Automatic capillary liquid chromatography tandem mass spectrometry method for pharmaceutical products in environmental water samples

Thesis for the Master's degree in chemistry

Deniz Demir

60 study points

Department of Chemistry

Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

May 15th 2017

Automatic capillary liquid chromatography tandem mass spectrometry method for pharmaceutical products in environmental water samples

Deniz Demir

Thesis for the Master's Degree in chemistry 60 study points

Department of Chemistry

Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

May 15th 2017

© Deniz Demir
2017
Automatic capillary liquid chromatography tandem mass spectrometry method for pharmaceutical products in environmental water samples
Deniz Demir
http://www.duo.uio.no/
Printed at Reprosentralen, Universitetet i Oslo

Abstract

The use of active pharmaceutical ingredients (APIs) is increasing continuously and thereby constitutes a potential source of surface water contamination. Environmental concentrations of APIs are usually at trace levels, generally in low ng/L concentrations, making them challenging to detect. However, these low concentrations can be sufficient to induce toxic effects on the aquatic environment.

This project focuses on selected APIs, which are probably the most common in the aquatic environment. Several of the compounds selected are on The Norwegian Institute of Public Health's (NIPH's) list over the most prescribed APIs in Norway throughout 2014.

A rapid, sensitive and selective method was developed and validated for screening of seven APIs (acetaminophen, atenolol, fluoxetine, sulfapyridine, sulfamethoxazole, trimethoprim and xylazine) in surface water. The method include an on-line automatic filter and filter back flush (AFFL) solid phase extraction (SPE) in combination with capillary liquid chromatography (capLC) coupled to a triple quadrupole mass analyser (MS). By combining large volume injection (100 μ L) and the AFFL-SPE-system, a rugged and high throughput switching system was obtained.

The analytes were loaded under non-eluting condition and further trapped on a reversed phase (RP) Kromasil (C_{18} , 5 mm x 1 mm ID, 5 µm) SPE-column with a flow rate of 150 µL/min. A 10 minutes gradient was applied using an ACE C_{18} column (150 mm x 0.3 mm ID, 3 µm) as analytical column with a flow rate of 4 µL/min. The mobile phases (MP) for loading and MP A consisted of type 1 water with 0.1 % formic acid (FA) and the organic MP (MP B) consisted of 100 % methanol with 0.1 % FA (pH 2.7). The total analysis time was 15 minutes including 6 minutes reconditioning.

This study demonstrates that the AFFL-SPE-capLC system combined with a triple quadrupole MS enables the detection of selected classes of APIs in surface water in a concentration range of 10-100 ng/L. The calculated concentration limit of detection (cLOD) for the selected APIs was in the 2-18 ng/L range and calculated concentration limit of quantification (cLOQ) in the 5-54 ng/L range. Acceptable linearity ($R^2=0.9777\text{-}0.9998$) and generally high apparent recovery values (from 69-288 %) with generally relative standard deviation (RSD %) lower than 20 % were found.

Preface

This study was carried out at the University of Oslo, Faculty of Mathematics and Natural

Science at the Department of Chemistry within the research group of bioanalytical chemistry

from August 2015 to June 2017. Professor Elsa Lundanes, Assoc. prof. Dr. Steven Ray

Wilson, Dr. Silvija Abele and Dr. Hanne Røberg-Larsen served as my supervisors.

This study was a part of a sub-project within a cooperation project between the University of

Oslo and the University of Latvia.

My time as master student has been a true journey. I would like to thank my supervisors for

giving me the opportunity to take a master's degree in bioanalytical chemistry and providing

me with a challenging and interesting task. I would especially like to thank Elsa for her

guidance and support whenever I was facing a problem.

I am also extremely grateful to Inge Mikaelsen and Hanne R. L. for helping me during trouble

shooting when the AFFL-SPE-LC instrument failed. I would like to thank Silvija and Sunniva

Furre Amundsen for their work on this project.

Furthermore, I would like to thank all of my fellow students and office-partners. Thank you,

Kamilla Bjørseth, Esma Benn Hassine and Beatrix Rácz for all the interesting discussions and

for spreading joy and happiness.

Finally, I am very grateful to my family for their love and motivation. A special thanks to my

parents, Fadime Demir and Mehmet Ali Demir, who have always believed in me and have

been there for me whenever I needed it.

Oslo, Norway, May 2017

Deniz Demir

VI

Table of content

1	Ab	breviations and symbols	1
	1.1	Abbreviations	1
	1.2	Symbols	3
2	Inti	oduction	4
	2.1	Background	4
	2.1	.1 Active pharmaceutical ingredients (APIs)	4
	2.1	.2 Active pharmaceutical ingredients and statistical information	10
	2.2	Chromatography	13
	2.2	.1 Chromatographic theory	13
	2.2	.2 Liquid chromatography	14
	2.2	.3 Reversed phase chromatography	14
	2.2	.4 Column	15
	2.2	.5 Solid phase extraction	17
	2.2	.6 Large volume injection by on-line solid phase extraction	17
	2.2	.7 Internal standard	19
	2.2	.8 Calibration curve	19
	2.2	.9 Limit of detection and limit of quantification	19
	2.3	Mass spectrometry	20
	2.3	.1 Electrospray ionization	20
	2.3	.2 Mass spectrometers	21
	2.3	.3 Hybrid quadrupole Orbitrap mass analyser	22
	2.3	.4 Triple quadrupole mass analyser	23
	2.4	Methods used for detection of the APIs in water samples	25
	2.5	The aim of the study	27
3	Ex	perimental	28
	3.1	Chemicals and materials	28
	3.1	.1 Chemicals	28

	3.1.2	Sample preparation equipment and consumables	28
	3.2 Sta	ndard stock solutions and sample	29
	3.2.1	Standard stock solutions	29
	3.2.2	Working solutions	31
	3.2.3	Internal standard solutions	32
	3.2.4	Water sample collection and preparation	33
	3.2.5	Validation standard solutions	34
	3.2.6	MS tune solutions	35
	3.3 Ins	trumentation	35
	3.3.1	The AFFL-system	35
	3.3.2	The gradient programs	37
	3.3.3	The detectors and the mass analysers	38
	3.4 Qu	antification	40
	3.5 Cal	lculations	42
	3.5.1	Repeatability	43
	3.5.1	The linearity curve and regression analysis	43
	3.5.1	Limit of detection and limit of quantification	45
	3.5.2	Apparent recovery	45
4	Results	and discussion	46
	4.1 Me	thod development	46
	4.1.1	Optimlaization of the AFFL-SPE-LC system	47
	4.1.2	Optimization of the mass spectrometric parameters	51
	4.1.3	Chromatographic separation of the selected APIs	55
	4.2 Me	thod validation	57
	4.2.1	AFFL-system	57
	4.2.2	Validation	58
	4.2.3	Limit of detection	58
	4.2.4	Limit of quantification	58

	4.2	.5 Apparent recovery	59
	4.2	.6 Linear range in standard solutions	61
	4.2	.7 Repeatability	64
	4.2	.8 Need for pre-filtration	69
	4.3	Application of the method	69
	4.4	Comparison with other studies	71
5	Co	nclusion	73
6	Re	Ferences	74
7	Ap	pendix	83
	7.1	Physiochemical properties	83
	7.2	Mass spectrometry of the APIs	
	7.3	Loading capacity and loading pump flow	87
	7.4	Organic solvents	87
	7.5	Elimination of compounds	90
	7.6	Chromatograms of the selected APIs and the internal standards	91
	7.7	Raw data for method validation	95
	7.7	.1 Acetaminophen (AA)	95
	7.7	.2 Atenolol (AT)	100
	7.7	.3 Fluoxetine (FX)	105
	7.7	.4 Sulfamethoxazole (SM)	110
	7.7	.5 Sulfapyridine (SP)	115
	7.7	.6 Xylazine (X)	120
	7.7	.7 Trimethoprim (TM)	125

1 Abbreviations and symbols

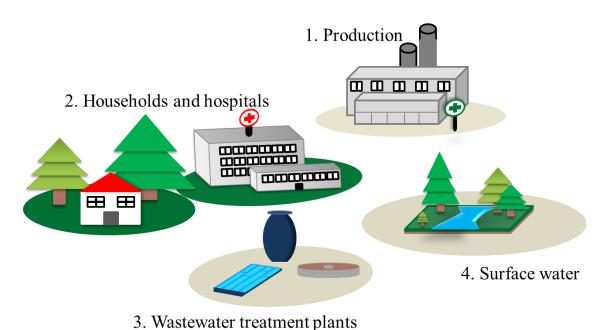
1.1 Abbreviations

Abbreviation	Meaning
ACN	Acetonitrile
AFFL	On-line automated filtration and filter back flush
AGC	Automatic gain control
API	Active pharmaceutical ingredient
a.u.	Arbitrary unit
capLC	Capillary liquid chromatography
cLOD	Concentration limit of detection
cLOQ	Concentration limit of quantification
EIC	Extracted ion chromatogram
ESI	Electrospray ionization
FA	Formic acid
HCD	Higher energy collisional dissociation
HC1	Hydrochloric acid
HPLC	High performance liquid chromatography
GC	Gas chromatography
ID	Inner diameter
IS	Internal standard
LC	Liquid chromatography
МеОН	Methanol
MP	Mobile phase
MS	Mass spectrometry
MS/MS	Tandem mass spectrometry
m/z	Mass to charge ratio

nanoLC	Nano liquid chromatography
PP	Pharmaceutical product
ppm	Parts per million
NCE	Normalized collision energy
PRM	Parallel reaction monitoring
Q	Quadrupole
RF	Radio frequency
RP	Revered phase
SD	Absolute standard deviation
SP	Stationary phase
SIM	Selected ion monitoring
SPE	Solid phase extraction
SPE-LC	On-line solid phase extraction liquid chromatography
SRM	Selected reaction monitoring
SSS	Standard stock solution
TICC	Total ion current chromatogram
UHPLC	Ultra high performance liquid chromatography
UPLC	Ultra pressure/performance liquid chromatography (product of water)
UV	Ultraviolet

1.2 Symbols

Symbol	Meaning
A	Peak area
A _{is}	Peak area of internal standard
С	Concentration
C _{is}	Concentration of internal standard
Н	Plate height
k	Retention factor
L	Length of column
n	Number of replicate(s)
N	Plate number
n _m	Number of molecules in the mobile phase
$n_{\rm s}$	Number of molecules in the stationary phase
R'A	Apparent recovery
R _s	Resolution
\mathbb{R}^2	Correlation coefficient
t_{M}	Hold-up time of an unretained compound
t_R	Retention time
W	Peak width
Wav	Average peak width (10 % or 50 % of the peak height)
σ	Standard deviation


2 Introduction

2.1 Background

2.1.1 Active pharmaceutical ingredients (APIs)

The continuously increasing contaminations of APIs in surface water is an issue receiving growing attention worldwide [1]. Recent studies reports detection of APIs belonging to different pharmaceutical groups, in different aquatic environments [2] e.g. rivers [3, 4], marine water [2, 5] and drinking water [6]. APIs access these locations from various sources like sewage effluent, the improper disposal of drugs, and residues during production of pharmaceuticals [3].

Figure 1 shows an example of an API cycle, starting with the manufacturing process causing contamination of surface water by the residues of APIs. APIs are used in hospitals and in households by humans as medical treatment, but APIs may not be completely absorbed by the human body. The surface water is exposed to the pharmaceutical residues from human consumption, but also from the numerous sources as above mentioned. The residues reach the wastewater treatment plants which work as a filter [7].

F-----

Figure 1 Cycle of an API starts with manufacturing and will further be subjected to human consumption. Residues passing the wastewater treatment plants will reach the surface water.

The filter may not completely eliminate all these substances, which differ in properties and concentrations. Several types of filters and methods [8] are necessary to treat the waste water to eliminate API residues, but some is not eliminated and will pass through the treatment plants and reach surface waters [7, 9].

Concentrations of APIs found in environmental water are usually at trace levels [6, 10], generally in the low ng/L, making them challenging to detect even by a sensitive mass spectrometer [11]. However, even these low concentrations of APIs can be sufficient to induce toxic effects on aquatic species. APIs are disturbing the aquatic environment by leading to unwanted biological, undesirable ecological and detrimental effects on aquatic species [10].

An example may be residues of antibiotics reaching the environmental water. An overuse of antibiotics results in bacterial resistance [12], meaning antibiotics are no longer effective at killing or limiting the growth of bacteria in organisms. Residues from antibiotics reaching the surface water may potentially adversely affect aquatic organisms and humans through drinking water [9]. Antibiotics at trace levels can have an impact on cell functions by changing the genetic expression or may cause transfer of antibiotic resistance [9].

This project, which is conducted in cooperation with the University of Latvia (Riga, Latvia) focuses on selected APIs which are probably the most common ones in surface water. They are representative for different pharmaceutical groups, namely anti-inflammatory, anti-hypertensive, antibiotics, lipid regulators, psychiatric drugs, stimulants, sedation medication and statins. Several of them are on The Norwegian Institute of Public Health's (NIPH's) list over the most prescribed APIs in Norway in 2014 [13].

Table 1 shows the structure of the compounds. The initial list of the APIs also included some hormones, but these were never considered to be a part of this method and were removed from the list (**Table 1**) which presents the target analytes in this study. Sulfapyridine and the internal standards: atenolol-d7, fluoxetine-d5 and sulfamethoxazole-(phenyl- 13 C₆) were later added to the study.

Table 1 Selected APIs and the internal standards with their trivial name and structure.

Name of API	Structure
Acetaminophen	H ₃ C NH OH
Atenolol	H_2N O
Atenolol-d ₇	D_3C N OH OH OH OH OH OH OH OH
Atorvastatin	Pr OH O Ca ²⁺
Azithromycin	H ₃ C OH OH OH N-CH ₃ H ₃ C OH ₃ OH OH N-CH ₃ H ₃ C OH ₃ OCH ₃
Caffeine	H ₃ C CH ₃

Carbamazepine	/ - \
Caroamazepine	
	N
	O NH _o
Cinroflovacin	0 11112
Ciprofloxacin	F
	ОН
	$N \longrightarrow N$
	HN \
Clarithramyoin	
Clarithromycin	H₃C CH₃ CH₃
	110
	H ₃ C CH ₃
	OH OH3
	O' CH ₃ OCH ₃
	ή l
	OH
Dialofones andium salt	ČH₃
Diclofenac sodium salt	Ŭ
	CI H ONa
	N
	CI
Erythromycin a dehydrate	
	H₃C CH₃ CH₃
	HO CH ₃
	H ₃ OH OH CH ₂
	H ₃ C , , , O H ₃ C O
	O CH ₃
	•2 H ₂ O
	ÖH₃
Fluoxetine hydrochloride (Prozac)	H
•	CH₃ • HCI
	F ₃ C
Fluoxetin-d ₅ hydrochloride	CF ₃
	n o · HCI
	D CH ₃
	D' D
	υ

Gemfibrosil	CH ₃
Commercial	
	H ₃ C OH
	H ₃ C CH ₃
Ibuprofen	ÇH₃
	CH³ CH3
	ة ليا ل
TZ . C	H₃C
Ketoprofen	
	OH
Losartan potassium	CI
	HO, N
	HO CH ₃
	N.
	KN-N / N
Metoprolol tartrate salt	ÓН ^Н ÖН Ö
	O N CH ₃ ·½ HO OH
	H₃CO CH₃ Ö ÖH
Naproxen	CH₃
	OH
	H ₃ CO 0
S-Propranolol hydrochloride	ÇH ₃
1	
	O N CH₃
	• HCI
Pravastatin sodium salt hydrate	NaO ,OH
	O HO
	<u> </u> ј″н
	H ₃ C O H CH ₃
	но•

Salicyclic acid	ОН
	ОН
Simvastatin	H ₃ C O O O CH ₃ C CH ₃ C
Sulfapyridine	H O NH ₂
Sulfamethoxazole	H ₂ N CH ₃
Sulfamethoxazole-(phenyl- ¹³ C ₆)	HN-S 13C 13C NH ₂
Trimethoprim	H_2N N OCH_3 OCH_3
Valsartan	HN-N N OOH H ₃ C CH ₃
Xylazine hydrochloride	·HCI H ₃ C

Physiochemical properties of the analytes

The physiochemical property of an analyte is of interest regarding the development of both chromatographic and mass spectrometric methods as well as the principle of the analytical techniques. The APIs differ in structure, polarity (**Appendix Figure A-1**) and acidity (**Appendix Figure A-2**).

2.1.2 Active pharmaceutical ingredients and statistical information

APIs are used by humans mostly as protection to prevent or cure diseases [7]. The sale of pharmaceuticals in Norway has in 2013-2014 increased with 8.9 % according to the report "Pharmaceutical Consumption in Norway 2010-2014» from the NIPH [14]. NIPH indicates that the total sales of pharmaceuticals in 2015 were 22 billion NOK [15]. Increasing amounts of APIs are consumed as a result of improved medical care. APIs are in many cases not completely absorbed by the human body, but partially excreted or metabolized in the body [7], resulting in trace level contamination of surface water. A summary and an overview of the classes, the specific compounds within these classes and the general usage of the groups are described in **Table 2**.

Table 2 The APIs included in this project, classified by pharmaceutical group. The main usage of the group is stated and the compounds are identified using their trivial names. The \ast indicates that the compounds was one of the most prescribed APIs in Norway in 2014.

Group	Usage	Compound
Analgesic/nonsteroidal anti-	For controlling pain,	Acetaminophen*
inflammatories	inflammation and fever [16].	Ibuprofen*
		Ketoprofen
		Naproxen
		Salicylic acid*
		Diclofenac*
Antibiotics	For prevention or treatment	Azithromycin
	of a bacterial infection [17].	Ciproflaxin
		Clarithromycin
		Erythromycin
		Sulfamethoxazole
		Trimethoprim
		Sulfapyridine
Anti-hypertensives	To treat high blood pressure	Losartan
	and heart failure [18].	Valsartan
Beta-blockers	Management of irregularities	Atenolol
	in heartbeat including in	Metoprolol*
	treatment of hypertension,	Propanolol
	altering myocardial processes	
	and decreasing the incidence	
	of heart failure [19].	
Lipid regulators	For reducing cholesterol [20,	Gemfibrosil
	21].	
Psychiatric drugs	For treatment of mental	Carbamazepine
	illness such as depression,	Fluoxetine
	panic attacks [22] and may	
	decreasing nerve impulses	
	that cause pain [23].	

Stimulant	For increasing alertness or	Caffeine (not necessarily an
	energy As a stimulant	API)
	consumed in different	
	amounts differ in effects, and	
	may cause increased in	
	energy availability and	
	enhanced short-term memory	
	[24].	
Sedations	For reducing anxiety, and as	Xylazine
	a muscle relaxant [25].	
Statins	For treatment of lipid	Atorvastatin*
	disorders to reduce	Simvastatin*
	cardiovascular risk, to lower	Pravastatin
	inflammation and to lower	
	cholesterol [26].	

2.2 Chromatography

2.2.1 Chromatographic theory

Chromatography is a technique used for separation of compounds within a mixture [27]. Separation is achieved when different sample compounds interact differently with a stationary phase (SP). The SP is located inside a column and a sample is transported through the column using a mobile phase (MP). The MP can either be a liquid, as used in liquid chromatography (LC), or a gas used in gas chromatography (GC). Each compound within a sample will be distributed between the two phases in the column [28]. This is described by the retention factor, k and shown in **Equation 1**, where n_s is the number of molecules in the stationary phase, and n_m is the number of molecules in the mobile phase.

$$k = \frac{n_s}{n_m} \tag{1}$$

The interaction between different sample compounds and the SP must be different to obtain separation. The speed of the compounds will differ, because a compound is more retained on the column if it has high affinity to the SP, compared to a compound which has low affinity to the SP. The outlet of the column is connected to a detector to measure the intensity of the band of eluting sample component as a function of time, called retention time (t_R). The relation between k and t_R is given by **Equation 2**, where t_M is the time a component would be eluted elute at if it has no interaction with the SP [28].

$$k = \frac{t_{R} - t_{R}}{t_{M}} \tag{2}$$

The efficiency of a column depends on physical processes, both external and within the column. The solute ideally elute in (close to) Gaussian curves with standard deviation σ . The column efficiency, given by number of plates N (**Equation 3**) [28]

$$N = \left(\frac{t_R}{\sigma}\right)^2 \tag{3}$$

A high N value is an indication of an efficient column and N depends on the column length (L). Plate height, H is a measure of band broadening, and N is inversely proportional to the H. The correlation between plate height and number of plates is given in **Equation 4**.

$$N = \frac{L}{H} \tag{4}$$

Resolution, R_s (**Equation 5**) illustrates how well two bands close to each other can be distinguished from one another. Δt_R is the difference in elution time for two components and w_{av} is the average of band width for the two components [27].

$$R_{S} = \frac{\Delta t_{R}}{w_{av}} \tag{5}$$

2.2.2 Liquid chromatography

In high performance LC (HPLC), high pressure is used to force solvent (MP) through a column containing small particles with SP to give high-resolution [27]. The small particles, which most often are porous throughout, have diameters of 3-5 µm. The efficiency of a packed column increases as the size of the SP particles decreases. Chromatography with 1.5-2 µm diameter particles is commonly called ultra high performance LC (UHPLC) [27]. An advantage of UHPLC is the ability to substantially decrease run times. This is due to the use of short columns (i.e., 50 mm length) packed with sub-2 µm particles at higher linear velocities without compromising the separation. The most common columns in LC are packed, however both monolithic and open tubular columns can be used [9].

2.2.3 Reversed phase chromatography

Reversed phase (RP) chromatography is the most common separation mechanism in LC where the separation is based on the difference in hydrophobicity of analytes. The most common RP SP is a nonpolar hydrocarbon chain, chemically bonded to silica-based particles. Among the commercially available RP materials, C₄, C₈, and C₃₀ chains, C₁₈ (octadecyl) bonded silica is the most frequently used (**Figure 2**), which generally supports a pH range limited to pH 2-8 [29].

The MP is often a polar organic solvent mixed with an aqueous buffer, making it more polar than the SP. A nonpolar compound is more strongly retained on the hydrophobic SP than a polar compound. The traditional silica-based C₁₈ stationary phases are generally used for 80-90% of all LC separations. Currently there are numerous selectivity options for RP HPLC and UHPLC columns, which facilitate widespread adoption of LC for all types of separations [30].

RP gives the opportunity to use gradient elution, meaning continuously changing composition of the MP and by increasing the percentage of organic solvent the eluting strength will increase. RP makes it possible to analyze complex samples where target analytes have different hydrophobicity. APIs selected for method development in this study differ in hydrophobicity, which makes the choice of C_{18} SP favorable [31].

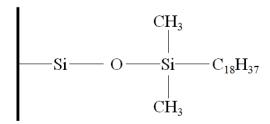


Figure 2 The structure of C₁₈ bonded to silica material [Adapted from [32]].

2.2.4 Column

In addition to being characterized by type, e.g. packed or monolithic, the LC columns are characterized based on their inner diameter (ID) (**Table 3**). Conventional LC columns with an ID in a range of 3-5 mm are still dominating the analytical laboratories due to higher loading capacity and being more robust than a column with smaller ID. A limited amount of a sample with low abundant analytes of interest needs a sensitive method, which can detect the analytes within the complex matrix background. Narrow ID columns such as capillary LC (capLC) and nanoLC are used with smaller volumetric flow rates. A strongly reduced radial dilution (**Figure 3**) of chromatographic bands gives increased sensitivity with concentration-sensitive detection [33]. The drawback of narrow ID columns is that typically smaller injection volumes can be used without extensive band broadening. However large injection volumes can be performed if the sample is dissolved in a solvent with lower elution strength than the MP. By using a column with 0.3 mm ID instead of 4.6 mm ID, a signal 250 times more sensitive should be expected [34]. A benefit of using low flow rates is also formation of smaller droplets into the electrospray ionization mass spectrometry (ESI-MS) causing higher signal and increased sensitivity.

Larger impact from dead volumes and easily clogged LC column due to small dimensions of valves and tubings are the disadvantages of narrow ID columns [27]. The same column length and SP for conventional columns and narrow ID columns are possible [27].

Table 3 Typical IDs of columns used in LC [Adapted from [35]].

Column type	ID (mm)
Conventional	3-5
Narrow bore	2
Micro	0.5-1
Capillary	0.1-0.5
Nano	0.01-0.10
Open tubular	0.005-0.05

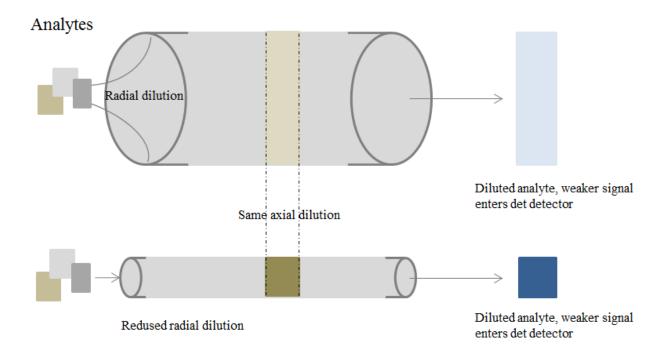


Figure 3 Illustration of radial dilution. Radial dilution is a function of the square of the radius of the column [Adapted from [34]].

2.2.5 Solid phase extraction

Solid phase extraction (SPE) is a sample preparation process which uses a small chromatography column [36]. A frit is placed both under and above a layer of SP particles. The SPE is used to isolate and concentrate components of interest in a sample, including pharmaceuticals from environmental water samples. Traditionally SPE has been carried out off-line prior to the LC separation. However, it is also possible to carry out on-line SPE-LC, utilizing large volume injection [37].

2.2.6 Large volume injection by on-line solid phase extraction

In order to detect trace levels of APIs in aquatic environment, high sensitivity is required and this may be achieved by using large volume injection. Large volume injection on an SPE-column, also called pre-column or trap-column, followed by a separation column (analytical column) may increase the sensitivity. A switching valve is used to switch between the two columns, and the system is called a column switching system [38]. The on-line SPE-column is used to trap the analytes in the sample using a non-eluting MP, providing fast and effective analyte enrichment and clean-up. The purpose of such a column switching systems is to obtain low detection limits using an SPE-column to be able to load a large sample volume without large band boarding. The easily clogging of SPE-columns represent the disadvantage of using a switching system [39]. The switching valve may have six, eight or ten ports dependent on the set-up wanted. The SP of the SPE-column can be of the same type as that of the analytical column. If efficient phase focusing is needed on the analytical column to avoid band broadening, phase focusing can be accomplished by using an SPE-column giving a lower retention factor than the analytical column. That means the band eluting from the SPE-column is refocused to a narrow band at the inlet of the analytical column [39].

Figure 4 shows a valve switching system (10 port) called an on-line automatic filter and filter back flush system (AFFL-system) [40]. The AFFL-system is used to avoid blockage and pressure build-up, which can be a problem arising with an on-line SPE. In order to act as a safeguard for the SPE- and analytical column a filter of stainless steel is incorporated into the system. In load position, the sample is on-line filtrated and analytes retained/focused on an SPE-column. In the inject position, the analytes retained by the SPE-column are transferred to the analytical column for separation by the eluting MP from the gradient pump.

At the same time the MP from the loading pump runs through the filter in back flush mode, transporting the trapped particles to waste [40].

To waste Filter Particle API Salt/solvent From gradient pump

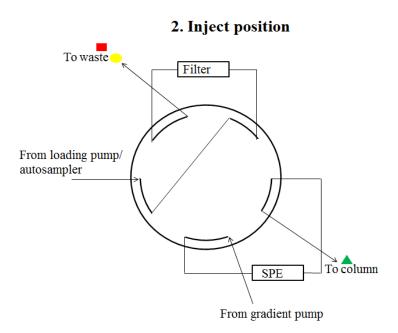


Figure 4 The AFFL-SPE-LC set-up for robust column switching. In load position, the sample is on-line filtrated through an incorporated filter and analytes retained/focused on an SPE-column. In the inject position, the analytes retained by the SPE-column are transferred to the analytical column for separation by the eluting mobile phase (MP) from the gradient pump. At the same time the MP from the loading pump runs through the filter in back flush mode, transporting the trapped particles to waste

2.2.7 Internal standard

An internal standard (IS) is a compound which is known and added of a known and constant concentration to the sample and calibration solutions to enable quantitation of the target analyte. The IS corrects for loss of analyte, compensates for sample to sample recovery differences and corrects for variable instrumental conditions, such as injection volume, retention time, and MS response [41]. The IS used must be separated (in time or mass) from the analyte and other compounds in the sample, but not be present in the sample. Considering sample preparation, extraction e.g. the IS has to behave like the analyte and be added in a concentration that give equal peak height/ peak area as the target analyte [28]. Stable isotope labelled (SIL) ISs e.g. deuterated ISs are often the choice when using MS as detector. They are available of high purity, have a retention time close to the target analyte and behave like the target analyte [42]. The calibration curve is constructed by using **Equation 6** when an IS is used.

$$\frac{A}{Ais} = \frac{C}{Cis}$$
 (6)

A is the peak area of the analyte of interest and A_{is} the peak are to the IS to the corresponding analyte. C is the concentration of the analyte of interest and C_{is} is the concentration of the corresponding IS. However, concentration of IS used was the same throughout the study, a simpler version of **Equation 6** was used, and given in **Equation 7**.

$$C = \frac{A}{A is}$$
 (7)

2.2.8 Calibration curve

A calibration curve illustrates the response of an analytical method to known quantities of analyte [27]. The curve is established by plotting the ratio of the analyte peak area and the peak area of the IS as a function of analyte concentration (**Equation 7**). The mathematical equation (regression equation) relates the instrument response to the analyte concentration [43].

2.2.9 Limit of detection and limit of quantification

The concentration detection limit (cLOD) is the lowest concentration of analyte detectable by the method at a specific level of confidence [44].

The lowest level that the performance is acceptable for a typical value is defined as the concentration limit of quantification (cLOQ) [44].

2.3 Mass spectrometry

2.3.1 Electrospray ionization

Liquid chromatography-mass spectrometry (LC-MS) is a combined technique where electrospray ionization (ESI) is the most common interface (Figure 5) [37]. A challenge is that LC is performed with liquids as MP, while a MS measures ions in gas phase at high vacuum. The interface should be able to convert the analytes from the liquid phase into ions in gas phase. The eluent from the analytical column enter a stainless steel capillary and ESI is performed by applying an electrical potential between the conductive capillary and a counter electrode, which is the source block of the mass detector. The potential is usually in the range 1-5kV [39] resulting highly charged droplets. The magnitude of this potential is depended on the source design, the inner diameter of the capillary and the nature of the solution to be sprayed. The capillary is held a constant positive potential in the positive ESI mode and the positive ions in the solution are repelled from the capillary [39]. At the end of the capillary tube, a capillary tip is formed, a characteristic Taylor cone, which emits a fine jet of small droplets when the electric field strength is high enough. By using high voltage and nitrogen gas, an aerosol of charged analyte ions is formed. The analytes are either ionized in the MP or easily ionized in the ESI process. After the Taylor cone, the formed larger droplets will gradually decrease in size by evaporation of the volatile solvent due to heated air around (higher thermal energy), moving toward the entrance of the MS. The charge of the ions increases relative to the radius with the evaporation. Inside the droplets there are repulsive forces, and at a curtain point, it overcomes the surface tension and leads to splitting of the droplets. The droplets will reach a size where gas-phase ions can be produced and detected with an MS analyser [39].

Two mechanisms have been proposed for the formation of gas-phase ions: one by Dole and one by Iribarne and Thomson (**Figure 5**). Dole proposed a theory called charge residue theory in the case of high mass ions (m/z, mass to charge ratio). The theory involves continuous evaporation of the solvent which leads to splitting of the droplet into small and smaller

droplets. The expectation is formation of single ion at the end of the process [45]. Solvent evaporation from such a droplet will lead to gas-phase ion.

Iribarne and Thomson proposed a new theory believed to favor ions with relatively low mass values called ion evaporation theory. The coulomb effect will break the highly charged droplet into smaller droplets and the ions are believed to be evaporated directly from the surface.

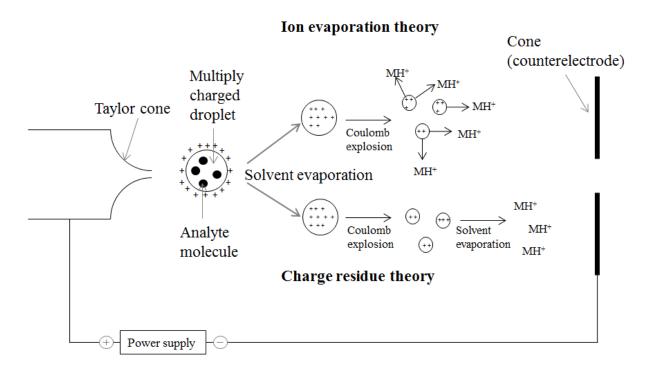


Figure 5 The principle of electrospray ionization both with charged residue theory and ion evaporation theory [Adapted from [45]].

2.3.2 Mass spectrometers

A mass analyser is used for identification of a compound or its fragments. The requirement is that the compound/fragments must be of gas-phase ions and charged to be separated according to their m/z. An MS is generally equipped with an ion source used to generated ions which are introduced into the mass analyser and sorted according to their m/z value and detected by the detector. The detector generates a signal in response to the ions hitting the detector at their m/z value [46]. The mass analysers, also known as a mass filters, are used to separate the ions, before their m/z value and intensity are registered.

Fragment ions are used for identification and distinction of co-eluting compounds which is a common scenario in complex samples. The mass analysers such as time of flight (TOF), ion trap, quadrupole (Q) and orbitrap are used for m/z analysis. Only the two used in this thesis will be described below.

A compound can be identified by observing the m/z to the precursor ion in an MS spectrum. MS is generally used to produce two types of spectra, MS spectra and MS/MS spectra. LC-MS data can be produced by using different MS modes. The common modes are full scan resulting in the total ion current chromatogram (TICC) plot, selected ion monitoring (SIM), and selected reaction monitoring (SRM) or also called multiple reaction monitoring (MRM). SRM is the most common targeted quantification method [47]. Parallel reaction monitoring (PRM)-based MS is comparable in performance to SRM and PRM [48].

2.3.3 Hybrid quadrupole Orbitrap mass analyser

The orbitrap mass analyser of the hybrid quadrupole Exactive Orbitrap (Q Exactive) mass spectrometer is a high-resolution mass analyser ([49]) with a high resolving power ($R_{s=}150\ 000$) and mass accuracy (2-5 ppm) [50]. An illustration of the Q Exactive Orbitrap mass spectrometer is shown in **Figure 6**, and as observed it consists of two mass analysers (a fragmentation cell); a Q (serving as a mass filter) and an orbitrap mass analyser (serving as a both m/z separator and detector).

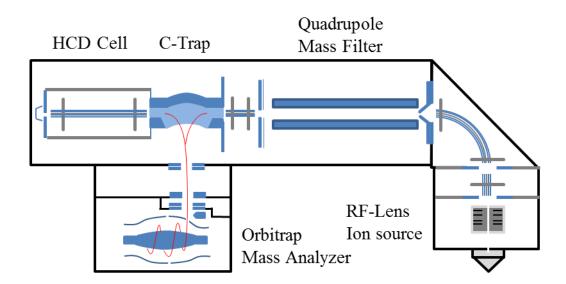


Figure 6. Schematic illustration of the process in Q Exactive Orbitrap mass analyser [Adapted from [51]].

In a Q Exactive MS the ions are transported from the ion source for separation from neutral molecules by a beam guide. The Q mass filter (see also Chapter 2.3.4) which is positioned between the optics and the detector is used for selection of the precursor ion. The higher energy collisional dissociation (HCD) cell is positioned next to the C-trap for fragmentation of the precursor ion. The Q mass filter allows transfer of ions with a specified mass range into the C-trap for relaxation [51]. In the Q Orbitrap MS the selected ions are transferred to the Ctrap where the ions are relaxed and stored. In MS mode the ion are pulsed into the Orbitap mass analyser from the C-trap with the same injection energy. While in MS/MS mode the ions are transferred through the C-trap to the HCD cell. In the HCD cell the ions are fragmented by a collision gas (nitrogen) and subsequently transferred back to the C-trap for relaxation before they are pulsed into the Orbitrap mass analyser. Orbitrap mass analyser is composed of an outer barrel-like electrode and a spindle-like central electrode which is separated by an insulator. The outer electrodes have the shape of cups facing each other. The ions are injected between the central and outer electrodes. A voltage is applied between the outer electrode and the central electrode causing circulation of ions around the central electrode and oscillation along the horizontal axis at the same time. Outer electrodes are used as receiver plates for image current detection of these axial oscillations. The spin radius of the ions is dependent of their the m/z value which result in different frequencies, which will be detected and transformed to m/z-values by Fourier transformation [52].

2.3.4 Triple quadrupole mass analyser

A triple quadrupole (QqQ) MS is also called a tandem mass analyser (MS/MS) [53], and commonly used for quantitative analyses. The resolution of a triple quadrupole is 0.2 Da [54] and the accuracy is > 100 ppm [28]. The instrument consists of two quadrupole (Q1 and Q3) mass analysers and a collision cell (q2) positioned between the mass analysers [55]. A quadruple consists of four cylindrically formed identical rods. The ions enter an oscillating electrical field which is created between these rods. The both opposite rods are connected electrically to each other. The oscillating electrical field is created by applying a certain direct current (DC) and a radio frequency (RF) on one of the pair and the opposite DC and RF on the other pair. By varying the potential applied to the rods, ions of different masses are selected to reach the detector. Only ions with a specific m/z are stabilized through the rods to enter the detector when a certain DC and RF are applied. The ions with higher or lower m/z than the m/z range will be unstable and be ejected from the Q. The ions will be separated in

time by continuously increasing the potential. By selecting a range of potentials or single potentials only some ions will pass. A mass spectrum in a single Q appears when these ions hit a detector which makes signals with intensities corresponding to number of ions hitting. [28, 55]. In a QqQ, the quadrupoles are separated by the Einzel lenses in the gaps supporting the transition of ions through the instrument [56].

In MS/MS mode (**Figure 7**), the Q1 operates as a mass filter used to select the precursor ion and allows transfer into the q2. In q2 the collision gas (nitrogen, N2 or argon, Ar) is provided at a pressure of 10⁻⁸ to 10⁻⁶ bar to break the precursor ion into fragments called product ions. When the ions finally enter the Q3, the fragments will be analysed and be detected [27].

As described above, a QqQ allows MS/MS generating an increase in selectivity and sensitivity. The instrument may both do SRM/MRM and both of these are performed in this study. The principle of SRM is that one product ion from the precursor ion is monitored and of MRM that several product ions from the precursor ion are monitored [48]. The chromatograms using these modes are obtained by plotting the intensity of ions as a function of time. In an extracted ion chromatogram one or a set of chosen m/z is plotted. In a TICC the signal of a complete mass spectrum is plotted, meaning the sum of the different ion currents from the ions with different m/z values are plotted as a function of time.

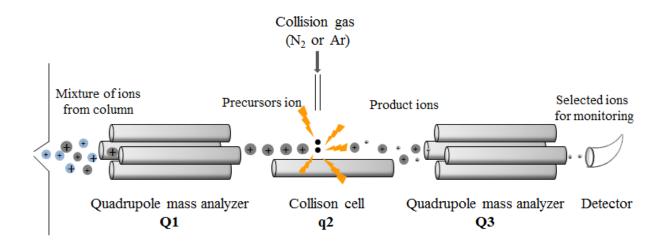


Figure 7 The principle of selected reaction monitoring [Adapted from [27]].

2.4 Methods used for detection of the APIs in water samples

One of the challenges in keeping water resources clean is that the mixture of the APIs used by the society is continuously changing. In this context, several publications [2, 57, 58] share experiences with techniques and methods suited for the detection of various the APIs in environmental water samples.

MS is often a preferred choice for detection of APIs in water samples, where either triple quadrupole tandem MS [59] or Orbitrap high resolution MS [3] is operated in either ESI mode or atmospheric pressure chemical ionization (APCI) mode. As reported by R. D. Briciu et al. [60] and M. Stas et al. [61], APCI and ESI are the currently used LC-MS interfaces. However, R. D. Briciu et al. report that low fragmentation repeatability was observed in the APCI interface for some APIs compared to the ESI interface. Generally, the ESI interface was suitable for the APIs investigated in their study and resulted in higher sensitivity compared to the APCI interface. ESI tandem quadrupole TOF-MS has also been used for screening of 13 APIs in water at low concentrations (1-100 ng/L) as described by Stolker at al. [62].

Since most of the APIs are polar and non-volatile and thermally labile, GC is not suitable as chromatographic method of the APIs without derivatization. Derivatization of the hydroxyland carboxyl-groups is required for GC detection. However, GC has been used by C. Hao et al. ([63]) for determination of selected APIs in water samples.

Although LC-MS (and GC-MS) is highly sensitive, sample preparation is necessary to remove possible interferences and enrich the analytes of interest to achieve the LODs required. A classical approach for environmental water sample preparation is SPE, which is generally used to isolate and enrich the analytes in environmental water samples. The sample preparation can either be performed off-line [3, 58] or on-line. In this context, off-line means that at least some steps in the sample preparation has to be done manually and that there is no physical connection between the SPE and the LC. As described ([2, 3, 58]) in the off-line approach, the operator has to collect the final eluent and place it in the injector/autosampler by hand. Filtration is usually the first step of the sample preparation if the subsequent extraction of the sample is based on the SPE. This is due to the suspended solids which could easily clog the adsorbent bed [2, 3, 60].

In the sample preparation using SPE, the column requires preconditioning prior to applying the aqueous sample to the column, the application is followed by elution. In addition in off-line SPE evaporation to dryness and enrichment of analyte by dissolving it in a low volume of an appropriate solvent is common. An ideal sample preparation step should be fast, accurate, and precise, and consume little organic solvent. Therefore automatization, ideally of the whole procedure is attractive. This eliminates the manual steps where loss of analytes is possible and external filtration which is time consuming. Compared to SPE, pressurized liquid extraction (PLE) [57] and liquid-liquid extraction (LLE) [64] are also suitable approaches for sample preparation of water samples. SPE is considered to be the most appropriate technique for sample preparation of water samples and it is preferred over conventional techniques such as LLE [64].

