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Abstract

Investigations of available data yielding renormalization group flows for the quan-
tum Hall system suggests that a strong holomorphic discrete symmetry is present
in its parameter space. The geometry of this flow is intimately connected with
the theory of automorphic forms for the corresponding symmetry groups. Up to
conjugacy, these groups are subgroups of the modular group SL2(Z). In this thesis
we explore the connection between the theory of modular forms and universal-
ity classes of quantum Hall systems. We have studied the renormalization group
flow of the Hall effect in a wide range of new materials, which fits remarkably
well with the hypothesis of modular symmetry. This modular symmetry suggests
the use of modular symmetric effective field theories to describe each universal-
ity class. We discuss connections between the topological understanding of the
quantum Hall effect and the low-energy renormalization group fixed points of
these modular symmetric theories. There is also a rich mathematical structure
underlying these symmetries which is explored. In particular we discuss how the
theory of modular forms can be presented clearly by considering it as a differen-
tial geometry tailored to fit the modular groups.
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Preface

One of the most remarkable facts about Nature is how simplicity and complexity
is interwoven. The physical laws governing the behavior of particles on a micro-
scopic level can be elegantly formulated on a single line on paper, as long as the
right language is being used. As we consider larger and larger systems this sim-
plicity turns into complexity where the behavior is hard to predict without the aid
of numerics. Surprisingly, as the system grows larger still simplicity emerges. This
simplicity emerges from the conspiracy of the systems microscopic constituents
to produce new effective degrees of freedom in the large limit. If we are open to
the idea that every system could in fact be emerging from some other system, we
also have to be open to the idea that there is no such thing as a phenomena more
fundamental than another. There is simply physics taking place on every scale of
Nature.

In condensed matter the system under consideration is often some electron
system in a complicated environment. Most important of the large-scale proper-
ties of these systems are the different phases in which the system can exist. The
identification and classification of these phases of matter is a central problem in
modern theoretical physics. As in any classification problem there are two main
ingredients: a definition of the objects to be classified and a notion of equiva-
lence. Different types of phases can come from different notions of equivalence.
In recent decades a lot of effort has been put into the classification of topological
phases. The classification most successful is perhaps that of topological insula-
tors, which corresponds to topological classes of Hamiltonians describing gapped
single-particle fermions.

The quantum Hall effect is an example of a 2-dimensional topological phase
of matter, where the conductivity takes rational values in natural units. The inte-
ger effect [82] is in fact a topological insulator phase that has generalizations in
every even spatial dimensions and is classified by a topological integer invariant
[73]. While the classification of non-interacting topological insulators is more
or less complete [43][69], there is still much work to be done regarding their
interacting counterparts. The interacting version of the integer Hall effect is the
fractional Hall effect [81], which can be understood trough for example effective
topological quantum field theories. However, in spite of much work no model
that predicts all Hall phases and characterize their transitions exist.

According to common lore, the large-distance properties of a phase is con-
tained in an effective field theory obtained by integrating out high-energy de-
grees of freedom. This renormalization procedure can be used to probe universal
features of a system. In general, two systems are said to lie in the same universal-
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ity class if their low-energy (or equivalently large-distance) properties coincide.
These universality classes are expected to be determined by general properties
like spacetime dimension and symmetry groups. It is not expected that all micro-
scopic details play any key role, as these short-distance phenomena are averaged
over. For example, the quantum Hall effect has been observed in a wide range of
materials which suggest that microscopic lattice structure is irrelevant as far as
general properties of charge transport is concerned.

Experiments suggest that there is a strong modular symmetry in the scaling
data of the Hall effect [54][55][63]. This has motivated the conjecture of a mod-
ular duality in the corresponding effective field theory [52][53][48][49]. The
symmetries in the data corresponds to subgroups of the modular group PSL2(Z),
up to conjugacy. These emergent symmetries put so strong constraints of the
effective theory that they in fact fix the renormalization group flow globally in
the parameter space [49]. In this way, the different modular subgroups can be
used to label different universality classes of quantum Hall effects as they encode
both IR fixed points and critical points. This situation is somewhat akin to that in
particle physics before the realization that particles could be classified according
to symmetry groups. Here we are dealing with different types of quantum Hall
effects in different 2-dimensional materials, which seemingly can be placed in a
small handful of universality classes. The purpose of this thesis is, simply put,
to explore these universality classes - the size of the classes, the connection to
known models and their mathematical origin.

At the end of the day, we will have achieved nothing if our theoretical models
have made no contact with reality. Hence, the most important way we study the
universality classes of Hall effects is by studying scaling data from experiments
in different materials. We observe renormalization group flows compatible with
the modular groups in all cases, which strongly backs up the modular hypothesis.
The results from this phenomenological study is presented in a joint paper (in
preparation) with C. A. Lütken and H. S. Limseth appended at the end of this
thesis.

There is also very rich mathematical structure underlying these modular sym-
metries that we want to explore. While there has always been a synergy between
mathematics and physics, it has perhaps never been greater than in the past four
decades. This has been to the benefit of both parties in surprising ways. Physics
has always made use of mathematics as a tool, but it can also be a strong driving
force for physical insight. In this way physics offers a natural setting in which
many mathematical structures and ideas can be realized. Physical insight may
then take the mathematics in an unexpected direction, just as the mathematical
formulation of a physical problem can present new physical insight.



Contents iii

The mathematical toolbox of physicists have expanded rapidly in the last
decades. A perfect example of this is the methods used to understand the topo-
logical phases of matter. Here mathematical ideas from differential geometry,
topological K-theory lay the foundation for our theoretical understanding. These
are tools that have been seen as a part of the abstract world of pure mathematics,
but have now made their way into the real world through physics. The impor-
tance of these tools was also recognized in the 2016 Nobel prize in physics where
the original work borrows ideas from the topology of vector bundles. This is a
great example of the fact that there is really no limit to the mathematical ideas
that a physical model can incorporate. At the end of the day, it is a matter of
using the right tools for the job.

Symmetries are deeply connected with the mathematical theory of groups and
their representations. In itself a group is an abstract concept that can be realized
in many different ways depending on what objects the group is to act on. Since a
modular symmetry is observed in the quantum Hall data, these groups must in a
theoretical model be realized on the Hall parameter space. When acting on geo-
metric objects on this parameter space, a connection to the mathematical theory
of modular forms appears. In fact, under very general physical assumptions the
experiments force the modular forms upon us.

Theory
space

Physical phenomenaMathematics

QHE
Modular

formsBundles

Figure 1: Generally a theory results from both physical and mathematical input.
Different classes of physical phenomena may need different mathematical ideas
to be modeled. The theoretical aspects of the quantum Hall system explored
in this theses uses as mathematical input vector bundles and modular forms.
While vector bundles have made their way into the physics toolbox, the theory
of modular forms remains unknown to most physicists not familiar with string
theory.
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We explore both the mathematical theory of these modular forms as well as
their appearance in physical models for the Hall effect. This is meant to comple-
ment the experimental analysis presented in the appended paper. Summarized,
the goals of this thesis are the following.

(i) To formulate the theory of modular forms in a geometric language based
on tensors and connections. While this is interesting in its own right, we
also focus on a clear and pedagogical presentation of the subject.

(ii) To understand the interplay between universality and duality in mathemat-
ical modeling of Nature. In particular we study these ideas in the context
of quantum field theory.

(iii) To connect the microscopic understanding of the different topological Hall
phases with the phenomenological approach based on modular symmetries.

(iv) To explore the universality classes classified by modular symmetries by
explicitly studying scaling data from quantum Hall experiments. This of
course connects with the theoretical expectations in (iii) to some degree.

Outline

This thesis is divided into three parts that to a large extent can be read individu-
ally. Part I is devoted to the study of geometric structures and a geometric under-
standing of the theory of modular forms. The intention is to introduce modern
tools relevant for the study of the Hall effect and its cousins. The reader familiar
with these subjects is welcome to skip ahead to the next part. Most of our discus-
sions will make use of geometry in one way or another. In particular we are going
to need the ideas of fiber bundles and geometric structures. Most important of
the structures will be the notions of Riemannian, complex and spin structures on
a manifold. We therefore include a hopefully self-contained introduction to these
topics in chapter 1. Using these geometric ideas we discuss modular forms in
chapter 2. This chapter presents the theory of modular forms in an almost purely
geometric manner, starting from the classification of complex tori with spin struc-
ture.

The main theoretical tool we use in modern physics is quantum field theory.
Together with the ideas of universality classes and dualities, they offer a powerful
approach to study both high and low-energy systems. Particularly important for
our discussions will be the renormalization group flow, and how it behaves when
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discrete duality groups acts on the parameter space of a theory. Being the whole
raison d’être of our discussions and results, we include a detailed discussion of
quantum field theories, renormalization group flows and dualities in chapters 3,
4 and 5. These chapters comprise part II of the thesis.

Part III discuses the quantum Hall effects as topological phenomena and their
relation to the modular subgroups. The two main classes of systems we consider
are topological insulators and Dirac materials, where the low-energy excitations
are Dirac fermions. We review the geometric and topological aspects of these
phases of matter, with particular focus on the systems response to electric fields.
These responses are the conductivities of the system, which coincide with the RG
fixed points of the effective field theories with modular duality. To connect theory
and experiment, we analyze charge transport data in 2-dimensional systems to
check for modular symmetries. We observe the modular symmetry in a wide
range of materials, which is a reflection of the universality of the Hall effect. This
main result can be found in the aforementioned paper appended as the last part
of this thesis.



Part I

Geometric structures and modular
forms

1





1
Aspects of geometry

An interplay between mathematics and physics have always existed, where one
side benefits from the connection to the other. A clear example of this would be
Riemannian geometry and the theory of general relativity. After quantum me-
chanics developed in the 20s and 30s there was little interplay between mathe-
matics and physics for almost four decades. In the 70s a geometric understanding
of quantum field theories akin to the formulation of general relativity presented
itself in the form of gauge theories. After this the connection between physical
and mathematical theory has flourished to the benefit of both sides. Many top-
ics long considered too abstract to have any physical relevance has been shown
to be intimately connected with physical problems. This chapter is intended to
be a self-contained introduction to several aspects of geometry with relevance
in physics. In upcoming chapters we will use the geometric language presented
here extensively.

1.1 Manifolds and smooth structure

A manifold is a topological space with local patches homeomorphic to Euclidian
space. In some sense we define a more complicated object by demanding that
locally it resembles a familiar object. This idea of local triviality will be a recur-
ring theme in our discussions of geometry. Formally we say that a n-dimensional
(real) manifold is a topological space M together with a collection of open subsets
{Ui ⊂M}with homeomorphismsφi : Ui → Vi ⊂ Rn [60]. These homeomorphisms
provide local coordinates on the manifold φi(p) = xµ = (x1, ..., xn). We demand
that the open subsets Ui cover the manifold in the sense that ∪iUi =M. The tuple
(Ui,φi) of a subset and the corresponding homeomorphism is called a chart, and
the collection {(Ui,φi)} of charts is called an atlas A. A manifold M may have a
boundary, denoted ∂M. This is the case if there are point in M with local neigh-
borhood homeomorphic to {(x1, ..., xn)|xn ≥ 0}. A manifold is said to be closed
if it has no boundary ∂M = 0.

3
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In the case where U j ∩Ui 6= ∅, so that there are points that can be described
by two different coordinate charts φ j and φi, we define the transition function
(also called coordinate transformation function) of these patches as

ψ ji = φ j ◦φi
−1 : Rn→ Rn

and require these at least to be homeomorphisms. More intuitively, they deform
the patches in Euclidian space into each other, telling us how the patches are
glued together to construct M. Usually we impose stronger requirements on the
transition functions, which turns out to be a nice way to give our manifold addi-
tional structure. We will study several additional structures later.

φi

Ui

ψ ji

φ j

U j

M

Figure 1.1: A manifold is covered in patches that provide local coordinates.
Transition functions provide a way to go from one patch to the next.

For now, we only need one kind of structure on our manifolds, namely smooth
structure. This is achieved by demanding that the transition functions are smooth.
If every transition function in an atlas A is smooth we call the atlas a differen-
tiable or smooth atlas. The manifold in question is then called a differentiable
manifold, and is said to be given a smooth structure. This smooth structure en-
ables us to talk about differentiable maps, and the notion of diffeomorphisms of
manifolds. More importantly, a smooth structure gives a unambiguous notion of
smoothness of functions. We let M and N denote two manifolds, of dimension m
and n respectively. We let f : M→ N be a mapping between these. We let (U,φ)
be some chart on M and (U′,φ′) a chart on N. The composed mapping

f α(xµ) = (φ′ ◦ f ◦φ−1)(xµ) (1.1)
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(µ= 1, ..., m, α= 1, ..., n) is called the coordinate representation of f . The func-
tion f is then called smooth if the coordinate representation is smooth. If the
point p lies in the intersection U1∩U2 we have two possible coordinate represen-
tations, as illustrated in the below figure.

M

f N

φ2

φ1

ψ12

φ′

φ′ ◦ f ◦φ1
−1

φ′ ◦ f ◦φ2
−1

Figure 1.2

In the chart of U2 our mapping f takes the form φ′ ◦ f ◦φ−1
2 . By inserting a

identity map φ−1
1 ◦φ1 we get the representation φ′ ◦ f ◦φ−1

1 ◦ (φ1 ◦φ−1
2 ) which

we recognize as the coordinate representation in U1 composed with the transition
function (φ1 ◦φ−1

2 ). Since, for differentiable manifolds, the transition functions
are smooth we see that the coordinate representation of f in U1 is differentiable
only if the representation in U2 is as well. Hence there are no ambiguities when
it comes to the notion of differentiability of a function, given a smooth structure.

Two manifolds related by a smooth map with a smooth inverse are called
diffeomorphic [60]. This may be seen as an equivalence relation stronger than
homeomorphisms, in the sense that we require now not only continuity but also
smoothness when we deform our spaces. The set of smooth manifolds together
with smooth maps between them form the category Mfd.

Before we move on, we have some remarks.
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(i) The smooth structure is strictly speaking defined to be a equivalence class
of smooth atlases. However, since a single representative from this class is
sufficient to construct the whole class (given the equivalence relation), one
rarely needs to construct more that one atlas when it comes to practical
calculations.

(ii) The study of geometry, at least from the perspective in this thesis, may be
regarded as the study of the underlying topological space given some ex-
tra structure. "Structure" may intuitively be thought of as a sort of help to
access more information than before. For example, it may be that we are
able to discuss distances or angles which we so far have not been able to
define. For now we have only met two sort of structures. First, we have
covered our topological space with charts, enabling us to lay down coor-
dinates. Secondly, the smooth structure enabled us to discuss smoothness.
We will meet a lot of additional structure later on.

(iii) By composing maps we can construct coordinates for objects on the man-
ifold. For example if we have a curve γ : R → M parametrized by λ ∈ R
there is a natural coordinate for the point γ(λ), namely xµ(λ) = (φ ◦ γ)µ.
Sometimes one sees the notation γµ to remind us that this is a local coor-
dinate expression for the points along the curve. Similarly we could place
higher dimensional objects on M and find their local coordinates.

Given two manifolds M and N there is a simple way to construct a third, called
the product manifold M ×N. Suppose M has an atlas {(ui,φi)} and N the atlas
{(vi,ψi)}. Then, by considering the Cartesian products ui × v j we can construct
the atlas {(ui × v j, (φi,ψ j))} on the product manifold. In the same way as mani-
folds were modeled on Euclidian space, we will encounter manifolds modeled on
these product spaces shortly.

The cobordisms are a special class of manifolds. For two closed n-manifold
N, N′ a cobordism is a (n+1)-manifold M with ∂M = N tN′. In this case N and
N′ are called cobordant ("jointly bounding"). This defines as equivalence relation
of manifolds N ∼ N′. Clearly every closed manifold M is cobordant to itself since
it sits of the boundary of the manifold M× [0, 1]. With this notion of equivalence
of manifolds we can in fact realize the cobordisms as a category nCob. Here the
objects are the manifolds N, N′ while the morphisms are cobordisms M between
objects.
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1.2 Tensors

Having defined what a manifold is and some basic properties, we are ready to
discuss tensors. This starts with the construction of the tangent spaces and their
duals. The construction of the tangent spaces may be seen as a way of locally
making sense of the notion of a vector on a manifold. As we will see this con-
struction depends only on the smooth structure, but may be enhanced by adding
further structure. For example, given a Riemannian structure one can canonically
promote the tangent spaces to inner product spaces.

The tangent space TpM at a point p is identified with directional derivative
operators along curves on the manifold passing trough p [60]. To the end of
making sense of this let us consider a curve xµ(λ) on our manifold that passes
trough some point p, and a second curve xµ(ξ) also passes trough p. Obviously
the set of operators d

dλ , d
dξ etc will be closed under scalar multiplication and ad-

dition, and they are manifestly linear operators. In other words, they constitute
a vector space. We consider the point p and a chart (U,φ) containing p which
gives us n local coordinates xµ.

Let f : M→ R be a real valued function on M. With a slight abuse of notation
we denote

d f
dλ
=

d
dλ
( f ◦ γ). (1.2)

Using the chain rule we have

d
dλ

f =
d(φ ◦ γ)µ

dλ
∂ ( f ◦ γ)
∂ (φ ◦ γ)µ

=
d xµ(λ)

dλ
∂µ f (1.3)

where the summation convention is implied. Thus, we identify the operators

d
dλ
=

d xµ

dλ
∂µ. (1.4)

In other words, as a vector every directional derivative along some curve can be
decomposed into a linear combination of the partial derivatives acting on f , with
vector components d xµ/dλ. This basis {∂µ} is sometimes called the coordinate
basis or standard basis for TpM. In principle, we can perform transformations to
another basis if this is more convenient.
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M

TpM p

Figure 1.3: In the case of two dimensions one may visualize the tangent space
as a actual space tangential to the surface. Note however that the definition of
TpM does not depend on a larger surrounding space.

We note that under some coordinate change xµ→ ξµ the basis vectors trans-
form

∂µ =
∂

∂ xµ
→

∂

∂ ξµ
=
∂ xρ

∂ ξµ
∂

∂ xρ
. (1.5)

Some vector v = vµ∂µ thus transforms to vµ∂µ→ (v′)µ∂µ
′ = (v′)µ ∂ xρ

∂ ξµ ∂ρ. Thus we

identify (v′)µ = ∂ ξµ

∂ xρ vρ, which transforms inversely to the basis vectors in order to
maintain invariance of the vector v. This is what we mean by a vector transfor-
mation. Note also that the vector components may be calculated by the action of
the vector on the coordinates v(xρ) = vµ∂µxρ = vρ.

For two vectors X = Xµ∂µ and Y = Yµ∂µ we define the Lie bracket [60]

[·, ·] : TpM× TpM→ TpM

by the action on a function f :

[X,Y] f ≡ X(Y( f ))− Y(X( f )).

Writing this in the local coordinates we find

[X, Y] f = xµ∂µ(Y
ρ∂ρ f )− Yµ∂µ(X

ρ∂ρ f )

= (Xµ∂µY
ρ − Yµ∂µX

ρ)∂ρ f

so we identify the vector components [X, Y]ρ = Xµ∂µY
ρ−Yµ∂µX

ρ. For the moment
the Lie bracket is of little importance, but later it will simplify our discussions.

As in linear algebra we may now construct the dual space T∗pM to the tangent
space at p as the space of linear maps ω : TpM → R. We call this the cotangent
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space [60]. A dual vector ω ∈ T∗pM is also called a one-form or cotangent vector.
The gradient of a function f is the canonical example of a one-form. We denote
the gradient by d f , and it is defined by the action

d f
�

d
dλ

�

=
d f
dλ

. (1.6)

Just as the partial derivatives of the n coordinates xµ provided a natural basis
for TpM, the gradients d xµ will provide us with a natural basis for the cotangent
space, since

d xµ (∂ν) = δ
µ
ν
. (1.7)

Just as we expanded an element v ∈ TpM as v = vµ∂µ we expand a general one-
form as ω = ωµd xµ. We may now define the inner product as a map 〈·, ·〉 :
T∗pM× TpM→ R by

〈ω, v〉=ωµvνd xµ (∂ν) =ωµvνδµ
ν
=ωµvµ. (1.8)

We note that a inner product is not defined for two vectors, but a one-form and
a vector. We will shortly discuss these inner products in more detail. With the
definition of one-forms and cotangent spaces in mind we can now move on to
describing general tensors. A (p,q)-tensor or equivalently a tensor of type (p,q)
is a multilinear map [60]

T :
p
⊗

T∗pM
q
⊗

TpM→ R (1.9)

taking the form

T = Tµ1...µp
ν1...νq

∂µ1
⊗ ...⊗ ∂µp

⊗ d xν1 ⊗ ...⊗ d xνq . (1.10)

Its action on vectors and one-forms vi, ωi is

T(ω1, ...,ωp; v1, ..., vq) = Tµ1...µp
ν1...νq

ω1µ1
...ωpµp

vν1
1 ...v

νq
q . (1.11)

We note that a (p,q)-tensor is defined at a point p ∈ M since it is built from ele-
ments on TpM and T∗pM. To discuss for example vector fields, as objects extending
globally on a manifold, we need the notion of a fiber bundle.

1.3 The theory of fiber bundles

Just as in the case of a manifold, a fiber bundle will be constructed by locally re-
ducing it to a known object. Roughly speaking a fiber bundle is a generalization
of the product space in the same way that manifolds generalize Euclidian space.
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In this section we briefly explore such bundles. This section is inspired by [37]
and [40].

To construct a fiber bundle, we pick a fiber F and the base manifold M. The
fiber bundle can then be thought of as a continuous collection of the fibers F
parametrized by the base M. Roughly speaking, one attaches a copy of the fiber
at every point of the base. The fibers may be manifolds, vector spaces, et cetera.
When the fibers are vector spaces, the fiber bundle is called a vector bundle. The
new geometric object achieved in this manner is called the total space and is often
denoted E. From this total space one has a map π : E → M called a projection
that intuitively collapses each fiber to its corresponding point, and will help us
move between the base space and the total space. The preimage of the projection
is isomorphic to the fibers of the bundle, i.e. π−1(x) = F.

M

p

F|p = π−1(p) = F

Figure 1.4: Schematic picture of a bundle. Over every point on M we have a
fiber, here depicted as a n-dimensional vector space. The projection collapses
these vector spaces to the point over which they are defined, and the inverse
projection over a point gives back the fiber.

The simplest example of a fiber bundle is a product spaceE=M×F. On a point
(p, f ) ∈ M × F the projection map simply acts by π((p, f )) = p. Fiber bundles
where the total space can be written as a product space is called trivial. We will
meet different criteria for triviality soon. The construction of a more general
fiber bundle then proceeds analogously to the construction of a manifold: Just as
manifolds locally look like Euclidian space, fiber bundles locally look like product
spaces. Thus we can define a fiber bundle to be the collection of data (M, F,π,E),
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where if given a subset U ⊂M we have a isomorphism ρ : π−1(U)' U×F. These
isomorphisms are analogous to the charts of a manifold, "trivializing" the bundle
locally. In the following we let Uα, Uβ , Uγ denote three overlapping subsets of M.
The isomorphisms ρα : π−1(Uα) → Uα × F we write ρα = (π,φα) where now
φα : π−1(Uα)→ F. This way we don’t have to drag the base point around. Just as
we needed transition functions to glue together overlapping charts on a manifold,
we need to know how to glue together elements of the fibers on the intersections.
To this end we define the transition map

ψβα = φβ ◦φ−1
α

: F→ F

: f →ψβα(p)( f )

where F is the fiber over p ∈M. We want this map to have the following properties
[40][60]

ψαβ(p) =ψβα
−1(p)

ψαβ(p)ψβγ(p)ψγα(p) = idM

where the point p lies in the intersection of the subsets. The latter of these will
sometimes be referred to as the cocycle condition. We will see that these condi-
tions can be seen as consistency conditions for objects living in the fibers. If one
is given the charts {Uα} covering M and the transition functions of the bundle,
one can reconstruct the bundle by gluing together the local trivializations

E=
⋃

α

Uα × F/∼

where we identify points (p, f ) ∼ (p,ψβα(p) f ). The set of transition functions
{ψαβ} constitute a group called the structure group G of the bundle [40]. Note
that the transition functions can’t be arbitrary diffeomorphisms ψβα : Uα ∩Uβ →
Diff(F), but has to respect the structure of the fibers. So, for example, if the
fibers are finite dimensional vector spaces the transition functions take values in
GLn(R), and if we have the structure of a inner product they have to be orthogo-
nal ψβα(p) ∈ O(n). Whatever structure we have put on our fibers the transition
functions must conserve when we "glue together" the entire bundle [40].

A section of a bundle is a map s : M → E, associating to every point in the
base manifold a element of the fiber, such that the composed map π ◦ s is the
identity map on the base. The space of sections is typically denoted Γ (E). A local
section is similarly a map sα : Uα→ E, which we often think of in a trivialization
so that the local section is really a map from Uα to the fibers. Given a section sα
over Uα and sβ over Uβ the transition functions map sα = ψαβsβ . On the triple
intersections we can write sα =ψαβsβ , sβ =ψβγsγ, sγ =ψγαsα which implies the
cocycle condition as a consistency rule.



12 Aspects of geometry Chapter 1

As an example of a section we can consider the trivial bundle E = M × N.
Here we have chosen as fibers a manifold N, for example the sphere or a torus.
A section will in this case map

s : p→ (p, f (p))

Omitting the base point p we see that sections of a trivial bundle may be inter-
preted as N-valued functions of the base manifold f : M→ N. In this trivial case,
we will sometimes use the notation Γ (M×N) =Maps(M, N).

As a more non-trivial example we can consider the Möbius bundle. Locally
this bundle looks like the product space S1 × R, but globally has a 180 degree
twist. In some sense it is a twisted version of the cylinder. We let U1 and U2 be
subsets of the circle that covers slightly more that 180 degrees. On the overlap
we have the structure group Z2 acting on the points (θ , r) as

ψ21 : (θ , r)→ (θ ,−r).

If we in stead chose the structure group to be trivial, we would have a trivial
bundle S1 × R, i.e. the cylinder. Both the cylinder and the Möbius bundle are
examples of line bundles, e.g. vector bundles with one dimensional fibers.

Figure 1.5: The Möbius bundle as a twisted version of a cylinder.

It is also interesting to study the sections of the Möbius bundle. Let s : S1 →
Möb be a global section. After one circulation of the band, the transition function
would have sent the section to its negative, in other words

s(θ ) = −s(θ + 2π).

Hence the only well defined global section of the Möbius bundle is the zero sec-
tion θ → (θ , 0).

By now it should be clear that the transitions functions holds some informa-
tion regarding the topology of the bundle, in the sense that they give the rules as
how to twist the fibers along the base. As in the case of the Möbius bundle, the
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global non-triviality, e.g. departure from product space structure, is captured by
the transition functions. In particular, let E and Ẽ be two bundles over M with the
same fibers F and structure group G. Over Uα we then have the homeomorphisms
φα and φ̃α which enables us to define the composed homeomorphism

hα = φα ◦ φ̃−1
α

: Uα × F→ Uα × F

that deforms the local trivializations into each other. Then, by inserting the iden-
tity transformation we see that

ψ̃αβ = φ̃α ◦ φ̃−1
β
= φ̃α ◦φ−1

α
◦φα ◦φ−1

β
◦φβ ◦ φ̃−1

β
= h−1

α
◦ψαβ ◦ hβ .

Since the h’s are local homeomorphisms, the non-triviality of the transition func-
tions ψ̃ is in some sense inherited from that ofψ, and the bundles are considered
topologically the same [9]. In physical applications this equivalence is often a
gauge freedom.

For trivial bundles, it is clear that the structure group should be trivial, in the
sense that the total space has no twists or turns. In the case of the Möbius band
we saw that the twist meant that a global section was not well defined, unless
it was the zero section. Conversely, a bundle is trivial if one can find a global
section such that every fiber has a basis.

The prototypical example of a bundle is the tangent bundle and cotangent
bundle. The tangent bundle TM over M is a vector bundle with typical fiber the
tangent space TpM. The projection map simply sends TpM→ p. Sections of this
bundle attaches to every point of the manifold a vector, i.e. creates a vector field.
The local coordinates on the base manifold now also provide a local trivialization
of the bundle [37], as we can locally express a vector field as v = vµ∂µ in the
coordinate basis {∂µ}. As we change patch on the base manifold we known that
the basis vectors transform

∂

∂ xµ
→
∂ yν

∂ xµ
∂

∂ yν
≡ψν

µ

∂

∂ yν

and hence also define the transition maps for the fibers. These are the general
linear transformations GLn(R). As a consequence of the fact that d xµ(∂ν) = δµν
one can easily check that the cotangent bundle T∗M has the inverse transforma-
tions as structure group.

Equipped with the tangent and cotangent bundle we can construct a myriad
of bundles using vector space operations [37][40]. Given a vector bundle with
total space E we can for example construct the bundles E⊕E, E⊗E and continue
this as many times we wish. These operations are defined by their operation on
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the fibers, which are the usual notions of direct sums and tensor products known
from linear algebra. For example we can construct a tensor bundle as a vector
bundle with typical fiber

p
⊗

T∗pM
q
⊗

TpM.

We denote this bundle by T(p,q)M. Clearly this bundle has as sections tensor fields,
locally on the form of (p,q)-tensors.

Before we move on to discuss differential forms, some remarks are in order.

(i) In many physical applications, some of which we will encounter, the local
framework provided by the tangent (cotangent) spaces are not sufficient.
Bundles are the framework for dealing with such inherently global aspects.
This being said, most calculations can, and will, be done locally.

(ii) Fiber bundles are also good tools for adding extra degrees of freedom. The
manifold itself may for example represent the translational degrees of free-
dom of a particle. A fiber bundle over this space then provides a certain
internal degree of freedom.

(iii) Note that it may be easy to mix up the transition maps on the manifold pro-
viding local change of coordinates and the transition function on the bundle
as they are both denoted ψ. The transition maps on the level of the bundle
tells us how to properly glue together the fibers just as the transition maps
on the level of the manifold tells us how to perform coordinate changes.

(iv) Bundles where the fibers are one dimensional are called line bundles, as
briefly mentioned in the discussion on the Möbius bundle. The standard
symbol for these bundles are π : L → M, and locally π−1(x) = Lx . For
example, a trivial real line bundle is of the form M × R, and the sections
s : x → (x , f (x)) are nothing but real valued functions.

1.4 Forms and de Rham cohomology

Differential forms of rank r arise as antisymmetric sections of the bundle T(0,r)M
[60]. The bundle of such tensor fields is denoted ∧rT∗M. The local tensors are
also referred to as r-forms for short. We denote the space of such tensors by
Γ (∧rT∗M) = Ωr(M) . The wedge product is defined as a map ∧ : Ωr ×Ωs → Ωr+s

trough the action [60]

ω∧η(v1, ..., vr+s) =
1

r!s!

∑

P

sgn(P)ω(vP(1), ..., vP(r))η(vP(r+1), ..., vP(r+s))
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where ω is a r-form and η is a s-form. Given r one-forms we can construct the
r-form [60]

d xµ1 ∧ d xµ2 ∧ ...∧ d xµr =
∑

P∈Sr

sgn(P)d xµP(1) ⊗ ...⊗ d xµP(r) . (1.12)

These act as a basis for Ωr(M), and a general element may be expanded as

ω=
1
r!
ωµ1...µr

d xµ1 ∧ ...∧ d xµr . (1.13)

The factorial factor here is optional. It is clear from the basis elements that we
choose r out of dim(M) = n possible one-forms, making the dimension of Ωr(M)
equal

�n
r

�

= n!/(n− r)!r!. Thus on a 4-manifold, for example, there will be one
0-form, four one-forms, six 2-forms,four 3-forms, and one 4-form. Also, on a
2-manifold there will be only one linearly independent antisymmetric rank 2 ten-
sor, which we may think of simply as an antisymmetric 2×2 matrix. Clearly from
the above definitions we have Ω0(M) as the set of sections of the trivial real line
bundle, i.e. space of smooth functions on M. Note also that the space of n-forms
on a n-manifold is one dimensional, and hence ∧nT∗M is a line bundle. This line
bundle is called the canonical bundle.

Recall that from a function f : M → R we can create the one-form d f =
∂ f
∂ xµ d xµ. As we realized that real valued functions are members of Ω0(M) we can
abstractly view the transition from f to d f as a map

d : Ω0(M)→ Ω1(M) (1.14)

: f → d f . (1.15)

In this way there is a natural relation between the sections of the bundles ∧0T∗M
and ∧1T∗M. A question that naturally arises is then if this behavior continues.
The suitable generalization should be a map d : Ωr(M) → Ωr+1(M), which we
define trough the formula [60]

dω≡
1
r!

�

∂

∂ xν
ωµ1...µr

�

d xν ∧ d xµ1 ∧ ...∧ d xµr . (1.16)

Here, as above, the factorial is a optional normalization factor. This sort of dif-
ferentiation on forms is called an exterior derivative. The composed operation
d2 = d ◦d will then be a map Ωr(M)→ Ωr+1(M)→ Ωr+2(M)which takes the form

d2ω=
1
r!

�

∂

∂ xρ
∂

∂ xν
ωµ1...µr

�

d xρ ∧ d xν ∧ d xµ1 ∧ ...∧ d xµr (1.17)

= −
1
r!

�

∂

∂ xρ
∂

∂ xν
ωµ1...µr

�

d xν ∧ d xρ ∧ d xµ1 ∧ ...∧ d xµr . (1.18)
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However, since the partials commute we may simply rename indices to realize
that d2ω= −d2ω, i.e. d2 = 0. This leads to an interesting classification of forms
as follows. A r-form is said to be closed if dω = 0 and exact if we can write
ω = dω̃, where ω̃ is a (r − 1)-form. Clearly all exact r-forms are also closed as
d2 = 0, but the converse is not necessarily true.

A lemma by Poincare gives us a situation where closed forms are exact. On a
small neighborhood U of a manifold, any closed r-form is exact if U is contractable
to a point [60]. To better understand the nontrivial solutions to dω= 0, we want
to study the closed forms that are not exact. Consider the sequence of maps

Ω0(M)
d
−→ Ω1(M)

d
−→ Ω2(M)

d
−→ ...

d
−→ Ωn(M)

d
−→ 0.

We write 0 at the end of the sequence as is has to terminate: there are no forms
of higher rank than the dimension of the manifold. At any stage in this sequence
the image of the incoming map has to lie in the kernel of the outgoing map, since
d2 = 0, i.e

Im(d) ⊂ Ker(d).

Forms in the image are what we called exact, while those in the kernel are closed.
To better understand closed forms one constructs the de Rham Cohomology as
the quotient [60]

Hr(M) = Ker(d)/Im(d)|Ωr

at some point of the sequence. Often one introduces even more notation and
writes Ker(d)|Ωr = Cr(M) and Im(d)|Ωr = Dr(M). We may think of this as the
study of equivalence classes, with

Hr(M) = Cr/Dr = Cr/∼

ω∼ σ iff ω−σ ∈ Dr

i.e. two elements of the closed forms Cr are cohomologically equivalent if they
differ by an exact form. A figure summarizing this discussion is added below.
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r-forms

Ker(d)

Im(d)

(r+1)-forms

Ker(d)

Im(d)

(r+2)-forms

Ker(d)

Im(d)

Hr+1(M) = Ker(d)/Im(d)

• •

Figure 1.6: Schematics of the de Rham complex. All r-forms are mapped to the
image of d, while the kernel is further mapped to 0 (symbolized by the dot). The
de Rham cohomology group studies elements of Ker(d) modulo exact forms.

Integration can also be defined now that forms have been introduced. Ab-
stractly, integration may be seen as a map

∫

: ΛpT∗M→ R.

From above we known that the vector space of top dimensional forms have di-
mension one, i.e. its local sections are of the form

ω= h(x)d x1 ∧ ...∧ d xn.

Once Riemannian structure has been introduced, we will see that there is a nat-
ural choice of the prefactor h(x) so that ω will be called a volume form dvolM,
and integration of a function F : M → R is defined by integration of the form
f (x)dvolM, which reproduces the familiar notion of integration. A nice connec-
tion between integration and cohomology is presented by Stokes theorem. We
know that given a (n− 1)-form η we can make a form of one higher degree by
ω= dη. Integration of such forms are captured in the Stokes theorem [58][2]

∫

T

dη=

∫

∂ T

η

where T is a subset of M and ∂ T its boundary. As a consequence, we can in the
case ∂M = 0 change a form ω to ω+ dθ while its integral remains unchanged.
In this sense the integral associated a number to the whole cohomology class.

1.5 The pullback

Having discussed fiber bundles, and in particular the tensor bundles and forms,
we now discuss some operations that can be performed on these. The idea is that
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a map between manifolds can be used to push forward and pull back geometric
information. This will be crucial in our later study of the nonlinear sigma models.
Let M1, M2,M3 be manifolds and consider the maps

φ : M1→M2,

f : M2→M3.

Then we define the pullback of f under φ as the map

φ∗ f ≡ f ◦φ : M1→M3

which is useful for example if we have a function on M2 that we want to pull back
to a function on M1 with the aid of some map φ. Of course this is nothing but
new notation for the composition of maps. In field theoretical applications the
map φ is often the field itself. To study the pullback of other more interesting
geometrical objects, we first need the notion of the pushforward of a vector.

From earlier discussions we know that the role of vectors is to differentiate
functions f : N→ R. To see what a map φ : M→ N lets us do to vectors we study
the sequence

M
φ
→ N

f
→ R.

We know how to pull the map f : N→R back to a map φ∗ f : M→R, and we
define pushforward as the map [2]

φ∗ : TpM→ Tφ(p)N

: V→ φ∗V

where the defining property is that (φ∗V)( f ) = V(φ∗ f ). In other words, the
pushed forward vector yields the same value when acting on f as the original
vector does when acting on the pullback φ∗ f .

TxM

M

φ∗

N

Tφ(x)N

Figure 1.7: The pushforward map provide a way to induce new vector fields
from old, given a map between manifolds.
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To see what happens at the level of coordinates, we write out the vector φ∗V
in the basis of Tφ(p)N as follows:

φ∗V =
�

φ∗(V
i ∂

∂ x i
)
� j ∂

∂ (y j ◦φ)

where x and y are coordinates on M and N respectively. We here note that the
coordinates of interest on N are in some sense "parametrized" by the map φ, and
we will from here use the notation (y j ◦φ) = φ j 1. As we noted in the discussion
on tangent spaces, the components of vectors may be found by the action of the
vector on the coordinates y i, meaning in the present case that

�

φ∗(V
i ∂

∂ x i
)
� j

=
�

φ∗(V
i ∂

∂ x i
)
�

(y j) = Vi ∂ (y
j ◦φ)
∂ x i

= Vi ∂ φ
j

∂ x i

where in the second equality we used the defining property of the pushforward.

The pushforward is in fact related to the differential of the map f . To see this,
note that we may write the pushforward explicitly as the tensor product [40]

φ∗ =
∂ φα

∂ x i
d x i ⊗

∂

∂ φα
.

This we can do as it clearly has the appropriate action on vectors:

φ∗V = φ∗V
i ∂

∂ x i

=
∂ φ j

∂ x i
d x i(Va ∂

∂ x a
)
∂

∂ φ j

= Va ∂ φ
j

∂ x i
δi

a

∂

∂ φ j

= Vi ∂ φ
j

∂ x i

∂

∂ φ j
.

By looking at the explicit form on the pushforward, we see that in the case N = R
it reduces to the well known differential of f . Hence we will also refer to ϕ∗ as
the differential d f of the map f : M→ N.

We are now ready to discuss the pullback of more interesting objects. If π :
E→ N is a vector bundle over N, it may be pulled back to a vector bundle ϕ∗π :

1To be picky, what we mean is the following. If at φ(p) there is a chart ψ the coordinates of
φ(p) is given by the components of the composed map (ψ ◦φ)(p), i.e. (ψ ◦φ)i = (y i ◦φ). As
we are interested not in general coordinates y i on N but rather at the point φ(p) we denote the
coordinates φ i .
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ϕ∗E→M where by definition the fibers over x ∈M are equal to the fibers over N
at ϕ(x) [37]. A we may have realized by now, the notion of a pullback is, at least
conceptually, pretty much the same as composition of maps. One can think of it as
an elaborate precomposition scheme for non-function objects. The pullback of a
function was defined simply as a precomposition, which we needed to define the
pushforward. With these two simple ideas we can generalize pullback to higher
tensors. The idea is to define the action of a pullback tensor by the action of the
original tensor on pushed-forward vectors. Thus, for a (0,p)-tensor T at φ(p) on
N we define [2]

(φ∗T)(v1, ..., vp)≡ T(φ∗v1, ...,φ∗vp)

where φ∗T is a tensor at p ∈ M. From this we can find the components of the
pullback tensor by

(φ∗T)µ1...µp
= (φ∗T)(∂ρ1

, ...,∂ρp
) = T(φ∗∂ρ1

, ...,φ∗∂ρp
).

Writing the tensor on the form T = Ti1...ip dφ i1 ⊗ ... ⊗ dφ ip and using the result
from our pushforward discussion we have that

(φ∗T)µ1...µp
=

�

∂ φ j1

∂ xρ1

�

...

�

∂ φ jp

∂ xρp

�

Tj1... jp .

The definition of the pullback does not change for differential forms, but we need
to incorporate the antisymmetry somehow. Let ω be a element in ΛnT∗M locally
expanded as usual

ω=ωi1...in dφ i1 ∧ ...∧ dφ in

and let us pull this back to a n-form φ∗ω in ΛnT∗M. The components are found
by

(φ∗ω)µ1...µn
=ω(φ∗∂µ1

...φ∗∂µn
) =

�

∂ φ j1

∂ xµ1

�

...

�

∂ φ jn

∂ xµn

�

ωi1...in dφ i1∧...∧dφ in(∂ j1 ...∂ jn).

Hence we need to calculate dφ i1 ∧ ... ∧ dφ in(∂ j1 ...∂ jn). To do this, we recall the
definition of the wedge product:

dφ i1 ∧ ...∧ dφ in =
∑

p

sgn(P)dφ iP(1) ⊗ ...⊗ dφ iP(n)

∴ dφ i1 ∧ ...∧ dφ in(∂ j1 ...∂ jn) =
∑

p

sgn(P)δ
iP(1)
j1

...δ
iP(n)
jn

Inserting this into our expression for the components of the pullback form, and
using the definition of the determinant we find

(φ∗ω)µ1...µn
=ωi1...indet

�

∂ φ i1

∂ xµ1
...
∂ φ in

∂ xµn

�
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For later reference we note the following . From [16] we have the identity

n!dn x = εµ1...µn
d xµ1 ∧ ...∧ d xµn .

