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Abstract

The goal of this thesis is to model the resolution of referring expressions
(e.g., the red ball) to visual entities in real world. This task is known as
visual reference resolution. In order to address it, two types of information
have to be combined: the visual aspects of the objects in the world and
the linguistic information provided by the speaker. In this thesis, we use a
machine learning approach to construct a model that incorporates both types
of information. For each object in the world and each referring expression,
we calculate the probability of resolving this referring expression to each
object given this referring expression and the visual aspects of the world. A
binary logistic regression classifier using a combination of visual and linguistic
features is trained to resolve such references. Both simple references (the red
ball) and relational references (the red ball under the green cube) are handled.
The model has been evaluated on two datasets using both virtual and real-
world scenes. The evaluation shows that the model performs well, in several
cases outperforming existing baselines. It is also shown to be robust to
visual uncertainty in the world and to noisy speech input. The model can be
extended to incorporate other modalities.
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Chapter 1

Introduction

1.1 Visual Reference Resolution
Visual reference resolution (RR) is the task of finding the target object of
a given referring expression (RE) in a situated setting. Formally, this task
consists of several obligatory steps (Kennington and Schlangen, 2017):

• The speaker (see figure 1.1) perceives an object with specific visual
features

• She forms the intention of referring to this object by:

– uttering a descriptive referring expression (e.g. the small cube to
the left of the ball)

– using a demonstrative phrase (e.g., that, while pointing)

– combining these two strategies (e.g., that small cube and pointing)

• The listener perceives the objects and hears the utterance

• The listener combines her knowledge about the visual features of the
objects and the information received from the utterance and tries to
identify the intended object

This intended object is usually called target, or referent. In our toy exam-
ple (figure 1.1), the leftmost cube is the target. The ball, which is mentioned
in the RE, is the landmark. All other objects in the scene are distractors.
The whole utterance in this example is the RE itself, but in many cases the
RE is only the part of the utterance (cf. Please take the small cube and put
it on the big cube, where one of the two REs is the small cube). The RE can
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contain information about the target’s colour, shape, size, spatial position,
etc.

Figure 1.1: Example of a situated environment

The described setting is an example of a situated dialogue. Dialogue
is defined as a “joint process of communication, which involves sharing of
information (data, symbols, context) between two or more parties“ (Kruijff
et al., 2007). In a situated dialogue, the participants in addition share a
common environment. They can perceive the same objects and events, so
space is shared. Time is shared as well since the listener starts resolving the
utterance as soon as the speaker starts talking (Kennington and Schlangen,
2017).

In a situated dialogue, language grounding must occur. It means that the
representations of the meanings of natural language have to be tied to the
physical world (Matuszek et al., 2012), or, to put it briefly, words have to be
connected to perception.

Visual RR is quite difficult even in human-human interaction because of a
lot of uncertainty in the perception of the world and to ambiguity in natural
language. In human-robot interaction (HRI), it is an extremely complex task
due to several challenges which are described below.
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Figure 1.2: Example scene. The target is highlighted in black for presen-
tation. The scene is borrowed from the TAKE-CV corpus, described in
chapter 4

1.1.1 Challenges

First, the environment is only partially observable. It means that the agent
does not have a perfect and complete perception of the state of the envi-
ronment. The observations are noisy and provide incomplete information
(Kaelbling et al., 1996).

The environment can also be dynamic and change over time. The partic-
ipants in the dialogue usually can move, the objects in the scene can move,
appear or disappear. A simple action of picking up the object changes both
the state of the agent and the environment.

Moreover, visual processing is a very difficult task. Colours, for exam-
ple, are quite hard to determine, and the colour ”blue“ perceived by the
computer can be rather different from the ”perfect“ blue colour [0,0,255].
For instance, the piece in a black frame (figure 1.2) seems almost unam-
biguously green for a human eye, but computer vision perceives RGB values
[52,144,105] and estimates the colour as blue.

Finally, in many cases the uttered references are not simple. When land-
marks are used to describe the intended object, the RE are called relational.
For such expressions, the agent has to not only find the target, but also all
landmarks used and all the relations between possible target and landmarks.
In a short dialogue (1.3), the referent of the RE in line 3 is the battery room,
but also the landmark the water tank and the relation next to have to be
resolved.

Visual RR in spontaneous situated dialogue is even more challenging.
First, utterances in human-human interaction are generated and processed
incrementally. We do not wait for the dialogue partner to finish the sentence

3



1 PICARD: Where’s the battery room for the hospital?
2 [...]
3 DOCTOR: Outside, around back. Next to the water tank.

Figure 1.3: Example of landmark use, from Danescu-Niculescu-Mizil and Lee
(2011)

1 MISS GULCH: What’s she done? I’m all but lame from the bite
2 on my leg!
3 UNCLE HENRY: You mean she bit you?
4 MISS GULCH: No, her dog!
5 UNCLE HENRY: Oh, she bit her dog, eh?
6 MISS GULCH: NO!

Figure 1.4: Example of ellipsis, from Danescu-Niculescu-Mizil and Lee (2011)

or the referring expression to start resolving the reference.
Furthermore, there can be a lot of elliptical constructions in human

speech. In example dialogue 1.4, the confusion arises i.a. because of the
elliptical construction in line 4.

Humans also tend to make mistakes while speaking, and then corrections
are inevitable (see dialogue 1.5). These corrections can be quite difficult
to resolve. The module for RR needs somehow to understand which words
should not be a part of the actual RE. It should not only handle negations
(e.g., red... no, green ball), but also corrections that are much less explicit
and can occur not directly after the last uttered word. For instance, in line
5, dialogue 1.4, Uncle Henry assumes that ”her dog“ is the correction for the
last uttered word, ”you“, in line 3, which leads to misunderstanding.

RR in dialogue is inherently interactive, so another challenge is taking into
consideration all forms of interaction feedback provided — different types of
confirmation, interest and so on. Non-verbal information, like gaze, gestures,
nodding, shaking head is also an essential part of the dialogue which can
enrich or specify the meaning of a given utterance, so it would be beneficial
to process and apply it as well.

All things considered, visual RR is a complex and challenging task which
opens up for a lot of interesting research.
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1 JOE: You want me to leave?
2 TOWNY: No, yes. No, I mean yes please go. Help me to be good.
3 Come back tomorrow. Promise.

Figure 1.5: Example of corrections, from Danescu-Niculescu-Mizil and Lee
(2011)

1.2 Motivation
Visual RR is not only a comprehensive and difficult task, it is also a very
important task. It is one of the essential components of any situated di-
alogue. Whether it is human-human or human-robot interaction, REs are
always used to refer to different kinds of objects. REs can vary from sim-
ple noun phrases in everyday life (the window in Look out the window) to
more complex expressions which possibly contain several other objects and
relations between them (the green book near the red ball which is under the
big wooden table). All such expressions have to be resolved in order to have
a successful dialogue act. Therefore, it is essential to have a reliable RR
module in a dialogue system.

1.3 Goal & Proposed Solution
The goal of this thesis is to create a model for the task of visual RR. Given the
objects with some visual aspects and a RE, the model has to return the target
object. The model has to be robust and be able to handle uncertain visual
features and noisy linguistic input. Both simple and relational references
should be handled. The model should provide respectable results even with
little data available.

The proposed solution presents a probabilistic model for the task of visual
RR. Given the visual features of the objects in the world and the RE, the
model returns a probability distribution over candidate objects. The target
object is the argmax of this distribution. To train the model, one needs the
representation of the objects (one-hot encoded or low-level visual features),
the RE and the annotation of the target. A single binary logistic regres-
sion classifier is then used. The model can handle uncertainty in the world
and noisy input, and provides good results compared to the other models
evaluated on the same datasets.
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1.4 Thesis structure
Chapter 2 provides an overview of related work on visual RR. It con-
centrates on three approaches: an approach based on Givenness Hierarchy,
Simple Incremental Update Model (SIUM) and Words-as-Classifiers (WAC).
Both SIUM and WAC are the baselines for our own approach. Both the
method, the data and the results are described.

Chapter 3 presents the developed approach for solving the task of visual
RR. We describe the motivation for a chosen solution and present the model
itself. Feature creation is explained in detail. Finally, possible extensions to
the model are given.

Chapter 4 describes the two corpora of data we have worked on and
gives examples of several types of REs.

Chapter 5 outlines our experimental setup. It describes all possible
tuning parameters and provides analysis of the results and comparison to
previous work on the same corpora.

Chapter 6 is a summary and conclusion of the thesis, and also a discus-
sion of future work.
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Chapter 2

Background

In this chapter, an overview of the approaches used for solving the visual
RR task, is given. In the first section, we briefly outline several types of
models. In the second one, we more thoroughly describe an approach based
on Givenness Hierarchy. The third and the fourth sections are devoted to the
intuitively similar, but still different approaches, Simple Incremental Update
Model (SIUM) and Words-as-Classifiers model (WAC), which were evaluated
on partly the same datasets.

2.1 Overview
The problem of RR is well-studied in several different fields such as linguis-
tics (Pineda and Garza, 2000; Abbott, 2010), psychology (Dahan et al., 2002;
Staudte and Crocker, 2009), human-human interaction (Iida et al., 2010; Ken-
nington et al., 2015b) and human-robot interaction (Brøndsted, 1999; Chen
and Xu, 2006; Funakoshi et al., 2012). Two comprehensive theses by Denis
(2007) and Kennington (2016) provide an exhaustive overview over research
in the fields of RR and visual RR respectively. Götze (2016) also describes
a substantial part of relevant literature in her thesis. In this section, there-
fore, we do not attempt to give a complete overview over existing research,
but rather a brief summary of the approaches. We will concentrate only on
comprehension of RR, as the related task of generating REs is beyond the
scope of this thesis.

Approaches to the task of RR can be roughly divided into two parts:
rule-based and probabilistic.
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2.1.1 Rule-based approaches

Rule-based approaches are quite often used for anaphora resolution. Anaphoric
REs refer to something already mentioned in the text (e.g., it in Find a red
ball. Give it to me). Especially in written discourse the field of anaphora
resolution has been actively researched for many years (Dahl, 1986; Williams
et al., 1996; Mitkov, 1998; Akker et al., 2002; Lee et al., 2013). In situated
dialogues, REs are usually exophoric, i.e. denoting external objects which
have not been introduced in the linguistic context yet, but which are within
the immediate environment of the speaker (Götze, 2016) (e.g., the red ball in
Give me the red ball).