For the LC separation of APIs, a mixture of water-ACN or water-MeOH are frequently used with gradient elution by increasing the amount of organic solvent from 10 to 50 to 100%. ([3, 10, 65]) MP additives such as acetic acid or FA are used to improve MS detection of the APIs with ESI [64].

 C_{18} as SP has been the most widely used SPE material for extraction of APIs, with efficient extraction from wastewater and surface water samples [64]. Analytical columns of different ID, length and particle size can be used for separation of APIs as seen in several publications ([3, 10, 58]). The analytical column used by B. J. A. Berendsen et al. was an UPLC analytical column (2.1 ID x 100 mm) with a particle size of 1.7 μ m [65]. The same particle size, but a shorter column was preferred by R. Loos et al. [5]. However, a larger particle size has been used by S. Esteban et al. (C_{18} , 2 mm ID x 125 mm, 5 μ m) [66] and by T. Benijs (C_{18} , 2 mm ID x 100mm, 3 μ m) [58]. The ID of analytical columns was generally of 2 mm, however 0.3 mm ID was used in the present study for improvement of sensitivity and reduction of radial dilution of APIs in the column by the MP.

2.5 The aim of the study

The aim of this study was to develop and validate a method for screening of selected APIs in surface water samples by using capillary high performance liquid chromatography mass spectrometry (capLC-MS). The method should provide high sensitivity and minimal sample preparation by using an AFFL-SPE-capLC-MS/MS platform.

This thesis work is a sub-project within a cooperation project between the University of Oslo and the University of Latvia.

3 Experimental

3.1 Chemicals and materials

3.1.1 Chemicals

Type 1 water was obtained from a Milli-Q Water Purification System delivered from Merck Millipore (*Billerica, MA, USA*) and Optima LC-MS water was purchased from Fisher Scientific AS (*Waltham, MA, USA*). Hipersolv Chromanorm HPLC grade methanol (MeOH) and acetonitrile (ACN) were purchased from VWR International (*Radnor, Pennsylvania, USA*). Toluene was purchased from Rathburn Chemicals (*Walkerburn UK*). Formic acid (FA, 98 % purity) was purchased from Sigma-Aldrich (*St. Louis, Missouri, USA*). The analytical standards of caffeine, ibuprofen, ketoprofen, naproxen, salicylic acid, diclofenac, acetaminophen, xylazine hydrochloride (HCl), carbamazepine, fluoxetine HCl, diazepam, clarithromycin, erythromycin (dihydrate), trimethoprim, azithromycin, sulfamethoxazole, ciprofloxacin, valsartan, losartan, propranolol HCl, atenolol, pravastatin (sodium salt hydrate), gemfibrozil, atorvastatin calcium, simvastatin, metoprolol tartrate salt, sulfamethoxazole and sulfapyridine were purchased from Sigma-Aldrich. All the analytical standards were of high purity grade (≥ 95 %).

3.1.2 Sample preparation equipment and consumables

For direct infusion MS experiments was an SGE Analytical Science syringe (500 µL) form Trajan Scientific and Medical (*Ringwood, Australia*) used in combination with a Fusion 101 Pump from Chemyx Precision Syringe (*Stafford, Texas, USA*). Automate pipettes were delivered from Thermo Fisher Scientific (*Waltham, MA, USA*). A 5510 Ultrasonic bath was purchased from Branson (*St. Louis, MO, USA*). All solutions were prepared in Eppendorf tubes delivered from Eppendorf AS (*Hamburg, Germany*).

3.2 Standard stock solutions and sample

3.2.1 Standard stock solutions

The solvent used for making analytical standard solutions of the APIs are shown in **Table 4**. This information was obtained from the University of Latvia.

The standard stock solutions (SSSs) with the concentration of 1 mg/mL were prepared by weighing an appropriate amount of the solid standard which was dissolved in 10 mL of the chosen solvent (**Table 4**). All the solutions were sonicated for 25 minutes and acidified with a few drops of FA. The SSSs of 1 mg/mL were aliquated into 1.5 mL Eppendorf tubes (1 mL in each tube) and stored at -20 °C until the day of analysis. The preparations of SSSs were done by a visiting master student, Diana Dzabijeva from the University of Latvia. Sulfapyridine was prepared by PhD Hanne Røberg-Larsen in the same way as the other analytical standards.

Table 4 The APIs and their corresponding stock solvents used for preparation of the stock solutions (1 mg/mL).

Name of compound	Stock solvent
Acetaminophen	ACN/MeOH (80/20)
Atenolol	ACN/MeOH (80/20)
Atorvastatin calcium salt	ACN
Azithromycin	ACN
Caffeine	ACN
Carbamazepine	ACN
Ciprofloxacin	Toluene/MeOH (50/50)
Clarithromycin	ACN/MeOH (60/40)
Diclofenac sodium salt	ACN/MeOH (80/20)
Erythromycin (dihydrate)	ACN
Fluoxetine	ACN/MeOH (80/20)
Gemfibrozil	ACN
Ibuprofen	ACN
Ketoprofen	ACN
Losartan (potassium)	ACN/MeOH (80/20)
Metoprolol	ACN/MeOH (80/20)
Naproxen	ACN/MeOH (80/20)
S-Propranolol (hydrochloride)	ACN/MeOH/H ₂ O (50/25/25)
Pravastatin (sodium salt hydrate)	ACN
Simvastatin	ACN
Sulfapyridine	ACN
Sulfamethoxazole	ACN
Trimethoprim	ACN
Valsartan	ACN
Xylazine (hydrochloride)	ACN

3.2.2 Working solutions

SSSs of 1 mg/mL were diluted using MeOH/type 1 water (50/50, v/v) with 0.1% FA, to obtain appropriate working solutions: A_1 (100 µg/mL), A_2 (10 µg/mL) and A_3 (1 µg/mL) (**Table 5**) and stored in Eppendorf tubes at -20 °C. All subsequent dilutions were done with solvent B* consisting of 0.1 % FA in type 1 water (see **Table 5**) and were stored at 4 °C. **Figure 8** illustrates how the standard solutions (working solutions) were prepared from the standard stock solution.

Table 5 Working solutions with the name given of the series, the solvent and their concentration. A*: dissolved in MeOH/type 1 water (50/50, v/v) with 0.1 % FA and B*: dissolved in type 1 water with 0.1 % FA.

Series name	Solvent	Concentration	Unit
SSS	SSS solvent	1	mg/mL
A_1	A*	100	μg/mL
\mathbf{A}_2	A*	10	μg/mL
\mathbf{A}_3	A*	1	μg/mL
$\mathbf{A_4}$	B*	100	ng/mL
\mathbf{A}_5	B*	10	ng/mL
$\mathbf{A_6}$	B*	1	ng/mL
\mathbf{A}_7	B*	100	ng/L
$\mathbf{A_8}$	B*	10	ng/L

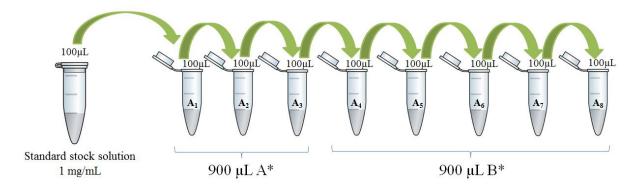


Figure 8 A general illustration of how the working solutions were prepared and μ L of solvent used for dilution for all the APIs. A*: dissolved in MeOH/type 1 water (50/50, v/v) with 0.1% FA and B*: dissolved in type 1 water with 0.1 % FA.

3.2.3 Internal standard solutions

The internal standards sulfamethoxazole-(phenyl- $^{13}C_6$) (99.5 %), atenolol-d7 (\geq 97 % isotopic purity) and fluoxetine-d5 hydrochloride (98 atom % D) were purchased from Sigma-Aldrich and were pre-weighed by the supplier (see **Table 6**). The standard of atenolol-d7 was dissolved in 5 mL of the ACN/MeOH (80/20, v/v) and fluoxetine-d5 hydrochloride was dissolved in 10 mL of ACN/MeOH (80/20, v/v). The Sulfamethoxazole-(phenyl- $^{13}C_6$) solution was prepared by PhD Hanne Røberg-Larsen, by dissolving the solid standard in 10 mL of ACN. Preparation of IS₁, IS₂ and IS₃ were done by further dilution from stock solutions using solvent A*. All subsequent dilutions were done with solvent B*. Stock solutions and IS₁, IS₂ and IS₃ were stored in Eppendorf tubes at -20 °C. The working solutions IS₄-IS₆ were stored at 4 °C. Concentration of stock solutions and working solutions are shown in **Table 7**. **Table 8** shows the IS used for the API.

Table 6 Pre-weighed analytical standards from supplier and the stock solvent used for dilution of each IS.

Name of internal standard	Stock solvent	Amount of purchased IS (mg)
Atenolol-d7	ACN/MeOH (80/20)	2
Fluoxetine-d5 hydrochloride	ACN/MeOH (80/20)	10
Sulfamethoxazole-(phenyl- ¹³ C ₆)	ACN	10

Table 7 Concentration of stock solutions and working solutions prepared. The A^* indicates that the dilution was done by using MeOH/type 1 water (50/50, v/v) and 0.1 % FA, while B^* indicates that the dilution was done by using in type 1 water with 0.1 % FA.

	Atenolol-d7	Fluoxetine-d5	Sulfamethoxazole-	Unit
		hydrochloride	$(phenyl-^{13}C_6)$	
Stock solution	0.4	1	1	mg/mL
IS ₁ (A*)	100	100	100	μg/mL
IS ₂ (A*)	10	10	10	μg/mL
IS ₃ (A*)	1	1	1	μg/mL
IS ₄ (B*)	100	100	100	ng/mL
IS ₅ (B*)	100	100	10	ng/mL
IS ₆ (B*)	1	1	1	ng/mL
IS ₆ (B*)	100	100	100	ng/L

Table 8 The internal standard used for each API in method development and validation.

Internal standard	Atenolol-d7	Fluoxetine-d5	Sulfamethoxazole-
Internal Standard		hydrochloride	$(phenyl-^{13}C_6)$
	Atenolol	Fluoxetine	Acetaminophen
			Sulfapyridine
Analyte (s)			Sulfamethoxazole
			Trimethoprim
			Xylazine

3.2.4 Water sample collection and preparation

The water sample was collected 27th Mars 2017 in the Sognsvann creek located in Oslo (**Figure 9**). The coordinates of the sampling point are *59.948842*, *10.712272*. The sample was transported to the laboratory and one part was filtrated through a non-pyrogenic 0.2 μm cellulose acetate membrane filter (7 bar max, FP 30/0.2 CA-S) from Schleicher and Schuell (*Dassel, Germany*). The filtrated sample was acidified with 0.1 % FA and stored at 4 °C before analyses. One part of the non-filtrated water sample was stored at -20 °C, while it was acidified with 0.1 % FA and stored at 4 °C before analysis.

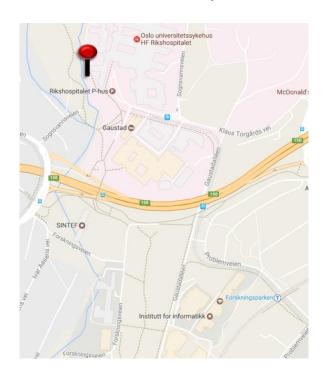


Figure 9 Map of the location of the Sognsvann creek (Rikshospitalet) where the water sample was collected.

The filtrated and acidified water sample from the Sognsvann creek was added the internal standards of different concentrations and analysed using the Quantiva QQQ MS set-up. **Figure 10** illustrates the preparation of the water sample from the Sognsvann creek by adding the internal standards.

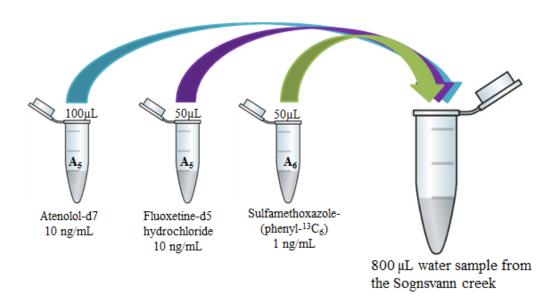


Figure 10 An 800 μ L water sample from the Sognsvann creek was filtrated through a non-pyrogenic 0.2 μ m cellulose acetate membrane filter and acidified (0.1 % FA). The filtrated water sample was added different concentrations of the internal standards: 1000 ng/L of atenolol-d7, 500 ng/L of fluoxetine-d5 hydrochloride and 50 ng/L of sulfamethoxazole-(phenyl- $^{13}C_6$).

3.2.5 Validation standard solutions

Validation solutions were prepared at concentration levels 10-100 ng/L (**Table 9**). The validation solutions were thoroughly mixed by vortex and aliquoted into vials and analysed by the final LC-MS method. The validation solutions were made in three matrices, type 1 water with 0.1 % FA (MP A) and acidified filtrated and no-filtrated water sample from the Sognsvann creek. For the IS used for each analyte, see **Table 8**. The same concentrations of both the APIs and the internal standards were used to make the calibration curve and linearity curves.

Table 9 Validation solutions (VAL 1-5) with the spiked concentrations of the APIs and the internal standards: atenolol-d7 and fluoxetine-d5 hydrochloride were of \geq 95 % HPLC purity and sulfamethoxazole-(phenyl- 13 C₆) of 98 % HPLC purity. Solvent of HPLC grade was used for the dilutions.

	Concentration of APIs	Concentration of atenolol-d7	Concentration of fluoxetine-d5	Concentration of sulfamethoxazole-
			hydrochloride	(phenyl- $^{13}C_6$)
VAL 1	10 ng/L	1000 ng/L	500 ng/L	50 ng/L
VAL 2	25 ng/L	1000 ng/L	500 ng/L	50 ng/L
VAL 3	50 ng/L	1000 ng/L	500 ng/L	50 ng/L
VAL 4	75 ng/L	1000 ng/L	500 ng/L	50 ng/L
VAL 5	100 ng/L	1000 ng/L	500 ng/L	50 ng/L

3.2.6 MS tune solutions

MS tune solutions for the Quantiva QQQ MS and the Q Exactive MS were prepared with a concentration of $10 \,\mu\text{g/mL}$ (A₂) for each of the APIs. These solutions were used for tuning of the MS parameters by direct infusion. The MS tune solution was used for tuning of the MRM transitions on the Quantiva QQQ MS, and PRM transitions the Q Exactive MS. The m/z of the precursor ion was observed in full scan, before the optimization of the conditions was started. When using the Quantiva QQQ MS, parameters such as collision energy and RF-lenses were optimized and the product ions were identified. Low mass exclusion was used and set to m/z 90 for the both mass analysers. Optimization of the Q Exactive MS was done manually by changing the fragmentation energy (NCE) and observing the intensity of the fragments.

3.3 Instrumentation

3.3.1 The AFFL-system

The system consisted of two pumps: an Agilent 1100 series G1378A CapPump from Agilent Technologies (*Palo Alto, CA, USA*) as the gradient pump, and an Agilent 1100 series G1310A QuatPump as the loading pump. Column switching was performed with a CapLC[®] selector 10-port two-position switching valve from Waters (*Milford, Massachusetts, US*). Injections were done by a G1313A ALS standard autosampler (*Agilent Technologies*) either with a 100 μ L loop or with an extended loop (1500 μ L). By using an external loop, multiple injections of 100 μ L could be combined into a larger volume.

The SPE-column HotSep (AQ Kromasil C_{18} , 5 µm particles, 1 mm ID x 5 mm) and the analytical columns HotSep (C_{18} , 2 µm particles, 0.3 mm ID x 100 mm or 150 mm) were from G&T Septech AS (*Ski, Norway*) and were used in preliminary experiments. An ACE column (C_{18} , 3 µm particles, 0.3 mm ID x 150 mm) from Advanced Chromatography Technologies (*Aberdeen, Scotland*) was used as the analytical column for method validation. The SPE-column used for method validation was a HotSep (Kromasil C_{18} , 5 µm particles, 1 mm ID x 5 mm) from G&T Septech AS.

In preliminary experiments the waste tubing from the valve was connected to a UV detector (**Figure 11**), to observe possible breakthrough from the SPE-column.

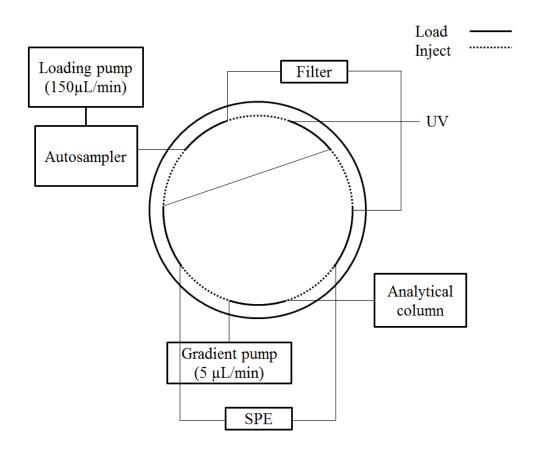


Figure 11 The LC-UV set-up for measurement of breakthrough.

The AFFL-system had a 2 μ m stainless steel filter screen placed inside a union (1/16", 0.25 mm bore) both purchased from Vici (Valco Instrumens Co. Inc, *Houston, Texas, USA*).

The tubings used in the system were Polymicro TechnologiesTM fused silica capillary tubings from Molex (*Wellington court, IL, US*), with IDs of 50 μm and 100 μm. **Figure 12** shows the AFFL set-up with tubing ID.

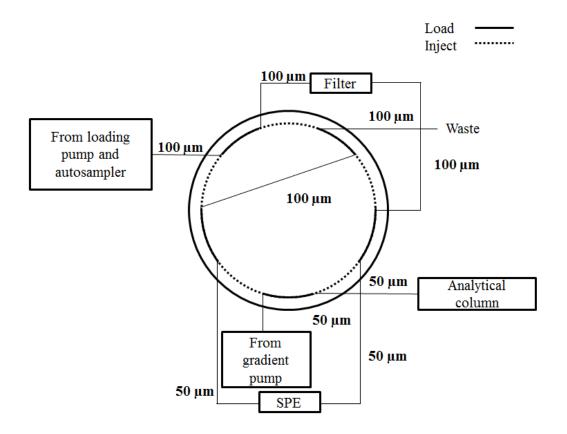


Figure 12 The AFFL-SPE 10-port-valve set-up in back flush mode, with ID of the tubings used.

3.3.2 The gradient programs

The flow rate of the gradient pump was set to 3.5 μ L/min and maximum pressure of 400 bar. In preliminary experiments, the analytes were separated using a 15 minutes gradient program (1), see **Table 10**. The total analysis time was 20 minutes. Analytes were loaded in 1.6 minutes in loading position, by using MP A (non-eluting conditions, type 1 water with 0.1 % FA). After loading, the valve was switched to inject position. The gradient program started from 35 % MP B (MeOH with 0.1 % FA) to 95 % B in 7 minutes and was held at 95 % for 7 minutes, before returned to starting conditions which was held for 6 minutes.

Table 10 Gradient program (1) used for separation of APIs. Mobile phase (MP) A was type 1 water with 0.1 % FA and MP B was MeOH with 0.1 % FA.

Time (min)	MP B (%)
0	35
7	95
13	95
14	35

The gradient program was later optimized. The analytes were separated in 10 minutes (**Table 11**). Analytes were loaded in 1.6 minute in loading position, and after loading the valve was switched to inject position. The gradient program started from 47 % MP B and increased to 99 % MP B in 4 minutes and was held at 99 % for 4 minutes. The total analysis time was 15 minutes including 6 minutes reconditioning.

Table 11 Gradient program (2) used for separation of APIs selected for the current method. Mobile phase (MP) A was type 1 water with 0.1 % FA and MP B was MeOH with 0.1 % FA.

Time (min)	MP B (%)
0	47
4	99
8	99
9	47

3.3.3 The detectors and the mass analysers

The detectors used were either a Dionex Ultimate 3000 RS variable wavelength UV detector (now Thermo Scientific, Waltham, MA, US) operated at 254 nm, a TSQ Quantiva (Quantiva QQQ) MS or a high-resolution mass spectrometer (Q Exactive Orbitrap) both from Thermo Scientific. The Q Exactive MS was used in preliminary experiments, while the TSQ Quantiva was used for method validation. The optimal conditions for both mass analysers were obtained by tuning of the analytes by direct infusion. The Quantiva QQQ MS was operated in MRM mode, while the Q Exactive MS was operated in target MS² mode (PRM).

The MRM transitions by using Quantiva QQQ MS and the PRM transitions by using Q Exavtive MS were obtained by tuning of the analytes by direct infusion. The default values of sheath gas and auxiliary gas were used in arbitrary units (a.u.). Both mass analysers were controlled by the software Xcalibur, version 3.0. The ESI-MS parameters of each mass analyser are given in (**Table 12**). The precursor ion and the product ions of each analyte were identified during tuning by direct infusion, see **Appendix**, **Chapter 7.2**, **Table A-1** and **Table A-2**.

Table 12 The parameters used for the Quantiva QQQ MS and the Q Exactive MS. (– indicates that the instrument does not have a value) a.u. is arbitrary units.

	Parameters	Q Exactive MS	Quantiva QQQ MS
	Ion source type	H-ESI-source	H-ESI-source
	Polarity	Positive	Positive
	Spray voltage	3500	3500
Ion source	Sheat gas (a.u.)	5	5
	Auxillary gas (a.u.)	1	1
	Ion transfer tube temperature (° C)	350	325
	Vapoization temperature (°C)	50	50
	CID gas (mTorr)	-	0.5
	Type of fragmentation gas	HCD cell: N ₂	q2: Ar
	Collision energy (V)	PRM dependent	MRM dependent
Mass	Resolution	35 000	Q1: 0.2 Da
analyser		-	Q3: 0.4 Da
anaryser	AGC target in HCD cell	2e ⁵	-
	Maximum injection time (ms)	100	-
	Cycle time (s)	-	1
	Scan range (m/z)	100-1000	100-1000

3.4 Quantification

The calibration curves used to quantify the APIs in filtrated water samples was constructed using linear regression by using Microsoft Excel (2010 version). The ratio of analyte peak area and the IS peak area were plotted as a function of the concentration of the analyte (Equation 7), see Chapter 3.2.5 for concentrations used. The quantifier and qualifier characterizing the target analyte for identification were established based on the highest intensity of the target analyte ions. The precursor ion, product ion and their collision energy and RF-lens values are given in Table 13. The extracted ion chromatograms (EIC) were smoothened (Gaussian smoothing by 9 points) before integration and integration of the peak areas were performed manually.

Table 13 The precursor ions, product ions, collision energies and the RF-lens values of the APIs and internal standards (IS). * indicates that the m/z was used as a quantifier and ** indicates that the m/z was used as the qualifier. The numbers in italic were removed from the method to minimize background noise and interferences.

Compound	Precursor ion	Product ion	Collision	RF-lens
	(m/z)	(m/z)	energy (V)	(V)
Acetaminophen	152.075	110.076*	28	66
		93.112**	20	66
		109.383	28	66
Atenolol	267.205	145.130*	34	72
		190.064**	23	72
		133.087	39	72
Atenolol-d7 (IS)	274.340	145.0990*	38	70
		190.124**	26	70
		133.133	42	70
Fluoxetine	310.205	148.065*	8	53
		117.087**	59	53
		183.073	56	53
Fluoxetine-d5 HCl	315.265	153.089*	12	50
(IS)		122.245**	59	50
		314.177	12	50
Sulfapyridine	250,045	184.050*	24	67
		155.955**	25	67
		92.060	37	67
Sulfamethoxazole	254.010	155.980*	23	67
		108.040**	33	67
		92.065	37	67
Sulfamethoxazole-	260.000	161.960*	23	64
$(phenyl-^{13}C_6)(IS)$		114.030**	34	64
		98.12	38	64
Trimethoprim	291.150	230.140*	31	85
-		260.999**	34	85
		123.165	35	85
Xylazine	221.095	120.141*	45	77
		164.064**	33	77
		105.121	45	77

3.5 Calculations

Mixtures of the APIs with increasing concentrations (10, 25, 50, 75 and 100 ng/L) were prepared in MP A, filtrated and non-filtrated water sample from the Sognvann creek. The same APIs were spiked in the same matrix on three consecutive days and analysed. The number of replicates (n) for each concentration spiked in MP A, filtrated and non-filtrated water sample are given in **Table 14**. The ratios between the peak area of the analyte and that of the IS of the corresponding analyte were calculated by Microsoft Excel (version 2010). An example of calculated ratios is shown in **Table 15**.

Table 14 Number of replicates of each concentration of the APIs in MP A, filtrated and non-filtrated water sample from the Sognsvann creek.

Concentration (ng/L)	MP A	Filtrated/Non-filtrated water sample
	Number of replicates:	Number of replicates:
10	10	6
25	3	3
50	10	6
75	3	3
100	10	6

Table 15 Example of calculated ratios between the peak area of the analyte (X) and the peak area of the corresponding internal standard (IS). The replicates in consecutive days (day 1, day 2 and day 3) of the analyte with same concentration in the same matrix.

Compound X		Peak area of anal	yte X/ Peak area	of corresponding IS
Concentration of analyte (ng/L)	REPLICATE	DAY 1	DAY 2	DAY 3
	1	0.20	0.30	0.24
	2	0.22	0.24	0.21
	3	0.24	0.33	0.24
	4	0.21	0.27	0.24
	5	0.20	0.29	0.24
	6	0.21	0.26	0.23
	7	0.24	0.26	0.23
	8	0.20	0.29	0.22
	9	0.20	0.29	0.25
	10	0.20	0.28	0.22

3.5.1 Repeatability

Single Factor Anova

A typical summary output of a single factor Anova test done by Microsoft Excel for an analyte with a specific concentration and matrix is given in **Figure 13**. The standard deviation (SD) for within-day (red) and between-day (blue) replicates was calculated for all concentrations in all matrices. The total SD (green) was used as error bar for that concentration of the analyte in the figures.

Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY 1	10	2.11341275	0.21134127	0.000289671		
DAY 2	10	2.81742540	0.28174254	0.000575967		
DAY 3	10	2.29362470	0.22936247	0.000140311		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.02674925	2	0.013374623	39.88655276	8.69312E-09	3.35413
Within Groups	0.00905355	27	0.000335317			
Total	0.03580279	29				

Figure 13 The *count* is the number of replicates analysed for the same concentration each *group* (day). The sum, average and variance of the replicates each day are calculated. The *between group* variance (blue) and *within group* variance (red) are summed as *total* (green), which is used as standard deviation (SD) for the API in a specific matrix and of a specific concentration.

3.5.1 The linearity curve and regression analysis

Linearity curves for each API were established for day 1, day 2 and day 3 in same matrix. The calculated average for each day by the single factor Anova was used to calculate the average of the days (the mean). In addition, the mean for day 1, day 2, and day 3 was plotted for each matrix, see **Table 16**. By plotting the mean as a function of concentration (10-100 ng/L) and using the calculated SD as error bar (**Table 16**) the figure was plotted (representing three consecutive days for each matrix).

Table 16 Example of the calculated mean (the average) of the average of each day and the standard deviation (SD) used as error bar (calculated by single factor Anova, see Figure 13) for increasing concentration of API in matrix.

Concentration (ng/L)	Mean (A A SM /A SM-IS)	SD	RSD %	cLOD (ng/L)	cLOQ (ng/L)
10	0.24	0.04	15	3	10
25	0.60	0.03	5		
50	1.09	0.16	14		
75	1.56	0.09	6		
100	2.08	0.42	20		

By doing regression analysis using Microsoft Excel with a 95 % confidence level, the linear correlation (R^2) of the curve, for an API in the matrix was established. An example of a summary output of a regression statistics is shown in **Figure 14**. The number bolded in green is the R^2 of the curve. The precision, for all APIs, was expressed as relative standard deviation (RSD %) which was calculated by using the **Equation 7**.

$$RSD \% = \frac{SD}{Mean} \times 100 \tag{7}$$

SUMMARY OUTPUT								
Regression St	atistics							
Multiple R	0,99958421							
R Square	0,99916859							
Adjusted R Square	0,99889145							
Standard Error	0,02448111							
Observations	5							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	2,160756329	2,160756329	3605,319026	1,0177E-05			
Residual	3	0,001797974	0,000599325					
Total	4	2,162554303						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0,06649405	0,020589136	3,229569889	0,048231614	0,000970234	0,132017872	0,000970234	0,132017872
X Variable 1	0,02013443	0,000335326	60,04430886	1,0177E-05	0,01906727	0,021201585	0,01906727	0,021201585
RESIDUAL OUTPUT								
Observation	Predicted Y	Residuals	Standard Residuals					
1	0,26783833	-0,027022903	-1,274589455					
2	0,56985475	0,025862125	1,219839039					
3	1,07321544	0,015800836	0,745278169					
4	1,57657614	-0,011905598	-0,561551417					
5	2,07993683	-0,002734461	-0,128976336					

Figure 14 A typical summary output of a regression analysis using Microsoft Excel. The number bolded in green is the linearity of the curve, while the numbers bolded in red are used for calculations of concentration limit of detection (cLOD) and concentration limit of quantification (cLOQ).

3.5.1 Limit of detection and limit of quantification

The numbers bolded in red (**Chapter 3.5.1 Figure 14**) were used for calculations of cLOD and cLOQ as shown in the guideline from ICH Harmonized Tripartit [67]. The calculated *Standard Error* represents the SD, while the *X Variable 1* represents the slope of the curve. These values were used to calculate the cLOD and cLOQ by using **Equation 8** and **Equation 9**, respectively [43, 67].

$$cLOD = 3 \times \frac{SD}{slope}$$
 (8)

$$cLOQ = 10 \times \frac{SD}{slope}$$
 (9)

3.5.2 Apparent recovery

Apparent recovery (The R'A%) was investigated for analytes spiked in filtrated and non-filtrated water sample. The calculations were performed by using filtrated and non-filtrated water sample as the quantity observed value, $slope\ a$, while the $slope\ b$ represented the slope of MP A as the reference value [68]. Thus, by multiplied with 100 the apparent recovery was calculated in percentage.

$$R'A\% = \frac{slope\ a}{slope\ b} \times 100$$
 (10)

4 Results and discussion

4.1 Method development

The initial aim of this study was to develop a sensitive method for screening of selected APIs in environmental water samples. To achieve low enough detection limits (low ng/L concentration) capLC-MS with large volume injection was chosen. For enrichment of analytes and removal of unwanted salts and particles an in-house built AFFL-SPE system was chosen for the method. By combining large volume injections (100 μ L) with the AFFL-system and narrow column (0.3 mm ID), the wanted low cLOD (ng/L range) could be reached with a sensitive MS instrumentation.

The initial goal was to develop a method for the APIs presented in **Table 1.** However, during method development several of the APIs were removed from the method for various reasons.

The flow sheet in **Figure 15** shows the main steps in the method development and validation, and where some APIs were removed from the method.

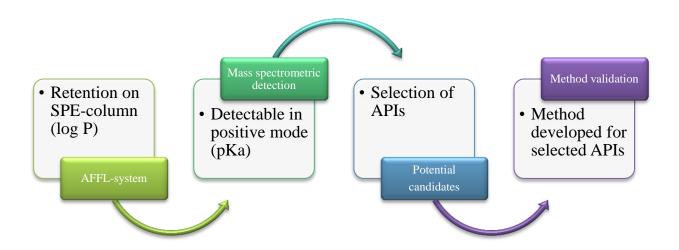


Figure 15 Flow sheet if the steps in the method development. The APIs need to have retention on the SPE-column incorporated into the AFFL-system to be included in the method. APIs without retention on the SPE-column will be eliminated from the method. The APIs with retention on the SPE-column was further monitored with the mass analyser. In mass spectrometric detection, the APIs needed to be detectable in positive mode to be potential candidates for the method. A further selection of APIs was done due to time limitation in the project.

4.1.1 Optimization of the AFFL-SPE-LC system

Injection volume

In order to obtain as low as possible cLOD, large injection volumes are preferred. To investigate if the analytes had sufficient retention on the SPE-column, the loading capacity was investigated using the AFFL-system and UV detector operated at 254 nm (Figure 11). An external loop was installed into the injector to increase the possible injection volume up to 1500 µL. A solution of caffeine was used as a test solution to investigate possible overloading and breakthrough on the SPE-column. Among the APIs, caffeine was the analyte with the theoretically lowest hydrophobicity (log P=-0.13) and acidity (pK_a (strongest basic)=0.92), and was expected to have the lowest retention on the column. The prediction was that the other APIs should be better retained. By injection of increasing volumes (Appendix Chapter 7.3, Table A-3) of the caffeine standard solution onto the SPE-column under non-eluting conditions, the volume loading capacity was estimated. Breakthrough (eluting of analyte during loading) of the SPE-column was found by an increase in UV absorbance during loading of the sample. The loading flow rate was 150 µL/min and the total volume of the sample loop within the injector was 1500 µL (meaning that 10 minutes loading time was needed for empting the loop). An injection volume of 800 µL was found to be retained on the SPE-column, without breakthrough. Thus, in some preliminary experiments 800 µL were used as injection volume.

However, in later experiments using LC-MS unstable signal intensities were observed. This issue was addressed to injection, and new experiments showed decreased sensitivity with 800 μ L injection volume compared to 100 μ L (**Figure 16**). The used SPE-column was unable to retain the injected amount and some of the injected amount was sent to waste during loading.

Hence, the external loop was removed and 100 μ L was further used as injection volume.

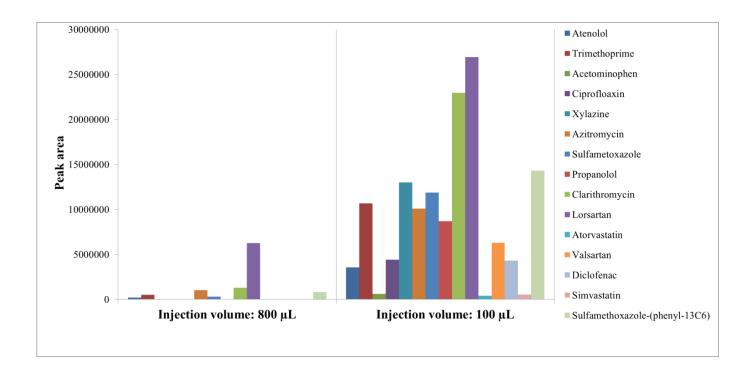
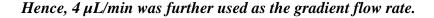


Figure 16 The peak area of selected APIs injecting $800~\mu L$ with a concentration of 25~ng/L (corresponding 0.02~ng on the column) in minutes 10~minute versus $100~\mu L$ with a concentration of 100~ng/L (corresponding to 0.01~ng) on column in 1 minute on the AFFL-SPE-LC set-up. The loading mobile phase was type 1 water with 0.1~% FA with a loading flow rate of $200~\mu L/min$ in both cases.

Gradient elution

The gradient program 1 which was used in initial experiments was later optimized for the selected APIs for the current method (the gradient program 2). In order to get faster analysis the gradient was started at 47 % organic (MP B) instead of 35 % (gradient program 1), meaning shorter retention time of APIs. In order to elute the APIs earlier, the final percentage of MP B was increased to 99 % instead of 95 %.


Hence, gradient program 2 was used for the selected APIs in the current method.

Loading flow rate and gradient flow rate

In order to obtain faster analysis the loading flow rate (pump 2) was increased from 150 μ L/min to 200 μ L/min. However, this increase resulted in reduced peak intensity and distorted peak shape of some compounds in combination with gradient 2. Therefore the loading flow rate was kept at 150 μ L/min and the sample was loaded within 1.6 minutes.

The gradient flow rate (pump 1) in preliminary experiments was 3.5 μ L/min. In order to obtain shorter gradient and faster analysis, the gradient flow rate was increased to 4 μ L/min. This did not affect the peak intensity (**Figure 17**).

By changing the gradient flow rate and gradient program the APIs were separated within 10 minutes and the total analysis time was decreased from 20 minutes to 15 minutes including 6 minutes for reconditioning.

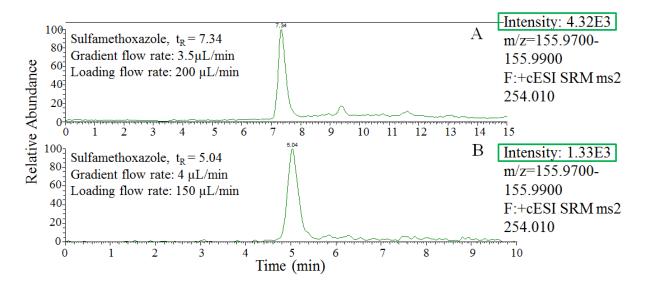


Figure 17 EIC of sulfamethoxazole (10 ng/L) with different gradients (A: gradient 1, B: gradient 2). The chromatographic system in A and B consisted of an AFFL-SPE-LC-MS set-up with a Hotsep Kromasil 1 mm x 5 mm C_{18} (5 μ m) SPE-column. A HotSep 0.3 mm x 150 mm C_{18} (2 μ m) was used in A as the analytical column, while an ACE 0.3 mm ID x 150 mm C_{18} (3 μ m) was used in B. The loading mobile phase (MP) and MP A was type 1 water with 0.1 % FA and the MP B was 100 % MeOH with 0.1 % FA. The detection was carried out by the Quantiva QQQ MS.

Organic solvents

ACN (LC-MS-grade) was used as the organic solvent in the experiments with UV detection and initial experiments with MS detection. Sensitive MS detection of the APIs (i.e. ionization) can be affected by the organic solvent used [69], thus ACN and MeOH (LC-MS-grade) as organic modifier was compared by PhD Hanne Røberg-Larsen. MeOH improved ionization of most of the APIs (**Appendix Figure A-3 and A-4**).

Hence, MeOH was chosen as the organic solvent in the method.

Retention of the APIs on SPE-column

Retention of the APIs on the chosen SPE-column was investigated by individual injections of $800~\mu L~(100~ng/mL)$ on the AFFL-SPE-LC-UV set-up. It was expected that acidic compounds having low hydrophobicity, were poorly retained on the SPE-column, and lost to waste. By connecting the waste tube to the UV detector (**Figure 11**), the analytes not retained on the SPE-column could be detected, see **Table 17**.

Table 17 Retention (YES or NO) of APIs on the SPE-column (Hotsep Kromasil C_{18} 1 mm ID x 5 mm, 5 μ m) was investigated using the AFFL-LC-UV set-up (Figure 11). Only the loading pump with type 1 water with 0.1 % FA at a flow rate of 150 μ L/min was utilized, with the injector set in loading position throughout the experiment. The UV detector operated at 254 nm.

Name of compound	Retention on SPE-column (YES or NO)
Acetaminophen	YES
Atenolol	YES
Atorvastatin	YES
Azithromycin	YES
Caffeine	YES
Carbamazepine	YES
Ciprofloxacin	YES
Clarithromycin	YES
Diclofenac sodium salt	YES
Erythromycin a dihydrate	YES
Fluoxetine hydrochloride	YES
Gemfibrosil	YES
Ibuprofen	YES
Ketoprofen	YES
Losartan potassium	YES
Metoprolol tartrate salt	YES
Naproxen	YES
S-Propranolol hydrochloride	YES
Pravastatin sodium salt hydrate	YES
Salicyclic acid	NO
Simvastatin	YES
Sulfamethoxazole	YES
Trimethoprim	YES
Valsartan	YES
Xylazine hydrochloride	YES

Salicylic acid was removed from the method because of no retention on the SPE-column.

Technical challenges with the AFFL-SPE-LC system

Sample clean-up and enrichment were achieved using the rugged AFFL-system with the SPE-column without pressure build-up. In some cases pressure build-up was however observed and this constitutes the drawback of such a system as well as the narrow tubings and dead volumes. Pressure build-up indicates clogged tubings, filter in AFFL, filter in the MP reservoirs or clogged columns. Particles from the rotor and/or stator in the valve may cause pressure build-up. Particles not removed by the incorporated filter may be transferred to the SPE-column and cause pressure build-up, which is easily observed by the gradient pump. If the filter is clogged by particles this is observed by increased pressure on the loading pump. If filter and SPE-column are changed routineously, the use of such a system with incorporated clean-up and analyte enrichment is rugged.

Maintenance of AFFL-SPE-LC-system is needed to ascertain correct delivery of the MPs, injection volume (auto sampler) and flow rate both of the gradient pump and loading pump. Deviation may either be observed by the pressure or visible errors (e.g. leakage) in the LC set-up. Correct delivery of the MPs and injected volume by the autosampler is not visible, and need to experimentally be measured. In order to investigate clogged narrow tubings, the tubing was disconnected, and observed if the pressure went down. The tubings were not changed at the first time, but the ends which are usually where the tubings may be clogged were removed.

4.1.2 Optimization of the mass spectrometric parameters

The MS parameters need to be optimized to obtain low cLOD. Both a triple Q MS and a Q Orbitrap MS allows identification of a compound by a precursor ion and its product ions. In positive mode, the precursor ion will have a mass of [M+nH]ⁿ⁺, where n=1 with an ESI interface for these APIs. The MRM transitions, the precursor and the product ions were optimized using both a Quantiva QQQ MS (**Appendix Chapter 7.2, Table A-1**) and a Q Exactive MS (**Appendix Chapter 7.2, Table A-2**) in preliminary experiments. The Quantiva QQQ MS was used for final method development and validation due to practical issues (available instrument time). For the quantifier, the qualifier, the collision energy and the RF-lens values for selected APIs, see **Table 13**. Direct infusions of the APIs were done on the Quantiva QQQ and the Q Exactive MS using a concentration of 10 µg/mL of standard solutions (A₂) both in preliminary and final experiments.

In preliminary experiments the analytes were monitored by MRM on the Quantiva QQQ MS. The total ion current chromatogram (TICC) (**Figure 18**) indicated that the compounds mostly were detected within 9-13 minutes and the most hydrophobic API was eluted after 29 minutes.