Hence

n!ερ1...ρn dn x = ερ1...ρnεµ1...µn
d xµ1 ∧ ...∧ d xµn = (n!)2d xρ1 ∧ ...∧ d xρn

where we used the Levi-Civita property that

εi1...inε j1... jn = det

�

�

�

�

�

�

δi1, j1 . . . δi1, jn
...

. . .
...

δin, j1 . . . δin, jn

�

�

�

�

�

�

.

We can then write

φ∗ω= (φ∗ω)µ1...µn
d xµ1 ∧ ...∧ d xµn =

1
n!
εµ1...µn(φ∗ω)µ1...µn

dn x .

Using the antisymmetry of the n-form and determinant properties we have

ωi1...indet

�

∂ φ i1

∂ xµ1
...
∂ φ in

∂ xµn

�

= n!ωi1...in

∂ φ i1

∂ xµ1
...
∂ φ in

∂ xµn
.

So, we can finally write the pullback n-form as desired:

φ∗ω= εµ1...µn
∂ φ i1

∂ xµ1
...
∂ φ in

∂ xµn
ωi1...in dn x .

As a final comment regarding pullbacks, we should mention the nice property
that it commutes with exterior derivatives. Consider first the simple case of a
function f : N → R that can be pulled back to a function on M by the map
φ : M→ N. Since d f = (∂i f )d y i we have

d f (v) = v( f ) (1.19)

for a vector v = v i∂i on N. Using the defining properties of pullbacks and push-
forwards we can see that

φ∗d f (v) = d f (φ∗v)
(1.19)
= (φ∗v)( f )
= v(φ∗ f )
(1.19)
= d(φ∗ f )(v).
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Hence φ∗d f = dφ∗ f . This can now be used to show that this results also holds
for more general tensors. Consider w = w(x)d y i1 ∧ .... The pullback acting on
the exterior derivative of this form yields

φ∗dw= φ∗dw∧φ∗(d yµ1 ∧ ...) = dφ∗w∧φ∗(d y i1 ∧ ...).

Since an exterior derivative applied to (d y i1 ∧ ...) vanishes, we can write this as

φ∗dw= d[φ∗w∧φ∗(d y i1 ∧ ...)] = dφ∗w.

This will allow us to do some nice manipulations in later discussions. For exam-
ple, in the context of Stokes theorem, we can now write

∫

M

φ∗dω=

∫

M

dφ∗ω=

∫

∂M

φ∗ω.

1.6 Geometric structures

So far the manifolds we have discussed have had only two interesting structures,
namely smooth structure and the possible structure of fiber bundles. In this sec-
tion we will discuss several geometrical structures that make the manifolds more
interesting and more suited for our applications.

The smooth structure has so far been very generous, in that it has provided
us with a myriad of geometric objects to study. From the smooth structure we
realized that we could construct the tangent bundle, and from it the tensor bun-
dles trough defining the dual bundle T∗M. These bundles, and in particular their
local features, has been the main focus so far. We here discuss how to add extra
structure to a manifold.

When we discussed fiber bundles we noted that the structure group has to re-
spect the structure of the fibers. In other words, the transition functions that glue
the local trivializations together have to glue them together in a manner that is
consistent with the wanted structure on the fibers. If the fibers are vector spaces
for example, the transition functions must be linear maps GLn(R) that preserve
the vector structure.

This goes the other way as well, which is the origin of G-structures. We con-
sider the tangent bundle TM → M. By demanding that the structure group is a
subgroup G ⊂ GLn(R), i.e.

ψβα : Uα ∩Uβ → G

the fibers necessarily gains the structure for which G is the symmetry group. This
is called a reduction of the structure group [40]. Of course, we need to pick a
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realization of the group G, and may thus think of a G-structure as a picking a
group, acting as a sort of symmetry group, and a representation of it. The fibers
of our fiber bundle will then be corresponding representation spaces.

For example, we know that if we on a finite dimensional vector space V add
a inner product, we get a inner product space {V, (·, ·)}. The maps preserving
this structure is now not only the linear maps in GL(V) but rather the orthogonal
transformations O(dim(V)) ⊂ GL(V). On the level of vector spaces we could then
call the addition of a inner product a O(n)-structure on V. Generalizing this idea
to the fibers over a manifold we get the notion of a O(n)-structure on M.

While this presents a nice and unified way of looking at geometric structures,
it may not be practical, as we don’t want to pay attention to local trivializations
and projection maps all the time. The most convenient, and most used, way
to give a manifold additional structure is by demanding the existence of certain
tensor fields over M, which locally reproduces the wanted structure on the fibers.
We take this approach, and comment on the relation to G-structure as we go
along. It may also be worth mentioning that this discussion on G-structures will
be fruitful when we discuss spin structures later, which are somewhat related to
the idea of reducing the structure group. In fact, it is a sort of expansion of the
structure group.

1.6.1 Riemannian structure

A Riemannian structure is a O(n)-structure on the tangent bundle that locally
introduces the notion of orthogonal frames. First, consider a tensor field g ∈
Γ (T∗M⊗s ym T∗M) locally written g = gµd xµ ⊗ d xν with gµν = gνµ. If this tensor
is positive definite, in other words g(v, v)≥ 0 and only 0 if v = 0, for evert point
on the manifold the tensor g is called a Riemannian metric. The pair (M, g) is
then called a Riemannian manifold [60]. If in stead g(u, v) = 0∀u ∈ TpM implies
that v = 0, g is called a pseudo-Riemannian metric and the manifold is said to be
pseudo-Riemannian.

Just as we did with the smooth manifolds we can consider a category where
objects are n-dimensional Riemannian manifolds Σ1,2 and the morphisms (n+1)-
dimensional Riemannian cobordisms M [11]. Strictly speaking, once a cobordism
M is chosen we should think of the corresponding isometry class as defining the
morphism in the category. If f : M→ N is a diffeomorphism and gM = f ∗gN we
call f a isometry. The Riemannian manifold M and N are then isometric and lie
is the same isometry class. This class consists of manifolds with the same notion
of distance in some sense.
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We recall that the inner product was introduced as a map T∗pM × TpM → R.
Given a Riemannian metric, which is a map TpM ⊗ TpM → R we may think of
g(u, ·), with one open slot, as a map from the tangent space at p to the reals.
In other words, we should think of gp(u, ·) as a one-form. Thus, given a vec-
tor v ∈ TpM and this one-form we can clearly define a map T∗pM × TpM → R
by (gp(u, ·), v) → gp(u, v) ∈ R. We also note that the vector u determines the
one-form gp(u, ·) and inversely a one-form ω determines a vector by the identi-
fication ω ∼ gp(uω, ·). Thus there is a one-to-one correspondence between the
vectors and one-forms [60]. One says that the Riemannian metric has given us a
isomorphism between TpM and T∗pM. This correspondence is sometimes called a
musical isomorphism, as the map between the dual spaces is often denoted ].

Explicitly this isomorphism does the following. Let v = vµ∂µ be a vector in
TpM. The metric tensor gµνd xµ ⊗ d xν acts on a single vector as

g(v, ·) = gµν(d xµ ⊗ d xν)(vρ∂ρ, ·) (1.20)

= gµνvρδµ
ρ
d xν (1.21)

= (gµνvµ)d xν. (1.22)

The resulting 1-form ων = gµνvµ is the unique 1-form corresponding to the
vector v. Because of the one-to-one correspondence we often use the notation
(gµνvµ)≡ vν. We say that the metric lowered the vector index.

Now consider the case where the point p lies in a intersection of two open
subsets. Then, the inner product 〈a, b〉= g(a, b) = aµbµ transforms as

〈a, b〉 → aρbσ(ψµ
ρ
)−1(ψµ

σ
). (1.23)

With transition function ψν
µ
= ∂ yν/∂ xµ. Clearly (ψµ

ρ
)−1(ψµ

σ
) = (ψµ

ρ
)T(ψµ

σ
) =

δρ
σ
, so the transition functions can be considered elements of O(n) with n =

dim(M).

We also promised that we would discuss integrals again when we had intro-
duced Riemannian structure. Recall that integration was defined as a map from
top dimensional forms to the real numbers. Given a Riemannian structure, there
is a canonical choice of such a n-form [60]

dvol ≡
q

det(gµν)d x1 ∧ ...∧ d xn

where g ∈ Γ (T∗M⊗s ym T∗M) is a metric tensor on M and xµ are local coordinates.
Note that under a coordinate transformation x → y we have [60]

d x1 ∧ ...∧ d xn→ d y1 ∧ ...∧ d yn = det(
∂ yµ

∂ xν
)d x1 ∧ ...∧ d xn



Section 1.6 Geometric structures 25

while the prefactor transforms as

q

det(gµν)→
√

√

det(gµν
∂ xµ

∂ yρ
∂ xν

∂ yσ
) =

q

det(gµν) ·
�

�

�

�

det(
∂ xµ

∂ yν
)

�

�

�

�

.

Hence the volume form dvol in total will transform as

dvol →±dvol

where the negative sign appears if we have a negative Jacobi determinant. In or-
der to have a well defined volume form, we must add the additional requirement
that all Jacobi determinants are positive [40]. Such a manifold is called ori-
entable. Given a O(n)-structure (in the form of a Riemannian metric) the restric-
tion to only positive determinant transitions means that the structure group is fur-
ther reduced to SO(n). For short, we will from now on write

p
g =

Æ

|det(gµν)|.

This may be best illustrated by an example. Consider the Mobius strip as a
surface created by a process of twisting and gluing a long rectangular strip. In
the twisting process we change coordinates (with the Z2-valued transition maps
discussed in the section on fiber bundles), i.e. we let y → −y . In this case the
Jacobian will simply be J = −1 which is not strictly positive. Thus the Mobius
strip is a non-orientable surface. Whenever we do integrations we implicitly will
assume that we are working on an orientable manifold.

Finally, for practical calculations we need the following. Assume that we are
given such a orientable manifold M. Integration of a function f : M→ R over a
subset U ⊂M may then be defined [60] as

∫

U

f dvol =

∫

φ(U)

f (x)dvol(x) (1.24)

where the numerical value is calculated in a chart.

A Riemannian structure also allows a definition of the Hodge star operation.
Given a r-form ω we can construct a so called Hodge dual form by [60]

∗ω=
p

g
(n− r)!

ωµ1...µrεµ1...µrµr+1...µn
d xµ1 ∧ ...∧ d xµn .

I.e. the Hodge star is a map ∗ : Ωr(M)→ Ωm−r(M). Given two r-forms we have
the identity [60]

ω∧ ∗η= r!ωµ1...µr
ηµ1...µr dvolM. (1.25)

An inner product on forms can then be defined by the integration of this top-
dimensional form.
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1.6.2 Complex structure

A complex structure presents a generalization of "multiplication by i" as familiar
from complex analysis. A complex manifold is a manifold where the charts take
values in Cn and where the coordinate transition functions are holomorphic. We
will see that we can think of a complex structure as a GLn(C)-structure.

First we need some terminology. A holomorphic atlas is collection {(Ui,φi)}
of holomorphic charts such that the transition functions (coordinate transform
functions) ψi j = φi ◦φ−1

j : Cn → Cn are holomorphic. Let A and A ′ be holo-
morphic atlases with coordinate maps φ and φ′. The two atlases are said to be
equivalent if all maps of the form φ ◦ φ′−1 are holomorphic [38]. A complex
structure is an equivalence class of holomorphic atlases. A complex manifold M
of complex dimension n is a real 2n-dimensional differentiable manifold with a
complex structure on it [60][37][38]. The rest of this section is devoted to the
notion of complex structure; how to endow a manifold with it, and the maps that
preserve it.

We note that by definition all complex manifolds are real differentiable man-
ifolds, while the opposite is clearly not always true, as complex manifolds have a
somewhat stricter definition. A interesting question is thus when given an even
dimensional real manifold, how does one endow it with a complex structure.
Somewhat more precisely, we want to know what are the necessary and suffi-
cient conditions for transition functions to be holomorphic.

At each point on a real 2n-dimensional manifold we define a (linear) map
Jp : TpM → TpM as a tangent space endomorphism such that J2

p = −ITpM. In
terms on bundles, J is a tangent bundle endomorphism that fiberwise square to
the negative identity. This is a tensor field of type (1,1) called an almost complex
structure [60][37]. In a local trivialization of the bundle TM ⊗ T∗M this tensor
may be written

Jp = J ν
µ

d xµ ⊗ ∂ν (1.26)

at some point p. A real even dimensional smooth manifold M equipped with a
almost complex structure is called an almost complex manifold, often denoted by
the tuple (M,J). For some vector field X = Xµ∂µ this tensor acts (locally) by

Jp(X) = J ν
µ

Xµ∂ν (1.27)

∴ J2
p(X) = Jp(J

ν
µ

Xµ∂ν) = XµJ ν
µ

J β
ν
∂β . (1.28)

Locally at a point p we must have that J ν
µ

J β
ν
= −δβ

µ
to fit the definition. To see

the relation between almost complex manifolds and complex manifolds, we want
to show explicitly that all complex manifolds are almost complex manifold.



Section 1.6 Geometric structures 27

Let M be a complex manifold, i.e. a real even dimensional manifold with
holomorphic coordinate transition functions. It is convenient to complexity the
tangent spaces, or equivalently the tangent bundle. For vector fields X, Y on M,
viewed as a real manifold, we can define what we call the complexified fields in
the obvious way

Z=
1
2
(X+ iY), (1.29)

Z=
1
2
(X− iY). (1.30)

We say that these fields are elements of the complexified tangent space TpMC

where we now allow complex components. Since we have that J2
p = −ITpM its

eigenvalues must clearly be λ= ±i, and we may split the tangent space into two
disjoint eigenspaces [60][37]

TpMC = TpM+ ⊕ TpM−

of vector fields with with eigenvalues +i and −i respectively. We call these fields
holomorphic and anti-holomorphic vector fields respectively. We further claim
that any vector field V can be split into its holomorphic and anti-holomorphic
part as follows

Z=
1
2
(V− iJ(V)) ; Z=

1
2
(V+ iJ(V)).

This we can verify by letting the tensor J act on these. We then find

J(Z) =
1
2
(J(V)− iJ2(V)) =

1
2
(J(V) + iV) (1.31)

= i
1
2
(V− iJ(V)) = iZ (1.32)

and similarly for Z. With this splitting of the tangent spaces ( and thereby tangent
bundle ) we may write the almost complex structure locally as

J = i
∂

∂ zµ
⊗ dzµ − i

∂

∂ zµ
⊗ dzµ (1.33)

in what we will refer to as its canonical form. Clearly this tensor acts on holomor-
phic fields by multiplication by i and on anti-holomorphic fields by multiplication
by −i as wanted. Note that by writing out the complex coordinates in terms of
the real ones

∂

∂ zµ
=

1
2

�

∂

∂ xµ
− i

∂

∂ yµ

�

;
∂

∂ zµ
=

1
2

�

∂

∂ xµ
+ i

∂

∂ yµ

�

dzµ = d xµ + id yµ ; dzµ = d xµ − d yµ
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the the almost complex structure is of the form

J =
∂

∂ yµ
⊗ d xµ −

∂

∂ xµ
⊗ d yµ (1.34)

so that J(∂ /∂ xµ) = ∂ /∂ yµ and J(∂ /∂ yµ) = −∂ /∂ xµ, i.e. it acts as a π/2 rota-
tion in the tangent spaces. We may interpret J as a guidance as to how we are to
relate the 2n basis vectors on the underlying real manifold. This interpretation is
particularly clear in the case of real dimension two.

Assume that we are working on a non-empty intersection of patches on M.
Under a change of coordinates z→ w(z, z) on these patches we have

∂

∂ zµ
⊗ dzµ =

�

∂ων

∂ zµ
∂

∂ων
+
∂ω

ν

∂ zµ
∂

∂ω
ν

�

⊗
�

∂ zµ

∂ωρ
dωρ +

∂ zµ

∂ω
ρ dωρ

�

(1.35)

=
∂ zµ

∂ wρ
∂ wν

∂ zµ
∂

∂ wν
⊗ dwρ =

∂

∂ wν
⊗ dwν (1.36)

where we used the Cauchy Riemann conditions to eliminate the dependence on
anti-holomorphic coordinates. Similar transformations apply to the anti-holomorphic
part of J. In conclusion, the tensor J keeps its canonical form as we move from
patch to patch on our manifold, given that we can do so holomorphically. Thus
any complex manifold is a almost complex manifold, as one would expect from
the names.

The converse is of course what we are interested about, and in general it
is not true that almost complex manifolds are complex manifolds. The main
result regarding this question is due to Newlander and Nirenberg, whose famous
theorem gives us the sufficient condition for an almost complex manifold to be
complex. It is a necessary condition that the manifold has an almost complex
structure. It turns out we can find holomorphic coordinates if the Nijenhuis tensor
vanishes. For X and Y vector fields, we have

N(X, Y)≡ [ X, Y] + J[JX, Y] + J[X, JY]− [JX, JY] (1.37)

We then have the two important theorems.

THEOREM: Let M be a real even dimensional manifold endowed with a almost
complex structure J. Then this structure is said to be integrable if and only if the
Nijenhuis tensor vanishes, i.e. N(X,Y) = 0 for any two vector fields X and Y on M.
For a proof see theorem 8.12 in [60].

NEWLANDER-NIRENBERG THEOREM: Let (M, J) be a almost complex manifold.
If the almost complex structure is integrable, M is a complex manifold. We then
sometimes call J a complex structure.
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For a proof see original article [62].

In summary, the vanishing of the Nijenhuis tensor field given an almost com-
plex structure J on an real 2n-manifold means that we may everywhere construct
a coordinate system of holomorphic coordinates so that locally J takes its canon-
ical form. In practice this means one have to be imaginative and construct some
tensor that plays the role on an almost complex structure, and then simply check
whether or not the Nijenhuis tensor vanishes.

In terms of the structure groups, the (almost) complex structure can be seen
as the reduction to GLn(C) ⊂ GL2n(R) by the usual identification R2 = C.

Some remarks

(i) Similarly to the vectors and one-forms more general tensors may be ex-
pressed in terms of holomorphic and antiholomorphic parts. For example
[37] the space of n-forms Ωn(M) may be decomposed

Ωn(M) =
⊕

p+q=n

Ωp,q(M)

where Ωp,q(M) denotes the set of (n= p+ q)-forms, expressed in basis

dzµ1 ...dzµp dzν1 ...dzνq .

We will call these types of n-forms (p,q)-forms, not to be mistaken for (p,q)-
tensors.

(ii) One can in the literature often find a somewhat confusing notation. Trough
the identification V→ 1

2(V− iJ(V)) we can identify TM with the bundle of
holomorphic fields, and trough ω → ωhol =

1
2(ω − iJ(ω)) associate T∗M

with the holomorphic cotangent bundle. One therefore sometimes writes
the complexified tangent bundle TCM = TM⊕TM, where the overline rep-
resents antiholomorphic fields.

(iii) Note that by giving a manifold any holomorphic atlas, a unique equivalence
class is defined and so is a complex structure. This is how one in practice
gives manifolds complex structures, similarly to the case of smooth struc-
ture where transition functions were smooth.

Assume next that we have two complex manifolds M1,M2. A continuous map

f : M1→M2
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is said to be holomorphic if its coordinate representation φ′ ◦ f ◦ φ−1 is. Here
we have used a (holomorphic) chart (U,φ) for M1 and (U′,φ′) for M2. A holo-
morphic map between complex manifolds with a holomorphic inverse is called
a biholomorphism and the manifolds are said to be biholomorphic [60]. Just
as diffeomorphisms gave us a notion of equivalence of differentiable manifolds,
biholomorphic complex manifolds are considered the same. We say that they
are biholomorphically equivalent. We will explore such equivalences of complex
manifolds in more detail when we discuss the Riemann surfaces and the complex
torus.

1.6.3 Conformal structure

Conformal structure can be seen as a relaxation of a Riemannian structure. Imag-
ine that we for some reason only are interested in discussing angles locally on our
manifold, not lengths. Just as in linear algebra, the angle between two vectors is
given by

cosθ =
g(a, b)

p

g(a, a)
p

g(b, b)
.

This local notion of angles remain unchanged if we rescale the metric

gµν→ eωgµν

by a positive factor eω(x). The set of such metric transformations is called the Weyl
transformations Weyl(M). The conformal class of metrics [gµν] constitute a con-
formal structure on the manifold. The interplay between Riemannian, complex
and conformal structure will be of key importance when we discuss the theory of
Riemann surfaces.

1.7 Connections and curvature

When we constructed the tangent spaces, we noted that there is no natural way
to compare vectors belonging to different tangent spaces. This is in general true
[39] for all vector bundles. This means trouble if we want to naively define a
notion of differentiation of a vector, or more generally differentiation of sections
of bundles. This section is inspired from [6],[60] and [39].

Consider a vector bundle π : E→M with fiber spaces V with a structure group
G. We denote by g the Lie algebra of this structure group. We wish to construct
a derivative on the sections Γ (E). We will mainly work in a local trivialization
over U ⊂ M, where we chose a basis of local sections {ei}. For future reference
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we consider the following product bundle

g⊗ T∗M→ .

We will work in a local trivialization over U ⊂M. We consider the Lie algebra as
a vector space, and expand a section locally as

A= Aa
µ
Xa ⊗ d xµ

where Xa are the generators of the structure group in a given representation. We
write A= Aµd xµ and think of Aµ as a collection of Lie algebra valued components.
To see how this acts on vector fields v, as a section of T∗M, it is sufficient to see
how it acts on the basis ∂µ, namely

A(∂ν) = Aa
µ
δµ
ν
Xa = Aa

ν
Xa = Aν ∈ g.

As this is simply an element of the Lie algebra, we can write it in terms of its
matrix components (Aµ)ijei ⊗ e j, where we think of e j as a local basis for the dual
bundle. It can act on the local sections by A(∂µ)s = A(∂µ)ijs

kei⊗e j(ek) = (Aµ)ijs
jei.

This little analysis will help us realize what kind of geometric object the deriva-
tive is.

We now define the derivative relevant for sections of vector bundles. The
covariant derivative is a map of sections

Dv : Γ (E)→ Γ (E)

where v ∈ Γ (TM) is a vector field on M giving the direction of differentiation
[60][6]. Let c be some scalar, and f a function of M. Then, for sections s we
want the derivative to have the following properties

Dv(cs+ s′) = cD(s) +D(s′)

Dv( f s) = (v f )s+ f Dv(s)

Dv+w(s) = Dv(s) +Dw(s)

Df v(s) = f Dv(s).

Again we work locally on a subset U of M, and try to find coordinate representa-
tions of the derivative. Note that since D∂µ ≡ Dµ maps vectors to vectors, we can
write

Dµei = (Aµ)
j
i e j.

Here the matrix Aµ = (Aµ)ijei ⊗ e j is a element of g. With the above rules, we can
write the covariant derivative of any local section [6]

Dvs = Dvµ∂µ(s
iei) = vµ(∂µs

i + (Aµ)
i
js

j)ei.
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In particular we have Dµs = (Dµs)iei = (∂µsi + (Aµ)ijs
j)ei. This last term is exactly

the expression one gets from the sections of g⊗T∗M as we saw above. Hence we
think of A, called the connection, as a Lie algebra valued 1-form.

One often uses the shorthand notation D = d + A where d is the exterior
derivative. To see that this makes sense, note the action of a Γ (E) section

Ds = d(sa)ea +Aa
bsbea = (∂µs

a + (Aµ)
a
bsb)d xµ ⊗ ea ≡ Dµs

ad xµ ⊗ ea.

We known that the exterior derivative satisfies d2, but this is not true for D:

D2s = (d +A)(ds+As) = (dA)s−A(ds) +A(ds) + (A∧A)s

This expression is called the curvature 2-form of the connection F= dA+A∧A. By
writing the 1-form in coordinates, and remembering that it is Lie algebra valued,
one can easily see that

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν].

In matrix components when acting on a section this reads

(Fµν)
a
bsb = (∂µ(Aν)

a
b − ∂ν(Aµ)

a
b + [Aµ, Aν]

a
b)s

b

As most of the manifolds we will study later will be Riemannian, we now consider
the special case of the tangent bundle TM over a Riemannian manifold M. We
here denote the connection by

∇ : Γ (TM)→ Ω1(M)⊗ Γ (TM).

We define the numbers, called Christoffel symbols, Γσ
µν

by the equation Γσ
µν
∂σ =

∇µ∂ν just as for the general discussion above. Then, the connection has the action

∇µv = (∂µvρ + vσΓ ρ
µσ
)∂ρ

where we have the components ∇µvν = ∂µvν + Γ ν
µρ

vρ. This connection may be
generalized to one-forms and tensors as well [60], where on a one-form

∇µων = ∂µων − Γ ρµνωρ

and on a (p,q)-tensor

∇µT
ρ1...ρp
σ1...σq

= ∂µT
ρ1...ρp
σ1...σq

+ Γ ρ1
µν

T
ν...ρp
σ1...σq

+ ...+ Γ ρ1
µν

Tρ1...ν
σ1...σq

− Γ ν
µσ1

T
ρ1...ρp
ν...σq

− ...
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For example, we can calculate the derivative of the metric tensor

∇µgρσ = ∂µgρσ − Γ νµρgνσ − Γ νµσgρν.

In the case where the metric is covariantly constant ∇g = 0 and the Γ ρ
µν

are
symmetric in the two lower indices we thus have

∂µgρσ = Γ
ν
µρ

gνσ + Γ
ν
µσ

gρν.

By adding a (µ→ ρ) term and subtracting a (µ→ σ) term we find an expression

Γ ρ
µν
=

1
2

gρσ(∂µgνσ + ∂νgµσ − ∂σgµν).

The connection where these are symmetric in the lower two indices and the met-
ric tensor is covariantly constant is called the Levi-Civita connection. From the
fundamental theorem of Riemannian geometry [60] this connection is unique.

In the case of Riemannian manifolds the curvature reads

Rρ
σµν
= ∂µΓ

ρ
νσ
− ∂νΓ ρµσ + Γ

ρ

µλ
Γ λ
νσ
− Γ ρ

νλ
Γ λ
µσ

and is called the Riemann curvature tensor. The contraction Rµ
σµν
= Rσν is called

the Ricci curvature tensor and R= Rµ
µ

the Ricci scalar curvature. For the case of
two dimensions, the Riemann curvature tensor takes the form

Rµνρσ = K(x)(gµρgλν − gµσgνρ)

with Ricci tensor Rµν = Kgµν. By performing a final contraction we see that
K = R/2 [60]. These results will be important when we discuss Riemann sur-
faces shortly.

For the sake of completeness we discuss geodesics. Consider a curve γ : R→
M with local coordinates xµ(λ) the tangent vector

Tγ =
∂ xµ(λ)
∂ λ

∂µ.

A vector v along this curve v(λ) = v(γ(λ)) = v i(λ)ei is said to be covariantly
constant along γ if DTγ v = 0. This can be seen as a set of differential equations
determining the vector v, whose solution v(λ) is called a parallel transport of
v(0) [39][37]. The curves that satisfy∇TγTγ = 0 are called geodesics, and can be
shown [37] to satisfy the equation

d2γµ

dλ2
+ Γ µ

νρ

dγν

dλ
dγρ

dλ
.

These curves are the generalization of straight lines from Euclidian space to a
Riemannian manifold.
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1.8 Chern cohomology

Having discussed connections and curvature we can discuss Chern cohomology,
which gives us a discrete topological invariant of vector bundles. We will use
Chern cohomology and the associated invariants when we classify simple topo-
logical insulators in even dimensions in later chapters.

Let M be a closed manifold so that the integral of a form depends only on its
cohomology class. Let also E be a rank k vector bundle over M with structure
group G, which we usually will take to be U(n) for a complex vector bundle. The
connection and curvature is as usual denoted A and F. A bundle is said to have
Chern classes ci(E), which are rank 2i differential forms2 [60]. One often defines
the total Chern class by the sum

c(E) = 1+ c1(E) + c2(E) + ...+ ck(E).

In terms of the curvature of the connection, the Chern class can be written [6]

c j =
(i/2π) j

j!
trF j =

(i/2π) j

j!
tr(F∧ ...∧ F)

We are being somewhat sloppy with the terminology here, as c j is a (closed)
form whose cohomology class should be called the Chern class [6]. However,
since any representative of a class defines it, we allow ourselves to call c j the j’th
Chern class. These Chern classes are important in the topological classification
of vector bundles. In particular, the integral of a Chern form is an integer [6]
which is called the Chern number. Following [58] and [6] we discuss the U(1)
case on 2-manifolds in some detail before discussing some general remarks. Over
a 2-manifold only the first Chern class exists. The first Chern form is simply

c1 = iF/2π

where locally F = dA. We notice a few things. First of all, locally the curvature
is closed since it can locally be written as an exact form. However, globally on M
we need a connection for each open subset Uα, and the curvature is only closed
on each subset. Recall that on overlaps Uα ∩Uβ the connection transforms as

Aα = Aβ + idφβα

under a U(1) transition function ψβα = exp(iφβα). We will absorb the factor
of i into the connection. Recall also that the transition functions determine the
topological non-triviality of the situation. In this sense, two connections should be

2Lie algebra valued forms, to be precise.
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considered topologically of the same type if they transform identically on overlaps
[58]

Aα = Aβ + dφβα

Ãα = Ãβ + dφβα.

The form Aα − Ãα = Aβ − Ãβ is then clearly independent of the open subset and
is globally well defined. The corresponding curvatures then satisfy

Fα − F̃α = d(A− Ã)

and hence is also globally well defined. In addition, the two curvatures are in
the same cohomology class as a result of the two gauge fields being of the same
topological type. In this sense, the Chern classes are topological.

We should also note how the curvature 2-form changes under a small defor-
mation of the gauge field. We write A′ = A + δA, which implies δF = dδA. In
other words, the cohomology class of the curvature is independent of the choice
of connection within a certain topological class, and in this sense only depends on
the twisting of the bundle. These observations imply that over a closed 2-manifold
M, the integral of the Chern form give a topological invariant classifying the bun-
dle. Similar results can be found for the higher Chern classes, see for example
[6]. As mentioned these numbers, called Chern numbers, can also be shown to
take integer values. In proper normalization the general result is that

Ck(E) =
(i/2π)k

k!

∫

M

tr(Fk) ∈ Z.

The Chern class has an important property known as the splitting principle. First,
for direct sum vector bundles the total Chern class satisfies c(E⊕F) = c(E)c(F)
[61]. The splitting principle states [61] that to prove any relation regarding Chern
classes it is sufficient to assume that we are dealing with a direct sum of line
bundles

E= L1 ⊕L2 ⊕ ..⊕Lk.

For line bundles the total Chern class is c(Li) = 1+ c1(Li), and for E we have

c(E) =
k
∏

i=1

[1+ c1(Li)] = 1+ c1(L1) + c1(L2) + ...+ c1(L1)c1(L2) + ...

Carrying on the product we can rad of the j’ht Chern class. For example

c1(E) =
k
∑

i=1

c1(Li),
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c2(E) =
∑

i< j

c1(Li)c1(L j).

A class that is somewhat better behaved under direct sums is the Chern character
[61]. It is defined as

ch(E) =
k
∑

i=1

ec1(Li) =
∞
∑

n=0

1
n!

k
∑

i=1

cn
1(Li).

For a direct sum bundle the Chern character simply adds ch(E⊕F) = ch(E)+ch(F)
[61]. As for the total Chern form the Chern character can be written as a sum
ch(E) = ch0(E) + ch1(E) + ...+ chk(E). By the above formula, we can read of the
different j’th Chern characters

ch0(E) = k = rkE,

ch1(E) =
k
∑

i=1

c1(Li) = c1(E),

ch2(E) =
1
2
[c2

1(L1) + ...+ c2
1(Lk)] =

1
2
[c2

1(E)− 2c2(E)].

The integral of the j’th Chern character over a closed manifold M is another way
to find the Chern numbers. A trivial bundle M×C` admits a flat connection with
F= 0. In this case the Chern characters are trivial, and the Chern numbers zero.
Hence we can modify a bundle E by a trivial bundle without changing its Chern
numbers. This will be important when we discuss the so called A class topological
insulators in even dimensions.

1.9 Spin structures

To define spinors on a manifold, we need the notion of a spin structure. This is
similar to the other types of geometric structure we have discussed, in that it can
be seen as a modification of the structure group of a bundle over M. Physically
we often view M as spacetime, which already has some geometric structures.
Formally, a spacetime is a manifold with a (Lorentzian) metric tensor field and a
smooth structure. Causality can also be seen as a required structure. The man-
ifold M is covered by light-cones, defined by the null trajectories calculated in
each tangent space, and is covered by a vector field T that picks, in a continuous
fashion, a notion of future directed cones.
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Figure 1.8: Causal structure as smoothly varying light cones.

For spinors we also need the notion of spin structures. Thus, a suitable space-
time is formally the quintuple

(M,A, g, T, #)

whereA is a smooth atlas, g a Riemannian metric, and # denotes a spin structure.

In the non-relativistic case, when all motion takes place at small angles inside
the light-cone, there is no mixing of space and time. This simplifies the discussion
of spinors somewhat. This is the case in most of our discussions, where we simply
view spacetime as a product Σ× I of a space manifold Σ and a time interval with
a Euclidian metric signature. It is now Σ that needs a spin structure. We will dis-
cuss spinors in flat space from a group theoretic perspective before generalizing
to curved spaces.

Spinors are, from a group theoretical point of view, defined as representations
of the double covering groups of the special orthogonal groups

SO(n) = Spin(n)/Z2.

This can be seen as a consequence of the projective nature of quantum states. In
dimensions larger than two the double cover is in fact a universal cover. In low
dimensions we have the accidental group isomorphisms

n Spin(n) π1(SO(n))
1 O(1) {e}
2 U(1) Z
3 SU(2) Z2

4 SU(2)× SU(2) Z2

We should note that the above table of isomorphisms gives a false impression of
a pattern. It is not that case that higher dimensional spin groups continue to be
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a combination of SU(2). In fact, there are no known patters whatsoever.

Most familiar is maybe the case of three dimensions. Here the Lie algebras
so(3) and su(2) coincide, and the irreducible representations are vector spaces V̀
of dimension 2`+1, where the spin ` can be integer or half integer [35]. The fun-
damental representation is the two dimensional spin-half representation. How-
ever, the half integer representations to not correspond to proper representations
of the group SO(3), but rather its double cover Spin(3) = SU(2). Roughly peak-
ing, the Lie algebra in exponentiated into the covering group. The two types of
spin, integer and half-integer, corresponds to the two inequivalent ways to quan-
tize a classical system of many particles, i.e. bosons and fermions. In general, if
V(n) is a representation space of Spin(n), the tensor product space L2(Rn)⊗V(n)
is the appropriate Hilbert space of a quantum mechanical particle moving in flat
space.

In dimension 2 things are somewhat more strange. Here the universal cover is
the real line R, which is not a double cover but a infinite covering. One may then
be tempted to relate the unitary representations of the real line with spinors,
in a similar fashion to the higher dimensional cases. This would lead to spins
characterized by any real number, which is related to anyonic statistics. However,
we will here claim that spinors are still associated with double covering groups,
which in the case of a circle SO(2) = S1 = U(1) is simply a circle "traversed with
double speed". By the identification R2 = C the spin transformations are phases

ψ→ eiθ/2ψ

e.g. rotation operators that square to normal SO(2) rotations.

To have a well defined notion of spinors on a general manifold, we need yet
another geometric structure. As opposed to the earlier G-structures where the
we reduced the structure group, spin structure is a geometric structure where
one considers not a reduction but a covering of the structure group. We will
start with a (oriented) Riemannian manifold, i.e. a manifold where the struc-
ture group is the special orthogonal group. To generalize the concept of spinors
to curved spaces, we must construct a vector bundle where we lift the SO(n)
structure group to the Spin(n) group. This section is by no means meant as a
exhaustive discussion on spin geometry, but rather a introduction. For more de-
tailed discussions see for example [60].

This lifting is achieved by the 2:1 homomorphismρ : Spin(n)→ SO(n). Given
transition functions

ψαβ : Uα ∩Uβ → SO(n)
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on a manifold with Riemannian structure, we wish to lift these to the transitions

ψ̃αβ : Uα ∩Uβ → Spin(n)

so that on triple intersections the cocycle condition is satisfied

ψ̃αβψ̃βγψ̃γα = 1.

A spin structure on M is defined [60] by the existence of transition functions satis-
fying this cocycle condition. In this case the vector bundle is called a spin bundle
SM, and M a spin manifold. Spinors are associated with sections of this bundle.
In a local trivialization this gives back the familiar notion of spinors, e.g. where a
local section maps x → (x ,ψ(x)) and ψ : M→ V where V is a vector space with
a spin representation.

Note that the inverse group homomorphism acting on the cocycle condition
satisfies

ρ−1(1) = ρ−1(ψαβψβγψγα) = ±1

since the homomorphism is 2:1. These sign ambiguities are the possible obstruc-
tion to define a spin structure.

As discussed above, in a local trivialization of the spinor bundle, spinors are
simply elements of a vector space with a representation ρ : Spin(n) → Aut(V).
Let ψ(x) be such a spinor. To define a Dirac operator, we need the notion of
covariant derivative of spinors. Just as in the case of vectors where

DµV
ν = ∂µV

ν + Γ ν
µρ

Vρ

with connection coefficients Γ ν
µρ

, the covariant derivative of spinors is

Dµψ= ∂µψ+ω
ab
µ
Σabψ

where Σab are the generators in the spinor representation andωab
µ

is the connec-
tion one-form. See [58] or [60] for more details on this spin connection. This
covariant derivative can be used to construct Dirac operators [60]. The gamma
matrices γµ satisfy the Clifford algebra {γµ,γν}= 2δµν. The Dirac operator is de-
fined as D= iγµ∂µ = i /∂ . If we use curved space gamma matrices {γµ,γν}= 2gµν

the Dirac operator is iγµDµ = i /D. We should note that the Dirac operator as it is
defined does not act on any kind of spinor, but rather the Dirac spinors. This is
not a irreducible representation of the spin group, but rather is a combination of
spinors with different chirality. From the above gamma matrices, we define the
matrix [60]

γn+1 = i(n/2)γ1 · · · γn,
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γn+12 = 1.

This definition only holds for even space-time dimensions as n must be a even
number. The eigenvalues of γn+1 must be ±1 and are called the chirality. The
space of sections Γ (SM) can then be divided into disjoint eigenspaces [60]

Γ (SM) = Γ+(SM)⊕ Γ−(SM).

These two classes of spinors are often called Weyl spinors.

1.10 Riemann surfaces

We will here introduce the concept of a Riemann surface based on earlier discus-
sions of geometric structures. For further discussions on Riemann surfaces, see
for example [40] or [84].

DEFINITION: A Riemann surface Σ is a 1 dimensional complex manifold, e.g. a
complex curve [84].

This may be seen as our main definition. However, as we discussed in the
section on complex structures it may be rewarding to ask when a real surface can
be given a complex structure. The following theorem is thus invaluable.

THEOREM: Every orientable Riemannian 2-manifold (Σ,g) is a Riemann surface.

We will show the equivalence to Definition 1. We will follow the line of
thought presented in [58] and [60]. We include these proofs in their entirety
as they give insight into exactly what makes two dimensions so special.

This first proof is due to Green, Schwarz and Witten [58], sketched in a foot-
note in their discussion on complex manifolds. We elaborate on this in the hope
to gain further insight. We also choose to work not in component form with the
Nijenhuis tensor as is done in their discussion. We know from our discussions
of tensors and forms that on a (orientable) Riemannian manifold there is an an-
tisymmetric tensor εi j determined by a single parameter. We may chose it in a
normalized way such that ε12 = −ε21 = 1. We note that this tensor squares to −I,
as is clear if we view it as a 2-by-2 matrix. Together with a Riemannian metric
we can construct the tensor with components Jl

i ≡
p

gεmi g
lm which is of type

(1,1) that also squares to the negative identity. This is in other words an almost
complex structure on TΣwhich fiberwise square to the negative identity. We now
claim that the tangent spaces are given by

TpΣ= spanR {u, Ju}
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for some choice of vector field u. We show the R-linear independence of these
fields, which is really quite trivial. It is clear that the equality Ju = λu cannot
be true for real numbers λ as may be seen simply by acting on both sides with J.
Intuitively the linear independence is also clear from the fact that we can interpret
J as a rotation by π/2 making them orthogonal.

TxΣ u

Ju

Σ

Figure 1.9: We can use the almost complex structure to construct a basis for the
tangent spaces.

Then it should be sufficient to evaluate N(u, Ju) as any vector field may be
written in terms of this basis:

N(u, Ju) = [u, Ju] + J[Ju, Ju] + J[u, J2u]− [Ju, J2u]
= [u, Ju] + [Ju, u]
= 0.

Thus, from the Newlander-Nirenberg theorem, any two dimensional orientable
Riemannian manifold is a complex manifold.

The second proof is more constructive, and can be found in [60] in the chap-
ter on Bosonic string theories. We will here go trough the same proof in a more
detailed way , as it makes use of a useful form of the metric and explicitly shows
that transition functions are holomorphic without the need to invoke the machin-
ery of almost complex structures. The proof uses the result that on a Riemann
surface the metric is conformally flat [84], meaning

g(V, V) = ds2 = f 2(x , y)(d x2 + d y2)

or equivalently in terms of complex coordinates f 2(z, z)dzdz. We now want find
the expression for this in another chart:

z→ w(z, z) = u(x , y) + iv(x , y),
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f 2(z, z)dzdz→ g2(w, w)dwdw.

On some non zero overlap of these patches we may write the differentials

dw=
∂ w
∂ z

dz +
∂ w
∂ z

dz,

dw=
∂ w
∂ z

dz +
∂ w
∂ z

dz.

However, on the overlap the metric should match so we can set

f 2(z, z)dzdz = g2(w, w)dwdw (1.38)

= g2(w, w)
�

∂ w
∂ z

dz +
∂ w
∂ z

dz
��

∂ w
∂ z

dz +
∂ w
∂ z

dz
�

(1.39)

and we may equate term by term on the left and right hand side. The dzdz term
then yields

∂ w
∂ z
∂ w
∂ z
= 0. (1.40)

If we want to show that the transition functions are holomorphic, i.e. that w is
complex analytic in z, we must show that ∂ w/∂ z can not be zero. We assume
that it is, and do a proof by contradiction. The coordinate change would lead to
a Jacobian of the form

Jac=

�

∂ u
∂ x

∂ u
∂ y

∂ v
∂ x

∂ v
∂ y

�

=

�

∂ u
∂ x

∂ u
∂ y

∂ u
∂ y − ∂ u

∂ x

�

(1.41)

where we used the Cauchy - Riemann conditions for anti-holomorphic functions.
Clearly the determinant det(Jac) is strictly negative as it is a negative sum of
squares. In other words, our manifold is non-orientable which is agains our initial
assumptions. Thus, ∂ w/∂ z can’t be zero and we must have that

∂ w
∂ z
= 0

or equivalently ∂ w/∂ z = 0. This concludes the proof as the transition functions
have to be holomorphic.