An example of a rule-based approach resolving exophoric REs is presented
in the paper by Schutte et al. (2010). The virtual environment consists of a
set of rooms that contain cabinets and buttons (see figure 2.1). Cabinets can
be opened and closed, and buttons can be activated. Some cabinets contain
items. To fulfil the task, the participants had to retrieve certain items and
move them to different cabinets. All objects are assigned a score based on
their visibility.

Figure 2.1: Example of visual environment from Schutte et al. (2010)

In order to solve this task, a following set of rules was created:

1. Extract which type of object (door or button) is referred to in the
instruction by matching the instruction with the regular expressions
[...]1.

2. Collect all objects visible during the time covered by the instruction.

3. Filter out all objects of types incompatible to the instruction.

4. For each remaining object sum the number of ray hits for that object2.
1Regular expressions are predefined by the authors.
2In other words, compute a visibility score.
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5. Rank the objects using a salience metric.

6. Return the object with the highest salience.

The first step in these rules finds the RE, whereas the second one provides
an overview of candidate objects. The RR itself occurs here in steps 3–6.

Another example of a rule-based approach is described in Kruijff et al.
(2006). The paper presents the strategies for intra-modal and inter-model fu-
sion. Intra-modal fusion strategy is used to establish whether different REs
denote the same object, whereas the goal of inter-modal fusion is to establish
relations between equivalence classes (EC) across different modalities. When
the RE is uttered, an equivalence class is created to hold this linguistic repre-
sentation. Subsequent references are then fused into the same EC. To create
these ECs and process all REs, the set of rules is used.

After applying the first model, an inter-modal fusion is carried out, i.e.
a linguistic EC is fused with respective ECs from other modalities (e.g.,
visual properties). The new bindings are created with another set of rules,
where each action depends on the number of retrieved inter-modal binding
structures.

Other examples of rule-based approaches are models built on the Given-
ness Hierarchy (Kehler, 2000; Chai et al., 2006; Williams et al., 2016) which
are described in section 2.2.

2.1.2 Probabilistic approaches

Probabilistic approaches assign probabilities to each object being the target
given a RE. Formally, given a world W and an utterance U , the purpose of
RR is to compute a probability distribution over a set of candidate objects.
The referred object I is the argmax of this distribution:

I∗ = argmax
I

P (I|U,W ) (2.1)

An example of a probabilistic approach is presented in Funakoshi et al.
(2012). The domain used is a puzzle game Tangram (see figure 2.2). The
world W is represented as a set of concepts (shape types, size, etc.) and
the utterance U is represented by words in the RE. The data is in Japanese
and was collected during human–human interaction. To learn the mapping
between W and U , the Bayesian network is used.

The task of RR is formalised in the following way (W1, X andD represent
an observed word, the referent of the RE and the presupposed reference

1In the cited paper, the word is denoted by W
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Figure 2.2: Example scene from Funakoshi et al. (2012)

domain):

x
′
= argmax

x∈D(X)

P (X = x|W1 = w1, ...,WN = wN) (2.2)

P (X|W1, ...,WN) is obtained by marginalizing the joint probabilities that
are computed with the help of four probability tables.

In order to compute P (X|W1, ...,WN), four probability tables are needed.
The first table is the probability that a hearer observes the word w from the
concept c and the referent of the RE x. Formally, it is expressed as P (Wi =
w|Ci = c,X = x). The second one is the probability that concept c is chosen
from domainD(Ci) to indicate the referent x in reference domain d— P (Ci =
c|X = x,D = d). The third table is the prediction model: the probability
that entity x in reference domain d is referred to (P (X = x|D = d)). The
final table represents the probability that reference domain d is presupposed
at the time the RE is uttered (P (D = d)). Since reference domains are
implicit, the data cannot be collected to estimate this model. Several a
priori approximation functions are used to calculate this probability. By
marginalising these four joint probabilities, P (X|W1, ...,WN) from equation
2.2 is obtained.

This model can handle both definite references, exophoric pronoun ref-
erences and deictic references. It can also be used for resolving REs with a
single target as well as references to two objects.

Another probabilistic approach is described in Matuszek et al. (2012).
The authors present the approach for learning three components of the model:
(1) visual classifiers that identify the appropriate object properties, (2) rep-
resentations of the meaning of individual words that incorporate these clas-
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sifiers, and (3) a model of compositional semantics used to analyse complete
sentences. To train visual classifiers (i.e., to represent objects in the world
W ), colour and shape features are used. To represent an utterance U , a
semantic parsing model is used (each utterance then is a Combinatory Cat-
egorial Grammar parse). The domain used is a selection of toys, including
wooden blocks, plastic food, and building bricks (see figure 2.3). Resolving
the reference is computing a joint distribution over the representation of the
world and the utterance. The approach is robust to noisy visual input and
provides good results (e.g., a precision score of 82%).

Figure 2.3: Example scene from Matuszek et al. (2012)

Two other probabilistic models are presented further in this chapter, sec-
tion 2.3 and 2.4.

2.2 Givenness Hierarchy
Givenness hierarchy (GH) is a scale which represents six possible kinds of
information status that referring expressions can signal (see figure 2.4). It
was developed by J.Gundel in 1993 (Gundel et al., 1993) and is used in several
algorithms within HRI. Statuses on the GH are not mutually exclusive: if any
piece of information has a certain status, it also attains all lower classes. For

Figure 2.4: Givenness Hierarchy, from Gundel et al. (1993)
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instance, if some information is in the focus of attention, then it means that
it is also activated (in working memory), familiar (in long-term memory),
can be uniquely identified (gets a unique mental representation by the end
of the NP), can be referred to (is unique by the end of the sentence) and
its type can be identified. In the sentence That red object to the left is a
cup, the determiner that implies that the listener has a representation of the
object in long-term memory (that it is familiar). But if that is replaced by
the, The red object to the left is a cup, the only information encoded is that
the addressee is expected to associate a unique representation with the NP,
either by retrieving a representation from memory or by constructing a new
one (Gundel et al., 2010).

To decide which cognitive status an NP has, Gundel et al. have developed
a “coding protocol” which contains different criteria that might be used to
determine possible status. Some examples of such criteria are listed below
(Gundel, 2010):

A referent can be assumed to be in focus if

1. the addressee is intently looking at it.

2. it was introduced in a syntactically prominent position in
the immediately preceding sentence.

A referent can be assumed to be at least activated if

1. it is present in the immediate extralinguistic context.

2. it is mentioned in the immediately preceding sentence.

Thus, the GH and the coding protocol provide both data structures for
RR and guidelines for how to populate and access them. This information
is then used to develop reference resolution algorithms. Williams et al. in
their paper describe some of the existing algorithms and present their own
solution, gh-power (Williams et al., 2016).

2.2.1 GH-based algorithms and their challenges

One of the implementations which is examined is an algorithm by Kehler
(2000). It is based on a modified GH where the two last levels (referential
and type identifiable information) are omitted. The four following rules are
provided for resolving any references:

1. If the object is gestured to, choose that object
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Figure 2.5: Example participant interface from Kehler (2000)

2. Otherwise, if the currently selected object meets all semantic
type constraints imposed by the referring expression (i.e.,
“the museum” requires a museum referent; bare forms such
as “it” and “that” are compatible with any object), choose
that object.

3. Otherwise, if there is a visible object that is semantically
compatible, then choose that object.

4. Otherwise, a full NP (such as a proper name) was used that
uniquely identified the referent

The model was evaluated on the data collected by the author. Partici-
pants had to plan their holiday in Toronto, given a map of the city and points
of interest (figure 2.5). They could ask the wizard questions about the dis-
tricts (e.g., What restaurants are there in this area? ), and the corresponding
items were highlighted in the scene. The algorithm was able to achieve 100%
accuracy, resolving all REs correctly.

The second implementation is made by Chai et al. (2006). This modifi-
cation of GH includes four other levels: gesture (entities gestured towards),
focus (a combination of “in focus” and “activated” tiers from original GH),
visible (a combination of “familiar” and “uniquely identifiable”) and others
(“referential” and “type identifiable”). A greedy algorithm is then used. It
first assigns a score between each referential expression X and entity N in a
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set of vectors (Gesture, Focus, Visible). This score is calculated by multiply-
ing the probability of selecting N from its vector, the probability of selecting
that tier given the form of X and the compatibility between X and N. Then
the algorithm greedily binds references to entities.

This approach, however, does not capture all aspects of reference resolu-
tion in HRI. Williams et al. (2016) concentrate on the five following aspects:

1. Complete certainty of a property is impossible in HRI. An entity can
have a certain property with some probability.

2. The algorithm cannot handle not currently visible, hypothetical ob-
jects whereas in HRI they are very common and many of the scenarios
assume open world.

3. Not physically existing entities (e.g., references referring to events) rep-
resent a problem as well.

4. Some references cannot be distinguished since “in focus” and “activated”
levels are combined.

5. A greedy algorithm can potentially have difficulties resolving subse-
quent referential expressions if the first one is incorrectly resolved.

Taking into consideration all these problems, T.Williams et al. propose ex-
tended guidelines for GH and a new domain-dependent open-world reference
resolution algorithm, gh-power.

2.2.2 gh-power

The gh-power algorithm first parses the utterance and generates a depen-
dency graph which is then converted into a tree. From the tree structure one
can extract a set of formulae representing semantics, a set of “status cue” map-
pings for each referenced entity (e.g., {X → familiar, Y → infocus}) and
a type of utterance (e.g., “Statement”). Secondly, gh-power populates and
sorts four data structures, foc (in focus), act (activated), fam (familiar)
and ltm (long-term memory) using the following rules (only implemented
rules are included here):

1. foc

• Main clause subject of clause n-1
• Syntactic Focus of clause n-1

2. act
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• All other entities referenced in clause n-1

3. fam

• All entities referenced in clause n-1

4. ltm

• All declarative memory

Lastly, the references in a given clause are resolved. If more or less than
one hypothesis was found, the set of solutions is returned and the RE is
marked as either ambiguous or unresolvable. If only one hypothesis remains,
the semantics the RE is resolved.

2.2.3 Limitations

The algorithm developed by Williams et al. provides improvements on all five
problematic aspects named earlier. It can handle uncertainty1, open worlds,
references to hypothetical entities, references to unobservable entities and
complex noun phrases. There are, however, several areas where more work is
needed — resolving plural references (e.g., the objects), non-discrete entities
(parts or regions of an object), using gesture and eye-gaze for disambiguation
and dealing with idiomatic expressions.