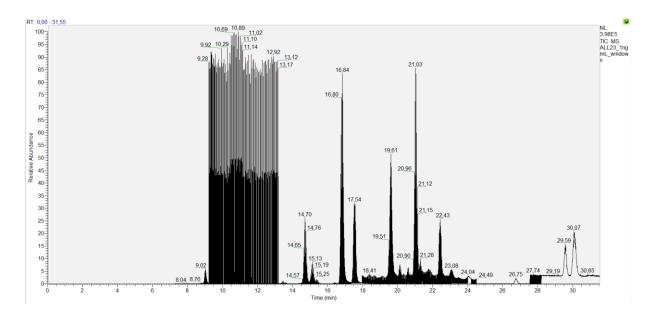


Figure 18 TICC for all 23 APIs monitored by MRM. An injection of 800 μ L of a mixture with concentration of 1 ng/mL each was performed with the AFFL set-up using a Hotsep Kromasil 1 mm x 5 mm C_{18} (3 μ m) SPE-column and a HotSep 0.3 mm x 150 mm C_{18} (2 μ m) analytical column. The loading MP and MP A was type 1 water with 0.1 % FA and the organic mobile phase (MP B) was ACN/type 1 water (95/5, v/v) with 0.1 % FA. Detection was carried out by the Quantiva QQQ MS.

In ESI, the eluent from the analytical column contains ionized or ionizable compounds which enter the stainless steel capillary. The ionization process is performed in the MP by pH adjustment and the mode of ionization (positive or negative) is dependent of the charge of the ions. Detection is either performed in the negative mode, for detection of deprotonated ions or in the positive mode detecting the protonated ions. The pKa value of a compound is useful to verify if it is ionisable in acidic or basic pH. Highly basic compounds (high pKa value) allow ionization in low pH (acidic MP). The basic compound would be protonated and thus form positively charged ions. The protonated ions would be most responsive to analysis with positive mode due to their tendency to form positive ions as the molecular ions, [M+nH]ⁿ⁺. An acidic compound under these conditions (low pH) would be deprotonated and form negatively charged ions [M-nH]ⁿ⁻, and thus responsive with negative mode [40].

The APIs are expected to be suited for ionization in different modes: negative mode, positive mode or in both modes. The APIs were examined in the mode they were expected to give best response. Unfortunately, it was established from the direct injections that the instrument used (Quantiva QQQ MS) did not perform well enough in negative mode or polarity switching between negative and positive mode, due to technical challenges with detector setting. Hence it was decided to continue with analytes that were ionisable in positive mode, excluding e.g. acids. Analytes excluded from the method at this point is shown in **Table 18**.

Table 18 The APIs with the mode they are expected to be detected: negative, positive or both modes and if they were included or not (YES/NO) in the method.

Name of compound	Predicted ionization mode	Kept (YES/NO)
Acetaminophen	Positive	YES
Atenolol	Positive	YES
Atorvastatin	Positive/negative	NO
Azithromycin	Positive	YES
Caffeine	Positive	YES
Carbamazepine	Positive	YES
Ciprofloxacin	Positive	YES
Clarithromycin	Positive	YES
Diclofenac sodium salt	Positive/negative	NO
Erythromycin (dihydrate)	Positive	YES
Fluoxetine hydrochloride	Positive	YES
Gemfibrosil	Positive/negative	NO
Ibuprofen	Negative	NO
Ketoprofen	Positive/negative	NO
Losartan potassium	Positive	YES
Metoprolol tartrate salt	Positive	YES
Naproxen	Positive/negative	NO
S-Propranolol hydrochloride	Positive	YES
Pravastatin sodium salt hydrate	Negative	NO
Simvastatin	Positive	YES
Sulfamethoxazole	Positive	YES
Trimethoprim	Positive	YES
Valsartan	Positive	YES
Xylazine hydrochloride	Positive	YES

The APIs ionizable in negative mode which were removed from the method at this point were: atorvastatin, diclofenac, gemfibrozil, ibuprofen, ketoprofen, naproxen and pravastatin. Thus, at this point, the remaining APIs to include in the method were: acetaminophen, atenolol, azithromycin, caffeine, carbamazepine, ciprofloxacin, clarithromycin, erythromycin, fluoxetine, losartan, metoprolol, propranolol, simvastatin, sulfamethoxazole, trimethoprim, valsartan and xylazine.

From this list (**Table 18**), a selection of APIs was done based on their usage and their MS response during method development (the reasons for elimination of the various APIs can also be found in **Appendix Chapter 7.5**, **Table A-4**. Development of a method representing as many as possible pharmaceutical groups and as many as possible APIs from each group was wanted. Also considering time available the number of APIs had to be limited, but at least one API was selected from each group.

Hence, the method was developed for the seven APIs shown in Figure 19 and five of the eight API groups were represented in the method. An IS is however, expensive and therefore only three ISs were used in the present study.

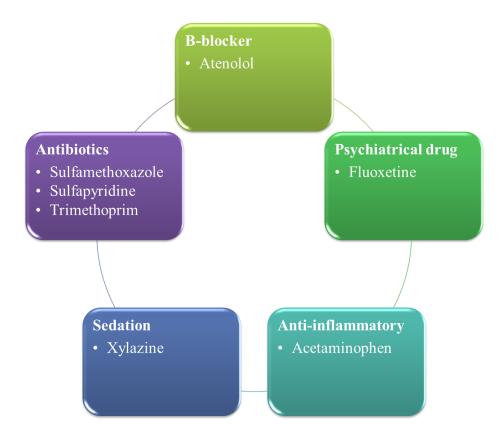


Figure 19 Pharmaceutical groups and the APIs included in the method from each group.

Further method development for the selected APIs (**Figure 19**) was done by using the Quantiva QQQ MS. Direct infusion was done to confirm the MRM-transitions (**Table 13**). The precursor ion of the analyte was selected in MS1 and the product ions were monitored in MS2. For each product ion the cone voltage and collision energy were optimized by the software. The m/z transition of the highest intensity was chosen as the quantification m/z, and a qualification m/z was chosen to ensure the identification. The TICC of the APIs is shown in **Figure 20**.

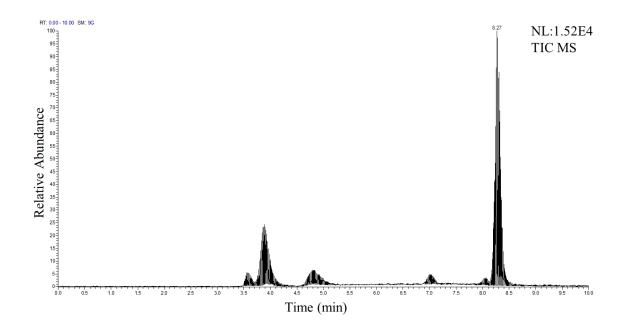


Figure 20 TICC for acetaminophen, atenolol, fluoxetine, sulfapyridine, sulfamethoxazole, trimethoprim, xylazine and the internal standards monitored by MRM. An injection of 100 μ L of a mixture with concentration of 100 ng/L each API and the internal standard; atenolol-d7 (1000 ng/L), fluoxetine-d5 hydrochloride (500 ng/L) and sulfamethoxazole-(phenyl- $^{13}C_6$) (50 ng/L) was performed. The chromatographic system consisted of an AFFL-SPE-LC-MS set-up with a 1 mm ID x 5 mm C_{18} (5 μ m) SPE-column (Kromasil) and a 0.3 mm ID x 150 mm C_{18} (3 μ m) analytical column (ACE). The loading mobile phase (MP) and MP A was type 1 water with 0.1 % FA and the MP B was 100 % MeOH with 0.1 % FA. Gradient program 2 was used and the detection was carried out by the Quantiva QQQ MS.

4.1.3 Chromatographic separation of the selected APIs

The APIs were separated using a gradient program (2). The retention times of the APIs (100 ng/L) and the internal standards are shown in the chromatograms in **Figure 21**. Chromatograms of selected APIs were obtained by using the quantifier and the qualifier as the m/z transitions (**Table 13**). The peak areas of the APIs were integrated manually using the software, Xcalibur. Integration of the peak area of acetaminophen was difficult compared to the other APIs, due to background noise.

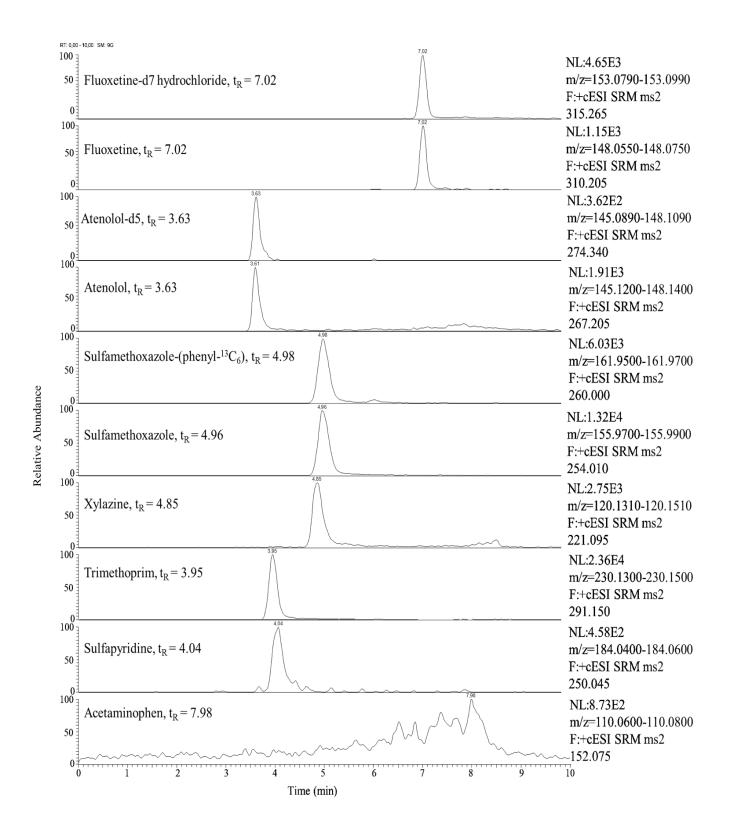


Figure 21 The EIC chromatograms showing the APIs (100 ng/L) and the internal standards, atenolol-d7 (1000 ng/L), fluoxetine-d5 hydrochloride (500 ng/L) and sulfamethoxazole-(phenyl- $^{13}C_6$) (50 ng/L) spiked in MP A. The chromatographic system consisted of an AFFL-SPE-LC-MS set-up where gradient elution was performed using gradient program 2 on an ACE C_{18} column (0.3 mm ID x 150 mm, 3 μ m) with a flow rate of 4 μ L/min. A Kromasil C_{18} (1 mm ID x 5 mm, 5 μ m) SPE-column was used. The loading mobile phase (MP) and MP A was type 1 water with 0.1 % FA and the MP B was 100 % MeOH with 0.1 % FA.

4.2 Method validation

4.2.1 AFFL-system

The AFFL set-up used was equipped with an on-line sample filtration by a stainless steel filter and subsequent back flushing of the filter making it clean and ready for the next injection. The incorporated filter eliminated the need of single use filters and manual handling of these which is time consuming. Without an on-line filter, a common consequence of using on-line SPE is that the particles and precipitants form samples can cause easily clogged SPE-columns. By back flushing the analytes from the SPE-column, these particles may be transported to the analytical column, resulting in a clogged analytical column. In order to avoid these problems, a procedure including off-line filtration ([70, 71]) or SPE is often required as sample preparation step.

The automatized system has been successfully used for analysis of biological samples such as blood, cells etc. ([72, 73]). The aim of the current study was to investigate if such a system could be used for analysis of water samples, without any external filtration as a pre-treatment. The on-line SPE column was employed to automatically enrich the target analyte prior to capLC separation and MS detection. The AFFL-system should provide automation to avoid human mistakes during sample preparation. It was found that the AFFL-system could be used to analyse more than 100 creek water samples without pressure build-up in the system, showing a rugged system (**Figure 22**).

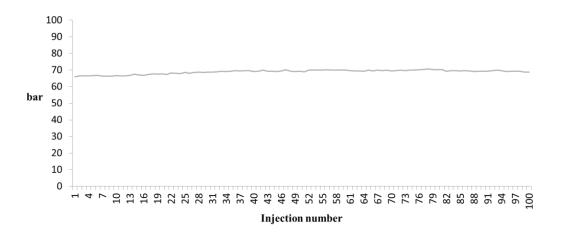


Figure 22 Pressure on pump 1 (loading pump) by injection number of 100 μL non-filtrated spiked creek water [From Hanne Røberg-Larsen].

4.2.2 Validation

Validation of the method was done according to the Eurachem Guide, *The Fitness for Purpose of Analytical Methods*, second edition 2014, which is an integral part of the international conformity assessment standards and guides [44]. The method was validated with regard to cLOD, cLOQ, precision (within-day and between-day repeatability), apparent recovery, and linearity including standard solutions of the APIs and the internal standards spiked in MP A, filtrated and non-filtrated water samples. All validation data are shown in **Table 19, 21, 22** and **23,** and will be discussed below (**Chapter 4.2.3-4.2.8** and **Chapter 4.3-4.4**).

4.2.3 Limit of detection

For validation purposes it is sufficient to prove an approximate value for LOD due to the level at which detection of analyte becomes problematic [44]. The cLOD was calculated by **Equation 8** based on the linearity curve as described in **Chapter 3.5.1**. According to the Eurochem Guide, the cLOD is normally calculated by multiplying with a suitable factor (f=3) [44]. The raw data are shown in **Appendix Chapter 7.7.1-7.7.**

By the criteria, 10 replicates were used for examination of the cLOD at the lowest concentration (10 ng/L) [44]. Replicate analyses were done by AFFL-SPE-LC-MS/MS of reagent blanks (MP A) spiked with low concentrations of analyte as described [44]. The cLOD of the analyte spiked in filtrated and non-filtrated water sample was calculated using 6 replicate analysis, instead of 10 (as done for MP A) due to time limitations. The calculated cLODs in the different matrices are shown in **Table 19** in **Chapter 4.2.5**.

The calculated cLOD for the selected APIs was in the 2–18 ng/L range.

4.2.4 Limit of quantification

cLOQ was estimated similar to cLOD, and in this case another multiplier value (10) was used [44], see **Equation 9.** For the calculated cLOQs in the different matrices, see **Table 19** in **Chapter 4.2.5**.

The calculated cLOQ for the selected APIs was in the 5–54 ng/L range.

The APIs corrected with their labelled IS such as sulfamethoxazole, showed lower cLOD and cLOQ. Of the analytes investigated, acetaminophen showed high calculated values of cLOD and cLOQ in all matrices. The reason could be that the IS used did not behave as acetaminophen, as well as the high background observed on the chromatograms which did integrations difficult.

Generally, the calculated cLOD and the cLOQ values are reflected in the chromatograms, where the APIs were spiked in MP A, filtrated and non-filtrated water samples, see Appendix Chapter 7.6, Figure A-5, A-6 and A-7.

4.2.5 Apparent recovery

Apparent recovery (R'A%) is defined as "the quantity observed value/reference value, obtained using an analytical procedure that involves a calibration graph" [68]. The 100 % recovery does not require 100 % yield for any separation or enrichment stage. The requirement is that the yield for the test and the calibration must be the same [68]. R'A was calculated based on **Equation 10** (**Chapter 3.5.2**) from IUPAC recommendations 2002 [68] as described in **Chapter 3.5.2**. The R'A was investigated for analytes spiked in filtrated and non-filtrated water sample, see **Table 19**.

Generally, high apparent recovery values were found of the APIs spiked in both filtrated (from 106-241 %) and non-filtrated (from 69-288 %) water samples from the Sognsvann creek.

Matrix effects

The apparent recovery examined for all compounds showed generally high values. The potential source of these variations could be ion suppression or ion enhancement which can theoretically be avoided by using suited IS. Ideally and theoretically an suited IS should correct for loss of analyte, compensate for sample to sample recovery differences and correct for variable instrumental conditions, such as injection volume, retention time, and MS response. Since, the APIs with their suited IS also showed high apparent recovery values, the signal may be affected by interferences in the complex matrices. Water samples are complex matrices containing compounds from the aquatic environment which are not possible to control.

The quantifiers used as MRM-transition for the APIs could also be common m/z values for other compounds causing ion enhancement. A compatible IS may improve the ability to compensate for ion suppression and ion enhancement.

Table 19 Validation data for measurement of the selected APIs spiked in different matrices: MP A, filtrated and non-filtrated water samples from the Sognsvann creek. The linearity (R^2) , cLOD and cLOQ calculated for three days are shown. See supplementary details (Chapter 3.2.5) about the concentrations levels of the validation solutions and internal standards used.

Name of API and	R^2 (STD)	cLOD (ng/L)	cLOQ (ng/L)	Apparent
matrix				recovery (%)
Acetaminophen	0.0777	10	F 4	
MP A	0.9777	18	54	215
Filtrated	0.9882	13	39	215
Non-filtrated	0.9853	14	43	69
Atenolol				
MP A	0.9919	11	32	
Filtrated	0.9970	5	19	139
Non-filtrated	0.9980	5	16	150
Fluoxetine				
MP A	0.9985	5	14	
Filtrated	0.9974	6	18	241
Non-filtrated	0.9954	8	24	288
Sulfapyridine				
MP A	0.9957	8	23	
Filtrated	0.9941	9	27	106
Non-filtrated	0.9970	6	19	81
Sulfamethoxazole				
MP A	0.9992	3	10	
Filtrated	0.9981	5	15	135
Non-filtrated	0.9998	2	5	151
Xylazine				
MP A	0.9997	2	6	
Filtrated	0.9916	11	33	133
Non-filtrated	0.9965	7	21	125
Trimethoprim				
MP A	0.9928	9	26	
Filtrated	0.9878	13	39	259
Non-filtrated	0.9936	9	28	127

Acceptable linearity ($R^2 = 0.9777-0.9998$) was obtained even if some APIs were quantified using a non-ideal IS.

4.2.6 Linear range in standard solutions

The method was checked for linearity in the range from 10 ng/L to 100 ng/L for the selected APIs. The analytes were spiked in MP A, filtrated and no-filtrated water sample from Sognsvann creek and analysed at 10 ng/L, 25 ng/L, 50ng/L, 75 ng/L and 100 ng/L concentration levels, see **Table 14** for number of replicates for each concentration.

Linearity equations (y=ax+b) for the APIs are shown in **Table 20** and the linearity curves for all the APIs in the different matrices are shown in **Figure 20**. Linearity curves for atenolol, fluoxetine and sulfamethoxazole were established by using their ideal IS.

Table 20 The linearity equation of each API spiked in different matrices (MP A, filtrated and non-filtrated water sample from the Sognsvann creek). Note: without the equations for trimethoprim.

Name of API	MP A	Filtrated	Non-filtrated
Atenolol	y = 0.0438x + 0.2599	y = 0.0610x + 0.1962	y = 0.0656x - 0.1887
Acetaminophen	y = 0.0013x + 0.0567	y = 0.0028x + 0.0444	y = 0.0009x + 0.0430
Fluoxetine	y = 0.0017x + 0.0156	y = 0.0041x + 0.0261	y = 0.0049x - 0.0163
Sulfapyridine	y = 0.0016x - 0.0007	y = 0.0017x + 0.0442	y = 0.0013x + 0.0059
Sulfamethoxazole	y = 0.0201x + 0.0665	y = 0.0271x + 0.0859	y = 0.0304x + 0.0146
Xylazine	y = 0.0053x + 0.0044	y = 0.0068x + 0.0660	y = 0.0069x + 0.0074

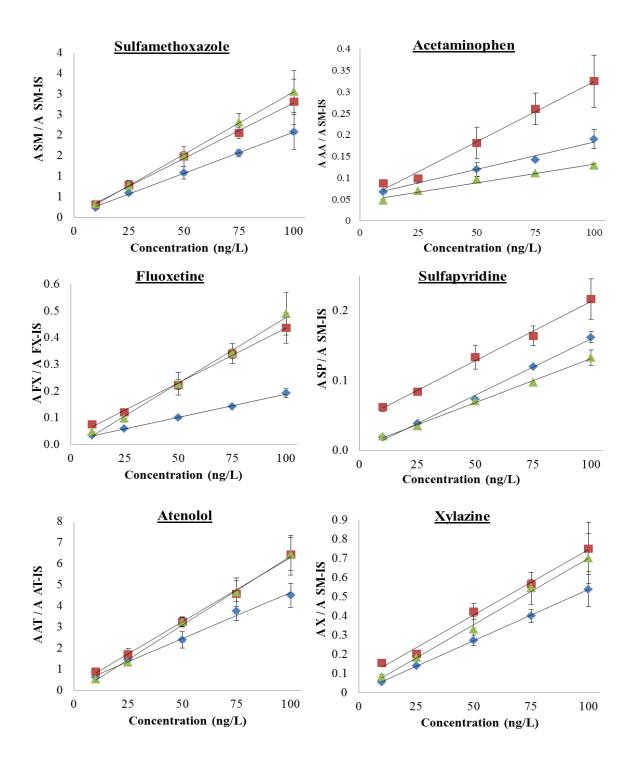


Figure 23 Linearity curves form 10 ng/L to 100 ng/L for atenolol (AT) acetaminophen (AA), fluoxetine (FX), sulfamethoxazole (SM), sulfapyridine (SP) and xylazine (X) spiked in MP A (blue), filtrated (red) and non-filtrated (green) water sample from the Sognsvann creek. Deuterated internal standards, atenolol-d7 and fluoxetine-d5 were used for AT and FX, respectively. The internal standard, sulfamethoxazole-(phenyl- $^{13}C_6$) was used for AA, SP, SM, and X. The curves were established by 10 replicates for low (10 ng/L), medium (50 ng/L) and high (100 ng/L) concentrations spiked in MP A, and 6 replicates for the same concentrations spiked in filtrated and non-filtrated water samples. 3 replicates were used for concentrations of 25 ng/L and 75 ng/L independent of spiking in MP A, filtrated and non-filtrated water samples. Standard deviations (SD) were calculated as shown in Appendix Chapter 7.7.

The linearity curves for the APIs with suited internal standards shows similar trend with respect to closeness of the linear curve for the filtrated, non-filtrated and MP A compared with the curves for the APIs without their own IS. The samples were filtrated by using the AFFL-system. External filtration of the water sample as a sample preparation did not affect the slope of the curves.

The linearity equation (**Table 20**) and linearity curve (**Figure 23**) for trimethoprim are not presented due to high values of SD of between-day repeatability, see the values in **Table 21-23**.

4.2.7 Repeatability

The within-day (n = 10, number of replicates) and between-day (n = 3, number of days) repeatability were calculated by analysis of variance (Anova, single factor) using Excel, see **Appendix Chapter 7.7.1-7.7.7.** The repeatability was analysed at low (10 ng/L), medium (50 ng/L) and high (100 ng/L) concentration levels, the calculated RSD for each concentration in the different matrices are given in **Table 21-Table 23**.

Table 21 The within-day repeatability and the between-day repeatability of analytes spiked in MP A were established by calculation of (mean (A/A is)), standards deviation (SD) and % relative standard deviation (RSD %). The calculation of within-day repeatability was based on 10 replicates (n = 10) of low (10 ng/L), medium (50 ng/L) and high (100 ng/L) concentrations and the calculation of between-day repeatability was based on 3 consecutive days.

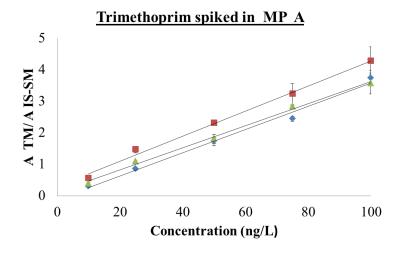
Atenolol SD RSD % Mean A / A is SD RSD % L 0.61 0.05 9 0.6 0.11 18 M 2.24 0.14 6 2.4 0.39 16 H 4.59 0.13 3 4.5 0.56 13 Acetaminophen L 0.12 0.01 11 0.081 0.003 4 M 0.20 0.02 9 0.136 0.003 3 H 0.27 0.02 7 0.196 0.004 2 Fluoxetine 0.041 0.006 15 0.034 0.003 15 M 0.041 0.006 15 0.034 0.003 15 M 0.049 0.010 10 0.101 0.008 7 Bullanyridine 0.074 0.004 6 0.073 0.003 4 L 0.019 0.001 5 0.024 0.0	MP A	Within-day re	peatabil	ity (n=10)	Between-day	repeatabil	ity (n=3)
L 0.61 0.05 9 0.6 0.11 18 M 2.24 0.14 6 2.4 0.39 16 H 4.59 0.13 3 4.5 0.56 13 Acetaminophen L 0.12 0.01 11 0.081 0.003 4 M 0.20 0.02 9 0.136 0.003 3 H 0.27 0.02 7 0.196 0.004 2 Fluoxetine L 0.041 0.006 15 0.034 0.003 15 M 0.099 0.010 10 0.101 0.008 7 H 0.174 0.013 7 0.193 0.016 8 Sulfapyridine L 0.019 0.002 12 0.019 0.0007 3 M 0.074 0.004 6 0.073 0.003 5 Sulf		Mean A / A is	SD	RSD %	Mean A / A is	SD	RSD %
M 2.24 0.14 6 2.4 0.39 16 H 4.59 0.13 3 4.5 0.56 13 Acetaminophen L 0.12 0.01 11 0.081 0.003 4 M 0.20 0.02 9 0.136 0.003 3 H 0.27 0.02 7 0.196 0.004 2 Fluoxetine L 0.041 0.006 15 0.034 0.003 15 M 0.099 0.010 10 0.101 0.008 7 H 0.174 0.013 7 0.193 0.016 8 Sulfapyridine L 0.019 0.002 12 0.019 0.0007 3 M 0.074 0.004 6 0.073 0.003 4 H 0.170 0.016 9 0.162 0.008 5 Sulfapyridine	Atenolol						
H 4.59 0.13 3 4.5 0.56 13 Acetaminophen L 0.12 0.01 11 0.081 0.003 4 M 0.20 0.02 9 0.136 0.003 3 H 0.27 0.02 7 0.196 0.004 2 Fluoxetine L 0.041 0.006 15 0.034 0.003 15 M 0.099 0.010 10 0.101 0.008 7 H 0.174 0.013 7 0.193 0.016 8 Sulfapyridine L 0.019 0.002 12 0.019 0.0007 3 M 0.074 0.004 6 0.073 0.003 4 H 0.170 0.016 9 0.162 0.008 5 Sulfamethoxazole L 0.23 0.01 5 0.24 0.04 15	L	0.61	0.05	9	0.6	0.11	18
Acetaminophen L 0.12 0.01 11 0.081 0.003 4 M 0.20 0.02 9 0.136 0.003 3 H 0.27 0.02 7 0.196 0.004 2 Fluoxetine L 0.041 0.006 15 0.034 0.003 15 M 0.099 0.010 10 0.101 0.008 7 H 0.174 0.013 7 0.193 0.016 8 Sulfapyridine L 0.019 0.002 12 0.019 0.0007 3 M 0.074 0.004 6 0.073 0.003 4 H 0.170 0.016 9 0.162 0.008 5 Sulfamethoxazole L 0.23 0.01 5 0.24 0.04 15 M 1.12 0.02 2 1.1	M	2.24	0.14	6	2.4	0.39	16
L 0.12 0.01 11 0.081 0.003 4 M 0.20 0.02 9 0.136 0.003 3 H 0.27 0.02 7 0.196 0.004 2 Fluoxetine L 0.041 0.006 15 0.034 0.003 15 M 0.099 0.010 10 0.101 0.008 7 H 0.174 0.013 7 0.193 0.016 8 Sulfapyridine L 0.019 0.002 12 0.019 0.0007 3 M 0.074 0.004 6 0.073 0.003 4 H 0.170 0.016 9 0.162 0.008 5 Sulfamethoxazole L 0.23 0.01 5 0.24 0.04 15 M 1.12 0.02 2 1.1 0.16 14	Н	4.59	0.13	3	4.5	0.56	13
M 0.20 0.02 9 0.136 0.003 3 H 0.27 0.02 7 0.196 0.004 2 Fluoxetine L 0.041 0.006 15 0.034 0.003 15 M 0.099 0.010 10 0.101 0.008 7 H 0.174 0.013 7 0.193 0.016 8 Sulfapyridine L 0.019 0.002 12 0.019 0.0007 3 M 0.074 0.004 6 0.073 0.003 4 H 0.170 0.016 9 0.162 0.008 5 Sulfamethoxazole L 0.23 0.01 5 0.24 0.04 15 M 1.12 0.02 2 1.1 0.16 14 H 2.13 0.05 2 2 0.4 20 Trimethoprim	Acetaminophen						
H 0.27 0.02 7 0.196 0.004 2 Fluoxetine L 0.041 0.006 15 0.034 0.003 15 M 0.099 0.010 10 0.101 0.008 7 H 0.174 0.013 7 0.193 0.016 8 Sulfapyridine L 0.019 0.002 12 0.019 0.0007 3 M 0.074 0.004 6 0.073 0.003 4 H 0.170 0.016 9 0.162 0.008 5 Sulfamethoxazole L 0.23 0.01 5 0.24 0.04 15 M 1.12 0.02 2 1.1 0.16 14 H 2.13 0.05 2 2 0.4 20 Trimethoprim L 0.56 0.03 5 0.4 0.33	L	0.12	0.01	11	0.081	0.003	4
Fluoxetine L 0.041 0.006 15 0.034 0.003 15 M 0.099 0.010 10 0.101 0.008 7 H 0.174 0.013 7 0.193 0.016 8 Sulfapyridine L 0.019 0.002 12 0.019 0.0007 3 M 0.074 0.004 6 0.073 0.003 4 H 0.170 0.016 9 0.162 0.008 5 Sulfamethoxazole L 0.23 0.01 5 0.24 0.04 15 M 1.12 0.02 2 1.1 0.16 14 H 2.13 0.05 2 2 0.4 20 Trimethoprim L 0.56 0.03 5 0.4 0.33 86 M 2.31 0.08 3 2 2.4	M	0.20	0.02	9	0.136	0.003	3
L 0.041 0.006 15 0.034 0.003 15 M 0.099 0.010 10 0.101 0.008 7 H 0.174 0.013 7 0.193 0.016 8 Sulfapyridine L 0.019 0.002 12 0.019 0.0007 3 M 0.074 0.004 6 0.073 0.003 4 H 0.170 0.016 9 0.162 0.008 5 Sulfamethoxazole L 0.23 0.01 5 0.24 0.04 15 M 1.12 0.02 2 1.1 0.16 14 H 2.13 0.05 2 2 0.4 20 Trimethoprim L 0.56 0.03 5 0.4 0.33 86 M 2.31 0.08 3 2 2.4 124 H 4.28	Н	0.27	0.02	7	0.196	0.004	2
M 0.099 0.010 10 0.101 0.008 7 H 0.174 0.013 7 0.193 0.016 8 Sulfapyridine L 0.019 0.002 12 0.019 0.0007 3 M 0.074 0.004 6 0.073 0.003 4 H 0.170 0.016 9 0.162 0.008 5 Sulfamethoxazole L 0.23 0.01 5 0.24 0.04 15 M 1.12 0.02 2 1.1 0.16 14 H 2.13 0.05 2 2 0.4 20 Trimethoprim L 0.56 0.03 5 0.4 0.33 86 M 2.31 0.08 3 2 2.4 124 H 4.28 0.45 10 4 6.0 156 Xylazine	Fluoxetine						
H 0.174 0.013 7 0.193 0.016 8 Sulfapyridine L 0.019 0.002 12 0.019 0.0007 3 M 0.074 0.004 6 0.073 0.003 4 H 0.170 0.016 9 0.162 0.008 5 Sulfamethoxazole L 0.23 0.01 5 0.24 0.04 15 M 1.12 0.02 2 1.1 0.16 14 H 2.13 0.05 2 2 0.4 20 Trimethoprim L 0.56 0.03 5 0.4 0.33 86 M 2.31 0.08 3 2 2.4 124 H 4.28 0.45 10 4 6.0 156 Xylazine L 0.06 0.01 13 0.055 0.001	L	0.041	0.006	15	0.034	0.003	15
Sulfapyridine L 0.019 0.002 12 0.019 0.0007 3 M 0.074 0.004 6 0.073 0.003 4 H 0.170 0.016 9 0.162 0.008 5 Sulfamethoxazole L 0.23 0.01 5 0.24 0.04 15 M 1.12 0.02 2 1.1 0.16 14 H 2.13 0.05 2 2 0.4 20 Trimethoprim L 0.56 0.03 5 0.4 0.33 86 M 2.31 0.08 3 2 2.4 124 H 4.28 0.45 10 4 6.0 156 Xylazine L 0.06 0.01 13 0.055 0.001 3 M 0.31 0.02 5 0.3 0.027	M	0.099	0.010	10	0.101	0.008	7
L 0.019 0.002 12 0.019 0.0007 3 M 0.074 0.004 6 0.073 0.003 4 H 0.170 0.016 9 0.162 0.008 5 Sulfamethoxazole L 0.23 0.01 5 0.24 0.04 15 M 1.12 0.02 2 1.1 0.16 14 H 2.13 0.05 2 2 0.4 20 Trimethoprim L 0.56 0.03 5 0.4 0.33 86 M 2.31 0.08 3 2 2.4 124 H 4.28 0.45 10 4 6.0 156 Xylazine 1 0.06 0.01 13 0.055 0.001 3 M 0.31 0.02 5 0.3 0.027 10	Н	0.174	0.013	7	0.193	0.016	8
M 0.074 0.004 6 0.073 0.003 4 H 0.170 0.016 9 0.162 0.008 5 Sulfamethoxazole L 0.23 0.01 5 0.24 0.04 15 M 1.12 0.02 2 1.1 0.16 14 H 2.13 0.05 2 2 0.4 20 Trimethoprim L 0.56 0.03 5 0.4 0.33 86 M 2.31 0.08 3 2 2.4 124 H 4.28 0.45 10 4 6.0 156 Xylazine 1 0.06 0.01 13 0.055 0.001 3 M 0.31 0.02 5 0.3 0.027 10	Sulfapyridine						
H 0.170 0.016 9 0.162 0.008 5 Sulfamethoxazole L 0.23 0.01 5 0.24 0.04 15 M 1.12 0.02 2 1.1 0.16 14 H 2.13 0.05 2 2 0.4 20 Trimethoprim L 0.56 0.03 5 0.4 0.33 86 M 2.31 0.08 3 2 2.4 124 H 4.28 0.45 10 4 6.0 156 Xylazine L 0.06 0.01 13 0.055 0.001 3 M 0.31 0.02 5 0.3 0.027 10	L	0.019	0.002	12	0.019	0.0007	3
Sulfamethoxazole L 0.23 0.01 5 0.24 0.04 15 M 1.12 0.02 2 1.1 0.16 14 H 2.13 0.05 2 2 0.4 20 Trimethoprim L 0.56 0.03 5 0.4 0.33 86 M 2.31 0.08 3 2 2.4 124 H 4.28 0.45 10 4 6.0 156 Xylazine L 0.06 0.01 13 0.055 0.001 3 M 0.31 0.02 5 0.3 0.027 10	M	0.074	0.004	6	0.073	0.003	4
L 0.23 0.01 5 0.24 0.04 15 M 1.12 0.02 2 1.1 0.16 14 H 2.13 0.05 2 2 0.4 20 Trimethoprim L 0.56 0.03 5 0.4 0.33 86 M 2.31 0.08 3 2 2.4 124 H 4.28 0.45 10 4 6.0 156 Xylazine L 0.06 0.01 13 0.055 0.001 3 M 0.31 0.02 5 0.3 0.027 10	Н	0.170	0.016	9	0.162	0.008	5
M 1.12 0.02 2 1.1 0.16 14 H 2.13 0.05 2 2 0.4 20 Trimethoprim L 0.56 0.03 5 0.4 0.33 86 M 2.31 0.08 3 2 2.4 124 H 4.28 0.45 10 4 6.0 156 Xylazine L 0.06 0.01 13 0.055 0.001 3 M 0.31 0.02 5 0.3 0.027 10	Sulfamethoxazole						
H 2.13 0.05 2 2 0.4 20 Trimethoprim L 0.56 0.03 5 0.4 0.33 86 M 2.31 0.08 3 2 2.4 124 H 4.28 0.45 10 4 6.0 156 Xylazine L 0.06 0.01 13 0.055 0.001 3 M 0.31 0.02 5 0.3 0.027 10	L	0.23	0.01	5	0.24	0.04	15
Trimethoprim L 0.56 0.03 5 0.4 0.33 86 M 2.31 0.08 3 2 2.4 124 H 4.28 0.45 10 4 6.0 156 Xylazine L 0.06 0.01 13 0.055 0.001 3 M 0.31 0.02 5 0.3 0.027 10	M	1.12	0.02	2	1.1	0.16	14
L 0.56 0.03 5 0.4 0.33 86 M 2.31 0.08 3 2 2.4 124 H 4.28 0.45 10 4 6.0 156 Xylazine L 0.06 0.01 13 0.055 0.001 3 M 0.31 0.02 5 0.3 0.027 10	Н	2.13	0.05	2	2	0.4	20
M 2.31 0.08 3 2 2.4 124 H 4.28 0.45 10 4 6.0 156 Xylazine L 0.06 0.01 13 0.055 0.001 3 M 0.31 0.02 5 0.3 0.027 10	Trimethoprim						
H 4.28 0.45 10 4 6.0 156 Xylazine L 0.06 0.01 13 0.055 0.001 3 M 0.31 0.02 5 0.3 0.027 10	L	0.56	0.03	5	0.4	0.33	86
Xylazine L 0.06 0.01 13 0.055 0.001 3 M 0.31 0.02 5 0.3 0.027 10	M	2.31	0.08	3	2	2.4	124
L 0.06 0.01 13 0.055 0.001 3 M 0.31 0.02 5 0.3 0.027 10	Н	4.28	0.45	10	4	6.0	156
M 0.31 0.02 5 0.3 0.027 10	Xylazine					-	
	L	0.06	0.01	13	0.055	0.001	3
H 0.57 0.04 7 0.5 0.09 17	M	0.31	0.02	5	0.3	0.027	10
	Н	0.57	0.04	7	0.5	0.09	17

Table 22 The within-day repeatability and the between-day repeatability of analytes in filtrated water sample from the Sognsvann creek were established by calculation of (mean (A/A is)), standards deviation (SD) and % relative standard deviation (RSD %). The calculation of within-day repeatability was based on 6 replicates (n = 6) of low (10 ng/L), medium (50 ng/L) and high (100 ng/L) concentrations and the calculation of between-day repeatability was based on 3 consecutive days.

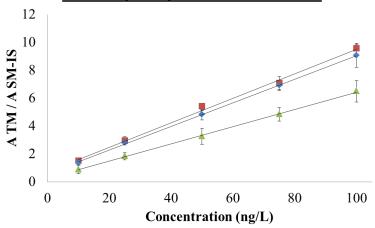
Filtrated	Within-day re	epeatabi	lity (n=6)	Between-day	repeatabili	ity (n=3)
	Mean A / A is	SD	RSD %	Mean A / A is	SD	RSD %
Atenolol						
L	0.87	0.06	7	0.88	0.05	5
M	3.22	0.17	5	3.26	0.23	7
Н	6.35	0.19	3	6.4	0.78	12
Acetaminophen						
L	0.09	0.01	12	0.086	0.007	8
M	0.17	0.03	18	0.181	0.037	20
Н	0.31	0.04	14	0.325	0.061	19
Fluoxetine						
L	0.053	0.008	16	0.076	0.008	10
M	0.239	0.027	11	0.224	0.019	8
Н	0.477	0.036	7	0.437	0.057	13
Sulfapyridine						
L	0.057	0.010	18	0.062	0.006	10
M	0.108	0.012	11	0.134	0.017	13
Н	0.192	0.030	15	0.217	0.029	13
Sulfamethoxazole						
L	0.30	0.05	17	0.32	0.06	18
M	1.52	0.10	7	1.48	0.24	16
Н	2.76	0.21	8	2.81	0.55	19
Trimethoprim						
L	1.51	0.17	11	1.6	1.3	82
M	5.42	0.25	5	6	14	243
Н	9.57	0.38	4	10	13	137
Xylazine						
L	0.15	0.03	19	0.16	0.02	11
M	0.39	0.06	16	0.42	0.04	10
Н	0.65	0.03	5	0.8	0.14	18

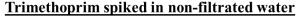
Table 23 The within-day repeatability and the between-day repeatability of analytes in non-filtrated water sample from the Sognsvann creek were established by calculation of (mean (A/A is)), standards deviation (SD) and % relative standard deviation (RSD %). The calculation of within-day repeatability was based on 6 replicates (n = 6) of low (10 ng/L), medium (50 ng/L) and high (100 ng/L) concentrations and the calculation of between-day repeatability was based on 3 consecutive days.

Non-filtrated	Within-day re	epeatabil	ity (n=6)	Between-day	repeatabili	ty (n=3)
Name of API	Mean A / A is	SD	RSD %	Mean A / A is	SD	RSD %
Atenolol						
L	0.49	0.03	5	0.52	0.02	4
M	3.23	0.15	5	3.23	0.23	7
Н	6.36	0.15	2	6.4	0.94	15
Acetaminophen						
L	0.036	0.003	7	0.047	0.003	6
M	0.084	0.004	5	0.095	0.007	7
Н	0.117	0.012	11	0.128	0.005	4
Fluoxetine						
L	0.048	0.005	11	0.047	0.001	3
M	0.282	0.039	14	0.23	0.042	19
Н	0.556	0.052	9	0.49	0.078	16
Sulfapyridine						
L	0.015	0.003	17	0.0250	0.0005	2
M	0.065	0.011	17	0.070	0.0026	4
Н	0.113	0.013	11	0.133	0.011	8
Sulfamethoxazole						
L	0.29	0.03	9	0.33	0.03	9
M	1.44	0.05	3	1.51	0.11	7
Н	2.83	0.20	7	3.06	0.52	17
Trimethoprim						
L	0.53	0.06	10	0.7	0.3	46
M	2.12	0.14	6	2.5	3	105
Н	4.22	0.29	7	4.7	4.4	93
Xylazine						
L	0.10	0.02	19	0.08	0.01	15
M	0.39	0.05	13	0.33	0.06	19
Н	0.75	0.03	5	0.70	0.13	19


Although the precisions generally were satisfactory (RSD % < 20) for the APIs, it would be better if suited internal standards for each API, which are commercially available, were used instead of sulfamethoxazole (sulfamethoxazole-(phenyl- 13 C₆).

Trimethoprim showed higher RSD values of between-day repeatability in all matrices compared to within-day repeatability and those of the other APIs. However, trimethoprim showed high intensity and low baseline MS/MS noise, see **Appendix Chapter 7.6** for the chromatograms of trimethoprim. The electron multiplier detector of the MS was changed during the validation of the method. This change caused the need for mass calibration of the instrument several times during the analyses. The change of detector with the accompanying need for often re-calibration could be the reason for high RSD values for the between-day repeatability of trimethoprim in addition to the non-ideal IS.