Let us take a step back and see what really has happened. In particular, we
have seen that given a metric tensor, we can construct the complex structure

Jµ
ν
=
p

gενρgµρ.

However, note that under a Weyl(M) transformation g → eωg the complex struc-
ture transforms

J→ e(n/2−1)ωpgενρgµρ = J
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as n = dimR(M) = 2. Hence only the conformal equivalence class [gµν] con-
tributes to the definition of the complex structure. This is related to the fact the
J can be seen as a rotation in the tangent spaces, telling us how to orient vector
fields in relation to each other but says nothing about their lengths. This presents
an alternative view on the classification of complex structures. The space of con-
formal equivalence classes of Riemannian metrics corresponds to the space of
complex structures of the surface.

Before we state and discuss the so called Uniformization of Riemann surfaces,
we need to discuss quotients of Riemann surfaces. We have discussed quotient
from the point of view of topology, where constructed quotient spaces from an
equivalence relation (see appendix). However, we have not claimed that we are
ever dealing with a quotient manifold. For the quotient space to be a manifold,
there are certain requirements. We will here assume that the equivalence relation
is obtained from a group action of G on a space X.

First a few definitions. Let the group G have a group action (g, x)→ g(x) on
a space X. The set of points O (x , G) = {y ∈ X|y = g(x), g ∈ G} is called the orbit
of x under G. The group action is called properly discontinuous when the two
following conditions are met [38]

1. Let x ∈ Ux ⊂ X, g ∈ G and x /∈ O (y, G). For a properly discontinuous action
we must have that g(Ux)∩Ux = ;.

2. Let x , y ∈ X with neighborhoods Ux and Uy , and x /∈ O (y, G). For a properly
discontinuous action we must have that Ux ∩ g(Uy) = ;.

See also [84] for alternate discussion on the subject. Consider now the case
where X is a complex manifold. Let us assume that we are given a quotient map
π : X → X/G. The quotient space X/G is then a complex manifold if the group
action is properly discontinuous. If X is covered by the subsets {Ui}, the charts
on the quotient are naturally given by φi ◦π−1 : π(Ui)→ φi(Ui) ⊂ C [84][38].

Another tool useful for studying quotients of Riemann surfaces is the notion
of a fundamental domain. These contain, in particular, topological information
regarding the quotient.

DEFINITION: A fundamental domain D of a group G acting on a space X is a
subset D ⊂ X such that

1. For point x ∈ X there is a g ∈ G such that g(x) ∈ D.
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2. Two (or more) points in D can not lie in each others orbits.

3. The union ∪g g(D) = X tesselates X. It is clear from this that be have to be
careful when discussing the boundaries of D.

For a trivial example we can consider the quotient R/Z. The interval [0,1)
then is a fundamental domain. Clearly no two points in this interval lies in each
others orbits, and any point can be shifted to the right or the left to lie in [0, 1).
Since we do not include the endpoint 1 the translates [1,2) and [−1, 0) do not
overlap and in total tesselates the line trivially.

The second main result, here stated without proof, is the so called Uniformiza-
tion theorem of Riemann surfaces. This theorem does not only give us insight
into how we may construct Riemann surfaces, but also gives a first classification
of them.

UNIFORMIZATION THEOREM: Let Σ be a connected Riemann surface and Σ̃ its
universal covering space. Then this covering space is isomorphic to either the Rie-
mann sphere, the complex plane or the upper half plane.

For a larger discussion of this theorem see [84]. From our discussion on ho-
motopy groups and universal covering spaces, it should then be clear that every
Riemann surface Σ can be obtained by a quotient of one of these simply con-
nected spaces by a group of automorphisms. This group is the first homotopy
group π1(Σ) of the resulting Riemann surface. Thus, the study on Riemann sur-
faces can largely be reduced to studying (subgroups of ) the automorphism groups
of these simply connected spaces, and their group action. This is not a complete
classification of Riemann surfaces as complex manifolds however, since there may
exist inequivalent complex structures. A particularly important class of surfaces
for us is the case where the universal covering space is C and group of automor-
phisms is a translational group isomorphic to Z× Z. Note that for the complex
plane the automorphisms are either such translations or rotations, but rotations
necessarily have fixed points and do not act properly discontinuous on C. Hence,
the only Riemann surface with covering the complex plane is the genus one torus.
Similar observations can be made for the spherical case, but in this case all auto-
morphisms have fixed points. For the hyperbolic plane, the automorphisms are
the Fuchsian groups. In conclusion, all Riemann surfaces are either a sphere, a
torus or quotients of hyperbolic space by Fuchsian groups.

As Riemannian manifolds the Riemann surfaces inherit a metric form their
covers. The curvature of these can be obtained by the Gauss-Bonnet theorem
[58]
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1
4π

∫

Σ

d2 x
p

gR= χ(Σ) = 2− 2g

where R is the Ricci curvature scalar of the surface. Hence we can relate the genus
to the curvature. Since the Riemann surfaces gain a metric from their covers, and
therefore also curvature, we can relate genus to the three model geometries of
the uniformization theorem. Genus 0 correspond to the positively curved sphere,
genus zero to the flat torus, and higher genus to the negatively curved hyperbolic
surfaces.

1.10.1 Line bundles over Riemann surfaces

Before moving on to studying the complex torus we discuss the geometry of Rie-
mann surfaces in somewhat more detail. In particular we want to understand
line bundles. For a larger discussion on the subject see [84].

From our discussion of complex structures we know that the tangent bundle
over a complex manifold may be decomposed into holomorphic and antiholo-
morphic line bundles

TCΣ= TΣHol ⊕ TΣaHol

and similarly for the cotangent bundle. We will mainly be focusing on holomor-
phic vector fields and holomorphic one-forms, e.g. holomorphic vector fields and
the canonical bundle. From the section on fiber bundles, we remember that a
local choice of coordinates on U ⊂ Σ also trivialized the tensor bundles. Con-
sider for example the canonical line bundle of holomorphic one-forms. On the
intersections Ua ∩Ub the one-forms will transform as

f (z)dz→ f (w)dw= f (w(z))
∂ w
∂ z

dz

with the transition functions ∂ w
∂ z = ψba : Ua ∩ Ub → SO(2). These clearly satisfy

the conditions discussed in the section on fiber bundles, in particular

ψabψbcψca =
∂ za

∂ zb

∂ zb

∂ zc

∂ zc

∂ za
= 1
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Lp

Σ

Figure 1.10: A line bundle over a point p in the intersection of charts Ua and
Ub.

The uniformization theorem gives us a simple way to construct Riemann sur-
faces using quotients. Let us see how this extends to the line bundles. Let X
denote the universal covering of a Riemann surface Σ and G the (discrete) group
action by which we want to quotient. The family of points x1, x2, ... in X are the
orbits of G which all are projected to P(x i) ≡ p in Σ. Let also L be the line bun-
dle of either holomorphic vector fields or holomorphic one-forms. We purpose
the following identification: A line bundle L over Σ = X/G is identified with a
G-equivariant line bundle L̃ over X.

We could view L as a pullback bundle by the projection P, but as the inverse
projection is one-to-many the bundles over points related by G needs to be iden-
tified. For a small discussion of a similar3 case see [13].

3In this reference a similar statement is made regarding line bundles over quotient of Lie
groups.
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X x1

x2
x3

P

Σ

p

Lp

L̃x1 L̃x2

L̃x3

Figure 1.11: As the points x1, x2, ... are G-equivalent, the fibers above should
be identified when taking the quotient. In this way the bundles are "projectable"
to the Riemann surface.

Let us see what this identification means for the line bundle of holomorphic
one-forms. Let z be a point that is projected to p, and g(z) for g ∈ G a group
translate of it. Under the G-action we identify

f (z)dz
!
= f (g(z))d g(z) = f (g(z))

∂ g(z)
∂ z

dz

implying the transformation rule

f (g(z)) = f (z)
�

∂ g(z)
∂ z

�−1

.

Hence the study of one-forms on a Riemann surface obtained by a quotient X/G
can be seen as a study of functions on X invariant up to an extra factor.

1.10.2 Counting spin structures

In the case of two dimensions, spin structures are particularly kind. As we will
see there is a more geometric interpretation of spinors that will be useful when
counting spin structures. We consider the holomorphic line bundle T∗ΣHol = L of
one-forms over a Riemann surface Σ, where in a local trivialization the one-forms
take the form

ω=ω(z)dz.
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Since Riemann surfaces are Riemannian manifolds, and hence have SO(2)-structure,
the transition functions ψab are SO(2)-valued functions on the chart overlaps
Ua ∩ Ub. We write ψab = Rab(θ ). From this line bundle we can construct what
is known as a square root of the line bundle. A square root of this line bundle
is another line bundle S such that S⊗ S = L [10]. The transition functions on S

satisfy R̃2
ab(θ ) = Rab(θ ), hence

R̃ab = ±
p

Rab.

The sign ambiguity in taking the square root of the transition functions imply that
the cocycle condition is only satisfied mod Z2, as we discussed earlier in more
generality. The bundle S contains half-order forms, written ω(z)

p
dz, where the

square root is nothing more than a formal symbol reflecting the fact that the
tensor product of two such half-forms yields a 1-form. The sections of this line
bundle will act as spinors under the rotation group [3][10]. However, construct-
ing such a square root is highly non-canonical.

We here sketch the construction of the square root line bundle. We consider a
Riemann surface obtained by a quotient π : X→ Σ= X/G, where G= π1(Σ). We
recall that the first homotopy group acts on the cover X by permuting preimages
π−1(p). Let S̃ be the square root of L̃can on the cover X with half-forms ω =
f (z)
p

dz. The half-forms on Σ is then identified with G-equivariant half-forms

f (g(z))

√

√∂ g(z)
∂ z

dz = f (z)dz

∴ f (g(z)) = f (z)
�

∂ g(z)
∂ z

�−1/2

.

Taking this square root results in a sign ambiguity. The transformations z→ g(z)
are generated by transporting points along cycles in Σ.

Figure 1.12: On the torus the first homotopy group is Z×Z, corresponding to
winding numbers around the two non-homotopic closed loops. As there are two
possible signs to chose for each path, there are 4 square roots of Lcan

For each genus g there are 2 such loops, resulting in

2 · 2 · ... · 2
︸ ︷︷ ︸

2g times

= 22g
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sign choices. These are the 22g inequivalent ways to construct the bundle S,
and hence the inequivalent spin structures on Σ [10][3]. Thus on the torus, as a
genus 1 surface, there are four spin structures, corresponding to the four different
combinations of periodic or anti-periodic boundary conditions.





2
Geometry of the ring of modular forms

The theory of modular forms is an old mathematical theory that still is an active
area of research. We wish to present this theory in an almost purely geometric
form. Not only is this an attractive approach to modular forms, but it offers a nice
introduction to the subject for people more familiar with geometry than complex
analysis and number theory. The hope is that this chapter can serve as a clear
introduction to this wonderful mathematical theory for physicist familiar with
the geometry of general relativity and field theory.

2.1 Overview

The theory of modular forms is a large field with many components. Before we
start we want to present a brief overview of the subjects we will discuss.

The story starts with complex tori. These are the complex counterpart of the
familiar genus 1 surface in two real dimensions. As a complex manifold these tori
are classified by invertible holomorphic mappings, as we discussed in the previous
chapter. The moduli space of these objects is a quotient space. By placing further
structure on the complex torus, this moduli space will change so that the holo-
morphic mappings respect this additional structure. The holomorphic 1-forms dz
and their k-fold tensor products over these moduli spaces are modular forms. In
this way, we can see modular forms as sections of a certain line bundle, on which
we can find a connection 1-form. This will occupy much of our time, and lead
to a geometric understanding of the so-called differential ring of quasi-modular
forms.

The modular forms also appear when considering functions on the torus.
These can be seen as doubly periodic functions, and are often referred to as el-
liptic functions in the holomorphic case. By performing a series expansion of a
certain class of these functions, we will see that certain modular forms appear

51
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as coefficients. Furthermore, these elliptic functions and their derivative satisfy
certain algebraic relations known as elliptic curves. These algebraic objects can
be shown to be isomorphic to the original complex torus.

2.2 Complex tori

From the point of view of the uniformization theorem of Riemann surfaces, the
complex torus is the genus one, flat Riemann surface with universal covering the
entire complex plane. For alternative discussions see for example [60], [84] or
more or less any book on Riemann surfaces. The automorphisms of the complex
plane can be taken to be rotations and translations. Since the rotations have fixed
points, we have to quotient by the translations. The discrete translations form a
lattice Λ ⊂ C, viewed as a subgroup of (C,+). We write

Λω1,ω2
=ω1Z×ω2Z

whereω1 andω2 areR-linearly independent as vectors in the plane. The quotient
obtained by the equivalence z ∼ z +ω for ω ∈ Λω1,ω2

is the complex torus

Eω1,ω2
= C/Λω1,ω2

Figure 2.1: The 2-torus obtained from a identification of the sides of a parallel-
gram in the complex plane.

The complex tori are also called complex elliptic curves, hence the above no-
tation Eω1,ω2

. We will later justify this terminology by discussing the relation
between the theory of complex tori and the theory of elliptic curves over C. We
will use the two names interchangeably.

Recall that in general, the complex structure is obtained by having holomor-
phic transition functions φi ◦ φ−1

j . The charts on a quotient can be chosen to
be φi ◦ π−1, with φi the charts of the covering. The transition functions on the
quotient manifold is then the composition

(φi ◦π−1) ◦ (φ j ◦π−1)−1 = (φi ◦π−1) ◦ (π ◦φ−1
j ) = φi ◦φ−1

j .

In this sense the complex structure of the quotient is inherited from the covering.
In the case of the torus the complex structure is obtained by a choice (ω1,ω2).
We will therefore refer to this choice of lattice as a complex structure.
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2.3 Moduli space of complex tori

We want to classify the complex tori by biholomorphic equivalence. Recall that
classification problems often comes in two steps 1. First one identifies the discrete,
often topological, classification of the objects one wants to study. The moduli
space first appears when one for fixed discrete structures searches for parameters
that further divides the objects into continuous families. In our present case, the
discrete invariants are the genus of the surface. This section discusses the moduli
space associated with genus one surfaces following [60][21].

According to our discussion on complex manifolds, the moduli space of com-
plex tori should schematically be

M (Eω1,ω2
) = {Complex Tori Eω1,ω2

} / Biholomorphisms.

Before we construct the biholomorphisms, we need the notion of equivalent lat-
tices.

The idea behind the classical approach to complex torus classification is to
realize that the operation that gives equivalent lattices induces a biholomorphic
map between the tori. This proof follows [60] quite closely, and is included for
the sake of completeness. We consider two lattices Λω1,ω2

and Λω′1,ω′2
. If the orbits

of these lattices are to coincide we must at least have that the ωi lie in the orbit
of Λω′1,ω′2

, i.e. (ω1,ω2) = (aω′1+ bω′2, cω′1+ dω2)′. In matrix notation this reads

�

ω1

ω1

�

=
�

a b
c d

��

ω′1
ω′2

�

,

which we write ω=Mω′ for short. The opposite must also be true, i.e. ωi
′ must

lie in the orbit of Λω1,ω2
. By inverting the above matrix relation we get

det(M)
�

ω′1
ω′2

�

=
�

d −b
−c a

��

ω1

ω2

�

.

Hence if det(M) = ±1 the ω′i also lie in the orbit of Λ, and the two lattices
coincide. The linear independence of the two generating vectors can be expressed
as ℑτ > 0 for τ = ω2/ω1. For the transformed lattice ω′ = Mω with ω′1 =
aω1 + bω2, ω′2 = cω1 + dω2 we get

ℑτ′ = ℑ
�

c + dτ
a+ bτ

�

=
det(M)
|a+ bτ|2

ℑτ.

So, to preserve the linear independence the determinant must be positive. Hence
we are dealing with a SL2(Z) transformation. Note that the above arguments still

1See the appendix for a discussion on structure and classification.
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hold if we in stead used the matrix −M. Hence we could mod out this Z2 action
to get the projective special linear group PSL2(Z). This is also called the modular
group, which we will denote Γ (1) for reasons that will become clear later. The
modular group is an infinite discrete group generated by two elements T,S that
satisfies S2 = (ST)3 = 1 [21]. On the upper half plane, these generators act by
T : z→ z + 1, S : z→−1/z. More generally, a modular transformation acts by

γ(z) =
�

a b
c d

�

(z) =
az + b
cz + d

.

This group plays a crucial role in the classification of tori. Being a complex man-
ifold, the equivalent complex tori are related by a invertible holomorphic map,
i.e. a biholomorphism

ϕ : C/Λω1,ω2
→ C/Λω′1,ω′2

.

The main idea is to use the projection π : C→ C/Λω1,ω2
to lift ϕ to a holomorphic

map f on the complex plane. Intuitively, the job of this map is to deform one
lattice into the other so that the following diagram commutes

C C

C/Λω1,ω2
C/Λω′1,ω′2

ϕ

π π̃

f

The following theorem, taken from [21], summarizes the classification of
complex tori.

THEOREM: Let ϕ : C/Λω1,ω2
→ C/Λω′1,ω′2

be a invertible holomorphic map be-
tween complex tori. Then there are complex numbers λ, b such that ϕ(z+Λω1,ω2

) =
λz + b +Λω′1,ω′2

and λΛω1,ω2
= Λω′1,ω′2

. Here z +Λ denotes the equivalence class of
z ∈ C under the lattice. The two tori are in this case said to be biholomorphically
equivalent.

In particular, consider the latticeΛω1,ω2
written asω1(Z×τZ), where as before

τ = ω2/ω1. This can be seen as a map C/Λω1,ω2
→ C/Λ1,τ with lattices equiva-

lent up to a overall scaling. By the above theorem, these tori are isomorphic as
complex manifolds. However, this choice of τ is not unique as there are many
equivalent lattices under the modular group, i.e. τ′ = γ(τ) for γ ∈ Γ (1). Thus, a
complex structure τ determines a complex torus up to modular transformations.
The moduli space of complex tori is [21] the orbit space

M (E1,τ) = H/PSL2(Z) = H/Γ (1).
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The geometry of this moduli space will play a central role in most upcoming
discussions. Such quotients of the upper half plane by the modular group or its
subgroups are called modular curves.

2.4 Moduli space of complex tori with spin struc-
ture

When the holomorphic map between equivalent tori have to respect more ge-
ometric structure, the moduli space changes. By adding spin structures on the
torus, we will see that the moduli space can be constructed as a quotient as
before, but now with a subgroup of the modular group. Recall that when we
counted spin structures on Riemann surfaces, we identified spinors on Σ with the
square root of the canonical line bundle of holomorphic 1-forms. The number of
spin structures corresponded to the number of ways we could take this square
root, which we found to be 22g for a genus g surface. On a torus there are four
spin structures. A choice of spin structure is equivalent to choosing either pe-
riodic (P) or anti-periodic (A) boundary conditions along the two fundamental
loops on the torus.

These four spin structures we denote (P,P), (P,A), (A,P) and (A,A). We will
denote the torus with a particular spin structure # = (P, P), (P,A), (A,P), (A,A)
simply E#

1,τ.

To connect the above four spin structures to particular level 2 subgroups Γ of
the full modular group Γ (1), we should first study how spinors transform under
the two generators of the modular transformations. Once the subgroups that fixes
particular spin structures are identified, we can study the holomorphic geometry
on the moduli space H/Γ of complex tori with spin structure E#

1,τ to learn about
the modular forms.

The modular transformations can be seen as operations that cut, twist and
glue the complex tori, and hence will mix the four different boundary conditions.
If we insist of having a fixed spin structure, we need to identify the subgroups
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that preserve the given boundary conditions.

First we should see how the modular group generators T and S changes the
spin structures. Consider coordinates x + τy on E1,τ. Under S : τ → −1/τ we
have the transformation

x +τy →
τx − y
τ

so this generator essentially maps (x , y) → (−y, x), up to a scaling. Similarly,
under the translations T : τ → τ + 1 the coordinates get mapped as (x , y) →
(x + y, y). Knowing this, we can see how spinors on E1,τ transform. Consider
first the (A,P) spin structure. Then

ψ(x , y)
(A,·)
= −ψ(x + 1, y)

↓ S

ψ(−y, x) = −ψ(−y, x + 1)

By this notation we mean that the above equality is true because of the anti peri-
odicity in the first argument, and that we transform both the left and right hand
side of this equation by S to get a new boundary condition on the transformed
torus. Similarly

ψ(x , y)
(·,P)
= ψ(x , y + 1)

↓ S

ψ(−y, x) =ψ(−y − 1, x)

In total this means that S : (A,P) → (P,A). We treat the action of the second
generator likewise.

ψ(x , y)
(A,·)
= −ψ(x + 1, y)

↓ T

ψ(x + y, y) = −ψ(x + y + 1, y) (2.1)

ψ(x , y)
(·,P)
= ψ(x , y + 1)

↓ T

ψ(x + y, y) =ψ(x + y + 1, y + 1)

Since anti-periodicity in the first argument is conserved under T by equation (2.1)
we can writeψ(x+ y, y) = −ψ(x+ y, y+1). Hence T : (A,P)→ (A,A). Similarly
we can proceed to find how the three other spin structures transform. The results
are summarized in the below graph.
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A,P P,AA,A

P,P

S

S

T

T

TS

S T

These transformation rules coincides with the ones discussed in for example
[75]. The only spin structure preserved by the full modular group is the trivial
(P,P) spin structure. Knowing how the spin structures mix under the modular
generators we can draw a similar diagram for the subgroups Γ ⊂ Γ (1). Most
relevant in our discussions is the subgroup generated by T and ST2S, denoted
Γ0(2). Using the above diagram we can easily draw a diagram for this subgroup.

A,P A,A

P,P

P,A

T

T

ST2SST2S

TST2S

TST2S

We see that now also the (P,A) spin structure is fixed. Similarly, there are other
subgroups that preserve the other spin structures. In terms of combinations of
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the generators for the full modular group, these are given by [68]

Γ (2) =



T2, ST2S
�

(2.2)

Γ0(2) = ΓT =



T, ST2S
�

=



T, R2
�

(2.3)

Γ 0(2) = ΓR =



T2, STS
�

=



R, T2
�

(2.4)

Γθ (2) = ΓS =



S,T2
�

(2.5)

Γ2 = ΓP = 〈ST, TS〉= 〈P, SPS〉 (2.6)

where R = TST = ST−1S. The group Γ (2) is called the principal congruence
subgroup. The other groups are the four groups that lie between this principal
subgroup and the full modular group Γ (1) [68]. There are several interesting
conjugacies between these groups. Recall that two subgroups H1,H2 of a group G
are said to be conjugate if there is a g ∈ G such that H1 = gH2 g−1. In this way sub-
groups fall into conjugacy classes. The groups ΓT,R,S are conjugate by ΓR = SΓTS−1

and ΓS = TΓRT−1 [64]. We can also consider conjugation by the GL2(Q) operation
G(z) = 2z. We then also have the relation ΓR = GΓTG−1. This conjugacy is also
used to prove the isomorphism of the groups Γ0(4) = {γ ∈ Γ (1)|c = 0 mod4} and
Γ (2) [12]. We will discuss these conjugacy classes in more detail in later chapters,
as well as in the appended paper where we discuss these modular groups in the
context of the quantum Hall effect. For more information on the subgroups of
the modular group see for example [68].

Using the above diagrams one can verify that the (A,A) spin structure is fixed
under ΓS, and (A,P) under ΓR. In other words, the three subgroups correspond
exactly to the subset of modular transformations that preserve one of the spin
structures. When we constructed the moduli space of complex elliptic curves
we considered the equivalence classes of lattice generators (1,τ) under the full
modular group. To have a moduli space of a complex elliptic curve with additional
spin structure we have to quotient by one of the above subgroups. For general
ΓX ⊂ Γ (1) we get the complex curve H/ΓX. For example, the moduli space of an
elliptic curve with (P,A) spin structure is the modular curve H/ΓT. We now study
holomorphic tensors on these modular curves.

2.5 Modular forms from holomorphic geometry

We start by analyzing holomorphic forms on the moduli spaces H/ΓX. We will
for ease of notation write L∗ = T∗Hholo and L = THholo. Recall from our earlier
discussions on line bundles on Riemann surfaces that to construct holomorphic
one-forms on a quotient we in stead work on the covering space but demand

f (g(z)) = f (z)
�

∂ g(z)
∂ z

�−1

.
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For holomorphic vectors, e.g. sections of L, the inverse transformation rule holds

f (g(z)) = f (z)
�

∂ g(z)
∂ z

�+1

First, let γ ∈ Γ (1) and consider z→ γ(z) for z ∈ H. Then

∂zγ(z) =
∂

∂ z
az + d
bz + c

=
a

cz + d
− c

az + b
(cz + d)2

= (cz + d)−2.

Hence, to construct holomorphic 1-forms on the moduli spaceM (Eω1,ω2
)we must

demand
f (γ(z)) = f (z)(cz + d)2

where f : H→ C. If we construct the k-fold tensor product bundle L⊗k
∗ = L∗ ⊗

...⊗L∗ with fiber basis dz ⊗ ...⊗ dz, the transformation rule will similarly be

f (γ(z)) = f (z)(cz + d)2k.

These functions are called modular forms of weight 2k [41]. If we in stead con-
sider the bundle L⊗ ...⊗L we would get

f (γ(z)) = f (z)(cz + d)−2k

which transform as modular forms of negative weight.

We often work only with the components of these tensors. Under the gener-
ators S, T of the modular group, the requirement for a modular form reads

f (S(z)) = zk f (z),

f (T(z)) = f (z).

Hence modular forms are periodic under T and can be expanded in a Fourier
series. Defining q = exp(2πiz) we have a q-expansion

f =
∑

n∈Z

anqn.

The holomorphicity at infinity is now equivalent with the fact the an = 0 for neg-
ative n. A modular form that vanishes at i∞ is called a cusp form [21]. Note
that since q vanishes in the limit τ → i∞, we have f (i∞) = a0. Often one
normalizes the modular form so that a0 = 1. We will explicitly do this later for
the Eisenstein series.

We denote the space of modular forms Mk(Γ ) for some subgroup Γ . From
the above, it should be clear that this space is closed under both addition and
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(complex) scalar multiplication, so Mk(Γ ) is a vector space over C. Note that if
f (z) is a weight k modular form and g(z) a form of weight l, the product f (z)g(z)
is a modular form of weight (k+ l). If we consider the space of all modular forms

M(Γ ) =
⊕

k

Mk(Γ )

this space has the structure of a ring. We will call it the modular ring.

We now turn to modular forms for the subgroups Γ . Just as for the full mod-
ular group we consider k-fold tensor products of the line bundles of holomorphic
1-forms L∗ on the upper half plane. Under the quotient by one of the modular
subgroups these tensors again have to satisfy an automorphy relation. This time
however, the group element belongs to the subgroup. Recall that ΓT is generated
by T and ST2S, while ΓR is generated by T2 and STS. Since there is no factor
of automorphy associated with a Tn transformation, we need only consider the
other generator for the two subgroups to identify forms.

Transformation Automorphic factor for L∗ Automorphic factor for L⊗N
∗

STS τ→ (1/τ− 1)−1 (τ− 1)2 (τ− 1)2N

ST2S τ→ (1/τ− 2)−1 (2τ− 1)2 (2τ− 1)2N

Again we clearly see the G-conjugacy between ΓT and ΓR. Note that for the last
subgroup ΓS =




S,T2
�

the factor of automorphy is identical to that of the full mod-
ular group. As usual we will replace this even exponent 2N with k and consider
only even numbers. We could also consider the principal level 2 congruence sub-
group Γ (2) = 〈T2, ST2S〉 even though this does not correspond to a spin structure.
Modular forms for the principal subgroup then have to satisfy

w(z + 2) = w(z),

w(ST2S(z)) = w(z)(1− 2z)k.

We see that the spaces Mk(ΓT) and Mk(Γ (2)) differ essentially by what q-expansion
the forms have. The dimensions of spaces of low-weight forms, which can be
found in [64] or [68], is listed in the below table.

Γ (1) ΓT ΓR ΓS Γ (2)
dim(M0(Γ )) 1 1 1 1 1
dim(M2(Γ )) 0 1 1 1 2

The fact that dimensions for the three subgroups ΓT,R,S coincide is not surprising,
as the groups are conjugate of each other. Since conjugacy is an isomorphism,
every statement made regarding one of the groups should be translatable to the
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others. We want to construct the spaces M2(ΓX) for the three level 2 subgroups.
The main presentation of these that we will use is in terms of the Eisenstein series,
which we will come to in a moment. First we briefly discuss a nice way to obtain
these level 2 forms by using the Jacobi theta functions, following [64]. The theta
functions read

θ1(τ) = 2
∞
∑

n=0

(−1)nq
1
2 (n+1/2)2 , (2.7)

θ2(τ) =
∞
∑

n=−∞

q
1
2 (n+1/2)2 , (2.8)

θ3(τ) =
∞
∑

n=−∞

qn2/2, (2.9)

θ4(τ) =
∞
∑

n=−∞

(−1)nqn2/2. (2.10)

Under the two generators of the full modular group T,S these functions transform
as

θ2(T(τ)) = eiπ/4θ2(τ),θ2(S(τ)) =
p

−iτθ4(τ), (2.11)

θ3(T(τ)) = θ4(τ),θ3(S(τ)) =
p

−iτθ3(τ), (2.12)

θ4(T(τ)) = θ3(τ),θ4(S(τ)) =
p

−iτθ2(τ). (2.13)

The theta functions are also related by the Jacobi identity θ 4
3 = θ

4
4 +θ

4
2 . We start

with the space M2(Γ (2)), which is to be 2 dimensional. On can easily verify that

ST2S : θ 4
2 → (1− 2τ)2θ 4

2

and similarly for θ 4
3 and θ 4

4 . However, due to the Jacobi identity these three
forms are linearly related, reducing the dimension to 2. We take as basis θ 4

2 and
θ 4

3 . Approaching the other subgroups similarly, one can show [64] that

θ 4
3 −

1
2
θ 4

2 ∈M2(ΓT),

θ 4
3 + θ

4
2 ∈M2(ΓR),

θ 4
3 − 2θ 4

2 ∈M2(ΓS).

To prove this one have to use the Jacobi identity. It may not be clear at the
moment that the weight 2 forms for ΓT and ΓR are related by conjugation by
G(τ) = 2τ, but when we later express these modular forms in terms of Dedekind
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eta functions this becomes manifest. Since these three modular forms are of very
similar form, we can consider the linear combination

θ 4
3 − aθ 4

2 = θ
4
3 (1− aλ).

This is modular on Γ (2) for all values of a, but for particular choices the symmetry
is enhanced to one of the congruence subgroups [64]. Here λ= θ 4

2 /θ
4
3 is the Γ (2)

invariant modular lambda function.

2.6 Eisenstein series and their q-expansion

We have just seen that the weight 2 modular forms on the subgroups ΓX can be
understood from Jacobi theta functions. We can equivalently use the Eisenstein
series and the Dedekind eta function to understand these spaces. In particular,
we wish to understand the ring of modular forms for ΓT in a geometric manner.
This section discusses these Eisenstein series, their modular properties and their
q-expansions.

2.6.1 Eisenstein series on Γ (1)

Let k be an even integer bigger than or equal to 4. The Eisenstein series are
defined as [41] a sum over lattices of the type

Gk(z) =
∑

m,n∈Z×Z−{(0,0)}

1
(mz + n)k

,

where the sum runs over all nonzero lattice cites. This function is clearly invariant
under T : z→ z + 1. Under the other generator of the modular group we have

Gk(−1/z) =
∑

n,m

1
(1− 1/z)k

= zkGk(z).

Hence the Eisenstein series transforms as a modular form of weight k. To check
for behavior at the cusp we take the limit

lim
z→∞

Gk(z) = lim
z→∞

∑

m,n∈Z×Z

1
(mz + n)k

.

All m 6= 0 terms will vanish in the limit. That leaves the m= 0 case, which gives

lim
z→∞

Gk(z) =
∑

n∈Z−{0}

1/nk = 2ζ(k)
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where ζ(n) is the Riemann zeta function. It is customary to define the normalized
series

Ek(z) =
1

2ζ(k)
Gk(z).

With this normalization the Eisenstein series may alternatively be written as the
q-expansion

Ek(z) = 1+
(−2πi)k

(k− 1)!ζ(k)

∞
∑

`=0

`k−1q`

1− q`
.

We will prove this expansion in later sections. As mentioned above, the Eisenstein
series are defined only for forms of weight larger than or equal to 4. The second
Eisenstein series does not transform as a modular form due to convergence prob-
lems [71], but in stead transforms as

E2(γ(z)) = (cz + d)2E2(z)−
6ic
π
(cz + d).

Being almost a modular form, this series is often called a quasi-modular form.

A invaluable property of the spaces of modular forms is that they are finite
dimensional. In fact, their dimensions are often small. We list some properties of
low weights, taken from [41].:

M0(Γ (1)) = C,

M2(Γ (1)) = 0,

Mk odd(Γ (1)) = 0,

M−k(Γ (1)) = 0.

Further, the non-zero spaces are the complex span of combinations of the Eisen-
stein series E4 and E6 in the following way.

M4(Γ (1)) = CE4,

M6(Γ (1)) = CE6,

M8(Γ (1)) = CE2
4,

M10(Γ (1)) = CE4E6,

M14(Γ (1)) = CE2
4E6.

In this way, the above ring of modular forms is generated by these two modular
forms of weight 4 and 6.
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The Dedekind eta function η(z) will be important as we proceed. Although
it is not a modular form, we will see that it can be used to construct both modu-
lar forms and covariant derivatives on modular forms. The eta function has the
following definition and transformation rules under the modular transformations
[75]

η(z) = q−1/24
∞
∏

n=1

1− qn,

η(z + 1) = eπi/12η(z),

η(−1/z) =
p

−izη(z).

where q = e2πiz. Under the modular group, we see that this function transforms
almost as a weight 1/2 modular form. There is a relation between the eta function
and the quasi-modular E2. This can be seen by explicit calculation

∂ logη(τ) = ∂

¨

πiτ
12
+
∞
∑

n=1

log(1− qn)

«

=
πi
12

¨

1− 24
∞
∑

n=1

nqn

1− qn

«

=
πi
12

E2.

From the perspective offered by this relation, the anomalous transformation prop-
erties of E2 is simply a result of the product rule applied to η(γ(z)).

2.6.2 Eisenstein series on ΓT
We want to discuss the Eisenstein series at level 2 and compute the q-expansion
of the series corresponding to the ΓT subgroup. Similar to the Eisenstein seres
for the full modular group, the level 2 series are defined as a sum over a lattice.
They are now defined [41] by summing over a sublattice as opposed to the whole
Z × Z as we did for the full modular group. Let (a, b) be some combination of
(0, 1). Then the Eisenstein series for the level 2 subgroups are defined [41] by

G(a,b)
k =

∑

m,n
m=amod2
n=bmod2

1
(m+ nτ)k

.

Note that G(a,b)
k (τ) = (−1)kG(a,b)

k (τ), so k must be an even integer. Note also that
the series (0,0) reproduces the full Eisenstein series up to an overall factor

G(0,0)
k =

∑

m,n∈Z

1
(2m+ 2nτ)k

= 2−kGk.
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We will compute the q-expansion of this series also, as it is very similar to the
(1,0) series. First we will see that these series in fact corresponds to modular
forms. Let us consider the transformations of G(1,0)

k under ST2S:

G(1,0)
k =

∑

m,n

1
[2m+ 1+ 2nτ]k

→
∑

m,n

1
�

2m+ 1+ 2n 1
2−1/τ

�k

= (2τ− 1)k
∑

m,n

1
[−(2m+ 1) + 2(2m+ n+ 1)τ]k

= (2τ− 1)kG(1,0)
k .

According to our previous discussions, this is the factor of automorphy of a weight
k modular form on ΓT. Under T the series transforms

G(1,0)
k →

∑

m,n

1
[2(m+ n) + 1+ 2nτ]k

= G(1,0)
k .

Hence, this series corresponds to weight k modular forms for ΓT when it con-
verges. Likewise, we can verify that the (0,1) series corresponds to the ΓR sub-
group:

STS : G(0,1)
k =

∑

m,n

1
[2m+ (2n+ 1)τ]k

→ (τ− 1)kG(0,1)
k ,

T2 : G(0,1)
k →

∑

m,n

1
[2{m+ 2n+ 1}+ (2n+ 1)τ]k

= G(0,1)
k .

Similar manipulations show that the (1, 1) series corresponds to modular forms
for the ΓS group.

We now focus on the ΓT subgroup. To understand the ring of quasi-modular
forms on this group, we will need the q-expansion of the corresponding Eisenstein
series. First though, we derive some identities we will need. We will follow a
procedure similar to what it done in Serre’s Arithmetic [72] for the Eisenstein
series on the full modular group. We begin with the the identity

∑

m∈Z

1
z +m

= πcot(πz).

We will see a sketch of a proof of this later. Now in addition we have the identity
for the cotangent [72]

πcot(πz) = iπ− 2πi
∞
∑

n=0

qn.
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If we do a sum over odd or even integers, we in stead end up with the relations

∑

m∈Z

1
z + (2m+ 1)

=
1
2
πcot

�

π
z + 1

2

�

=
πi
2
−πi

∞
∑

n=0

(−1)nqn/2,

∑

m∈Z

1
z + (2m)

=
1
2
πcot

�

π
z
2

�

=
πi
2
−πi

∞
∑

n=0

qn/2.

To end up with something that looks more like a part of the Eisenstein series, we
should differentiate these relations (k-1) times. Recalling that ∂z = (2πiq)∂q we
get the identities

∑

m∈Z

1
(z + 2m+ 1)k

=
(−2πi)k

(k− 1)!2k

∞
∑

n=0

(−1)nnk−1qn/2, (2.14)

∑

m∈Z

1
(z + 2m)k

=
(−2πi)k

(k− 1)!2k

∞
∑

n=0

nk−1qn/2. (2.15)

With these identities we can calculate the q-expansions. As promised we will
compute the q-expansion of both the (1, 0) and the (0, 0) series. These Eisenstein
series can be written

G(a,0)
k (z) =

∑

m=a mod 2
m 6=0

m−k + 2
∞
∑

n=1
n=0 mod 2

∑

m=a mod 2

(m+ nz)−k.

We see that our derived identities appear as the last sum over m in this expression.
It is then simply a matter of inserting the right identity into the right Eisenstein
series to get a q-expansion. First, however, we consider the τ→ i∞ limit. We
first consider the case of even numbers a = 0. Splitting the sum over positive and
negative integers we get the normalization

∑

m∈Z
m=0 mod 2

1
mk
= 2−k

� ∞
∑

m=1

1
mk
+ (−1)k

∞
∑

m=1

1
mk

�

= 21−kζ(k)

for even values of k. The difference from the Eisenstein series on the full modular
group in the additional factor of 2−k. Similarly we can find the normalization
when the sum is taken over odd integers. This is ever so slightly more involved.
Again we can split the sum into two parts

∑

m∈Z
m=1 mod 2

1
mk
=

¨∞
∑

n=0

1
(n+ 1/2)k

+ (−1)k
∞
∑

n=1

1
(n− 1/2)k

«

.

The first of these sums can be recognized as the Hurwitz zeta function. The
second term is too, if we rewrite it so that the sum starts at n = 0. This is easily
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achieved by shifting the value of n by one. For even values of k, the normalization
can be written

∑

m∈Z
m=1 mod 2

1
mk
= 21−kζH(k, 1/2) = (2− 21−k)ζ(k)

where we used a relation between the Hurwitz zeta at 1/2 and the Riemann zeta.
We see that the Eisenstein series over odd integers is normalized with the Hurwitz
zeta in stead of the Riemann zeta.

With these values at infinity, we can finally write down the q-expansion for
the Eisenstein series. By the identities (2.14) and (2.15) we have

E(1,0)
k = 1+

(−2πi)k

(k− 1)!ζ(k)(2k − 1)

∞
∑

`=0

(−1)``k−1q`

1− q`
, (2.16)

E(0,0)
k = 2−kEk = 2−k

¨

1+
(−2πi)k

(k− 1)!ζ(k)

∞
∑

`=0

`k−1q`

1− q`

«

. (2.17)

This also proves the previously states q-expansion of the Eisenstein series for the
full modular group. Notice that in the beginning of our derivations we inter-
changed the order of the double sum, so these expressions hold only for weight
k ≥ 4 when the sums are uniformly convergent. The second Eisenstein series is
again quasi-modular [33].

2.7 Weight two modular forms on ΓX

Of the subgroups, it is the ΓT subgroup that has had most of our attention. While
this will still be true for the rest of this chapter, we will need some information
regarding the remaining two subgroups as we proceed. Specifically, in order to
construct modular beta functions, we will need the weight 2 modular forms on
the subgroups. These can be obtained from modular invariant functions by dif-
ferentiation.

Invariant functions for all three subgroups can be found in for example [68].
For the three subgroups ΓX, X = T, S,R these functions are

fT =
λ− 1
λ2

,

fS = λ(1−λ),

fR =
−λ

(1−λ)2
.
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where λ is the modular lambda function we met above. The functions ∂ log fX

will be modular of weight 2 as the derivative adds a covariant index. By using
well known q-expansions of the modular lambda and the eta function, one can
verify the equalities

∂ log fT = −24∂ log
η(2τ)
η(τ)

,

∂ log fS = 24∂ log
η(2τ)η(τ/2)
η2(τ)

,

∂ log fR = −24∂ log
η(τ/2)
η(τ)

.

We denote the respective eta quotients simply by ηX. As usual we would like to
normalize the modular forms so that the q-expansions start at unity. The properly
normalized weight 2 forms we denote EX

2 = NX∂ ϕX where ϕX = logηX. Here the
G-conjugacy of ΓT and ΓR is evident. By expanding in q, we can find the proper
normalization NX, yielding

ET
2 =

12
πi
∂ ϕT,

ES
2 =

24
πi
∂ ϕS,

ER
2 = −

24
πi
∂ ϕR.