2.3 Simple Incremental Update Model
Another approach to solving the task of visual RR is developed by C. Ken-
nington et al. (Kennington et al., 2013, 2014; Kennington, 2016; Kennington
and Schlangen, 2017). It is called Simple Incremental Update Model (SIUM)
and is a generative RR model.

2.3.1 Model

As mentioned earlier, the goal of visual RR is to determine a referent for a
given RE. Formally, RR is a function frr that, given a representation U of
the RE and a representation W of the world, returns I∗, the identifier of the
referent (Kennington and Schlangen, 2015). Since the model is stochastic, a

1Compared to other GH-based algorithms. Since GH does not specify how to handle
uncertainty and how to resolve intra-tier ambiguity, it is a hard task for GH-based ap-
proaches. In (Williams et al., 2016) the notion of probability is introduced. They show
that if there is 70% of choosing one referent and 40% of choosing another, the RE is
resolved to the first object.
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probability distribution over candidate objects is computed, and the target
object is then the argmax:

I∗ = argmax
I

P (I|U,W ) (2.3)

To make equation 2.3 generative, Bayes’ rule is applied:

P (I|U,W ) =
P (U |I,W )P (I|W )

P (U |W )
(2.4)

From this equation, one can see that it is necessary to maintain a model
for all possible intentions and world configuration, and that is not feasible.
In order to be able to solve the problem, several assumptions are introduced.
To begin with, it is assumed that words in U are uttered precisely to identify
the target. Therefore, a mediating variable R is inserted between U and
I. R represents more directly what is uttered in U , and also maintains a
connection to the target. It represents properties that objects have, mapped
to words in REs1.

P (I|U,W ) =
∑
r∈R

P (U |R = r)P (R = r|I,W )P (I|W )

P (U |W )
(2.5)

Then it is also assumed that P (I|W ) and P (U |W ) can be simplified to
P (I) and P (U) respectively, due to conditional independence. They can also
be moved out of summation since they do not depend on R. P (R|I,W ) can
be computed by reading off properties of the objects in W . Equation 2.5 can
be then rewritten as following:

P (I|U,W ) =
1

P (U)
P (I)

∑
r∈R

Pw(U |R = r)P (R = r|I) (2.6)

Formula 2.6 represents the model working on the whole RE. SIUM, how-
ever, is an incremental model, assuming that each word in a RE corresponds
with one property of an object. It means that the formulation in 2.6 has
to be altered, otherwise a different formulation would be required for the
REs of different length. Moreover, an update-incremental model is preferred
to a restart-incremental one. An update-incremental model keeps its inter-
nal state between incremental update steps, enriching it at each increment
with the delta between the current and the previous increment (Kennington,

1Properties in the model can be visual properties (colour), shape (e.g., cross or T-
shaped) or spatial placement (e.g., left-of). The properties can also be connected to
additional modalities, for instance an object which a speaker is pointing to and using the
word “that” can have a pointed-at property.

16



1 Update-incremental:
2 (1) the
3 (2) red
4 (3) ball
5

6 Restart-incremental:
7 (1) the
8 (2) the red
9 (3) the red ball

Figure 2.6: Comparison of update-incremental and restart-incremental mod-
els

2016). A restart-incremental model, on the other hand, the internal state is
thrown away between updates and output is always recomputed from scratch
using the current input prefix and not just the newest increment of it. Figure
2.6 presents a simple example of both models.

To make the formulation of the model update-incremental, I then is
treated as a different variable at each increment, and I in the current step
is dependent on all other variables in the current step and the previous step
(for a two-word RE):

P (I2|I1, U1, U2, R1, R2) =
P (I1, I2, U1, U2, R1, R2)

P (I1, U1, U2, R1, R2)
(2.7)

It can be altered in a similar way as 2.6:

P (I2|I1, U1, U2) = P (I2|I1)P (I1)
∑
r2∈R2

P (U2|R2)(P (R2|I2)
P (U2)

∑
r1∈R1

P (U1|R1)(P (R1|I1)
P (U1)

(2.8)
Several more simplifications are needed to arrive to the final model. First,

P (I2|I1) is defined as a function that is set to zero when I1 does not equal
I2. Furthermore, the last summation in 2.8 is the computation from the
previous step, which is a distribution over I1. P (I1) is then treated as that
distribution being made a prior probability that is set to the posterior of the
previous step. P (Uk) can be dropped by assuming that all words are equally
likely to be uttered. The final formulation then is as following:

P (I|U) = P (I)
∑
r∈R

P (U |R = r)P (R = r|I) (2.9)
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2.3.2 Submodels

The described model consists of several sub-models, such as the model linking
objects and properties together, language and properties and also a prior
P (I). These sub-models are briefly explained below.

Objects and properties (P (R|I))

This sub-model connects objects and their properties (colour, shape, position,
etc.). It is assumed that with equal probability one of the properties that the
object has will be verbalised and as a consequence, zero probability is left to
the properties the object does not have. In other words, it is expected for
a rational speaker to mention properties that are realised and not all other
properties.

If the properties are not clear, this sub-model can also have uncertainty
in its representation. In this case, it maintains a distribution over properties
(the highest probability will then represent the strongest belief that the given
object has this property).

P (R|I) can also encode salience information in the distribution over prop-
erties. Then P (R) in the derivation is not uniform and should be kept in the
model.

It is up to oneself to decide whether to include uncertainty or salience in
the model.

Language and properties (P (U |R))

Another sub-model, P (U |R), is responsible for mapping between language
and properties. It can be seen as a function from a word (or another linguis-
tic element) to a semantic concept where the set of properties represent the
existing semantic concepts. For instance, the word red would correspond to
the concept redness represented by certain properties (e.g., a certain combi-
nation of RGB values). P (U |R) is not pre-defined by rules, but learned from
data using Maximum Likelihood estimation. For training, it is counted how
many times a word co-occurs with a given property, out of all times when
the property was represented. This is a kind of grounded semantics.

Contextual prior (P (I))

The third sub-model, P (I), allows to keep track of the distribution over I
as the RE incrementally unfolds. At the beginning of the analysis the prior
P (I) is set to a uniform distribution. For later steps, it is set to be the
posteriori of the previous step.
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2.3.3 Evaluation

SIUM was evaluated on the two sub-corpora, TAKE and WOZ, of the Pen-
toRef corpus of spoken references in task-oriented dialogues (Zarrieß et al.,
2016). WOZ is a somewhat small corpus which is not used in other exper-
iments, so we will focus on TAKE in this thesis. It is outlined in the next
section in comparison with TAKE-CV, another sub-corpus, and presented
in detail in chapter 4. We will nevertheless provide a very short description
here as well.

TAKE is a German language corpus collected in a Wizard-of-Oz study
in Pentomino domain. The participants were shown a Pento board with 15
pieces (figure 4.2), and they had to choose and describe one of the pieces
to a wizard. The wizard made a guess, either a confirmation or a rejection
was uttered, and the whole process was repeated. Gaze and deixis were also
recorded.

For evaluation of SIUM, two kinds of experiments were conducted. For
the first one the raw data was used, i.e. the visual properties of the objects
were given beforehand. The results include accuracy for the basic model and
also for combination with gaze and deixis. We are mostly interested in the
speech-only SIUM, so only these numbers are provided below. Other results
with additional modalities can be found in the cited papers (Kennington,
2016; Kennington and Schlangen, 2017). In the experiment number two,
uncertainty in the perception of the world was introduced. The images were
distorted in a particular way (more about it in chapter 4, section 4.1), and
the visual properties of the objects were read from these pictures.

The relevant results are presented in the table below (table 2.1).

Corpus Accuracy, %

TAKE
random 7
hand transcription 76.7
asr output 69.5

TAKE,
uncer-
tainty

random 7
hand transcription 61
asr output 43.2

Table 2.1: Results of SIUM

As seen from the table, SIUM seems to be a well-performing model, robust
to noisy visual input and to uncertainty in speech recognition. However,
combining both types of uncertainty (the last line in the table) provides a
quite major drop in accuracy which could advantageously be improved.
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2.3.4 Limitations

Despite good results, the described model has some limitations. The most
important one is that it can handle only simple references (e.g., the red ball),
whereas more complex, relational references are not taken into consideration
(e.g., the red ball near the green cup). Negative REs (e.g., not the red ball)
are not modelled either. It would be also interesting to see whether the model
manages to reach equally good results with more objects in the scene.

2.4 Words-as-Classifiers
A similar approach to solving the task of visual RR is presented in several
papers by C. Kennington et al. (Kennington and Schlangen, 2015; Ken-
nington et al., 2015a,c). It is called Words-as-Classifiers (WAC) and is a
stochastic discriminative model which, given a representation of the RE and
a representation of the world, returns a probability distribution over a spec-
ified set of potential referents. The target is the argmax of this distribution.
In this section, we will have a closer look at this model and the conducted
experiments.

2.4.1 Model

This model is based on the same function described in previous section; a
function that given a representation U of the RE and a representation W of
the world, returns I∗, the identifier of the referent, and argmax is the referent
itself:

I∗ = argmax
I

P (I|U,W ) (2.10)

The task of computing the distribution is divided into two main sub-
tasks: modelling the word meaning for each word and then application and
composition of these word meanings.

To model a word meaning, a function from perceptual features of a given
object to a judgement about how well this object and this word fit together,
is created. This corresponds to the intension, or meaning, of the word. Two
different types of words are modelled: those describing properties of a given
object (e.g., red in the red ball) and those picking out relations of two objects
(e.g., next to in the red ball next to the brown cube).

Subsequently, the composition of the relevant word meanings is applied.
It gives the probability distribution over candidate objects. Here, two types
of references are being modelled, simple references and relational references.
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Word meanings

Both types of words are modelled in a similar way. For simple references, for
each word w, a binary logistic regression classifier is trained. The classifier
takes a representation of a candidate object in the form of visual features x
and returns a probability pw for the object being a good fit to the word:

pw(x) = σ(wTx+ b) (2.11)

In the formula, w is the weight vector that is learned and σ is the logistic
function.