The statistical calculations show the variation in between-day and within-days repeatability, where a higher value was observed for between-day variations, see **Appendix Chapter 7.7.7**. In order to compare the within-day repeatabilities, it is shown with the linearity equations (**Table 24**) and linearity figures, see **Figure 24**.


Table 24 The linearity equation of trimethoprim spiked in different matrixes (MP A, filtrated and non-filtrated water sample from the Sognsvann creek). The equations represent the within-day repeatability for each matrix.

DAY	MP A	Filtrated	Non-filtrated
DAY 1	y=0.0369x+0.1051	y=0.0878x+0.7402	y=0.0414x+0.1190
DAY 2	y=0.0398x+0.3017	y=0.0844x+0.6138	y=0.0513x+0.3657
DAY 3	y=0.0351x+0.1193	y=0.0619x+0.2625	y=0.0461x+0.9890

Trimethoprim spiked in filtrated water

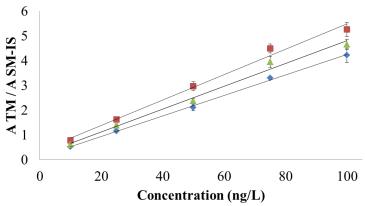


Figure 24 The linearity graphs for trimethoprim in the range 10-100 ng/L where the analyte was spiked in MP A, filtrated and non-filtrated water sample from the Sognsvann creek. The blue, red and green slope represents day 1, 2 and 3, respectively. Sulfamethoxazole-(phenyl- $^{13}C_6$) was used as the IS. The curves were established for 10 replicates for low (10 ng/L), medium (50 ng/L) and high (100 ng/L) concentrations spiked in MP A, and 6 replicates for same concentrations spiked in filtrated and non-filtrated water samples, 3 replicates were used for concentrations of 25 ng/L and 75 ng/L independent of the matrices. The standard deviations (SD) is shown as error bars, for calculations see Appendix Chapter 7.7.

4.2.8 Need for pre-filtration

The idea behind spiking of the APIs in the filtrated and non-filtrated water sample was to compare the effect of external filtration. If filtrated and non-filtrated water samples gave the same results minimal sample clean-up and preparation are required. The linearity graphs showed similar slope of the curves for the analytes with their ideal IS used, in both filtrated and non-filtrated water samples, indicating that pre-filtration of the sample was not necessary.

4.3 Application of the method

A filtrated water sample from the Sognsvann creek was spiked with the internal standards and analysed by the AFFL-SPE-LC-MS. The chromatograms in **Figure 25** were obtained by using the quantifier as the m/z transitions for each API (**Table 13**). The used concentration of atenolol-d7 and fluoxetine-d5 was high compared to the concentration of sulfamethoxazole-(phenyl- 13 C₆) and the method detection limits for the analytes. Atenolol-d7 and fluoxetine-d5 were included later than sulfamethoxazole-(phenyl- 13 C₆) and the MS-conditions were not optimal during the analysis.

As expected no detectable APIs were found in the water sample from the Sognsvann creek with the method developed for selected APIs.

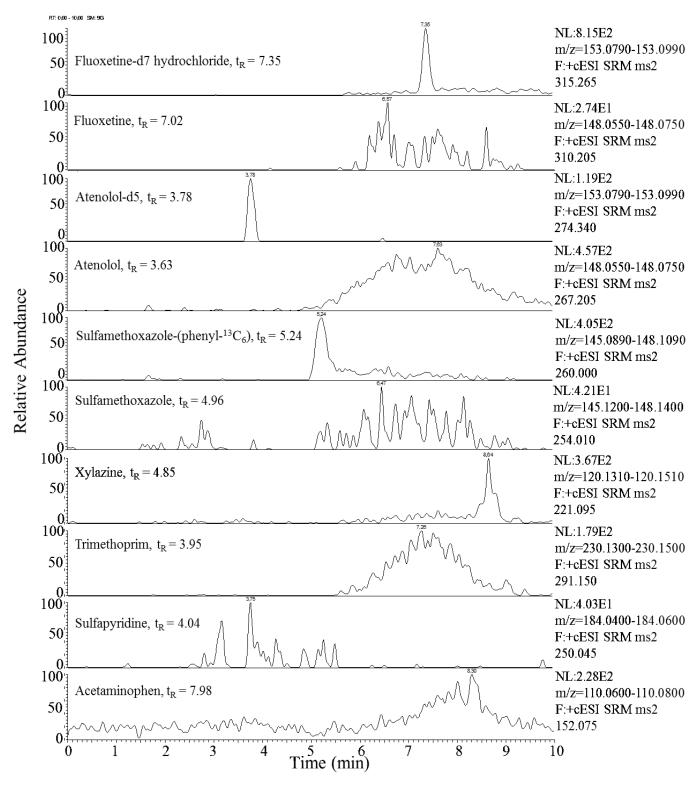


Figure 25 EIC of filtrated water sample from Sognsvann creek added the internal standards, atenolol-d7 (1000 ng/L), fluoxetine-d5 (500 ng/L) and sulfamethoxazole-(phenyl- 13 C₆) (50 ng/L). The APIs were monitored by MRM using the Quantiva QQQ MS. The chromatographic system consisted of an AFFL-SPE-LC-MS set-up where gradient elution was performed using gradient program 2 on an ACE C₁₈ column (0.3 mm ID x 150 mm, 3 µm) with a flow rate of 4 µL/min. A Kromasil C₁₈ (1 mm ID x 5 mm, 5 µm) SPE-column was used The loading mobile phase (MP) and MP A was type 1 water with 0.1 % FA and the MP B was 100 % MeOH with 0.1 % FA.

4.4 Comparison with other studies

Several methods have been developed and validated for determination of selected APIs in water samples ([2, 3, 57, 58]). The quantification limits found in the present study are in-line with what has been obtained by others ([1, 10, 66]).

The method developed and validated by C. L. Chitescu et al. for selected APIs (43 APIs) in surface water using Exactive Orbitrap MS allowed quantification of the APIs in the concentration range of 10-100 ng/L. By using a hybrid quadrupole Orbitrap MS better sensitivity and lower cLOD values were obtained. However, the same cLOD level was achieved using a triple quadrupole MS with MRM monitoring in our study.

Generally, high apparent recovery values (from 81-288 %) were found with relative standard deviation (RSD %) lower than 20 % for all APIs except trimethoprim (between-day) in the present study. High recoveries (80-125 %) were also reported by A. L. Batt et al [10], who developed a method for APIs in water samples. They report that use of non-ideal internal standards could be the reason for ion suppression or ion enhancement which is the same argument as used in our study.

Maria Angelis, K. et al. who quantified APIs and personal care product residues in surface water and drinking water by SPE and LC-ESI-MS/MS, validated a method for higher linear range (200 ng/L – 2500 ng/L) comparted to this study (10 ng/L – 100 ng/L) and higher cLOD (μg/L) and cLOQ (0.05 μg/L – 1 μg/L) were calculated compared to this study (cLOQ: 2 ng/L – 18 ng/L, cLOQ: 5 ng/L – 54 ng/L), however same mass analyser was used. Their study showed generally high recovery values (from 65-120 %) with relative standard deviation (RSD %) lower than 20 %. As reported the limitation in LC-MS is the susceptibility of API interfaces to co-extracted matrix components, typically results in either signal suppression or enhancement [74].

The method by A. L. Batt et al. had a total analysis time of 48 minutes using SPE-UPLC-MS/MS. The lengthy sample preparation in their method has been avoided using the AFFL-SPE-LC switching platform in the present study. We found that use of MeOH instead of ACN as the organic MP improved the ionization of selected API. The same has been reported by R. Loos et al. in 2013 [5]. They optimized the chromatographic separation by testing the same mobile phases and concluded that better chromatographic peaks could be obtained by using a mixture of water-MeOH. They used automatized SPE (off-line) of one-liter water samples

followed by LC-MS. They washed the SPE cartridges with water to remove the salts from the extracts in order to reduce LC-MS matrix effects causing ion suppression. In our study the incorporated SPE-column was washed with organic solvent (47 %) subsequently during loading of analytes however, ion suppression has been found for some APIs in the present study.

A report by S. Esteban et al. in 2013 [66] describes a method for selected APIs in water samples using an on-line column system for enrichment of APIs and subsequent separation on the analytical column followed by ESI triple quadrupole MS SRM detection. The APIs were detected in ng/L range and R² were higher than 0.99. However, they have not addressed possible matrix effects.

Larger sample loading volumes (100-500 μ L) were tested by X, Yi. et al. using a SPE-LC-ESI-MS/MS method. They observed that the increased sample loading volume from 100 to 500 μ L only caused a slight loss of the compounds [75], similar to the present study. Compared to the report from I, Tlili. et al. the loss of analyte during loading was not considered however, 1 mL was used as injection volume with the same instrumental set-up as X, Yi. et al [76].

5 Conclusion

A sensitive method for screening of seven APIs in surface water has been developed. The method was validated for these APIs belonging to five groups using three labelled internal standards. The method is selective and suitable for determination of the selected APIs in the concentration 10-100 ng/L by using the AFFL-SPE-capLC-MS/MS platform. Total analysis time was 15 minutes. The method is suitable for analysis of water samples without the need for sample preparation. By using the rugged AFFL-system with incorporated 0.2 μ m filter and SPE-column (1mm ID x 5mm, 5 μ m) for sample clean-up and enrichment, a number of injections are possible without pressure build-up. The drawback by such a system is the technical challenges by using narrow tubings and need for maintenance of the LC-system. High sensitivity (10 ng/L) was reached using a capLC column.

Further work could be to expand the method for more APIs. Lower detection limits may be reached (1 ng/L) by using a nanoLC column and/or a high sensitivity and resolution mass analyser. Considering matrix effects, inclusion of a labelled IS for each API is necessary to compensate for interferences causing, ion suppression and ion enhancement.

6 References

- [1] R. Loos, *Directive 2013/39/EU of the European Parliament and of the Council*, European Comission http://publications.jrc.ec.europa.eu/repository/bitstream/JRC94012/lb-na-27046-en-n%20.pdf, (2014), Access date: [15. may 2016].
- [2] R. Moreno-González, S. Rodriguez-Mozaz, M. Gros, D. Barceló, V. M. León, *Seasonal distribution of pharmaceuticals in marine water and sediment from a mediterranean coastal lagoon (SE Spain)*, Environmental Research, 138 (**2015**) 326-344.
- [3] C. Chitescu, E. Oosterink, J. Jong, A. Stolker, *Accurate mass screening of pharmaceuticals and fungicides in water by U-HPLC–Exactive Orbitrap MS*, Analytical and Bioanalytical Chemistry, 403 (**2012**) 2997-3011.
- [4] N. Creusot, S. Aït-Aïssa, N. Tapie, P. Pardon, F. Brion, W. Sanchez, E. Thybaud, J.-M. Porcher, H. Budzinski, *Identification of synthetic steroids in river water downstream from pharmaceutical manufacture discharges based on a bioanalytical approach and passive sampling*, Environmental science & technology, 48 (**2014**) 3649.
- [5] R. Loos, S. Tavazzi, B. Paracchini, E. Canuti, C. Weissteiner, *Analysis of polar organic contaminants in surface water of the northern Adriatic Sea by solid-phase extraction followed by ultrahigh-pressure liquid chromatography—QTRAP* ® MS using a hybrid triple-quadrupole linear ion trap instrument, Analytical and Bioanalytical Chemistry, 405 (**2013**) 5875-5885.
- [6] E. Vulliet, C. Cren-Olivé, M.-F. Grenier-Loustalot, *Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters*, Environmental Chemistry Letters, 9 (**2011**) 103-114.
- [7] E. Böhling, K. Adamczak, *Pharmaceutical residues in the aquatic system—a challenge for the future*, http://www.pills-project.eu/content/136/documents/PillsBrochure-en.pdf, (2010), Access date: [4. November 2015].

- [8] B. Van Der Bruggen, C. Vandecasteele, Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry, Environmental Pollution, 122 (2003) 435-445.
- [9] K. Kümmerer, *Antibiotics in the aquatic environment A review Part I*, Chemosphere, 75 (**2009**) 417-434.
- [10] A. L. Batt, M. S. Kostich, J. M. Lazorchak, Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid-phase extraction and *UPLC-MS/MS*, Analytical chemistry, 80 (2008) 5021.
- [11] S. K. Khetan, T. J. Collins, *Human pharmaceuticals in the aquatic environment: A challenge to green chemisty*, Chemical Reviews, 107 (**2007**) 2319-2364.
- [12] M. Blaser, Antibiotic overuse: Stop the killing of beneficial bacteria, Nature, 476 (2011) 393-394.
- [13] C. Berg, H. S. Blix, O. Fenne, K. J. Husabø, I. Litleskare, I. Odsbu, *Reseptregisteret* 2010–2014 Tema: Antibiotika (2015), Access date: [14. September 2016].
- [14] Folkehelseinstituttet, Sales of pharmaceuticals increased in 2014, Nasjonalt Folkehelseinstitutt,
- http://www.fhi.no/eway/default.aspx?pid=239&trg=Content_6496&Main_6157=6261:0:25,5 561&MainContent_6261=6496:0:25,5942&Content_6496=6178:114667:25,5942:0:6562:1::: 0:0, (2015), Access date: [1. November 2015].
- [15] S. Sakshaug, H. Strøm, C. Berg, H. S. Blix, I. Litleskare, T. Granum, *Drug Consumption in Norway* 2010–2014, Norwegian Institute of Public Health, http://www.fhi.no/dokumenter/ca13bff916.pdf, (2015), Access date: [11. November 2015].
- [16] K. D. Rainsford, *Ibuprofen: Pharmacology, Therapeutics and Side Effects*, Published, Source, Dordrecht, (2012).

- [17] K. Klaus, *Antibiotics in the aquatic environment A review Part II*, Chemosphere, 75 (**2009**) 435-441.
- [18] D. P. Bernstein, *How should you manage anti-hypertensive drugs in morbidly obese surgical patients?*, Springer-Verlag Italy, Department of Anesthesiology, Palomar Medical Center, Escondido, CA, USA, (2013).
- [19] M. G. Khan, Encyclopedia of Heart Diseases, Humana Press, New York, (2011).
- [20] A. Bartkowiak, S. Lsukasik, K. Chwistecki, *Statistical Evaluation of the Effect of Gemfibrosil, a Cholesterol Reducing Drug, on Some Biochemical Coronary Heart Disease Risk Variables*, Biometrical Journal, 33 (1991) 711-718.
- [21] J. L. Zurita, G. Repetto, Á. Jos, M. Salguero, M. López-Artíguez, A. M. Cameán, *Toxicological effects of the lipid regulator gemfibrozil in four aquatic systems*, Aquatic Toxicology, 81 (2007) 106-115.
- [22] L. F. Gram, *Drug therapy: Fluoxetine*, New England Journal of Medicine, 331 (**1994**) 1354-1361.
- [23] Felleskatalogen, *Tegretol (Karbamazepin)*, Legemiddelindustrien LMI, http://www.felleskatalogen.no/medisin/pasienter/pil-tegretol-tegretol-retard-novartis-564470, Access date: [15. August 2016].
- [24] M. J. Glade, *Caffeine—Not just a stimulant*, Nutrition, 26 (**2010**) 932-938.
- [25] S. A. Greene, T. C. Thurmon, *Xylazine-a review of its pharmacology and use in veterinary medicine*, Xylazine-a review of its pharmacology and use in veterinary medicine, 11 (**1988**) 295-313.
- [26] H. Abou Assi, M. S. Jordanov, *Statins*, Springer International Los Angeles, California, USA, (2015).
- [27] D. C. Harris, *Quantitative Chemical Amalysis*, Eigth Edition, Freeman New York, (2010).

- [28] E. Lundanes, L. Reubsaet, T. Greibrokk, *Chromatography : Basic Principles, Sample Preparations and Related Methods*, Somerset, NJ, USA: John Wiley & Sons, Somerset, (2013).
- [29] K. K. Unger, Lamotte, S., and Machtejevas, E., *Chapter 3 Column Technology in Liquid Chromatography*, Liquid Chromatography, Elsevier, Amsterdam, (**2013**), pp. 41-86.
- [30] K. J. Fountain, P. C. Iraneta, *Chapter 2 Instrumentation and Columns for UHPLC Separations*, UHPLC in Life Sciences, The Royal Society of Chemistry, (**2012**), pp. 29-66.
- [31] Y. He, W. Hou, M. Thompson, H. Holovics, T. Hobson, M. T. Jones, *Size exclusion chromatography of polysaccharides with reverse phase liquid chromatography*, Journal of Chromatography A, 1323 (**2014**) 97-103.
- [32] K. L. Williamson, R. D. Minard, K. M. Masters, *High-Performance Liquid Chromatography (HPLC) for the Determination of Creatine and Creatinine*, Chemistry in Sports and Fitness: a Case Study Collection, http://learn.quinnipiac.edu/at/faculty/hs/alsmith/creatine_detection.html, (2007), Access date: 12.11.15].
- [33] J. P. C. Vissers, H. A. Claessens, C. A. Cramers, *Microcolumn liquid chromatography: instrumentation, detection and applications*, Journal of Chromatography A, 779 (**1997**) 1-28.
- [34] S. R. Wilson, T. Vehus, H. S. Berg, E. Lundanes, *Nano-LC in proteomics: recent advances and approaches*, Bioanalysis, 7 (2015) 1799-1815.
- [35] Y. Saito, K. Jinno, T. Greibrokk, *Capillary columns in liquid chromatography: between conventional columns and microchips*, Journal of Separation Science, 27 (**2004**) 1379-1390.
- [36] W. Corporation, *Solid-Phase Extraction*, Waters Corporation http://www.waters.com/waters/en_NO/Quick-Facts/nav.htm?locale=en_NO&cid=134614709, (2015), Access date: [6. November 2015].

- [37] J. J. Pitt, *Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry*, The Clinical biochemist. Reviews / Australian Association of Clinical Biochemists, 30 (**2009**) 19.
- [38] B. T. Røen, *Quantification of Nerve Agent Markers-by Online SPE-LC-MS* Department of Chemistry University of Oslo, (2015).
- [39] A. Holm, Rapid trace determinations by large volume injection in capillary liquid chromatography, Department of Chemistry, University of Oslo (2004)
- [40] K. O. Svendsen, H. R. Larsen, S. A. Pedersen, I. Brenna, E. Lundanes, S. R. Wilson, *Automatic filtration and filter flush for robust online solid phase extraction liquid chromatography*, Journal of Separation Science, 34 (**2011**) 3020-3022.
- [41] S. H. Hansen, S. Pedersen-Bjergaard, *Bioanalysis of Pharmaceuticals : Sample Preparation, Separation Techniques and Mass Spectrometry*, Wiley, Hoboken, (2015).
- [42] S. W. Landvatter, R. Tyburski, *Isotec*® *Stable isotope labeled standards*, Sigma-Aldrich, (2015) 1-12.
- [43] A. Shrivastava, V. Gupta, *Methods for the determination of limit of detection and limit of quantitation of the analytical methods*, Chronicles of Young Scientists, 2 (**2011**) 21-21.
- [44] V. Barwick, P. P. M. Bravo, S. L. R. Ellison, J. Engman, E. L. F. Gjengedal, U. O. Lund, B. Magnusson, H.-T. Müller, M. Patriarca, B. P. Merck, P. Robouch, L. P. Sibbesen, E. Theodorsson, F. Vanstapel, I. Vercruysse, A. Yilmaz, P. Y. Ömeroglu, U. Örnemark, *The Fitness for Purpose of Analytical Methods A Laboratory Guide to Method Validation and Related Topics*, (2014) 70.
- [45] A. El-Aneed, A. Cohen, J. Banoub, *Mass Spectrometry, Review of the Basics: Electrospray, MALDI, and Commonly Used Mass Analyzers*, Applied Spectroscopy Reviews, 44 (**2009**) 210-230.

- [46] E. d. Hoffmann, V. Stroobant, *Tandem Mass Spectrometry Applications and Principles*, Third edition, InTech.
- [47] I. Eidhammer, H. Barsnes, G. E. Eide, L. Martens, *Targeted Quantification Selected Reaction Monitoring*, Computational and Statistical Methods for Protein Quantification by Mass Spectrometry, (2013) 218-234.
- [48] G. E. Ronsein, N. Pamir, P. D. Von Haller, D. S. Kim, M. N. Oda, G. P. Jarvik, T. Vaisar, J. W. Heinecke, *Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics*, Journal of Proteomics, 113 (**2015**) 388-399.
- [49] R. A. Zubarev, A. Makarov, *Orbitrap mass spectrometry*, Analytical Chemistry, 85 (2013) 5288-5296.
- [50] Q. Hu, R. J. Noll, H. Li, A. Makarov, M. Hardman, R. Graham Cooks, *The Orbitrap: a new mass spectrometer*, Journal of Mass Spectrometry, 40 (**2005**) 430-443.
- [51] Z. Hao, Y. Zhang, S. Eliuk, J. Blethrow, D. Horn, V. Zabrouskov, M. Kellmann, A. F. Huhmer, A Quadrupole-Orbitrap Hybrid Mass Spectrometer Offers Highest Benchtop Performance for In-Depth Analysis of Complex Proteomes, Thermo Fisher Scientific, (2012).
- [52] M. Scigelova, A. Makarov, *Orbitrap Mass Analyzer Overview and Applications in Proteomics*, Proteomics, 6 (**2006**) 16-21.
- [53] W. M. A. Niessen, *MS-MS and MS n*, Elsevier Inc., (2010).
- [54] T. scientific, Thermo Scientific TSQ Quantiva Triple-Stage Quadrupole Mass Spectrometer, (2017).
- [55] P. E. Miller, M. B. Denton, *The quadrupole mass filter: basic operating concepts*, Journal of Chemical Education, 63 (**1986**) 617.
- [56] J. H. Gross, *Mass Spectrometry: Tandem MS with Linear Quadrupole Analyzers*, Second edition, Springer Berlin Heidelberg, (2011).

- [57] M. S. Díaz-Cruz, M. J. García-Galán, P. Guerra, A. Jelic, C. Postigo, E. Eljarrat, M. Farré, M. J. López de Alda, M. Petrovic, D. Barceló, *Analysis of selected emerging contaminants in sewage sludge*, Trends in Analytical Chemistry, 28 (**2009**) 1263-1275.
- [58] T. Benijts, W. Lambert, A. De Leenheer, *Analysis of Multiple Endocrine Disruptors in Environmental Waters via Wide-Spectrum Solid-Phase Extraction and Dual-Polarity Ionization LC-Ion Trap-MS/MS*, Analytical Chemistry, 76 (**2004**) 704-711.
- [59] M. Petrovic, *Methodological challenges of multi-residue analysis of pharmaceuticals in environmental samples*, Trends in Environmental Analytical Chemistry, 1 (**2014**) e25-e33.
- [60] R. D. Briciu, A. Kot-Wasik, J. Namiesnik, *Analytical Challenges and Recent Advances in the Determination of Estrogens in Water Environments*, Journal of Chromatographic Science, 47 (**2009**) 127-139.
- [61] M. Staš, J. Chudoba, M. Auersvald, D. Kubička, S. Conrad, T. Schulzke, M. Pospíšil, *Application of orbitrap mass spectrometry for analysis of model bio-oil compounds and fast pyrolysis bio-oils from different biomass sources*, Journal of Analytical and Applied Pyrolysis, 124 (**2017**) 230-238.
- [62] A. Stolker, W. Niesing, E. Hogendoorn, J. Versteegh, R. Fuchs, U. Brinkman, *Liquid* chromatography with triple-quadrupole or quadrupole-time of flight mass spectrometry for screening and confirmation of residues of pharmaceuticals in water, Analytical and Bioanalytical Chemistry, 378 (2004) 955-963.
- [63] C. Hao, X. Zhao, P. Yang, GC-MS and HPLC-MS analysis of bioactive pharmaceuticals and personal-care products in environmental matrices, Trends in Analytical Chemistry, 26 (2007) 569-580.
- [64] M. J. Lopez De Alda, S. Díaz-Cruz, M. Petrovic, D. Barceló, *Liquid chromatography-* (tandem) mass spectrometry of selected emerging pollutants (steroid sex hormones, drugs and alkylphenolic surfactants) in the aquatic environment, Journal of Chromatography A, 1000 (2003) 503-526.

- [65] B. J. Berendsen, R. S. Wegh, T. Meijer, M. W. Nielen, *The assessment of selectivity in different quadrupole-Orbitrap mass spectrometry acquisition modes*, Journal of The American Society for Mass Spectrometry, 26 (**2015**) 337-346.
- [66] S. Esteban, M. Gorga, M. Petrovic, S. González-Alonso, D. Barceló, Y. Valcárcel, Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain, Science of the Total Environment, 466-467 (2013) 939-951.
- [67] *Validation of analytical procedures: text and methodology*, ICH Harmonized Tripartite Guideline, 2017 (**2005**).
- [68] D. Torburn, Burns, K. Danzer, A. Townshend, *Use of the Term "Recovery" and "Apparent Recovery" in Analytical Procedures (IUPAC Recommendations 2002)*, Pure and applied chemistry, (2002).
- [69] E. Pitarch, F. Hernandez, J. Ten Hove, H. Meiring, W. Niesing, E. Dijkman, L. Stolker, E. Hogendoorn, *Potential of capillary-column-switching liquid chromatography-tandem mass spectrometry for the quantitative trace analysis of small molecules: Application to the on-line screening of drugs in water,* Journal of Chromatography A, 1031 (2004) 1-9.
- [70] L. Chen, H. Wang, Q. Zeng, Y. Xu, L. Sun, H. Xu, L. Ding, *On-line Coupling of Solid-Phase Extraction to Liquid Chromatography—A Review*, Journal of Chromatographic Science, 47 (**2009**) 614-623.
- [71] M. Stravs, J. Mechelke, P. Ferguson, H. Singer, J. Hollender, *Microvolume trace environmental analysis using peak-focusing online solid-phase extraction—nano-liquid chromatography—high-resolution mass spectrometry*, Analytical and Bioanalytical Chemistry, 408 (**2016**) 1879-1890.
- [72] E. Johnsen, S. Leknes, S. R. Wilson, E. Lundanes, *Liquid chromatography-mass* spectrometry platform for both small neurotransmitters and neuropeptides in blood, With Automatic and robust solid phase extraction, Scientific Reports 5, (2015).

- [73] H. Roberg-Larsen, K. Lund, K. E. Seterdal, S. Solheim, T. Vehus, N. Solberg, S. Krauss, E. Lundanes, S. R. Wilson, *Mass spectrometric detection of 27-hydroxycholesterol in breast cancer exosomes*, Journal of Steroid Biochemistry and Molecular Biology, (2016).
- [74] M. A. K. Silveira, S. S. Caldas, J. R. Guilherme, F. P. Costa, B. D. S. Guimarães, M. B. R. Cerqueira, B. M. Soares, E. G. Primel, *Quantification of pharmaceuticals and personal care product residues in surface and drinking water samples by SPE and LC-ESI-MS/MS*, Journal of The Brazilian Chemical Society, 24 (2013) 1385-1395.
- [75] X. Yi, S. Bayen, B. Kelly, X. Li, Z. Zhou, *Improved detection of multiple environmental antibiotics through an optimized sample extraction strategy in liquid chromatography-mass spectrometry analysis*, Analytical and Bioanalytical Chemistry, 407 (**2015**) 9071-9083.
- [76] I. Tlili, G. Caria, B. Ouddane, I. Ghorbel-Abid, R. Ternane, M. Trabelsi-Ayadi, S. Net, Simultaneous detection of antibiotics and other drug residues in the dissolved and particulate phases of water by an off-line SPE combined with on-line SPE-LC-MS/MS: Method development and application, Science of the Total Environment, 563-564 (2016) 424-433.
- [77] L. Reubsaet, *Physicochemical properties of drug substances*, Wiley, 2015, Chichester, (2015), pp. 9-22.
- [78] *ChemSpider*, Royal Society of Chemistry, http://www.chemspider.com/, (2015), Access date: [2. February 2016].
- [79] *The DrugBank* Wishart Research Group, http://www.drugbank.ca/, (2016), Access date: [25. January 2016].

7 Appendix

7.1 Physiochemical properties

The theoretical log P value of each compound is shown in **Figure A-1** and theoretical pKa value in **Figure A-2**. The acidity of a compound is expressed with a pK_a value, which is the negative log of the acid dissociation constant (K_a) [77]. The log P is the logarithm of the octanol-water partition coefficient, which is used as a measure of polarity [77] of a compound. The hydrophobicity of a compound increases with increased log P values.

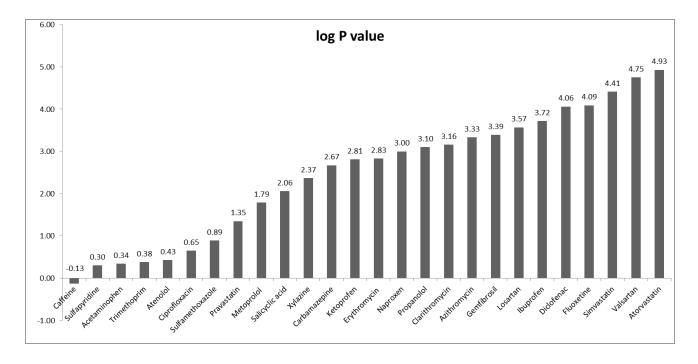


Figure A-1 Log P values of the compounds obtained from ChemSpider [78].

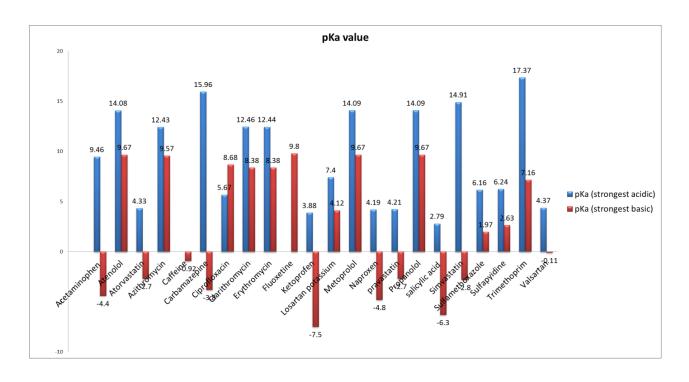


Figure A- 2 The pKa values of the compounds, both the acidic and basic, obtained from Drugbank [79].

7.2 Mass spectrometry of the APIs

The precursor ion and its product ions for each API monitored by MRM using the Quantiva QQQ and the Q Exactive are given in **Table A-1** and **Table A-2**, respectively.

Table A- 1 The APIs were examined by direct injection (10 μ g/mL) in positive mode MRM monitoring by Quantiva QQQ MS. Molar mass, precursor ion, and product ions for selected APIs are shown. Fragments in italics were later removed from the analytical method, as they could be a source for background noise. Note: Pravastatin is not included as the compound was not compatible with positive mode detection using the Quantiva QQQ MS.

Name of API	Molar mass	Precursor ion	Product ions (m/z)
	(g/mol)	(m/z)	
Acetaminophen	151	152	93, <i>109</i> ,110
Atenolol	266	267	133, 145, 195
Atorvastatin	558	559	250, 276, 440
Azithromycin	749	750	83, 158, 591
Caffeine	194	195	110, 123, 138
Carbamazepine	236	273	179, 192, 194
Ciprofloxacin	331	332	231, 245, 314
Clarithromycin	747	748	158, 558, 590
Diclofenac	295	296	214, 215, 250
Erythromycin	733	734	116, 158, 576
Fluoxetine	309	310	117, 148, 183
Gemfibrosil	250	251	77, 152, 215
Ibuprofen	206	207	77, 91, 105
Ketoprofen	254	255	77, 105, 209
Losartan	422	423	180, 205, 207
Metoprolol	267	268	<i>77</i> , <i>91</i> , 103
Naproxen	230	231	153, 170, 185
Propranolol	259	260	127, 129, 155
Simvastatin	418	419	143, 199, 225
Sulfapyridine	249	250	92, 155, 184
Sulfamethoxazole	253	254	92, 108, 155
Trimethoprim	290	291	123, 230, 261
Valsartan	435	436	180, 190, 207
Xylazine	220	221	105, 120, 164

Table A- 2 APIs were examined by direct injection (10 µg/mL) in positive mode PRM monitoring by Q Exactive MS. Molar mass, precursor ion, product ions and fragmentation energy (NCE) for selected APIs are shown. Fragments in italics were later removed from the analytical method, as they could be a source for background noise. Note: Pravastatin is not included as the compound was not compatible with positive mode detection using the Q Exactive QQQ MS. Note: caffeine, carbamazepine, ibuprofen, ketoprofen and metoprolol were not included because of difficulties during method optimization on negative mode of ionization.

Compound	Molar mass (g/mol)	Precursor ion (m/z)	Product ions (m/z)	NCE
Acetaminophen	151	152.0710	110.0606	25
Atenolol	266	267.1709	145.0651, 190.0866, 208.0973, 225.1235	35
Atorvastatin	558	559	380.1660, 422.2123	20
Azithromycin	749	750	296.2148, 591.4222	15
Ciprofloxacin	331	332.1412	231.0569, 314.1303	50
Clarithromycin	747	748.4860	158.1179, 558.3644, 590.3908	15
Diclofenac	295	296.0245	215.0500, 250.0189, 278.0138	10
Erythromycin A	733	734.4708	158.1179, 522.3433, 540.3538, 558.3646, 576.3749	15
Fluoxetine	309	310.1419	148.1224, 117.0705	25
Gemfibrozil	250	251. 1646	205.1591, 233.1539	20
Losartan	422	423.1704	207.0920, 377.1531, 405.1595	15
Naproxen	230	231.1021	170.0730, 185.0966	40
Propranolol	259	260.1650	116.1075, 157.0652, 183.0810, 218.1182	30
Simvastatin	418	419.2798	199.1486, 243.1743, 255.1641, 267.1747, 285.1853, 303.1959	15
Sulfapyridin	249	250.0630	156.0108	30
Sulfamethoxazole	253	254.0599	108.0450, 147.0795, 156.0116, 188.0822	25
Trimethoprim	290	291.1456	123.0670, 245.1037, 230.1166, 261.0986, 275.1143	45
Valsartan	435	436.2352	235.0980, 291.1496, 306.1717, 352.1772, 362.2229, 408.2286, 418.2230	15
Xylazine	220	221.1113	90.0380, 147.0920, 164.0531	50
Sulfamethoxazole- (phenyl- ¹³ C ₆)	259	260.0790	194.1017, 166.1068, 162.0313, 153.0990, 114.0647	30

7.3 Loading capacity and loading pump flow

The loading capacity was measured by observing the breakthrough, see **Table A-3**.

Table A- 3 The estimation of breakthrough for various injection volumes using AFFL-SPE-UV setup.

Injection volume (µL)	Time 1 (min)	Time 2 (min)	Avarage time (min)
200	14.5	Not done	14.5
400	13.5	Not done	13.5
600	14.4	14.5	14.5
800	10.9	10.3	10.6

7.4 Organic solvents

Organic solvents such as ACN and MeOH were compared as organic MP. The analytes were prepared at a concentration of 1000 ng/L for MRM monitoring. The comparison was done by using some representative compounds, which are also included in the method. **Figure A-3** shows the chromatograms of the analytes using ACN with 0.025 % FA as MP B and **Figure A-4** shows the chromatograms of analytes using the same concentration while the MP B was MeOH with 0.1 % FA.

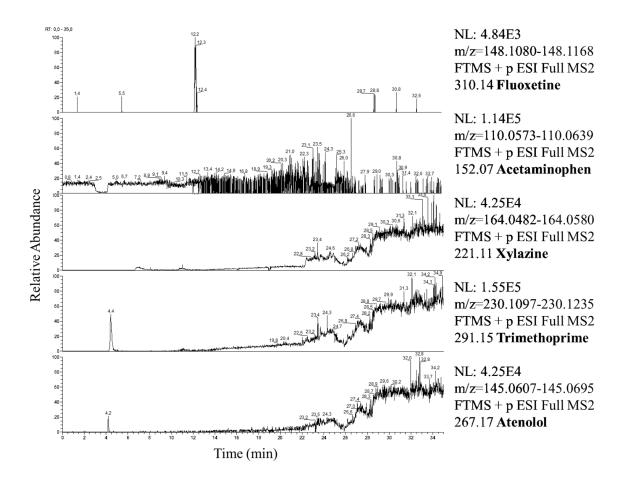


Figure A- 3 EIC of the selected APIs (1 $\mu g/L$) where ACN with 0.025 % FA was used as organic solvent (MP B). The chromatographic system consisted of an AFFL-SPE-LC-MS set-up where gradient elution was performed on a HotSep C_{18} column (100 mm x 0.3 mm ID, 2 μ m) with a flow rate of 4 μ L/min. The loading flow rate was 200 μ L/min and loading mobile phase (MP) and MP A was type 1 water with 0.1 % FA.

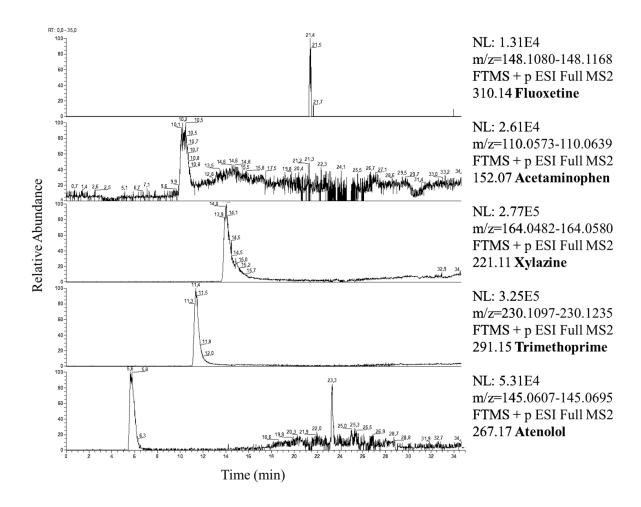


Figure A- 4 EIC of the selected APIs (1 µg/L) where MeOH with 0.1 % FA was used as organic solvent (MP B). The chromatographic system consisted of an AFFL-SPE-LC-MS set-up where gradient elution was performed on a HotSep C_{18} column (100 mm x 0.3 mm ID, 2 µm) with a flow rate of 4 µL/min. The loading flow rate was 200 µL/min and loading mobile phase (MP) and MP A was type 1 water with 0.1 % FA.

7.5 Elimination of compounds

The reason for removal of the APIs from the method is given in ${\bf Table} \ {\bf A-4}$.

Table A- 4 The compounds eliminated from the method and the reason for elimination.

Name of compound	Reason eliminated
Atorvastatin	Visible in MS with loss of H ₂ O ([M+H-H ₂ O] ⁺)
	in direct infusion using 0.1 % MeOH as
	dissolving solvent. The peak was disappeared
	after some days at same concentration
	(100 ng/L) it has been visible before.
Azithromycin	Carry over approximately 4 %.
Caffeine	Very high baseline, with no distinctive
	peak in MS, despite giving a clear peak in
	UV.
Carbamazepine	Eliminated due to time available.
Ciprofloxacin	MS-chromatograms indicate poor solubility
	and tailing. Stock solution was dissolved with
	toluene and then dissolved in MP B. Peak
	shape was improved, but it causes
	approximately 4 % carry over.
Clarithromycin	Carry over approximately 4 %.
Diclofenac sodium salt	Incompatible with positive mode ESI.
Erythromycin a dihydrate	Eliminated due to time available.
Gemfibrosil	Same m/z values as polyethylene glycol
	(PEG), which is often present in some of
	the equipment used, no basic groups, so
	the peaks are most likely due to interferences.
Ibuprofen	Incompatible with positive mode ESI. MS-
	chromatograms indicate impurities of
	the standard utilized, no basic groups, so
	the peaks are most likely due to interferences.

Ketoprofen	Two peaks always present in blank
	samples; possible an interference, no
	basic groups, so the peaks are most likely
	due to interferences.
Losartan potassium	Signals in blank are observed. The signals from
	the most intense peaks are not from Losartan,
	but are present in water in same concentration.
	They are enriched on SPE-column, when
	loaning for a long time. The fragment ion with
	m/z 401.1613 could be used as quantification
	for Losartan.
Metoprolol tartrate salt	Eliminated due to time available.
Naproxen	Incompatible with positive mode ESI.
S-Propranolol hydrochloride	Carry over approximately 2-4 %.
Pravastatin sodium salt hydrate	Found to be incompatible with positive mode
	ESI.
Salicyclic acid	Not retained on SPE-column, incompatible
	with positive mode ESI.
Simvastatin	Eliminated due to time available.
Valsartan	Eliminated due to time available.

7.6 Chromatograms of the selected APIs and the internal standards

The chromatograms of the selected APIs at a concentration of 10 ng/L spiked in MP A, filtrated and non-filtrated water samples from the Sognsvann creek are shown in **Figure A-5**, **A-6** and **A-7**, respectively. The quantifier (**Table 13**) of each API was used for quantification, see **Table 12** for the optimized MS conditions of the Quantiva QQQ MS.

