe, B., Kühlewind, M., and
Scheffenegger, R. More Accurate ECN
Feedback in TCP. Internet Draft
draft-ietf-tcpm-accurate-ecn-02, Internet
Engineering Task Force, Oct. 2016. (Work in
Progress).

[12] Briscoe (Ed.), B., De Schepper, K., and
Bagnulo, M. Low Latency, Low Loss, Scalable
Throughput (L4S) Internet Service: Architecture.
Internet Draft draft-briscoe-tsvwg-l4s-arch-00,
Internet Engineering Task Force, Oct. 2016.
(Work in Progress).

[13] Chen, W., Cheng, P., Ren, F., Shu, R., and
Lin, C. Ease the Queue Oscillation: Analysis and
Enhancement of DCTCP. In Distributed
Computing Systems (ICDCS), 2013 IEEE 33rd
International Conference on (July 2013),
pp. 450–459.

[14] Clark, D. D., and Fang, W. Explicit
allocation of best-effort packet delivery service.
IEEE/ACM Transactions on Networking 6, 4
(Aug. 1998), 362–373.

[15] Davie, B., et al. An Expedited Forwarding
PHB (Per-Hop Behavior). Request for Comments

3246, Internet Engineering Task Force, Mar. 2002.
[16] De Schepper, K., Bondarenko, O., Tsang,

I.-J., and Briscoe, B. PI2 : A Linearized AQM
for both Classic and Scalable TCP. In Proc. ACM
CoNEXT 2016 (New York, NY, USA, Dec. 2016),
ACM.

[17] De Schepper, K., Briscoe (Ed.), B.,
Bondarenko, O., and Tsang, I.-J. DualQ
Coupled AQM for Low Latency, Low Loss and
Scalable Throughput. Internet Draft
draft-briscoe-tsvwg-aqm-dualq-coupled-00,
Internet Engineering Task Force, Oct. 2016.
(Work in Progress).

[18] De Schepper, K., Briscoe (Ed.), B., and
Tsang, I.-J. Identifying Modified Explicit
Congestion Notification (ECN) Semantics for
Ultra-Low Queuing Delay. Internet Draft
draft-briscoe-tsvwg-ecn-l4s-id-02, Internet
Engineering Task Force, Oct. 2016. (Work in
Progress).

[19] Floyd, S. TCP and Explicit Congestion
Notification. ACM SIGCOMM Computer
Communication Review 24, 5 (Oct. 1994), 10–23.
(This issue of CCR incorrectly has ’1995’ on the
cover).

[20] Ganjali, Y., and McKeown, N. Update on
Buffer Sizing in Internet Routers. ACM
SIGCOMM Computer Communication Review 36
(Oct. 2006).

[21] Gibbens, R. J., and Kelly, F. P. On Packet
Marking at Priority Queues. IEEE Transactions
on Automatic Control 47, 6 (June 2002),
1016–1020.

[22] Ha, S., Rhee, I., and Xu, L. CUBIC: a new
TCP-friendly high-speed TCP variant. SIGOPS
Operating Systems Review 42, 5 (July 2008),
64–74.

[23] Hoeiland-Joergensen, T., McKenney, P.,
Täht, D., Gettys, J., and Dumazet, E. The
FlowQueue-CoDel Packet Scheduler and Active
Queue Management Algorithm. Internet Draft
draft-ietf-aqm-fq-codel-06, Internet Engineering
Task Force, Mar. 2016. (work in progress).

[24] Hohlfeld, O., Pujol, E., Ciucu, F.,
Feldmann, A., and Barford, P. A QoE
Perspective on Sizing Network Buffers. In Proc.
Internet Measurement Conf (IMC’14) (Nov.
2014), ACM, pp. 333–346.

[25] Hollot, C. V., Misra, V., Towsley, D., and
Gong, W. Analysis and design of controllers for
AQM routers supporting TCP flows. IEEE
Transactions on Automatic Control 47, 6 (Jun
2002), 945–959.

[26] Irteza, S., Ahmed, A., Farrukh, S., Memon,
B., and Qazi, I. On the Coexistence of
Transport Protocols in Data Centers. In Proc.
IEEE Int’l Conf. on Communications (ICC 2014)

(June 2014), pp. 3203–3208.
[27] Joy, S., and Nayak, A. Improving Flow

Completion Time for Short Flows in Datacenter
Networks. In Int’l Symposium on Integrated
Network Management (IM 2015) (May 2015),
IFIP/IEEE, pp. 700–705.

[28] Judd, G. Attaining the Promise and Avoiding
the Pitfalls of TCP in the Datacenter. In 12th
USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15) (Oakland,
CA, May 2015), USENIX Association,
pp. 145–157.

[29] Kelly, T. Scalable tcp: Improving performance
in highspeed wide area networks. ACM
SIGCOMM Computer Communication Review 32,
2 (Apr. 2003).

[30] Kühlewind, M., Scheffenegger, R., and
Briscoe, B. Problem Statement and
Requirements for Increased Accuracy in Explicit
Congestion Notification (ECN) Feedback. Request
for Comments 7560, RFC Editor, Aug. 2015.

[31] Kühlewind, M., Wagner, D. P., Espinosa,
J. M. R., and Briscoe, B. Using Data Center
TCP (DCTCP) in the Internet. In Proc. Third
IEEE Globecom Workshop on
Telecommunications Standards: From Research to
Standards (Dec. 2014), pp. 583–588.