Using the mentioned earlier correspondence, the intension of a word can
be seen as the classifier itself, a function from an object to a probability:

[[w]]obj = λx.pw(x) (2.12)

In this equation, [[w]] is the meaning of w, x is of the type of feature given
by fobj, the function which computes a feature representation for a given
object. The classifiers are trained using a corpus of RE, visual representations
of the objects in the world and annotations of the referent in each scene. For
positive samples, each word in a RE is paired with the features of the target
object. For negative samples, a randomly picked object in the same scene
(but not the referent) is used.

Training classifiers for relational references is done in a similar way. How-
ever, instead of visual features of one object, features of a pair of objects are
used (for instance, Euclidean distance between two objects, vertical and hor-
izontal differences, left/right and higher/lower than relationships).

Composition

The model for word meanings indicates how well the object and the word fit
together. However, RE is seldom represented by only one word, it is usually a
combination of several words or sometimes even sentences. It means that all
of these words have to be taken into consideration and somehow combined.

As mentioned earlier, two types of references are modelled, simple ref-
erences and relational references. Simple references are approximately the
same as simple NPs (e.g., the green book). To get a distribution for a single
word, the word classifier is applied to all candidate objects, and then the
distribution is normalized. Afterwards, the evidence from all the words in
a given RE has to be composed. In order to do that, the contributions of
constituent words are averaged, assuming that each word contributes equally.
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The averaging function is defined as following (w is the given universe):

avg([[w1]]
w, ..., [[wn]]w) = Pavg(I|wn, wn) (2.13)

where

Pavg(I|w1, ..., wn) =
1

n
(P (I = i|w1) + ...+ P (I = i|wn)) for i ∈ I (2.14)

This function is incremental, meaning that avg(a, b, c) = avg(avg(a, b), c),
and can be extended “on the right”.

Relational references (e.g., the green book near the red ball) have a more
complex structure. They consist of, in this case, two simple references (one
for target and one for landmark) and a relation between them. For each re-
lation, a “word” classifier is trained (relations like “on the left” are treated as
a single token). So, the meaning of the phrase is the function of the meaning
of the constituent parts. Assuming that the target constituent contributes
P (It|w1, ..., wk), the landmark constituent P (Il|w

′
1, ..., w

′
m), and the relation

expression P (R1, R2|r), the combination of evidence is calculated using mul-
tiplication and is as following:

P (R1|w1, ..., wk, r, w
′

1, ..., w
′

m) =∑
R2

∑
Il

∑
It

P (R1, R2|r)P (Il|w
′

1, ..., w
′

m)×

P (It|w1, ..., wk)P (R1|It)P (R2|Il)

(2.15)

The last two factors force the pairs being evaluated by the relation ex-
pression consist of objects evaluated by target and landmark expression, re-
spectively (Kennington and Schlangen, 2015).

2.4.2 Evaluation

The described model was also evaluated on the two parts of the PentoRef
corpus. One of them, TAKE, was introduced in the previous section, and
both of them are presented in detail in chapter 4, as they were also used in
our experiments. Here we provide a brief description of both corpora, so that
it would be easier to see the differences between TAKE and TAKE-CV.

The domain of the corpora is Pentomino puzzle game. The two used sub-
corpora, TAKE and TAKE-CV, are Wizard-of-Oz studies conducted in the
German language. The participants had to describe Pentomino pieces, either
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selected by themselves (in TAKE) or randomly selected by a system (TAKE-
CV) to a wizard whose task was to choose the referred object. Wizard showed
their choice to the participants, and after a confirmation (or a rejection if
the selected piece was wrong), the new episode started (either a new scene
appeared on the screen (TAKE) or new objects to describe were chosen
(TAKE-CV)). TAKE corpus also provides us with evidence from gaze and
deixis. Both of them are incorporated in the model and improve the results
compared to speech only (Kennington et al., 2015a). However, since the
other sub-corpus does not provide us with this data, we choose to analyse
only the results from the speech model.

Before considering the results, we also need to describe the features used.
In TAKE corpus, each object was represented via colour features (RGB
(red, green, blue) values, HSV (hue saturation value)), shape (number of
edges), position (centroid, orientation) and skewness1(horizontal and verti-
cal). Almost the same features were used for pieces in TAKE-CV corpus
(RGB, HSV, x and y coordinates of the centroids, Euclidean distance from
the centre, number of edges). For the relation classifiers, features relating
two objects were used (Euclidean distance between objects, vertical and hor-
izontal distances, two binary features denoting higher than/lower than and
left/right (Kennington and Schlangen, 2015)).

The results (accuracy scores) are presented in table 2.2. As seen from the
table, the model performs better with less noisy input (hand transcription
vs. automatic speech recognition). Especially for TAKE-CV, the results are
impressive: out of 32 recognized objects, with very noisy asr input, without
extra modalities such as gaze or deixis, the model provides accuracy of 65.3%.
The papers (Kennington et al., 2015a; Kennington and Schlangen, 2015) also
provide results of incremental processing and some analysis of selected word
classifiers.

Corpus Accuracy, %

TAKE
random 7
hand transcription 63.9
asr output 49.9

TAKE-
CV

random
hand transcription no data
asr output 65.3

Table 2.2: Results of WAC

1Skewness, uncertainty and distorted images are described in sec.4.1
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2.4.3 Limitations

The described approach is the basis for a robust and well-performing model.
However, one can argue that the model has a weakness as well: all words in
the RE contribute equally to the final result. In a RE the red ball, all the
three words are considered to be equally important when RR takes place,
although this is not true. One solution to this problem would be a stop-list,
but such lists as a rule contain a lot of prepositions, for instance, and they are
very important for resolving references. There are also some content words
that have a weak referential content (e.g., the word piece in the described
corpora), but such words are never in the predefined stop-lists. Such stop-lists
are also different for every language. The other possible solution is letting the
machine learning algorithm decide which words are more important. Then
it could decide which words in the RE have to be taken into consideration.
This second solution is used in our approach and described in chapter 3.

Other possible improvements which partly depend on enough relevant
training data are handling negation in different forms (e.g., not the red ball
and the not so red ball) and generalised quantifiers (e.g., all red balls).
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Chapter 3

Approach

In this chapter, we describe the developed approach for solving the task of
visual RR. In the first section, the motivation for creating a new model is
presented. The model itself is outlined in section 2. In the same section,
creation of feature combinations is explained, and a simple example with a
toy vocabulary and scene is given. In section 3, possible extensions to the
model are presented.

3.1 Motivation
In the previous chapter we described two types of approaches used for resolv-
ing references — rule-based and probabilistic. The model we will present in
this chapter is a representative of the second type — a probabilistic model
which computes a probability distribution over candidate objects given a RE
and the world. As mentioned earlier, our model is strongly influenced and
inspired by SIUM (section 2.3) and WAC (section 2.4), but differs in key
areas. We try to offer a solution for some of the described limitations or
disadvantages of the previous models.

To begin with, WAC assumes that all words contribute equally to the
meaning of the RE. From a linguistic point of view, this is not true as some
words have a weaker referential content than other. In our model, we try
to take this difference into consideration. The classifier is trained in such
a way that more informative features and, as a consequence, words, receive
more weight. This approach is more principled and supposedly, should lead
to better results

Moreover, WAC relies on the estimation of a separate classifier for each
word. In contrast, our approach requires only one classifier to train. Al-
though the feature vector is very large, it is also very sparse, so the compu-

25



tation is not more expensive.
Compared to SIUM, our model can handle not only simple references,

but also more complex relational references. To be able to do that, one extra
classifier is created. The results from classification from simple classifiers
and relational classifier are then combined, and target object is the argmax
of the probability distribution. We discuss relational references in more detail
further below.

Finally, the model is easily extensible. In the experiments that we con-
ducted only some of the possible extensions were used, for instance, restart-
incremental model for classification part and introduction of some more com-
plex structures than single words into features. Possible extensions to the
model are more thoroughly described in section 3.3, and all the experiments
and the results are presented in chapter 5.

3.2 Model
The model we developed is a probabilistic model. Its goal is to return a
probability distribution over candidate objects given a RE and visual features
of all objects. In other words, we want to calculate a probability of resolving
a referring expression RE as object o given this referring expression and the
world W. The target object is the argmax of the probability distribution.
Formally, we can express this in a following equation:

oT = argmax
o

P (resolution(RE) = o|RE,W ) (3.1)

To compute this probability distribution, we need to calculate a fit func-
tion for each candidate object/RE–pair and normalise:

P (resolution(RE) = o|RE,W ) =
P (fit(o,RE))∑
o′ P (fit(o′ , RE))

(3.2)

In order to calculate a fit function, we train a binary logistic regression
classifier which takes a representation of a candidate object via a combination
of visual and linguistic features and returns the probability for each object in
the scene being the target object given the referring expression. We repeat
here the formula from the previous chapter:

pre(x) = σ(wTx+ b) (3.3)

In this equation, x is the combination of visual and linguistic features,
wT are the weights learned, b is the intercept and σ is the logistic function.
pre(x) is the probability of the object being a target object given the RE.
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To train a classifier, we use a corpus of REs (annotated or not annotated),
visual representations of the scenes and annotations of the referent in each
scene. In our corpora, there was only one target object per scene. In order to
collect positive samples, feature combinations for the target object are used.
For negative samples, an arbitrary number of other (random) objects in the
scene are used.

3.2.1 Simple References

For simple references, a single classifier is trained. Training data is collected
using the visual properties of the objects paired with linguistic information
in the RE. In other words, feature combinations are created — features that
contain both visual and linguistic information.

In order to create them, we need a vocabulary and a list of predefined
visual features. Such visual features can be, for example, colours, shapes,
position, etc. Feature names are arbitrary, but for simplicity’s sake we also
combine linguistic and visual information in each feature name. For instance,
feature red_kreuz contains information about a colour propery (red) and a
word used (kreuz ). The cardinality of the created feature set is then the
number of visual features times the number of words in the vocabulary.

After the feature set is created, we have to create a training set. For a
given object and a respective RE, each feature gets a positive value if both
visual and linguistic information is true (i.e., the object has both the given
visual feature and the given word is observed in the RE), and 0 otherwise. For
each scene, the one selected piece is a positive sample. Number of negative
samples is a tuning parameter and can be freely chosen between 1 and number
of all pieces −1.

A simple example of feature set creation and population is given below.