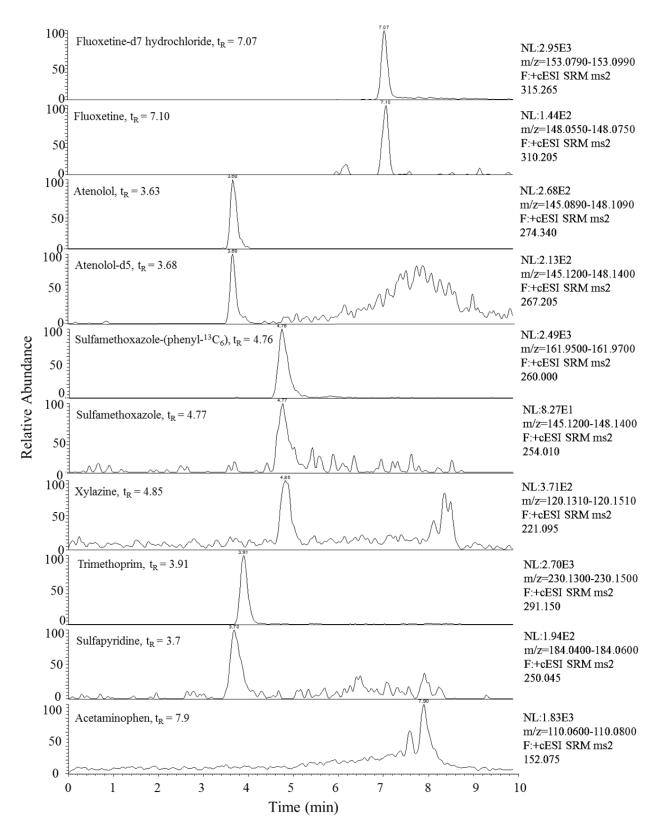


Figure A- 5 EIC of the selected APIs and the internal standards spiked in MP A monitored by MRM using the Quantiva QQQ MS. The concentration of the APIs was 10 ng/L, and concentration of atenolol-d7, fluoxetine-d5 hydrochloride and sulfamethoxazole-(phenyl- $^{13}C_6$) were, 1000 ng/L, 500 ng/L and 50 ng/L, respectively. The chromatographic system consisted of an AFFL-SPE-LC-MS set-up where gradient elution was performed using gradient program 2 on an ACE C_{18} column (150 mm x 0.3 mm ID, 3 μ m) with a flow rate of 4 μ L/min. The loading mobile phase (MP) and MP A was type 1 water with 0.1 % FA and the MP B was 100 % MeOH with 0.1 % FA.



Figure A- 6 EIC of the selected APIs and the internal standards spiked in filtrated water sample from Sognsvann creek monitored by MRM using the Quantiva QQQ MS. The concentration of the APIs was 10 ng/L, and concentration of atenolol-d7, fluoxetine-d5 hydrochloride and sulfamethoxazole-(phenyl- 13 C₆) were, 1000 ng/L, 500 ng/L and 50 ng/L, respectively. The chromatographic system consisted of an AFFL-SPE-LC-MS set-up where gradient elution was performed using gradient program 2 on an ACE C₁₈ column (150 mm x 0.3 mm ID, 3 μ m) with a flow rate of 4 μ L/min. The loading mobile phase (MP) and MP A was type 1 water with 0.1 % FA and the MP B was 100 % MeOH with 0.1 % FA.

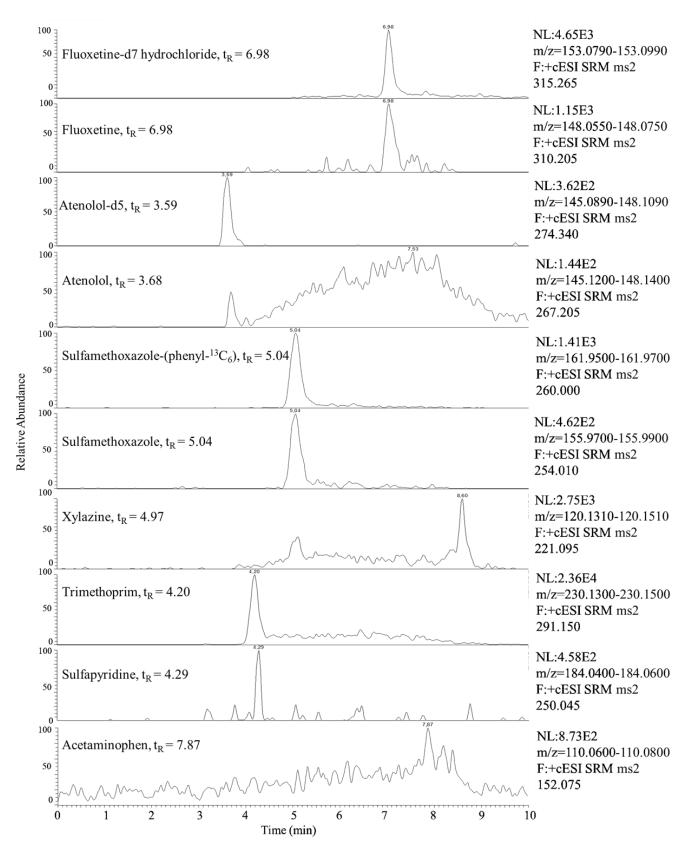


Figure A- 7 EIC of the selected APIs and the internal standards spiked in non-filtrated water sample from Sognsvann creek monitored by MRM using the Quantiva QQQ MS. The concentration of the APIs was 10 ng/L, and concentration of atenolol-d7, fluoxetine-d5 hydrochloride and sulfamethoxazole-(phenyl- 13 C₆) were, 1000 ng/L, 500 ng/L and 50 ng/L, respectively. The chromatographic system consisted of an AFFL-SPE-LC-MS set-up where gradient elution was performed using gradient program 2 on an ACE C₁₈ column (150 mm x 0.3 mm ID, 3 μ m) with a flow rate of 4 μ L/min. The loading mobile phase (MP) and MP A was type 1 water with 0.1 % FA and the MP B was 100 % MeOH with 0.1 % FA.

7.7 Raw data for method validation

7.7.1 Acetaminophen (AA)

The calculated mean, SD and RSD for acetaminophen spiked in MP A, filtrated and non-filtrated water sample from the Sognsvann creek are shown in **Table A-5.** The regression analyses of acetaminophen in the matrices are shown in **Table A-6.** The single factor Anova tests of the API in MP A, filtrated and non-filtrated water sample are shown in **Table A-7, A-8, and A-9**, respectively.

Table A- 5 The concentrations of acetaminophen (AA) spiked in MP A (i), filtrated (ii) and no-filtrated (iii) water sample from the Sognsvann creek. The ratios between the peak area of AA and peak area of the IS (SM-IS) (sulfamethoxazole-(phenyl- $^{13}C_6$) was calculated for all replicates in a single day. The average (the mean) of the average calculated for each day was calculated. The corresponding SD and RSD of the mean were calculated. The cLOD and cLOQ were calculated for the lowest concentration.

Concentration (ng/L)	Mean A AA/ A SM-IS	SD	RSD %	cLOD (ng/L)	cLOQ (ng/L)
10	0.067	0.005	8	18	54
25	0.095	0.002	2		
50	0.119	0.015	13		
75	0.141	0.004	3		
100	0.189	0.022	12		

Cd	oncentration (ng/L)	Mean A AA/ A SM-IS	SD	RSD %	cLOD (ng/L)	cLOQ (ng/L)	
	10	0.086	0.007	8	13	39	
	25	0.098	0.007	7			
	50	0.181	0.037	20			
	75	0.260	0.037	14			
	100	0.325	0.061	19			ii`

Concentration (ng/L)	Mean A AA/ A SM-IS	SD	RSD %	cLOD (ng/L)	cLOQ (ng/L)
10	0.047	0.003	6	14	43
25	0.069	0.001	1		
50	0.091	0.002	2		
75	0.110	0.002	2		
100	0.128	0.005	4		

Table A- 6 The regression analysis for acetaminophen spiked in MP A (A), filtrated (B) and no-filtrated (C). The *standard error* and the *coefficient of X variable 1* (slope of the curve) were used in calculations of cLOD and cLOQ. The units in all cases are ng/L and the confidence level was 95 %.

SUMMARY OUTPUT								
								A)
Regression								<u> </u>
Multiple R	0.988799842							
R Square	0.977725127							
Adjusted R Square	0.97030017							
Standard Error	0.008029203							
Observations	5							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	0.008489218	0.008489218	131.680905	5 0.00142049	93		
Residual	3	0.000193404	6.44681E-05					
Total	4	0.008682622						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.056725411	0.006752732	8.400364909	0.00353877			0.035235205	0.078215618
X Variable 1	0.001262032	0.000109979	11.47523009	0.00142049			0.00091203	0.00161203
X Variable 1	0.001202032	0.000103373	11.47323003	0.00142043	0.0003120	0.001012033	0.00031203	0.00101203.
DECIDINAL OLITRUT								
RESIDUAL OUTPUT								
Observation	Predicted Y	Residuals	Standard Residuals					
1		-0.002185811	-0.314347149					
	0.088276201	0.006359784	0.914617129					
3	0.119826991	-0.000482057	-0.069325835					
4	4 0.151377781	-0.01024632	-1.473549981					
	0.182928571	0.006554404	0.942605836					
_								
SUMMARY OUTPUT								
50.000000000000000000000000000000000000								TD \
	Ct-ti-ti							B)
Regression .								
Multiple R	0.994091753							
R Square	0.988218413							
Adjusted R Square	0.984291217							
Standard Error	0.012879599							
Observations	5							
ANOVA								
	df	SS	MS	F	Significance F			
Di								
Regression	1	0.041742174	0.041742174	251.634622	0.000544674			
Residual	3	0.000497652	0.000165884					
Total	4	0.042239826						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercent	0.04444474	0.010832019	4.103064726	0.026198815	0.009972156	0.078916793	0.009972156	0.078916793
Intercept								
								0.003359927
X Variable 1	0.002798491	0.000176416	15.86299537	0.000544674	0.002237056	0.003359927	0.002237056	0.003333327
A Variable 1	0.002798491	0.000176416	15.80299557	0.000344674	0.002237030	0.005559927	0.002237030	0.003333327
A VARIADIE 1	0.002798491	0.000176416	13.80299337	0.000544674	0.002237030	0.005339927	0.002237030	0.00333327
A Variable 1	0.002798491	0.0001/6416	15.80299537	0.000544674	0.002237030	0.005559927	0.002237030	0.00333332
	0.002798491	0.000176416	15.80239557	0.000344674	0.002237030	0.005559927	0.002237030	0.003333327
X Variable 1 RESIDUAL OUTPUT	0.002798491	0.000176416	15.86299557	0.0003446/4	0.002237030	0.005539927	0.002237030	0.003333327
RESIDUAL OUTPUT				0.0005446/4	0.002237030	0.005539927	0.002237030	0.003333527
RESIDUAL OUTPUT Observation	Predicted Y	Residuals	Standard Residuals	0.000544674	0.002237030	0.005559927	0.002237030	0.0033332.7
RESIDUAL OUTPUT Observation	Predicted Y	Residuals	Standard Residuals	0.0005444674	0.002237030	0.003339927	0.002237030	0.00333352.
RESIDUAL OUTPUT Observation 1	Predicted Y 0.072429385	Residuals 0.013972362	Standard Residuals 1.252670503	0.000344674	0.002237030	0.003339927	0.002237030	0.0033332
RESIDUAL OUTPUT Observation 1 2	Predicted Y 0.072429385 0.114406752	Residuals 0.013972362 -0.016058914	Standard Residuals 1.252670503 -1.439737176	0.000344074	0.002237030	0.005339927	0.002237030	0.0033332
RESIDUAL OUTPUT Observation 1 2 3	Predicted Y 0.072429385 0.114406752 0.184369029	Residuals 0.013972362 -0.016058914 -0.003797872	Standard Residuals 1.252670503 -1.439737176 -0.340492373	0.000344074	0.002237030	0.005339927	0.002237030	0.0033332
RESIDUAL OUTPUT Observation 1 2 3 4	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986	5tandard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461	0.000344074	0.002231030	0.005339927	0.002237030	0.0033332
RESIDUAL OUTPUT Observation 1 2 3	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306	Residuals 0.013972362 -0.016058914 -0.003797872	Standard Residuals 1.252670503 -1.439737176 -0.340492373	0.000344074	0.002237030	0.005339927	0.00223/030	0.0033332
RESIDUAL OUTPUT Observation 1 2 3 4	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986	5tandard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461	0.000344074	0.002237030	0.005339927	0.002237030	0.0033332.1
RESIDUAL OUTPUT Observation 1 2 3 4 5	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986	5tandard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461	0.000544074	0.002237030	0.005333927	0.002237030	U CONTRACTOR DE LA CONT
RESIDUAL OUTPUT Observation 1 2 3 4	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986	5tandard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461	0.000344074	0.002237030	0.005333927	0.002237030	30000000
RESIDUAL OUTPUT Observation 1 2 3 4 5	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986	5tandard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461	0.000344074	0.002237030	0.005333927	0.002237030	C \
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986	5tandard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461	0.000344074	0.002237030	0.005333927	0.002237030	C)
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression 3	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986	5tandard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461	0.000344074	0.002237030	0.005333927	0.002237030	<u>C)</u>
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression : Multiple R	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986	5tandard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461	0.000344074	0.002237030	0.005333927	0.00223/030	<u>C)</u>
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression : Multiple R Square	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986	5tandard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461	0.000344074	0.002237030	0.005333927	0.002237030	<u>C)</u>
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression: Multiple R R Square	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986	5tandard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461	0.000344074	0.002237030	0.005333927	0.002237030	<u>C)</u>
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression: Multiple R R Square Adjusted R Square Standard Error	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986	5tandard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461	0.000344074	0.002237030	0.005333927	0.002237030	<u>C)</u>
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression: Multiple R R Square	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986	5tandard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461	U.000344074	0.002237030	0.005333927	0.002237030	<u>C)</u>
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression: Multiple R R Square Standard Error Observations	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986	5tandard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461	0.000344074	0.002237030	0.005333927	0.002237030	<u>C)</u>
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression: Multiple R R Square Adjusted R Square Standard Error	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439	Standard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461 0.036976585			0.005333927	0.002237030	<u>C)</u>
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression: Multiple R R Square Standard Error Observations	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5 df	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439	Standard Residuals	F	Significance F	0.005333927	0.002237030	<u>C)</u>
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression: Multiple R R Square Standard Error Observations	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439	Standard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461 0.036976585			0.005333927	0.002237030	<u>C)</u>
RESIDUAL OUTPUT Observation 1 2 3 4 55 SUMMARY OUTPUT Regression: Multiple R R Square Adjusted R Square Standard Error Observations ANOVA	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5 df	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439	Standard Residuals	F	Significance F	0.005333927	0.002237030	<u>C)</u>
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.990458209 0.004533851 5 df 1	Residuals 0.013972362 -0.016058914 -0.00379872 0.005471986 0.000412439	Standard Residuals	F	Significance F	0.005333927	0.002237030	<u>C)</u>
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Multiple R Regression Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression	Predicted Y 0.077429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980453851 5 df 1 3	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439	Standard Residuals	F	Significance F	0.005333927	0.002237030	<u>C)</u>
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.990458209 0.004533851 5 df 1 3 4	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439 SS 0.004145891 6.16674E-05 0.004207559	Standard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461 0.036976585 MS 0.004145891 2.05558E-05	F 201.6895332	Significance F 0.000756393			<u>C)</u>
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression : Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Regression Residual Total	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5 df 1 3 4 Coefficients	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439 SS 0.004145891 6.16674E-05 0.004207559	Standard Residuals 1.252670503 -1.439737176 -0.340/92373 0.490582461 0.036976585 MS 0.004145891 2.05558E-05	F 201.6895332 P-value	Significance F 0.000756393 Lower 95%	Upper 95%	Lower 95.0%	<u>C)</u>
RESIDUAL OUTPUT Observation 1 2 3 4 55 SUMMARY OUTPUT Regression : Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5 df 1 3 4 Coefficients 0.042961031	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439 SS 0.004145891 6.16674E-05 0.004207559 Standard Error 0.003813066	Standard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461 0.036976585 MS 0.004145891 2.05558E-05 t Stat 11.2667938	F 201.6895332 P-value 0.0014993	Significance F 0.000756393 Lower 95% 0.030826152	Upper 95% 0.055095909	Lower 95.0% 0.030826152	Upper 95.0% 0.055095905
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression : Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Regression Residual Total	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5 df 1 3 4 Coefficients	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439 SS 0.004145891 6.16674E-05 0.004207559	Standard Residuals 1.252670503 -1.439737176 -0.340/92373 0.490582461 0.036976585 MS 0.004145891 2.05558E-05	F 201.6895332 P-value	Significance F 0.000756393 Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0% 0.055095905
RESIDUAL OUTPUT Observation 1 2 3 4 55 SUMMARY OUTPUT Regression : Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5 df 1 3 4 Coefficients 0.042961031	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439 SS 0.004145891 6.16674E-05 0.004207559 Standard Error 0.003813066	Standard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461 0.036976585 MS 0.004145891 2.05558E-05 t Stat 11.2667938	F 201.6895332 P-value 0.0014993	Significance F 0.000756393 Lower 95% 0.030826152	Upper 95% 0.055095909	Lower 95.0% 0.030826152	Upper 95.0% 0.055095905
RESIDUAL OUTPUT Observation 1 2 3 4 55 SUMMARY OUTPUT Regression : Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5 df 1 3 4 Coefficients 0.042961031	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439 SS 0.004145891 6.16674E-05 0.004207559 Standard Error 0.003813066	Standard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461 0.036976585 MS 0.004145891 2.05558E-05 t Stat 11.2667938	F 201.6895332 P-value 0.0014993	Significance F 0.000756393 Lower 95% 0.030826152	Upper 95% 0.055095909	Lower 95.0% 0.030826152	Upper 95.0% 0.055095905
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression : Multiple R R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5 df 1 3 4 Coefficients 0.042961031	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439 SS 0.004145891 6.16674E-05 0.004207559 Standard Error 0.003813066	Standard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461 0.036976585 MS 0.004145891 2.05558E-05 t Stat 11.2667938	F 201.6895332 P-value 0.0014993	Significance F 0.000756393 Lower 95% 0.030826152	Upper 95% 0.055095909	Lower 95.0% 0.030826152	Upper 95.0% 0.055095905
RESIDUAL OUTPUT Observation 1 2 3 4 55 SUMMARY OUTPUT Regression : Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5 df 1 3 4 Coefficients 0.042961031	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439 SS 0.004145891 6.16674E-05 0.004207559 Standard Error 0.003813066	Standard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461 0.036976585 MS 0.004145891 2.05558E-05 t Stat 11.2667938	F 201.6895332 P-value 0.0014993	Significance F 0.000756393 Lower 95% 0.030826152	Upper 95% 0.055095909	Lower 95.0% 0.030826152	Upper 95.0% 0.055095905
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression : Multiple R R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5 df 1 3 4 Coefficients 0.042961031	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439 SS 0.004145891 6.16674E-05 0.004207559 Standard Error 0.003813066	Standard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461 0.036976585 MS 0.004145891 2.05558E-05 t Stat 11.2667938	F 201.6895332 P-value 0.0014993	Significance F 0.000756393 Lower 95% 0.030826152	Upper 95% 0.055095909	Lower 95.0% 0.030826152	Upper 95.0% 0.055095905
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression 3 Multiple R RSquare Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5 df 1 3 4 Coefficients 0.042961031 0.000881953	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439 55 0.004145891 6.16674E-05 0.004207559 Standard Error 0.003813066 6.21017E-05	MS 0.004145891 2.05558E-05 t Stat 11.2667938 14.20174402	F 201.6895332 P-value 0.0014993	Significance F 0.000756393 Lower 95% 0.030826152	Upper 95% 0.055095909	Lower 95.0% 0.030826152	Upper 95.0% 0.055095905
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.990458209 0.004533851 5 df 1 3 4 Coefficients 0.042961031 0.000881953	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439 55 0.004145891 6.16674E-05 0.004207559 Standard Error 0.003813066 6.21017E-05	Standard Residuals 1.252670503 -1.439737176 -0.340/92373 0.490582461 0.036976585 MS 0.004145891 2.05558E-05 t Stat 11.2667938 14.20174402 Standard Residuals	F 201.6895332 P-value 0.0014993	Significance F 0.000756393 Lower 95% 0.030826152	Upper 95% 0.055095909	Lower 95.0% 0.030826152	Upper 95.0% 0.055095905
RESIDUAL OUTPUT Observation 1 2 3 4 55 SUMMARY OUTPUT Regression: Multiple R R Square Adjusted R Square Standard Error Observations ANOVA ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation 1	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5 df 1 3 4 Coefficients 0.042961031 0.000881953 Predicted Y 0.051780559	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439 SS 0.004145891 6.16674E-05 0.004207559 Standard Error 0.003813066 6.21017E-05	MS 0.004145891 2.05558E-05 t Standard Residuals 1.252670503 -1.439737176 -0.340492373 0.490582461 0.036976585 MS 0.004145891 2.05558E-05 t Stat 11.2667938 14.20174402	F 201.6895332 P-value 0.0014993	Significance F 0.000756393 Lower 95% 0.030826152	Upper 95% 0.055095909	Lower 95.0% 0.030826152	Upper 95.0% 0.055095905
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression: Multiple R RSquare Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation 1 2	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5 df 1 3 4 Coefficients 0.042961031 0.000881953 Predicted Y 0.051780559 0.065009851	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439 55 0.004145891 6.16674E-05 0.004207559 Standard Error 0.003813066 6.21017E-05 Residuals -0.005252695 0.003704198	MS 0.004145891 2.05558E-05 1.12667938 1.20174402 Standard Residuals -1.3377778613 0.94370503	F 201.6895332 P-value 0.0014993	Significance F 0.000756393 Lower 95% 0.030826152	Upper 95% 0.055095909	Lower 95.0% 0.030826152	<u>C)</u>
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 3	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5 df 1 3 4 Coefficients 0.042961031 0.000881953 Predicted Y 0.051780559 0.06509851 0.087058671	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439 SS 0.004145891 6.16674E-05 0.004207559 Standard Error 0.003813066 6.21017E-05 Residuals -0.005252695 0.003704198 0.003704198	MS 0.004145891 2.05558E-05 1.1.267938 1.1.267938 1.1.267938 1.1.267938 1.1.267938 1.1.267938 1.1.20174402	F 201.6895332 P-value 0.0014993	Significance F 0.000756393 Lower 95% 0.030826152	Upper 95% 0.055095909	Lower 95.0% 0.030826152	Upper 95.0% 0.055095905
RESIDUAL OUTPUT Observation 1 2 3 4 55 SUMMARY OUTPUT Regression : Multiple R RSquare Adjusted R Square Standard Error Observations ANOVA Regression : Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 4	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5 df 1 3 4 Coefficients 0.042961031 0.000881953 Predicted Y 0.051780559 0.065009851 0.087058671 0.109107492	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439 SS 0.004145891 6.16674E-05 0.004207559 Standard Error 0.003813066 6.21017E-05 Residuals -0.005252695 0.003704198 0.003565532 0.000666042	MS 0.004145891 2.05558E-05 1.337778613 0.943400882 0.169630515	F 201.6895332 P-value 0.0014993	Significance F 0.000756393 Lower 95% 0.030826152	Upper 95% 0.055095909	Lower 95.0% 0.030826152	Upper 95.0% 0.055095905
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 3	Predicted Y 0.072429385 0.114406752 0.184369029 0.254331306 0.324293583 Statistics 0.992644779 0.985343657 0.980458209 0.004533851 5 df 1 3 4 Coefficients 0.042961031 0.000881953 Predicted Y 0.051780559 0.06509851 0.087058671	Residuals 0.013972362 -0.016058914 -0.003797872 0.005471986 0.000412439 SS 0.004145891 6.16674E-05 0.004207559 Standard Error 0.003813066 6.21017E-05 Residuals -0.005252695 0.003704198 0.003704198	MS 0.004145891 2.05558E-05 1.1.267938 1.1.267938 1.1.267938 1.1.267938 1.1.267938 1.1.267938 1.1.20174402	F 201.6895332 P-value 0.0014993	Significance F 0.000756393 Lower 95% 0.030826152	Upper 95% 0.055095909	Lower 95.0% 0.030826152	Upper 95.0% 0.055095905

Table A- 7 The single factor Anova test of acetaminophen spiked at different concentrations $(10, 25, 50, 75\ 100\ ng/L)$ in MP A. The test was used to establish absolute standard deviation (total), between-day and within-day variance of each concentration.

Anova: Single Factor					10 ng/L spiked in MP A	
Ų.						
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	10	0.663247786	0.066324779	0.000100021		
DAY 2	10	0.804894865	0.080489487	5.98474E-05		
DAY3	10	0.54665484	0.054665484	4.38537E-05		
ANOVA	SS	al E	MS	F	P-value	F crit
Source of Variation Between Groups	0.003344857	df 2	0.001672429	24.62806338	8.17903E-07	3.35413082
Within Groups	0.003344857	27	6.79074E-05	24.62806338	8.17903E-07	3.35413082
within Groups	0.001833301	27	6.79074E-03			
Total	0.005178358	29				
Anova: Single Factor					25 ng/L spiked in MP A	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	0.252901	0.084300	0.000017		
DAY 2	3	0.338879	0.112960	0.000063		
DAY3	3	0.259944	0.086648	0.000298		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.001519168	2	0.000759584	6.018939431	0.036804198	5.1432528
Within Groups	0.000757194	6	0.000126199			
Total	0.002276362	8				
Anova: Single Factor	0.002270302	U			50 ng/L spiked in MP A	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1 DAY2	10 10	1.003689025 1.47086749	0.100368903	0.000110086 5.63779E-05		
			0.147086749			
DAY 3	10	1.105791516	0.110579152	0.00021133		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.01206537	2	0.006032685	47.90456282	1.31461E-09	3.35413082
Within Groups	0.003400146	27	0.000125931			
Total	0.015465516	29				
	0.015465516	29			75 n a /L anilso d in NAD A	
Anova: Single Factor					75 ng/L spiked in MP A	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	0.3769026	0.1256342	0.0000166		
DAY 2	3	0.5106465	0.1702155	0.0000930		
DAY3	3	0.3826340	0.1275447	0.0001886		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.00381	2	0.001905973	19.17061347	0.002477597	5.1432528
Within Groups	0.00060	6	9.94216E-05			
Total	0.00441	8				
Anova: Single Factor	0.00442	<u> </u>			100 ng/L spiked in MP A	\
Allova. Single Factor					100 ng/E spined iii ivii 7	`
SUMMARY	Count	C	A	Manian		
Groups	Count	Sum 1.554200	Average	Variance		
DAY1	10	1.664300	0.166430	0.000119		
DAY 2 DAY 3	10 10	2.225315 1.794875	0.222531 0.179487	0.000164 0.000248		
	10	2.754075	5.27.5467	0.000240		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.017	2	0.0086	48.72023907	1.10009E-09	3.35413082
Within Groups	0.005	27	0.0002			
Total	0.022	29				

Table A- 8 The single factor Anova test of acetaminophen spiked at different concentrations (10, 25, 50, 75 100 ng/L) in filtrated water sample from the Sognsvann creek. The test was used to establish absolute standard deviation (*total*), between-day and within-day variance of each concentration.

Anova: Single Factor				10 ng/L spiked in filtrat	ed water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	0.40	0.07	0.000142786		
DAY 2	6	0.57	0.09	0.000152129		
DAY3	6	0.59	0.10	0.000402806		
DATS	0	0.33	0.10	0.000402000		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.004	2	0.001808457	7.775851578	0.004818576	3.682320344
Within Groups	0.003	15	0.000232574			
Total	0.007	17				
Anova: Single Factor				25 ng/L spiked in filtrat	ed water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	0.286164261	0.095388087	7.64625E-05		
DAY 2	3	0.41729977	0.139099923	1.28231E-05		
DAY3	3	0.476710013	0.158903338	0.0002349		
DATS	3	0.476710013	0.136903336	0.0002549		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.006337087	2	0.003168543	29.32152549	0.000799628	5.14325285
Within Groups	0.000648372	6	0.000108062			
Total	0.006985459	8				
Anova: Single Factor				50 ng/L spiked in filtrat	ed water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY 1	6	0.820763388	0.136793898	0.000259879		
DAY 2	6	1.02259527	0.170432545	0.00095803		
DAY3	6	1.406922158	0.234487026	0.000245756		
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
		2			5.40224E-06	3.682320344
Between Groups Within Groups	0.029556965 0.007318331	15	0.014778482 0.000487889	30.29068371	5.4U224E-U6	3.682320344
within Groups	0.007318331	15	0.000487883			
Total	0.036875296	17		75 // !! d ! £!!e		
Anova: Single Factor				75 ng/L spiked in filtra	ed water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	0.58070212	0.193567373	0.000467325		
DAY 2	3	0.728116826	0.242705609	0.000287019		
DAY3	3	1.029410681	0.343136894	0.000306467		
44101/4						
ANOVA				-		
Source of Variation	SS	df	MS	F	P-value	Fcrit
Between Groups Within Groups	0.034872051 0.002121622	2	0.017436025 0.000353604		0.000188635	5.1432528
Total	0.036993673	8				
Anova: Single Factor				100 ng/L spiked in filtra	ted water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	1.660536903	0.27675615			
DAY 2	6	1.831821714	0.305303619	0.001705782		
DAY3	6	2.352349782	0.392058297	0.000928823		
ANOVA						
ANOVA	CC	JE .	AAC .	-	D. varlet	C
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.043271834	2	0.021635917		9.07084E-05	3.682320344
Within Groups	0.017595632	15	0.001173042			
Within Groups						

Table A- 9 The single factor Anova test of acetaminophen spiked at different concentrations (10, 25, 50, 75 100 ng/L) in non-filtrated water sample from the Sognsvann creek. The test was used to calculate absolute standard deviation (*total*), between-day and within-day variance of each concentration.

Anova: Single Factor				10 ng/L spiked in non-	filtrated water sample	
CLINANAADV						
SUMMARY	Count	Comm	A	Variance		
Groups DAY 1	Count 6	Sum 0.216633699	Average 0.036105617	8.23754E-06		
DAY 2	6	0.360224747	0.060037458	0.000162706		
DAY3	6	0.260643109	0.043440518	6.22105E-05		
DATS	6	0.260643109	0.043440318	6.22103E-03		
ANOVA						
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.001803984	2	0.000901992	11.60594833	0.000899902	3.682320344
Within Groups	0.001165771	15	7.77181E-05	11.0033-033	0.000055502	5.002520544
Within Groups	0.002203772		7.772022 00			
Total	0.002969756	17				
Anova: Single Factor				25 ng/L spiked in non-	filtrated water sample	2
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	0.18089158	0.060297193	1.03701E-05		
DAY 2	3	0.238874896	0.079624965			
DAY3	3	0.198659966	0.066219989	5.54236E-05		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.000588336	2	0.000294168			5.14325285
Within Groups	0.000177849	6	2.96414E-05	3.32-723202	0.02230033	J.1-1515103
·						
Total	0.000766184	8				
Anova: Single Factor				10 ng/L spiked in non-	filtrated water sample	2
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	0.504513817	0.084085636	1.53198E-05		
DAY 2	6	0.605448059	0.10090801	0.000144126		
DAY3	6	0.521273792	0.086878965	9.68769E-05		
ANOVA	cc	df	AAC	F	Duglio	Carit
Source of Variation	SS 0.000075340	df 2	MS		P-value	F crit
Between Groups Within Groups	0.000975218 0.001281612	15	0.000487609 8.54408E-05	5.7069809	0.014352675	3.682320344
within Groups	0.001281012	13	8.344081-03			
Total	0.00225683	17				
Anova: Single Factor				75 ng/L spiked in non-	filtrated water sample	2
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	0.294995819	0.09833194			
DAY 2	3	0.374268828	0.124756276			
DAY3	3	0.318697161	0.106232387	8.4051E-05		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.001103797	2	0.000551899	3.886946991	0.082657743	5.14325285
Within Groups	0.000851926	6	0.000141988			
Total Anova: Single Factor	0.001955723	8		100 ng/L snikad in nor	n-filtrated water samp	lo.
Anova: Single Factor				100 ng/L spiked in nor	i-mtrated water samp	ie
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	0.700245646	0.116707608	0.000155763		
DAY 2	6	0.830348109	0.138391352	0.000465855		
DAY3	6	0.781924462	0.130320744	0.000123772		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.001441274	2	0.000720637	· ·		3.682320344
Within Groups	0.00372695	15	0.000720037		5.530117005	5.552520544
Total	0.005168224	17				
10.01	0.003100224	1/				

7.7.2 Atenolol (AT)

75

100

4.63

6.40

The calculated mean, SD and RSD for atenolol spiked in MP A, filtrated and non-filtrated water sample from the Sognsvann creek are shown in **Table 10**. The regression analyses of atenolol in the matrices are shown in **Table 11**. The single factor Anova tests of the API in MP A, filtrated and non-filtrated water sample are shown in **Table A-12**, **A-13**, **and A-14**, respectively.

Table A- 10 The concentrations of atenolol (AT) spiked in MP A (i), filtrated (ii) and no-filtrated (iii). The ratios between the peak area (A) of AT and peak area of the IS (AT-IS) (atenolol-d7) was calculated for all replicates in a single day. The average (the mean) of the average calculated for each day was calculated. The corresponding SD and RSD of the mean were calculated. The cLOD and cLOQ were calculated for the lowest concentration.

Concentration (ng/L)	Mean A AT/ A AT-IS	SD	RSD %	cLOD (ng/L)	cLOQ (ng/L)		
10	0.60	0.11	18	11		32	
25	1.45	0.24	17				
50	2.38	0.39	16				
75	3.75	0.46	12				
100	4.50	0.56	13				i)
, . ,	Mean A AT/ A AT-IS 0.88	SD 0.0	RSD %	cLOD (ng/L)	cLOQ (ng/L)	19	
10	0.88	0.0	5	5	6	19	
25	1.69	0.2	3	17			
50	3.26	0.2	3	7			
75	4.57	0.6	3	14			
100	6.44	0.7	3	12			ii
			1			-	
Concentration (ng/L)	Mean A AT/ A AT-IS	SD	RSD %	cLOD (ng/L)	cLOQ (ng/L)		
10	0.52	0.0	2	4	5	16	
25	1.32	0.1	9	14			
50	3.23	0.2	2	7			

0.69

0.94

15

15

iii)

Table A- 11 The regression analysis for atenolol spiked in MP A (A), filtrated (B) and no-filtrated (C) water sample from the Sognsvann creek. The *standard error* and the *coefficient of X variable 1* (slope of the curve) were used in calculations of cLOD and cLOQ. The units in all cases are ng/L and the confidence level was 95 %.

SUMMARY OUTPUT								1
SUMMARY OUTPUT								
Regression Sta	tistics							\mathbf{A})
Multiple R	0.995944811							
R Square	0.991906067							
Adjusted R Square	0.989208089							
Standard Error	0.166656204							
Observations	5							
ANOVA								
ANOVA	df	SS	MS	F	Significance F			
Regression	1	10.21116188	10.21116188	367.6479842	0.000309803			
Residual	3	0.083322871	0.02777429					
Total	4	10.29448475						
Intercept	Coefficients 0.259872045	0.140161442	t Stat 1.854090836	P-value 0.160770079	Lower 95% -0.186184218	Upper 95% 0.705928308	Lower 95.0% -0.186184218	Upper 95.0% 0.705928308
X Variable 1	0.043769741	0.002282748	19.17414885	0.000309803	0.036505019	0.051034462	0.036505019	0.051034462
DESIDUAL OLITOLIT								
RESIDUAL OUTPUT								
Observation	Predicted Y	Residuals S	tandard Residuals					
1	0.697569454	-0.098975297	-0.685764019					
2	1.354115568	0.097932066	0.678535854					
3	2.448359092	-0.070607414	-0.489213223					
4	3.542602615	0.203729697 -0.132079052	1.411569352					
5	4.636846139	-0.1320/9052	-0.915127964					
SUMMARY OUTPUT								
SUMMARYOUTPUT								
Regression Sto	atistics							B)
Multiple R	0.998514623							_ <u>~_</u>
R Square	0.997031453							
Adjusted R Square	0.996041937							
Standard Error	0.140578731							
Observations	5							
ANOVA	df	SS	MS	F	Cianifican en C			
Regression	<i>aj</i>			1007.595435	Significance F 6.87056E-05			
Residual	3		0.01976238	20071000400	5.57 0502-05			
Total	4							
laka asawa:	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.195572514		1.654173767	0.196665178				0.571832274
X Variable 1	0.061122219	0.001925555	31.74264379	6.87056E-05	0.054994242	0.067250195	0.054994242	0.067250195
RESIDUAL OUTPUT								
Observation	Predicted Y	Residuals	Standard Residuals					
1								
2			-0.265829903					
3			0.046231454					
4	4.779738909	-0.184490414	-1.515386996					
5	6.307794374	0.136135449	1.118203834					
SUMMARY OUTPUT								
								\boldsymbol{C}
Regression Sto								C)
Multiple R	0.999021595							
R Square	0.998044148							
Adjusted R Square Standard Error	0.997392197							
Observations	0.122220/16							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1		22.86781396	1530.858324	3.67323E-05			
Residual	3		0.014937904					
Total	4	22.91262767						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-0.180718818		-1.758132007	0.176968462	-0.507843249	0.146405614	-0.507843249	0.146405614
X Variable 1	0.065501119		39.12618463	3.67323E-05	0.060173388	0.07082885	0.060173388	0.07082885
DESIDUAL OUTDUT								
RESIDUAL OUTPUT								
Observation	Predicted Y	Residuals	Standard Residuals					
1	0.474292374		0.476111487					
			-1.09989778					
2	1.456809162	-0.11042003	-1.05505770					
2 3	3.094337142	0.133584428	1.262061096					
2		0.133584428 -0.099329314						

Table A- 12 The single factor Anova test of atenolol spiked at different concentrations (10, 25, 50, 75, 100 ng/L) in MP A. The test was used to establish the absolute standard deviation (total), between-day and within-day variance of each concentration.

Anova: Single Factor					10 ng/L spiked in MP	4
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY 1 DAY 2	10	6.136197392	0.613619739	0.002854244		
	10	6.366538566	0.636653857	0.002144377		
DAY3	10	5.455088771	0.545508877	0.002045366		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.044923558	2	0.022461779	9.56636302	0.000723249	3.354130829
Within Groups	0.063395883	27	0.002347996	3.30030302	0.000723243	3.33413002.
within Groups	0.003333883	27	0.002347330			
Total	0.108319441	29				
Anova: Single Factor	0.200020				25 ng/L spiked in MP A	4
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	4.706101186	1.568700395	0.037828708		
DAY 2	3	4.317405369	1.439135123	0.009878319		
DAY3	3	4.044922159	1.348307386	0.03753996		
en i s	3	7.074322133	1.34030/300	0.0373335		
ANOVA						
Source of Variation	22	df	MS	F	P-value	E crit
Between Groups	SS 0.073609916	df 2	<i>MS</i> 0.036804958	1.295234915	0.340724216	F crit 5.14325285
Within Groups	0.170493974	6	0.028415662	1.295254915	0.340/24216	5.14325263
Tatal	0.24410290					
Total Anova: Single Factor	0.24410389	8			50 ng/L spiked in MP A	4
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	10	24.15922624	2.415922624	0.020947969		
DAY2 DAY3	10 10	23.69287022 23.48045389	2.369287022 2.348045389	0.009228527 0.01045201		
DATS	10	25.46045569	2.346045369	0.01045201		
ANOVA						
		de .	MAC	F	P-value	Carit
Source of Variation Between Groups	SS 0.024111351	df 2	<i>MS</i> 0.012055676	0.890188447	0.422287647	F crit 3.354130829
Within Groups	0.365656559	27	0.013542836	0.830188447	0.422287047	3.334130023
within Groups	0.303030333	27	0.013342030			
Total	0.389767911	29				
Anova: Single Factor					100 ng/L spiked in MP	A
C111 41 41 51						
SUMMARY	0			Mandana		
Groups	Count	Sum	Average	Variance		
DAY1	10	45.9062564	4.59062564	0.017202933		
DAY2	10	44.44197885	4.444197885	0.010156259		
DAY3	10	44.79477734	4.479477734	0.02238975		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.116798708	2	0.058399354	3.521643964	0.043750759	3.354130829
Within Groups	0.447740479	27	0.016582981			
Total	0.564539187	29				
Anova: Single Factor	0.304333107	23			100 ng/L spiked in MP	Δ
Anova: Single Factor					100 ng/L spiked in Wi	^
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	10	45.9062564	4.59062564	0.017202933		
DAY 2	10	44.44197885	4.444197885	0.010156259		
DAY3	10	44.79477734	4.479477734	0.02238975		
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
	33					
	0.116700700					
Between Groups	0.116798708	2	0.058399354	3.521643964	0.043750759	3.354130829
	0.116798708 0.447740479	27	0.058399354	3.521643964	0.043750759	3.35413082

Table A- 13 The single factor Anova test of atenolol spiked at different concentrations (10, 25, 50, 75, 100 ng/L) in filtrated water sample form the Sognsvann creek. The test was used to establish the absolute standard deviation (*total*), between-day and within-day variance of each concentration.