We would like the q-expansions of these forms, which we can find by using
the definition of the Dedekind eta function. For example, to express ET

2 as a
q-expansion, we first note that

η(2τ)
η(τ)

=
q1/12

∏∞
n=1(1− q2n)

q1/24
∏∞

n=1(1− qn)

= q1/24
∞
∏

n=1

1− q2n

1− qn

= q1/24
∞
∏

n=1

(1+ qn).

When taking a logarithm of this expression, the infinite product is turned into a
infinite sum, which is exactly the q-expansion we are looking for, after differen-
tiation

ET
2 = 1+ 24

∞
∑

n=1

nqn

1+ qn
. (2.18)
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Note that since we have derived this from a ΓT invariant function, this second
"Eisenstein series" ET

2 is a weight 2 modular form. As in the case of the full mod-
ular group, the "naive" Eisenstein series E(1,0)

2 defined by the lattice sum is quasi-
modular [33].

The q-expansions of the other weight 2 forms can be found in a similar man-
ner.

ES
2 = 1− 24

∞
∑

n=0

(2n+ 1)q
2n+1

2

1+ q
2n+1

2

, (2.19)

ER
2 = 1+ 12

∞
∑

n=0

nqn/2

1+ qn/2
. (2.20)

At this point the notation has become quite messy. For the sake of simplicity, we
will from now on use a new notation for the Eisenstein series both for the full
modular group and the subgroup. We will for the full modular group denote
the modular Eisenstein series by Ek. For the ΓT subgroup we will denote the
Eisenstein series with k ≥ 4, i.e. (2.16), by ET

k, and the modular weight 2 form
on ΓX discussed in this chapter we denote EX. The quasi-modular forms for the
full modular group we denote H2 and for the ΓX subgroup HX

2 .

2.8 Holomorphic connections generated byη-quotients

As we have mentioned, we are studying the theory of modular forms from a geo-
metric perspective where everything is tailored to fit the modular group. This is
reminiscent of the Erlangen program by Klein, where the study of geometry was
connected with invariant objects under certain group transformations. Here we
are considering objects that behave like tensors under the modular group or its
subgroups. In this section we consider connections and covariant derivatives in
the same spirit.

To define a notion of differentiation on a fiber bundle, we needed a connec-
tion. Recall that a connection A is a Lie algebra valued 1-form, where the Lie
algebra generates the endomorphisms of the fibers. If the fiber basis is ei, the con-
nection coefficients will satisfy Dµei = (Aµ)

j
i e j. Under a transformation ei →M j

i e j

one can easily show that the connection must transform as

(Ãµ)
j
i =M j

r(∂µM
r
i ) +M j

rM
`
i (Aµ)

r
`
.

This transformation law can be derived by identifying Dµei with the component of
a dual vector that must transform to Mr

i D̃µer , where the new covariant derivative
contains the new connection. In the case on the tensor bundles, we recall that the
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transition functions Mi
j are inherited from the coordinate transformations on the

base manifold. In particular, when we are dealing with holomorphic geometry on
a surface, this transformation law simplifies substantially. We have M = ∂ z/∂ z′,
and the connection transforms as

Ã=
∂ z
∂ z′

A+
∂ z′

∂ z
∂ 2z
∂ z′2

.

The method we will use to construct connections is inspired by remarks made in
[32]. It turns out there is a very natural way to construct connections. Let the
function f (z, z) be the component of the bidegree (1, a)-form on H where a is 0
or 1, i.e.

f = f (z, z)dz ∧ dz∧a.

As this tensor is invariant under coordinate transformations z → z′, the compo-
nent must satisfy the standard tensorial transformation law

f (z′, z′) = f (z, z)
∂ z
∂ z′

�

∂ z

∂ z′

�a

.

Given such a form, we can construct a connection by taking the logarithmic
derivative

A= ∂ log( f ).

By the above transformation law for f one can easily verify that A in fact trans-
forms as a connection

A′ = ∂ ′log
§

f (z, z)
∂ z
∂ z′

�

∂ z

∂ z′

�aª

=
∂ z
∂ z′
∂ log( f ) +

∂ z′

∂ z
∂ 2z
∂ z′2

+ a∂ ′ log
∂ z

∂ z′

=
∂ z
∂ z′

A+
∂ z′

∂ z
∂ 2z
∂ z′2

.

In this way, we can construct connections by finding candidate functions f (z)
transforming as (1,a)-forms.We will from now set a = 0 and deal only with holo-
morphic f . The construction of such a connection is valuable if we want to under-
stand interrelations between modular forms of different weights from a tensorial
perspective.

Recall from our discussions on fiber bundles that a covariant derivative D can
be seen as a map

D : Γ (E)→ Γ (E)⊗ Γ (T∗M)
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where E is a vector bundle over a manifold M. Let us now consider a space
Ak of functions that transform as (k,0)-tensors under a certain group G but not
necessarily all other transformations. If we can find a connection A under G
we can construct a covariant derivative D that from the above arguments take
Ak → Ak+1. In the case of modular forms we have Ak = Γ (L⊗k

∗ ) = M2k(Γ ), and
the connection A can be constructed by finding a weight 2 modular form f for
Γ . We first consider the full modular group. Immediately we run into problems,
since there are no weight 2 modular forms on this group. However, we can solve
this problem by slightly easing the restrictions on f .

Consider not a modular form, but rather a "projective" version that transforms
as

f → α
∂ γ(z)
∂ z

f

where γ as usual is a Γ transformation, and α is some overall complex factor.
One can easily convince oneself that this constant factor will have no effect on
the transformation of A since it is killed by the combination ∂ log. This allows us
to find candidate functions f also for the full modular group, even though it has
no proper weight 2 modular forms. Another possible way around this issue that
we will not discuss is to allow for anti-holomorphic in the tensor f .

As an example, consider f = ηa(z) for some a to be determined. Using the
above modular transformation rules for the Dedekind eta function, we have

T : ∂ logηa(z)→ ∂ log[eiaπ/12η(z)] = ∂ logηa(z),

S : ∂ logηa(z)→ z2∂ log[(−iz)a/2η(z)] = z2∂ log[za/2η(z)].

Hence, if we chose a = 4 this will effectively transform as a 1-form because of
the logarithm and derivative. Hence, we can consider the connection

A= ∂ log(η4(z)).

We can also find a connection for the subgroups ΓX. Here the automorphic factor is
different, as we discussed in the above chapters. Consider for the moment the eta
function with scaled coordinate η(nz). Under the two generating transformations
we have

T : η(nz)→ enπi/12η(nz),

S : η(nz)→ η(−n/z) = η(−1/(z/n)) = (−iz/n)1/2η(z/n).

Note that since the argument nz is turned into a fraction, these scaled eta func-
tions can not be used to make connections for the full modular group. However,
for the subgroups where one of the generator is built from two S transformations,
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there still is a chance. For the ΓT group generated by translations and ST2S, we
have

ST2S : η(nz)→ e2πi/12n(1− 2z)1/2η(nz).

Surprisingly, the only n dependence is in the exponential. Hence ∂ logη4(nz)
could be a candidate connection. Slightly more generally, we can consider

A(n) = ∂ log
η8(nz)
η4(z)

.

We will see that the n = 2 connection is related to the Eisenstein series on ΓT,
which will enable us to find more interesting structure on the corresponding ring
of modular forms.

2.9 Differential structure on the ring of quasi-modular
Γ (1) forms

With the quasi-modular weight 2 Eisenstein series we can extend the modular ring
⊕kMk(Γ (1)) to the ring of quasi-modular forms on the full modular group, gener-
ated by (H2, E4, E6). We will here derive the famous Ramanujan identities which
can be seen as relations defining a differential structure on this quasi-modular
ring. We will formulate this geometrically.

Recall that we view modular forms of weight 2k as sections of the line bundle
L⊗k
∗ . We would like to find a way to go between forms of different weight, sim-

ilarly to how the exterior derivative maps differential p-forms to (p+1)-forms et
cetera. The analogue sequence in this case would be a map D that in someway
represents going from one bundle L⊗k

∗ to another L⊗k+1
∗ . First recall some facts

regarding differential forms. We can write the action of the exterior derivative as

ω=ωµ(x)d xµ→ [dωµ(x)]∧ d xµ.

Under a coordinate change x → x̃ , say by a group action, this changes to

d[ωµ(x)
∂ xµ

∂ x̃ρ
]∧ d x̃ρ.

However, after using the product rule, the second derivative terms will vanish
since they will be contracted with the antisymmetric wedge product. This is why
the exterior derivative maps forms to forms, while the derivative of a generic ten-
sor will not be tensorial. This automatic removal of the double derivative term is
the luxury we do not have in the case of L⊗k

∗ . This motivates the introduction of
a covariant derivative.
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Based on the above discussions of connection, we can construct covariant
derivatives D = ∂ − kA, where 2k is the weight of the modular form. This can be
seen as a map generating the chain

...
D
→M2k(Γ )

D
→M2k+2(Γ )

D
→M2k+4(Γ )

D
→ ...

For the full modular group, we saw that one possible connection was

A= ∂ log(η4(z)).

As we discussed in earlier sections, the second quasi-modular Eisenstein series
H2 can in a similar way be written H2 = (12/πi)logη(z). By working out the
normalization factors, we have the relation

A=
2πi
6

H2.

When the resulting covariant derivative acts on (0, k) tensors, it takes the form
D = ∂ − kA. In conclusion, we have found a covariant derivative

D = ∂ −
πi
6
(2k)H2.

Here 2k is the modular weight of the holomorphic (0, k)-tensor. This operator is
the same as the one mentioned in the exercises in chapter 9 of [44], up to an over-
all scaling by 2πi. It is also the operator referred to as the Serre derivative in [12].

This covariant derivative can be used to construct the Ramanujan identities
which relates modular forms and their derivatives. In a geometric language, they
are simply tensor identities [50]. This is a consequence of the relation between
the holomorphic connections and the quasi-modular Eisenstein series. Consider
the tensor ω = ∂ A − 1

2A2, where A is the above connection [50]. This can be
shown to transform as a weight 4 modular form [25] but is not in general a (0,2)
tensor. In a similar way, we only know that η4 effectively transforms as a modular
form of weight 2 under modular transformations, not general coordinate trans-
formations. In this sense, this is geometry tailored to fit the modular group. Since
M4(Γ (1)) is one dimensional, ω and E4 must be proportional. By considering the
q-expansions one can see that

ω=
π2

18
E4.

SimilarlyDω ∈M6(Γ (1)) andD2ω ∈M8(Γ (1)). By again considering q-expansions
one can verify that

Dω= −
27
π3i

E6,

D2ω= −πiE2
4.
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These tensor identities can equivalently be written in terms of the logarithmic
derivative D= q∂q as the differential equations

DH2 =
H2

2 − E4

12
, (2.21)

DE4 =
H2E4 − E6

3
, (2.22)

DE6 =
H2E6 − E2

4

2
. (2.23)

These three differential equations are the well-known Ramanujan identities. They
can be seen as a proof of the fact that the quasi-modular ring is closed under the
differential operator D = q∂q. One says that the ring has a differential structure.
For an alternate but similar proof see [12]. From these three identities, higher
order differential equations can be generated by applying D. For example, by dif-
ferentiating the identity for DH2 and using the other Ramanujan identities, we
get

12D2H2 =
1
6
(H3

2 − 3H2E4 + 2E6).

In principle one can keep going to construct infinitely many differential equa-
tions. Note that if we look at these results backwards we have quite a non-trivial
result: we know of infinitely many differential equations which the Eisenstein
series solve.

2.10 Differential structure on the ring of quasi-modular
ΓT forms

In the case of the full modular group, we saw that the ring of modular forms was
generated by E4 and E6. By extending this to the quasi-modular case, we saw that
the ring of quasi-modular forms was generated by (H2, E4, E6). This ring was also
equipped with a further structure, making it into a differential ring. The Ramanu-
jan identities defined this differentiable structure. We want to understand these
ring structures for the subgroup ΓT.

In contrast to the level 1 case, we now have a modular form of weight 2.
The ring in interest is the direct sum M(ΓT) = ⊕kMk(ΓT) which is generated by
(ET, ET

4) [84]. By also including the quasi-modular weight 2 form, we have the
quasi-modular ring generated by (HT

2 ,ET, ET
4). We will show that this is a differ-

ential ring in a similar manner to what we did for the full modular group.
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We start with constructing a connection. In the level 1 case, the connection
was proportional to the quasi-modular Eisenstein series H2. We may therefore
expect that a connection proportional to the quasi-modularHT

2 can be constructed
as well. Recall that the eta function is a weight half modular form. From above
discussions we know that on thus subgroup we have a connection

A(2) ≡ A= ∂ log
η8(2τ)
η4(τ)

.

This can be expressed in terms of the quasi-modular HT
2 . By considering the q-

expansions of the Eisenstein series we can verify that 3HT
2 = 4H2(2τ)−H2(τ)

[33]. By using the previously derived relation between H2 and the eta function,
we can write

HT
2 =

1
πi
∂ log

η8(2τ)
η4(τ)

.

Hence the connection satisfies A= πiHT
2 , and the covariant derivative reads

D = ∂ − kA= ∂ − kπiHT
2 .

We can rescale this derivative by 2πi to get

q∂q −
2k
4
HT

2

where again 2k is the modular weight. This is the operator considered in [33],
achieved by deforming the connection we used in the level 1 case by the modular
ET. This is the natural connection on the modular curve H/ΓT since we want to
act on tensors invariant under only the subgroup ΓT.

Recall that in the level 1 case, we derived the Ramanujan identities from ten-
sor identities involving ω = ∂ A − 1

2A2. This was a modular form of weight 4.
Consider again this tensor, now with the new connection A= πiHT

2 . By compar-
ing q-expansions to find normalization factors, we have

ω=
π2

2
ET

4.

We let the covariant derivative act on this form. This should give a weight 6
modular form, which can be verified to be

Dω= −π3iET
6 = −π

3iETET
4.

However, in contrast to the level 1 case we now have a proper modular form of
weight 2, namely ET. The covariant derivative takes this to a weight 4 form:

DET = −πiET
4.
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These three tensor identities shows that the quasi-modular ring generated by
(HT

2 ,ET, ET
4) at level 2 is closed under differentiation. As in the level 1 case we

can write these identities in terms of D= q∂q in the form

DET =
HT

2ET − ET
4

2
,

DHT
2 =

HT
2

2 − ET
4

4
,

DET
4 =HT

2ET
4 −ETET

4.

Note that if we had chosen another connection, we would just get tensor identi-
ties, but by choosing the connections that are proportional to the Eisenstein series
we get equations involving only Eisenstein series.

2.11 Elliptic functions and elliptic curves

This section considers the algebraic representation of the complex torus. We will
see that there is a close connection between the theory of elliptic functions, Eisen-
stein series and elliptic curves. An elliptic curve over a field K is a cubic equation
[86] of the type

y2 = x3 +Ax2 + Bx +C

where the constants A,B, C take values in K. This type of equation is sometimes
also called a Weierstrass equation. For technical reasons one also adds a single
point at infinity, working in a projective version of the space. For example, in the
case of the real line or the plane, the projective versions are the circle and the
sphere respectively. We will see that these elliptic curves naturally appear from
algebraic relations satisfied by canonical functions on the torus. We start with
some general remarks on invariant functions for any group G.

2.11.1 Constructing G-invariant functions

From our time of birth we learn that sines and cosines are the fundamental
trigonometric functions. However, there is a sense in which these are not the
canonical periodic functions. The familiar trigonometric functions can be seen as
circle functions, e.g. maps

f : S1→ R.

Functions on a quotient M/G can be seen as G-invariant functions on the cover M.
In the case of a circle we have S1 = R/Z, which yields the notion of trigonometric
functions we are more familiar with, namely periodic functions of a real variable.
One could generalize this to n-dimensional tori Rn/Z × ... × Z where we could
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consider Z×n-invariant functions on flat n-space. For a more general situation,
consider the diagram

M C

M/G

π f̃

f

We define the function on the quotient simply by f̃ = f ◦π−1. Equivalently,
given a function f̃ that takes in equivalence classes [x] we have f = f̃ ◦π. On
some point x ∈M this acts as f (x) = f̃ ([x]). However, for any other point g(x)
in the same G-orbit as x we must also have f (g(x)) = f̃ ([x]). Hence f in the
above diagram must be a G-invariant function for f̃ to be well-defined. Given a
projection, such a function defines the function on the quotient by f̃ = f ◦π−1.

We want a way to construct G-invariant functions. The brute-force "canonical"
way is the following. Pick F as a function on M that is rapidly decreasing with
x ∈M. For example F(x) = 1/xn for some sufficiently large n. Given a G-action
on M we consider functions of the form

f (x) =
∑

g∈G

F(g(x)).

This is clearly invariant under G as any group transformation on M would simply
lead to a relabeling of the group elements in the sum. In the case of functions on
a circle, this reduces to a infinite sum over Z for some appropriate F.

2.11.2 Lattice sums and the Weierstrass cubic

Consider the complex torus C/Λ1,τ and the complex valued functions on this
space. By the above line of thought we should consider lattice sums of converging
functions [51] of the type

℘n(z;τ) =
∑

w∈Λ

(z +w)−n =
∑

m1,m2

(z +m1 +m2τ)
−n. (2.24)

For n = 2 this is very similar to a famous mathematical function, namely the
Weierstrass ℘-functions. It has the definition [86]

℘=
∑

m,n

§

1
(z +m+ nτ)2

−
1

(m+ nτ)2

ª

,
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and has a series expansion

℘=
1
z2
+ 3G4z2 + 5G6z4 + ...

From our definition (2.24), it seems obvious that ℘2(z;τ) = ℘(z;τ)+G2(τ), but
because the second Eisenstein series is not uniformly convergent while the Weier-
strass function as a whole is, we can not necessarily split the sum in ℘. However,
we can compare power series order by order.

We will need the series expansion of the function f (z) = (1+ z)−a. The n’th
derivative can be easily verified to be

f (n)(z) = (−1)n
(a+ n− 1)!
(a− 1)!

(1+ z)−1.

Using well known relations between the binomial coefficient and the factorial,
the series expansion takes the form

1
(1+ z)a

=
∞
∑

k=0

�

−a
k

�

zk.

We write the ℘` function as

℘` =
∑

m,n

1
(z +m+ nτ)`

=
1
z`
+
∑

m,n

′ 1
(m+ nτ)`

1
�

1+ z
m+nτ

�`
,

where the prime indicates a sum over non-zero elements. Using the above series
expansion we can express this torus function as the series

℘` =
1
z`
+
∞
∑

k=0

∑

m,n

′ 1
(m+ nτ)−`−k

�

−`
k

�

� z
m+ nτ

�k
=

1
z`
+
∞
∑

k=0

G`+k(τ)
�

−`
k

�

zk.

Here we see that the Eisenstein series have appeared. We recall from the discus-
sion of the Eisenstein series that the Gn’s are only non-zero for even values on n.
In our case this means that k + ` = 2a for some integer a. The final form of the
series expansion then reads

℘` =
1
z`
+
∑

a∈N
a≥`/2

G2a(τ)
�

−`
2a− `

�

z2a−`.

We can now compare this to the similar series expansion of the Weierstrass func-
tion. The first few terms of these expansions are

℘2 =
1
z2
+G2 + 3G4z2 + ...
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Hence ℘= ℘2−G2 as one would naively believe. This subtraction is made so that
the coefficients of the series expansion of the Weierstrass function consists only
of proper modular forms, not the quasi-modular G2. We set xw = ℘ and yw = ℘′.
Using this series expansion, we can easily verify the algebraic equation

yw
2 = 4xw

3 − 60G4(τ)xw − 140G6(τ). (2.25)

We denote this elliptic curve E1,τ. There is in other words a map taking z→ E1,τ,
which is lattice invariant since both the Weierstrass function and its derivative is
[86]. We can therefore view the map as a map from the torus to the complex el-
liptic curve. This can be shown to be a isomorphism [86], which is why we so far
have used the names complex torus and complex elliptic curve interchangeably.
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Quantum field theory, universality
and duality
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3
A geometric approach to quantum field

theories

The goal of this chapter is to present a clear and geometric formulation of field
theories. We will focus on formal aspects of these theories in this chapter, while
the next discusses the application of quantum field theory as a tool for studying
universal features of many-particle systems.

Field theory is a subject not lacking in good literature. For a good and con-
cise introduction see M. Maggiores book [57] or the book of Peskin and Schoeder
[67]. The books of Zinn-Justin [91], Di Francesco et all [28] and Altland and
Simons [2] are also good introductions if one wants field theory presented in
contexts outside scattering problems and particle physics. These are particularly
relevant for applications in critical phenomena, renormalization and condensed
matter. There are also many good mathematically oriented books like K. Hori et
als Mirror Symmetry [37], de Faria and de Melos book [19] or the two-volume
wonder [20] of Witten, Freed and company. This chapter is inspired by the three
latter references.

3.1 Geometric structures, fields and actions

Quantum field theory seeks to integrate over spaces of certain geometric objects
on a manifold M [37]. The classical counterpart is interested in a fixed subset
of such objects. The objects are called fields and can often be seen as sections of
some bundle over M. There are three pieces of data needed to define a classical
field theory:

(M,FM, S),

where FM is a space of fields over a spacetime manifold M and S is a real valued
function on FM called the action. The manifold M can be a topological man-

83
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ifold with no additional structure, or a highly equipped smooth manifold with
additional geometric structures. The type of field theory one ends up with de-
pends on the category to which M belongs (topological, Riemannian, conformal
etc). Generically the situation is the following [11]. A spacetime manifold M is
a cobordism1 between two spatial manifolds of dimension d − 1. Formally the
spacetime cobordisms constitute the morphisms in the corresponding spacetime
category[11]. If we need to refer to the spacetime category in a general setting
we will denote it dCob∗, where ∗ indicates some geometric structure.

Σ1 Σ2

M

Figure 3.1: Spacetime as a cobordism between two spatial slices. M can be seen
as a geometric analogue of time passing in a general theory.

The different spacetime categories divides the classical field theories into large
classes. We will meet field theories in different classes as we go along.

• When no geometric structure is put on M other than an orientation and a
smooth structure, the corresponding field theory is called topological. Here
the morphisms are (homeomorphism classes of) smooth d-manifolds whose
boundaries are oriented (d − 1)-manifolds. A theory is also called topolog-
ical if the manifold is equipped with geometric structures but the theory is
independent of these.

• When spacetime belongs to the category of Riemannian cobordisms, the
field theory is called Euclidian. Here space is a (d − 1)-dimensional Rie-
mannian manifold, and the spacetime morphism (an isometry class of)
a d-dimensional manifold M. When the signature of the metric on M is
Minkowskian the theory is called relativistic.

• When the theory only depends on the conformal equivalence class of met-
rics on M the theory is said to be a conformal field theory. As we have seen,
this corresponds to a complex structure in the case of surfaces.

1Recall that a cobordism is simply a manifold that starts at a boundary Σ1 and ends at another
boundary Σ2. These boundaries are said to be cobordant (= "jointly bound").
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Within each of these large classes the field theories are further refined accord-
ing to their field content and action. As mentioned, the fields in the theory are
in a generic situation sections of some fiber bundle π : E → M. For example,
trivial real or complex line bundles correspond to real of complex scalar fields,
vector bundles to vector fields, tensor bundles to tensor fields and so on. The
connection 1-forms on a vector bundle can also be considered as a field, which is
the case in gauge theories. The space of field configurations FM is in most cases
associated with the space of sections Γ (E), but may in some cases be constructed
from these sections by suitable identifications. For example, in Yang-Mills theory
the relevant field space is a quotient by the gauge group.

The last data needed for a classical field theory is the action. Let L : FM →
Ωn(M), the Lagrangian, be a map from the fields to a top dimensional form on
M. Integrating this yields the action

S=

∫

M

L,

as a real valued function on the field space. This action is the fundamental quan-
tity is a classical field theory. The classical fields satisfy the variational principle
δS= 0, while in a quantum theory fluctuations must be taken into account.

Let of briefly discuss the Lagrangian in more detail, and in particular so-called
boundary terms. Typically the Lagrangian of a theory is written L(ϕ)dvolg if M
is equipped with a Riemannian/Lorentzian structure. In any case, one assumes
that the Lagrangian is local in the sense that it is an expression in the fields ex-
pressed at a single point in M. However, the expression for the action should
not be dependent on the arbitrary choice of local trivialization if the fields are
obtained from some bundle. In some generic situation of a fiber bundle over M
with structure group G this translates into writing only G-invariant local expres-
sions in the Lagrangian.

Note that since all top dimensional forms are closed we have dL = 0 and
the Lagrangian defines a cohomology class on M. The addition of an exact form
L→ L+ dω induces

S→ S+

∫

∂M

ω

by Stokes theorem. Since the Lagrangian, and hence also ω, is a local expres-
sion in the fields, this boundary term will vanish if the fields vanish at ∂M or if
the manifold is boundaryless. This is often the case in particle physics applica-
tions, where one can imagine spacetime to be a sphere with infinite radius, and
any local process should not be affected by events with large spatial separation.
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However, in a general setting one should take some care regarding these bound-
ary terms.

In the remainder of this section we will be dealing with spacetime manifolds
M in the Riemannian category. The Lagrangian can then be written L(ϕ)dvolg .
When the relevant field bundle is a vector bundle with an inner product in each
fiber space, one often constructs an Lagrangian of the form 〈ϕ, Qϕ〉 where ϕ are
the fields and Q is a operator constructed (or rather guessed or postulated) based
on symmetry or geometry. The action then takes the form

S(ϕ) =

∫

M

dvolg 〈ϕ,Qϕ〉 .

We write the vector space fibers V, which we take to be of finite dimension. In a
local trivialization the sections (fields) are indexed as ϕa where a runs over the
vector space dimensions (the rank rk(E) of the bundle) . The covariant derivative
is as usual of the form

Dµϕ
a = ∂µϕ

a + (Aµ)
a
bϕ

b

for a Lie algebra valued connection 1-form A. The classical requirement that
the variation of the action vanishes can in a local trivialization be turned into
a differential equation for the field components. Consider the variation of the
action

δS=

∫

dvolgδL=

∫

dvolg

�

∂L

∂ ϕa
δϕa +

∂L

∂ (Dµϕa)
Dµδϕ

a

�

.

We will assume that if M has a boundary ∂M, the field variations vanish there.
By using the product rule and Stokes theorem we can write the variation of the
action as

δS=

∫

M

dvolg

�

∂L

∂ ϕa
δϕa −Dµ

∂L

∂ (Dµϕa)
δϕa

�

+

∫

M

dvolgDµ

�

∂L

∂ (Dµϕa)
δϕa

�

=

∫

dvolg

�

∂L

∂ ϕa
δϕa −Dµ

∂L

∂ (Dµϕa)
δϕa

�

+

∫

∂M

dµ∂M

�

∂L

∂ (Dµϕa)
δϕa

�

.

Since the field variations vanish at the boundary the variational principle δS= 0
reduces to the classical equation of motion

∂L

∂ ϕa
−Dµ

∂L

∂ (Dµϕa)
= 0.

These are the Euler-Lagrange equations, which defines a subset of physical field
configurations in FM. Note that we only assumed here that the field variations
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vanish at the boundary, while the fields themselves need not. In this sense, a
total derivative term dω will not affect the local equations of motion, since the
variation of the action would be

δS+

∫

∂M

δω

and all variations on the boundary vanishes. The boundary term may however
hold global information not contained in the local equations of motion. This
global information can be accessible in a quantum theory where one integrates
over all field configurations.

When the field variations stem from a group action we can get another useful
result. For a Lie group G and elements X of its Lie algebra we write

(g(t)ϕ)a = (g(t))abϕ
b = (etX)abϕ

b = ϕa + tXa
bϕ

b + ...

where we can read of δϕa = Xa
bϕ

b. If these classical fields satisfy the Euler-
Lagrange equations, we know from above that the variations satisfy

δS=

∫

M

dvolgDµ

�

∂L

∂ (Dµϕa)
δϕa

�

=

∫

M

dvolgDµ

�

∂L

∂ (Dµϕa)
Xa

bϕ
b

�

.

We denote the expression in the square brackets as Jµ. If the group G is a sym-
metry of the theory, the variation of the Lagrangian must at most be a total
derivative δL = DµF

µ [67], and we have Dµ jµ = 0 for jµ = Jµ − Fµ . Most
important maybe is the stress-energy tensor current, obtained by translational
invariance xµ → xµ + εµ for constant ε. The fields and Lagrangian transform as
ϕa→ ϕa + εµDµϕa, L→ L+ εµ∂µL and gives a current

Tµ
ν
=

∂L

∂ (Dµϕa)
Dνϕ

a −δµ
ν
L.

In fact, by letting ε be coordinate dependent we can repeat the above to get a
more general current jµ = Tµ

ν
εν(x).

There is also another expression for the stress-energy tensor. This expression
can be obtained by promoting the metric to a dynamical field of the theory. If
one also promotes the parameters specifying the transformation to be spacetime
dependent, we can view the transformation simply as a diffeomorphism. Since
the theory should be independent of the chosen coordinates, i.e. has Diff(M)
invariance, the change in the action originating from the change in fields must
be canceled by the change stemming from the coordinate transformation of the
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metric. Hence the two are equal and opposite. In our case, note that by promoting
ε to ε(x) the change in action must be on the form

δS= −
∫

dvolMJµ
ν
∂µε

ν

since in the spacetime independent case this variation vanishes. By doing a
integration by parts one can easily see that J is a conserved current. Using
δgµν = ∂µεν + ∂νεµ, the change in the action due to the metric transformation is

δS= −
∫

dvolg
δS
δgµν

δgµν = −2

∫

dvolg
δS
δgµν

∂µεν.

The conserved current can be seen to be Tµν = −2δS/δgµν, up to normalization
factors. This expression will be useful when we discuss conformal field theory.
For a more detailed explanation see [28].

When we study a theory with interactions, one often deforms the original
theory by adding terms

S=

∫

M

dvolg 〈ϕ, Qϕ〉+
∑

i

ci

∫

M

dvolgOi(ϕ),

where the ci ’s are called coupling constants and Oi(x) are called local operators,
consisting of combinations of the fields. Note that a field theory can consist of
several fields by considering tensor products of different bundles ×iEi. We will
from now on refer to the first term as the free action S0(ϕ). We imagine the c i ’s to
be the local coordinates on a space called parameter space or moduli space of the
theory. We will return to this space in more detail later, once we have discussed
the renormalization group. We will see that not all such deformation are relevant
at all length scales.

3.2 Quantum aspects

Quantum field theory is a wonderful subject both from a physical and mathe-
matical perspective. Having discussed the basic ingredients in a classical theory
of fields, we are ready for quantization. As in any quantum theory, we need a
Hilbert space of states. We will assume that at a given time the system lives on a
spatial manifold Σ1 of dimension d−1. To this spatial slice of spacetime we asso-
ciate a Hilbert space HΣ1

of quantum states. The most general type of quantum
field theory assumes nothing of the geometric structures on spacetime, and at a
later time the system could find itself on a spatial manifold Σ2, with spacetime a
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cobordism M as above. This spatial slice comes with its own Hilbert space, and
the spacetime M can be interpreted as a geometric analogue of time passing.

If we recall back to the chapter on mathematical structures in the beginning
of this thesis we see that the above rules of associating to (d − 1)-manifolds a
Hilbert space and to d-manifolds a time translation operator is exactly a functor
of the spacetime category

Z : dCob∗→ Hilb

into the category of Hilbert spaces. This approach to quantum field theories was
pioneered by Segal [77] and Atiyah [5] in the setting of topological and conformal
field theories. As in the classical case, the quantum field theory is given differ-
ent names depending on the geometric structures on spacetime. The study of
different types of quantum field theories is then tantamount to studying functors
on different cobordism categories. The most familiar case in for example particle
physics is when spacetime has a Riemannian structure are we consider the cobor-
disms Σ × [0,T], i.e. generalized cylinders of different length. The length T is
the time passed. In any case there are certain axioms the functor should satisfy.
We will not go into too much detail regarding this, but the interested reader can
see [22] for a more detailed discussion.

We mention some of the key features of the field theory functor. First of all,
when a boundary is a disjoint union of Σi ’s the Hilbert space is a tensor product
space ⊗iHΣi

. This is simply the standard rule in quantum theory for combining
systems into larger systems. When the boundary is the empty set the associated
Hilbert space is C. From our brief discussion of categories we recall that there is
also a composition rule for the morphisms in a category. The composition rule in
dCob is by gluing one cobordism on top of another, along an identical boundary.

Σ Σ

M

Σ Σ

M M′

The functor has to be compatible with this composition, in the sense that
Z(MM′) = Z(M)Z(M′). When the cobordism M has two identical boundaries Σ,



90 A geometric approach to quantum field theories Chapter 3

we may glue the manifold together along Σ to get a closed manifold Mc. This
cobordism starts and ends at the empty set, so Z(Mc) : C → C, while Z(M) :
HΣ→HΣ. These are to be compatible in the sense that Z(Mc) = TrHΣZ(M). This
is the so called partition function of the theory in the canonical formulation [22].

In this case of Riemannian structure with simple cylindrical cobordisms the
functor maps the cobordism to

Z(Σ× [t1, t2])≡ U(t2, t1) : H→H

where H is the Hilbert space associated withΣ. We write this operator U(t2, t1) =
exp(−(t2− t1)H) where the operator H is the Hamiltonian generating time trans-
lations [37]. By the composition of cobordisms, this satisfies the normal compo-
sition rules of time translations.

We will be working mainly in the functional approach to quantum field theory.
Here the partition function is calculated by a integral over fields rather than as a
trace over Hilbert space. The fundamental but somewhat schematic equation in
a quantum field theory is

Z= TrHU =

∫

Dϕe−S(ϕ).

In other words, the number the QFT functor associates to the closed manifold can
be calculated by an integral over the field space.

If we interpret Dϕe−S as a weighted measure of the field space, the partition
function is a sort of effective volume of FM. Roughly speaking, the partition func-
tion is a measure of weighted degrees of freedom. We should note that in general
the partition function should be defined with an additional sum over topological
sectors of the field configuration space. This is clear, since the field integral can
only take into account the configurations that can be continuously deformed into
each other. For example, consider a theory of maps ϕ : Sd → T where T is some
manifold with possibly non-trivial topology. The field configuration space F can
in this case be considered as combination of subsets Fi consisting of field config-
urations in a particular class of πd(T).

In a quantum theory the quantum fluctuations around the classical solution
must be taken into account. An observable O has an expectation value calculated
by

〈O〉=

∫

DϕO(ϕ)e−S(ϕ)

∫

Dϕe−S(ϕ)
= Z−1

∫

DϕO(ϕ)e−S(ϕ)

which we can read as a standard expectation value in a probability distribution.
Recall that we often deform the action to includeδS=

∑

i c i
∫

Oi as perturbations.
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In general, one expands amplitudesA like the above expectation value as a formal
power series

A=
∑

n

Ancn

around a point c = 0 is the moduli space of the theory. Each of the terms An

can be calculated by diagrammatic techniques, i.e. Feynman rules [67]. Very
schematically, each of the terms in a perturbative expansion take the form

An =
∑

Γ

aΓ
|AutΓ |

where one sums over graphs Γ , calculates the so called value of the graph aΓ
by Feynman rules and divides by the size of the symmetry group of the graph
[23]. A lot of interesting things can be said about these graphs. Typically the
Hilbert space of a QFT is constructed as a Fock space where the single particle
Hilbert space is a representation space of the symmetry group of the problem.
The diagrams in a perturbative expansion can be seen as representation homo-
morphisms, mapping a n-particle state to a m-particle state [36]. These maps
are also called intertwiners as they "intertwine" two representations. The corre-
sponding complex number an is obtained by forming an inner product between
the relevant states. We will not discuss these perturbation aspects any further,
as only non-perturbative aspects of quantum field theory will be relevant in our
later discussions. The interested reader can see for example Wittens chapter in
[20].

Notice that we can expand an observable in a power series so that

〈O〉=
∑

n

1
n!

∫

d x x ...d xn
δnO

δϕ(x1)...δϕ(xn)
〈ϕ(x1)...ϕ(xn)〉 .

We here used scalar fields in a one dimensional theory for simplicity. In this sense,
any calculation relies on the so-called n-point functions 〈ϕ(x1)...ϕ(xn)〉. These
are the basic objects we calculate in a quantum field theory. We would like to
digress slightly. Consider the number sequence {an} = {0, 1,1,2, 3,5, 8,13, ...}
i.e. the Fibonacci numbers. Define a function f by the formal series

f (x) = x + x2 + 2x3 + ...= x +
∞
∑

n=2

an xn.

Since the Fibonacci numbers satisfy an = an−1+an−2 we can by shifting the indexes
in the sum write

f (x) = x + f (x)x + f (x)x2→ f (x) =
x

1− x − x2
.
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This function now has the property that its nth derivative is exactly the nth Fi-
bonacci number. This is a part of a general idea when dealing with number
sequences, called generating functions. These functions hold a lot of informa-
tion regarding the number sequence. A natural question in our quantum field
setting is then the following. What is the generator of the number sequence
{〈ϕ(x1)...ϕ(xn)〉}? The answer turns out to be the "deformed" partition function

Z[J] =

∫

Dϕe−S(ϕ)−
∫

d xJ(x)ϕ(x).

This can be seen by explicitly doing a expansion in the field J(x)

Z[J] =
∑

n

(−1)n

n!
Z[0]

∫

d x1...d xn 〈ϕ(x1)...ϕ(xn)〉 J(x1)...J(xn).

Hence we have a relation between the nth derivative of the partition function and
and n-point functions. Such relations can also be found for other field types. The
important point is that the partition function encodes all the geometric informa-
tion in our theory, from which everything else may be calculated by the above
arguments.

3.3 Gauge theories

A large class of field theories have as fields the connections on some G-bundle
over M. These are the gauge theories, where the group G is called the gauge
group. We will consider two types of gauge theories here, first the topological
Chern-Simons theory before we consider Yang-Mills theories.

3.3.1 Chern-Simons theory

Chern-Simons theory is a topological quantum field theory, i.e. the spacetime
belongs to the topological category. Recall from our discussion of Chern coho-
mology the definition

ck =
(i/2π)k

k!
Tr(F∧k)

where the complex prefactor is chosen to that the integral of this form over a
closed 2k-manifold takes integer values. The Chern-Simons form CS2k−1 is the
(2k-1)-form defined (up to normalization) by the relation

dCS2k−1 = ck.

For example, in the case of a U(1)-valued connection the relation between Chern
form and Chern-Simons form read

d(A∧ dA) = dA∧ dA+A∧ d2A= F∧ F= −8π2c2.



Section 3.3 Gauge theories 93

In a more general setting, Chern-Simons theory is defined by the classical action

SCS = k

∫

M

CS2k−1

where M is a 2k − 1 dimensional manifold. We will assume this manifold to be
closed. The constant k is called the level of the theory. To quantize the theory, let
us first note that we can use Stokes theorem to rewrite the action as

k

∫

Y1

ck

where Y1 is a 2k-manifold such that ∂ Y1 =M. However, such a geometric exten-
sion is not unique. We can also consider a manifold Y2 such that ∂ Y2 =M, where
we mean the manifold M with reversed orientation.

By combining the two manifolds Yi one can show that the number k must be
quantized in order for the partition function of the theory to be well behaved.
Consider the difference in the extended actions

∆S= k

∫

Y1

ck − k

∫

Y2

ck = k

∫

Y1∪Y2

ck = kCk.

Here Y1 ∪ Y2 is a closed manifold, so the integral over the Chern form yields the
integral Chern number. In this way, one of the extended Chern-Simons actions
can be written in terms of the other and an additional term kCk. In the partition
function for the theory this takes the form

∫

DAeik
∫

Y1
ck =

∫

DAeikCk eik
∫

Y2
ck .

For the partition function to be well-defined, this additional phase must be unity.
Hence kCk ∈ 2πZ so, since the Chern number is an integer, we must have k =
2πn. This will be important when we discuss the so-called class A topological
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insulators later. Here each topological phase corresponds to a Chern-Simons the-
ory with a particular level. Since the level must be integral, this means that the
physical phases must also be labeled by integers.

3.3.2 Yang-Mills theory

We here briefly discuss Yang-Mills theory on a Riemannian manifold M. This
topic is covered is more detail in for example [60][19]. We consider on M the
overlapping subsets Ua and Ub and local sections of a vector bundle V→M

sa : Ua→ V,

sb : Ub→ V.

Note that the latin indices here denote to which subset the sections belong, not
a vector index. The transition functions

φba : Ua ∩Ub→ G

necessarily maps φbasa = sb. Hence we can also use this to see how the differen-
tiated section Ds changes from one local trivialization to another:

φba(d +Aa)sa = φbadφba
−1sb + dsb +φbaAaφba

−1sb
!
= (d +Ab)sb

∴ Aa = φba
−1dφba +φba

−1Abφba.

By introducing a coupling constant the covariant derivative is often written Dµ =
∂µ + icAµ. Writing φba(x) = g(x), the above transformation reads

Ab→ Aa = −
i
c

g−1(x)∂µg(x) + g−1(x)Ab(x)g(x).

The first term implies that the connection does not transform as a tensor. In fact,
under such a local gauge transformation the connection transforms in the adjoint
representation of the gauge group [57]. From the connection 1-form we can
construct the curvature 2-form

F= dA+A∧A=
1
2
(∂µA

a
ν
− ∂νAa

µ
+ f a

bcA
b
µ
Ac
ν
)ta ⊗ d xµ ∧ d xν

where the fabc ’s are the structure constants of the Lie algebra g. The transfor-
mation behavior of this curvature is determined from the transformation of the
connection, and one can show that it indeed transforms tensorially.
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The (local, classical) Yang-Mills action on a Riemannian manifold M with met-
ric g is defined by

SYM[A] =
1
4

∫

M

dvolgFa
µν

Fµνa .

The partition function of the quantized theory reads

Z[A] =

∫

DAe−SYM .

Note however that in this case the relevant space of field configurations is not the
full space of connections A, as we have a local equivalence given by the gauge
transformations. If we think of the partition function as a measure of the vol-
ume of the space of field configurations, the naive volume would be all too large.
Hence the integral should be performed over A/G, namely over individual gauge
equivalence classes. Rewriting the integral in terms of these physically different
field configurations leads to the Faddeev-Popov determinant and ghost fields [67]
[19].