Example of creation of feature combinations

Assume that the predefined visual features1 are listed on line 1 (figure 3.2),
the vocabulary is given on line 2, the RE and its translation to English are
provided on lines 3 and 4 respectively. The scene is depicted on figure 3.1, the
chosen piece is highlighted. Raw visual features, read directly from the scene
or given beforehand, are provided on lines 5 and 6, figure 3.2. The set of new
features is then the Cartesian product of visual features and vocabulary, and
its cardinality is 6 visual features × 8 words = 48. The subset of this set is

1Visual features c and l denote shape of a Pentomino piece; more information about
the domain and the corpora is provided in chapter 4
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presented on lines 7 and 8. Finally, a part of the populated feature set for
the given RE and given piece is presented on lines 9 and 10.

Figure 3.1: Example scene for construction of feature combinations. Selected
piece is highlighted in white

1 Visual features: red, yellow, left, right, c, l
2 Vocabulary: das, rote, gelbe, l, unten, oben, links, rechts
3 Referring expression: das gelbe L oben rechts
4 Translation: the yellow L on the top right
5 Raw visual features: {red:0, yellow:1, left:0, right:1,
6 c:0, l:1}
7 Feature set: (red_das, red_rote, red_gelbe, l, ...,
8 yellow_das, yellow_rote, yellow_gelbe, ...)
9 Features: {red_das:0, red_rote:0, red_gelbe:0, ...,

10 yellow_das:1, yellow_rote:0, yellow_gelbe:1, ...}

Figure 3.2: Example of creation of feature combinations

3.2.2 Relational References

Relational references are references which contain a relation between a simple
reference to a target and a simple reference to a landmark. To resolve such
references, we do not only need to calculate the fit between a given RE for
the target and a RE for the landmark, but also a relation between them.
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Formally, it can be expressed in a following way:

P (fit(oT, RE)) = P (fit(oT, RET))×∑
oL

P (fit(oL, REL))×

P (fit(relation(oT, oL))

(3.4)

To calculate the first two probabilities, we train two classifiers — the
first one, simple classifier, is exactly the same as described in the previous
subsection. It is used for all simple references in the utterance. For instance,
in the RE named in chapter 1, the small cube to the left of the ball, there are
two simple references, the small cube and the ball. In order to identify these
objects, a simple classifier is used. The rest of the utterance, however, is a
relation (to the left of ). To handle such relations another classifier is created
— a relational one. It is also built on feature combinations, but the features
used for this classifier contain information relating two objects. All of them
are positional — Euclidean distance between objects, vertical and horizontal
differences and also binary features denoting the relationships above/under
and left/right.

To combine the evidence from simple classifiers and the relational classi-
fier, we multiply1 the provided probabilities.

3.3 Possible extensions
The described model can resolve two kinds of REs, simple and relational.
It was evaluated on two corpora and the results are provided in chapter 5.
The model, however, can also serve as a basis for more complex models which
incorporate several modalities and take, for instance, syntactic structure into
consideration. Some of these extensions are analysed and evaluated in the
next chapter, whereas other are more theoretical due to the limitations of
the available corpora.

Incrementality

The model can be altered to be restart-incremental. During human-human
spontaneous dialogue, we do not need to wait for the end of the utterance
to start resolving it. The same approach can be used in our model: when
perceiving an utterance, it attempts to identify a target object from the very

1We sum the provided probabilities given that we work with log-probabilities
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first word. Formally, it would mean that we have to restart the resolving pro-
cess after each new word in the utterance. This extension was implemented
for our dataset.

Complex linguistic features

For creating feature combinations, our model, as described in this chapter,
takes into consideration visual and linguistic features. For the linguistic
features, the use of separate words seems to be sufficient. However, more
complex structures can complement the features set. One example of such
structures is n-grams. During training, all or x most common n-grams can
be extracted and then used in the same way as a simple feature combina-
tion. For instance, feature red_rote_kreuz will receive a positive value if
the object is red and the RE describing this object contains a bigram rote
kreuz. Integrating more complex features with bigrams is implemented and
evaluated for our dataset. Another complex structures that could also be
used in the task are collocations and idioms.

Cardinality

The model can potentially resolve references to several objects. In all the
previous examples we assumed that there is always only one referent for the
given RE. It is a very common case in reality as well, but it is not the only
case. It is also possible to refer to several objects. For instance, the RE two
red balls refers to two objects and has therefore a cardinality of two. Our
model can take cardinality into consideration and return several referents if
that is the case. Formally, it can be expressed in the following way (given
that O is a set of potential referent objects and C is a random variable
corresponding to the cardinality of the RE):

P (resolution(RE) = O|RE,W )

=
∑

c=1,2,...

P (resolution(RE) = O,C = c|RE,W )

=
∑
c

P (resolution(RE) = O|RE,W,C = c)×

P (C = c|RE,W )

(3.5)

This equation could also include cardinality of the world as an important
variable since number of the referents can not exceed the number of the
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objects in the world. The formalisation would be then as following:

P (resolution(RE) = O|RE,W, |W |)

=
∑

c=1,2,...,|W |

P (resolution(RE) = O,C = c|RE,W )

=
∑
c

P (resolution(RE) = O|RE,W,C = c)×

P (C = c|RE,W )

(3.6)

Our dataset did not include any REs with several referents, so this ex-
tension was not implemented or evaluated.

Salience

The model can also be extended by including the information about salience.
Salience is defined as the property of being distinct, particular, discriminat-
ing, remarkable, or prominent in a certain context (Götze, 2016). In other
words, some objects can be more salient than the others because they have
more distinguishable features. Knowing those features can help to identify
the referent. Formally, salience can be incorporated in our model as the prior
probability in the following way (assuming that sal(o) is salience of the given
object):

P (resolution(RE) = o|RE,W ) =
P (fit(o,RE))∑
o′ P (fit(o′ , RE))

× sal(o) (3.7)

Salience was not available in our corpora, so it was not evaluated in our
experiments.

Gaze and deixis

Finally, the model can be extended by using several modalities, for instance
evidence from gaze and deixis. It can be done in the same way as described
in Kennington and Schlangen (2017). For each speaker, a reference point on
the scene has to be calculated. For gaze, it can be the fixated point provided
by an eyetracker, and for deixis, the point on the scene that was pointed
at based on a vector calculated from the shoulder to the hand, provided by
a motion controller. Then the centroids of all objects can be compared to
the reference point and yield a probability of that object being ”referred“
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to by a given modality (gaze or deixis) by introducing a Gaussian window
over the location of the point. Gaze and deixis can be then incorporated
using the linear interpolation. In our thesis, we did not concentrate on other
modalities, so neither gaze nor deixis are integrated into the model.
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Chapter 4

Data

To perform evaluation of our model, we chose to use data from PentoRef
(Zarrieß et al., 2016). It is a corpus of spoken references in task-oriented
dialogues collected in systematically manipulated settings. The domain is a
puzzle game Pentomino, based on 12 different combinations of five squares
(figure 4.1). The corpus consists of several sub-corpora which were collected
for different goals and in different settings. For our evaluation, we used two of
the sub-corpora, take and take-cv which are thoroughly described below.

Figure 4.1: 12 Pentomino pieces, from R. A. Nonenmacher (2017)

4.1 TAKE

The TAKE corpus is a result of a Wizard-of-Oz study conducted in German
language. The participants were presented a game board on a computer
screen, with 15 randomly selected Pentomino pieces. The pieces were grouped
in the corners of the screen (see figure 4.2). The participants then had to
choose silently a random piece and describe it to the wizard, using words
and gestures. When a piece was selected, the participants had either to utter
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Figure 4.2: Scene from
TAKE

Figure 4.3: Scene from
TAKE, distorted, from
Kennington et al. (2015a)

a confirmation or give a negative feedback. If the wizard misunderstood
anything or there was a technical problem, the episode could be flagged by
the wizard. Finally, a new board was created and the process repeated. One
such ”round“ we call an episode.

The utterances, arm and eye movements and board states were recorded.
All utterances are provided in TextGrid files, with timestamps and com-
ments (e.g., ”girl used the wrong form (blaues Kreuz) -> <m=""blaues"">
<v=""blaues""> “). Each scene is described via an xml file, where for each
piece id, colour, shape and position are available (figure 4.5). All pictures of
the scenes are provided in png format.

For parts of our experiments we needed to test if the model can handle
uncertainty and noisy input. The pictures were then manipulated exactly in
the same way as it is described in the earlier mentioned papers (Kennington
et al., 2015a; Kennington, 2016). Briefly, the colours and shapes were dis-
torted, and the resulting images (see figure 4.3) were processed using Canny
Edge Detector to segment the objects. As a result, features that were ”closer“
to the real world were extracted. These features will be discussed further in
section 5.1.1.

In total, there were eight participants, all university students, aged 18–30.
Seven of them were native German speakers, the non-native speaker had a
very good command of German. 1214 episodes were recorded, and 165 of
them were flagged, so altogether 1049 episodes are used for evaluation.

The participants are different, so the REs they uttered are also quite
different. Some examples of the utterances with English translation are pre-
sented in figure 4.41.

1Each German utterance corresponds to one separate episode. Some of the participants
failed to utter a confirmation (or it was provided non-verbally)
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1. das rosa symbol rechts oben
the pink symbol right on the top

2. dann aus der gruppierung da unten links einmal
then from the group down there to the left again

das lila l das auf kopf steht ... ja, richtig
the purple l which on head stands ... yes, correct

3. unten links das grüne ... okay
down to the left the green ... okay

4. und dazu dann wir haben ja diese fünf zeichen da oben
and then we have these five symbols up there

und ich möchte genau das in der mitte haben ... richtig
and i want exactly the one in the middle ... correct

Figure 4.4: Examples of utterances in TAKE corpus

<piece type="P" id="tile-3" label="" color="blue">
<posture rotation="0" isMirrored="false"/>
<start-field>grid4.1-0</start-field>
<goal select="false" delete="false">

<posture rotation="0" isMirrored="false"/>
</goal>

</piece>

Figure 4.5: Extract from scene information, TAKE
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4.2 TAKE-CV

The other used corpus, TAKE-CV, is also a Wizard-of-Oz study conducted
in German, however, there are several important differences to mention. In
this setting, the participant was placed in front of the table with 36 Pen-
tomino bricks randomly spread across the table. Above the table there was
a camera, filming it; one object (or one pair of objects) was chosen randomly
and shown to the participant on the display in front of herself (see figure
4.6). The experiment consisted of two phases.