Note	Anova: Single Factor			1	0 ng/L spiked in filtr	ated water sample	
Groups					<u>. </u>	·	
DAY1 6 S. 517741699 0. 086905420 0.0003453004 DAY2 6 S. 33277275 0. 0887454808 0.000312173 DAY3 6 S. 33277275 0.0887454808 0.000312173 DAY3 6 S. 33277275 0.0887454808 0.000312173 DAY3 6 S. 3351954529 0.881992421 0.002245968 AROVA							
DAY2 6 6 5.33472756 0.881992421 0.00212372							
ANOVA ANOVA Source of Variation SS of MS F P-value Fere Between Groups 0.00456351 15 0.002970901 75 rogus Average Variance SUMMARY Groups 0.0485742 17 Average Variance Average Variance 1.5967738 0.06683742 17 Average Variance Average Variance Average Variance 1.5967738 0.06683742 17 Average Variance Average Variance Average Variance Average Variance Average Variance Average Variance 1.6913132248 0.006804562 AVerage Variance							
Source of Variation SS of							
Source of Variation SS	DAY 3	6	5.351954529	0.891992421	0.002245968		
Source of Variation SS df MS F P-value F-rit	ANOVA						
Between Groups		SS	df	MS	F	P-value	F crit
Within Groups		0.002273911		0.001136955	0.382697186		3.682320344
Anova: Single Factor Sum				0.002970901			
SUMMARY Sum	Total	0.04683742	17				
Average	Anova: Single Factor			2	5 ng/L spiked in filtr	ated water sample	
Average							
DAY1							
DAY2							
DAY 3							
ANOVA Source of Variation SS df MS F P-value F-crit Entween Groups 0.148096727 2 0.067248364 2.703533791 0.145523023 5.14325 Within Groups 0.283742201 8 S Total Anova: Single Factor SUMMARY Groups Count Sum Average Variance DAY1 Anova: Single Factor SUMMARY Groups Count SS MS Setween Groups 0.01540704 10.68962206 3.281603677 0.0028801388 0.01639442 0.002369717 ANOVA Source of Variation SS MS Setween Groups Count SS MS Average Variance 0.002369717 ANOVA Source of Variation SS MS Setween Groups Count SS MS Average Variance 0.01540704 2 0.005770352 0.404364269 0.674461833 3.682320 Within Groups Count SS MS Average Variance Variance Nova: Single Factor SUMMARY Groups Count SS MS Average Variance Average Variance Variance DAY1 3 11.01351315 4.33784783 0.074373957 DAY2 3 11.97667287 4.65889050 0.04643913313 DAY3 3 14.12875316 4.709584386 0.07568249 ANOVA ANOVA SS Source of Variation SS Mf Average Variance DAY1 3 11.01351315 4.33784783 0.074373957 DAY3 3 14.12875316 4.709584386 0.07568249 ANOVA SS Source of Variation SS MF Average Variance DAY1 6 38.1073013 6.351221688 0.03750416 0.06352986 ANOVA SS Source of Variation SS MS ANOVA SS SOurce of Variation SS Af MS SF P-value F-crit P-v							
Source of Variation SS	DAY3	3	5.591664967	1.863888322	0.006804562		
Source of Variation SS	ANOVA						
Setween Groups		22	df	MS	E	P-value	F crit
Mithin Groups							
Summary Summ					2.703533791	0.145523023	5.14325285
SUMMARY	Total	0.283742201	8				
Groups	Anova: Single Factor			5	0 ng/L spiked in filtr	ated water sample	
DAY1 6 19.33428582 3.2238097 0.028801388 DAY2 6 19.607070598 3.267959996 0.011639442 DAY3 6 19.6896206 3.281603677 0.002369717 ANOVA Source of Variation SS df MS F P-value F-crit Within Groups 0.214052737 15 0.014270182 Total 0.225593441 17 Anova: Single Factor SUMMARY Groups Count Sum Average Variance Between Groups 0.31540704 3 13.01353135 4.337843783 0.074373957 0.040538133 0.07568249 ANOVA Source of Variation SS df MS F P-value F-crit Setween Groups 0.24832186 2 0.121916093 1.919036073 0.226842143 5.14325 0.006352986 Within Groups 0.38117916 6 0.06352986 Total 0.625011346 8 100 0.625	SUMMARY						
DAY1 6 19.83428582 3.2238077 0.028801388 DAY2 6 19.68962206 3.281603677 0.002369717 ANOVA ANOVA ANOVA ANOVA ANOVA ANOVA Source of Variation SS	Groups	Count	Sum	Average	Variance		
DAY3 6 19.68962206 3.281603677 0.002369717 ANOVA Image: Control of Control o							
ANOVA Source of Variation SS df MS F P-value Fcrit Between Groups 0.011540704 2 0.005770352 0.404364269 0.674461833 3.682320 Within Groups 0.214052737 15 0.014270182 Total 0.225593441 17 Anova: Single Factor SUMMARY Groups Count Sum Average Variance Variance Variance Variance Variance Variance Variance Variance 0.075768249 ANOVA Source of Variation SS df MS F P-value Fcrit Fcrit Anova: Single Factor SSUMMARY Anova: Single Factor SSUMMARY ANOVA Source of Variation SS df MS F P-value Fcrit 100 ng/L spiked in filtrated water sample ANOVA Source of Variation SS Anova: Single Factor SUMMARY Total 0.625011346 8 Anova: Single Factor SUMMARY Anova: Single Factor SUMMARY Anova: Single Factor ANOVA Source of Variation SS Anova: Single Factor ANOVA Source of Variation SS Anova: Single Factor ANOVA Source of Variation SS Anova: Single Factor SUMMARY Anova: Single Factor ANOVA Source of Variation SS ANOVA ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA Source of Variation SS ANOVA SOURCE ANOVA SOUR	DAY 2	6	19.60770598	3.267950996	0.011639442		
Source of Variation SS	DAY3	6	19.68962206	3.281603677	0.002369717		
Source of Variation SS df MS F P-value F-crit							
Detween Groups 0.011540704 2 0.005770352 0.404364269 0.674461833 3.682320		cc	46	AAC	-	D. valva	C a with
Within Groups 0.214052737 15							
Anova: Single Factor SUMMARY Groups Count Sum Average Variance DAY 1 3 13.01353135 A.337843783 0.074373957 0.040533133 DAY 2 3 13.97667287 A.658890955 0.040533133 DAY 3 3 14.12875316 A.709584386 0.07568249 ANOVA Source of Variation SS df MS F P-value Fcrit 100 ng/L spiked in filtrated water sample					0.404364269	0.674461633	3.062320344
Anova: Single Factor SUMMARY Groups Count Sum Average Variance DAY 1 3 13.01353135 A.337843783 0.074373957 0.040533133 DAY 2 3 13.97667287 A.658890955 0.040533133 DAY 3 3 14.12875316 A.709584386 0.07568249 ANOVA Source of Variation SS df MS F P-value Fcrit 100 ng/L spiked in filtrated water sample							
SUMMARY Sum		0.225593441	17	7	Eng/Lenikod in filer	atod water cample	
Average	Allova. Siligie Factor			,	5 lig/E spiked iii iiiti	ated water sample	
DAY 1 3 13.01353135 4.337843783 0.074373957 DAY 2 3 13.97667287 4.658890955 0.040533133 DAY 3 3 14.12875316 4.709584386 0.07568249 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 0.243832186 2 0.121916093 1.919036073 0.226842143 5.14325 Within Groups 0.38117916 6 0.06352986 Total 0.625011346 8	SUMMARY						
DAY 2 3 13.97667287 4.658890955 0.040533133 DAY 3 3 14.12875316 4.709584386 0.07568249 ANOVA ANOVA Source of Variation SS df MS F P-value F-crit Between Groups 0.243832186 2 0.121916093 1.919036073 0.226842143 5.14325 Within Groups 0.38117916 6 0.06352986 Total 0.625011346 8 Anova: Single Factor SUMMARY Groups Count Sum Average Variance DAY 1 6 38.10733013 6.351221688 0.03750416 DAY 2 6 38.8108667 6.468477783 0.030155765 DAY 3 6 39.07253999 6.512089999 0.071749451 ANOVA Source of Variation SS df MS F P-value F-crit Between Groups 0.083059262 2 0.041529631 0.893690912 0.429845297 3.682320 Within Groups 0.697046881 15 0.046469792	Groups	Count	Sum	Average	Variance		
DAY3 3 14.12875316 4.709584386 0.07568249 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 0.243832186 2 0.121916093 1.919036073 0.226842143 5.14325 Within Groups 0.38117916 6 0.06352986 Total 0.625011346 8	DAY 1	3	13.01353135	4.337843783	0.074373957		
ANOVA Source of Variation SS df MS F P-value Fcrit Between Groups 0.243832186 2 0.121916093 1.919036073 0.226842143 5.14325 Within Groups 0.38117916 6 0.06352986 Total Anova: Single Factor 100 ng/L spiked in filtrated water sample SUMMARY Groups Count Sum Average Variance DAY1 6 38.10733013 6.351221688 0.03750416 DAY2 6 38.8108667 6.468477783 0.030155765 DAY3 6 39.07253999 6.512089999 0.071749451 ANOVA Source of Variation SS df MS F P-value Fcrit Between Groups 0.083059262 2 0.041529631 0.893690912 0.429845297 3.682320 Within Groups 0.697046881 15 0.046469792	DAY 2	3	13.97667287	4.658890955	0.040533133		
Source of Variation SS df MS F P-value F crit	DAY3	3	14.12875316	4.709584386	0.07568249		
Source of Variation SS df MS F P-value F crit							
Between Groups 0.243832186 2 0.121916093 1.919036073 0.226842143 5.14325							
Within Groups 0.38117916 6 0.06352986 Image: Context of the conte							
Anova: Single Factor SUMMARY Groups Count Sum Average Variance DAY 1 6 38.10733013 6.351221688 0.03750416 DAY 2 6 38.8108667 6.468477783 0.030155765 DAY 3 6 39.07253999 6.512089999 0.071749451 ANOVA Source of Variation SS df MS F P-value F crit Setween Groups 0.083059262 2 0.041529631 0.893690912 0.429845297 3.682320 Within Groups 0.697046881 15 0.046469792					1.919036073	0.226842143	5.14325285
Anova: Single Factor SUMMARY Groups Count Sum Average Variance DAY 1 6 38.10733013 6.351221688 0.03750416 DAY 2 6 38.8108667 6.468477783 0.030155765 DAY 3 6 39.07253999 6.512089999 0.071749451 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 0.083059262 2 0.041529631 0.893690912 0.429845297 3.682320 Within Groups 0.697046881 15 0.046469792	Total	0.625011246	0				
SUMMARY Groups Count Sum Average Variance 0.03750416 DAY 1 6 38.10733013 6.351221688 0.030750416 DAY 2 6 38.8108667 6.468477783 0.030155765 DAY 3 6 39.07253999 6.512089999 0.071749451 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 0.083059262 2 0.041529631 0.893690912 0.429845297 3.682320 Within Groups 0.697046881 15 0.046469792		0.023011340	8	1	00 ng/l snikad in file	rated water cample	<u> </u>
Average	Allova. Single Factor				oo ng/c spikeu iii iii	rated water sample	
DAY 1 6 38.10733013 6.351221688 0.03750416 DAY 2 6 38.8108667 6.468477783 0.030155765 DAY 3 6 39.07253999 6.512089999 0.071749451 ANOVA Source of Variation SS df MS F P-value F-crit Between Groups 0.083059262 2 0.041529631 0.893690912 0.429845297 3.682320 Within Groups 0.697046881 15 0.046469792							
DAY 2 6 38.8108667 6.468477783 0.030155765 DAY 3 6 39.07253999 6.512089999 0.071749451 ANOVA Source of Variation SS df MS F P-value F-crit Between Groups 0.083059262 2 0.041529631 0.893690912 0.429845297 3.682320 Within Groups 0.697046881 15 0.046469792							
DAY 3 6 39.07253999 6.512089999 0.071749451 ANOVA Source of Variation SS df MS F P-value F-crit Between Groups 0.083059262 2 0.041529631 0.893690912 0.429845297 3.682320 Within Groups 0.697046881 15 0.046469792							
ANOVA Source of Variation SS df MS F P-value F crit Between Groups 0.083059262 2 0.041529631 0.893690912 0.429845297 3.682320 Within Groups 0.697046881 15 0.046469792							
Source of Variation SS df MS F P-value F crit Between Groups 0.083059262 2 0.041529631 0.893690912 0.429845297 3.682320 Within Groups 0.697046881 15 0.046469792 0.04646979	D.11 3	0	33.07233333	0.312003333	U.U/1/47431		
Source of Variation SS df MS F P-value F crit Between Groups 0.083059262 2 0.041529631 0.893690912 0.429845297 3.682320 Within Groups 0.697046881 15 0.046469792 0.04646979	ANOVA						
Between Groups 0.083059262 2 0.041529631 0.893690912 0.429845297 3.682320 Within Groups 0.697046881 15 0.046469792		SS	df	MS	F	P-value	F crit
Within Groups 0.697046881 15 0.046469792							3.682320344
Total 0.780106143 17	Total	0.780106143	17				

Table A- 14 The single factor Anova test of atenolol spiked at different concentrations (10, 25, 50, 75, and 100 ng/L) in non-filtrated water sample from the Sognsvann creek. The test was used to establish the absolute standard deviation (*total*), between-day and within-day variance of each concentration.

Anova: Single Factor			10	0 ng/L spiked in non	-filtrated water sar	nple
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	2.94053782	0.490089637	0.000637664		
DAY 2	6	3.299398279	0.549899713	0.000913864		
DAY3	6	3.204429679	0.534071613	0.00031152		
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
	0.011524377	2	0.005762188	9.27864363	0.002383873	3.682320344
Between Groups Within Groups	0.001324377	15	0.000621016	9.27604303	0.002585875	3.062320344
Total	0.02083962	17				
Anova: Single Factor			2	5 ng/L spiked in non	-filtrated water sar	nple
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	4.007676087	1.335892029	0.014726348		
DAY 2 DAY 3	3	4.353301026 3.547003901	1.451100342 1.182334634	0.009619842 0.014515725		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.109087835	2	0.054543917	4.210594214	0.072019582	5.14325285
Within Groups	0.077723829	6	0.012953972			
Total	0.186811664	8				
Anova: Single Factor			5	0 ng/L spiked in non	-filtrated water sar	nple
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	19.35670848	3.22611808	0.023286371		
DAY 2	6	19.35075084	3.225125141	0.013452341		
DAY3	6	19.39512895	3.232521492	0.009942548		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.000193391	2	9.66956E-05	0.006214204	0.993807621	3.682320344
Within Groups	0.233406297	15	0.01556042			
Total	0.233599688	17				
Anova: Single Factor			7:	5 ng/L spiked in non	-filtrated water sar	nple
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	13.77202696	4.590675653	0.03795758		
DAY 2	3	13.33572189	4.445240631	0.146312466		
DAY3	3	14.58507342	4.861691141	0.025574196		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups Within Groups	0.268031767 0.419688482	2 6	0.134015884 0.06994808	1.915933688	0.227271886	5.14325285
Total	0.687720249	8				
Anova: Single Factor			10	00 ng/L spiked in no	n-filtrated water sa	mple
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	38.16834686	6.361391143	0.023766124		
DAY 2	6	38.02744576	6.337907626	0.025680259		
DAY3	6	39.02514902	6.504191503	0.118813626		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.097187492	2	0.048593746	0.866404557	0.440471707	3.682320344
Within Groups	0.841300045	15	0.05608667		2	5.552525544
Total	0.938487537	17				

7.7.3 Fluoxetine (FX)

The calculated mean, SD and RSD for fluoxetine spiked in MP A, filtrated and non-filtrated water sample from the Sognsvann creek are shown in **Table A-15**. The regression analyses of fluoxetine in the matrices are shown in **Table A-16**. The single factor Anova tests of the API in MP A, filtrated and non-filtrated water sample are shown in **Table A-17**, **A-18**, **and A-19**, respectively.

Table A- 15 The concentrations (10-100 ng/L) of fluoxetine (FX) spiked in MP A (i), filtrated (ii) and no-filtrated (iii) water sample from the Sognsvann creek. The ratios between the peak area (A) of FX and peak area of the IS (FX-IS) (fluoxetine-d5 hydrochloride) was calculated for all replicates in a single day. The average (the mean) of the average calculated for each day was calculated. The corresponding SD and RSD of the mean were calculated. The cLOD and cLOQ were calculated for the lowest concentration.

)	cLOQ (ng/L)	g/L)	cLOD (ng/L)	RSD %		SD	A FX/ A FX-IS	Concentration (ng/L)
14	1	5		15	0.005	4	0.0	10
				1	0.001	0	0.0	25
				7	0.008	1	0.1	50
				0	0.001	3	0.1	75
i				8	0.016	3	0.1	100
L)	cLOQ (ng/L)) (ng/L)	cLOD (ng	RSD %			X/ A FX-IS SI	Concentration (ng/L) Me
18	6		10		0.008		0.076	10
			6		0.008		0.121	25
			8		0.019		0.224	50
			5		0.018		0.340	75
i			13		0.057		0.437	100
)	cLOQ (ng/L)	ng/L)	cLOD (ng/L	0 %	RSI	SD	FX/ A FX-IS	Concentration (ng/L)
24	3	8	3	3	001	0.	0.047	10
			1	1	001	0.	0.097	25
			9	19	042	0.	0.227	50
			1	11	037	0.	0.341	75
i			6	16	078	0.	0.489	100

Table A- 16 The regression analysis for fluoxetine spiked in MP A (A), filtrated (B) and no-filtrated (C). The *standard error* and the *coefficient of X variable 1* (slope of the curve) were used in calculations of cLOD and cLOQ. The units in all cases are ng/L and the confidence level was 95 %.

SUMMARY OUTPUT				-					. . 1
Regression S	tatistics								A)
Multiple R	0.999228309								<u> , , , , , , , , , , , , , , , , , ,</u>
R Square	0.998457213								
Adjusted R Square Standard Error	0.997942951 0.002885277								
Observations	0.002885277								
ANOVA	15						_		
Regression	df 1	SS 0.0161629	MS 0.0161	16202	F 1941.5334	gnificance 467 2.57E-05	F		
Residual	3	2.49745E-0			1941.333	467 2.37E-U3			
Total	4	0.01618789							
	Coefficients	Standard Error	t Stat		P-value		Upper 95%	Lower 95.0%	Upper 95.0%
Intercept X Variable 1	0.015578536 0.001741391	0.0024265 3.95206E-0			0.0076592 2.57305E	217 0.007856 -05 0.001616	0.023300995 0.001867163	0.007856077 0.001615619	
A Vallable 1	0.001741391	3.932002-0	44.0028	33344	2.37303L	-03 0.001010	0.001807103	0.001013019	0.001807103
DECIDIAL QUEDIT									
RESIDUAL OUTPUT									
Observation	Predicted Y	Residuals	Standard Residu						
	1 0.032992446	0.00130987							
	2 0.059113312 3 0.102648088	0.0005659 -0.00151145							
	3 0.102648088 4 0.146182864	-0.00151145 -0.00339058							
	5 0.18971764	0.00335038							
									-
SUMMARY OUTPUT									
Regression Sta									B)
Multiple R	0.998697588 0.997396872								<u>D)</u>
R Square Adjusted R Square	0.997396872								
Standard Error	0.008842957								
Observations	5								
ANOVA									
ANOVA	df	SS	MS		F	Significance	F		
Regression	1	0.089885292	0.089885292		1149.45944				
Residual	3	0.000234594	7.81979E-05						
Total	4	0.090119885					_		
	Coefficients	Standard Error	t Stat	P-	value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.026109301	0.007437116	3.510675498		0.03917882				
X Variable 1	0.004106584	0.000121125	33.90367887		5.6412E-0	0.003721	11 0.00449205	8 0.00372111	0.004492058
RESIDUAL OUTPUT									
RESIDUAL OUTPUT									
Observation	Predicted Y	Residuals St	andard Residuals						
1	0.067175141	0.008975718	1.172036329						
2	0.128773901 0.231438502	-0.007986128 -0.007247565	-1.04281705 -0.946376594						
4	0.334103102	0.006140928	0.801873552						
5	0.436767702	0.000117046	0.015283762						
SUMMARY OUTPUT									
Regression St									[(C)
Multiple R	0.997710126								H /
R Square Adjusted R Square	0.995425495 0.993900661								Н
Standard Error	0.014097001								
Observations	5								
ANOVA									
ANOVA	df	SS	MS		F	Significance F			
Regression	1	0.129729707	0.12972970	7 652	2.8087274	0.000131493			
Residual	3	0.000596176	0.00019872						
Total	4	0.130325883							
	Coefficients	Standard Error	t Stat		value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-0.016264053	0.011855881	-1.37181317		63709151	-0.053994756	0.02146665	-0.053994756	
X Variable 1	0.004933511	0.000193091	25.5501218		00131493	0.004319008	0.005548014	0.004319008	
RESIDUAL OUTPUT									
Observation	Predicted Y	Residuals	Standard Residuals						
1	0.033071058	0.013494971	1.1053875	6					
2		-0.009998466	-0.81898510						
3		-0.002992635 -0.012601226	-0.24512998 -1.03217993						
5		0.012097356	0.99090746						
		2.22203,330	2.23030,40	_					

Table A- 17 The single factor Anova test of fluoxetine spiked at different concentrations (10, 25, 50, 75, and 100 ng/L) spiked in MP A. The test was used to establish the absolute standard deviation (*total*), between-day and within-day variance of each concentration.

Anova: Single Factor					10 ng/L sp	iked in MPA
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	10	0.444964902	0.04449649	7.06234E-05	;	
DAY 2	10	0.407011327	0.040701133	3.97786E-05		
DAY3	10	0.177093426	0.017709343	7.8183E-06		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups Within Groups	0.004201928 0.001063982	2 27	0.002100964 3.94068E-05	53.31481431	4.2E-10	3.35413082
Total	0.005265911	29				
Anova: Single Factor					25 ng/L spi	ked in MPA
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	0.214316177	0.071438726	1.40642E-05		
DAY 2	3	0.168585242	0.056195081	2.33925E-05		
DAY3	3	0.154212211	0.05140407	3.94706E-05		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.00065671	2	0.000328355	12.80514236	0.006839	5.14325285
Within Groups	0.000153855	6	2.56424E-05			
Total	0.000810564	8				
Anova: Single Factor					50 ng/L spil	ked in MPA
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	10	1.118436531	0.111843653	0.000499083		
DAY 2	10	0.986425249	0.098642525	0.000106496		
DAY3	10	0.929237295	0.09292373	2.50303E-05		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.001883126	2	0.000941563	4.479300715	0.020896	3.354130829
Within Groups	0.005675486	27	0.000210203			
Total	0.007558612	29				
Anova: Single Factor					75 ng/L spil	ked in MPA
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	0.450436084	0.150145361	4.22105E-05		
DAY 2	3	0.423370868	0.141123623	0.00015402		
DAY3	3	0.411323543	0.137107848	5.72224E-06		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.000267495	2	0.000133747	1.986812632		5.14325285
Within Groups	0.000403906	6	6.73176E-05			
Total	0.000671401	8				
Anova: Single Factor					100 ng/L sp	iked in MPA
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	10	1.986709093	0.198670909	0.000434758		
DAY 2	10	1.744886055	0.174488605	0.000165726		
DAY3	10	2.050719581	0.205071958	0.000580948		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.005203662	2	0.002601831	6.606809771		3.35413082
Within Groups	0.010632884	27	0.000393811	5.000005771	5.55-102/	3.00 /20002.

Table A- 18 The single factor Anova test of fluoxetine spiked at different concentrations (10, 25, 50, 75, and 100 ng/L) in filtrated water sample from the Sognsvann creek. The test was used to establish the absolute standard deviation (*total*), between-day and within-day variance of each concentration.

Anova: Single Factor				10 ng/L spiked in filtr	ated water same	ole
7 mo var single ractor				20 11g/ 2 spine a 11 1110	acea water sam	,,,,
SUMMARY						
Groups	Count	Sum	Average	Variance		
0.06440281	5	0.251275488	0.050255098	4.85546E-05		
0.103935698	5	0.519978938	0.103995788			
0.071741512	5	0.371008463	0.074201693	5.89009E-05		
ANOVA						
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.007248649	2	0.003624324		2.5806E-07	3.88529383
Within Groups	0.000628527	12	5.23773E-05			
Total	0.007877176	14				
Anova: Single Factor				25 ng/L spiked in filtr	ated water sam	ole
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	0.299191326	0.099730442	0.000228783		
DAY 2	3	0.472143698	0.157381233	0.000304738		
DAY3	3	0.315754941	0.105251647	0.000185785		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.006071591	2	0.003035796	12.66134536	0.007028725	5.1432528
Within Groups	0.001438613	6	0.000239769			
Total	0.007510204	8				
Anova: Single Factor				50 ng/L spiked in filtr	ated water samp	ole
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	1.433019522	0.238836587	0.00074068		
DAY 2	6	1.431489813	0.238581635	0.000695674		
DAY3	6	1.170927528	0.195154588	0.000788538		
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.007588181	2	0.00379409	5.115873847	0.020233893	3.682320344
Within Groups	0.011124465	15	0.000741631	3.113673647	0.020233893	3.00232034
Total	0.018712645	17				
Anova: Single Factor				75 ng/L spiked in filtr	ated water samp	le
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY 1	3	1.126686514	0.375562171	0.002385496		
DAY 2	3	1.007343585	0.335781195	1.25328E-05		
DAY3	3	0.928166172	0.309388724	0.003446962		
DATS	J	0.520100172	0.303300724	0.003440302		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.006658014	2	0.003329007	1.708646163	0.258628033	5.14325285
Within Groups	0.011689981	6	0.00194833			
Total	0.018347995	8				
Anova: Single Factor				100 ng/L spiked in filt	rated water sam	ple
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	2.859231888	0.476538648	0.001273653		
DAY 2	6	2.673711319	0.445618553	0.002383664		
DAY 3	6	2.330982269	0.388497045	0.002960291		
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.023940486	2	0.011970243	5.426542498	0.016859381	3.68232034
Within Groups	0.033088038	15	0.002205869	5.720572750	5.525055501	2.00202034
Total	0.057028524	17				

Table A- 19 The single factor Anova test of fluoxetine spiked at different concentrations (10, 25, 50, 75, and 100 ng/L) in non-filtrated water sample from the Sognsvann creek. The test was used to establish the absolute standard deviation (*total*), between-day and within-day variance of each concentration.

Anova: Single Factor				10 ng/L spiked	in non-filtrated w	ater sample
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	0.28768452	0.04794742	2.90077E-05		
DAY 2	6	0.329735408	0.054955901	1.80768E-06		
DAY3	6	0.220768598	0.036794766	5.0764E-05		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups Within Groups	0.001006655 0.000407897	2 15	0.000503327 2.71931E-05	18.50936031	8.90199E-05	3.682320344
Total	0.001414551	17				
Anova: Single Factor				25 ng/L spiked	in non-filtrated w	ater sample
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY 1	3	0.308644663	0.102881554	5.83713E-05		
DAY 2	3	0.290588933	0.096862978	0.000363359		
DAY3	3	0.274443741	0.091481247	1.05303E-07		
DATS	J	0.274443741	0.031401247	1.033032 07		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.000195153	2	9.75767E-05	0.693943756	0.535664578	5.14325285
Within Groups	0.000843671	6	0.000140612			
Total	0.001038824	8				
Anova: Single Factor				50 ng/L spiked	in non-filtrated w	ater sample
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	1.694714987	0.282452498	0.001508071		
DAY 2	6	1.227522753	0.204587125	0.000301908		
DAY 3	6	1.171301905	0.195216984	0.001143172		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.027521701	2	0.013760851	13.97915544	0.000373965	3.68232034
Within Groups	0.014765753	15	0.000984384			
Total	0.042287454	17				
Anova: Single Factor				75 ng/L spiked	in non-filtrated v	ater sample
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	2	0.887072691	0.443536346	0.000878922		
DAY 2	2	0.506893527	0.253446763	8.12875E-05		
DAY 3	2	0.68229223	0.341146115	2.63278E-05		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.03620599	2	0.018102995		0.004320028	9.55209449
Within Groups	0.000986537	3	0.000328846		5525	
Total	0.037192527	5				
Anova: Single Factor				100 ng/L spike	d in non-filtrated	water sample
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	3.33895155	0.556491925	0.002755031		
DAY 2	6	2.531031382	0.421838564	0.000416812		
DAY3	6	2.935336601	0.489222767	0.00160456		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.054394596	2	0.027197298		0.000135923	3.68232034
Within Groups	0.023882013	15	0.001592134		5.550255525	5.50252054
Total	0.07827661	17				

7.7.4 Sulfamethoxazole (SM)

The calculated mean, SD and RSD for sulfamethoxazole spiked in MP A, filtrated and non-filtrated water sample from the Sognsvann creek are shown in **Table A-20**. The regression analyses of sulfamethoxazole in the matrices are shown in **Table A-21**. The single factor Anova tests of the API in MP A, filtrated and non-filtrated water sample are shown in **Table A-22**, **A-23**, **and A-24**, respectively.

Table A- 20 The concentrations of sulfamethoxazole (SM) spiked in MP A (i), filtrated (ii) and no-filtrated (iii) water sample from the Sognsvann creek. The ratio between the peak area (A) of SM and peak area of its IS (IS-SM) (sulfamethoxazole-(phenyl- 13 C₆) was calculated for all replicates in a single day. The average (the mean) of the average calculated for each day was calculated manually. The corresponding SD and RSD of the mean were calculated. The cLOD and cLOQ were calculated for the lowest concentration.

Concentration (ng	;/L)	Mean A A SM A SN	∕I-IS	SD		RSD %	cLOD (ng/L)	cLOQ (ng/L)	
	10)	0.24		0.04	15	5 3	3	10
	25	5	0.60		0.03	5	5		
	50)	1.09		0.16	14	ı		
	75	5	1.56		0.09	6	5		
	100		2.08		0.42	20)		
	10 25 50 75 100	0.32 0.80 1.48 2.06 2.81		0.06 0.11 0.24 0.14 0.55		18 14 16 7 19	5		15
Concentration (ng/L)		Mean A A SM A SM-IS	SD	0.33	RSD %	·	LOD (ng/L)	cLOQ (ng/L)	<u> </u>
	10	0.33		0.03		9	2		5
	25	0.78		0.06		8			
	50	1.51		0.11		7			
	75 100	2.31 3.06		0.22 0.52		10 17			

Table A- 21 The regression analysis for sulfamethoxazole spiked in MP A (A), filtrated (B) and no-filtrated (C). The *standard error* and the *coefficient of X variable* 1 (slope of the curve) were used in calculations of cLOD and cLOQ. The units in all cases are ng/L and the confidence level was 95 %.

SUMMARY OUTPUT								A \
Regression St	atistics							\mathbf{A})
Multiple R	0.999584208							
R Square	0.999168588							
Adjusted R Square	0.998891451							
Standard Error	0.024481107							
Observations	5							
ANOVA								
ANOVA					21 10 -			
	df	SS	MS	F	Significance F			
Regression	1	2.160756329	2.160756329	3605.31902	6 1.0177E-05			
Residual	3	0.001797974	0.000599325					
Total	4	2.162554303						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%			Upper 95.0%
Intercept	0.066494053	0.020589136	3.229569889	0.04823161	4 0.000970234	0.132017872	0.000970234	0.132017872
X Variable 1	0.020134428	0.000335326	60.04430886	1.0177E-0	5 0.01906727	0.021201585	0.01906727	0.021201585
RESIDUAL OUTPUT								
Observation	Prodicted V	Bosiduals	Standard Bosiduals					
Observation	Predicted Y	Residuals	Standard Residuals					
1	0.267838331	-0.027022903	-1.274589455					
2	0.569854748	0.025862125	1.219839039					
3	1.073215444	0.015800836	0.745278169					
4	1.576576139	-0.011905598	-0.561551417					
5	2.079936835	-0.002734461	-0.128976336					
SUMMARY OUTPUT								
								B)
Regression .	0.999046888							<u> </u>
Multiple R								
R Square	0.998094684							
Adjusted R Square	0.997459579							
Standard Error	0.049838824							
Observations	5							
ANOVA								
ANOVA	df	SS	MS	F	Significance F			
Decreasion				1571.542208	3.53173	T 05		
Regression	1			15/1.542208	3.53173	E-05		
Residual	3							
Total	4	3.91101855	55					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.085928958	0.0419159	2.050051109		-0.04746	4933 0.21932		
	0.085928958 0.027062456			0.13275752 3.53173F-05	-0.04746 0.02488		2848 -0.04746493	3 0.219322848
	0.085928958 0.02706245 6			3.53173E-05	-0.04746 0.02488		2848 -0.04746493	3 0.219322848
							2848 -0.04746493	3 0.219322848
X Variable 1							2848 -0.04746493	3 0.219322848
							2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation	0.027062456 Predicted Y	0.0006826 Residuals	39.64268165 Standard Residuals				2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1	0.027062456 Predicted Y 0.356553516	0.0006826 Residuals -0.03412516	\$54 39.64268165 \$54 Standard Residuals \$64 39.64268165				2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1 2	0.027062456 Predicted Y 0.356553516 0.762490354	0.0006826 Residuals -0.03412516 0.03285799	\$\$ 39.64268165 Standard Residuals 8 -0.790635631 15 0.761275961				2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3	0.027062456 Predicted Y 0.366553516 0.762490354 1.439051745	0.0006826 Residuals -0.03412516 0.0328579 0.04062762	Standard Residuals 8 -0.790635631 55 0.761275961 77 0.941289131				2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4	0.027062456 Predicted Y 0.356553516 0.762490354 1.439051749 2.115613145	0.0006826 Residuals -0.03412516 0.0328579 0.0406276 -0.05697851	Standard Residuals 8 -0.790635631 17 0.941289131 15 -1.320117874				2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3	0.027062456 Predicted Y 0.356553516 0.762490354 1.43905174 2.115613145	0.0006826 Residuals -0.03412516 0.03285795 0.04062765 -0.05697853	Standard Residuals 8 -0.790635631 17 0.941289131 15 -1.320117874				2848 -0.04746493	3 0.219322848
Observation 1 2 2 3 3 4	0.027062456 Predicted Y 0.356553516 0.762490354 1.439051749 2.115613145	0.0006826 Residuals -0.03412516 0.0328579 0.0406276 -0.05697851	Standard Residuals 8 -0.790635631 17 0.941289131 15 -1.320117874				2848 -0.04746493	3 0.219322848
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT	Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541	0.0006826 Residuals -0.03412516 0.0328579 0.0406276 -0.05697851	Standard Residuals 8 -0.790635631 17 0.941289131 15 -1.320117874				2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S	0.027062456 Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541	0.0006826 Residuals -0.03412516 0.0328579 0.0406276 -0.05697851	Standard Residuals 8 -0.790635631 17 0.941289131 15 -1.320117874				2848 -0.04746493	3 0.219322848
RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R	Predicted Y	0.0006826 Residuals -0.03412516 0.0328579 0.0406276 -0.05697851	Standard Residuals 8 -0.790635631 17 0.941289131 15 -1.320117874				2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R Square	Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 statistics 0.999884261 0.999768336	0.0006826 Residuals -0.03412516 0.0328579 0.0406276 -0.05697851	Standard Residuals 8 -0.790635631 17 0.941289131 15 -1.320117874				2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R Square Adjusted R Square	Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 Statistics 0.999884261 0.99968386 0.999691381	0.0006826 Residuals -0.03412516 0.0328579 0.0406276 -0.05697851	Standard Residuals 8 -0.790635631 17 0.941289131 15 -1.320117874				2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R Square Adjusted R Square Adjusted R Square Standard Error	Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 statistics 0.999884261 0.999768336	0.0006826 Residuals -0.03412516 0.0328579 0.0406276 -0.05697851	Standard Residuals 8 -0.790635631 17 0.941289131 15 -1.320117874				2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R Square Adjusted R Square Standard Error Observations	Predicted Y 0.356553516 0.762490354 1.439051749 2.115613145 2.792174541 italistics 0.999884261 0.999681381 0.019503707	0.0006826 Residuals -0.03412516 0.0328579 0.0406276 -0.05697851	Standard Residuals 8 -0.790635631 17 0.941289131 15 -1.320117874				2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R Square Adjusted R Square Standard Error Observations	0.027062456 Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 statistics 0.999884261 0.999768536 0.999691381 0.019503707 5	0.0006826 Residuals -0.03412516 0.03285799 0.0406276; -0.0569785; 0.01761810	Standard Residuals 8		0.02488		2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R S quare Adjusted R Square Standard Error Observations ANOVA	0.027062456 Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 citatistics 0.999884261 0.999768536 0.999691381 0.019503707 5	0.0006826 Residuals -0.03412516 0.03285799 0.04062762 -0.05697853 0.01761810	Standard Residuals 8 -0.790635631 5 0.761275961 7 0.941289131 5 -1.320117874 11 0.408188413	3.53173E-05	0.02488 Significance F	9928 0.02923	2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression	0.027062456 Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 statistics 0.999884261 0.999681381 0.019503707 5 df 1	Residuals -0.03412516 0.0328579 0.04062762 -0.05697851 0.01761810	Standard Residuals Standard Residuals 8 -0.790635631 5 0.761275961 7 0.941289131 5 -1.320117874 10 0.408188413	3.53173E-05	0.02488	9928 0.02923	2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R S quare Adjusted R S quare Standard Error Observations ANOVA ANOVA Regression Regression Residual	0.027062456 Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 citatistics 0.999884261 0.999768536 0.999691381 0.019503707 5	0.0006826 Residuals -0.03412516 0.03285799 0.04062762 -0.05697853 0.01761810	Standard Residuals 8 -0.790635631 5 0.761275961 7 0.941289131 5 -1.320117874 11 0.408188413	3.53173E-05	0.02488 Significance F	9928 0.02923	2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R S quare Adjusted R S quare Standard Error Observations ANOVA ANOVA Regression Regression Residual	### Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 **tatistics** 0.999884261 0.999691381 0.019503707 5 df 1 3 3	0.0006826 Residuals -0.03412516 0.0328579 0.0406276; -0.0569785; 0.01761810	Standard Residuals Standard Residuals 8 -0.790635631 5 0.761275961 7 0.941289131 5 -1.320117874 10 0.408188413	3.53173E-05	0.02488 Significance F	9928 0.02923	2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R Square Adjusted R Square Standard Error Observations ANOVA	### Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 **tatistics** 0.999884261 0.999691381 0.019503707 5 df 1 3 3	0.0006826 Residuals -0.03412516 0.0328579 0.0406276; -0.0569785; 0.01761810	Standard Residuals Standard Residuals 8 -0.790635631 5 0.761275961 7 0.941289131 5 -1.320117874 10 0.408188413	3.53173E-05	0.02488 Significance F	9928 0.02923	2848 -0.04746493	3 0.219322848
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R Square Adjusted R Square Standard Error Observations ANOVA ANOVA Regression Residual Total	0.027062456 Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 statistics 0.999884261 0.999681381 0.019503707 5 df 1 3 4	0.0006826 Residuals -0.03412516 0.0328579 0.0406276; -0.0569785; 0.01761810 55 4.929146349 0.001141184 4.930287533	Standard Residuals 8	3.53173E-05	0.02488 Significance F 1.49467E-06	9928 0.02923	2848 -0.04746493 4983 0.02488992	0.219322848 0.029234983
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	0.027062456 Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 itatistics 0.999884261 0.999691381 0.019503707 5 df 1 3 4 Coefficients	8 Residuals -0.03412516 -0.03412516 -0.0328579 -0.0406276 -0.05697851 -0.01761810 55 4.929146349 4.930287533 Standard Error	Standard Residuals 8 -0.790635631 5 0.761275961 7 0.941289131 5 -1.32011784 11 0.408188413 MS 4.929146349 0.000380395	3.53173E-05 F 12957.98295 P-value	0.02488 Significance F 1.49467E-06	9928 0.02923 Upper 95% 0.066766314	2848 -0.04746493 4983 0.02488992 b. 0.02488992 Lower 95.0%	C)
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S R S quare Adjusted R S quare Standard Error Observations ANOVA ANOVA Regression Regression Residual	## Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 6tatistics 0.999884261 0.99988836 0.999691831 0.019503707 5 df 1 3 4 Coefficients 0.014564534	SS 4.929146349 0.00144184 4.930287533 Standard Error 0.016403036	Standard Residuals Standard Residuals Standard Residuals S - 0.790635631 S - 0.76127961 O .941289131 D .408188413 MS A.929146349 O.000380395 t Stat O.887917006	3.53173E-05 F 12957.98295 P-value 0.439989527	0.02488 Significance F 1.49467E-06 Lower 95% -0.037637246	9928 0.02923 Upper 95% 0.066766314	2848 -0.04746493 4983 0.02488992 Lower 95.0% -0.037637246	C) Upper 95.0% 0.066766314
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	## Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 6tatistics 0.999884261 0.99988836 0.999691831 0.019503707 5 df 1 3 4 Coefficients 0.014564534	SS 4.929146349 0.00144184 4.930287533 Standard Error 0.016403036	Standard Residuals Standard Residuals Standard Residuals S - 0.790635631 S - 0.76127961 O .941289131 D .408188413 MS A.929146349 O.000380395 t Stat O.887917006	3.53173E-05 F 12957.98295 P-value 0.439989527	0.02488 Significance F 1.49467E-06 Lower 95% -0.037637246	9928 0.02923 Upper 95% 0.066766314	2848 -0.04746493 4983 0.02488992 Lower 95.0% -0.037637246	C) Upper 95.0% 0.066766314
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT	### Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 **Statistics** 0.999884261 0.999691381 0.019503707 5 ################################	SS 4.929146349 0.000267149 0.000267149	## A 929146349 ## A 929146349	3.53173E-05 F 12957.98295 P-value 0.439989527	0.02488 Significance F 1.49467E-06 Lower 95% -0.037637246	9928 0.02923 Upper 95% 0.066766314	2848 -0.04746493 4983 0.02488992 Lower 95.0% -0.037637246	C) Upper 95.0% 0.066766314
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R Square Adjusted R Square Standard Error Observations ANOVA ANOVA ANOVA ARegression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation	0.027062456 Predicted Y 0.356553516 0.762490354 1.439051745 2.1792174541 2.792174541 0.999884261 0.999691381 0.019503707 5 df 1 3 4 Coefficients 0.014564534 0.030410408	8 Residuals -0.03412516 -0.03412516 -0.0328579 -0.0406276: -0.0569785: -0.01761810 -0.01761810 -0.01461494 -0.001461494 -0.0016403036 -0.000267149	Standard Residuals 8 -0.790635631 5 0.761275961 7 0.941289131 5 -1.320117861 10 0.408188413 M5 4.929146349 0.000380395 t Stat 0.887917006 113.8331364 Standard Residuals	3.53173E-05 F 12957.98295 P-value 0.439989527	0.02488 Significance F 1.49467E-06 Lower 95% -0.037637246	9928 0.02923 Upper 95% 0.066766314	2848 -0.04746493 4983 0.02488992 Lower 95.0% -0.037637246	C) Upper 95.0% 0.066766314
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R Square Adjusted R Square Standard Error Observations ANOVA ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation 1	0.027062456 Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 0.999884261 0.99976836 0.999691381 0.019503707 5 df 1 3 4 Coefficients 0.014564534 0.030410408 Predicted Y 0.318668618	SS 4.929146349 0.00141184 4.93028753 Standard Error 0.016403036 0.000267149 Residuals 0.009805228	Standard Residuals 8	3.53173E-05 F 12957.98295 P-value 0.439989527	0.02488 Significance F 1.49467E-06 Lower 95% -0.037637246	9928 0.02923 Upper 95% 0.066766314	2848 -0.04746493 4983 0.02488992 Lower 95.0% -0.037637246	C) Upper 95.0% 0.066766314
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R S quare Standard Error Observations ANOVA ANOVA Regression Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation 1 2 2	### Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 **tatistics** 0.999884261 0.999691381 0.019503707 #### df	Residuals -0.03412516 -0.03412516 -0.0328579 -0.0406276; -0.0569785; -0.01761810 SS 4.929146349 -0.00144184 -4.930287533 Standard Error -0.016403036 -0.000267149 Residuals -0.009805228 -0.003032409	MS	3.53173E-05 F 12957.98295 P-value 0.439989527	0.02488 Significance F 1.49467E-06 Lower 95% -0.037637246	9928 0.02923 Upper 95% 0.066766314	2848 -0.04746493 4983 0.02488992 Lower 95.0% -0.037637246	C) Upper 95.0% 0.066766314
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 Cobservation Observation 1 Cobservation 1 Cobservation 1 2 3 3	### Predicted Y 0.356553516 0.762490354 1.43903174 2.115613145 2.792174541 0.999768536 0.999681381 0.019503707 5 ################################	SS 4.929146349 0.001418144 4.93028753 0.0006276149 Residuals 0.03285792 0.04062762 0.05697851 0.017618110 0.017618110 0.017618110 0.017618110 0.017618110 0.017618110 0.00000000000000000000000000000000	## Standard Residuals Standard Residuals	3.53173E-05 F 12957.98295 P-value 0.439989527	0.02488 Significance F 1.49467E-06 Lower 95% -0.037637246	9928 0.02923 Upper 95% 0.066766314	2848 -0.04746493 4983 0.02488992 Lower 95.0% -0.037637246	C) Upper 95.0% 0.066766314
X Variable 1 RESIDUAL OUTPUT Observation 1 2 3 4 5 SUMMARY OUTPUT Regression S Multiple R R S quare Standard Error Observations ANOVA ANOVA Regression Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation 1 2 2	### Predicted Y 0.356553516 0.762490354 1.439051745 2.115613145 2.792174541 **tatistics** 0.999884261 0.999691381 0.019503707 #### df	Residuals -0.03412516 -0.03412516 -0.0328579 -0.0406276; -0.0569785; -0.01761810 SS 4.929146349 -0.00144184 -4.930287533 Standard Error -0.016403036 -0.000267149 Residuals -0.009805228 -0.003032409	MS	3.53173E-05 F 12957.98295 P-value 0.439989527	0.02488 Significance F 1.49467E-06 Lower 95% -0.037637246	9928 0.02923 Upper 95% 0.066766314	2848 -0.04746493 4983 0.02488992 Lower 95.0% -0.037637246	C) Upper 95.0% 0.066766314

Table A- 22 The single factor Anova test of sulfamethoxazole spiked at different concentrations (10, 25, 50, 75, and 100 ng/L) in MP A. The test was used to establish the absolute standard deviation (*total*), between-day and within-day variance of each concentration.