The relevant field configuration space for the theory considering both the
gauge fields and the fields defined by our original vector bundle V where the
gauge group acts is both A/G and Γ (V), and the partition function is formally a
map from the product space of these to the real numbers. Often one considers
scalar or spinor fields, as defined by a line bundle or spinor bundle respectively,
and makes these V-valued to extend the internal symmetry G to these fields.
More precisely, if we have fields defined as sections Γ (E) and a Yang-Mills theory
as above we can consider the theory with field configuration space

Γ (E⊗V).

Now the matter fields are sections of the tensor product bundle E ⊗ V where
the first factor represents the degrees of freedom (e.g. scalar, vector, spinor and
so on) and the second factor represents the gauge symmetry. Note that on this
bundle there is a natural connection defined by the connections of the respective
factor bundles. If s and v are sections of E and V respectively we have

D(s⊗ v) = (DEs)⊗ v + s⊗ (DVv).

In the case of spinors on M the action would be

S(A,ψ) = SYM(A) + SDirac(ψ, A)

with Dirac action
∫

ψiγµDµψ, where the covariant derivative acts on the product
bundle.
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3.4 The non-linear sigma models

The nonlinear sigma models are a large class of field theories with a highly geo-
metric origin that belongs to the Riemannian category. We here review the basics
of these field theories and discuss some simple examples. Nice discussions on
these field theories can be found for example in [1].

3.4.1 Geometric setup

The nonlinear sigma models are field theories of maps between Riemannian man-
ifolds ϕ : Σ→ M, or equivalently fields which are sections of a trivial M-bundle
over Σ. We will refer to Σ as a base manifold and M as the target manifold. We
denote by gµν the base manifold metric tensor, and by hi j the metric on the target
space. Greek indices will be used for the base, while latin indices for the target.
In our discussion of quantum field theories we mentioned that the base manifold
could be equipped with all sorts of geometric structures. In the nonlinear sigma
model case we have two manifolds on which to chose structures. In addition
to Riemannian structure the two manifolds can be equipped with for example
complex structure or spin structure. A particular interesting question is how the
choice of target manifold structures are reflected in the theory. Later we will see
an example where the complex structure of the target has an interesting physical
interpretation.

Given a chart on the target manifold ψ : M→ Rm we may construct the map

(ψ ◦ϕ)(p) =ψ(ϕ(p)) ∈ Rm

ϕi ≡ (ψ ◦ϕ)i

which are the local coordinates along the field. As in any field theory we want to
construct some (scalar) Lagrangian from the data given. In this case we only have
the geometric data (ϕ, gµν, hi j). The simplest real valued map we can construct
from this is

L : ϕ→ L(ϕ) = g−1(ϕ∗h)

where in local coordinates we have

g−1 = gµν∂µ ⊗ ∂ν
h= hi jdϕ

i ⊗ dϕ j

ϕ∗h= hi j(ϕ)∂µϕ
i∂νϕ

jd xµ ⊗ d xν.

Equivalently we can use the explicit (local) form of the differential of ϕ we dis-
cussed in the chapter on pullbacks and pushforwards

dϕ = ∂µϕ
ad xµ ⊗ ∂a
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here viewed as a local section of the bundle B = T∗Σ ⊗ ϕ∗TN. On the cotan-
gent bundle over the base we locally have an inner product given by contraction
with g−1, while on the pullback bundle over the target space by contraction with
hi j(ϕ). These combine to give a inner product onB . The inner product, or "size",
of dϕ thus reads

〈dϕ, dϕ〉B = gµν∂µϕ
i∂νϕ

jhi j(ϕ).

Hence we can write the action

S[ϕ] =

∫

M

dn x
p

g g−1(ϕ∗h) =

∫

M

dn x
p

g 〈dϕ, dϕ〉B =
∫

M

dn x
p

g gµν∂µϕ
i∂νϕ

jhi j(ϕ).

The role of this action is as usual to weigh the different field configurations prop-
erly in field integrals. The space of field configurations in the sigma models are
often referred to as Maps(Σ,M). As the Lagrangian of this theory is constructed
in a purely tensorial way, the action is necessarily invariant under target space
diffeomorphisms, i.e. field redefinitions ϕ→ ϕ′.

Another interesting thing to note is the following. If we expand the target
space metric in the fields, we formally have

hi j(ϕ) = hi j(0) + ∂khi j(0))ϕ
k + ∂k∂lhi j(0))ϕ

kϕl + ...

and one can interpret the nonlinear sigma model as a theory of scalar fields ϕi

with infinitely many coupling constants

{hi j(0),∂khi j(0), ...}.

Hence we are dealing with a free theory, in the sense that we have no potential
or interaction term, but as a result of the non-trivial target space geometry we
have infinitely many interactions.

We want to briefly sketch how spinors fit into this geometric picture. We here
assume that the sigma model ϕ : Σ→M consists of a spin manifold Σ where SΣ
denotes its bundle of spinors. As spinors are associated to sections of this bundle
there is a priori no connection between the spinor fields and the target space
geometry. As the target is often chosen as to incorporate some symmetry into the
physical model, we need to include its geometry somehow. This is usually done
by twisting the spinor bundle over the base by the pullback tangent bundle of the
target. The (twisted) spinors normally used for sigma models are then associated
to sections

ψ ∈ Γ (SΣ⊗ϕ∗TM).

In some way, we need the scalar field to define the spinor fields. As discussed in
the chapter on spinors, we can locally write them

ψ= (ψα)isα ⊗ ∂i =ψ
i ⊗ ∂i
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where ∂i = ∂ /∂ ϕi and {sα} is a set of basis sections for the spinors. We want each
of these spinors to anti commute when we treat them in the functional formalism.
Just as we have n scalar fields ϕi, acting as coordinates on the target, we have
n spinors ψi in the tangent space of the target. We will in the remainder of this
section focus on the scalar theory.

It will be useful to consider the local classical equations of motion, i.e. the
covariant Euler-Lagrange equations

∇µ
∂L

∂ (∂µϕk)
−
∂L

∂ ϕk

with
∂L

∂ ϕk
=

1
2

gµν(∂khl j)∂µϕ
l∂νϕ

j,

∂L

∂ (∂µϕk)
= gµνhk j∂νϕ

j

leading to the equations of motion

gµν(∇µ∂νϕi + Γ i
jl∂µϕ

l∂νϕ
j) = 0,

where Γ i
jl are the Christoffel symbols on the target. We here used Levi-Civita con-

nection on TM. The fields satisfying this equation is known as harmonic maps,
and are the field configurations in Maps(Σ,M) interesting for a classical theory.
Note that the second nonlinear term stem from the fact that in both the ways we
constructed the action, pullbacks along the field were involved.

A useful picture to have in mind is the following. We can look at the map ϕ
in the sigma model simply as a tool to embed Σ in M. Then the quantum theory
in some sense studies deformations of Σ in M.

Note that in the trivial case where Σ= Rn and M = R the equations of motion
reduce to the massless Klein-Gordon equations ∂ µ∂µϕ = 0. Of course, for any
theory with base manifold M and target the real line, the sigma models reduce
to theories of a single scalar field on spacetime M.

3.4.2 Worldsheet models and B-field terms

A special class of sigma models that we will discuss again later are the world
sheet models. Here the base manifold is a Riemann surface, while the target can
be arbitrary. We start with a discussion of sigma models in one dimension before
moving on to the two dimensional case. Consider the sigma model x : W → M
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where W is a 1-manifold, i.e. either a line or a circle . For now we take the base
space to be a finite interval of the real line. The action of this theory reads

S=

∫

( ẋ i ẋ
i − V(x))d t,

where we added a potential term V : M → R. If we interpret the base space
interval [t1, tb] as a section of time this theory is nothing but a quantum theory
of trajectories trough M. The partition function of the theory reads

Z=

∫

D xeiS.

This sum may heuristically be read as the sum over paths weighted by the ex-
ponential factor. This is the path integral approach to quantum mechanics [37].
The corresponding Euclidian theory where paths are weighted by exp(−SE) has
a natural interpretation as statistical mechanics.

In this sense quantum mechanics is a 0+1 dimensional field theory. To find
the relevant Hilbert space of the theory we proceed as described in the in the
above discussions. We can view the worldline of the particle as a 1-cobordism in
the category 1Cob, and then consider the functor to the Hilbert space category.
The operator U = exp(i(t2 − t1)H), associated with the 1-cobordim, is the time
evolution operator acting on the Hilbert spaces living on the ends of the worldline.
This of course satisfies the wanted decomposition rules.

H1

U(t2, t1)

H2 H1

U(t i, t1) U(t2, t i)

Hi H2

=

t1 t2 t1 t i t2

The Hilbert spaces at different times are isomorphic and we denote them by
H. By Taylor expanding this time evolution operator to first order, we can find a
equation for a Hilbert space vector |ψ〉 at time t+δt, and hence also an expression
for the time derivative of the vector. The resulting equation

−i}h∂t |ψ〉= H |ψ〉
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is of course the Schrodinger equation governing time evolution of the quantum
system. An operator Q commuting with the time evolution operator is considered
a symmetry of the problem. Since [exp(iTH),Q] = [1+ iTH+ ..., Q] this simply
means that the Hamiltonian commutes with Q. From this one often constructs
the Hilbert space as eigenspace of the maximal set of commuting operators. This
operator approach to quantum mechanics is discussed in the appendix.

If the particle moves in a electromagnetic field in n-dimensional Minkowski
space, the Lagrangian has the additional term

−q(ρ −A · ẋ).

This term can be written A i ẋ
i, with A0 = qρ. This we recognize as the component

of the pullback one-form x∗A from a 1-form A id x i on M. The gauge field term
can then be written

∫

W

x∗A=

∫

d tA i(x) ẋ
i.

Note that we could only pull back a one-form, as the base space is one dimen-
sional, and hence only integration of one-forms is defined. However, from this we
could try to construct similar pullback terms for the general sigma model. In fact,
we have the general expression for the pullback of a n-form from our discussion
of pullback bundles, which would fit nicely into such an action.

A similar interpretation is possible in two dimensions. For concreteness we let
Σ= R×S1. Hence the sigma model in this case studies embedding of the cylinder
in M, and can similarly to the d=1 case be interpreted as the motion of a object
trough the target. In this case the object is a string, where the coaxial direction
of the cylinder represents time and the circle the parameter on the string. By
analogy with the pullback gauge field we can now pull back a 2-form B from the
target [79], resulting in a addition to the action of the form

S(ϕ)→ S(ϕ) +

∫

Σ=R×S1

ϕ∗B=

∫

Σ

Bi j(ϕ)ε
µν∂µϕ

i∂νϕ
jd2 x .

When one adds such a term to a two dimensional sigma model in a more general
setting it is often called a Wess-Zumino-Witten term, 2-form term or a B-field
term, and the total action would be

S(ϕ) =

∫

Σ

d2 x
p

g g−1(ϕ∗h) +

∫

Σ

ϕ∗B

=

∫

Σ

d2 x
�p

g gµνhi j(ϕ) + ε
µνBi j(ϕ)

�

∂µϕ
i∂νϕ

j.
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Note that no metric is needed to integrate this second term, and in this sense it
is topological. Note also that from Stokes theorem we can rewrite this additional
term if we interpret Σ as the boundary ∂N of a 3-manifold

∫

Σ

ϕ∗B=

∫

N

d(ϕ∗B) =

∫

N

ϕ∗(dB).

We see that only the cohomology class of B in H2(M)matters to this sigma model.
The dimension of the moduli space of this model is determined by the number of
parameters needed to define the relevant tensors, e.g. two metrics and a 2-form.
While Σ is two dimensional and its metric requires three parameters, the target
can be of any dimension m. Counting the independent parameters one can easily
show that

dimM=
�

m
2

�

+
m(m+ 1) + 6

2
.

So for two dimensional targets the dimension is 7, in three dimensions 12 and in
four dimension the moduli space is 19 dimensional. The case relevant for us later
will be when Σ= R2, and the extra three dimensions coming from the metric on
Σ has to be subtracted. The dimensions of the sigma model moduli space then
reads dimM=

�m
2

�

+ m(m+1)
2 .

We would like to briefly discuss how D-branes appear in the geometric for-
mulation of sigma models. Consider a model of maps ϕ : Σ → M where Σ is
the rectangle [t1, t2]× [s1, s2] and M is the manifold in which the string moves.
This model would describe an open string, while the former example, where the
world sheet was a cylinder, described the motion of closed strings. In the open
case, the world sheet has some boundaries which we must handle carefully. The
action is the standard sigma action

S=
1
2

∫

d tds∂µϕ
i∂ µϕi

and the variation with respect to the fields read

δS=

∫

dsd t∂µϕ
i∂ µδϕi (3.1)

=

∫

d tds
�

∂ µ[(∂µϕ
i)δϕi]− ∂ µ∂µϕiδϕi

	

. (3.2)

In this case, we can not throw away the total derivative term. Writing out the
contraction over the world sheet, this is evaluated to

∫ s2

s1

ds[∂tϕ
iδϕi]

t2
t1
−
∫ t2

t1

d t[∂sϕ
iδϕi]

s2
s1

.
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By assumption the field variations vanish at t1, t2 so the first terms simply van-
ishes. For the second term to vanish, i.e. [∂sϕ

iδϕi]s2
s1
= 0, we must demand that

either the derivative vanishes, or there is no field variation. We consider the case

∂sϕ
i|s1,2
= 0, i = 1, ..., m ,

δϕi|s1,2
= 0, i = m+ 1, ..., n= dimM.

This means that the end of the string is attached to a m dimensional sub manifold
B ⊂ Mof the target space. These geometric objects are called Dm-branes. For
example, a D0-brane would simply be a point in the target, a D1-brane a string,
or D2-brane a membrane, and so on. If we want to interpret these D-branes in a
more general setting, not necessarily as part of string theory, they simply appear
as boundary information in the sigma models.



4
Universality and the renormalization group

This chapter is intended to bridge the gap between the previous discussion on
quantum field theories and the theory of phases and phase transitions. In partic-
ular we will discuss the notion of emergence and universality as they shed light
not only on how to use field theories in condensed matter physics but also on
constructing physical models in general. Large parts of this chapter will be fo-
cused on field theories and the renormalization group, which gives a very clear
presentation of universality.

4.1 Emergence

The simplicity of complexity of a system depends crucially on its size. A single-
particle system is often solvable, at least under some set of reasonable assump-
tions. Adding more particles increases the complexity considerably as interac-
tions have to be included. While few-particle systems may be solved, systems
with tens or hundreds of particles are more or less impossible to solve without
turning to numerical methods. However, as the system grows larger still the very
thing that made the few-particle problem harder is making the problem tractable
in the infinite limit. In this way we pass from simplicity to complexity back to
simplicity. What saves the day is the principle of emergence.

Emergent phenomena are roughly speaking those phenomena that can not be
understood from models of independent particles, but rather are determined by
interactions in the limit of large systems. In systems with interactions, the con-
stituents can join forces to produce collective behavior. This collective motion
of many particles is highly diverse and in many cases surprising. The effective
degrees of freedom in the system can be rather exotic, which is the beauty of
research in condensed matter. There is a qualitative difference between a system
with a finite number of constituents and the limit where the system grows very

103
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large.

As we consider the large distance limit of some system, the microscopic details
are replaced with averages. For example, the random motion and collisions in a
material due to thermal motion is averaged out when we look at some large slab
of the material in the lab. In stead the microscopic motion is reflected in material
properties like density. In this sense, there is a certain amount of autonomy in
the large scale behavior.

To summarize, the concept of emergence contains not only the fact that mi-
croscopic behavior can lead to effective collective behavior of large scales, but
also that this behavior is independent of many of the microscopic details. This
is, in the fewest possible words, universality: the observation that many systems
can exhibit the same large scale properties. The class of systems with the same
large-distance properties define an universality class.

4.2 Phases of matter as equivalence classes

Condensed matter physics roughly speaking studies the properties of materials
and many-particle systems at low energies. The most important amongst these
large-distance properties are the different phases and their transitions. We first
explore the idea of phase transitions within a classical framework. For a system
with a large number of particles, we let the phase space be denotedP. The state of
the system is determined by a point x = (q1, ..., qn, p1, ..., pn) and it time evolution
as determined by the Hamiltonian equations. Assuming energy to be conserved,
we only consider the 2n− 1 dimensional surfaces of constant energy E as phase
space P. The physical observables are C∞(P) functions. The physically observed
quantity is often the temporal average

〈A〉time = lim
t→∞

∫ t

0

A(x(t ′))d t ′.

The ergodic hypothesis states that in the asymptotic limit t →∞ all points of P
will be explored. This means that the above temporal average can be exchanged
with an average over phase space. This allows for the whole framework of statis-
tical mechanics where such ensemble averages are calculated by differentiation
of the partition function.

However, as this only is strictly true is the asymptotic limit, it may be that the
ergodic hypothesis fails at the timescales involved in an actual experiment. In
this case it may be that the phase space splits [91] into parts

P= ∪aPa.
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In each region the ergodic hypothesis still holds, and the temporal average equals
the (restricted) ensemble average.

P

P1
P2

P3

Figure 4.1: Sketch of the phase spaceP and its splitting into disjoint regions, e.g.
phases. Each region corresponds to a class of collective behavior or organization
of the many-particle system.

Symmetry breaking is a special example of ergodicity breaking. We assume
that the microscopic model, for example as expressed by a Hamiltonian, is in-
variant under some transformations on the microscopic variables. If we can find
observables that are not invariant under this transformation, and these have non-
zero expectation value, we say that the symmetry is broken. Such a parameter
is called a order parameter, as it reflects the microscopic organization of the sys-
tems constituents. The value of such a parameter will change under the broken
symmetry transformations, and in some sense classify the classes of macroscopic
behaviour. The non-zero expectation value is a consequence of the fact that the
time average and (full) ensemble average will not agree - in this sense symmetry
braking is a special case of ergodicity breaking.

In the classical picture, a phase is a collection of points in phase space (e.g.
classical states) that share some physical property, like for example the order
parameters we briefly mentioned. A definition similar in spirit also exist in the
quantum picture of things. Phases can formally be seen as equivalence classes
on the space of quantum mechanical systems. We imagine a space of quantum
systems, where the points are labeled by (H,G). Here G is the symmetry group
of the system from which the Hilbert space can be constructed as a representa-
tion, and H is the Hamiltonian compatible with this symmetry. For a fixed G, the
Hamiltonian typically takes the form

H= H0 +
∑

i

λiHi

which we can think of as a deformation class of H0. The space of parameters
(moduli) span the a moduli space of quantum systems. Our general definition
of a phase will be a equivalence class on M defined by an equivalence relation
∼. From the point of view of quantum states, this statement is very similar to
the classical picture: a phase is simply a class of states that share some physical
properties.
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M

R1
R2

R3

Figure 4.2: The moduli space M with regions Ri corresponding to equivalence
classes under ∼.

What type of phase depends on the equivalence relation we choose. The stan-
dard picture of phases of matter are obtained when the equivalence relation is de-
fined as path connected points inM for which the free energy log Z is non-singular
[17]. Since the physical observables are usually given in terms of derivatives of
the free energy or the partition function this simply means that the phases are
defined as regions of analyticity of observables. When we discuss topological
matter in upcoming chapters, the equivalence relation is of a topological nature.
In this case the moduli space is partitioned into topological classes, each labeled
by topological invariants.

4.3 Effective field theories

The justification of the application of field theory to condensed matter systems is
universality and emergence. As we have discussed, the emergent large-distance
physics depends only on certain aspects of the small-distance physics. Studying
the condensed matter system at large scales is then tantamount to studying a field
theory in the correct universality class. The concept of a universality class will
become much more precise when we discuss renormalization group flow below.
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I

II

III

Figure 4.3: Simplicity at a microscopic level (I) turns into a complex interme-
diate range (II) before simplicity emerges (III) at large scales. At large scales an
EFT describes universal properties of the original system.

We will represent the macroscopic (low energy) degrees of freedom of our
system by a field ϕ which we take as a section of some appropriate bundle. The
action is a function on the corresponding space of sections, and the (Euclidian)
theory is represented by the partition function

Z=

∫

Dϕe−S(ϕ)

as always. We want an effective field theory to satisfy the following.

(i) Manageability: We should profit in going from the microscopic model to a
EFT description of the system. If we can solve a microscopic model exactly,
there is no more information to be obtained through the EFT other that a
possible change of perspective.

(ii) Emergence: The effective theory should in principle emerge from some
limiting procedure of the microscopic model. Given a micro-model the ef-
fective theory is obtained from some scheme of averaging over small scale
effects, leaving only the relevant large-scale degrees of freedom.
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(iii) Symmetries: If a microscopic model is not known and the procedure schemat-
ically outlined in (ii) is not possible, we use the characteristic symmetries
expected of the system to study a class of candidate actions S. It is then a
matter of (educated) guesswork to pick the right model for the given uni-
versality class.

Note that prom the point of view of (ii) effective theories are more than ap-
proximations. We do not simply forget information regarding the short-distance
physics but rather include them by averaging over them. Somewhat schemati-
cally we can write

Z=

∫

Dϕe−S =

∫

DϕLDϕHe−S =

∫

DϕLe−Se f f

where we divided the fields into high and low energy modes. Here the effective
action Se f f ∼ log

∫

DϕH exp(−S) describes the large-distance physics and is in ev-
ery way equivalent to the full theory as long as one stays n the low-energy regime.

Note that while effective field theories obtained along the lines of (iii) per-
forms no such averaging over high energy modes, the resulting field theory will
describe the effective low-energy degrees of freedom. Indeed, the symmetries of
the system are observed in macroscopic experiments, and a field theory based on
this symmetry should contain information about the observed emergent phenom-
ena.

This latter observation more or less summaries the phenomenological ap-
proach to effective theories, where the main idea is the following. We treat our
many-particle system as a mysterious black box that we know nothing about, and
construct a theory based only on observations. This almost sounds obvious, as
this is simply the description of science. However, one often spends large amounts
of time trying to derive a effective theory from some microscopic model in the
belief that the microscopic theory is in some sense more fundamental than the
effective one. In light of (iii), condensed matter can be treated in a manner very
similar to high energy particle physics, where Lagrangians are constructed based
on symmetries and couplings. In fact, we could see condensed matter and parti-
cle physics as the same class of system, where the only difference is that particle
physics has less complicated vacuum [87]. In condensed matter systems the vac-
uum often corresponds to some ground state of a material. In this sense, we
could view for example the QED vacuum as a "material" consisting of electrons
and photons in which one studies for example scattering. Later we will see that
this vacuum in fact corresponds to an insulator.
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4.4 Geometry of the renormalization group

Renormalization and universality are two of the main pillars of modern physics,
and sheds light on science in general. In a very broad sense it is simply the obser-
vation that physics at large scales is not dependent on all the microscopic details
on smaller scales. If it was, doing science would be quite impossible. Consider
for example a gas flowing around in 3-space. On scales larger than a couple of
centimeters we use continuum mechanics to describe the relevant physics. How-
ever, at smaller scales of 10−8−10−11 cm we need atomic physics to describe the
atoms in the gas and their electron cloud distribution. At even lower scales com-
parable to 10−15 cm quantum chromodynamics (QCD) rules, which is the physics
of quarks and gluons. In this way, different scales correspond to different physics.

Luckily the physics at large scales more or less decouples from the physics at
smaller scales. For example, we do not need to know about QCD to discuss either
atomic physics or the classical fluid dynamics of the gas in the above example.
This decoupling of length scales in nature is what enables us to do physics at all.
If this was not the case, we would have to know everything before we can do
anything. Of course, the small scale physics in some ways leaks through to the
larger scale physics as a sort of average. Consider again the gas above. To do
the classical continuum mechanics we need to know properties of the gas like
density. This we often calculate using statistical models based on atomic physics.
In this way the concept of an density can be defined by calculating the average
number of particles in a finite volume V. In this way some of the information
on small scales flow to the large scale physics. Intuitively it should be clear that
such information flow in irreversible; As we forget details regarding the micro-
scopic physics and only keep information regarding averages, there is no way to
uniquely restore the microscopic information.

4.4.1 The renormalization group flow

This irreversibility is formally equivalent to the statement that the operations of
averaging over high energy degrees of freedom, called a renormalization group
transformation, constitutes a commutative monoid 1. The general statement of
the RG transform is the following [20]. Assume we are dealing with a theory
parametrized by the moduli (c1, ..., cm), which we interpret as local coordinates
on a moduli space M. We imagine that the theory is defined (in k-space) up to a
cutoff Λ. The RG transform where we average over physics at large energies can

1Recall that a monoid is a group without inverse elements. A monoid without identity is a
semi-group. These structures are discussed in the appendix.
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be seen as a map
RΛ,µ : M→M

: L→ RΛ,µL

where µ < Λ are energy scales. Here RΛ,µL is the effective theory at µ for the
high energy theory at Λ. Clearly this transformation satisfies

Rµ2,µ3
◦Rµ1,µ2

= Rµ1,µ3
.

However, as we have already mentioned, the renormalization group transforma-
tion is not reversible as microscopic information is lost in the averaging process.
Hence the renormalization "group" is the action of a monoid on the space of QFTs

(L,Λ)→ (RΛ,Λ/sL,Λ/s).

where s > 0 is a parameter determining how much of k-space we integrate out.
Formally this makes the renormalization "group" a monoid2. This RG transforma-
tion generates a flow on the space of moduli. Now consider a path T : [0,1]→M,
i.e. a one-parameter flow of theories T(0)→ T(1) generated by

d
d t
= −β i∂i.

The vector field β i = −∂ c i/∂ logµ on the moduli space contains information
about the change of the parameters of the theory as we move along T. The vector
field components are called the beta functions of the RG flow.

We consider a simple example of a scalar field. We write the scalar fields as a
Fourier transform

ϕ(x) =

∫

dnk
(2π)n

ϕ̃(k)eikx .

We also assume that there is some cutoff energy scale Λ that is the higher energy
we think our field theory makes sense on. Let us say that we want to average
over the physics in the range Λ/s < |k| < Λ, s > 1. We divide the fields into low
energy modes ϕL with momentum below this region, and similarly high energy
modes with momenta in the region. We express the integration measure over the
high energy modes in momentum space as

DϕH =
∏

Λ/s<|k|<Λ

dϕ̃(k).

2A monoid is a group without inverse elements, or equivalently a semi-group with identity. See
the appendix for a more complete discussion on groups and monoids and their action on spaces.
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The new effective action is obtained by performing this integral over high energy
field modes

e−S′[ϕ;ci] =

∫

∏

Λ/s<|k|<Λ

dϕ̃(k)e−S[ϕ;ci].

This action in identical to the previous action as far as the large scale physic is
concerned. To compare the two we rescale momenta and coordinates: k → sk,
x → x/s. For the fields this means

ϕ(x)→ ϕ′(x/s)≡ s∆ϕ(x).

This relation defines the scaling dimension ∆ of the fields. We assume that the
action is written as a free part, plus a series of local operators

∑

i

ci

∫

dn xOi(x).

We denote the scaling of the local operators as Oi(x/s) = s∆iOi(x). Then, the
additional terms in the action scale as

∑

i

ci

∫

dn xOi(x)→
∑

i

c′ is
∆i−n

∫

dn xOi(x).

Hence we can identify ci = c′ is
∆i−n or equivalently c′ i = cis

n−∆i . An iterative ap-
plication of this operation produces the RG flow.

Note that the addition of a term in the action can be seen as deforming
the original theory, for example we could consider a one-parameter deformation
S→ S+ gS′. However, depending on the scaling dimension of the corresponding
operator, the deformed theory may represent the same large scale physics. Op-
erators that does not contribute at large scales are called irrelevant, while those
that survive the RG flow are called relevant. Operators that have scaling dimen-
sion 0 are called marginal. The same terminology applies to the parameters in
front of the operator.

4.4.2 Universality classes

The fixed points of the RG flow correspond to theories invariant under change of
scale. By studying the behavior of the beta function close to these fixed point we
can learn about the different types of fixed points and how they relate to phases
of matter. This discussion follows [14].
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Consider the expansion of the beta function close to a fixed point

β i = ġ i = Bi
j(g − g∗)

j + ...

Working close to the fixed point, we keep only this term. Taking another deriva-
tive we get an differential equation for the beta function β̇ i = Bi

jβ
j, or in a diag-

onal basis β̇ i = biβ
i. In this last expression we do not intend a sum to be taken.

The corresponding equation for the coupling constant reads

ġ i = bi(g − g∗)
i.

This can easily be solved by dividing by (g − g∗)i and integrating. We get

g i(t) = g i
∗ + [g

i
0 − g i

∗]e
bi(t−t0).

For example, we see that if we start at the fixed point g0 = g∗ we remain at the
fixed point for all t. However, if we start slightly away from g∗ the parameter bi is
a sort of measure of how fast we flow away from the fixed point. This parameter
also controls the behavior of quantities with dimension length. Consider the scale
transformation Λ→ λΛ, t = log(Λ)→ t0 + logλ where λ(t) = exp(t − t0). We
want to know how this transformation affects a physical quantity ξ that trans-
forms as a length

ξ(g(t)) = e−(t−t0)ξ(c0).

Differentiating this equation and using the definition of the beta function we get
the equation

ξ̇(g(t)) = −e−(t−t0)ξ(c0) = (∂iξ(g(t)))β
i = (∂iξ)B

i
j(g − g∗)

j + ...

At t0 this equation can, again in diagonal basis, be written

∂iξ= −
ξ

bi(g − g∗)i
.

Assuming separated solution ξ =
∏

i ξ
i this equation can be solved similarly to

the equation for the coupling constants.

ξi(t) = ξi(t0)

�

g i(t)− g i
∗

g i
0 − g i

∗

�−1/bi

.

We see that if we start exactly at the fixed point, the correlation length diverges.
However, we are more interested in the behavior close to g∗, which depends on
what kind of fixed point we are dealing with. A generic renormalization group
flow looks something like the below figure. A rough classification of fixed point
can be made, separating them into three classes, stable ⊕, unstable 	 and saddle
points ⊗.
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Figure 4.4

The unstable repulsive fixed points are not reached by a RG transformation,
and often just play the role of sources in the flow diagram. Consider first the
behavior of ξ close to an attractive stable fixed point. As we follow the RG flow,
g i(t)− g i

∗ becomes smaller and smaller and at the fixed point the length ξi van-
ishes. For the saddle points there are both stable and unstable directions. Imagine
for example following the dotted line exactly. In this case the ξi vanishes as we
follow the RG flow. However, this behavior is extremely unstable, as any slight
departure from the dotted line will lead to a plunge into one of the attractive
fixed points. In this case the correlations will grow again, before vanishing at the
attractive point. A rough classification of the fixed points and their relation to
phases of matter is the following.

(i) Stable fixed points ⊕. Theories flow to this attractive fixed point under the
RG flow, and correlation lengths vanish. The theory at ⊕ describes a stable
phase of matter, insensitive to small perturbations.

(ii) Unstable fixed points 	. Theories flow away from these repulsive points,
and are not reached by RG flows.

(iii) Saddle fixed points ⊗. The saddle points, also called mixed points, have
both stable and unstable directions. The points flowing into the saddle
point span the critical surface (for example the dotted line in the figure). A
theory at the critical surface will from small perturbations fall into one of
the stable phases. Exactly at the critical surface, the theory flows into the
saddle point, or critical point, which corresponds to critical behavior. Here



114 Universality and the renormalization group Chapter 4

the RG flow in the unstable directions start at the critical point, and the
corresponding length diverges. Phase transitions correspond to crossing
the critical surface.

How fast these lengths vanish or diverge is controlled again by the parameter
bi. The exponent 1/bi = νi is called an critical exponent, and is a part of a much
larger story of exponents that we will not go into here. The basin of attraction
of a given fixed point is called a universality class. Intuitively, each such class
corresponds to systems that microscopically may differ substantially, but share
mathematical description on large scales. In particular, near a unstable point
they share critical exponents.

4.4.3 Gradient flows and the c-theorem

A famous theorem due to Zamolodchikov [89]makes the idea of information loss
under RG flow a bit more precise. It states that there exists a function

c : M→ R

on the space of parameters that decreases monotonically under RG transforms on
M, and is a constant at the RG fixed points. This theorem is proven in the case
of two dimensional QFTs. A consequence of this theorem in that the RG flow
can’t be completely arbitrary. For example, there can be no closed cycles in M,
which agrees with our intuition that when averaging over microscopic degrees of
freedom to get a low energy theory, we should not suddenly end up at the same
high energy theory. The c-function can be seen as a sort of information function
on M. In particular the value of c at a high energy fixed point is larger than at a
low energy fixed point. In this sense, it is acts as a sort of ordering in this space
M of QFTs that can be deformed into each other.

This should be compared with the so-called gradient flows. Consider a func-
tion Φ : M→ R and assume the space of moduli comes with a Riemannian metric
Gi j. The RG flow is gradient if we can write a gradient formula

∂

∂ g i
Φ= −Gi jβ

j.

In particular, this implies that

µ
dΦ
dµ
= −〈β ,β〉 ≤ 0.

Equality is here only achieved at fixed points β = 0. In this sense, the c-theorem
is a weaker version of gradient flow, as gradient flows implies monotonicity while
the reverse it not true. However, the intuitive picture one should have in mind is
the same for Φ as it is for c.
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4.4.4 Scale invariance

If we think of the renormalization group flow as a procedure where energy scales
are averaged out layer by layer, it should be clear that the fixed points of the
renormalization group flow corresponds to theories that are scale invariant. The
quantum field theories with this symmetry are the conformal field theories [28]
mentioned in the pervious chapter.

The conformal field theories should depend only on the conformal class of
the Riemannian metric on spacetime. This has interesting consequences for the
stress-energy tensor of the theory. Consider the variation of the action under
some change in metric

δS=

∫

dvolM
δS
δgµν

δgµν.

We recall that δS/δgµν was proportional to the stress-energy tensor. For a con-
formal transformation the matrix transforms infinitesimally as gµν → eωgµν =
gµν+ωgµν+ ... with δgµν =ωgµν. The change in action is then, up to constants,
given by

δS∼ω
∫

Tµνgµν =ω

∫

Tµ
µ

.

This has to vanish if the theory is conformally invariant, hence Tµ
µ
= 0.





5
Dualities and the space of quantum field

theories

This chapter discusses some big-picture ideas regarding quantum field theories
and their interrelations. We discuss dualities as an abstract equivalence relation
on the space of quantum field theories. We also discuss how dualities can be used
to probe universality classes.

5.1 The local understanding of theory space

Recall the basic intuition behind a moduli space. After identifying discrete invari-
ants we may still have some structure on our objects that comes in continuous
families. The moduli space is supposed to represent this continuous freedom. If
we view a quantum field theory as a geometric construction, we can ask questions
about the moduli space of such theories. Different points in this space would cor-
respond to certain choices of geometric data (manifolds, space of fields etc) that
defines a partition function.

This chapter will be very academic, and only later will we see actual examples
of the topics we here introduce. We start by imagining a space of all QFTs, where
each point would give us a partition function. This large space should be divided
into subspaces corresponding to symmetries, field types, space-time dimensions
etc. One of the reasons why this discussion is somewhat naive is that there are
non-Lagrangian QFTs which do not fit into this ’list of actions’ perspective. This
will however not present any problems for our further discussions, and we restrict
our attention to Lagrangian QFTs. We denote the theory space for quantum field
theories TQFT.

Quantum field theory is perhaps the most successful theory we have that we
at the same time do not understand. This is obviously one of the reasons why the

117
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space of quantum field theories is poorly understood - to classify some objects
we need a definition of these objects. Some field theories are however quite well
understood, and can be seen as subspaces T̃ ⊂ TQFT that we do understand. For
example, the classification of conformal and topological quantum field theories
in low dimensions is more or less understood. In a similar way we understand
some representatives of classes. For example, many parts of the four dimensional
gauge theories that goes into the standard model is understood. At the very least,
they are sufficiently well understood so that we are comfortable with them.

There are many natural questions that arise regarding TQFT that do not have
clear answers. For example, theory space may not be connected. Another way
to say this is that not every QFT can be obtained from another by deforming it.
The number of connected components would then be interesting to know as it
measures how many large classes of QFTs we need to understand. One could also
ask other topological or geometric questions, like what the meaning of distance
would be in theory space. We will not discuss these topics, but for great discus-
sions of theory space in general see [24].

In spite of being poorly understood globally, we have some knowledge regard-
ing the local properties of theory space. For a given Lagrangian with some set of
parameters, we can vary these parameters and span the moduli space of that the-
ory. This is where the renormalization group flow takes place. This picture is
similar to the picture perturbation theory presents [24]. Recall that in perturba-
tion theory we deform a quadratic field action with a series of local field operators
parametrized by moduli c i in M. Quantum amplitudes are then calculated as a
series expansion in these moduli, or couplings, which are assumed to be small.
Formally, any such series is at best asymptotic to the true amplitude in the limit of
zero coupling, but for this discussion we will imagine that the perturbative results
and the true result coincide1. In this sense the perturbative series of amplitudes
defines the theory and we again get the picture of a parameter space M.

From this point of view theory space consists of many disjoint patches, each
of which we understand reasonably well. This is somewhat reminiscent of how a
manifold is constructed, by patching together a large complicated object by many
simpler objects. As in the case of manifolds we needed transition functions to go
from one local realization of the space to another. The analogue to these maps
are dualities, which have a natural place in the discussion of theory space.

1An often told semi-joke is that since any physical measurement as a consequence of uncer-
tainties defines an open region in R, perturbative expansions and in particular their truncated
versions are the most natural tools to use in physics since we never really need anything to con-
verge to a particular value.
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5.2 Dualities

Dualities can be seen as one of the signs that we do not properly understand
quantum field theory. Dualities can relate theories that lie in completely different
sectors of theory space in very non-trivial ways. This is most of the times seen as a
gift from the gods of physics as it expands the set of tools we have to probe a given
physical system. At the same time however, it may be seen as a sign that what
we tend to think of as widely different theories should really be considered the
same. In this sense there may be that there it some larger theory that produces
our current picture of quantum field theories and explains the weird dualities.
While this may be worth noting, we will not philosophize more about this. We
will however sketch how dualities appear and how they act as the glue that binds
theory space together.

Consider two widely different classical field theories with different field con-
tent. For example, they could be based on completely different symmetries. On
a classical level, these are not related in any way. However, as we quantize the
theory by defining integration over the field space, it may be that the fields only
appear as dummy variables. In other words, there is no a priori reason to believe
that only one choice of fields will produce a given partition function. For our
purposes, we will call two theories dual to each other if their partition functions
agree, even though they classically may have different field content.

Note that there exists classical dualities as well. For example, we could call
two classical theories the same of the solution space to their equations of motion
are the same. Often one has a classical duality, and want to see if the duality ex-
ists also after quantization. When nothing else is mentioned we will by a duality
mean the quantum version, defined as equivalence of partition functions.
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M1

M2

M3

TQFT D

D̃

Figure 5.1: The picture of theory space provided by local moduli spaces and
dualities. Here a given classical theory defines a point in theory space that is not
unique. Roughly speaking, we can view the space of quantum field theories as
the space of classical theories modulo these dualities.

So far our view of the QFT theory space has been the following. A point in
this space corresponds to a particular theory with some moduli (c1, ..., cn) in M.
By formally varying these parameters we trace out a connected local component
of the full theory space. However, a duality transform may relate this theory
to several other points in the full theory space. These theories have their own
space of moduli M′. In this way a rough outline of theory space emerges, where
disjoint local components are well understood, possibly related to others by dual-
ity transformations. The important lesson is the following: A particular choice of
quantized fields may not be the right way to think of quantum field theories [23].

5.3 A note on field theories and model building

Note that in some sense universality presents a kind of duality. Here different the-
ories contain the same physics in the large distance limit, and hence are "dual"
in this regime. In fact, the concepts of universality and duality presents a very
powerful way of doing effective field theories phenomenologically2.

2Phenomenological effective theories may should like a tautology, but we simply mean doing
EFT without a formal derivation from microphysics.
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Quite typically we do not want to deal with a detailed model of our system
with large Hamiltonians with interacting terms as so on. Rather, we consider
another theory that shares many of the central features that our original theory
has, similar to how we peeled of unwanted parts of the many-body Hamiltonian
in the chapter on topological matter. We then hope that these two models lie in
the same universality class. In this way it is often sufficient to consider models
that contain central and defining features of a given system if one is interested
in universal properties. We could even pick some QFT that lies in the same uni-
versality class as the continuum limit of the microtheory. We can summarize the
idea of universality and duality as it will concern us in the below figure.

Microscopic
model I

Microscopic
model II

QFT
Duality

QFTdual

Universal
features

Figure 5.2

We will mainly be working in the right half of this figure, where we pick a QFT
whose IR physics coincides with the original system (Microscopic model I). We
should mention that by duality in this picture we mean that two QFTs are related
by some non-trivial equivalence and the two theories lie in the same universality
class. From a physical point of view this is maybe not hard to believe, as the two
dual theories should describe the same physics and should do so at every scale.
In this way dualities can be used to probe an universality class. At the end of the
day we have a web of theories in TQFT each of which can be used to model the
original system.
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5.4 Target manifold dualities in sigma models

A particularly nice example of duality is that of target space dualities in nonlinear
sigma models. Recall that a sigma model is defined by maps ϕ : Σ→ M, where
both manifolds are assumed to be Riemannian, possibly equipped with additional
geometric structures. A target space duality is a map D : M → M̃ such that the
sigma model remains the same. Is this way the field theory serves as an invariant
that the two manifolds M and M̃ have in common.

5.4.1 T-duality for the compact world sheet scalar

The simplest example of a target space duality is found in the sigma model ϕ′ :
Σ → S1

R. This is a standard textbook example and can be found it for example
[37], [79] or [20].

By introducing normalized fields ϕ = ϕ′/R with period 2π the action can be
written

S= R2

∫

dvol∂µϕ∂
µϕ.

As this action only depends on the derivative of the fields, it is trivially invariant
under the shifts ϕ(x) → ϕ(x) + ω. If we interpret the fields as the angular
coordinate on the target circle this is simply a constant shift in the angle. We
will now gauge this symmetry, making ω→ω(x). This kind of gauge symmetry
is often referred to as a non-compact U(1). As we discussed earlier, two models
with different field content can often be realized to be equivalent by introducing
auxiliary fields and integrating out the old fields. We will do something similar in
this case. Having gauged the symmetry, the fields should be considered sections
of a circle bundle over the Riemann surface Σ. We then have to introduce a
connection Aµ and use the covariant derivatives Dµϕ = ∂µϕ+Aµ [20]. Note that
this derivative does not transform covariantly but rather invariantly under gauge
transformations. The gauged action now reads

S= R2

∫

dvolDµϕDµϕ.