Figure 4.6: Scene from
TAKE-CV, target is high-
lighted in green (a black ar-
row is added for presenta-
tion)

Figure 4.7: Scene from
TAKE-CV, target is high-
lighted in green and land-
mark in blue (a black and a
red arrow are added for pre-
sentation)

In phase one, only one object was chosen. The participant had to describe
the object to the wizard using only speech. The wizard had an identical
screen in front of herself. She clicked on what she thought was the target
object, and if it was correct, a tone sounded and a new episode began. If
not, another tone sounded, and the episode was flagged. Several times the
participant was instructed to shuffle the Pentomino pieces.

In phase two, the pair of objects were chosen and presented to the par-
ticipant. They were highlighted in different colours (see figure 4.7), and one
of them was supposed to be a target and the other one a landmark. The
participant had to describe the target object using the landmark object and
a suitable relational expression.

The utterances and board states were recorded. All utterances are pro-
vided in TextGrid files as mentioned above. Each scene is described via an
xml file, with a similar to TAKE, but somewhat different structure (figure
4.8). All pictures of the scenes are provided in png format.

In total, nine participants, aged 17 to 31, took part in the experiment.
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<object id="0" isLandmark="False" isTarget="False">
<position global="right bottom" x="394" y="437"/>
<shape BestResponse="P">

<distribution F="0.2" I="0.0" L="0.0" N="0.0" P="0.8"
T="0.0" U="0.0" V="0.0" W="0.0" X="0.0"
Y="0.0" Z="0.0"/>

<orientation value="14.1549884093"/>
<skewness horizontal="left-skewed" vertical="symmetric"/>
<nbEdges value="6"/>

</shape>
<colour BestResponse="Pink">

<distribution Blue="3.47419472069e-33" Brown="1.516339287e-20"
Grey="0.00167243290562" Green="4.81099258083e-36"
Orange="4.94079260013e-12" Pink="0.782038731836"
Purple="0.209469777687" Red="0.00681905756658"
Yellow="1.9143319164e-24"/>

<hsvValue H="152.03081914" S="112.01703163"
V="184.217356042"/>

<rgbValue B="178.728304947" G="104.124087591"
R="182.701540957"/>

</colour>
</object>

Figure 4.8: Extract from scene information, TAKE-CV
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All but one were native speakers of German. Phase 1 for one participant and
phase 2 for another participant were damaged due to technical difficulty and
misunderstanding and were not used. Altogether, 870 not flagged episodes
were recorded, thereof 410 episodes in phase 1 and 460 episodes in phase 2. In
each scene there were 36 Pentomino pieces, and 32 of them were recognized
on average by computer vision.To obtain the speech, Google Web Speech was
used, with a word error rate of 0.65.

Each utterance was annotated using a simple tagging scheme1, where
different tags were used for words describing a target object (t, td, tdc,
tds, tdf, tdo, tp2), landmark object (in the same way, but starting with
(l), relational expressions (r) and other linguistic material (o). If multiple
landmarks were used, the tags and the respective relation words were marked
with numbers. If the landmark was described relative to the target, the r-
tag was used for the relation word. Some examples of tagged utterances are
presented in figure 4.9

1The tagging scheme can be found at https://uni-bielefeld.sciebo.de/index.
php/s/FDBhTOb1539nWQZ/download?path=%2FTake_CV_PENTOREF%2Fdocumentation%
2Fpost&files=TAKE-CVAnnotationScheme.pdf. Accessed May 3, 2017.

2In these tags, d stands for description, c – for colour, s – for shape, f – for field, o –
for other (length of the object, how it is turned), p – for pronoun
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1. äh das objekt ist ein rotes kreuz ganz links
o t t t t tdc tds tdf tdf

ah the object is a red cross on the left

neben dem blauen t
r l ldc lds

next to blue t

2. neben das ziel objekt liegt einem blauen t
r- t t t t l ldc lds

next to the target object is a blue t

3. das rote kreuz ist neben einem blauen t
t tdc tds t r1 l1 l1dc l1ds

the red cross is next to a blue t

und liegt unter einem grünen objekt
t t r2 l2 l2dc l2

and is under a green object

Figure 4.9: Examples of utterances in TAKE-CV corpus
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Chapter 5

Evaluation

In this chapter, we start with describing the experimental design we used
for our experiments — the feature set creation, feature selection, choice of
classifier and different parameters. In section 2, the results are presented and
compared to the baselines. Finally, some discussion is provided.

5.1 Experimental design
Given the datasets, our task was to implement the model described in chapter
3. The model is intuitively simple and was implemented in Python with
the help of several libraries (scikit-learn, NumPy, TextBlob, colormath
and some others). In this section, we will present design solutions for all parts
of the model.

5.1.1 Visual features

First, the visual features of the objects in each scene have to be collected. For
the two corpora, these features are somewhat different. All features for both
corpora are presented in table 5.1 and more thoroughly described below.

TAKE

As mentioned earlier, the data from the TAKE corpus can be used as ei-
ther gold standard annotations or features extracted from the actual images
through computer vision. If the data is read directly from the provided xml-
files, the scenes, objects and features are certain. The features collected are
represented with the help of one-hot encoding. Altogether, there are seven
colours (red, green, blue, magenta, yellow, grey, cyan), 12 shapes
(all possible Pentomino bricks as described in chapter 4) and four position
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variables (left, right, top, bottom), whereas two of them get value 1.
For some experiments, we replaced the one-hot encoding for colours with the
measure of difference between colours. There are two ways to do that: to cal-
culate the Euclidean distance between RGB values or to use a special metric
for colour distance Delta E (∆E∗). Since only ”perfect“ colours are used (for
instance, if we have to calculate the distance between the blue and the red
colours, we use the ”perfect“ blue colour with the RGB value of [0,0,255]
and the ”perfect“ red colour [255,0,0]), no uncertainty is introduced, so we
include these settings under the ”certainty“ label.

On the other hand, if the visual features are read from the distorted
images, the experiments incorporate uncertainty. For the colour features then
the RGB and HSV1 values are used, the shape is represented by the number
of edges2, the position is defined by x and y coordinates of the centroids and
also skewness is presented. Skewness is encoded using a one-hot vector, with
variables left, right and symmetric to denote horizontal skewness, and
top, bottom and symmetric for vertical skewness.

TAKE-CV

TAKE-CV is a corpus with real-life objects, so there is no certainty in the
settings. Visual features are almost the same as for the setting with uncer-
tainty in TAKE corpus. The skewness is not used, and the position features
include also a distance from centre (cdiff). TAKE-CV, however, contains
not only simple references, but also relational references, so visual features
for the relational classifier are also collected. These features include the
Euclidean distance between centroids of the objects, the vertical and hori-
zontal differences and four features to encode relative position of the target
(higher than, lower than, to the left of, to the right of).

5.1.2 Linguistic features

To construct necessary feature combinations, linguistic features are also needed.
They are extracted in the same way for both TAKE and TAKE-CV. The
most basic setup is just extraction of the words and case folding. This gives
us the vocabulary size of 382 for hand transcription and 1048 for asr for
TAKE corpus and 516 and 1306 words respectively for TAKE-CV.

Words can also be processed. Two possible extensions here are the use
of a lemmatiser and a stemmer. The lemmatiser used is provided by the

1HSV stands for hue, saturation, value colour space, which is basically a representation
of RGB values in a cylindrical coordinate system (Hanbury, 2002)

2Several Pentomino pieces can have the same number of edges
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Corpus Visual features

TAKE

certainty
colour

one-hot encoding
colour distance

shape one-hot encoding
position grid rules, one-hot encoding

uncertainty

colour RGB, HSV values
shape number of edges
position x,y coordinates
skewness horizontal and vertical

TAKE-CV uncertainty
colour RGB, HSV values
shape number of edges
position x,y coordinates, cdiff

Table 5.1: Overview over visual features

German extension of the TextBlob library, textblob-de1. To stem words,
the German version of the SnowballStemmer2 from NLTK was used (Bird
et al., 2009). Both the lemmatiser and the stemmer reduce the vocabulary
size and can potentially improve the results.

Linguistic features can also be more complex. They can contain not only
separate words, but n-grams or collocations. In our experiments, we also
used 10 most common (in the given corpus) bigrams. The cardinality of the
feature set is then increased with 10× number of visual features.

5.1.3 Feature selection

Since the feature sets are large, it is worth using a feature extraction module
to reduce the size of the used features and to analyse the most informa-
tive features. In our experiments, we used a module from scikit-learn,
SelectFromModel3. It is a meta-transformer for selecting features based on
importance weights. A float to describe a threshold which tells whether the
given feature is informative enough to keep it can be provided for the module.
The threshold is ”mean“ by default.

1The package can be found at https://pypi.python.org/pypi/textblob-de/. Ac-
cessed May 3, 2017.

2Source code of the stemmer can be found at http://www.nltk.org/_modules/nltk/
stem/snowball.html. Accessed May 3, 2017.

3The module can be found at http://scikitlearn.org/stable/modules/
generated/sklearn.feature_selection.SelectFromModel.html. Accessed May 3,
2017.
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The results of using the feature selection module depend also on the
chosen classifier, its solver and regularisation penalty. The classifier and its
parameters are presented in the next subsection.

5.1.4 Classifier

The classifier used in our experiments is a binary logistic regression classifier.
Logistic regression is a linear model for classification which provides as an
output a probability that the given point belongs to a certain class. The
main assumption of such classifier is that the data can be separated using a
linear boundary (Lemeshow and Hosmer, 2008).

For our model, we use a logistic regression classifier as implemented in
scikit-learn1. This classifier has several tuning parameters, but we mostly
concentrated on two of them.

To begin with, it is possible to specify the type of regularisation. There
are two types of regularisation, L1 and L2. The first one uses a penalty
term which encourages the sum of the absolute values of the parameters to
be small. The second, L2 regularisation, encourages the sum of the squares
of the parameters to be small (Ng, 2004). L1 regularisation in many models
causes a lot of parameters to equal zero so that the parameter vector is
sparse. This makes it a natural candidate in feature selection settings, where
potentially many features should be ignored. We conducted our experiments
with both types of regularisation and found out that only in some settings
the results differ for L1 and L2.

Another important parameter is solver which can be set to be newton-cg,
lbfgs, liblinear and sag. Default solver is liblinear. It is more suitable
for smaller datasets, and it can be used with both L1 and L2 penalty, so it
was a natural choice in our experiments. However, it should be mentioned
that the sag solver was also used and it led to better results for the TAKE-
CV corpus. For this solver, maximum number of iterations to converge has
to be increased till 250 in order to get the reported results.