Anova: Single Factor					10 ng/L spiked ii	n MP A
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY 1	10	2.11341275	0.21134127	0.000289671		
DAY 2	10	2.81742540	0.28174254	0.000575967		
DAY 3	10	2.29362470	0.22936247	0.000373307		
DATS	10	2.29302470	0.22936247	0.000140311		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.02674925	2	0.013374623	39.88655276	8.69312E-09	3.354130829
Within Groups	0.00905355	27	0.000335317	33.00033270	0.033122 03	3.33 113002
Within Groups	0.00903333	27	0.000333317			
Total	0.03580279	29				
Anova: Single Factor					25 ng/L spiked in	n MP A
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	1.59233562	0.53077854	8.216E-05		
DAY 2	3	2.006919298	0.668973099	0.000451053 0.000680449		
DAY 3	3	1.762196942	0.587398981	0.000680449		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups Within Groups	0.028957947 0.002427325	2 6	0.014478974 0.000404554	35.78994576	0.000462601	5.1432528
Total	0.031385273	8				
Anova: Single Factor					50 ng/L spiked in	n MP A
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY 1 DAY 2	10 10	10.25830416 11.22504871	1.025830416 1.122504871	0.000601998 0.009549054		
DAY3	10	11.18713555	1.118713555	0.000539877		
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.059958673	2	0.029979336	8.412553114	0.001445941	3.35413082
Within Groups	0.096218362	27	0.003563643	0.12200022	0.0021.0012	0.00 .2000
·						
Total	0.156177035	29				
Anova: Single Factor					75 ng/L spiked in	n MP A
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	4.37830161	1.45943387	0.003852655		
DAY 2 DAY 3	3	4.491856329 4.959628524	1.497285443 1.653209508	0.000825734 0.007205316		
DATS	3	4.959028524	1.053209308	0.007205316		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.063294053	2	0.031647027	7.989182145	0.020345466	5.1432528
Within Groups	0.023767409	6	0.003961235			
Total	0.087061463	8				
Anova: Single Factor					100 ng/L spiked	in MP A
SUMMARY	Count	Cura	4	Maria		
Groups DAY 1	Count 10	Sum 19.92531751	Average 1.992531751	Variance 0.004808308		
DAY 2	10	21.13525776	2.113525776	0.027501359		
DAY 3	10	21.25549595	2.125549595	0.002233297		
ANOVA						
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.108259578	<i>af</i> 2	0.054129789	4.701083728	0.017708959	3.35413082
Within Groups	0.310886679	27	0.011514321	1102003720	2.027700303	2,33-123002

Table A- 23 The single factor Anova test of sulfamethoxazole spiked at different concentrations (10, 25, 50, 75, and 100 ng/L) in filtrated water sample from the Sognsvann creek. The test was used to establish the absolute standard deviation (total), between-day and within-day variance of each concentration.

Anova: Single Factor				10 ng/L spiked in filtra	ited water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	1.781266903	0.296877817	0.003100554		
DAY 2	6	1.909667706	0.318277951	0.003540809		
DAY3	6	2.112775655	0.352129276	0.003077452		
ANOVA						
		16	440		2 /	- ·
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.009313203	2	0.004656602	1.437397856	0.268457963	3.68232034
Within Groups	0.048594079	15	0.003239605			
Total	0.057907282	17				
Anova: Single Factor				25 ng/L spiked in filtra	ted water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	2.087729205	0.695909735	0.012429142		
DAY 2	3	2.445511463	0.815170488	0.00323019		
DAY3	3	2.62489411	0.874964703	0.015432395		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.049859157	2	0.024929579	2.405422339	0.170952268	5.14325285
Within Groups	0.062183455	6	0.010363909			
Angya: Single Factor	0.112042612	8		50 ng/L spiked in filtra	ited water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	9.130761339	1.521793556	0.010553967		
DAY 2	6	8.129209284	1.354868214	0.005466539		
DAY3	6	9.37425816	1.56237636	0.003468272		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.145141329	2	0.072570665	11.17114677	0.001069491	3.68232034
Within Groups	0.097443888	15	0.006496259			
Total	0.242585217	17				
Anova: Single Factor				75 ng/L spiked in filtra	ited water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	5.863113183	1.954371061	0.019734546		
DAY 2	3	6.169620148	2.056540049	0.005124044		
DAY3	3	6.494978341	2.16499278	0.01255008		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.066562006	2	0.033281003	2.668980497	0.148200229	5.14325285
Within Groups	0.074817339	6	0.012469556			
Total	0.141379345	8				
Anova: Single Factor				100 ng/L spiked in filt	rated water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	16.55080623	2.758467706	0.042865045		
DAY 2	6	16.69310295	2.782183824	0.039347197		
DAY 3	6	17.33235838	2.888726396	0.015534629		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.057762201	2	0.0288811	0.886404855	0.43265407	3.68232034
Within Groups	0.488734355	15	0.03258229		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Total	0.546496555	17				

Table A- 24 The single factor Anova test of sulfamethoxazole spiked at different concentrations (10, 25, 50, 75, and 100 ng/L) in non-filtrated water sample from the Sognsvann creek. The test was used to establish the absolute standard deviation (*total*), between-day and within-day variance of each concentration.

Anova: Single Factor				10 ng/L spiked in no	on-filtrated water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	1.745535808	0.290922635	0.00081414		
DAY 2	6	2.197580558	0.366263426	0.000413122		
DAY3	6	1.969412862	0.328235477	0.000971464		
5,115		2.303-122002	O.DEGESS-177	0.000372404		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.017029216	2	0.008514608	11.61755453		3.68232034
				11.01/55455	0.000655612	3.06232034
Within Groups	0.010993632	15	0.000732909			
Total	0.028022848	17				
Anova: Single Factor				25 ng/L spiked in ne	on-filtrated water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	2.108622429	0.702874143	0.001133943		
DAY 2	3	2.669482395	0.889827465	0.000143797		
DAY3	3	2.222609545	0.740869848	0.000431149		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.05858359	2	0.029291795	51.42254586	0.000167505	5.1432528
Within Groups	0.003417777	6	0.000569629			
Total	0.062001366	8				
Anova: Single Factor	01002002500			50 ng/L spiked in ne	on-filtrated water sample	
0						
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1 DAY2	6	8.618965792 9.363373971	1.436494299 1.560562329	0.00221442		
DAY3	6	9.126647964	1.521107994	0.0030000		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.048217996	2	0.024108998	5.622833281	0.015057483	3.68232034
Within Groups	0.064315435	15	0.004287696			
Total	0.112533431	17				
Anova: Single Factor				75 ng/L spiked in no	on-filtrated water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY 1	3	6.405338683	2.135112894	0.00438811		
DAY 2	3	7.384464162	2.461488054	0.006208937		
DAY3	3	6.991280555	2.330426852	0.018957241		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.161845326	2	0.080922663	8.214306953	0.019144607	5.1432528
Within Groups	0.059108575	6	0.009851429	5.22-000000	21020211001	
Total	0.2209539	8				
Anova: Single Factor	5,2203333	3		100 ng/L spiked in r	non-filtrated water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	16.98193247	2.830322078	0.038133232		
DAY 2	6	18.30425988	3.05070998	0.012445374		
DAY3	6	18.41290946	3.068818243	0.010567851		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.211558314	2	0.105779157	5.189793301	0.019366465	3.68232034
Within Groups	0.305732284	15	0.020382152	5.205/33301	0.023300403	5.00232034

7.7.5 Sulfapyridine (SP)

The calculated mean, SD and RSD for sulfapyridine spiked in MP A, filtrated and non-filtrated water sample from the Sognsvann creek are shown in **Table A-25**. The regression analyses of sulfapyridine in the matrices are shown in **Table A-26**. The single factor Anova tests of the API in MP A, filtrated and non-filtrated water sample are shown in **Table A-27**, **A-28**, **and A-29**, respectively.

Table A- 25 The concentrations of sulfapyridine (SP) spiked in MP A (i), filtrated (ii) and no-filtrated (iii) water sample from the Sognsvann creek. The peak area to SP/peak area to the IS (SM-IS) (sulfamethoxazole-(phenyl- $^{13}C_6$) was calculated for a single day. The mean of three days and the corresponding SD and RSD were calculated. The cLOD and cLOQ were calculated for the lowest concentration.

ng/L)	cLOQ (ng/L	/L)	cLOD (ng/		RSD %		SD	Mean A SP/ A SM-IS	Concentration (ng/L)
23		8	3			0.0007	19	0.0	10
						0.0003	39	5 0.03	25
			1			0.0027	73	0.0	50
			3	0.:		0.0003	20	5 0.13	75
			5			0.0082	62	0.10	100
)	OQ (ng/L)	cLO	OD (ng/L)	С	SD %	R	SD	Mean A SP/ A SM-IS	Concentration (ng/L)
27		9		10		0.006		0.062	10
				2		0.001		0.084	25
				13		0.017		0.134	50
				9		0.014		0.164	75
				13		0.029		0.217	100
	Q (ng/L)	cLO	OD (ng/L)	cl	5D %	RS	SD	Mean A SP/ A SM-IS	Concentration (ng/L)
19		6		2		0.0005		0.0205	10
				2		0.0008		0.0346	25
				4		0.0026		0.0704	50
				1		0.0006		0.0973	75
				8		0.0110		0.1331	100

Table A- 26 The regression analysis for sulfapyridine spiked in MP A (A), filtrated (B) and no-filtrated (C). The *standard error* and the *coefficient of X variable 1* (slope of the curve) were used in calculations of cLOD and cLOQ. The units in all cases are ng/L and the cofidence level was 95 %.

								A \
Dog	atistics							A)
Regression Sta								<u> /</u>
Multiple R	0.997847554 0.995699742							
R Square								
Adjusted R Square Standard Error	0.994266322 0.004440521						_	
Observations	0.004440521							
Observations								
ANOVA								
	df	SS	MS	F	Significance	F		
Regression	1	0.013696921						
Residual	3	5.91547E-05						
Total	4	0.013756076						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-0.000715713	0.003734573						
X Variable 1	0.001603053	6.08233E-05						
RESIDUAL OUTPUT								
Observation	Predicted Y	Residuals	Standard Residuals					
1		0.00374504						
2		-0.000481263						
3		-0.006164463						
4		0.000290572						
9		0.002610114						
			-	_				
SUMMARY OUTPUT								
								B)
Regression Sto	itistics							<u> </u>
Multiple R	0.997048127							_
R Square	0.994104967							
Adjusted R Square	0.992139955						L	
Standard Error	0.005497899							
Observations	5							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	0.015291874	0.015291874	505.9029688				
Residual	3	9.06807E-05	3.02269E-05					
Total	4	0.015382555						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.044227975	0.004623851	9.565182092	0.00242416			0.029512818	0.058943132
X Variable 1	0.001693818	7.53066E-05	22.49228687	0.000192437			0.001454159	0.001933477
RESIDUAL OUTPUT								
RESIDUAL OUTPUT								
RESIDUAL OUTPUT Observation	Predicted Y	Residuals	Standard Residuals					
	Predicted Y 0.061166156	Residuals 0.001024669	Standard Residuals 0.215206972					
Observation								
Observation 1	0.061166156	0.001024669	0.215206972					
Observation 1 2	0.061166156 0.086573426	0.001024669 -0.002274252	0.215206972 -0.477651545					
Observation 1 2 3	0.061166156 0.086573426 0.128918877	0.001024669 -0.002274252 0.005059219	0.215206972 -0.477651545 1.062566356					
Observation 1 2 3 4	0.061166156 0.086573426 0.128918877 0.171264328	0.001024669 -0.002274252 0.005059219 -0.006984491	0.215206972 -0.477651545 1.062566356 -1.466923175					
Observation 1 2 3 4 5	0.061166156 0.086573426 0.128918877 0.171264328	0.001024669 -0.002274252 0.005059219 -0.006984491	0.215206972 -0.477651545 1.062566356 -1.466923175					
Observation 1 2 3 4	0.061166156 0.086573426 0.128918877 0.171264328	0.001024669 -0.002274252 0.005059219 -0.006984491	0.215206972 -0.477651545 1.062566356 -1.466923175					
Observation 1 2 3 4 5 SUMMARY OUTPUT	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978	0.001024669 -0.002274252 0.005059219 -0.006984491	0.215206972 -0.477651545 1.062566356 -1.466923175					(C)
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St.	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978	0.001024669 -0.002274252 0.005059219 -0.006984491	0.215206972 -0.477651545 1.062566356 -1.466923175					C)
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 patistics 0.998492047	0.001024669 -0.002274252 0.005059219 -0.006984491	0.215206972 -0.477651545 1.062566356 -1.466923175					<u>C)</u>
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square	0.061166156 0.086573426 0.128918877 0.17264328 0.21360978 0.21360978 0.998492047 0.996986368	0.001024669 -0.002274252 0.005059219 -0.006984491	0.215206972 -0.477651545 1.062566356 -1.466923175					<u>C)</u>
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 patistics 0.998492047	0.001024669 -0.002274252 0.005059219 -0.006984491	0.215206972 -0.477651545 1.062566356 -1.466923175					<u>C)</u>
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 oztistics 0.998492047 0.996986368 0.995981824	0.001024669 -0.002274252 0.005059219 -0.006984491	0.215206972 -0.477651545 1.062566356 -1.466923175					<u>C)</u>
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square Standard Error	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 0.21360978 0.998492047 0.996986368 0.995981824 0.002908748	0.001024669 -0.002274252 0.005059219 -0.006984491	0.215206972 -0.477651545 1.062566356 -1.466923175					<u>C)</u>
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square Standard Error	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 0.21360978 0.998492047 0.996986368 0.995981824 0.002908748 5	0.001024669 -0.002274252 0.005059219 -0.006984491 0.003174855	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393					<u>C)</u>
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square Standard Error Observations ANOVA	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 0.21360978 0.998492047 0.996986368 0.995981824 0.002908748 5	0.001024669 -0.002274522 0.005059219 -0.006984491 0.003174855	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393		Significance F			<u>C)</u>
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 0.21360978 0.998492047 0.996986368 0.995981824 0.002908748 5 df	0.001024669 -0.002274252 0.005059219 -0.006984491 0.003174855	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393	F 5	Significance F 7.02777E-05			<u>C)</u>
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 0.998492047 0.996986368 0.995981824 0.002908748 5 df	0.001024669 -0.002274252 0.00559219 -0.006984491 0.003174855	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393 MS 0.00839716 8.46081E-06					<u>C)</u>
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 0.21360978 0.998492047 0.996986368 0.995981824 0.002908748 5 df	0.001024669 -0.002274252 0.005059219 -0.006984491 0.003174855	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393 MS 0.00839716 8.46081E-06					<u>C)</u>
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 0.21360978 0.998492047 0.996986368 0.995981824 0.002908748 5 df 1 3 4	0.001024669 -0.002274252 0.005059219 -0.006984491 0.003174855	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393 MS 0.00839716 8.46081E-06	992.4766061	7.02777E-05	Innar OE®	ower GE nav	C)
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 0.198492047 0.996986368 0.995981824 0.002908748 5 df 1 3 4 Coefficients	0.001024669 -0.00274252 0.00559219 -0.006984491 0.003174855 55 0.00839716 2.53824E-05 0.008422543	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393 MS 0.00839716 8.46081E-06	992.4766061 P-value	7.02777E-05 Lower 95%			<u>C)</u> Upper 95.0%
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 0.21360978 0.998492047 0.996986368 0.995981824 0.002908748 5 df 1 3 4	0.001024669 -0.002274252 0.005059219 -0.006984491 0.003174855	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393 MS 0.00839716 8.46081E-06	992.4766061 P-value 0.094426607	7.02777E-05 Lower 95% -0.001872648	Upper 95% I 0.013697912 0.001381966	Lower 95.0% (** -0.001872648**)	0.013697912
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 atistics 0.998492047 0.996986368 0.995981824 0.002908748 5 df 1 3 4 Coefficients 0.005912632	0.001024669 -0.00274252 0.005059219 -0.006984491 0.003174855 55 0.00839716 2.53824E-05 0.008422543 Standard Error 0.002446319	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393 MS 0.00839716 8.46081E-06	992.4766061 P-value	7.02777E-05 Lower 95%	0.013697912	-0.001872648	0.013697912
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 atistics 0.998492047 0.996986368 0.995981824 0.002908748 5 df 1 3 4 Coefficients 0.005912632	0.001024669 -0.00274252 0.005059219 -0.006984491 0.003174855 55 0.00839716 2.53824E-05 0.008422543 Standard Error 0.002446319	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393 MS 0.00839716 8.46081E-06	992.4766061 P-value 0.094426607	7.02777E-05 Lower 95% -0.001872648	0.013697912	-0.001872648	0.013697912
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 atistics 0.998492047 0.996986368 0.995981824 0.002908748 5 df 1 3 4 Coefficients 0.005912632	0.001024669 -0.00274252 0.005059219 -0.006984491 0.003174855 55 0.00839716 2.53824E-05 0.008422543 Standard Error 0.002446319	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393 MS 0.00839716 8.46081E-06	992.4766061 P-value 0.094426607	7.02777E-05 Lower 95% -0.001872648	0.013697912	-0.001872648	0.013697912
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 atistics 0.998492047 0.996986368 0.995981824 0.002908748 5 df 1 3 4 Coefficients 0.005912632	0.001024669 -0.00274252 0.005059219 -0.006984491 0.003174855 55 0.00839716 2.53824E-05 0.008422543 Standard Error 0.002446319	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393 MS 0.00839716 8.46081E-06	992.4766061 P-value 0.094426607	7.02777E-05 Lower 95% -0.001872648	0.013697912	-0.001872648	0.013697912
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT	0.061166156 0.086573426 0.0128918877 0.171264328 0.21360978 atistics 0.998492047 0.996986368 0.995981824 0.002908748 5 df 1 3 4 Coefficients 0.005912632 0.00125517	0.001024669 -0.002274252 0.005059219 -0.006984491 0.003174855 55 0.00839716 2.53824E-05 0.008422543 Standard Error 0.002446319 3.98421E-05	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393 MS 0.00839716 8.46081E-06 t Stat 2.41695008 31.50359672	992.4766061 P-value 0.094426607	7.02777E-05 Lower 95% -0.001872648	0.013697912	-0.001872648	0.013697912
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 otistics 0.998492047 0.996586368 0.995981824 0.002908748 5 df 1 3 4 Coefficients 0.005912632 0.00125517	0.001024669 -0.002274252 0.00559219 -0.006984491 0.003174855 55 0.00839716 2.53824E-05 0.008422543 Standard Error 0.002446319 3.98421E-05	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393 MS 0.00839716 8.46081E-06 t Stat 2.41695008 31.50359672	992.4766061 P-value 0.094426607	7.02777E-05 Lower 95% -0.001872648	0.013697912	-0.001872648	0.013697912
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation	0.061166156 0.086573426 0.018818877 0.17264328 0.21360978 0.21360978 0.998492047 0.996986368 0.995881824 0.002908748 5 df 1 3 4 Coefficients 0.005912632 0.00125517	0.001024669 -0.002274252 0.005059219 -0.006984491 0.003174855 55 0.00839716 2.53824E-05 0.008422543 Standard Error 0.002446319 3.98421E-05	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393 MS 0.00839716 8.46081E-06 t Stat 2.41695008 31.50359672 Standard Residuals 0.825049796	992.4766061 P-value 0.094426607	7.02777E-05 Lower 95% -0.001872648	0.013697912	-0.001872648	0.013697912
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation 1 2	0.061166156 0.086573426 0.128918877 0.171264328 0.21360978 olistics 0.998492047 0.996986368 0.995981824 0.002908748 5 df 1 3 4 Coefficients 0.005912632 0.00125517 Predicted Y 0.018464334 0.037291886	0.001024669 -0.002774252 0.005059219 -0.006984491 0.003174855 55 0.00839716 2.53824E-05 0.008422543 Standard Error 0.002446319 3.98421E-05	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393 MS 0.066801393 MS 0.00839716 8.46081E-06 t Stat 2.41695008 31.50359672 Standard Residuals 0.825049796 -1.076681929	992.4766061 P-value 0.094426607	7.02777E-05 Lower 95% -0.001872648	0.013697912	-0.001872648	0.013697912
Observation 1 2 3 4 5 SUMMARY OUTPUT Regression St. Multiple R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation	0.061166156 0.086573426 0.018818877 0.17264328 0.21360978 0.21360978 0.998492047 0.996986368 0.995881824 0.002908748 5 df 1 3 4 Coefficients 0.005912632 0.00125517	0.001024669 -0.002274252 0.005059219 -0.006984491 0.003174855 55 0.00839716 2.53824E-05 0.008422543 Standard Error 0.002446319 3.98421E-05	0.215206972 -0.477651545 1.062566356 -1.466923175 0.666801393 MS 0.00839716 8.46081E-06 t Stat 2.41695008 31.50359672 Standard Residuals 0.825049796 -1.076681929 0.68505804	992.4766061 P-value 0.094426607	7.02777E-05 Lower 95% -0.001872648	0.013697912	-0.001872648	<u>C)</u> **Depart 95.0%* 0.013697912 0.001381966

Table A- 27 The single factor Anova test of sulfapyridine spiked at different concentrations (10, 25, 50, 75,and 100 ng/L) in MP A. The test was used to establish the absolute standard deviation (total), between-day and within-day variance of each concentration.

Anova: Single Factor					10 ng/L spiked in MP A	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY 1	10	0.142411107	0.014241111	3.55005E-06		
DAY 2	10	0.189685358	0.014241111	4.94164E-06		
DAY 3	10	0.23969925	0.023969925	1.2516E-05		
DAT 3	10	0.23903923	0.023909923	1.23101-03		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.000473374	2	0.000236687	33.80006659	4.45525E-08	3.35413082
Within Groups	0.000189069	27	7.00256E-06	00.000000		0.00 120002
Total	0.000662443	29				
Anova: Single Factor	0.000002110				25 ng/L spiked in MP A	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	0.097138493	0.032379498	1.30139E-05		
DAY 2	3	0.13293771	0.04431257	3.9183E-06		
DAY 3	3	0.11983793	0.039945977	2.17299E-07		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.000218717	2	0.000109358	19.1302985	0.002491162	5.1432528
Within Groups	3.4299E-05	6	5.71651E-06	15.1302303	0.002451102	5.4734340
Total	0.000253016	8				
Anova: Single Factor					50ng/L spiked in MP A	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	10	0.697569293	0.069756929	0.000190356		
DAY 2	10	0.737971607	0.073797161	1.86983E-05		
DAY3	10	0.762633273	0.076263327	6.71509E-05		
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
	0.000215796	2	0.000107898	1.17193093	0.325033166	3.35413082
Between Groups Within Groups	0.00215796	27	9.20684E-05	1.17193093	0.323033166	3.35413082
Total	0.002701642	29				
Anova: Single Factor					75 ng/L spiked in MP A	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	0.361624781	0.120541594	1.70651E-07		
DAY 2	3	0.363692407	0.121230802	0.000111328		
DAY3	3	0.352917301	0.121230802	4.70798E-05		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups Within Groups	2.17998E-05 0.000317157	2	1.08999E-05 5.28595E-05	0.206205105	0.819199843	5.1432528
			3.203335-03			
Total	0.000338957	8			100 ng/l spiles d in 100	
Anova: Single Factor					100 ng/L spiked in MP	•
SUMMARY	Count	Sum	Augrage	Varian		
Groups	Count	Sum	Average 0.166331393	Variance		
DAY1	10	1.662313819	0.166231382	0.000242045		
DAY 2 DAY 3	10 10	1.704115991 1.499561153	0.170411599 0.149956115	0.000259951 0.000145154		
	20	a	5.27550225	0.00013134		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.002335951	2	0.001167976	5.414396656	0.01053919	3.35413082
Within Groups	0.002333931	27	0.0001167976	J. 717JJUUJO	0.01033319	J.JJ-13U02
Tricinii Groups						

Table A- 28 The single factor Anova test of sulfapyridine spiked at different concentrations (10, 25, 50, 75, and 100 ng/L) in filtrated water sample from the Sognsvann creek. The test was used to establish the absolute standard deviation (*total*), between-day and within-day variance of each concentration.

Anova: Single Factor				10 ng/L spiked in filtrat	ed water sample	
_					•	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY 1	6	0.339464408	0.056577401	0.000123889		
DAY 2	6	0.287026461	0.047837743			
DAY 3	6	0.492943981	0.08215733	0.000221623		
ANOVA						
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.003817097	2	0.001908548		0.000431861	3,68232034
Within Groups	0.002109538	15	0.000140636			
	0.005005505					
Total	0.005926635	17				
Anova: Single Factor				25 ng/L spiked in filtrat	ed water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	0.225490239	0.075163413	0.000155124		
DAY 2	3	0.233576714	0.077858905	1.06689E-05		
DAY3	3	0.299625617	0.099875206	1.37944E-05		
ANOVA		-15		_		- ·
Source of Variation	SS 0.001103556	df	MS	F 200005704	P-value	F crit
Between Groups Within Groups	0.001102656 0.000359175	2	0.000551328 5.98625E-05	9.209905784	0.014832926	5.1432528
Within Groups	0.000339173	0	5.98025E-05			
Total	0.001461831	8				
Anova: Single Factor				50 ng/L spiked in filtrat	ed water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	0.649513239	0.108252207	0.000143104		
DAY 2	6	0.714244546	0.119040758	3.65586E-05		
DAY 3	6	1.047847941	0.174641324	0.000224007		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.015230661	2	0.007615331	56.59573625	1.0274E-07	3.68232034
Within Groups	0.002018349	15	0.000134557			
Total	0.01724901	17				
Anova: Single Factor	0.01724501	17		75 ng/L spiked in filtrat	ed water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	0.398426331	0.132808777	9.39823E-06		
DAY 2	3	0.438275412	0.146091804	0.000396224		
DAY 3	3	0.641816797	0.213938932	0.00101106		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.011361774	2	0.005680887	12.02998157	0.007952221	5.14325285
Within Groups	0.002833364	6	0.000472227			
Total	0.014195138	8				
Anova: Single Factor	0.014133130	0		100 ng/L spiked in filtra	ted water sample	
-						
SUMMARY Groups	Count	Sum	Average	Variance		
DAY1	Count 6	Sum	Average 0.191537322	<i>Variance</i> 0.000879618		
DAY1 DAY2	6	1.14922393 1.254753071	0.191537322	0.000879618		
DAY3	6	1.498146418	0.24969107	0.001017207		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.010673535	2	0.005336767	4.395694546	0.031443867	3.682320344
Within Groups	0.018211345	15	0.00121409			

Table A- 29 The single factor Anova test of sulfapyridine spiked at different concentrations (10, 25, 50, 75,and 100 ng/L) in non-filtrated water sample from the Sognsvann creek. The test was used to establish the absolute standard deviation (total), between-day and within-day variance of each concentration.

Anova: Single Factor				10 ng/L spiked in non-	filtrated water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	0.092632795	0.015438799 0.024859242	8.73419E-06		
DAY 2	6	0.149155452	0.024859242	1.69996E-05		
DAY3	6	0.127979902	0.021329984	1.60267E-05		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.000271813	2	0.000135906	9.763291551	0.001925451	3.682320344
Within Groups	0.000208802	15	1.39201E-05			
Total	0.000480615	17				
Anova: Single Factor				25 ng/L spiked in non	-filtrated water sample	
CUID 49 44 DV						
SUMMARY	Count	Sum	Augrage	Variance		
Groups DAY 1	3	0.097784073	Average 0.032594691	4.24081E-05		
DAY 2	3	0.075423845	0.032394691			
DAY3	3	0.138009123	0.046003041	2.06794E-05		
DATS	3	0.138003123	0.040003041	2.00794L-03		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.00067055	2	0.000335275	13.42753902	0.006090406	5.14325285
Within Groups	0.000149815	6	2.49692E-05			
Total	0.000820365	8				
Anova: Single Factor				50 ng/L spiked in non	-filtrated water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	0.392821746	0.065470291	0.000117039		
DAY 2	6	0.474195957	0.079032659			
DAY3	6	0.400125348	0.066687558			
	-					
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.000675642	2	0.000337821			3.682320344
Within Groups	0.001946754	15	0.000129784	2.00233003	0.207032237	5.002520511
Total	0.002622396	17				
Anova: Single Factor				75 ng/L spiked in non	-filtrated water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY 1	3	0.277918308	0.092639436			
DAY 2	3	0.305553723	0.101851241	1.61946E-05		
DAY 3	3	0.291810568	0.097270189	0.00022578		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.000127287	2	6.36436E-05	0.770185499	0.503820237	5.14325285
Within Groups	0.000495805	6	8.26342E-05			
Total	0.000623092	8				
Anova: Single Factor				100 ng/L spiked in no	n-filtrated water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	0.676995991	0.112832665			
DAY 2	6	0.948611237	0.158101873			
DAY 3	6	0.693782888	0.115630481	0.000205063		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Journal of Aditation						3.682320344
Between Groups	0.007721896	2	0.003860948	17.62437258	0.00011541	J.002J20J44
Between Groups Within Groups	0.007721896 0.00328603	15	0.003860948 0.000219069		0.00011541	3.08232034
					0.00011541	3.08232034

7.7.6 Xylazine (X)

The calculated mean, SD and RSD for xylazine spiked in MP A, filtrated and non-filtrated water sample from the Sognsvann creek are shown in **Table 30**. The regression analyses of xylazine in the matrices are shown in **Table 31**. The single factor Anova tests of the API in MP A, filtrated and non-filtrated water sample are shown in **Table A-32**, **A-33**, and **A-34**, respectively.

Table A- 30 The concentrations of xylazine (X) spiked in MP A (i), filtrated (ii) and no-filtrated (iii) water sample from the Sognsvann creek. The ratios between the peak area (A) to X and peak area to the IS (SM-IS) (sulfamethoxazole-(phenyl- $^{13}C_6$) was calculated for a single day. The mean of three days and the corresponding SD and RSD were calculated. The cLOD and cLOQ were calculated for the lowest concentration.

_)	cLOQ (ng/L)	cLOD (ng/L)	RSD %	SD	Mean A X/ A SM-IS	Concentration (ng/L)
6		2	3	0.001	0.055	10
			3	0.004	0.141	25
			10	0.027	0.273	50
			8	0.033	0.400	75
			17	0.091	0.538	100

Concentration (ng/L)	Mean A X/ A SM-IS	SD	RSD %	cLOD (ng/L)	cLOQ (ng/L)
10	0.16	0.02	11	10	33
25	0.20	0.01	4		
50	0.42	0.04	10		
75	0.56	0.03	5		
100	0.75	0.14	18		

Concentration (ng/L)	Mean A X/ A SM-IS	SD	RSD %	cLOD (ng/L)	cLOQ (ng/L)
10	0.08	0.01	15	6	21
25	0.18	0.02	9		
50	0.33	0.06	19		
75	0.54	0.08	15		
100	0.70	0.13	19		

Table A- 31 The regression analysis for xylazine spiked in MP A (A), filtrated (B) and no-filtrated (C). The *standard error* and the *coefficient of X variable 1* (slope of the curve) were used in calculations of cLOD and cLOQ. The units in all cases are ng/L and the confidence level was 95 %.

SUMMARY OUTPUT								
Regression Sto								$\mid \mathbf{A} \rangle \mid$
Multiple R	0.999855811							
R Square	0.999711643							
Adjusted R Square	0.999615523							
Standard Error	0.003811687							
Observations	5							
ANOVA				_	6			
	df	SS	MS		Significance F			
Regression	1	0.151112132	0.151112132	10400.7549	2.07837E-06			
Residual	3	4.35869E-05	1.4529E-05					
Total	4	0.151155719						
		z						
		Standard Error	t Stat	P-value	Lower 95%	Upper 95%		Upper 95.0%
Intercept	0.004387118	0.003205711		0.264621684	-0.005814884	0.014589119	-0.005814884	0.014589119
X Variable 1	0.005324589	5.221E-05	101.9840914	2.07837E-06	0.005158433	0.005490744	0.005158433	0.005490744
RESIDUAL OUTPUT								
Observation	Predicted Y	Residuals	Standard Residuals					
1		-0.002776777	-0.841188053					
2		0.003406048	1.031817578					
3	0.27061655	0.001996511	0.604816707					
4	0.403731267	-0.00421477	-1.276809159					
5	0.536845983	0.001588988	0.481362927					
SUMMARY OUTPUT					1	1	1	
SS.VIIVIANT OUTFUT								† \ †
Regression Sto	atistics							B)
Multiple R	0.995783881							1 22/
R Square	0.991585538]
Adjusted R Square	0.988780717							
Standard Error	0.026370484							
Observations	5							
ANOVA				_				
D	df	55	MS	F 252 52004 60	Significance F	-		
Regression	1		0.245844936	353.5290168	0.000328419			
Residual Total	3		0.000695402					
TOTAL	4	0.24/931143			-	+		
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.066007844		2.976256622					
X Variable 1	0.006791521	0.000361206	18.80236732	0.000328419				
RESIDUAL OUTPUT								
Observation	Predicted Y	Residuals	Standard Residuals					
1			0.958749409					
2			-1.49201677					
3			0.749796257					
4			-0.475040074					
5	0.745159914	0.005903751	0.258511179					
SUMMARY OUTPUT								
			0					(C)
Regression Sto								(C)
Regression Sto Multiple R	0.998236051							<u>C)</u>
Regression Sto Multiple R R Square	0.998236051 0.996475214							<u>C)</u>
Regression Sta Multiple R R Square Adjusted R Square	0.998236051 0.996475214 0.995300285							<u>C)</u>
Regression Ste Multiple R R Square Adjusted R Square Standard Error	0.998236051 0.996475214 0.995300285 0.017391925							<u>C)</u>
Regression Sta Multiple R R Square Adjusted R Square	0.998236051 0.996475214 0.995300285							<u>C)</u>
Regression Sto Multiple R R Square Adjusted R Square Standard Error Observations	0.998236051 0.996475214 0.995300285 0.017391925							<u>C)</u>
Regression Ste Multiple R R Square Adjusted R Square Standard Error	0.998236051 0.996475214 0.995300285 0.017391925			F	Significance F			<u>C)</u>
Regression Sta Multiple R Square Adjusted R Square Standard Error Observations ANOVA	0.998236051 0.996475214 0.995300285 0.017391925 5	SS	MS	F 848.115394	<i>Significance F</i> 1 8.89095E-0			<u>C)</u>
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA	0.998236051 0.996475214 0.995300285 0.017391925 5 df	SS 0.256537152		848.1153943				<u>C)</u>
Regression Sta Multiple R Square Adjusted R Square Standard Error Observations ANOVA	0.998236051 0.996475214 0.995300285 0.017391925 5	SS 0.256537152 0.000907437	<i>MS</i> 0.256537152	848.1153943				<u>C)</u>
Regression Sto Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual	0.998236051 0.996475214 0.995300285 0.017391925 5 df	SS 0.256537152 0.000907437	<i>MS</i> 0.256537152	848.1153943				<u>C)</u>
Regression Sto Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual	0.998236051 0.996475214 0.995300285 0.017391925 5 df	SS 0.256537152 0.000907437	<i>MS</i> 0.256537152	848.1153943			Lower 95.0%	(C)
Regression Sto Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual	0.998236051 0.996475214 0.995300285 0.017391925 5 df 1 3	\$\$ 0.256537152 0.000907437 0.257444589 \$\$tandard Error	<i>MS</i> 0.256537152 0.000302479	848.115394: P-value	1 8.89095E-05	Upper 95%		
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	0.998236051 0.996475214 0.995300285 0.017391925 5 df 1 3 4 Coefficients	SS 0.256537152 0.000907437 0.257444589 Standard Error 0.014626982	MS 0.256537152 0.000302479 t Stat	P-value 0.645708353	1 8.89095E-05 Lower 95% 1 -0.03910168	<i>Upper 95%</i> 0.05399749	1 -0.0391016	0.05399749
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	0.998236051 0.996475214 0.995300285 0.017391925 5 df 1 3 4 Coefficients 0.007447905	SS 0.256537152 0.000907437 0.257444589 Standard Error 0.014626982	MS 0.256537152 0.000302479 t Stat 0.509189484	P-value 0.645708353	1 8.89095E-05 Lower 95% 1 -0.03910168	<i>Upper 95%</i> 0.05399749	1 -0.0391016	0.05399749
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	0.998236051 0.996475214 0.995300285 0.017391925 5 df 1 3 4 Coefficients 0.007447905	SS 0.256537152 0.000907437 0.257444589 Standard Error 0.014626982	MS 0.256537152 0.000302479 t Stat 0.509189484	P-value 0.645708353	1 8.89095E-05 Lower 95% 1 -0.03910168	<i>Upper 95%</i> 0.05399749	1 -0.0391016	0.05399749
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1	0.998236051 0.996475214 0.995300285 0.017391925 5 df 1 3 4 Coefficients 0.007447905	SS 0.256537152 0.000907437 0.257444589 Standard Error 0.014626982	MS 0.256537152 0.000302479 t Stat 0.509189484	P-value 0.645708353	1 8.89095E-05 Lower 95% 1 -0.03910168	<i>Upper 95%</i> 0.05399749	1 -0.0391016	0.05399749
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	0.998236051 0.996475214 0.995300285 0.017391925 5 df 1 3 4 Coefficients 0.007447905	SS 0.256537152 0.000907437 0.257444589 Standard Error 0.014626982	MS 0.256537152 0.000302479 t Stat 0.509189484	P-value 0.645708353	1 8.89095E-05 Lower 95% 1 -0.03910168	<i>Upper 95%</i> 0.05399749	1 -0.0391016	0.05399749
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT	0.998236051 0.996475214 0.995300285 0.017391925 5 df 1 3 4 Coefficients 0.007447905 0.006937636	SS 0.256537152 0.000907437 0.257444589 Standard Error 0.014626982 0.000238223	MS 0.256537152 0.000302479 t Stat 0.509189484 29.12242081	P-value 0.645708353	1 8.89095E-05 Lower 95% 1 -0.03910168	<i>Upper 95%</i> 0.05399749	1 -0.0391016	0.05399749
Regression State Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation	0.998236051 0.996475214 0.995300285 0.017391925 5 df 1 3 4 Coefficients 0.007447905 0.006937636	\$\$ 0.256537152 0.000907437 0.257444589 \$\$tandard Error 0.014626982 0.000238223	MS 0.256537152 0.000302479 t Stat 0.509189484 29.12242081	P-value 0.64570835: 8.89095E-05	1 8.89095E-05 Lower 95% 1 -0.03910168	<i>Upper 95%</i> 0.05399749	1 -0.0391016	0.05399749
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation	0.998236051 0.996475214 0.995300285 0.017391925 5 df 1 3 4 Coefficients 0.007447905 0.006937636	\$\$ 0.256537152 0.0009074357 0.257444589 \$\$tandard Error 0.014626982 0.000238223	MS 0.256537152 0.000302479 t Stat 0.509189484 29.12242081 Standard Residuals 0.453228749	P-value 0.64570835: 8.89095E-01	1 8.89095E-05 Lower 95% 1 -0.03910168	<i>Upper 95%</i> 0.05399749	1 -0.0391016	0.05399749
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation	0.998236051 0.996475214 0.995300285 0.017391925 5 df 1 3 4 Coefficients 0.007447905 0.006937636	\$\$ 0.256537152 0.000907437 0.257444589 \$\$tandard Error 0.014626982 0.000238223 \$\$Residuals 0.006826463 0.001819356	MS 0.256537152 0.000302479 t Stat 0.509189484 29.12242081 Standard Residuals 0.453228749 0.120792344	P-value 0.64570835: 8.89095E-05	1 8.89095E-05 Lower 95% 1 -0.03910168	<i>Upper 95%</i> 0.05399749	1 -0.0391016	0.05399749
Regression State Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation	0.998236051 0.996475214 0.995300285 0.017391925 5 df 1 3 4 Coefficients 0.007447905 0.006937636 Predicted Y 0.076824269 0.180888813 0.354329721	SS 0.256537152 0.000907437 0.257444589 Standard Error 0.014626982 0.000238223 Residuals 0.006826463 0.001819356 -0.023608119	MS 0.256537152 0.000302479 t Stat 0.509189484 29.12242081 Standard Residuals 0.453228749 0.120792344 -1.567411748	P-value 0.64570835: 8.89095E-09	1 8.89095E-05 Lower 95% 1 -0.03910168	<i>Upper 95%</i> 0.05399749	1 -0.0391016	0.05399749
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 RESIDUAL OUTPUT Observation	0.998236051 0.996475214 0.995300285 0.017391925 5 df 1 3 4 Coefficients 0.007447905 0.006937636	\$\$ 0.256537152 0.000907437 0.257444589 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$	MS 0.256537152 0.000302479 t Stat 0.509189484 29.12242081 Standard Residuals 0.453228749 0.120792344	P-value 0.64570835: 8.89095E-01	1 8.89095E-05 Lower 95% 1 -0.03910168	<i>Upper 95%</i> 0.05399749	1 -0.0391016	0.05399749

Table A- 32 The single factor Anova test of xylazine spiked at different concentrations (10, 25, 50, 75, and 100 ng/L) in MP A. The test was used to establish the absolute standard deviation (total), between-day and within-day variance of each concentration.