We have now introduced some additional freedom in the theory that originally
was uninteresting. By introducing a Lagrange multiplier term to the action we
can write the original theory as the gauged theory with an additional term

S= R2

∫

dvolDµϕDµϕ +

∫

dvol f (x)εµν∂µAν.

By the equation for the Fourier transform of the delta function, the field integral
over this multiplier term yields
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Z=

∫

DϕD[A]D f e−R2
∫

dvolDµϕDµϕ−
∫

dvol f (x)εµν∂µAν

=

∫

DϕD[A]e−R2
∫

dvolDµϕDµϕδ(εµν∂µAν).

This constraint is solved by writing Aµ = ∂µθ (x), since then ∂1∂2θ = ∂2∂1θ as
desired. In other words, the multiplier implies pure gauge A = dθ . Then, as a
classical field theory at least, the gauged action is equivalent to the original action
since the gauge fields are gauge equivalent to the 0 configuration.

What we have achieved by this is a new way of writing the action of our
sigma model. However, in this new form we have not one but three fields. We
can then integrate out two of these fields and be left with some new action. We
start by fixing the gauge to ω(x) = −ϕ(x) so that the original fields disappear.
By performing a integration by parts on the multiplier term and completing the
square the action can be written

S=

∫

dvol R2(∂µϕ∂
µϕ +AµA

µ + 2∂µϕAµ) + f εµν∂µAν

=

∫

dvol R2
�

Aµ +
1

2R2
εµν∂

ν f
�2

−
∫

dvol
εµνερν∂

ρ f ∂µ f

2R2
.

Here we have ignored all overall factors, for example the determinant associated
to the Faddeev-Popov procedure for fixing the gauge. See [20] for more details.
We recall that Gaussian actions can be written as a determinant, so up to an
overall scale factor coming from the gauge fields, the partition function for the
sigma model can be written

Z∼
∫

D f e−
1

2R2

∫

dvol ∂µ f ∂ µ f .

This is nothing but the original sigma model on a target circle with radius R̃= 1/R.
Hence, T-duality in this case identifies a two dimensional CFT with background
S1

R with a CFT on S1
1/R.

Note that the action of this theory has four parameters. The metric needs
three parameters, since it is symmetric, and the target space is parametrized by
only one parameter R. Consider for the sake of argument only the dimension
associated with the radius, for example we could define the theory on R2. This is
just a line R+ where points are reflected through the fixed self-dual point R= 1.



124 Dualities and the space of quantum field theories Chapter 5

0

2

1

1/2

∞

•

•

•

This dualities act like Z2 transformations on the moduli space.

5.4.2 General Buscher dualities

The sigma models we consider here are the worldsheet models with B-field term.
Target space dualities for these models have been studied by for example Buscher
[15] and have been known for some time. The arguments are very similar to the
previous example. Writing out the action we have

S=

∫

d2 x
p

g gµνhi j∂µϕ
i∂νϕ

j +

∫

d2 xεµνBi j∂µϕ
i∂νϕ

j

=

∫

d2 x
p

g gµν
�

h11∂µϕ
1∂νϕ

1 + 2h1i∂µϕ
1∂νϕ

j + hi j∂µϕ
i∂νϕ

j
	

+

∫

d2 xεµν
�

B1i∂µϕ
1∂νϕ

i + Bi j∂µϕ
i∂νϕ

j
	

.

Note that the latin indices now run over 2, ..., dimM. Now replace ∂µϕ
1 with

some arbitrary vector field Vµ. This would change the theory. However, we can
also add the multiplier term

∫

d2 xεµνΦ∂µVν.

Just as in the case with the gauge field, this would force Vµ = ∂µϕ1 and we would
get back our original theory. By standard duality logic we could now in principle
integrate out fields in different orders, to get dual theories. The dual sigma model
for the scalar field Φ is [15] given by

S=

∫

d2 x
p

g̃ g̃µνh̃i j∂µΦ
i∂νΦ

j +

∫

d2 xεµνB̃i j∂µΦ
i∂νΦ

j (5.1)
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and the geometric data on the target manifold is transformed to

h̃11 =
1

g11
, h̃1i =

B1i

h11
, B̃1i =

h1i

h11
(5.2)

h̃i j = hi j −
h1ih1 j − B1iB1 j

h11
, (5.3)

B̃i j = Bi j −
h1iB1 j − B1ih1 j

h11
. (5.4)

This Buscher duality can be seen as a transformation on a manifold with Rieman-
nian metric and 2-form

B : M→ M̃

to yield a new but equivalent sigma model.

5.5 Duality groups and spaces of automorphic forms

A duality can be seen as a generalization of a symmetry. A normal symmetry is
a transformation of the fields ϕ → ϕ′ such that Z[ϕ; c i] = Z[ϕ′; c i]. The set
of these transformations form the symmetry group G. In a similar way, a two
theories are dual if Z[ϕ; c i] = Z[ϕ′; c′ i]. This section studies a subset of these
dualities where we in stead have Z[ϕ; c i] = Z[ϕ; c′ i]. In some sense, these du-
alities serve as symmetries in the moduli space of a theory. In stead of relating
widely different classical theories this duality maps the moduli space M to itself.
We will assume that the set of transformations c → c′ form a duality group G.
When a duality group acts of the moduli space of a QFT, a seemingly trivial trans-
formation law satisfied by the beta function opens the door to rather non-trivial
mathematical theory. We here discuss this theoretical result which we later use
to study universal properties of the Hall system as first discussed in [48].

Recall that the renormalization group could be seen as a monoid action on
the moduli space R : M → M. Physically this represents the fact that coarse
graining is a one-way street, where only information important on a given scale
is conserved. In this sense, a RG transform can be seen as a special kind of "non-
invertible duality" that leaves the partition function invariant as far as low-energy
physics is concerned. This begs the question of how these maps on the moduli
space play together. Since the duality group G presents an equivalence relation
on M we can think of the moduli space as a quotient. Note however that different
points in M still represents physically different points, so the quotient construc-
tion is only a mathematical trick. The map f that gets lifted to R by the projection
M→M/G is defined by f ([x]) = [R(x)]. We should think of this in the follow-
ing way. Every stage in the renormalization group flow defines an equivalence
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class of points in M due to the duality group. In this way the road from the UV
to the IR is not unique in M. In particular, we can in stead of following a single
flowline move to the G-transformed flowline and follow this for a while before
moving back to the original flowline.

c∗

g(c∗)

M

This implies that the RG transform and the duality commutes R= g ◦R◦ g−1.
Note also that fixed points are mapped to fixed points, and hence have the same
universal features [14]. This is often referred to as superuniversality, as it is a
sort of universality of universality classes. Again we emphasize that the points
c∗ and g(c∗) represents physically distinct points, and should only be considered
equivalent as far the RG flow in concerned. In particular, this means that the beta
functions must satisfy an automorphy relation under the G action

β i∂i → β̃ i ∂ c j

∂ g(c i)
∂ j

∴ β̃ i = β j ∂ g(c i)
∂ c j

. (5.5)

Note also that if we see the partition function as a function of the moduli it should
be a G-invariant. These are strong constraints on the functions defining a QFT,
which can be of enormous help when doing "top-down" phenomenology. Note
that in the case of gradient flows β i = −Gi j∂ jΦ(c) the metric and derivative car-
ries in total a contravariant index, and the RG potential Φ therefore has to be
G-invariant. This also makes sense if we want to interpret the RG potential as a
sort of information function - any two points related under G should lie on the
same height in this landscape.

We will assume that an metric exists on the moduli space. Since there is an
isomorphism between vectors and 1-forms in this case, we can think of the beta
function as a G-invariant 1-form on M. Equivalently, we can say that the beta
function lies in the space of automorphic forms

A(G) = Γ (T∗M/G).
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The main motivation for thinking of the beta function as a covector is the connec-
tion that can be made with mathematical literature. The modular forms discussed
earlier in this thesis presents the most studied case of automorphic forms. In this
way we can borrow a lot of work from mathematics and directly apply it to the
beta functions of our QFTs. In particular, we hope that the duality G is sufficiently
strong to make the dimension of A(G) small as in the case of modular forms. If
this is the case, we can write the beta functions as a linear combination of a basis
this space.





Part III

Modular dualities and topological
matter
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6
Topological matter and the Hall phases

As we have discussed at length in previous chapters, there is not always a clear
path from a microscopic model to a continuum effective theory. The main tool
we will use to study the Hall effect in upcoming discussions is the automorphic
constrain dualities put on the EFT beta functions. However, there are more key
features of the quantum Hall system that an EFT should replicate that can be
learned from studying the microphysics. The most important maybe, is the ro-
bustness of the stable phases. This is theoretically understood as a result of topo-
logical protection. This chapter aims at a clear discussion of the geometrical and
topological nature of these types of topological matter.

6.1 Lattices and Brillouin zones

In the world of condensed matter and many-particle physics, most microscopic
models can be cast in the schematic form

H=
Ne
∑

i=1

p2
i

2m
+

Nn
∑

a=1

p2
a

2ma
+He,n +He,e +Hn,n + Vdis(x)

where the four last terms describe the electron-nucleon, electron-electron, nucleon-
nucleon interactions and material disorder respectively. To deal with the wealth
of systems in which condensed matter theory concerns itself, one relies heavily
on the principle of emergence. As we have discussed at length, the emergent
phenomena have the trait that they do not depend on all the microscopic de-
tails, i.e. they do not really depend on all the information stored in the above
Hamiltonian. We know from our discussion of universality that we only need a
microscopic model in the correct universality class to capture the right physics at
large scales. This universality class will not depend on all the microscopic details
but rather on a handful of central and defining features.
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To access these classes however, we still need to trim of unnecessary parts of
the above Hamiltonian. We are interested in electron systems in materials. Here
the nucleons have a fixed lattice structure, and the Hamiltonian reduces to

H=
Ne
∑

i=1

p2
i

2m
+He,e + V({x i}).

Here only the electron-electron interactions remain, as well as a potential meant
to represent the electron-lattice interactions. This potential will have the same
symmetry as the lattice structure. We have also ignored effects due to disorder.
We will study the non-interacting electron gas moving in the potential landscape
V, for which the Hamiltonian can be written

H= H1 ⊗ 1⊗ ...⊗ 1+ 1⊗H2 ⊗ 1...⊗ 1+ ...+ 1⊗ ...⊗ 1⊗HNe
,

Hi =
p2

i

2m
+ V(x i).

The Hilbert space on which this Hamiltonian acts is the tensor product space
⊗iHi where each single-particle Hilbert space can be seen as L2(M), where M is
the classical configuration manifold1. In other words, this many-particle system
is completely determined by the single-particle dynamics in the free theory. The
topological phases we will discuss in this chapter can be understood by classifying
these one-particle Hamiltonians according to some notion of topological equiv-
alence. Later we will also discuss the interacting counterparts by the means of
effective theories and superuniversality.

After eliminating the uninteresting parts of the original Hamiltonian, we are
left with a single-particle Hamiltonian with a lattice symmetry. A Lattice is for-
mally a discrete subgroup Λ ⊂ Rd that is isomorphic to Z×d . The lattice consists
of vectors {mi vi} where mi are integers and the vectors vi are linearly indepen-
dent. We will refer to the orbit of the lattice as a lattice as well. Alternatively,
we can define a crystal C to be a subset of Euclidian space that is invariant under
the lattice as a group Λ and is stationary in time. When the vectors of the lattice
span the whole Euclidian space, the lattice is called a Bravais lattice [84]. There
are several types of Bravais lattices in two dimensions, two of which we will meet
later. These are the hexagonal and oblique lattices shown in parts a) and b) of
the below figure.

1 Although it is not the correct type of topology for topological phases, the homotopy groups
of the classical configuration space M affects the quantization procedure. This is discussed in the
appendix in some detail.



Section 6.1 Lattices and Brillouin zones 133

a) b)

Figure 6.1

There are different ways of choosing a basis for the lattices. One standard
choice for the oblique lattice is to start at, say, the lower left corner and let the
vectors pointing to the two closest points be the basis. This choice of basis also
affects the so called reciprocal or dual lattice. Let w ∈ Λ and V be some vector in
Rd . The set of vectors {V} such that

〈w, V〉 ∈ 2πZ

span the so-called reciprocal lattice Λ∗. The fundamental region in reciprocal
space is called the Brillouin zone BZ, which is homeomorphic to a d-torus. It
is worth noting that both these lattices, indeed all bravais lattices in d=2, have
Brillouin zones homeomorphic to a torus when the edges are identified. The fact
that several real-space lattices have similar mathematical description in the re-
ciprocal space can be seen as a kind of universality.

Consider a particle moving in Rd with the symmetry of a Bravais lattice. The
lattice translations are unitary representations

ρ : Λ→ U(L2(Rd))

on the Hilbert space of the system. We can realize these translation operators by
TR = exp(i 〈R,P〉/}h) for R ∈ Λ. To have lattice symmetry is then equivalent with
the statement that [H, TR] = 0. This is often reflected in a Λ-invariant potential
landscape V(x). Note that as we are working in flat space Pµ = −i}h∂µ.

The translational symmetry of the problem identifies points in Rd . Effectively
we can therefore take the configuration space topologically to be the d-torus

Rd/Λ.

Clearly this space is topologically non-trivial, and has first homotopy groupπ1(Td) =
Z×d . By the result on inequivalent first quantizations discussed in the appendix,
we should construct unitary scalar representations of this group. For Z we can
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do this by m→ exp(imk) for some real number k. Generalizing to Z×d we must
have wavefunctions satisfying

TRψk(x) = ei〈k,R〉ψk(x).

These are called Bloch wavefunctions [84] and are sections of a complex line
bundle over the real-space torus. Now pick some element b ∈ Λ∗ and note that

〈k+ b, R〉= 〈k, R〉+m2π.

This last factor does not change the phase, and hence k is only defined modulo
the dual lattice and can be considered to lie in the Brillouin zone. A convenient
parametrization of these states is ψk(x) = ei〈k,x〉uk(x) where TRuk(x) = uk(x).
Often one wants to deal only with these periodic functions, and one transforms
operators O→ e−i〈k,x〉Oei〈k,x〉. For example, the momentum operator transforms
to P→ P+}hk, so the Brillouin torus consists of some kind of momentum coming
from the translational symmetry of the lattice.

In the continuum limit, or at very large distance scales, the lattice points will
effectively be dense in Euclidian space. In this case the k-space is simply Rd ,
which we often compactify to a d-sphere Sd . When we refer to the Brillouin zone
BZ we mean either a d-torus or a d-sphere.

6.2 Topological insulators

6.2.1 The moduli space of gapped fermionic matter

The topology relevant for a discussion of topological matter is the topology of the
space of Hamiltonians subject to certain constraints. We have already discussed
the space of quantum mechanical systems when we discussed phases of matter.
Here we saw that a phase could be seen as a equivalence class of points in a
space parametrizing a continuous family of Hamiltonians. If observables could
be evaluated everywhere along a path connecting two points, without having any
singular behavior, the two points were in the same phase. In the case of topo-
logical matter, one divides the space into similar regions, where the equivalence
relation now is of a topological nature.

The topological phases we are interested in are mainly the topological insula-
tors, as these can be seen as a generalization of the simple 2-dimensional integer
Hall effect. Insulators are characterized by having gaps in their Hamiltonian spec-
trum. Generally the spectrum obtained by HψE = EψE can be a combination of
discrete and continuous. Let E0 denote the maximum energy of the filled states,
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which can either be an isolated point in the spectrum or a value in a continuous
band. For energies E≥ E0 the a spectral gap is defined by

δE= inf
ψ∈H−HE<E0

〈ψ,Hψ〉 − E0 = inf
c(E)

∫

dE|c(E)|2E− E0 ≥ 0

where c(E) is the probability amplitude associated with ψE. Often we have a dis-
crete series of eigenvalues where c(E) is a series of Dirac delta functions at values
En. In this case E0 corresponds to the maximum energy level of the filled states,
say En, and the energy gap is simply δE= En+1−En. We will often assume that we
can ignore very high energy levels as these will rarely be filled, and simplify the
problem to the case of n filled levels and m empty levels. By the spectral theorem
this means that the Hamiltonian, and correspondingly the Hilbert space, can be
written as a direct sum of the filled and empty parts. An insulator corresponds
to the case where the gap is not closed when an external perturbation is applied.
For example, when the system is exposed to an electric field, the energy gap is
not small enough so that filled levels can be excited into the empty ones. In the
case of topological insulators, we do not really care about the particular energy
levels of the filled and empty subspaces, and often deform these levels into single
energy bands. What we do care about is the behavior of the energy gap when
the Hamiltonian is deformed. As long as this gap stays open, we are studying
the same (topological) type of system even though the filled or empty states get
shifted around a little bit. This is the intuitive picture that will be made more
presence in this chapter.

Imagine again a space where the points correspond to a choice of Hamiltonian
and a symmetry group. Now consider only the Hamiltonians for gapped fermionic
systems. This partitions the full moduli space into disjoint regions where one can
continuously move without closing the energy gap. This space of gapped systems
will be denoted M. These regions corresponds to different topological phases. In
fact, just counting the number of these regions is an interesting question. This
corresponds to studying the zeroth homotopy group π0(M) of the moduli space.
There are three main classes of topological insulators. These are sketched in
figure 6.2, where the white areas correspond to value of parameters for which
the Hamiltonian is gapped. The gray areas correspond to gapless systems.
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a) b)

c)

Figure 6.2: a) A single topological phase. b) Two topologically distinct phases.
c) An infinity of topologically distinct phases.

The simplest case we can imagine is when the moduli space only has one con-
nected component corresponding to gapped Hamiltonians. This is often called
the trivial insulator or the vacuum. If we think of the QED vacuum, this can be
seen as a simple insulator with two energy bands corresponding to electrons and
positrons. The gap is associated with pair production. In the second case b) there
are two such regions that can only be crossed by entering a gapless region of the
parameter space. This corresponds to a topological phase transition. These are
the so called Z/2Z topological insulators, labeled by two numbers 0,1. In some
sense, there is one topological phase distinct from the vacuum. The case most
relevant to us is the Z-type insulators where there is an infinity of connected re-
gions in the parameter space. These phases can be labeled by integers, which for
example will be the same integers as in the integer Hall effect.

Topological insulators turns out to be system with some intrinsic holography,
in the sense that the information we need is contained on the surface of the sys-
tem. This is called the bulk-boundary correspondence or the bulk/edge duality.
We here briefly sketch why such a duality exists. Imagine placing two topological
insulators on top of another. For simplicity we consider an trivial insulator (vac-
uum) on top of a topological insulator with phases labeled by integers n. Now
imagining moving continuously from the non-trivial insulator to the trivial one.
At the boundary between the two, something strange has to happen. As we can
not, by definition, interpolate continuously between the two topological classes
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a topological transition occurs.

n

0

In the space of Hamiltonians this corresponds to moving from one region of
gapped Hamiltonians to another, passing trough a region of gapless Hamiltoni-
ans. When the energy gap closes, electrons can move from the occupied insu-
lating bands to the empty conducting bands. In this sense, the number n can be
seen as a way of counting the number of conducting states moving on the (d-1)-
dimensional edge of the d-dimensional topological insulator.

6.2.2 Homotopy approach and the 10-fold way

While we will meet different types of topological insulators as we go along, the
class that contains the quantum Hall system will be of most focus. We here briefly
discuss all classes to gain an overview. We consider a (single particle) Hamilto-
nian H describing a topological insulator in d spatial dimensions. In the case of a
periodic system the Brillouin zone is a torus Td , or in the case of a system in the
continuum a sphere Sd . The Brillouin zone BZ acts as a parameter space in the
sense that the Hamiltonian is given by maps

BZ 3 k→ H(k).
In this case it is the homotopy of the maps from BZ to the space of Hamiltonians
that is of interest. Note that as we are interested only in the topology, we can
deform the Hamiltonian to a flat-band insulator where the filled and empty bands
are collapsed into single bands of energy +1 above and −1 below the energy
gap. If P is the projector onto filled states, we can define the spectral flattened
Hamiltonian [73]

Q= (+1)(1− P) + (−1)P = 1− 2P.

In the topological classification we can equivalently study the homotopy of maps
k→ Q(k), i.e. the homotopy classes of Q’s.
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If we wanted to carry out the classification scheme of topological insulators,
we would need the spaces to which the spectral flattened Hamiltonians Q(k) be-
longs. These space can be found by considering what constraints generic sym-
metries put of the Hamiltonian [69]. A symmetry is associated with a unitary
or anti unitary representation of a group G. For the unitary representations
ρ : G → U(H) we can decompose the representation into irreducible represen-
tations. This Block diagonalizes the Hamiltonian, where each block corresponds
to a particular irreducible representation. These symmetries put no interesting
constraint on the Hamiltonian, as we can work in each block individually. The
constraints we want come from the anti-unitary symmetries of time reversal sym-
metry and charge conjugation [69].

Time reversal is represented by the operator T = TK where K is complex
conjugation and T is unitary [73]. Invariance of the Hamiltonian under T means
TH∗T−1 = H. Since time reversal maps x → x , k → −k, this can be written
for Bloch Hamiltonians as TH∗(k)T−1 = H(−k). Similarly charge conjugation
C = CK leads to the constraint CH(k)C−1 = −H(−k) [73]. Both these opera-
tors have the property that their square should not change the quantum state.
Hence T2 = TT∗ = eiα. Since T is unitary, we can write T = eiφTT. However,
TT = (eiφTT)T. Combining these equations yields T = ei2φT, so eiφ = ±1. Sim-
ilar arguments can be given for charge conjugation. The combined symmetry
S = TC = TC∗ is also a possibility we must consider. This symmetry is either
realized (+1) or not (0). Since time reversal and charge conjugation can be ei-
ther absent or realized in two different ways, we write +1,−1,0 for the three
possibilities. Under time reversal and charge conjugation there are 9 ways the
Hamiltonian can respond. In the T = C = 0 case we there is still a possibility
of having S symmetry realized in one of two ways. This yields (9− 1) + 2 = 10
ways the Hamiltonian can transform. These 10 symmetry classes are often called
Altland-Zirnbauer classes, and are given different names according to their con-
nection with the so-called Cartan symmetric spaces [69]. For example, the case
where no symmetries are present is called the A class and the case with time
reversal realized by T2 = −1 is called AII. These are the 10 different classes of
spectral flattened Hamiltonians Q(k) we should consider.

Consider the case where there are no symmetry constraints. With n filled
and m empty energy bands, the effective Hamiltonian Q(k) is a U(n+m) matrix.
However, there is a residual freedom in the form of a U(n) rotation amongst the
filled states, and U(m) amongst the empty states. Hence we should consider Q(k)
as a part of the Grassmannian

Grn,n+m(C) = U(m+ n)/U(m)×U(n).

The different topological phases are then characterized by the homotopy of the
maps BZ→ Grn,n+m(C). In the case of a continuum model when BZ is a sphere
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the homotopy types are simply πd(Grn,n+m(C)). However, in the toroidal case
some case must be takes as lower dimensional homotopy groupsπd−s(Grn,n+m(C))
for s = 1, ..., d can contribute to the homotopy type of Td → Grn,n+m(C). The sec-
ond homotopy group of this Grassmannian is Z, while the first homotopy group
is trivial [73]. Hence in two spatial dimensions, the different topological phases
are labeled by integers. This class of topological insulators is one we will study in
some detail. In particular, when we discuss the vector bundle approach shortly
we will see that in every even spatial dimension there exist such integer topo-
logical phases. The integer quantum Hall effect is a realization of this class of
topological insulators in two dimensions. Here the (k-independent) Landau lev-
els acts as flat bands. Strong magnetic fields correspond to a large energy gap
separating the lowest Landau level from the higher. The holographic picture of
topological insulators where charge carriers move along the edge is in the IQHE
attributed to electrons skipping against the wall in a magnetic field.

Ω

Figure 6.3: Topological Hall insulator in a sample Ω with electrons forced to
skip along the edges due to the orthogonal magnetic field. These charge carriers
have a fixed chirality and are insensitive to impurities.

When some of the discrete symmetries are present, additional constraints are
put on the Hamiltonian and on the spectral flattened Hamiltonian Q(k). Since we
will be dealing mainly with the Hall-like systems, i.e. the A class, we will not go
into detail regarding the other classes of topological insulators. The constraints
on Q can be found for example in table III of [70]. By computing the homotopy
group of maps from the Brillouin zone into the different spaces of spectral flat-
tened Hamiltonians, one can find a periodic table of topological insulators [73].
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AZ class T C S d = 0 d=1 d = 2 d = 3
A 0 0 1 Z 0 Z 0

AIII 0 0 1 0 Z 0 Z
AI +1 0 0 Z 0 0 0

BDI +1 +1 1 Z2 Z 0 0
D 0 +1 0 Z2 Z2 Z 0

DIII -1 +1 1 0 Z2 Z2 Z
AII -1 0 0 Z 0 Z2 Z2

CII -1 -1 1 0 Z 0 Z2

C 0 -1 0 0 0 Z 0
CI +1 -1 1 0 0 0 Z

There are various approaches to understanding this table and its patterns.
Perhaps best understood is the K-theoretic approach [43]. We will discuss the
K-theory approach to the A class.

6.3 Vector bundle approach

The above approach uses homotopy theory to classify maps from the Brillouin
zone into the correct space of effective Hamiltonians with the right symmetry
properties. Here each topological phase is associated with a homotopy class
as these enumerate the deformation classes of Q(k)’s. An alternate approach
is based on vector bundles. For every k ∈ BZ we have a Hamiltonian with
eigenspace H. By the spectral theorem we can decompose the Hamiltonian and
the associated Hilbert space into a direct sum H =H− ⊕H+ of filled and empty
energy levels. Since this makes sense all over BZ by the gap hypothesis, the
Hilbert spaces constitute a vector bundle E over the Brillouin zone which has the
decomposition into subbundles

E= E− ⊕E+

corresponding to filled and empty bands. Since the Brillouin zone generally needs
to be covered by more than one coordinate chart, the vector bundle of filled states
may very well be non-trivial. Since the bundle is ultimately constructed using
eigenspaces of the Hamiltonian, we may expect that the deformation classes of
Hamiltonians coincide with the topological classes of vector bundles. This moti-
vates the definition of a topological phase in the vector bundle approach.

DEFINITION: A topological phase of non-interacting gapped fermionic matter in
d + 1 spacetime dimensions is a phase that is labeled by the topological classes of a
Hilbert bundle of filled states E− over the d dimensional Brillouin zone BZ.
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We will see that the classification based on this definition coincides with the
homotopy classification we discussed for the A-type topological insulators.

6.3.1 A note on stable equivalence and topological K-theory

The periodic table of topological insulators is as mentioned perhaps best under-
stood in the K-theoretic language. We will not go into too much detail regarding
this , but we would like to show why K-theory is the right tool for the job. The
classification of vector bundles that goes into the above table is in general a very
hard problem. However, one can solve an easier problem where one relaxes the
notion of equivalence. As it turns out we can solve the harder problem in the case
of A-type insulators, but there is still some nice physics in the more K-theoretic
approach.

Let us denote byK eitherR orC, and let M×T` denote the rank ` trivial bundle
over M. If two bundles E, F are isomorphic after they have been augmented by
trivial bundles

E⊕ T i ≈ F⊕ T j

the two bundles are called stably equivalent [61]. This equivalence is denoted
E∼s F. Now, let G′ be a bundle so that G⊕G′ = Tk. Then if we have E⊕G≈ F⊕G
we get by taking the direct sum with G′ on both sides

E⊕ Tk ≈ F⊕ Tk.

Hence E ∼s F. This idea of stable equivalence, being less strict that homeomor-
phisms, may seem to give a weaker classification of topological insulators. How-
ever, this augmentation by trivial bundles makes the stable classification more
fitting. We should be able to add trivial bands to our insulator Hamiltonian with-
out changing the topological type, as the two coincide after a spectral flattening.
This corresponds exactly to a direct sum by trivial bundles [73].

Let Veck(M,K) denote the set of all K vector bundles of rank k over M. The
sum

Vec(M,K) = ⊕kVeck(M,K)

consists of all vector bundles over a manifold M. Note that the direct sum oper-
ation

⊕ : Veck(M,K)× Vec`(M,K)→ Veck+`(M,K)

maps the set of vector bundles into itself. Hence Vec(M,K) is a commutative
monoid, i.e. a semi-group with identity. The identity can be seen as taking the di-
rect sum with Vec0(M,K). In general, such monoids can be extended into abelian
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groups. Let M be such a monoid, and consider on the product space M×M an
equivalence relation defined by

(m1, n1)∼ (m2, n2)

if m1 + n2 + k = m2 + n1 + k

for some k ∈M. If we imagine for a moment that subtraction would be defined,
this would read m1− n1 = m2− n2. Hence we should think of the element (m, n)
and a formal version of m− n [61].

The natural numbers (including 0) under addition is an example of a com-
mutative monoid. The above construction then entails thinking of equivalence
classes in N × N. Two pairs of natural numbers (a, b) and (c, d) are equiva-
lent if a + d = c + b. For example (1,3) would be equivalent to (a, b) only for
(a, b) = (a, a+ 2). Hence we have an equivalence class

[(1,3)] = {(0,2), (1, 3), (2,4), ...}.

Since we think of (a, b) as a− b the pair (1, 3) should correspond to −2 in some
formal sense. This element is the additive inverse of (3,1), which would corre-
spond to 2. Similarly we can define the other positive and negative numbers. In
this way, we have constructed Z as an abelian group under addition.

An analogous procedure as the one just carried out for the natural numbers
for vector bundles yields the so-called K-theory for M [61]. The quotient

K(M) = Vec(M,K)× Vec(M,K)/∼

is called the K-group of M, and the equivalence is again of the form

(E1,F1)∼ (E2,F2)

if E1 ⊕F2 ⊕G≈ E2 ⊕F1 ⊕G.

An element in K(M) is denoted [E−F].

The virtual dimension of an element of K(M) is defined as dv[E−F] = rkE−
rkF. The elements of K(M) with dv = 0 defines the subgroup K̃(M), called the
restricted K-theory of M [61]. This is the part of K-theory relevant for topological
insulators. Let us define a map

ϕ : Veck(M,K)→ K̃(M)

: Ek→ [Ek − Tk].
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Now assume that ϕ(Ek) and ϕ(F`) are equal in K(M), i.e.

Ek ⊕ T` ⊕G≈ F` ⊕ Tk ⊕G.

From our above discussions we know that this implies the stable equivalence
Ek ⊕ T` ∼s F` ⊕ Tk. By the definition of stable equivalence this simply means
that Ek and F` are stably isomorphic. One can also show the converse, that given
two stably isomorphic bundles over M one gets a single element of K̃(M). A
rather simple proof of this can be found in [61]. In this way, we have that the
stable isomorphism classes of bundles correspond to an element of the restricted
K-group of M. Since we identify topological insulators with stable equivalence
classes of bundles, the different topological phases are, in the continuum case,
described by K̃(Sd).

6.3.2 Class A topological insulators in even dimensions

The filled bundle E− belonging to the class A topological insulators has U(n) struc-
ture group. To classify these topological insulators we need the isomorphism
classes of unitary vector bundles over BZ, or rather stable equivalence classes
if we do not care about trivial bundles. The resticted K-group for unitary vec-
tor bundles is denoted K̃U(M), and can be shown to be related to the homotopy
theory of U(r) when M is a sphere. Specifically [61]

K̃U(Sd)≈ πd−1(U(r))

when rkE− = r ≥ d
2 + 1. It is known [61] that these (restricted) K-groups have

the isomorphisms
K̃U(Sd) = Z , d ∈ 2N,

K̃U(Sd) = 0 , d ∈ 2N+ 1.

Hence the class A topological insulators are labeled by integers in every even spa-
tial dimension.

As mentioned, we can solve the stronger classification problem in the case
of A-type insulators, i.e. for unitary bundles. This can be done by associating
a topological invariant, namely the Chern numbers, to each topological class of
bundles. We recall from our discussion of Chern forms and Chern characters that
we need a connection on the bundles. Quite generally, when we have a quantum
system defined over a parameter space M the natural connection to consider on
the associated bundle over M is the Berry connection.

Formally, the situation we will discuss is equivalent to a classical Yang-Mills
theory on the parameter space M, with U(r) gauge group. Although the physics
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is somewhat different, we will use the same terminology. For more detailed dis-
cussions on Berry connection and Berry curvature see for example [18].

Consider a r-fold degenerate quantum mechanical system with the moduli in
the Hamiltonian spanning the space M. As before, the Hamiltonian is assumed
to be a smooth function of these parameters. We denote the degenerate states
as ϕa, where a runs over 1, ..., r. We can view these states as the basis sections
of a rank r vector bundle E over the moduli space. We would like to know how
the system evolves when the variations in time stem only from variations in the
external parameters, i.e. following continuous paths in M. At t=0 we setψa(0) =
ϕa(λ(0)), and by the adiabatic theorem we will stay in the degenerate subspace
[18] as time progresses. At a later time we can then write

ψa = (U−1)abϕ
b.

Note that by demanding that ∂t 〈ψa,ψb〉 = 0 the matrix U must be in U(r). In-
serting the above rotated state into the Schrodinger equation, we can find an
equation for the matrix U, which will evolve in time through the variations of the
parameters. This yields a first order differential equation [18]

(U̇−1)ab = −(U
−1)abλ̇

k



∂kϕ
b,ϕb

�

− iE(λ)(U−1)ab.

We define (Ak)bc = −



∂kϕ
b,ϕb

�

as a U(r)-valued 1-form over the moduli space.
This is the connection needed to perform covariant differentiation with respect
to these parameters. Since we assumed that we started in one of the degenerate
states, the unitary matrix has to start as the identity matrix. The above equation
can then be solved to get [18]

U−1(t) = e
∫

A−i
∫ t

0 dsE(λ(s)).

The second factor is of course only the dynamical phase factor, while the first is
a geometric one. Here we are integrating the 1-form over the one dimensional
subspace that is the path in M.

The geometric Berry phase by itself will not be important to us, but rather
its geometric content. First of all, note that if we reparametrize the degenerate
states ϕ̃a = Ua

bϕ
b, the connection transforms as

(Ã)ac = −



∂k[U
a
bϕ

b], Ud
c ϕ

c
�

(6.1)

=



Ua
bϕ

b, [∂kUd
c ]ϕd

�

(6.2)

= (U−1)ab(Ak)
b
dUd

c + (U
−1)ab∂kUb

c . (6.3)

Hence the connection transforms a a proper Yang-Mills field over the moduli
space. Note that in the non-degenerate case, we are dealing with a line bun-
dle over M with U(1) gauge group. This would be analogous to a classical theory
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of electrodynamics. Just as in the field theory setting, we can construct the cur-
vature 2-form, or field strength, by F= dA+A∧A. In the line bundle case this is
simply dA and the curvature in components read

(Fi j)
a
b =




∂iϕ
a,∂ jϕb

�

−



∂ jϕ
a,∂iϕb

�

.

Using the Berry connection and curvature we can define the Chern forms and
Chern characters for the Bloch bundle of filled states. The total Chern character
reads ch0(E) + ch1(E) = rk(E) + c1(E). These are the two topological numbers
that classify the bundle. For fixed rank, the corresponding Chern number

Ck(E−) =

∫

BZ

chk(E−) ∈ Z

is a topological invariant of this bundle, and classifies the A class topological
insulators in d = 2k spatial dimensions. Recall from our discussion on Chern
cohomology that by deforming a bundle with a trivial bundle the Chern numbers
remain the same. Hence the number that classifies a type A topological insulator
in even spatial dimension is not sensitive to the addition of a trivial bundle.

If we place a class A topological insulator with Chern number Ck next to the
trivial vacuum insulator with Chern number 0, we see that Ck necessarily mea-
sures the number of massless charge carriers on the (d−1)-dimensional boundary
of the system. This is essentially the content of the famous TKNN formula for the
2-dimensional Hall effect [76]. We discuss this relation between vector bundle
topology and conductivity next.

6.4 Topological conductivity

By now we have seen various ways to think of topological insulators. Either we
can study the homotopy of Grassmannians or we can look at the topology of vec-
tor bundles over the k-space. In even dimensions the A-type topological insulators
are classified by integers. In fact, this integer can be shown to correspond to the
conductivity in the two dimensional case. This work is well known and yields the
celebrated Thouless-Kohmoto-Nighingale-den Nijs (TKNN) formula for conduc-
tivity [76], where the Chern number of the bundle of filled states is identified with
the off diagonal part of the conductivity tensor. There are two main elements of
this story. First is the Kubo formula, a result from linear response theory where
the change in an observable due to external perturbations is related to statistical
2-point functions. Second is the Chern cohomology just mentioned.
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6.4.1 Linear response and the Kubo formula

In linear response theory one studies first order responses of a system to exter-
nal perturbations. We briefly discuss the result known as the Kubo formula in a
general setting as this plays a key role in relating the Hall conductivity with the
Chern numbers. We follow [78] rather closely. Consider a quantum system with
Hamiltonian H0 and a set of observables Oi. We want to study the response of
the system to an external perturbation of the form

H0→ H= H0 +δH(t) = H0 + fiO
i.

The main assumption of linear response is that the change in any expectation
value of an observable is linear in the sources fi. Explicitly

δ



Oi(t)
�

=

∫

dτχi j(t,τ) f
j.

The function χi j is contains the information regarding the change in expectation
value in the presence of a source, and is called the response function. The Kubo
formula is a general formula relating the response function to statistical 2-point
correlation functions.

We consider a state |S0〉 in the asymptotic past t → −∞, which in the inter-
action picture of quantum mechanics evolves in time as

|S(t)〉= U |S0〉= e
i
}h

∫ t
t0
δH(τ)dτ |S0〉 .

We pick an observable O j. To first order in the perturbation δH, the expectation
value of this observable is




O j(t)
�

=



O j(t)
�

0
+

i
}h

∫ t

−∞
dτ



[O j(t),δH(τ)]
�

which can easily be obtained by Taylor expanding the time evolution operator.
Hence the change in expectation value as a result of the external perturbation is

δ



O j(t)
�

=
i
}h

∫

dτ



[O j(t),Oi(τ)]
�

f i(τ).

This is the Kubo formula for the linear response. By comparison with our assump-
tion of linear response, the response function can be identified.

For a system of charged particles, there will be a collective response when a
electric field is applied. The electric field creates a current Jµ that describes the
collective motion of charged particles trough space. For a single particle with
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charge q we can take the current to be simply Jµ = qvµ. The response of such
systems to electromagnetic fields is contained in the conductivity tensor σµν. We
consider the applied electric field as a perturbationδH= −JµAµ. We also consider
an alternating field Eµ exp(−iωt), following [80]. The gauge field can then be
written Aµ = (iω)−1Eµ exp(−iωt). Using this in the Kubo formula, we find the
response

〈Jµ〉=
1
ω}h

∫ ∞

0

d t ′eiωt ′



[Jµ(0), Jρ(t ′)]
�

Eρe−iωt .

We have here introduced a new time coordinate t ′ = t−τ. We have also assumed
that the expectation value of the current in the unperturbed system vanishes.
From this expression we can easily read of the response tensor

σµρ =
1
ω}h

∫ ∞

0

d t ′′eiωt ′′



[Jµ(0), Jρ(t ′′)]
�

where current operator transforms in time as Jρ(t) = eiH0 t/}hJρ(0)e−iH0 t/}h. We will
now insert a complete set of energy eigenstates of the unperturbed Hamiltonian,
which we call |n〉. The conductivity tensor becomes

σµρ =
1
ω}h

∑

n

∫ ∞

0

d teiωt[〈S|Jµ(0)|n〉



n|eiH0 t/}hJρ(0)e−iH0 t/}h|S
�

(6.4)

−



S|eiH0 t/}hJρ(0)e−iH0 t/}h|n
�

〈n|Jµ(0)|S〉]. (6.5)

The unperturbed Hamiltonian now acts on the eigenstates and gives simply the
exponential of the energies. We assume also that the state in the asymptotic past
is a energy state with energy ES. The time integral is then easily performed, and
we find

σµρ = −
i
ω

∑

n

§

〈S|Jρ|n〉 〈n|Jµ|S〉
}hω− En + ES

−
〈S|Jµ|n〉 〈n|Jρ|S〉
}hω+ En − ES

ª

.

For ease of notation we introduce aρµ = 〈S|Jρ|n〉 〈n|Jµ|S〉 and δE = En − ES. In
this notation:

σµρ =
i
ω

∑

n

§

aµρ

}hω+δE
−

aρµ

}hω−δE

ª

. (6.6)

In the presence of a magnetic field, the conductivity must be antisymmetric as a
consequence of an Onsager relation. The response is in our case of the form

∫

d t



[O j(0),Oi(t)]
�

.

Under time reversal we expect the microscopic physics to be invariant. By letting
t →−t and then performing a time translation +t in time, the response changes
to

∫

d t



[Oi(0),O j(t)]
�

,
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so the response should be symmetric in i and j. This makes it seem like the con-
ductivity should be symmetric. However, a magnetic field is also flipped by time
reversal [66]. An electron close to the edge of the Hall sample will be forced to
move along the edge in a direction dictated by the magnetic field. Hence, a flip
of the magnetic field should yield an additional change of sign in the Hall con-
ductivity. It is this anti-symmetric contribution we are interested in calculating.

We therefore anti-symmetrize the above expression to get

σµρ =
i

2ω

∑

n

§

aµρ − aρµ

}hω+δE
−

aρµ − aµρ

}hω−δE

ª

= i
∑

n

}h
(aµρ − aρµ)
(}hω)2 −δE2

.

Note that this expression now only holds for the off-diagonal Hall components.
Remember that we are interested in the infinite period limit of this case, so the
denominator simplifies. The final expression in the DC limit reads

σµρ = i}h
∑

n

§

〈S|Jµ|n〉 〈n|Jρ|S〉
(ES − En)2

−
〈S|Jρ|n〉 〈n|Jµ|S〉
(ES − En)2

ª

.

This is the Kubo formula for conductivity. Note that the antisymetrization we did
saved us for divergences when taking the ω→ 0 limit.

To make use of this formal expression for the conductivity, we need an expres-
sion for the current. Recall that a particle moving freely in Rn has the general
wave function

ψ(r, t) =

∫

dnk
(2π)n

ψ̃(k, 0)ei(ωt−kµrµ)

where ω= }h
2m kµkµ. By Taylor expanding around an arbitrary point

ω=ω0 + ∂µω0(k− k0)
µ + ...

we can write the wavefunction

ψ(r, t) = ei(ωt−∂µkµ0 t)

∫

dnk
(2π)n

ψ̃(k, 0)ei(kµrµ−∂µω0kµ t).

Hence, the distribution |ψ| moves with a velocity

vµ =
∂ω0

∂ kµ
.