5.1.5 Other parameters

The remaining parameters for the setup that were not mentioned earlier, is
the choice of the transcription and the number of negative samples to use.
The transcription is provided in two versions, a record by human transcribers
(hand) and an output from Google automatic speech recogniser (asr). The

1The classifier and its parameters can be found at http://scikit-learn.org/
stable/modules/generated/sklearn.linear_model.LogisticRegression.html. Ac-
cessed May 3, 2017.
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second choice leads to more uncertainty and allows us to check whether the
model is robust to noisy speech input.

Finally, the number of negative samples has to be taken into considera-
tion. In theory, any number between 1 and (number of objects in the scene
– 1) can be chosen. For our experiments, we chose to set this parameter to
be equal 14 for the TAKE corpus (i.e., we include all other objects in the
scene except for the target as negative samples) and 25 for the TAKE-CV
corpus (in each scene, approximately 32 objects are recognised, so almost all
of them are used as negative samples). In general, the experiments show that
the more negative samples are chosen, the better results are achieved.

5.2 Results
All experiments were conducted using 10-fold cross validation. The results
are averaged over 10 runs. We provide accuracy (in percentage) as it allows
us to compare our results with the baseline from (Kennington, 2016).

5.2.1 Simple references

Both TAKE and TAKE-CV corpora contain simple references. As we de-
scribed in the previous section, there are several parameters we can choose
from when running RR. However, our experiments show that there is not
much difference between various setups. Figure 5.1 presents the results from
16 different setups and runs. All of these experiments were conducted on
TAKE corpus, with no uncertainty involved. In eight runs the colours are
denoted using one hot encoding, in the other eight runs the Euclidean dis-
tance between RGB values of colours is used. We have also tried different
types of regularisation (L1 and L2), use of ten most common bigrams in
addition to all unigrams in feature sets and use of SnowballStemmer from
NLTK. Accuracy for these runs varies from 88% to 92%. The best result
is not surprisingly achieved in the setup with both bigram feature combina-
tions and stemmer, and one-hot encoding for colours. In the table 5.2, we
present the averaged results for each pair of eight runs. For instance, we
can divide all runs after the regularisation used; then, we can calculate the
mean accuracy for all the runs with L1 and L2 regularisation respectively.
The presented numbers show that features are the most important setting to
tune since the difference between the setups with one-hot encoding and with
Euclidean distance is clearly the largest (1.2%).

Taking these results into consideration, we run the rest of the experiments
with the minimal settings — no bigrams or stemmer is used. The regulari-
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Setups Accuracy, %

One-hot encoding 90.8
Euclidean distance 89.6
L1 regularisation 90.4
L2 regularisation 90
Unigrams only 90.1
Unigrams and bigrams 90.4
No stemmer 89.9
SnowballStemmer 90.5

Table 5.2: Averaged accuracy over setups, TAKE corpus

sation is chosen to be L1, as it provides better results. It also makes it easier
to compare our results to the baseline, since the settings are alike.
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Figure 5.1: Results of different setups for TAKE corpus without uncertainty. l1 and l2 denote the regularisation
used, and uni and bi indicate whether the bigrams were included into the feature set. The use of stemmer is also
specified.
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TAKE

As mentioned earlier, in the TAKE corpus both certainty and uncertainty
can be used. The results from the setup with certainty are presented in
figure 5.21. For this evaluation, following features were used: one-hot en-
coded colours, shapes and position (one-hot encoded quadrant). The data is
recorded by human transcribers. The random baseline of 7% is not shown.

Figure 5.2: Evaluation results on the TAKE corpus, comparing the accuracy
of two models, namely SIUM and the single classifier. The results are ob-
tained using certain (predefined) visual features and linguistic features based
on hand transcription

The uncertainty can also be introduced, as described in section 4.1. It can
be incorporated in visual features only or the linguistic input can be noisy as
well. The results for both setups are shown in figures 5.3 and 5.4 respectively.
Since TAKE corpus with incorporated uncertainty was evaluated for both
SIUM and WAC models, those results are also included as a baseline. The
random baseline of 7% is not shown here either. The features used are RGB
and HSV representations of colours read from the distorted pictures; number
of edges to denote shape; x and y coordinates of the centroids to represent

1Hereinafter the results of our model are denoted as ”Single classifier“
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position; and the one-hot encoded information about skewness.

Figure 5.3: Evaluation results on the TAKE corpus, comparing the accuracy
of three models, namely SIUM, WAC and the single classifier. The results are
obtained using visual features extracted from computer vision and linguistic
features based on hand transcription
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Figure 5.4: Evaluation results on the TAKE corpus, comparing the accuracy
of three models, namely SIUM, WAC and the single classifier. The results are
obtained using visual features extracted from computer vision and linguistic
features based on output from asr

As seen from the plots, our model improves the results achieved by both
SIUM and WAC. The noisy input affects our model as well, in a greater
degree than the baseline models.

TAKE-CV

Using TAKE-CV, we conducted two experiments on simple references. Since
the corpus is tagged, we have an opportunity to check whether the model
takes into consideration ”some notion of syntactic structure“ (Kennington,
2016). Figure 5.5 therefore shows the results of the model when all words in
the utterance were used for RR, whereas in figure 5.6 the results of using only
the words tagged with t – target tag – are presented. The random baseline
of 3% is not shown. The features used are as described in table 5.1: RGB
and HSV values for colour, number of edges for shape and x, y coordinates
and Euclidean distance from the centre for position. Output from automatic
speech recognition was used.

As seen from the table, taking into consideration some syntactic structure
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Figure 5.5: Evaluation results for simple references on the TAKE-CV corpus,
comparing the accuracy of two models, namely WAC and the single classifier.
The results are obtained using visual features extracted from computer vision
and linguistic features based on output from asr. All words in each utterance
are used

slightly improves the results. When using all words, our model performs bet-
ter than WAC, but with the tagged words the results are somewhat worse.
The possible explanation is using the single classifier: our model can deter-
mine itself which words are more important, so we do not need to choose only
the words that are a part of the REs. We consider it to be a positive property,
since the tagging can be skipped without much impact on the results. The
results are still much worse than the results from the TAKE corpus. Two
possible reasons for this is a smaller dataset for training (cf. 1000 episodes in
TAKE and 870 in TAKE-CV), less precise data from computer vision and
the much bigger number of the objects in the scene (15 in TAKE and 36,
with 32 recognised in TAKE-CV).

Restart-incremental results

As mentioned in section 3.3, the model can also be run as restart-incremental.
It means that the resolving process is restarted after each word in the given
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Figure 5.6: Evaluation results for simple references on the TAKE-CV corpus,
comparing the accuracy of two models, namely WAC and the single classifier.
The results are obtained using visual features extracted from computer vision
and linguistic features based on output from asr. Only words tagged with
t from each utterance are used

utterance. An example of incremental RR is presented in figures 5.7 and 5.8.
The first one represents the scene itself. The target tile is highlighted in white,
and the tile numbers are added for presentation. Probability distributions
after each new word in the utterance are presented in figure 5.8. As we can
see, the probability distribution after the first word das (the definite article)
is almost uniform: it varies from 0.036 till 0.125. After the second word,
gelbe (yellow), all yellow pieces receive considerably higher probability —
tiles 0, 1, 2, 3 and 12. The third word, T (denotes the shape of a brick),
reduces the probabilities of the other pieces even more. Finally, the fourth
word unten (bottom) clearly enhances the only yellow T (tile 2) out of four
identical pieces. The rest of the words confirm this distribution, and the
probability of tile 2 being the referent given the RE das gelbe T unten rechts
in der Ecke (the yellow T at the bottom right in the corner) is increased from
0.59 (after the fourth word) till 0.95 (after the last word).
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Figure 5.7: Example scene from TAKE. Selected tile highlighted in white.
Tile numbers are added for presentation.

das
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das gelbe

das gelbe T

das gelbe T un-
ten
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das gelbe T un-
ten rechts

das gelbe T un-
ten rechts in

das gelbe T un-
ten rechts in
der
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das gelbe T un-
ten rechts in
der Ecke

Figure 5.8: Probability distributions for incremental RR

In this example, despite quite a lot of ambiguity in the scene, the model
manages to identify the target object quite fast. However, this is not always
the case. For instance, the unique characteristics of the object can be men-
tioned only in the end of the utterance, and the argmax of the distribution
can be changed only after the last word.

We have evaluated the restart-incremental model on the TAKE corpus
without any uncertainty introduced. Figure 5.9 shows incremental results for
the corpus: we can see that accuracy is quite good already after the half of
the RE. However, the difference between the accuracy for the whole RE and
for the half of the RE is still quite large and significant, so processing the
whole RE is important.

5.2.2 Relational references

Relational references are represented only in TAKE-CV corpus. To resolve
a relational reference, we need to take into consideration not only the RE for
the target, but also the RE for the landmark and relational expression(s).
In order to do that, we train two classifiers — the first to handle REs and
the second one to classify relational expressions. For the first classifier, the
same previously mentioned features are used (RGB and HSV for colour,
number of edges for shape, and x, y coordinates and Euclidean distance from
the centre for position). For the relational classifier, the features denoting
a relation between two objects are used — Euclidean distance between the
centroids of the objects, vertical and horizontal differences and also binary
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Figure 5.9: Incremental results: accuracy (TAKE, no uncertainty intro-
duced)

features expressing the relationships above/under and left/right. Output
from automatic speech recognition is used.

The results of the classification of relational references are presented in
figure 5.10. As seen from the plot, our model does not produce the state-
of-the-art results for this task and this part of the corpus. Our intuitive
explanation was that the quite small size of the corpus (only 460 episodes
with relational expressions) is the reason for that, but it seems that the
learning curve (figure 5.11) reaches the plateau, so with the bigger corpus we
won’t get much better results. The most probable reason for these results
then is the very noisy input, both visually and linguistically. It would be
interesting to collect some data where more certain visual input is possible
(like in TAKE) and check how well our model performs in that case. We
will leave that for future work.
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Figure 5.10: Evaluation results for simple and relational references on the
TAKE-CV corpus, comparing the accuracy of two models, namely WAC and
the single classifier. The results are obtained using visual features extracted
from computer vision and linguistic features based on output from asr

Figure 5.11: Learning curve for the resolution of relational references
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5.3 Discussion
We have tested our model in several experiments. The results provided in the
previous section show that our model performs well compared to the other
models evaluated on the same datasets. For simple references, our model
provides good results for the TAKE corpus, outperforming both SIUM and
WAC.