Anova: Single Factor					10 ng/L spiked i	n MP A
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	10	0.523771817	0.052377182	1.43405E-05		
DAY 2	10	0.600478363	0.060047836	5.96901E-05		
DAY 3	10	0.521436639	0.052143664	4.0972E-05		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.000404565	2	0.000202282	5.276815171	0.011630806	3.35413082
Within Groups	0.001035023	27	3.83342E-05			
Total	0.001439587	29				
Anova: Single Factor					25 ng/L spiked i	n MP A
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	0.410070522	0.136690174	9.25355E-05		
DAY 2	3	0.39720109	0.132400363	0.000663928		
DAY3	3	0.460899326	0.153633109	0.000676346		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups Within Groups	0.000756295 0.002865618	2 6	0.000378147 0.000477603	0.791761092	0.495268682	5.1432528
		0				
Total Anova: Single Factor	0.003621913	8			50 ng/L spiked i	n MP A
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	10	2.609229485	0.260922949			
DAY2 DAY3	10 10	3.08003451 2.489127831	0.308003451 0.248912783	0.000280269 0.000257496		
DATS	10	2.403127031	0.246912763	0.000237496		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.019508416	2	0.009754208	33.94988488	4.26905E-08	3.35413082
Within Groups	0.007757423	27	0.000287312			
Total	0.027265839	29				
Anova: Single Factor	0.027203033	23			75 ng/L spiked i	n MP A
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	1.022651772	0.340883924			
DAY 2	3	1.434135147	0.478045049			
DAY3	3	1.138861551	0.379620517			
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.030001086	2	0.015000543	30.5600244	0.000714327	5.1432528
Within Groups	0.00294513	6	0.000490855			
Total	0.032946217	8			100 mg/t!!	in MC A
Anova: Single Factor					100 ng/L spiked	IN IVIP A
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	10	5.632648265	0.563264827	0.002014064		
DAY 2	10	5.745876658	0.574587666	0.001501759		
DATZ	10	4.77452419	0.477452419	0.000365402		
DAY3						
DAY3						
DAY 3 ANOVA				_		
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
DAY 3 ANOVA		df 2 27	MS 0.028212054 0.001293742		<i>P-value</i> 2.30918E-06	

Table A- 33 The single factor Anova test of xylazine spiked at different concentrations (10, 25, 50, 75,and 100 ng/L) in filtrated water sample from the Sognsvann creek. The test was used to establish the absolute standard deviation (total), between-day and within-day variance of each concentration.

Anova: Single Factor				10 ng/L spiked in filtr	ated water sample	
SUMMARY	Count	C	A	1/		
Groups DAY 1	Count 6	Sum 0.873850621	Average 0.14564177	Variance 0.0009231		
DAY 2	6	0.85219067	0.142031778	0.000342992		
DAY3	6	1.078691691	0.179781948	0.000342332		
DAT 5		1.070031031	0.273702340	0.001133703		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.005207318	2	0.002603659	3.246627619	0.067362465	3.682320344
Within Groups	0.012029371	15	0.000801958			
Total	0.017236689	17				
Anova: Single Factor				25 ng/L spiked in filtr	ated water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	0.724551007	0.241517002	0.001058118		
DAY 2	3	0.828140889	0.276046963	0.001347116		
DAY3	3	0.867971081	0.289323694	0.000178345		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.00365407	2	0.001827035	2.121516098	0.200987079	5.14325285
Within Groups	0.005167158	6	0.000861193			
Total	0.008821227	8				
Anova: Single Factor				50 ng/L spiked in filtr	ated water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY 1	6	2.363750969	0.393958495	0.004023503		
DAY 2	6	2.455193773	0.409198962	0.000441835		
DAY3	6	2.789787695	0.464964616	0.000741584		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.016767898	2	0.008383949	4.830464135	0.024022256	3.682320344
Within Groups	0.026034607	15	0.00173564			
Total	0.042802506	17				
Anova: Single Factor				75 ng/L spiked in filtr	ated water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY 1	3	1.537917259	0.512639086	0.004637908		
DAY 2	3	1.711506621	0.570502207	0.001272415		
DAY3	3	1.8312846	0.6104282	0.000156149		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.014504936	2	0.007252468	3.586500678	0.094492979	5.14325285
Within Groups	0.012132943	6	0.002022157			
Total	0.02663788	8				
Anova: Single Factor				100 ng/L spiked in fil	trated water sample	2
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY 1	6	3.909643282	0.651607214	0.000965018		
DAY 2	6	4.674800562	0.779133427	0.005571077		
DAY3	6	4.93470213	0.822450355	0.001814532		
ANOVA						
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
ANOVA Source of Variation Between Groups	SS 0.094653341	df 2	MS 0.04732667	F 17.00231685	<i>P-value</i> 0.000139285	F crit 3.682320344
Source of Variation						

Table A- 34 The single factor Anova test of xylazine spiked at different concentrations (10, 25, 50, 75, and 100 ng/L) in non-filtrated water sample from the Sognsvann creek. The test was used to establish the absolute standard deviation (*total*), between-day and within-day variance of each concentration.

SUMMARY Groups	Anova: Single Factor			10 ng/L spiked in non-filtr	ated water sample	3	
Groups	Allova. Single Factor			10 ng/E spiked in non-ind	atea water sample		
DAY1 6 0.314276227 0.052379371 7.549866.06 DAY2 6 0.628747 0.009379245 0.00046737 DAY3 6 0.361561475 0.09393379 0.00039076 ANOVA 6 0.361561475 0.09393379 0.00039076 ANOVA 6 0.000318982 2 0.006394991 2.070810281 4.843465.05 3.682120344 Within Groups 0.000318982 1 2 0.006394991 2.070810281 4.843465.05 3.682120344 Within Groups 0.00318401 15 0.000221893 17 Total 0.001328401 15 0.000221893 17 Convert Sum Average Variance DAY1 3 0.0888492 0.125661360 0.00038867 0.0003877 DAY2 3 0.671849667 0.125881889 0.000155774 ANOVA 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SUMMARY						
DAY2 6 6 0.5288747 0.104973245 0.000149737 6 0.561861475 0.093393579 0.00019076 Source of Variation S5 df MS F P-value F crit Between Groups 0.00318982 2 0.00059493 0.70810381 4.843465-65 3.882320344 Total 0.012518383 17 Total 0.012518383 17 Communication S5 Sum Average Variance DAY1 3 0.87944667 0.22981889 0.00013571 DAY3 3 0.87944667 0.22981889 0.00013571 DAY3 3 0.8894072 0.104481256 0.00058074 ANOVA Source of Variation S5 df MS F P-value F crit Between Groups 0.0013962867 2 0.0006888134 18.63741997 0.00266591 5.1433288 ANOVA Sum Average Variance DAY1 8 0.013962867 2 0.000888134 18.63741997 0.00266591 5.1433288 ANOVA Sum Average Variance DAY3 8 0.013962867 2 0.000888134 18.63741997 0.00266591 5.1433288 ANOVA Sum Average Variance DAY1 6 1.580515785 0.185412098 0.000085964 DAY1 6 1.580515785 0.185412098 0.000085964 DAY2 5 0.21747715 0.185428610 0.00068964 DAY3 6 2.055005338 0.34150089 0.000689564 DAY3 6 2.055005338 0.34150089 0.000689564 DAY3 6 2.05500538 0.34150089 0.000689564 DAY3 6 2.05500538 0.34150089 0.000689564 DAY3 6 2.05500538 0.34150089 0.000689564 DAY3 6 3.14150089 0.000689569 DAY3 6 3.14150089 0.000689565 DAY3 6 3.14150089 0.000689565 DAY3 6 3.14150089 0.000689565 DAY3 6 3.14150089 0.000689565 DAY3 6 4.14160089 0.00069566 DAY3 6 4.1416	Groups	Count	Sum	Average	Variance		
ANOVA ANOVA Source of Variation Source of Variat	DAY 1						
Source of Variation SS	DAY 2	6	0.62987547	0.104979245			
Source of Variation	DAY3	6	0.561561475	0.093593579	0.00019076		
Source of Variation	ANOVA						
Between Groups		SS	df	MS	F	P-value	F crit
Total							
SUMMARY	Within Groups				20.70010101	4.043402-03	3.002320344
SUMMARY	Tatal	0.013510303	17				
Average	Anova: Single Factor	0.012316363	17		ated water sample	2	
Average	SLIMMARY						
DAY1 3 0.388984002 0.12961354 0.000438567 DAY2 3 0.67945667 0.223961880 0.000135171 DAY3 3 0.583443767 0.194481256 0.000550174 ANIOVA 3 0.583443767 0.194481256 0.000550174 ANIOVA 5 ourse of Variation SS of MS F P-value F-crit Enterency of Variation SS outside of Variation SS on MS P-value SIMMARY SUBSECT STAPPEN ST		Count	Sum	Average	Variance		
DAY2 3 0.57945667 0.22394889 0.000135371 DAY3 3 0.583443767 0.194481256 0.00055074 ANOVA Source of Variation SS of MS F P-value F-crit DAY3 0.002248424 6 0.000374737 Total 0.015216691 8 Anova: Single Factor SUMMARY Groups Count Sum Average Variance DAY3 6 2.33746715 0.362445298 0.000688519 ANOVA Source of Variation SS of MS F P-value F-crit DAY3 6 2.05506338 0.34250089 0.000688519 ANOVA Source of Variation SS of MS F P-value F-crit DAY3 1.0064474311 17 Total 0.064474311 17 Anova: Single Factor Sum Average Variance DAY3 3 1.83219146 0.610730615 0.00112692 ANOVA Surve of Variation SS ON SUMMARY Groups Count Sum Average Variance DAY3 3 1.832160275 0.610566758 0.00112692 ANOVA Surve of Variation SS ON SUMMARY Groups Count Sum Average Variance DAY3 3 1.832160275 0.610566758 0.00112692 ANOVA Surve of Variation SS ON SUMMARY Groups Count Sum Average Variance DAY3 3 1.832160275 0.610566758 0.00112692 ANOVA Surve of Variation SS ON SUMMARY Groups Count Sum Average Variance DAY3 3 1.832160275 0.610566758 0.00112692 ANOVA Surve of Variation SS ON SUMMARY Groups Count Sum Average Variance DAY3 3 1.832160275 0.610566758 0.00112692 ANOVA Surve of Variation SS ON SUMMARY Groups Count Sum Average Variance DAY3 3 1.832160275 0.610566758 0.00112692 ANOVA Surve of Variation SS ON SUMMARY Groups Count Sum Average Variance DAY3 3 1.832160275 0.610566758 0.00112692 ANOVA Surve of Variation SS ON SUMMARY Groups Count Sum Average Variance DAY3 3 1.832160275 0.610566758 0.00112692 ANOVA Surve of Variation SS ON SUMMARY Groups Count Sum Average Variance DAY3 0.6 4.522123452 0.753687242 0.0006696 ANOVA Surve of Variation SS ON SUMMARY Groups Count Sum Average Variance DAY3 0.6 4.522123452 0.753687242 0.00066966 ANOVA Surve of Variation SS ON SUMMARY Groups Count Sum Average Variance DAY3 0.6 4.522123452 0.753687242 0.00066966 ANOVA Survey Summary							
ANOVA Source of Variation SS							
ANOVA Source of Variation SS df MS F P-value F-crit Between Groups 0.013968267 2 0.006984134 18.63741397 0.00266531 5.14325285 Within Groups 0.002248424 6 0.003374737 Total O.016216691 8 Anove: Single Factor SUMMARY Summary 6 2.018767368 1 1.80515785 0.263419298 0.00045664 DAY1 6 1.580515785 0.263419298 0.00045664 DAY2 6 2.317467716 0.386244199 0.00042129 DAY3 6 2.055005318 0.34250089 0.00068664 ANOVA Source of Variation SS df MS F P-value F-crit Between Groups 0.046506944 2 0.023253472 19.41308742 6.89022E-05 3.682320344 Within Groups 0.01967368 15 0.001197825 Total 0.064474311 17 75 ng/L spiked in non-filtrated water sample SUMMARY Groups Count Sum Average Variance DAY1 3 1.240623974 0.413343225 0.0006967 ANOVA Summary Groups 0.0447 3 1.83121846 0.610730615 0.00170938 DAY3 3 1.831760275 0.610586758 0.00112692 ANOVA Source of Variation SS df MS F P-value F-crit Between Groups 0.06196257 0.003854521 37.62386555 0.000402736 5.14325285 DAY3 3 1.831760275 0.610586758 0.00112692 Total 0.083905298 8 ANOVA Source of Variation SS df MS F P-value F-crit Between Groups 0.0077709042 2 0.03854521 37.62386555 0.000402736 5.14325285 DAY3 3 1.831760275 0.610586758 0.00112692 Total 0.083905298 8 ANOVA Source of Variation SS df MS F P-value F-crit Between Groups 0.006196257 6 0.001032709 Total 0.083905298 8 ANOVA 6 4.524037499 0.754007858 0.001155477 DAY2 6 4.524037499 0.754007858 0.001155477 DAY3 6 6 4.524037499 0.754007858 0.001554606 3.682320344 Within Groups 0.00289552 15 0.004056564 35.48722971 2.055485.06 3.682320344 Within Groups 0.00289552 15 0.005156569 35.48722971 2.055485.06 3.682320344							
Source of Variation SS	DAY 3	3	0.583443767	0.194481256	0.000550174		
Source of Variation SS	ANOVA						
Detween Groups		SS	df	MS	F	P-value	F crit
Total							
SUMMARY	Within Groups				10.03741337	0.00200331	3.14323203
SUMMARY	Total	0.016216691	8				
Mate	Anova: Single Factor			50 ng/L spiked in non-filtr	ated water sample	2	
Mate	SUMMARY						
DAY1 6 1.580515785 0.26341228 0.000463664 DAY2 6 6 2.337467716 0.386244619 0.0024129 DAY3 6 2.055005338 0.34250089 0.000688519 ANOVA Source of Variation SS df MS F P-value F-crit Between Groups 0.046506944 2 0.023253472 19.41308742 6.89022E-05 3.682320344 Within Groups 0.017967368 15 0.001197825 Total 0.064474311 17 Anova: Single Factor SUMMARY Groups Count Sum Average Variance DAY1 3 1.240629674 0.413543225 0.00026927 DAY3 3 1.831760275 0.610586758 0.00112692 DAY3 3 1.831760275 0.610586758 0.00112692 ANOVA Source of Variation SS df MS F P-value F-crit Between Groups 0.077709042 2 0.03854521 37.62386555 0.000402736 5.14325285 Within Groups 0.008196257 6 0.001032709 Total 0.083905298 8 100 ng/L spiked in non-filtrated water sample SUMMARY Groups Count Sum Average Variance DAY1 0.083905298 8 100 ng/L spiked in non-filtrated water sample SUMMARY Groups Count Sum Average Variance DAY1 0.083905298 8 100 ng/L spiked in non-filtrated water sample SUMMARY Groups Count Sum Average Variance DAY1 0.083905298 8 100 ng/L spiked in non-filtrated water sample SUMMARY Groups Count Sum Average Variance DAY1 0.006196257 0 0.0002726721 DAY2 0.002726721 DAY2 0.002726721 DAY3 0.002726721 DAY2 0.002726721 DAY3 0.002726721 DAY3 0.002726721 DAY4 0.435407149 0.754007858 0.001155427 DAY3 0.0069666 ANOVA Source of Variation SS df MS F P-value F-crit DAY2 0.002736721 DAY3 0.002736721 DAY3 0.002736721 DAY4 0.355466214 0.589277702 0.002726721 DAY5 0.007466624 35.48722971 2.05548E-06 3.682320344 Within Groups 0.008333248 2 0.004166624 35.48722971 2.05548E-06 3.682320344 Within Groups 0.002895542 15 0.001526369		Count	Sum	Average	Variance		
DAY 2 6 2.317467716 0.386244619 0.00241129 DAY 3 6 2.055005338 0.34250089 0.000688519 ANOVA Source of Variation SS df MS F P-value F-crit Between Groups 0.046506944 2 0.023253472 19.41308742 6.89022E-05 3.682320344 Within Groups 0.017967368 15 0.001197825 Total 0.064474311 17 Anova: Single Factor SUMMARY Groups Count Sum Average Variance DAY 1 3 1.230629674 0.413543225 0.00026927 DAY 2 3 1.832191846 0.610730615 0.001701938 DAY 3 1.831760275 0.610586758 0.00112692 ANOVA Source of Variation SS df MS F P-value F-crit Between Groups 0.077709042 2 0.038854521 37.62386555 0.000402736 5.14325285 Within Groups 0.006196257 6 0.001032709 Total 0.083905298 8 Anova: Single Factor SUMMARY Groups Count Sum Average Variance DAY 1 0.083905298 8 Anova: Single Factor SUMMARY Groups Count Sum Average Variance DAY 1 0.083905298 0.00012692 Total 0.083905298 0.00012692 Average Variance DAY 1 0.083905298 0.00012692 Average Variance DAY 1 0.083905298 0.00012692 Average Variance DAY 1 0.000126257 0.0001032709 Total 0.000402736 5.14325285 ANOVA Source of Variation SC Sum Average Variance DAY 1 0.0001032709 Average Variance DAY 2 0.0001032709 Average Variance DAY 2 0.0001032709 Average Variance DAY 3 0.0001032709	DAY 1						
ANOVA ANOVA SUMMARY Groups Count SUM ANOVA ANOVA ANOVA Source of Variation SS df MS F P-value F crit Between Groups 0.046506944 2 0.023253472 19.41308742 6.89022E-05 3.682320344 Within Groups O.017967368 15 O.001197825 Total O.064474311 17 Anova: Single Factor SUM Average Variance Groups O.0026927 DAY1 3 1.240629674 0.413543225 0.00026927 DAY2 3 1.831760275 O.610586758 O.00112692 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 0.077709042 2 0.038854521 37.62386555 0.000402736 5.14325286 Within Groups O.06196257 O.00132709 DAY3 Anova: Single Factor SUMMARY Groups O.063905298 8 Anova: Single Factor SUMMARY Groups Count Sum Average Variance JON ng/L spiked in non-filtrated water sample SUMMARY Groups O.0038905298 Anova: Single Factor DAY1 6 3.535666214 O.589277702 O.002726721 DAY2 6 4.524047149 O.754007858 O.001155427 DAY3 6 4.522123452 O.753687242 O.00069696 ANOVA Source of Variation SS df MS F P-value F crit F crit SUMMARY Groups Count Sum Average Variance JON ng/L spiked in non-filtrated water sample Average Variance JON ng/L spiked in non-filtrated water sample SUMMARY Groups Average Variance JON ng/L spiked in non-filtrated water sample SUMMARY F P-value F crit Average Variance JON ng/L spiked in non-filtrated water sample Average Variance JON ng/L spiked in non-filtrated water sample SUMMARY F P-value F crit Average Variance JON ng/L spiked in non-filtrated water sample SUMMARY F P-value F crit Average Variance JON ng/L spiked in non-filtrated water sample SUMMARY JON ng/	DAY 2	6	2.317467716		0.00244129		
Source of Variation SS	DAY 3	6	2.055005338	0.34250089	0.000688519		
Source of Variation SS							
Between Groups			-16	A46		0	C - uit
Note							
Anova: Single Factor T5 ng/L spiked in non-fil trated water sample SUMMARY Sum Average Variance	Within Groups				19.41308742	6.89022E-05	3.682320344
Anova: Single Factor T5 ng/L spiked in non-fil trated water sample SUMMARY Sum Average Variance	Tatal	0.064474211	17				
SUMMARY Sum Average Variance		0.064474311	1/		ated water sample	3	
Note	_			75 Hg/ 2 Spilled III III	area marei sampi		
DAY1 3 1.240629674 0.413543225 0.00026927 DAY2 3 1.832191846 0.610730615 0.001701938 DAY3 3 1.831760275 0.610586758 0.00112692 ANOVA Source of Variation SS df MS F P-value F crit SUMMARY Groups Count Sum Average Variance DAY1 6 3.535666214 0.589277702 0.002726721 DAY2 6 4.524047149 0.754007858 0.001155427 DAY3 6 4.522123452 0.753687242 0.00069696 ANOVA Source of Variation SS df MS F P-value F crit ANOVA Source of Variation SS D MS F P-value F crit SUMMARY S DAY3 F P-value F crit ANOVA Source of Variation SS D DAY3 F P-value F crit ANOVA Source of Variation SS D DAY3 SOURCE SUMBARY SUMBER SUMBARY SUMBA							
DAY 2 3 1.832191846 0.610730615 0.001701938 DAY 3 3 1.831760275 0.610586758 0.00112692 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 0.077709042 2 0.038854521 37.62386555 0.000402736 5.14325285 Within Groups 0.083905298 8 Anova: Single Factor 100 ng/L spiked in non-filtrated water sample SUMMARY Groups Count Sum Average Variance DAY 1 6 3.535666214 0.589277702 0.002726721 DAY 2 6 4.524047149 0.754007858 0.001155427 DAY 3 6 4.522123452 0.753687242 0.00069696 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 0.108333248 2 0.054166624 35.48722971 2.05548E-06 3.682320344 Within Groups 0.022895542 15 0.001526369	· · · · · · · · · · · · · · · · · · ·						
DAY3 3 1.831760275 0.610586758 0.00112692							
ANOVA Source of Variation SS df MS F P-value F crit Between Groups 0.077709042 2 0.038854521 37.62386555 0.000402736 5.14325285 Within Groups 0.083905298 8 Anova: Single Factor 100 ng/L spiked in non-filtrated water sample SUMMARY	DAY 2 DAY 3						
Source of Variation SS df							
Source of Variation SS df	ANOVA						
Between Groups 0.077709042 2 0.038854521 37.62386555 0.000402736 5.14325288 Within Groups 0.006196257 6 0.001032709 0.000402736 5.14325288 Total 0.083905298 8 100 ng/L spiked in non-filtrated water sample SUMMARY Groups Count Sum Average Variance DAY 1 6 3.535666214 0.589277702 0.002726721 DAY 2 6 4.524047149 0.754007858 0.001155427 DAY 3 6 4.522123452 0.753687242 0.00069696 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 0.108333248 2 0.054166624 35.48722971 2.05548E-06 3.682320344 Within Groups 0.022895542 15 0.001526369 35.48722971 2.05548E-06 3.682320344	Source of Variation	SS	df	MS F		P-value	F crit
Note	Between Groups		2		37.62386555		5.14325285
SUMMARY Sum Average Variance DAY 1 6 3.535666214 0.589277702 0.002726721 DAY 2 6 4.524047149 0.754007858 0.001155427 DAY 3 6 4.522123452 0.753687242 0.00069696	Within Groups	0.006196257	6	0.001032709			
SUMMARY Sum Average Variance DAY 1 6 3.535666214 0.589277702 0.002726721 DAY 2 6 4.524047149 0.754007858 0.001155427 DAY 3 6 4.522123452 0.753687242 0.00069696	Total	0.083905298	8				
Groups Count Sum Average Variance DAY 1 6 3.535666214 0.589277702 0.002726721 DAY 2 6 4.524047149 0.754007858 0.001155427 DAY 3 6 4.522123452 0.753687242 0.00069696 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 0.108333248 2 0.054166624 35.48722971 2.05548E-06 3.682320342 Within Groups 0.022895542 15 0.001526369	Anova: Single Factor			100 ng/L spiked in non-filt	trated water samp	le	
Groups Count Sum Average Variance DAY 1 6 3.535666214 0.589277702 0.002726721 DAY 2 6 4.524047149 0.754007858 0.001155427 DAY 3 6 4.522123452 0.753687242 0.00069696 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 0.108333248 2 0.054166624 35.48722971 2.05548E-06 3.682320342 Within Groups 0.022895542 15 0.001526369	SUMMARY						
DAY1 6 3.535666214 0.589277702 0.002726721 DAY2 6 4.524047149 0.754007858 0.001155427 DAY3 6 4.522123452 0.753687242 0.00069696 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 0.108333248 2 0.054166624 35.48722971 2.05548E-06 3.682320344 Within Groups 0.022895542 15 0.001526369		Count	Sum	Average	Variance		
DAY 2 6 4.524047149 0.754007858 0.001155427 DAY 3 6 4.522123452 0.753687242 0.00069696 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 0.108333248 2 0.054166624 35.48722971 2.05548E-06 3.682320342 Within Groups 0.022895542 15 0.001526369	DAY 1	6					
DAY3 6 4.522123452 0.753687242 0.00069696 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 0.108333248 2 0.054166624 35.48722971 2.05548E-06 3.682320344 Within Groups 0.022895542 15 0.001526369	DAY 2						
Source of Variation SS df MS F P-value F crit Between Groups 0.108333248 2 0.054166624 35.48722971 2.05548E-06 3.682320344 Within Groups 0.022895542 15 0.001526369 2.00548E-06 3.682320344	DAY3						
Source of Variation SS df MS F P-value F crit Between Groups 0.108333248 2 0.054166624 35.48722971 2.05548E-06 3.682320344 Within Groups 0.022895542 15 0.001526369 2.00548E-06 3.682320344							
Between Groups 0.108333248 2 0.054166624 35.48722971 2.05548E-06 3.682320344 Within Groups 0.022895542 15 0.001526369 2 0.001526369 <t< td=""><td>ANOVA</td><td>CC</td><td>-12</td><td>A4C</td><td>-</td><td>D</td><td>C</td></t<>	ANOVA	CC	-12	A4C	-	D	C
Within Groups 0.022895542 15 0.001526369							
Total 0.13122879 17	Within Groups				ob.48/229/1	Z.U5548E-06	3.082320344
	Total	0.13122879	17				

7.7.7 Trimethoprim (TM)

The calculated mean, SD and RSD for trimethoprim spiked in MP A, filtrated and non-filtrated water sample from the Sognsvann creek are shown in **Table A-35**. The regression analyses of trimethoprim in the matrices are shown in **Table A-36**. The single factor Anova tests of the API in MP A, filtrated and non-filtrated water sample are shown in **Table A-37**, **A-38**, **and A-39**, respectively.

Table A- 35 The concentrations of trimethoprim (TM) spiked in MP A (i), filtrated (ii) and no-filtrated (iii) water sample from the Sognsvann creek. The ratios between the peak area (A) to TM and peak area to the IS (SM-IS) (sulfamethoxazole-(phenyl- 13 C₆) was calculated for a single day. The mean of three days and the corresponding SD and RSD were calculated. The cLOD and cLOQ were calculated for the lowest concentration.

Concentration (ng/L)	Mean A TM/ A SM-IS	SD	RSD %	cLOD (ng/L)	cLOQ (ng/L)
10	0.4	0.358	86	9	26
25	1.1	1.045	88		
50	1.9	2.428	124		
75	2.8	2.019	71		
100	3.8	6.031	156		

Concentration (ng/L)	Mean A TM/ A SM-IS	SD	RSD %	cLOD (ng/L)	cLOQ (ng/L)	
10	1.56	1.28	82	13	39	
25	2.29	0.86	38			
50	5.66	13.77	243			
75	7.65	8.88	116			
100	9.71	13.31	137			ii)
•						11)

Concentration (ng/L)	Mean A TM/ A SM-IS	SD	RSD %	cLOD (ng/L)	cLOQ (ng/L)
1	0.65	0.30	46	9	28
2	1.40	0.34	0		
5	2.49	2.62	105		
7	3.92	0.09	2		
10	4.72	4.37	93		

Table A- 36 The regression analysis for trimethoprim spiked in MP A (A), filtrated (B) and no-filtrated (C) water sample from the Sognsvann creek. The *standard error* and the *coefficient of X variable* 1 (slope of the curve) were used in calculations of cLOD and cLOQ. The units in all cases are ng/L and the confidence level was 95 %.

Intercept	SUMMARY OUTPUT								A \
Risplace	Regression S								A
Secretary									
Marchest									
Descriptions									
NOONA									
Back									
Regression 1	ANOVA	df	cc	MS	F	Significance	-		
Conference Con	Regression								
Continue						754 0.00010	0211		
Coefficients Standard Error F.Stat P-value Lower 95% Lower 95.0% Lower 9					/1				
Compared 0.141264756 0.094725941 1.491295797 0.232662797 0.161015407 0.447274779 0.601954664 0.001159044 0.0									
Continued Cont									
Disservation									
Diservation	(Variable 1	0.036449594	0.0015427	23.626230	75 0.000166	0.03153	9844 0.04135	9343 0.031	1539844 0.041359
Diservation									
Diservotion	RESIDUAL OUTPUT								
1 0.50576095									
1									
1									
MANARY OUTPUT Management			0.13275406	1.3609912	39				
MANARY OUTPUT Management									
S 3.786224143 0.046756734 0.479348839									
Bay									
Bay									
Bay	UMMARY OUTPLIT				1				
Autiple R 0.99681505									
Square 0.993640243	Regression Sta	ntistics							\perp R)
Mily									<u> </u>
Indicate from Continue Cont									_
Descriptions S Significance									
NOVA df SS M5 F Significance									
SS	bservations	5							
SS	ANOVA								
Residual 3									
Total					468.7161731	0.000215665			
Coefficients Standard Error F Stat				0.024331173					
Coefficients	ULdi	4	11.4//408						
Coefficients Coef									
C C C C C C C C C C									
C	(Variable 1	0.046256513	0.002136574	21.64985388	0.000215665	0.039456981	0.053056045	0.039456981	0.053056045
C									
C	RESIDUAL OUTPUT								
1 0.693721567									
2 1.387569264 0.013355412 0.09886558 3 2.54382092 -0.049798772 -0.368643409 4 3.70039492 0.220947992 1.635603006 5 4.856807748 -0.13966664 -1.033904919 SUMMARY OUTPUT Regression Statistics Wultiple R 0.993893465 8 Square 0.987824219 4 0.987856525 8 Standard Error 0.441796156 9 Diservations 5 S MS F Significance F Regression 1 47.50594544 47.50594544 243.3907676 0.000572306 Regression 1 47.50594544 47.50594544 243.3907676 0.000572306 Regression 1 47.50594544 47.50594544 243.3907676 0.000572306 Regression 1 48.09149697 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95. Lower 95.0% Upper 95% Lower 95.0% Upper 95% Lower 95.0% Upper 95% Intercept 0.463750653 0.371560042 1.248117667 0.300528335 -0.71871923 1.646220535 -0.71871923									
3 2.543982092 -0.049798772 -0.3686434409									
4 3.70039492 0.220947992 1.635603006 5 4.856807748 -0.13966664 -1.033904919									
\$ 4.856807748									
C C C C C C C C C C									
C C C C C C C C C C	3		0.133000004	1.033904913					
C C C C C C C C C C									
Multiple R 0.993893465 ASquare 0.987824219 ASquare 0.983765625 Standard Error 0.441796156 Disservations 5 ANOVA ANOVA ARGREGISSION 1 47.50594544 47.50594544 243.3907676 0.000572306 Regression 1 47.50594544 47.50594544 243.3907676 0.000572306 Residual 3 3 0.58555153 0.195183843 Fotal 4 48.09149697 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95. Intercept 0.463750653 0.371560042 1.248117667 0.300528335 -0.71871923 1.646220535 -0.71871923 1.646	SUMMARY OUTPUT								
Multiple R 0.993893465									\mathbf{C}
Asquare 0.987824219									<u> </u>
Modulated R Square 0.983765625									
Adjusted R Square 0.983765625 United R Square 0.941796156 United R Square 0.441796156 United R Square R Significance F Significance F United R Square R R Squar									
ANOVA		0.983765625							L
NOVA Standard Error 1.54t P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Uppe									
ANOVA df SS MS F Significance F kegression 1 47.50594544 47.50594544 243.3907676 0.000572306 lesidual 3 0.58555153 0.195183843 fotal 4 48.09149697 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95. ntercept 0.463750653 0.371560042 1.248117667 0.300528335 -0.71871923 1.646220535 -0.71871923 1.646									
MS F Significance F		3							
Regression 1 47.50594544 47.50594544 243.3907676 0.000572306 Image: Composition of the compositio	NOVA								
Residual 3 0.58555153 0.195183843 Upper 95. Uppe	logranion								
fotal 4 48.09149697 Lower 95.00 Upper 95.					243.390/6/6	0.000572306			
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0 ntercept 0.463750653 0.371560042 1.248117667 0.300528335 -0.71871923 1.646220535 -0.71871923 1.646220535				0.195183843					
ntercept 0.463750653 0.371560042 1.248117667 0.300528335 -0.71871923 1.646220535 -0.71871923 1.646		4	40.02143037						
									Upper 95.0%
(Variable 1 0.094408344 0.006051434 15.60098611 0.000572306 0.075149979 0.113666709 0.075149979 0.113									
								0.07514997	
ESIDUAL OUTPUT	ECIDITAL OLITOUT								

Standard Residuals 0.402335635 -1.400568792

1.236891875 0.27951434

Residuals 0.153936307 -0.535866996

0.473243112 0.106944058

Observation

Predicted Y

1.407834089 2.823959245 5.184167836 7.544376428

9.90458502

Table A- 37 The single factor Anova test of trimethoprim spiked at different concentrations (10, 25, 50, 75,and 100 ng/L) in MP A. The test was used to establish the absolute standard deviation (total), between-day and within-day variance of each concentration.

Anova: Single Factor					10 ng/L spiked in MP A	
SUMMARY	Court	C	A	Maniana		
Groups	Count	Sum	Average	Variance		
DAY1	10	2.990178405	0.299017841	0.000630243		
DAY 2	10	5.567039731	0.556703973	0.000904735		
DAY 3	10	3.957702598	0.39577026	0.000612076		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.338876112	2	0.169438056	236.7494954	7.61145E-18	3.35413082
Within Groups	0.019323494	27	0.000715685			
Total	0.358199606	29				
Anova: Single Factor	0.338133000	25			25 ng/L spiked in MP A	
SUMMARY Groups	Count	Sum	Average	Variance		
	3					
DAY1 DAY2	3	2.560308657 4.819655875	0.853436219	0.00164999 0.077261226		
			1.606551958			
DAY3	3	3.28736345	1.095787817	0.000325295		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.886797622	2	0.443398811	16.78767045	0.003484815	5.1432528
Within Groups	0.158473022	6	0.02641217	10.76707043	0.003464613	5.1432520
Total Anova: Single Factor	1.045270644	8			50 ng/L spiked in MP A	
Allova. Single Factor					30 lig/L spiked iii ivir A	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	10	17.27359174	1.727359174	0.019346688		
DAY 2	10	23.14059709	2.314059709	0.005676576		
DAY3	10	18.1422268	1.81422268	0.021952141		
ANOVA	SS	al E	MS	F	P-value	C auit
Source of Variation	2.005332809	df 2	1.002666404	64.03349305	5.64157E-11	3.354130829
Between Groups Within Groups	0.422778637	27	0.015658468	64.03349303	5.0415/E-11	3.33413062
·						
Total	2.428111446	29				
Anova: Single Factor					75 ng/L spiked in MP A	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	7.49765235	2.49921745	0.005997308		
DAY 2	3	10.71982609	3.573275363	0.115212195		
DAY3	3	8.676810293	2.892270098	0.00249582		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	1.771858956	2	0.885929478	21.48483484	0.001839383	5.1432528
Within Groups	0.247410646	6	0.041235108			
Total	2.019269602	8				
Anova: Single Factor	2.023203002	0			100 ng/L spiked in MP A	
SUMMARY	C	C	A	Maria		
Groups	Count	Sum	Average	Variance		
DAY1	10	37.36522781	3.736522781	0.054299546		
DAY 2 DAY 3	10 10	42.84509449 35.74222235	4.284509449 3.57422235	0.198452054 0.109526543		
D. 11 J	10	33.7422233	J.J/#2223	0.103320343		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	2.770462608	2	1.385231304	11.47100368	0.000247811	3.354130829
Within Groups	3.260503289	27	0.120759381			
Total	6.030965897	29				
		23				

Table A- 38 The single factor Anova test of trimethoprim spiked at different concentrations (10, 25, 50, 75, and 100 ng/L) in filtrated water sample from Sognsvann creek. The test was used to establish the absolute standard deviation (*total*), between-day and within-day variance of each concentration.

Anova: Single Factor				10 ng/L spiked in filtrate	d water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	9.089608245	1.514934708			
DAY 2	6	8.349775803	1.391629301			
DAY3	6	10.67248309	1.778747182			
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.469322998	2	0.234661499		0.032344099	3.682320344
Within Groups	0.808990306	15	0.053932687			
Total	1.278313304	17				
Anova: Single Factor				25 ng/L spiked in filtrate	d water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	8.855259444	2.951753148	0.088824018		
DAY 2	3	8.433227626	2.811075875	0.001515685		
DAY3	3	10.16861992	3.389539972	0.067747752		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.54606811	2	0.273034055	5.181322983	0.049305248	5.14325285
Within Groups	0.316174911	6	0.052695818			
Total	0.862243021	8				
Anova: Single Factor				50 ng/L spiked in filtrate	d water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	32.50500778	5.417501297	0.063731592		
DAY 2	6	29.01323983	4.835539972			
DAY3	6	40.31514945	6.719191574			
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
		2				
Between Groups Within Groups	11.16243984 2.607632136	15	5.581219921 0.173842142		3.80037E-06	3.682320344
Total	13.77007198	17				
Anova: Single Factor	20111001200			75 ng/L spiked in filtrate	d water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	21.24853784	7.082845946	0.218899362		
DAY 2	3	20.72682729	6.908942431			
DAY3	3	26.88651924	8.962173082			
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	7.777869022	2	3.888934511		0.001919876	5.14325285
Within Groups	1.103883031	6	0.183980505		0.001313670	5.14323263
Total	8.881752053	8				
Anova: Single Factor				100 ng/L spiked in filtrate	ed water sample	
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	57.42705895	9.571176492	0.14331798		
DAY 2	6	54.35336569	9.058894281	0.677886373		
DAY3	6	62.93348907	10.48891485	0.580040222		
ANOVA	SS	df	MS	F	P-value	F crit
	<i>3</i> 3					3.682320344
Source of Variation	6 200271122	2		6 74222445		
Between Groups Within Groups	6.299271123 7.006222879	2 15	3.149635562 0.467081525		0.008145113	3.002320344

Table A- 39 The single factor Anova test of trimethoprim spiked at different concentrations (10, 25, 50, 75, and 100 ng/L) in non-filtrated water sample from Sognsvann creek. The test was used to establish the absolute standard deviation (*total*), between-day and within-day variance of each concentration.

Anova: Single Factor			10 ng/L spiked in non-filtrate	d water sample		
, the tall enigher taster			=0 1.B) = 0p 1.10 = 1.11 = 1.11	a material pro-		
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	3.198204641	0.533034107	0.003668152		
DAY 2	6	4.704152376	0.784025396	0.015301862		
DAY3	6	3.777547782	0.629591297	0.00250952		
ANOVA	66	J.E	146	-	0	F!+
Source of Variation	SS 0.402222640	df	MS	F 42402050	P-value	F crit
Between Groups Within Groups	0.192339618 0.107397673	2 15	0.096169809 0.007159845	13.43182859	0.000453843	3.682320344
Total	0.299737291	17				
Anova: Single Factor	0.235737231	-	25 ng/L spiked in non-filtrate	d water sample		
CUID 40 44 DV						
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	3	3.508788488	1.169596163	0.002471907		
DAY 2	3	4.897860405	1.632620135	0.002565534		
DAY3	3	4.201673189	1.40055773	0.003286417		
ANOVA		,,		_		
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.321587404	2	0.160793702	57.95162411	0.000119236	5.14325285
Within Groups	0.016647717	6	0.002774619			
Total	0.338235121	8				
Anova: Single Factor			50 ng/L spiked in non-filtrate	d water sample		
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAY1	6	12.71685576	2.119475959	0.018762284		
DAY 2	6	17.88425208	2.98070868	0.029134273		
DAY3	6	14.29419193	2.382365322	0.009456998		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	2.337694781	2	1.168847391	61.13905586	6.14716E-08	3.682320344
Within Groups	0.286767772	15	0.019117851			
Total	2.624462554	17				
Anova: Single Factor	2.024402554		75 ng/L spiked in non-filtrate	d water sample		
Ü				·		
SUMMARY		•		17. 1		
Groups DAY 1	Count 3	Sum 9.939408708	Average 3.313136236	Variance 0.002669319		
	3					
DAY 2 DAY 3	3	13.4979369 11.8547406	4.4993123 3.9515802	0.032809784 0.050575636		
DAT 3	Ĭ	11.0547400	3.3313002	0.030373030		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	2.114634805	2	1.057317402	36.8597041	0.000426345	5.14325285
Within Groups	0.172109478	6	0.028684913	30.8597041	0.000426345	5.14325265
·						
Total	2.286744282	8				
Anova: Single Factor			100 ng/L spiked in non-filtrate	ed water sample		
SUMMARY						
Groups	Count	Sum	Average	Variance		
DAVA	6	25.32524471	4.220874118	0.086748332		
	6	31.61146873	5.268578122	0.08015441		
DAY 2		27 274 22 227	4.661971012	0.042327488		
DAY1 DAY2 DAY3	6	27.97182607				
DAY 2	6	27.9/182607				
DAY 2 DAY 3				_		
DAY 2 DAY 3 ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
DAY 2 DAY 3 ANOVA Source of Variation Between Groups	SS 3.320444673	df 2	MS 1.660222336	F 23.80471991	<i>P-value</i> 2.21761E-05	F crit 3.682320344
DAY 2 DAY 3 ANOVA Source of Variation	SS	df	MS			