Recalling the relation between ω and the Hamiltonian we can write the velocity
as an operator

vµ =
1
}h
∂H
∂ kµ

.

When the particle is charged we can introduce the single-particle current as this
velocity multiplied by its charge.
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6.4.2 Conductivity as the bundle slope

The Kubo response formula is the key to a geometric understanding of the con-
ductivity tensor. We will consider the Kubo formula applied to the states in the
bundle over the Brillouin zone, first with no degeneracy. We replace the asymp-
totic state |S〉 with the states of filled bands uα(k) and replace |n〉 with empty
bands uβ(k). The sum over energy levels will be replaced with a sum over the
more general band index α,β . We write

σx y = σH = i}h
∑

α,β

∫

BZ

d2k
(2π)2

¨


uα, Jyuβ
� 


uβ , Jxuα
�

(Eα − Eβ)2
−




uα, Jxuβ
� 


uβ , Jyuα
�

(Eα − Eβ)2

«

.

Here we identified the conductivity with the conductivity averaged over the torus,
which turns out to be a crucial step. We make a comment on this shortly. Using
the equation for current in terms of the Hamiltonian, and noting that



uα,
∂H′

∂ k y
uβ

·

= (Eα − Eβ)


∂

∂ k y
uα, uβ

·

the conductivity reads

σH = i
e2

h

∑

E

∫

T2
B

d2k
2π

§




∂yuα, uβ
� 


uβ ,∂xuα
�

−



∂xuα, uβ
� 


uβ ,∂yuα
�

ª

.

Inserting the completeness relation
∑

α |uα〉 〈uα|+
∑

β

�

�uβ
� 


uβ
�

� = 1 the formula
reduces to

σH = −i
∑

α

∫

d2k
2π

�


∂yuα,∂xuα
�

−



∂xuα,∂yuα
��

where we work in units of e2/h, and remove this overall constant. This is nothing
but the integral over the curvature of the (line) bundle over the torus

σH =
∑

α

i

∫

d2k
2π

F(α)x y

which corresponds to a sum of Chern numbers over the filled bands.

Why we should integrate over the torus is not obvious, but turned out to be
crucial. We attempt a explanation following [88]. Consider a single filled band
with Chern number

c1 =
i

2π

∫

d2kF.

Consider a finite system on a lattice of size `1 × `2 with `1 = n1ωi, where ωi are
the two lattice vectors. With periodic boundary conditions the momentum takes
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the usual discrete values pi = mi2π/`i where i refers to one of the two spatial
directions. When a U(1) gauge field is present we should use the gauge covariant
derivative Pi = pi +A i = −i∂x +A i. When we translate a state around a loop `i it
should at most change by a phase, so we have

eiPi`iψ= eiαiψ

∴ A i = αi/`i

where αi are defined modulo 2π. We can think of these parameters as parameters
of the Hamiltonian and vary then adiabatically. This yields yet another torus T̃2

[88]. Note that setting αi to 2π yields a momentum

Pi = mi
2π
`i
+

2π
`i

which is equivalent to a shift mi → mi + 1. In the momentum space lattice,
(α1,α2) parametrized a unit cell. Equivalently, for a pair of momentum numbers
(m1, m2) the "angles" (α1,α2) parametrized a cell. Just as before we can define a
connection Ã over T̃2 and define a Chern number

c̃1 =
i

2π

∫

T̃2

d2αF̃.

However, since the total contribution for every allowed momentum state is equiv-
alent to integrating over the full Brillouin torus T2, we have c̃1 = c1 [88]. From
this point of view, the argument that we should integrate over the torus is more
believable - we should average over αi as all phases eiαi are equivalent.

We will now assume that we are dealing with a fixed band, or rather energy
level, with r-fold degeneracy. This corresponds to a rank rk(E) = r bundle over
the torus.

T2
dim = r

In addition to averaging over the torus, we should now also average over the
contributions from each of the r degenerate states [65]

σH =
r
∑

i=1

1
r

∫

d2k
2π

F(i)x y .
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From our above discussions of the Chern numbers of different types of bundles, it
should be clear that this conductivity is (proportional to the) the Chern number
of this rank r bundle. In fact, it is the ratio

σH = µ(E) =
c1(E)
rk(E)

∈Q.

This topological parameter is called the slope of the bundle. While the averaging
over r-fold degenerate states leading to the fractional conductivity was mentioned
in some of the original work of Thouless et al [65], it was discussed as the topo-
logical slope in Varnhagens work in the mid 90s [83]. A mathematical review of
the Varnhagen paper [31] also contains some information regarding the slope.
The slope plays an important role in the classification of stable vector bundles.
A vector bundle is called stable if for a non-trivial subbundle F the slopes satisfy
µ(F) < µ(E). In [31] it is found that the relevant vector bundle is stable for
odd ranks. An interesting question that we will not go into is whether there is
a relation between the geometric idea of stability and stability in a physical sense.

6.5 Effective topological quantum field theory

An alternative way of approaching the topological phases described above is by
using topological quantum field theories. According to common lore, the low-
energy effective field theory for topological phases is a topological QFT (TQFT).
We recall our approach to effective field theories. Given a microscopic model,
say a lattice system, we assume it has a continuum limit. An effective field theory
we think of as a QFT that share the properties of this continuum field theory in
the low-energy regime. More generally, the pick a QFT in the same universality
class as our system, which contains the universal large-scale properties of our sys-
tem. We here briefly discuss the role TQFTs play in the theory topological matter,
before briefly discussing the simplest example, namely the Chern-Simons theory
describing the class A insulators.

We have seen that at the end of RG flows sits conformal field theories. These
are QFTs defined on a manifold M which are invariant under scale transforma-
tions of the metric. More precisely, in a classical field theory the scale invariance is
in some sense enhanced to a conformal invariance. In this way, the effective low-
energy QFT is sensitive only to a conformal equivalence class of metrics. Roughly
speaking these theories care less about geometric structures and their partition
function can be seen as a number labeling the conformal class of M .

In our present case we are dealing with systems with a finite energy gap in
their spectrum, separating the ground states from the excited states. If we assume
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that this gap persists in the continuum limit, the low-energy effective theory at
a scale below the gap has no dynamical content. These field theories are the
topological field theories where the Hamiltonian vanishes. Under a change of
the metric on spacetime M, the action of a QFT transforms

δS=

∫

M

δS
δgµν

δgµν ∼
∫

M

Tµνδgµν.

Hence theories that are invariant under any deformations of the metric have zero
stress-energy tensor, and in particular a zero Hamiltonian. The partition func-
tions of these theories are topological invariants of the manifold M. In this sense,
the TQFT provides a topological invariant that can be used to label our system.
The classification of topological phases should in this sense be related to the clas-
sification of TQFTs. It is in regards to this that the formal functorial definition of a
QFT, and a TQFT in particular, is important - to classify TQFTs one needs a formal
definition of what a TQFT is before one can define a notion of equivalence. We
will not go into this any further, but the interested reader can see for example
[30] [29].

The low-energy effective field theory for charge transport in the d = 2 A-type
topological insulators is a U(1) Chern-Simons theory [69]. It can be shown that
in this two dimensional case the level k of the theory is in fact the Hall conduc-
tivity. We will not go to much into the Chern-Simons description, but we quickly
discuss the most important aspects, following [73].

Let us start with pure d = 2 + 1 U(1) Chern-Simons theory defined by the
Lagrangian

L=
k
2

∫

d3 xεµνρAµ∂νAρ.

Since the electromagnetic current and the gauge field couples like AµJ
µ, the cur-

rent can be obtained by a functional differentiation of the action with respect to
the gauge field. This yields [80] the current

Ji =
δS
δA i

=
∂L

∂ A i
−
∂

∂ A`
∂L

∂ ∂`A i
,

J1 = σ
12E2 = kE2,

so we have σH = k ∈ Z. However, more interesting physics appear if we include
a coupling between the current and gauge field. Consider a system of N electrons
[73]. The position and velocity densities can be written

j0 =
N
∑

n=1

δ(x − xn),
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ji =
N
∑

n=1

vnδ(x − xn).

These may be combined into the 3-vector jµ = ( jo, j i), which has to be conserved
∂µ jµ = 0 due to charge conservation. This conservation is automatic if we write

jµ =
1

2π
εµνρ∂νaρ

where aρ can be interpreted as a emergent U(1) gauge field. We can imagine hav-
ing a field theory with spinors and electromagnetic gauge fields, and integrating
out the spinors and high energy degrees of freedom until we get a effective theory
for the a fields. The effective field theory Lagrangian takes the form [73]

L=
m
4π
εµνρaµ∂νaρ −

e
2π
εµνρAµ∂νaρ + ...

where the second term if the coupling jµAµ between the current and electromag-
netic gauge fields Aµ. The Euler-Lagrange equations for this theory can be shown
to be

−eJλ = −
�

e2

2πm

�

eµσλ∂σAµ.

Since the constant of proportionality between the electromagnetic current and
the electric field is the conductivity, we can read of σH = e2/2π}hm where we re-
introduced Plancks constant. Since m appears in from of the Chern-Simons term
in the effective Lagrangian we know that it takes integer values as discussed in
earlier chapters. This reproduces the fractional 1/m phases.

Note first that since the Chern form is defined in any even dimensions, the
Chern-Simons theory exists in odd dimensional space-times. In this way this field
theoretic framework agrees with the first quantized result that topological insula-
tors classified by integers exists in every even spatial (and hence odd space-time)
dimension. In addition we have seen that the effective topological field theory
holds information regarding the interacting fractional phases. In the first quan-
tized approach the only way of obtaining fractional conductivities was to intro-
duce a higher rank bundle over the Brillouin zone, corresponding to degenerate
states.





7
Dirac matter and modular fixed points

Closely related to topological insulators are the phases referred to as Dirac matter.
Here a finite number of crossing points where the energy gap closes exist in the
Brillouin zone. The effective degrees of freedom in this type of system are Dirac
fermions, hence the materials name. We here discuss these phases and their
relation to the IR fixed points of field theories with modular dualities. We should
note that some authors include topological insulators as Dirac matter since their
edge modes are massless Dirac fermions. We will here use the name for systems
with such massless modes in their bulk Brillouin zone.

7.1 Nielsen-Ninomiya theorem

We have seen that topological insulators correspond to different topological classes
of the vector bundle E−→BZ of filled states. This means that for every k in the
Brillouin zone, we have to be able to identify a proper vector subspace H− of the
full Hilbert space H. Essentially this means that the gap between the n and the
(n+1) level has to be well developed globally on the Brillouin zone BZ. However,
there can be special points in the Brillouin zone where the gap closes, rendering
the filled sub bundle ill defined. We discuss the physics of these points following
[88] quite closely.

Consider a simple 2-band model with Hamiltonian H(k) = hi(k)σi + h0(k)I.
This is clearly determined by four parameters: four parameters goes into the four-
vector hµ = (h0, hi). If the parameters are adjusted so that the two eigenvalues
coincide, the Hamiltonian is diagonal H(k) = E(k)I and is determined by a single
parameter. Hence we need to adjust the three remaining parameters to make the
energy levels cross. For a band model with more bands the number of parameters
in the Hamiltonian is larger, and so more of these must be varied. In a general
setting however, at least three parameters have to be varied [88]. This means that
in 2+1 dimensions, when the BZ in two dimensional, we typically do not expect

155
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crossings since we do not have enough parameters. However, in the presence of
certain symmetries such points can occur. To get a feeling for these special points
in the Brillouin zone, we discuss the famous Nielsen-Ninomiya theorem in 3+1
space-time dimensions before discussing the analogous points in 2+1 dimensions.

We assume that the Bloch Hamiltonian H(k) is gapped in the three dimen-
sional Brillouin zone BZ except at a collection of points {k(i)∗ }. For future refer-
ence we let Di denote a small ball containing k(i)∗ . Removing these regions yields a
"punctured" Brillouin zone BZ−∪iDi. On this space, the filled sub bundle in well-
defined. Consider again a two-band model with Hamiltonian H(k) = hi(k)σi. Let
us on BZ−∪iDi define the map

φ : ki → ni(k) =
hi(k)
|h|

.

Here the vector ni spans a 2-sphere. In particular, we can restrict this map to a
sphere S2 enclosing a point k(i)∗ in the Brillouin zone.

k(1)∗

k(2)∗

∂D1

∂D2

Figure 7.1

These spheres can be seen as the boundaries of the balls Di. This restricted
map is then a homotopy mapφ : S2→ S2 where the target sphere is parametrized
by the vector ni(k). The different homotopy sectors of this map is labeled by the
integersπ2(S2) = Z. This winding number can be expressed as a pullback [2][88]
of the volume form on the target sphere

w=

∫

S2

φ∗dvol.

Since the volume form is a top dimensional form, it clearly vanishes under the ex-
terior derivative. Using Stokes theorem and the fact that the pullback commutes
with exterior derivatives we have

0=

∫

BZ−∪iDi

φ∗d dvol=
∑

i

∫

S2

φ∗dvol=
∑

i

wi
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where we used that ∂ (BZ−∪iDi) = ∪iS
2. Hence the sum of all winding number

must vanish. This is the geometric statement of the Nielsen-Ninomiya theorem
[88].

As a brief example we can consider the Dirac Hamiltonian where hi = ±ki.
The eigenvalues are ±|k|, and hence the gap is 2|k|. The signs in the Hamiltonian
corresponds to positive and negative chirality states. The vector parametrizing
the target sphere for the map φ is now

ni = ±
ki

|k|
.

The point where the Hamiltonian becomes gapless is of course k = 0. We take
the unit sphere to enclose this point. The map φ : ki → ±ki then corresponds
to the identity map with winding number ±1. Clearly the sum of these winding
numbers vanish. What we see here is quite generic [88]. Each point k(i)∗ typically
have winding numbers ±1, corresponding to massless Weyl fermions of positive
or negative chirality. The Nielsen-Ninomiya theorem then states that there are
equally many fermion states of positive and negative chirality. Somewhat more
loosely, one can say that the fermions come in pairs.

In 2+1 dimensions the story is slightly different, since we generically expect
no energy crossing. Note that in general we can consider an effective theory
close to the minimum gap points. Since we can deform the Hamiltonian within
its topological class, we can treat the system as a two-band model.

n+ 1

n

Figure 7.2

The Hamiltonian for the two relevant bands read H = hi(k)σi, where we
dropped the constant energy shift h0I. Let k∗ denote a Dirac point. Expanding
the function hi(k) we get the effective Hamiltonian

H(k) =
∂ hi(k)
∂ k j

�

�

�

�

k∗
(k j − k j

∗)σi = ∂1hi
∗σiδk1 + ∂2hi

∗σiδk2.

This is essentially a massless Dirac Hamiltonian. Using the third Pauli matrix a
mass term mσ3 can be added. However, this mass term can be shown to break
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time reversal and reversal symmetries [88]. On a generic Dirac Hamiltonian H=
kiσi the time reversal operator acts by [27]

TH(k)T−1 = iσ2H∗(−k)iσ2 = k1σ1 + k2σ2 −mσ3.

Hence the mass term breaks T-symmetry. Similarly we have under parity that
[27]

RH(k)R−1 = σ1(k
1σ1 − k2σ2 +mσ3)σ1 = k1σ1 + k2σ2 −mσ3.

Hence the mass term also breaks this symmetry. Another way to state these ob-
servations is that in the presence of discrete symmetries massless Dirac fermions
can appear. In this way points in k-space where the gap closes can be protected by
discrete symmetries. This happens for example in graphene. For more detailed
discussions on Dirac Hamiltonians and the relation to topological phases see [88].

Graphene is what one sometimes refers to as a Bravais lattice with basis. The
Bravais lattice is a hexagonal lattice, where each point has associated with it
two neighboring points. In physical terms we can think of the hexagonal Bra-
vais lattice as the discrete symmetry group of a crystal that translates a whole
neighborhood.

The hexagonal lattice is spaces by the black dots in the figure. For every black
dot there are two white dots. The Bravais lattice has two basis vectors (black
solid), and the dotted vectors takes you from the Bravais lattice to the neigh-
boring points. Note that there are several ways of choosing such bases. The
fundamental cell is shown in gray, and contains two atoms. Alternatively, we can
view graphene as the combination of two triangular lattices, one black and one
white.

The fact that graphene can be seen as two triangular lattices, often referred
to as the A and B sublattices, is also clear on the group-theoretic level. Con-
sider one of the hexagons in graphene spanned by three black and three white
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points. This polygon has some discrete symmetries. Any n-polygon in the plane
has discrete rotational symmetries Rm = exp(2πim/n). These are generated by
R = exp(2πi/n) and constitutes a cyclic group of order n, isomorphic to Zn.
Similarly, there are n lines of reflection. The reflections constitute n cyclic groups
of order 2. These groups of rotations and reflections are called Dihedral groups
Dihn. In the case of the hexagon in graphene, the symmetry group is the order
12 group

Dih6 = 〈e,R ,R2, ...,R5,σ1, ...,σ6〉

where the σ j ’s are reflections satisfying σ2
j = 1. This group is known to be iso-

morphic to Dih3×Z2. Here Z2 flips between the black and white triangular sub-
lattices, while the order 6 Dihedral group is the symmetry group of the 3-gons.

A simple model for graphene is a 2-band model, analogous to our discussion in
the section on the Nielsen-Ninomiya theorem. For graphene we can take as basis
vectors a1 = (

p
3, 1) and a2 =

1
2(
p

3, 3), and for the k-space b1 =
2π
3 (
p

3,−1) and
b2 =

4π
3 (0,1) [73]. The Brillouin zone is a hexagon in k-space. The 2-band model

with Hamiltonian H(k) = hi(k)σi often considered citestanescu has components

h1(k) + ih2(k) = −t(1+ eiki a1 i + eiki a2 i)

while the third component vanishes in the presence of time reversal and reflection
symmetry [73]. The components of h(k) can be shown to vanish at the points

K =
4π
3
(1/
p

3, 0)

K′ =
2π
3
(1/
p

3, 1)

which lie at the corners of the Brillouin zone [73]. These points are also called
valleys. The discrete reflection symmetry we discussed earlier maps these Dirac
points into each other. Hence the massless fermions close to the points K, K′

remain massless as long as this symmetry is not broken [88]. Recall also that the
energies associated with the Hamiltonian hiσi are ±|h|, and hence are invariant
under rotations of the vector h. By the discrete rotations e2πi/6 the point K is
mapped to K′, and hence the two lie on the same energy circle in k-space.

7.2 Conductivity of Dirac matter in d = 2+ 1

We would here like to consider the charge transport properties of a system with n f

flavors of fermions corresponding to n f Dirac points. With a mix of phenomenol-
ogy and theory we will end up with a formula for the Hall conductivity which we
will relate to the RG fixed points of an effective QFT based on modular dualities.
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We imagine a 2+1 dimensional system with points k(i)∗ , i = 1, ..., n f in the
Brillouin zone BZ where the Hamiltonian H(k) vanishes. We also imagine these
points to be protected by symmetries as in the case of graphene. We know that
since the dispersion relation is linear close to the points k(i)∗ the low-energy effec-
tive theory is a massless Dirac theory

S=

∫

d3 xψ
a
(iγµ∂µ)ψa

where a = 1, ..., n f runs over the flavors associated with the different special
points k(i)∗ . By the Nielsen-Nanomiya theorem these points come in pairs, and
n f should be an even number. Now imagine breaking T-symmetry. This allows

the fermions to become massive, adding a mass term maψ
a
ψa to the above La-

grangian. For example, the Dirac fermions in graphene are known to become
massive when the graphene layer is grown on a substrate [27] [4]. In this case
the mass term breaks also the chiral (sub lattice) symmetry. While the dispersion
is no longer perfectly conical, there is still an even number of fermion flavors.
Coupling this theory to an external electromagnetic field, we get the action [27]

S=

∫

d3 xψ
a
(iγµ∂µ −ma − eγµAµ)ψa.

In the low-energy limit, this theory is described by a gauge theory without fermions
(as they have been "integrated out") with a Chern-Simons term [27]. For each
fixed flavor index a the contribution to the conductivity is, in dimensionless units,

σa
H =

1
2

sgn(ma).

In this way, the low-energy Dirac modes contributes with 1/2 to the Chern num-
ber1. Due to the Nielsen-Ninomiya theorem there are an even number of such
contributions which agrees with our previous discussions that the Chern number
should be integer.

Recall that in the case of a higher rank vector bundle E over the Brillouin
torus, the Kubo formula lead to fractional conductivity σH = c1(E)/rk(E). In
order to describe the observed Hall phases, the denominator should be an odd
number 2m + 1. In the presence of a magnetic field, the low-energy fermions
can occupy relativistic Landau levels. In contrast to the non-relativistic Landau

1There is much that should be said regarding materials with Dirac points, e.g. generalizations
of graphene. For example, the pairs of Dirac points have opposite mass sign but also apposite
Chern number so that the conductivities add. Since our discussions will become more and more
phenomenological we will not discuss this, but the interested reader can see for example [27] or
[73]
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levels there is now a zero mode present in the massless case [4]. We imagine
adiabatically turning on a magnetic field, so that this lowest level is adiabatically
connected to the fermion state contributing 1/2 to the conductivity [4]. We write
the numerator of the Hall conductivity n or n+1/2 depending on whether or not
we have Dirac points. In a first approximation we can also include spin just by
taking degeneracy into account, which contributes with an overall factor of 2.
Generically we will then be dealing with two classes of conductivities. With no
Dirac points, we have a conductivity of the form

σH(ds) =
dsn

2m+ 1
, (7.1)

where ds is either 1 or 2 depending on the presence or absence of spin degen-
eracy. When the low-energy degrees of freedom are Dirac fermions we have the
conductivity

σH(n f , ds) =
n f ds(n+ 1/2)

2m+ 1
. (7.2)

Here n f should be an even integer according to Nielsen-Ninomiya. For example,
for 2 Dirac points and spin degeneracy taken into account, we get the series 4(n+
1/2)/(2m+1). The integer series (i.e. m=0 series) 4(n+1/2) is the well known
Hall effect in graphene. Similarly the case with no Dirac points and no spin
degeneracy corresponds to the standard spin-polarzed hall effect. It could be
interesting to note that since the IQHE corresponds to a subset of 2-dimensional
topological insulators the above formula partitions this set into classes labeled by
(ds, n f ). As we discuss next, this is equivalent to a partition labeled by certain
SL2(Q) subgroups. Note that we do not claim this partition to be exhaustive.

7.3 The 2-parameter modular field theories

Recall our discussion on effective field theories and universality. If we can find
a field theory where the low-energy physics coincides with our system, we think
of them as being in the same universality class. The stable phases of a system
we imagined as the attractive fixed points of a renormalization group flow. In
the present case these attractive fixed points should be the Hall conductivities
derived above, as these are the topological invariants (Chern numbers) that label
each phase.

In turns out that the presence of a duality group conjugate to level 2 modular
subgroups is a sufficient property of a field theory for the RG fixed points to coin-
cide with the above conductivities (7.1) and (7.2). This approach to the RG flow
and its connection with quantum Hall effects is discussed in for example [48] and
is reviewed in [56]. The discussion in this section in similar to what is presented
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there but has a slightly different perspective on the duality groups that we use in
the appended paper. In this way the group theoretic foundation of the dualities
are put on a more natural level.

7.3.1 Parameter space and renormalization

The transport properties of the Hall system is governed by the conductivities
(σD,σH), which will serve as the parameters in the field theory. Consider there-
fore the 2-parameter quantum field theories with classical action S(ϕ;σ) where
σ = σH + iσD is a complexified coupling constant in the upper half plane H. We
are interested in the theories where a modular duality group ΓX acts on the mod-
uli space. Here ΓX is one of the level 2 modular subgroups we discussed in earlier
chapters.

As we discussed in some detail in the chapter on dualities, the existence of
a duality group will put strong constraints on the theory. In particular, if one
thinks of the beta function as a 1-form on the moduli space this can be expanded
in the basis of automorphic forms for the duality group. In the present case this
corresponds to a weight 2 modular form for ΓX. The physical beta function is the
corresponding vector obtained by raising the covariant index.

Consider for example the case where the duality is ΓT. The corresponding
space of weight 2 forms is one dimensional and is spanned by ET. From earlier
chapters we saw that this form could be written ET =

12
πi∂ ϕT(σ) =

12
πi∂ log η(2σ)η(σ) .

More generally we can imagine a duality ΓX so that the beta functions can be
written in terms of ϕX, which we now naturally can interpret as a RG potential.
On the upper half plane we use the hyperbolic metric. In particular we have
Gσσ = ℑ(σ)2. The physical (vectorial) beta function can under the assumption
of a sub modular duality be uniquely written [56]

βσX = Gσσβσ = ℑ(σ)2N∂σϕX, (7.3)

ϕT = log
η(2σ)
η(σ)

,

ϕS = log
η(σ/2)η(2σ)

η2(σ)
,

ϕR = log
η(σ/2)
η(σ)

.

Here N is a normalization constant that will not be important in this work. We re-
call that the groups ΓR and ΓT were conjugate in GL2(Q) by the operation G(σ) =
2σ. This is apparent in the renormalization group potentials as well. In fact,
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this G-conjugation presents a natural perspective on the modular subgroups that
will mix nicely with the perspective we have on Hall conductivities in different
materials. In stead of considering all level 2 subgroups we want to think of just
the two groups ΓT and ΓS as well as their G-conjugates. As we have seen ΓR is
G-conjugate to ΓT, but we have not yet met the conjugate partner of ΓS =




S, T2
�

.
By conjugating the generators S,T2 by G we get

GSG−1 =
�

2 0
0 1

��

0 −1
1 0

��

1/2 0
0 1

�

=
�

0 −2
1/2 0

�

≡ Q

which maps Q(σ) = −4/σ. Similarly the G-conjugate of T2 is T4. The resulting
group ΓQ =




Q, T4
�

is a subgroup of SL2(Q), since F has rational matrix entries.
Since ΓQ is obtained by conjugation by G(σ) = 2σ we can think of the group
action of ΓQ as a scaled version of the group action of ΓS. Notice also that just as
we could obtain modular forms for ΓR by scaling ΓT forms, we can create forms
for ΓQ by scaling arguments of ΓS forms.

This presents a slightly different picture of the relevant duality groups. The
three subgroups ΓT,R,S are all conjugate in SL2(Z), while the fourth group ΓQ is
not. If we want to put all these groups on the same level we should think of them
as conjugate subgroups of GL2(Q). From this perspective we are dealing with
four isomorphic subgroups. In this way any statement made regarding the uni-
versality class defined by one model can, at least in principle, be translated into
a statement about the other models. For a nice overview of the relevant groups
see fig.1 of the appended paper.

By plotting the RG flow based on the above beta function the fixed points
structure can be seen. The stable (attractive ⊕) fixed points are, in the condensed
matter lingo, the stable low-energy phases. We will derive the stable fixed points
next and compare them to the conductivities derived above.
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Figure 7.3: Renormalization group flow compatible with the ΓT and ΓR dualities.
The G-conjugate groups have RG diagrams that are scaled overall by a factor 2.

7.3.2 Stable fixed points and 2-dimensional Dirac matter

The different RG flows obtained in this way will as we have seen have different
stable fixed points [56]. To find these points we consider the transformation of
fractions of certain parities under the different modular groups. Consider for
example ΓT acting on a even/odd fraction:

2Z+ 1
2Z

3
2p+ 1

2q
ST2S
−−→

2p+ 1
2(q− 2p− 1)

∈
2Z+ 1

2Z

2Z+ 1
2Z

3
2p+ 1

2q
T
−→

2p+ 2q+ 1
2q

∈
2Z+ 1

2Z
Hence ΓT preserves the parity of such fractions. However, the even/odd fractions
are not preserved:

2Z
2Z+ 1

3
2p

2q+ 1
ST2S
−−→

2p
2q− 4p+ 1

∈
2Z

2Z+ 1

2Z
2Z+ 1

3
2p

2q+ 1
T
−→

2p+ 2q+ 1
2q+ 1

∈
2Z+ 1
2Z+ 1

In a similar manner, the odd/odd fractions are mapped into even/odd fractions
by T. Note that in these phenomenological field theory approaches, the conduc-
tivity always from from somewhere in the upper half plane down to the rational
numbers. Hence i∞ should be considered a repulsive fixed point [56]. Since
∞ = 1/0 is odd/even, the fractions with odd denominator correspond to stable
phases in the EFTs. For ΓT we can divide Q into three classes

ΓT :
§

2Z
2Z+ 1

,
2Z+ 1
2Z+ 1

ª

⊕
∪
§

2Z+ 1
2Z

ª

	
.
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By the same arguments, we can find the classes corresponding to the ΓS subgroup:

ΓS :
§

2Z+ 1
2Z+ 1

ª

⊕
∪
§

2Z+ 1
2Z

,
2Z

2Z+ 1

ª

	
.

Since the ΓR action can be obtained from the ΓT case by a scaling by 2, the stable
fixed points of ΓR are 2Z

2Z+1 . Similar arguments hold for ΓQ.

From this we can read off the general form of the fractions corresponding
to stable phases. For ΓT, the numerator can be both even and odd, while the
denominator must be odd. Hence we have the fixed points ⊕T =

n
2m+1 . For the

other subgroups we similarly have ⊕R =
2n

2m+1 , ⊕S =
2n+1
2m+1 and ⊕Q =

4n+2
2m+1 . By

comparing with equations (7.1) and (7.2) for conductivities above, we see that

⊕T = σH(ds = 1), (7.4)

⊕R = G(⊕T) = σH(ds = 2), (7.5)

⊕S = σH(n f = 2, ds = 1), (7.6)

⊕Q = G(⊕S) = σH(n f = 2, ds = 2). (7.7)

We see that the G-conjugation can be interpreted as a 2-fold spin degeneracy.

There is a nice geometric analogy in the integer case (m=0) that we should
mention. Since we think of the conductivities as the first Chern numbers of bun-
dles over the Brillouin zone, these four different classes can be seen as different
classes of bundles. For example, if we let LK denote the line bundles with first
Chern number belonging to K ⊆ Z, we can form the following correspondence:

ΓT←→ LZ

ΓR←→ LZ ⊕LZ = L2Z

ΓS←→ L2Z+1

ΓQ←→ L2Z+1 ⊕L2Z+1 = L4Z+2

We here mean that the group on the left hand side has integer fixed points cor-
responding to the first Chern number of the line bundle of the right hand side.
In some sense, we see that the direct sum is the geometric analogy of the con-
jugation G. This makes sense since the direct sum of the bundles combines the
two independent systems without mixing. One should also note that the S and
Q class corresponds to classes of non-trivial bundles, since their Chern number is
never zero.

In any case the model with n f Dirac points can be identified with different ef-
fective QFTs with modular dualities. That is, they describe the same low energy
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fixed points. In this way the Hall effect in different materials can be placed into
classes categorized by the modular groups. Before we discuss this we want to
briefly discuss a field theory where the modular duality enters very naturally.

7.4 Double modularity in toroidal sigma models

We have not yet discuss any representative of the modular field theories. While
these are hard to identify, there is a model with a seemingly too big parameter
space suggested in [52]. The proposed field theory is a non-linear sigma model
where the target space is a complex torus. The inclusion of complex toroidal
geometry is very natural when we search for field theories with modular dualities
since the moduli space of these tori are exactly the moduli space of the QFT. We
here discuss the interplay between the moduli space of geometric structures for
complex tori with spin structures and the dualities of this toroidal sigma model
defined in flat Euclidian space. This is also discussed in Dijkgraafs les Houches
lectures [23] as the simplest example of mirror symmetry in string theory.

7.4.1 Geometric structures and the parameter space

We now consider the setup of the toroidal model. We are considering a field
theory where the field is a map

ϕ : R2→ E1,τ = C/Λ1,τ

from flat two dimensional Euclidian space to a complex torus with complex struc-
ture parameter τ ∈ H. Recall that such a two dimensional sigma model (the di-
mension referring to R2) admitted an additional term which was the pullback of
a 2-form Bi j on the target manifold. We also let g be the metric tensor on the
torus. The action for such theories, here written in local real coordinates, read

S=

∫

d2 x{δµνgi j + bεµνεi j}∂µϕi∂νϕ
j, (7.8)

which we recall from the section on worldsheet models. We have here written
the anti-symmetric 2-form as Bi j = bεi j, since in our case the target is two dimen-
sional, and the space of top-dimensional forms is one dimensional. From earlier
discussions we also know that the parameter space of this theory is four dimen-
sional. Hence it seems that it is too large to explain the 2-parameter scaling of
the Hall systems. However, dualities come to the rescue.

First recall that by the uniformization theorem, the complex torus is the only
genus one surface with zero curvature. The metric is inherited from the complex
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plane by the quotient, and takes the simple form dz⊗dz in complex coordinates.
We now introduce coordinates a+τb on this torus, each ranging from 0 to 1. In
these coordinates the metric takes the form

dz ⊗ dz = da⊗ da+ |τ|2da⊗ d b+ (τ+τ)d b⊗ d b.

As a matrix we then write

g =
p

g
ℑτ

�

1 ℜτ
ℜτ |τ|2

�

.

We have here included the overall factor so that the torus has the proper area.
Hence we seen that the toroidal model (7.8) has the following parameters in its
moduli space

{ℜτ,ℑτ,
p

g, b}.

Of course, we can exchange these four real parameters for the two complex pa-
rameters

{τ,σ = b+ i
p

g}

as is done in for example [52]. To have a field theory where the moduli space in
the modular curve H/ΓX we should consider a non-linear sigma model where the
target manifold is a complex torus with appropriate spin structure. The additional
complex parameter σ (not related to the conductivity) can be interpreted as a
complexified volume.

7.4.2 T-duality and modularity

We can now write down the theory dual to the toroidal sigma model (7.8) by
using the Buscher rules (5.2) discussed in the chapter on dualities. Note that
in (5.2) g is the metric on the base space, h is the target space metric and B is
the 2-form on the target. In the toroidal model we used g to denote the target
metric. Recall that ℜτ = τ1,ℑτ = τ2 and ℜσ = b,ℑσ = pg. The Buscher
transformation for the toroidal case yields

g11 =
p

g
ℑτ

, g12 =
p

g
ℑτ
ℜτ,

g21 = g12 , g22 =
p

g
ℑτ
|τ|2,

B12 = −B21 = b.






y

B

g̃11 =
ℑτ
p

g
, g̃12 =

bℑτ
p

g
,
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g̃22 =
p

gℑτ− b2 ℑτp
g

,

B̃12 =ℜτ.

These transformation become clearer if written in matrix form. The torus metric
and 2-form are under the Buscher transformation mapped to

g =
p

g
ℑτ

�

1 ℜτ
ℜτ |τ|2

�

→ g̃ =
ℑτ
p

g

�

1 ℜσ
ℜσ |σ|2

�

,

B=
�

0 ℜσ
−ℜσ 0

�

→ B̃=
�

0 ℜτ
−ℜτ 0

�

.

We see that these transformations simply interchange the two complex moduli
of the theory τ↔ σ. Hence the dual theory is still a sigma model on a torus,
now with a different volume and shape. The modular group acts on both the
parameters, and we can think of the moduli space of the toroidal model as two
copies of the modular curve H/ΓX.

7.5 Classification of materials by modular fixed points

We have seen that the modular subgroups ΓX picks out particular classes of con-
ductivities when acting on the rational numbers as the boundary of the extended
upper half plane. This categorization of RG fixed points coincides with the rough
classification of Hall effects in different materials with respect to their low-energy
excitations. The modular symmetry is found to hold also away from the rational
numbers, i.e. the full temperature driven RG flow of the quantum Hall system
has a modular symmetry [54][49]. In our paper we explore this modular flow in
several materials. Here we would like to use discuss some theoretical expecta-
tions using the modular fixed point formulas (7.4).

While it is true that once the degeneracies and number of Dirac points are
identified we can use the above dictionary (7.4), it is not always easy to identify
the number of low-energy Dirac fermions and the relevant degree of degener-
acy. We will here consider the integer series (i.e. m = 0 in (7.4)) which for the
different modular groups read

⊕T = {...,−1, 0,+1, ...},
⊕R = {...,−2, 0,+2, ...},
⊕S = {...,−1,+1, ...},
⊕Q = {...,−2,+2, ...}.
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The vanishing of the ⊕X = 0 point is a consequence of the presence of Dirac
points in BZ, since the integer part of the conductivity (7.2) takes the form
{...,− dsq

2 ,+ dsq
2 , ...} while (7.1) yields the series {...,−ds, 0,+ds, ...}. Since the in-

teger quantum Hall effect is a subclass of topological insulators, we think of the
conductivities as the topological invariants labeling the phases. In this way, the
⊕X = 0 phase corresponds to a trivial insulator with no edge degrees of free-
dom. However, in the presence of a low-energy Dirac mode in the bulk there will
always be some non-zero contribution to the Chern number making the phase
non-trivial. Hence materials without Dirac points are not expected to fall into the
ΓS-class (or its G-conjugate). However, as we will see there may be phenomena
that makes Dirac materials fall into the ΓT,R-class.

Often the materials in which the Hall effect takes place is a main material
sandwiched between other materials or grown onto some substrate. The follow-
ing discussion is somewhat naive in that it only considers the "main" materials
and not the composed material as a whole. When the main material is sand-
wiched between two other materials one gets what is known as a quantum well
that confines the electrons to the middle material. In this case it makes sense
to consider the material properties of this main material. In the case where the
material is grown onto some other material and a Hall effect takes place in the
2-dimensional interface it is not so obvious why only the "main" material should
be considered. The largest class of materials in which the Hall effect has been
observed is the ΓT-class corresponding to spin-polarized materials without Dirac
points in the Brillouin zone. Examples of materials that fall into this category
that we will meet in the paper are gallium arsenide (GaAs), black phosphorous
(BP) and mercury telluride (HgTe) which are semiconductors. All these gapped
materials will most likely fall into the ΓT or ΓR-class depending on spin degeneracy
and needs no special attention.

The first material that does deserve some special attention is graphene. Graphene
has two Dirac points in its Brillouin zone, making it a Dirac material. Hence we
expect to find ⊕S or ⊕Q fixed points according to (7.2). However, as we will see
in the paper, we also observe ⊕R as fixed points. This can be explained by taking
into account the observed fine structure of the lowest Landau level in graphene
which in high magnetic fields splits in two [90]. If we imagine this to happen
adiabatically, there will be two states connected to the lowest Landau level each
contributing 1/2 to the conductivity. Hence we should in this case expect the fixed
point 2(n+ 1/2+ 1/2) = ⊕R in the polarized case or perhaps the G-conjugate of
R in the unpolarized case. In this way the trivial insulator phase ⊕= 0 reappears.

Another example relevant to the upcoming paper is the Hall effect of the sur-
face of a 3-dimensional topological insulator in the presence of ferromagnetism
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[85]. The edges of this effective 2-dimensional system are ferromagnetic domain
walls along which the charge carriers move. This surface has a single Dirac point
in its Brillouin zone, with Hall conductivity σH(n f = 1, ds = 1). However, there
is a partner particle at the opposite surface of the topological insulator, mean-
ing the Hall conductivity is σH(n f = 1, ds = 1)top + σH(n f = 1, ds = 1)bottom =
nt + nb + 1 = ⊕T. It is interesting that widely different materials, for exam-
ple GaAs and the 3-dimensional topological insulator material Bi1−xSbx can both
fall into the ΓT-class. The only thing they seem to have in common is that their
low-energy excitations conspire to give the same conductivity. We explore which
materials belong to which modular class by studying the modular symmetry in
the full parameter space (σH,σD) in the appended paper. A brief summary of
the fixed point expectations is presented in the below figure which indicates both
Brillouin zone and modular fixed point.

2×

Material: Graphene

Fixed points: ⊕S, ⊕Q, ⊕R

Material: ∂ (Bi1−xSbx)

Fixed point: ⊕T

Materials: GaAs, InAs, BP, HgTe

Fixed points: ⊕T, ⊕R
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Summary of results

The purpose of thesis has been twofold, with a series of smaller goals. The main
motivation has been the exploration of modular symmetries both from a math-
ematical and a physical perspective. These two studies were joined together by
the notions of universality and duality.

In the introduction we mentioned four main goals. The first of these was
to explore the geometric nature of modular forms. We showed that several re-
sults took a simple form when expressed geometrically, which we believe may
be more pedagogical. Particularly noteworthy perhaps was the construction of
connections and covariant derivatives on the space of modular forms by means
of logarithmic derivatives of eta functions. This lead to a simple geometric un-
derstanding of the Ramanujan identities.

The second goal was concerned with the ideas of universality and duality and
was in large parts a review. We showed that by thinking of a quantum field the-
ory as a geometric construction, a theory space started to take form. A rough
partition of this space was in terms of the spacetime category of a theory and its
spatial dimensions. We emphasized that a proper understanding of such a theory
space is not possible until a definition of quantum field theory is agreed upon. In
other words, just as different axioms of QFT emphasizes different aspects of the
theories, they could also possibly lead to different perspectives on theory space.
However, we saw that locally theory space could be understood as a series of
patches corresponding to the parameter spaces of classical theories, with duali-
ties relating different patches. If we imagine the set of dualities to form a group
G we argued that a theory should really be considered the set of G-equivalences
in theory space. We argued that it was this class of theories that should be used
to probe a given universality class.

The last two goals had to do with placing the modular symmetries in a phys-
ical context. We reviewed different aspects of non-interacting topological matter
like the Hall effect and other topological insulators, as well as Dirac materials
like graphene. By a simple game of counting we saw that the conductivities
of the Hall effect in different materials could be found. Besides a contribution
from the Landau levels common to all Hall effects we saw that the number of
low-energy Dirac fermions and spin degeneracy left unique fingerprints on the
conductivities. If we viewed these conductivities as the low-energy fixed points
in the RG flow of a 2-parameter QFT with appropriate duality we saw that differ-
ent degrees of degeneracy and number of Dirac fermions corresponded exactly to
different modular subgroups. If we picture the integer Hall effects as a subclass
of all two-dimensional topological insulators, this result is a division into four
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classes labeled by different sets of Chern numbers. Two of these corresponded to
materials with no Dirac cones and two to materials with Dirac cones. The fixed
points of materials considered in our paper could be explained using these simple
rules. In particular we saw that the surface of 3-dimensional insulators acted like
effective Dirac materials in which the quantum Hall effect could take place.