The results for TAKE-CV are significantly better when using all words
in the utterance and significantly worse when using only the tagged words.
We performed a paired t-test for both models and both setups, where we
paired the accuracy from each of the 10 folds. For the setup where all words
are used, the result of the analysis gives us an absolute value of t-statistic of
2.24 and a p-value of 0.03. By assuming a significance level of 5% we can,
based on this analysis, reject the null-hypothesis and conclude that our model
performs significantly better. For another setup, where only tagged words
are used, an absolute value of a calculated t-statistic is 2.24 and p-value is
0.04. It means that in this case our model performs significantly worse than
WAC.

For relational references, the observed difference between empirical results
is not statistically significant. We performed the same test as described
before, and got a t-statistic of 1.49 and a p-value of 0.16. By assuming a
significance level of 5% we can not reject the null-hypothesis. Therefore, the
difference between the two models is not statistically significant. It would be
interesting to compare the models on a different, bigger, dataset.

Analysing the numbers, we can observe that the model is relatively robust
to noisy inputs, both visual and linguistic. Various visual features can be
used, both read directly from a symbolic scene representation and from a real-
world scene. Both manual transcription and asr output can be used. The
model performs respectably, although not always providing state-of-the-art
results.

The model can operate incrementally, and for a dataset without uncer-
tainty good results are achieved. It seems, however, that our model is most
suitable for processing the whole REs.

Below we present some further analysis of some parts of the model.

5.3.1 Feature selection and most informative features

The most informative features vary for each setup and for each corpus. In
setups with uncertainty in all visual features, the set of the most informative
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features contains both features that describe colours (r_rote)1 and shapes
(numedges_strich). Difference between the extracted features occurs when
only some uncertainty is introduced. For instance, for one of the setups for
TAKE corpus, when every visual feature is represented via one-hot encod-
ing, the most informative features include mainly feature combinations with
colours (see table 5.3). Only two of the most informative features denote
shape — U_c and X_kreuz. The second feature combination is quite obvi-
ous: kreuz in German means cross in English, and the Pentomino piece X
looks like a cross. The first one seems somewhat illogical, but the reason for
this feature to be extracted is that the Pentomino piece with the shape U, as
shown in figure 4.1, always occurred in the scenes rotated 90◦ clockwise and
looked therefore like a C.

Feature name Feature weight

yellow_gelbe 6.7504
red_rote 6.3048
gray_graue 6.1109
green_grüne 5.7953
U_c 5.3160
X_kreuz 5.3015
blue_blaue 5.0405
red_rot 4.9947
yellow_gelb 4.7144
blue_dunkelblaue 4.6776

Table 5.3: Most informative feature combinations extracted from a setup
where colour features are denoted using one-hot encoding

When the setting is less certain, for instance, if the one-hot encoding of
the colours is replaced with the Euclidean distance between colours, the set
of the most informative features looks differently. More weight is given to
the features that denote shape (see table 5.4). For some of these features, the
link between the visual part and the linguistic part is obvious (e.g., German
strich (line) and Pentomino piece I, winkel (angle) and pieces V and L),
whereas for others it is not that clear. For instance, the binding between
the piece Y and the word halbe (half ) occurs because one participant in the
experiment chose several times a Y tile and described it as ”half of T“ (halbe
T ):

1r stands for ”red“ in RGB
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• und dazu das halbe T oben links ... richtig
and then the half of T on the top left ... correct

• das halbe T unten links ... das kleine halbe T
the half of T on the bottom left ... the small half of T

• dann einmal das zweite halbe gelbe T oben links
then the yellow half of T on the top left

The Y tile was always rotated 45◦ counterclockwise in the scenes (com-
pared to the tile in figure 4.1), so it reminded the participant of the T that
was missing the half of the horizontal line.

Another feature Z_s is extracted because the Z tile was always mirrored
and looked more like an S. The feature V_l is also informative as the partic-
ipant were thinking about a capital L when describing a V tile.

Feature name Feature weight

X_kreuz 8.7183
I_strich 7.2495
U_c 6.4033
T_t 5.1134
Y_halbe 4.5728
V_l 4.4399
V_winkel 3.8897
I_balken 3.4089
Z_s 2.4080
L_winkel 2.4080

Table 5.4: Most informative feature combinations extracted from a setup
where colour features are encoded as Euclidean distance between colours

5.3.2 Error analysis

There are several types of errors made by our model. The main reason for
errors is, first and foremost, noisy asr input. If at lest half of the words in
the utterance are not recognised correctly, the model has difficulties building
a good reliable classifier and achieving high accuracy.

Moreover, the longer utterances tend to be more confusing for the model.
Average length of the utterances in TAKE corpus, for instance, is 13.9 words,
with standard deviation of 7.3. Average number of words in correctly resolved
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utterances is 11.9 (standard deviation 5.0). When the model is wrong, the
average number of words is higher, 16.1, with standard deviation of 8.9 (see
figure 5.12). The same pattern is observed in Kennington (2016). Some ex-
amples of such long utterances are presented below (English translation word
for word is also given; the punctuation is provided for easier understanding):

• ähm das grüne in der rechts unteren ecke ... soll ich jetzt einfach weit-
erreden oder ... ja richtig
uhm the green in the right lower corner ... I should now simply continue
or ... yes correct

• okay ähm also ich hab mir ein kreuz ausgesucht ... äh unten rechts
das blaue kreuz ... das sieht jetzt gut aus ... soll ich das irgendwie
bestätigen oder ... ja ist richtig
okay uhm so I have a cross selected ... uh down right the blue cross ...
that looks good now ... I should confirm somehow or ... yes is correct

Figure 5.12: Average number of words and standard deviation for TAKE
corpus

The model has also difficulties resolving the references when there is too
much ambiguity in the scene. For instance, if the same quadrant contains
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two identical Pentomino pieces and the RE does not reflect that sufficiently,
the errors can occur. The sample utterances that lead to such errors are
presented below and the corresponding scenes are shown in figure 5.13:

• die graue form rechts oben in der ecke ... die graue form rechts oben in
der ecke ... der graue winkel rechts oben in der ecke ... richtig
the grey form right up in the corner ... the grey form right up in the
corner ... the grey angle right up in the corner ... correct

• das obere grüne c ... das oberste grüne c ... rechts oben in der ecke ...
richtig
the upper green c ... the top green c ... right up in the corner ... correct

Some other errors occur because of corrections (especially if the speaker
uses both words left and right in the same utterance, the model can be
confused) and too short REs that mention only one of the visual features
(for instance, only colour is mentioned and there are several distractors in
the scene). The model can sometimes mix the colours that are quite similar
(for instance, blue and cyan, or red and magenta pieces can be confused).
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Figure 5.13: Typical ambiguous scenes from TAKE, where the model often
makes mistakes. The target (gold) and the guess (predicted) are highlighted
in white for presentation
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Chapter 6

Conclusion & Future Work

In this thesis, we have explored the task of visual RR. We started with
describing the task itself and the related challenges. We showed that visual
RR is difficult because of dynamic partially-observable environment, noisy
visual input and complex linguistic constructions. The task is also very
important: visual RR is an essential part of any situated dialogue. REs
are used both in everyday life and in task-oriented dialogues, and a reliable
dialogue system should incorporate a RR component.

After giving an overview over related work in chapter 2, focusing on
one rule-based model (gh-power) and two probabilistic models (genera-
tive SIUM and discriminative WAC), we presented our approach in chapter
3. The model we developed is a probabilistic model for the task of visual RR.
Given the visual features of the objects and the RE, the model determines
the target by providing a probability distribution over all candidate objects.
Each object is represented by combination of visual and linguistic features
which are described in section 3.2. With the help of these features, a single
binary logistic regression classifier is built. If the REs are relational, one
extra classifier is needed. It encodes the relation between two objects. The
results of the classifiers are then combined.

This model has been evaluated on the two datasets described in chapter 4.
Using the domain of Pentomino puzzle game and several different setups (vir-
tual and real-world scenes with and without uncertainty in both visual and
linguistic input), two corpora were created — TAKE and TAKE-CV. Our
experiments were conducted on both corpora, and the results were compared
to the baseline SIUM and WAC models.

The experimental design and the results are described in chapter 5. We
used accuracy to compare the performance of our model and the baseline
models. The analysis of the results shows that the model performs re-
spectably in all settings. For TAKE corpus, the model provides better results
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than both SIUM and WAC. For TAKE-CV, the results for tagged simple
REs are somewhat worse for our model, whereas the results for relational
REs are not significantly different.

The model satisfies all the requirements we set in chapter 1:

• The model can handle uncertain visual features

• The model can handle noisy linguistic input

• The model can handle simple and relational references

• The model is robust even with little data available

The biggest challenge for the model is noisy linguistic input. The differ-
ence in the performance of the model on the same corpus with hand tran-
scriptions compared to asr output is significant (20% in accuracy for the
TAKE corpus). It seems that an improved automatic speech recognition
system would provide much better results of our model.

We concluded the thesis with error analysis of our results, where we de-
scribed the most common situations when the model gets confused.

There are many approaches to visual RR. In this thesis, we developed
one more probabilistic model which provides good results, in some cases
outperforming the available baselines.

6.1 Future Work
There are several aspects of our model that could be improved and developed
further. In section 3.3, we described some of the possible extensions to our
model — including cardinality, salience information, using more sophisticated
linguistic features, incorporating other modalities, such as gaze and gesture.

Another challenge is modelling negations. Although the fully negated
REs are unusual (e.g., it is much more natural to refer to an object as a red
ball than not so green ball), in the relational references the negations can
be quite common (e.g., a red ball under the brown table but not near a green
ball). Since determining the scope of negation is a very complicated task, the
RR model could be combined with a negation handling system, for instance
(Lapponi, 2012).

Moreover, it would be useful and interesting to evaluate our system on
several more corpora. It could help to explain the observed differences in
performance between TAKE and TAKE-CV.

The model developed during the work on this thesis is a Python script
that works independently. Since RR is essential in situated dialogues, it
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would be interesting to implement the model as a component of a spoken
dialogue system framework.

Finally, RR is closely connected to a subtask of natural language genera-
tion — generation of REs. It could be possible to use the developed classifier
for this task.
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