[32] Kuzmanovic, A. The Power of Explicit
Congestion Notification. Proc. ACM
SIGCOMM’05, Computer Communication Review
35, 4 (2005).

[33] Kwon, M., and Fahmy, S. A Comparison of
Load-based and Queue-based Active Queue
Management Algorithms. In Proc. Int’l Soc. for
Optical Engineering (SPIE) (2002), vol. 4866,
pp. 35–46.

[34] Mathis, M. Relentless Congestion Control. In
Proc. Int’l Wkshp on Protocols for Future,
Large-scale & Diverse Network Transports
(PFLDNeT’09) (May 2009).

[35] Mathis, M., Semke, J., Mahdavi, J., and
Ott, T. The macroscopic behavior of the TCP
Congestion Avoidance algorithm. Computer
Communication Review 27, 3 (July 1997).

[36] Menth, M., Schmid, M., Heiss, H., and
Reim, T. MEDF - a simple scheduling algorithm
for two real-time transport service classes with
application in the UTRAN. In Proc. IEEE
Conference on Computer Communications
(INFOCOM’03) (Mar. 2003), vol. 2,
pp. 1116–1122.

[37] Nichols, K., and Jacobson, V. Controlling
Queue Delay. ACM Queue 10, 5 (May 2012).

[38] Pan, R., Piglione, P. N. C., Prabhu, M.,
Subramanian, V., Baker, F., and
Ver Steeg, B. PIE: A Lightweight Control
Scheme To Address the Bufferbloat Problem. In

High Performance Switching and Routing
(HPSR’13) (2013), IEEE.

[39] Ramakrishnan, K. K., Floyd, S., and
Black, D. The Addition of Explicit Congestion
Notification (ECN) to IP. Request for Comments
3168, RFC Editor, Sept. 2001.

[40] Salim, J. H., and Ahmed, U. Performance
Evaluation of Explicit Congestion Notification
(ECN) in IP Networks. Request for Comments
2884, RFC Editor, July 2000.

[41] Welzl, M., and Fairhurst, G. The Benefits of
using Explicit Congestion Notification (ECN).
Internet Draft draft-ietf-aqm-ecn-benefits-08,
Internet Engineering Task Force, Nov. 2015.
(Work in Progress).

[42] Wu, H., Ju, J., Lu, G., Guo, C., Xiong, Y.,
and Zhang, Y. Tuning ECN for Data Center
Networks. In Proceedings of the 8th International
Conference on Emerging Networking Experiments
and Technologies (New York, NY, USA, 2012),
CoNEXT ’12, ACM, pp. 25–36.

[43] Xue, L., Chiu, C.-H., Kumar, S.,
Kondikoppa, P., and Park, S.-J. FaLL: A fair
and low latency queuing scheme for data center
networks. In Intl. Conf. on Computing,
Networking and Communications (ICNC 2015)
(Feb. 2015), pp. 771–777.

[44] Zhang, T., Wang, J., Huang, J., Huang, Y.,
Chen, J., and Pan, Y. Adaptive-Acceleration
Data Center TCP. IEEE Transactions on
Computers 64, 6 (June 2015), 1522–1533.

	Glossary
	I Introduction
	Introduction
	Motivation
	Main contributions
	Outline

	Technology background
	IP
	Transmission Control Protocol
	Congestion control
	Reno
	CUBIC

	Explicit congestion notification
	Using ECN for scalable marking

	Data center TCP
	User Datagram Protocol

	Queueing
	Relation between rate and delay
	Common round-trip delay time

	Queueing in routers
	Tail drop
	Active queue management
	RED - Random Early Detection
	PIE - Proportional Integral controller Enhanced
	DualPI2
	Keeping queueing delay low
	Coupling between classical and scalable TCP
	Multiple queues
	Priority scheduler
	Overload handling

	II Testbed design and setup
	Topology
	Collecting metrics
	Measuring actual queueing delay and drops at the AQM
	Modifying existing schedulers to add reporting
	Improving the precision of reporting
	Drop statistics

	Saving the metrics

	Test framework
	Building test definitions
	Building test tree

	Built in metrics
	Other features

	Traffic generation tools
	Greedy
	SSH and SCP
	iperf2 for TCP
	iperf2 for UDP
	A note about iperf3 for UDP traffic

	Comparing traffic generators

	Virtualized testing with Docker
	Introduction to Docker and containers
	Defining the containers and network topology for Docker
	Networking in containers
	Initializing networks in the container
	Setting congestion control and ECN feature

	Pitfalls
	Segmentation offloading
	ARP requests causing silent periods
	Buffer limits testing high BDP
	Buffer size for base RTT
	Kernel TCP memory limits

	Implicit delay at low bandwidth

	Improving the DualPI2 implementation
	Moving the drop from enqueue to dequeue

	III Evaluation
	Default parameters
	Default parameters unless otherwise noted

	Overload in DualPI2
	Response to simple overloading
	Impact of overload in existing traffic

	Ultra-low queueing delay threshold
	Comparing virtual tests against the physical testbed

	IV Conclusion
	Conclusion
	Future Work
	Testing scenarios
	Easier instrumentation of other AQMs
	Malicious users
	Segmentation offloading
	Stability and accuracy of using a virtual testbed

	Appendices
	Source code
	Greedy
	Testbed setup
	Docker setup
	Python framework for testing AQMs
	Test code

	`Data Centre to the Home': Deployable Ultra-Low Queuing Delay for All