There is however no theoretical reason why the modular duality of the 2-
parameter field theories should coincide with experiments in the entire parame-
ter space. An exploration of this global modular symmetry is the main purpose of
our paper where we observe modular symmetries in all but one case. The cause
of this anomalous case may be either experimental errors or possibly a symme-
try breaking down to a smaller group than the ones considered. This modular
symmetry is a new type of symmetry in Nature, in that it usually only appears
in mathematical frameworks of a theory. For example, it appears as consistency
conditions in 2-dimensional conformal field theories or string theories. In the
present case the modular symmetry was directly measurable simply by plotting
the data. There is no theoretical bias in any way. We explore the robustness and
universality of this modular symmetric flow by comparing experimental data in
a wide range of materials to the theoretical RG flow.

Outlook

There are several natural extensions of the work done in this thesis. Several of
these have to do with the connection between the microscopic understanding of
the Hall effect and the modular symmetries.

As was discussed in the paper it is possible that it will become necessary to
study a larger class of modular subgroups to explain the data. While the four
subgroups between the full modular group Γ (1) and Γ (2) are well understood,
there are many more groups between, say, Γ (2) and Γ (4). In addition to under-
standing why a modular symmetry should appear in the first place, it would be
nice to take a step back to see which modular groups should be considered. Given
these groups one should try to find the basis for the weight 2 forms so that beta
functions can be constructed.

A more theoretical question would be to explore the automorphic forms for
groups other than the modular subgroups. An overview of different groups with
low-dimensional space of automorphic forms could be valuable if these symme-
tries were to appear in Nature. This is likely related to the mathematical theory of
Shimura varieties (higher dimensional analogues of the moduli space of complex
tori) and maybe even the Langlands program.
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Another interesting question is how the different notions of stability for the
Hall phases are related. From the point of view of vector bundle topology the
Hall phases are associated with topological classes of a bundle over the Brillouin
torus, i.e. a Chern class c1(E). We also saw that for a higher rank bundle the
conductivity took the form c1(E)/rk(E). From the point of view of modular ef-
fective field theory the same numbers that label the phases are placed along the
edge of the extended upper half plane ∂H = Q. However, from this modular
approach there seem to be nothing topological about the phases. In this case sta-
bility is represented by the fact that the conductivities are attractive fixed points
of a renormalization group flow, and hence not sensitive to small perturbations.
It would be interesting to see if there are any mathematical connections between
the two subjects, i.e. bundle topology over tori and edges of the upper half plane.
One piece of circumstantial evidence for this connection is the fact that if we view
the Brillouin torus as a complex surface, its moduli space is exactly the upper half
plane modulo modular transformations. Another type of stability is also involved
here since the slope µ = c1(E)/rk(E) is used to answer mathematical stability
question of bundles. These different notions of stability and their interplay would
be interesting to study.

There is also more work that can be done experimentally. A lot is happening
in material science and many new 2-dimensional materials are appearing. To
enlarge the class of materials in which the modular symmetry is observed would
strengthen the hypothesis of a modular symmetry in the effective theory. Ex-
perimental data with fractional phases would also be valuable as it is here the
modular group really shows its strengths.
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We analyze experimental quantum Hall data from a wide range of different materials, including
semiconducting heterojunctions, thin films, surface layers, graphene, mercury telluride, bismuth
antimonide, and black phosphorus. The fact that these materials have little in common, except
that they all are effectively two-dimensional, shows how robust and universal the quantum Hall
phenomenon is. The scaling and fixed point data we analyze appear to show that magneto-transport
in two dimensions is governed by a small number of universality classes that are classified by infinite
discrete symmetries not previously seen in Nature. These are so rigid that they fix the global
geometry of the scaling flow, and therefore predict the exact location of quantum critical points, as
well as the shape of flowlines anywhere in the phase-diagram. The Hall plateaux are (infrared) stable
fixed points of the scaling-flow, and quantum critical points (where the wavefunction is delocalized)
are unstable fixed points of scaling, which in some cases has been observed over several decades
in temperature. We show that most available experimental quantum Hall scaling data is in good
agreement with these predictions.

I. INTRODUCTION

The continuous and discrete symmetries observed in
Nature may be exact or approximate. The continuous
case includes exact symmetries like Lorentz and gauge
invariance, which severly constrains possible dynamical
models, while discrete symmetries usuallly are finite and
approximate. For example, parity P, charge conjugation
C, time reversal T and CP are all broken, leaving CPT
as the only exact discrete space-time symmetry. We shall
here investigate a class of experimental data that appear
to respect a new type of symmetry that is called modular.
Although these are finitely generated approximate (emer-
gent) discrete symmetries, because they are non-abelian
and infinite they provide unusually strong constraints on
low-energy model building.

Infinite discrete groups, including modular symme-
tries, play an important role in modern mathematics,
but because they are extremely rigid it is not clear if
they can exist in the real world of experimental physics.
Indeed, it is only in bespoke physical systems (“designer
universes”) engineered to be effectively (i.e., for all prac-
tical purposes) 2-dimensional that modular symmetries
have been found.

The quantum Hall effect (QHE) appears in materi-
als where charge carriers are forced to move in a single
atomic plane, for example on the surface of a crystal or in
a sheet of graphene. Experiments measuring the electro-
magnetic properties (magneto-transport) of Hall-systems
produce what at first sight appears to be an impenetrable
morass of data. But first appearances can be misleading,
and if the quantum Hall data is viewed from a partic-
ularly advantageous vantage point a hidden pattern of
great beauty and utility is revealed.1–4 This rigid emer-
gent order is encoded in a fractal phase-diagram tightly
harnessed by a modular symmetry that allows it to teeter

on the brink of chaos, without actually taking the leap.

Our purpose here is to explore the robustness and uni-
verality of these new symmetries, by comparing and con-
trasting data from the most disparate materials available.
We do this in the simplest possible way, by superimposing
scaling data directly onto mathematical diagrams with
modular symmetry. This “phenomenological” approach
is unbiased, since no theoretical assumptions are invoked.
We will not here discuss theoretical ideas that are needed
in order to connect the well-known microphysics (“elec-
trons in a dirty lattice”) to the emergent macrophysics
observed in transport experiments.

Since modular mathematics is unfamiliar to most
physicists, in the next section we provide a brief intro-
duction to modular symmetry in physics. In order to
motivate this, there are two key observations that trans-
mutes modular curiosities into a powerful tool in physics:(i) scaling functions (β-functions in renormalization
theory) must respect any symmetry of the parameter
space on which they act (space of coupling constants or
transport coefficients)(ii) two-dimensional parameter spaces may be en-
dowed with a natural complex structure.

If the emergent (parameter space) symmetry is mod-
ular, these circumstances conspire to give a very strong
constraint on low-energy physics, and any model of this
physics, as we now explain.

In our case the space of “coupling constants” is
parametrized by the Hall- and magneto-resistivities ρH
and ρD, or equivalently, the conductivities σH and σD.
It is convenient to combine these into a complex quan-
tity σ = σH + iσD that takes values in the upper half
of the complex plane: σ ∈ C+ (since σD > 0). This is
useful because it reduces matrix operations to ordinary
(complex) algebra, but it is much more than that. The
flow generated by the scaling functions βH = dσH/dt and
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βD = dσD/dt (t is the dominant scale parameter, usually
determined by the temperature) is severly constrained
by the following conjunction of favourable physical and
mathematical circumstances.(a) Since there are no sources (⊖) or sinks (⊕) for the
scaling flow on C+(σ), it is divergence free.(b) Since a curl would render the physical interpreta-
tion of the β-functions meaningless, the flow must also
be curl free.(c) Since the β-functions vanish at quantum critical
points ⊗, the flow has simple zeros on C+(σ) iff σ ∈ ⊗.(d) It is an empirical fact that the flow obeys a modular
symmetry Γ.

In two dimensions (a) and (b) are equivalent to the
Cauchy-Riemann equations, and it follows that β = βH +
iβD is a holomorphic function of σ. Together with (c)
and (d) this means that β must be a complex analytic
modular vector field with simple zeros. In mathematics
this is called a modular form of weight two.

It is the paucity of such functions (forms) on large
modular groups that gives modular symmetry extremely
sharp teeth. The first useful result is that there are
no such forms at all if Γ is the full modular group
Γ(1) = SL(2,Z), and therefore no candidate β-functions
with this symmetry. This provides a theoretical reason,
independent of the experimental observation that this
symmetry is too strong, for considering smaller groups.
So we turn our attention to maximal subgroups of Γ(1),
where further surprises await us as we are forced to draw
two improbable conclusions:(A) for any of the largest viable symmetries (maxi-
mal subgroups of the modular group) the β-function is
unique, up to an overall normalization.(B) if the modular symmetry is reduced to the biggest
subgroup (called Γ(2)) shared by the maximal subgroups
of Γ(1), then there is a unique family of β-functions,
parametrized by a single real number, up to an overall
normalization.

We shall see that this provides a host of rigid predic-
tions that are eminently falsifiable. The most surpris-
ing consequence of a modular symmetry is perhaps that
the plateaux must be rational. This follows from the re-
markable fact that in order for a modular symmetry to
act “properly” on the real line (in a strict mathematical
sense5), which by definition is excluded from the upper
half plane, C+(σ) is compactified by adding only rational

numbers: C
+(σ) = C+(σ) ∪Q. It is also appealing that

the integer (IQHE) and fractional (FQHE) quantum Hall
effects are automatically and inextricably unified by any
modular symmetry.

The mathematical primer in Sect. II is followed by an
equally brief introduction in Sect. III to the novel mate-
rials that have yielded most of the new data discussed
in the following sections. They give a fairly comprehen-
sive overview of the current experimental status of the
modular hypothesis, including all scaling experiments we

have found to be of sufficient quality to enable us to ex-
tract a partial flow diagram. Sects. IV-VIII provide what
is essentially a catalogue of fixed point data and scaling
diagrams, organized by the modular symmetry they ex-
hibit. Within each of these universality classes the data
are grouped according to the type of material used in the
experiment.

Sect. IX summarizes the successes of the modular
paradigm so far, as well as some of the outstanding prob-
lems and challenges to be addressed in future work.

II. MODULAR SYMMETRY

The nested hierarchical structure that is emerging in
phase portraits of the QHE is the signature of an ap-
proximate global discrete symmetry, which, given some
familiarity with modular groups, is surprisingly easy to
identify by finding some of the fixed points.

The sources and sinks of the scaling (RG-) flow, i.e., the
“trivial” ultraviolet (UV) fixed points (⊖) and infrared
(IR) fixed points (⊕ = plateaux), all lie on the boundary
of the parameter space. The quantum critical points ⊗
all lie in the interior of parameter space. This fixed point
structure, which can be extracted directly from the ge-
ometry of the data without any theoretical bias, is the
DNA of the symmetry, from which all else will follow.

The full modular group SL(2,Z) = ⟨T,S⟩ can be rep-
resented by fractional linear (Möbius) transformations,
generated by translations T (z) = z + 1 and duality trans-
formations S(z) = −1/z, acting on the upper half of the
complex plane C+(z). It is the fact that T and S do
not commute that makes this group infinite, and inter-
esting. Any “word” in T and S is a fractional linear
(Möbius) transformation γ(z) = (az + b)/(cz + d), with
integer coefficients and unit determinant (ad − bc = 1).
Words can only be simplified using the “grammatical”
rules S2 = 1 = (ST )3 that define the abstract group.

As far as the full modular group is concerned, all frac-
tions (plateaux values) are equivalent, so if this were a
physically viable symmetry we should observe all possi-
ble fractional plateaux. However, we never observe the
full set of fractions in any given quantum Hall experi-
ment, but only plateaux (fractions) that satisfy certain
constraints on the parities of the numerator, or denomi-
nator, or both. These parity rules, which depend on the
2-dimensional material under consideration, are the key
to identifying any would-be modular symmetry. They
link microphysics to macrophysics, because the observed
spectrum of integer fixed points follows directly from the
spectrum of charge carriers supported by the system in
the non-interacting limit (“Landau level spectroscopy”).

The resistivity ρ = S(σ) = −1/σ is conveniently given
by the modular duality transformation S, since this is
equivalent to taking the matrix inverse of the conductiv-
ity tensor. Note that it is conventional to choose σH = σ12
and ρH = ρ21 in order to eliminate a minus sign.
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A. Soupçon of group theory

So the full modular symmetry is too strong for the
QHE, but the largest subgroups of SL(2,Z) are not. A
map showing the tip of the modular iceberg, including
all the groups we need, is presented in Fig. 1.

Subgroups of the modular group are obtained by relax-
ing the translation symmetry (T → Tn), or the duality
symmetry (S → Rn, where R(z) = TST (z) = z/(1 + z)),
or both. Three of these so-called “congruence subgroups
at level two” preserve parities, which means that each of
them groups the fractions into two equivalence classes.
Because p and q in σ⊕ = p/q are relatively prime, there
are only three types of fractions with well defined parities.
With “o” representing odd integers and “e” representing
even integers, we have p/q ∈ o/o, o/e or e/o, and it is easy
to verify that the equivalence classes are6

ΓT = ⟨T,R2⟩ ∶ {e
o
,
o

o
}⊕ ∪ {o

e
}⊖

ΓR = ⟨R,T 2⟩ ∶ {e
o
}⊕ ∪ {o

o
,
o

e
}⊖

ΓS = ⟨S,T 2⟩ ∶ {o
o
}⊕ ∪ {o

e
,
e

o
}⊖ .

A class is indexed by ⊕ if the fractions are sinks (attrac-
tive fixed points) for the scaling flow in the σ-plane, and
by ⊖ if they are sources (repulsive fixed points). This as-
signment follows from the requirement that the direction
of the flow is downward at the top of the conductivity
plane, which is a result that can be obtained in a pertur-
bative analysis of localisation in the weak coupling limit
σ → i∞. The fixed point at vanishing coupling must
therefore be repulsive, i∞ = ⊖. Since ∞ = 1/0 ∈ o/e, and
all fixed points in a given class are mapped into each
other by the symmetry, all fractions in the class contain-
ing o/e must be repulsive. Notice that the denominators
of attractors are always odd. Following Laughlin, this is
a consequence of the Fermi statistics obeyed by electrons.

B. Modular phase-diagrams

Because the duality transformation S swaps e/o and
o/e, leaving o/o unchanged, the direction of the flow in
the ρ = S(σ)-plane is reversed if the symmetry acting on
σ is ΓT or ΓR, but not if the symmetry is ΓS (since it
contains S). This dichotomy is a persistent theme.

The fixed point at the origin of the σ-plane (at i∞
in the ρ-plane) has a special significance. If it is at-
tractive this means that the system has an insulating
phase, which we call the quantum Hall insulator (QHI)
and assign the special symbol ⊗⊕. Since 0 = 0/1 ∈ e/o,
we conclude that a model with ΓT- or ΓR-symmetry in
the σ-plane does have this insulator phase, but that a
ΓS-symmetric model does not.

Observe also that ΓR and ΓT are conjugate inside the
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Figure 1. Some of the groups between GL(2,Q) and Γ(4).
P = ST (P 3 = 1). There are another twenty groups between
Γ(1) = SL(2,Z) and Γ(4) that are not shown here.7,8 A thick
solid line means that the subgroup is normal, and the index
of the subgroup labels the line. The red arrow is a modular
correspondence obtained by conjugating with G ∈ GL(2,Q),
where G(z) = 2z. The relation ΓT(4) = GΓ(2)G−1 is impor-
tant in the theory of theta-functions (modular forms of weight
w = 1/2).9 Conjugating the polarized group ΓT(2) gives the
familiar unpolarized group ΓR(2) = GΓT(2)G−1, but ΓQ(2) =
GΓS(2)G−1 is new. The G-conjugate Q = GSG−1(z) = −4/z
of the duality generator S is called a Fricke involution. The
pink level two groups are relevant for the QHE, and the four
groups ΓX(2) (X = Q, R, S, T) are the symmetries usually
observed in experiments (compare next figure). Since only
level two appears to be physically relevant, we usually sim-
plify notation by dropping the level (ΓT = ΓT(2), etc.).

parent group GL(2,Q) under the rescaling G(z) = 2z by
a factor of two (compare Fig. 1). This means that flow
diagrams with these two symmetries are identical, up to
a doubling of all coordinates. A similar rescaling of ΓS

gives a conjugate group ΓQ that is not strictly speaking
modular (compare Fig. 1), but its flow diagram is just a
doubling of the ΓS-symmetric flow.

In summary, there are just two types of flow diagrams
with maximal admissible (both ΓP and Γ(1) are too
large) modular symmetry: ΓT(σ) (and its G-conjugate
ΓR(σ)), and ΓS(σ) (and its G-conjugate ΓQ(σ)).

For convenience a chart of the Q−,R−, S− and T -flows,
in both σ and ρ, is provided in Fig. 2. In these cases the
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IQHE σ = σH + iσD ∈ C+(σ) ρ = ρH + iρD ∈ C+(ρ)
ΓX ⊕ ←Ð⊗Ð→ ⊕′ ⊕ ←Ð⊗Ð→ ⊕′
ΓT n 2n+1+i

2
n + 1 1

n+1 2n+1+i
2n2+2n+1 1

n

ΓR 2n 2n + 1 + i 2n + 2 1
2n+2 2n+1+i

4n2+4n+2 1
2n

ΓS 2n − 1 2n + i 2n + 1 1
2n+1 2n+i

4n2+1 1
2n−1

ΓQ 4n − 2 4n + 2i 4n + 2 1
4n+2 2n+i

8n2+2 1
4n−2

Table I. Left half: Integer plateaux values ⊕ of the Hall
conductivity σH constrained by a symmetry Γ(2) ⊂ ΓX ⊂
SL(2,Q), with X = Q, R, S or T, together with the loca-
tion of semi-stable fixed points for transitions between these
plateaux, i.e. the position of “integer” quantum critical points⊗ in the complexified conductivity-plane. Right half: Corre-
sponding values of the resistivity (see Sect. II for details).

shape of the flow lines (but not the flow rate) is com-
pletely fixed by the large symmetry. They are most eas-
ily derived as a gradient flow of RG-potentials with the
requisite symmetry. We defer details to the discussion
below of symmetry breaking.

For future reference we have also listed the integer fixed
points for these cases in Tab. I. The complete spectrum of
attractors (plateaux) for these symmetries may be found
in Fig. 3.

ΓT and ΓR are the relevant groups for the ordinary
spin-polarized and unpolarized QHE, respectively, where
quasi-particles have the usual parabolic (“nonrelativis-
tic”) dispersion, i.e., the QHE that appears in materials
without Dirac-modes. We will therefore call these the
nonrelativistic polarized and unpolarized groups, respec-
tively.

Graphene is different. Due to the peculiar topology of
its Fermi surface, there are gapless (massless) excitations
at half filling with linear dispersion, i.e., their energy is
linear in momentum, and there is a doubling of degrees
of freedom due to an additional “pseuodspin” or “valley”
degeneracy. These modes therefore behave like relativis-
tic (Dirac) fermions, with the Fermi velocity replacing
the speed of light. The linear dispersion and unusual
band structure leads to a different non-interacting spec-
trum, but that is all we need to identify the potential
modular symmetry, and the phenomenological analysis
of graphene is analogous to the parabolic case10.

The relevant groups in this “relativistic” case with
Dirac modes are ΓS and ΓQ, for the spin-polarized and
unpolarized QHE respectively. We will therefore call
these the relativistic polarized and unpolarized groups,
respectively.

A phase is by definition the set of all points in C
+

that
flow to a given plateau ⊕ (IR fixed point), and is uniquely
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Figure 2. (Color online)(placeholder) Conductivity (right)
and resistivity (left) phase-diagrams with symmetry ΓX (X =
Q, R, S, T). Only ΓT(σ) and ΓS(σ) are truly different, since
ΓR(σ) is a simply a doubling of ΓT(σ), and likewise for ΓS(σ)
and ΓQ(σ), and ρ = S(σ).
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(a)
ΓQ

↑↓
⇑⇓ �ÐÐÐÐ→ ΓS

↑⇑⇓
	�××××Ö σ

××××Ö	�
ΓR

↑↓ ÐÐÐÐ→� ΓT

↑

(b)
⊕Q = 4n+2

2m+1 α←ÐÐÐÐ ⊕S = 2n+1
2m+1

β

Õ××××
α ∶ σ → 2σ

β ∶ n→ 2n + 1

Õ××××β
⊕R = 2n

2m+1 ←ÐÐÐÐ
α ⊕T = n

2m+1

2

Figure 3. (a) A possible pattern of symmetry breaking. Su-
perscripts refer to real spin: ↑↓ means that spin-splitting is
insignificant, so that spin-up and -down states belong to the
same band, while ↑ means that spin-splitting has left only
spin up states in the lowest band. With spin-splitting there
are half as many charge carriers per band, and consequently
the conductivity is half of what it is when the ↑- and ↓-bands
are degenerate (α). Subscripts refer to pseudospin: ⇑⇓ means
that there are two Dirac cones with linear (“relativistic”) dis-
persion, and the absence of a subscript means that there
are none, so the dispersion is parabolic (“non-relativistic”).
Adding Dirac cones adds zero-modes (β). (b) Each symme-
try group ΓX (X = Q, R, S, T) leaves a distinct fingerprint
on the spectrum ⊕X = ⊕X(n ∈ Z) of attractive fixed points
(rational plateaux values of the Hall-conductivity σH [e2/h]).

labelled by this limit point on the real axis. A phase
transition between two plateaux ⊕ and ⊕′ is permitted
by the symmetry iff it has a fixed point ⊗ located on the

semi-cricle in C
+

connecting ⊕ and ⊕′, which we write as⊕ ← ⊗ → ⊕′ or ⊕ ⊗←→ ⊕′. If one of the attractors is i∞
the semi-circle has infinite radius, i.e., it is a vertical line.

We also adopt the convention that ⊕ ⊗←→ ⊕′ refers to a
transition in the conductivity plane, whence an integer
plateau-value ⊕ = σ⊕ = σH = n [e2/h] ∈ Z refers to the
IQHE (ρH = 1/n [h/e2]).

C. Symmetry-breaking

We discuss two types of symmetry-breaking that are
of immediate relevance for the QHE.

Firstly, the spin-valley symmetry giving rise to ΓQ can
be broken by in-plane and other interactions, or possibly
by external electric and magnetic fields. Independently
of the microscopic mechanism, Fig. 3 (a) shows a possible
pattern of symmetry breaking that transmutes the flow

diagrams (and associated fixed point structures).

The broken arrow � means that spin degeneracy is bro-
ken, which changes an unpolarised spectrum (left col-
umn) to a polarised spectrum (right column), while 	�
means that the valley degeneracy between the two sub-
lattices is broken and both Dirac cones have been de-
stroyed. This changes a relativistic spectrum (top row) to
a non-relativistic spectrum (bottom row). Each symme-
try leaves a unique fingerprint on the plateau-spectrum,
compare Fig. 3 (b).

Another, more severe type of symmetry breaking ap-
pears when the spins are neither fully polarized, nor fully
degenerate. The maximal groups are no longer relevant,
but it is conceivable that some smaller symmetry sur-
vives. The simplest situation would be if we have “min-
imal breaking”, meaning that the largest common sub-
group survives. From our map in Fig. 1 we see that this
is Γ(2), and our task is to find a Γ(2)-symmetric family
of physically viable β-functions that interpolate between
ΓR, ΓT and ΓS. (ΓQ is not in this family because it is
not in the modular group Γ(1).)

Γ(2) admits a 2-dimensional space of weight two forms,
which is spanned by two of Jacobi’s theta-functions, for
example θ42 and θ43. The third Jacobi function also gives
a weight two form θ44, but it is already included because
it is a linear combination of the other two, θ44 = θ43 −
θ42. Any Γ(2)-symmetric β-function must therefore be a
linear combination of these,11,12

βa ∝ θ42 − aθ43 ∝ ∂ϕa,

i.e., a gradient flow derived from the Γ(2)-invariant RG-
potential

ϕa = lnλ(λ − 1)a−1, λ = (θ2/θ3)4 (a ∈ R).
The phenomenological parameter a, which has an un-
known and presumably complicated dependence on non-
universal microscopic details (e.g. Zeeman-splitting),
must be real for the flow to agree with perturbative lo-
calization theory at weak coupling.

For certain values of the parameter a the symmetry
is enhanced to one of the maximal modular subgroups
discussed above (to ΓR when a = −1, ΓT when a = 1/2,
and ΓS when a = 2), but never to the full modular group.
These are the cases most often encountered in experi-
ments. For example, very strong magnetic fields polarize
the samples and yield a large Zeeman splitting that effec-
tive eliminates half the bands, leading to ΓT-symmetry
if the Fermi-surface does not give additional zero-modes
(graphene).

Fig. 4 shows the complete family of Γ(2)-symmetric
flow diagrams (for a < −1 the flows are similar to the
flow at a = −1, and for a > 2 the flows are similar to
the one at a = 2). Slicing this “family-plot” at any value
of the symmetry-breaking parameter a ≠ 0,1,∞ gives a
“warped” but physicially sensible diagram, i.e. a scaling
flow that is finite except for simple zeros. These are the
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Figure 4. (Color online)(placeholder) One-parameter family of Γ(2)-symmetric RG-flows. For certain values of the parameter
a the symmetry is enhanced to one of the maximal modular subgroups: a = −1 has ΓR-symmetry, a = 1/2 has ΓT-symmetry
and a = 2 has ΓS-symmetry, shown here by slicing up the family-plot, together with some of the scaling data discussed in more
detail below.

quantum critical points (they are fixed under rescaling
and therefore RG fixed points) and they are located at
the Γ(2)-images of σ⊗ = iK ′(a−1)/K(a−1), where K and
K ′ are elliptic integrals of the first kind.11 This family
is sufficiently large to accomodate virtually all quantum
Hall data we have examined.

III. NEW MATERIALS

We have argued that the remarkable convergence of
modular mathematics and quantum Hall physics sug-
gests that it would be unnatural to restrict attention to
only one of the descendants of the modular group. We
have also seen that there are very few viable candidates
to choose from, and that these fit snugly into a simple
and unique one-parameter family of Γ(2)-symmetric β-
functions (up to normalization). In other words, while
these infinite non-abelian symmetries are extremely con-
straining, they do leave enough flexibility that we can ac-
comodate almost all experiments to date (but only barely
so).

The discovery in recent years of new types of materials
that support Dirac modes and “robust” topological edge
states presents new opportunities for testing the modular
paradigm sketched above. We will review a number of
recent experiments that have explored large tracts of the
modular landscape that were previously inaccessible.

These experiments have provided substantial evidence
for those level two symmetries that until now have been
beyond our reach, and aguably verified that the full com-
plement of level two symmetries are present in Nature. In
preparation for that discussion we give a brief summary
of some of the most salient features of these materials.

A. Dirac matter

Dirac matter is a name used to commonly describe
materials in which the low-energy excitations are Dirac
fermions. In terms of Bloch theory these states appear
as a consequence of a finite number of crossing points
in the materials Brillouin zone where the Hamiltonian
becomes gapless. Close to these points the energy dis-
persion is linear, similar to the relativistic dispersion in
particle physics. This dispersion is often referred to as a
Dirac cone. The effective Hamiltonian in the low-energy
regime is a Dirac Hamiltonian, hence the name of the
material. When a Hall effect takes place in such mate-
rials, each low-energy bulk Dirac mode contributes 1/2
to the Hall conductivity.13 A theorem due to Nielsen and
Ninomiya states that Dirac cones come in pairs, ensuring
an integral conductivity.

The most celebrated material with a relativistic spec-
trum is graphene, where two Dirac cones sit at corners
of the Brillouin zone. In the presence of a magnetic field,
each Dirac fermion contributes n + 1/2 to the Hall con-
ductivity. Taking into account spin degeneracy the Hall
conductivity in graphene reads σH = 4n + 2. The most
notable property of these plateaux is the vanishing of the
trivial insulator phase σH = 0. This is a consequence of
the low-energy Dirac mode shifting the Hall spectrum.

B. Topological insulators

Topological insulators are special phases of matter
characterized by a gapped bulk material with gapless
edge or surface modes.15 These gapless modes are topo-
logically protected in the sense that they are robust to
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Figure 5. (Color online) Reconstruction of temperature-driven scaling data (discrete icons) exploring the plateaux transitions

1 = ⊕ ⊗←→ ⊕ = 2
⊗←→ 3 = ⊕ ⊗←→ ⊕ = 4 in a semiconducting InGaAs/InP heterojunction.14

perturbations that preserve the symmetries of the sys-
tem. The theory of topological insulators relies on Bloch
theory as well as recent mathematical tools like Chern
numbers and homotopy theory to characterize classes of
Hamiltonians that preserve the bulk gap.

A normal insulator is said to be topologically triv-
ial. The QED vacuum presents an insulator in this
class. Here two bands are associated with electrons and
positrons, while a large gap is associated with the pair
production energy. The gapless surface modes of a topo-
logical insulator appear as a necessary consequence of a
topologically non-trivial material ending on a trivial one
(e.g. the vacuum). The only way a topological property
can change across the interface is for the gap to close.
This relation between bulk topology and edge modes are
called the bulk-edge correspondence (bulk/edge duality).

The first topological insulator to be discovered was
the IQHE itself. Here the Landau levels serve as en-
ergy bands, while a strong magnetic field induces a gap
up to the first empty level. The bulk-boundary corre-
spondence is in this case attributed to electrons skipping
along the edges of the Hall sample due to the magnetic
field. In this case it is not a material that is considered
a topological insulator but the IQHE as a whole.

Depending on the material in which the Hall effect
takes place, different imprints are seen on the Hall con-
ductivity. Graphene, for example, has a unique Hall spec-
trum σH = 4n + 2 due to its two Dirac cones.

Another example is provided by the surface of a 3-
dimensional topological insulator, which can serve as an
effective 2-dimensional arena for the QHE. The bulk-
boundary correspondence tells us that this surface has
massless excitations. Depending on the what kind of
bulk topology the surface Brillouin zone has, either an
even or an odd number of Dirac cones are present,15

and the effective 2-dimensional material can be seen as
a Dirac material. In the case of an odd number of Dirac
cones the Nielsen-Ninomiya theorem appears to be bro-

ken. This is solved by the existence of partner Dirac
fermions at the opposite surface of the 3-dimensional
topological insulator.15 Under the assumption that the
two sides are independent the Hall conductivity will be
a sum of both contributions.

IV. UNIVERSALITY CLASS ΓT

A. Plateaux transitions in InGaAs/InP

The result of the first scaling experiment in the context
of the QHE, obtained in 1985 using a semiconducting
heterojunction cooled below 4.2 K,14 is reconstructed in
Fig. 5 from the published data. Clear indications of a
modular symmetry are already evident in this diagram
(compare Fig. 2), even with the large uncertainty in the
data.

Fig. 5 shows our reconstruction of temperature-driven
scaling data (discrete icons) exploring the plateaux tran-

sitions 1 = ⊕ ⊗←→ ⊕ = 2
⊗←→ 3 = ⊕ ⊗←→ ⊕ = 4 in a semi-

conducting InGaAs/InP heterojunction with 2D electron
density n = 3.4×1011 cm2, mobility µ = 35 000 cm2/Vs and
effective mass m∗ = 0.047me, in the temperature range
4.2 K (top) to 0.5 K (bottom).14

Comparison with a modular scaling flow (solid lines)
with quantum critical points at ⊗ = 1/2, 3/2 and 5/2
reveals a ΓT-symmetry in the transport data (compare
Fig. 2).

In the three decades following this pioneering ex-
periment technology has improved and error bars have
shrunk. In the following we shall see that not only have
experiments failed to contradict the symmetry, the agree-
ment with the coldest experiments, where the symmetry
is expected to be most accurate, is now in some cases at
the per mille level.
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Figure 6. (Color online) (placeholder) Fractional scaling-flow in a GaAs/GaAlAs heterojunction.16

B. Plateaux transitions in GaAs/GaAlAs

Figs. 6 and 7 provide further evidence for the existence
of a universality class with ΓT-symmetry that unifies the
IQHE (Fig. 7) with the FQHE (Fig. 6).
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Figure 7. (Color online) (placeholder) Scaling flow between
integer plateaux in a GaAs/GaAlAs heterojunction.17

C. Plateau-insulator transition in Cr(BiSb)Te

The QHE can take place on the top of 3-
dimensional topological insulators,18 like bismuth anti-
monide Bi1−xSbx which was the first 3-dimensional topo-
logical insulator to be discovered.19 The surface Bril-
louin zone of this material has a single Dirac cone, seem-
ingly contradicting the Nielsen-Ninomiya theorem. This
problem is remedied by the existence of a partner Dirac
fermion at the bottom of the topological insulator.18

In this way, the surface of the 3-dimensional topo-
logical insulator can be seen as a sort of effective 2-
dimensional Dirac material. The effective edges of these
2-dimensional surface systems are magnetic domain walls
along which the charge carriers move. In total the con-
ductivity reads σtop

H +σbottom
H = nt+nb+1. If the two Dirac

fermions contribute equally to the conductivity, the Hall
spectrum consists of odd integers. Also in this case the
trivial insulator phase is evaded.

Fig. 8 and 9 show our reconstruction of temperature-
driven scaling data (discrete icons) exploring the

plateau-insulator transition 0 = ⊗⊕ ⊗←→ ⊕ = 1 in a
2D ferromagnetic topological insulator (thin film of
Crx(Bi1−ySby)2−xTe3 grown on a semi-insulating InP
(111) substrate).20 After applying an external magnetic
field B = 14 T to saturate the magnetization, the mag-
netic field strength was set to zero and experiments were
performed at different temperatures with tunable gate
voltage. In order to compensate for what is presumably
a systematic error of unknown origin, the data in Fig. 8
has been shifted slightly to the left so that the plateaux
are integer-valued.

In both cases, comparison with a modular scaling flow
(solid lines) with a quantum critical point at ⊗ = (1+i)/2
(compare Fig. 2) reveals that these transport data are in
excellent agreement with ΓT-symmetry.

D. Plateaux transitions in mercury telluride

Bulk mercury telluride is a semi-conductor of the II-
VI type,21 but when used to create a quantum well
(HgCdTe/HgTe/HgCdTe) the electronic properties de-
pend crucially on the thickness d of the sample. This
thickness introduces a parameter which can be tuned
to find quantum phase transitions. For thin wells with
thickness below the critical thickness dc ≈ 6.3 nm the ma-
terial has a normal band structure, whereas for wide wells
(d > dc) the band structure is inverted.21,22 At critical
thickness the band gap closes and a single Dirac cone
appears in the Brillouin zone.

In addition to having a highly specific energy spectrum
with an inverted band structure, the 2DEG in a wide
HgTe quantum well is characterized by a low effective
mass, m∗ = 0.02me (me is the electron mass).23 The
low effective mass causes a large Landau level separation
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Figure 8. (Color online) Reconstruction of temperature-
driven scaling data (discrete icons) exploring the plateau-

insulator transition 0 = ⊗⊕ ⊗←→ ⊕ = 1 in a 2D ferromagnetic
topological insulator (a thin film of Crx(Bi1−ySby)2−xTe3
grown on a semi-insulating InP(111) substrate).20

∆E = h̵qB/m∗c, and the QHE survives to relatively high
temperatures. In [24 and 25] a strong integer effect was
observed up to T ∼ 10 − 15 K.

Fig. 10 shows our reconstruction of temperature-
driven scaling data (discrete icons) exploring the

plateaux transitions 1
⊗←→ 2

⊗←→ 3 in a heterostruc-
ture HgxCd1−xTe/HgTe/HgxCd1−xTe (x ≈ 0.7) with a
20.3 nm wide HgTe quantum well.25 Since this thickness
is well above dc there should be no Dirac cones in the
bulk Brillouin zone. The sample was grown by molec-
ular beam epitaxy on a GaAs substrate, symmetrically
modulation doped with In at both sides of the quantum
well, yielding a mobility of 22 m2/Vs and an electron gas
density of about 1.5 × 1015 m2.25,26

The longitudinal and Hall resistivities were measured
with a constant 1 A current in the temperature range
2.9 − 50 K, and a magnetic field strength in the 0 − 9 T
range. There is clear evidence for plateaux at ν = 1,2,3
and 4, obtained for magnetic fields in the range 1.8 −
8 T. For most mangetic field values the system exhibited
scaling behaviour for the five lowest temperatures T =
2.9,4.1,6.1,8.1 and 10 K, and in one instance also for 15
and 20 K. In some cases, close to the fix points only the
three lowest temperatures were usable.

Comparison with a modular scaling flow (solid lines)
with quantum critical points at ⊗ = (2n + 1 + i)/(2n2 +
2n+ 1) = 1+ i, (3+ i)/5, (5+ 1)/13, (7+ i)/25, . . . reveals
a ΓT-symmetry in the transport data (compare Fig. 2).
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Figure 9. (Color online) Reconstruction of temperature-
driven scaling data (discrete icons) exploring the plateau-

insulator transition 0 = ⊗⊕ ⊗←→ ⊕ = 1 in a 2D ferromagnetic
topological insulator ((a thin film of Crx(Bi1−ySby)2−xTe3
grown on a semi-insulating InP(111) substrate).20
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Figure 10. (Color online) Reconstruction of temperature-
driven scaling data (discrete icons) exploring the plateaux

transitions 1
⊗←→ 2

⊗←→ 3 in a HgTe/HgCdTe heterostructure
with a wide HgTe quantum well.25

E. Plateau-insulator transitions in bismuth
antimonide

In [27] the QHE was studied by measuring surface con-
ductivities on the top and bottom of a 3-dimensional
topological insulator, bismuth antimonide. Two 8 nm
thick TI films of (Bi1−xSbx)2Te3 (x = 0.84,0.88) were
grown on insulating InP (111) substrates using molecu-
lar beam epitaxy. Quantum Hall signatures were found
at magnetic field strengths above 14 T, for temperatures
ranging from 700 mK down to 40 mK, at various gate
voltages VG.

Fig. 11 shows our reconstruction of their temperature-
driven scaling data (discrete icons) exploring the two

plateau-insulator transitions (−1 = ⊕ ⊗←→ ⊗⊕ ⊗←→ ⊕ = 1).
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Figure 11. (Color online) Reconstruction of temperature-
driven scaling data (discrete icons) exploring the plateaux-

insulator transitions −1 = ⊕ ⊗←→ ⊗⊕ ⊗←→ ⊕ = 1 in a bismuth
antimonide topological insulator (Bi1−xSbx)2Te3, with (a)
x = 0.88, and (b) x = 0.84.27

Inaccessible data points and clear statistical outliers were
not considered when sampling the data.

Comparison with a modular scaling flow (solid curves)
with quantum critical points at ⊗ = (±1 + i)/2, (±3 +
i)/2, . . . reveals a ΓT-symmetry in the transport data
(compare Fig. 2).

F. Plateaux transitions in black phosphorus

In addition to graphene, black phosphorus is only other
2D atomic crystal discovered with a QHE.

Fig. 12 shows a scaling flow in two dimensional black
phosphorus. In the experiment by Li et. al. few-layer
black phosphorus was sandwiched between two layers of
hexagonal boron nitride (hBN) and placed on a graphite
back-gate to create a van der Waals heterostructure. The
thin bottom hBN layer of ∼25 nm allows for the electrons
in the graphite to screen the impurity potential in at the
black phosphorus-hBN interface, bringing the Hall mo-
bility up to 6000 cm2V−1s−1. This large mobility allows
for the detection of a QHE in this material.28

The data is extracted from Fig. 7 in the supplementary
material of [28]. Experiments measuring longitudinal and
Hall resistances were made at fixed magnetic fields of 27,
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Figure 12. (Color online) Reconstruction of temperature-
driven scaling data (discrete icons) exploring the plateaux

transitions 1
⊗←→ 2

⊗←→ 3 in black phosphorus.28

29, 31 and 33 T and temperatures 1.7, 4.1, 4.6, 6, 8 and
10 K by varying the back gate voltage from -2 to -0.7 V.
Plateaus were discovered for filling factors ν = 1, 2 and 3.
Due to overlap of the Hall resistance curves, an area of∼ ±013 V about the apparent infliction point of the 1-2
transition had to be excluded. The curves for 8 and 10
K were also excluded on condition that direct resistance
should drop to zero at a plateau whereas they in every
case exceeded 1 kΩ for the ν = 1 plateau.

As the direct resistivity is determined by ρD =(Ly/Lx)RD and the aspect ratio (Ly/Lx) of the Hall bar
was not given, it has been chosen equal to 3 for a best
fit of the data. This value for the ratio is consistent with
the optical image of the black phosphorus/hBN/graphite
heterostructure given in Fig. 1 (a) of [28].

Comparison with a modular scaling flow (solid lines)
with quantum critical points at ⊗ = (2n + 1 + i)/(2n2 +
2n+ 1) = 1+ i, (3+ i)/5, (5+ 1)/13, (7+ i)/25, . . . reveals
a ΓT-symmetry in the transport data (compare Fig. 2)

V. UNIVERSALITY CLASS ΓR

A. Plateau-insulator transition in GaAs/GaAlAs

Fig. 13 shows our reconstruction of temperature-driven
scaling data (discrete icons) exploring the plateau-

insulator transition 0 = ⊗⊕ ⊗←→ ⊕ = 2 in a GaAs/GaAlAs
heterojunction.29 Comparison with a modular scaling
flow (solid lines) with a quantum critical point at ⊗ = 1+i
reveals a ΓR-symmetry in the transport data (compare
Fig. 2).

B. Plateau-insulator transition in graphene

Fig. 14 shows our reconstruction of temperature-driven
scaling data (discrete icons) exploring the plateau-

insulator transition 0 = ⊗⊕ ⊗←→ ⊕ = 2 in graphene.30 In
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Figure 13. (Color online) Reconstruction of temperature-
driven scaling data (discrete icons) exploring the plateau-

insulator transition 0 = ⊗⊕ ⊗←→ ⊕ = 2 in a GaAs/GaAlAs
heterojunction.29

order to compensate for what is presumably a systematic
error of unknown origin, the dataset close to the dashed
blue semi-circle has been shifted up by 2%, so that the
flow does not violate the semi-circle law (i.e., so that the
flow does not cross the separatrix connecting the plateau⊕ to the insulator ⊗⊕ via the critical point ⊗). Comparison
with a modular scaling flow (solid lines) with a quantum
critical point at ⊗ = 1 + i reveals a ΓR-symmetry in the
transport data (compare Fig. 2).

In this experiment large-area (0.6 × 0.1 mm2) mono-
layer graphene devices were made by epitaxial growth on
SiC-substrate. In the devices, a buffer layer of graphene
made partial covalent bonds with the exposed Si atoms
and only the top graphene layer was conducting. Experi-
ments were made in the temperaure range 2.6−25 K with
magnetic fields in the range 0.1 − 9 T.

According to the authors, Si-C covalent bonds and de-
fects such as interfacial dangling bonds affect the elec-
trical environment of the graphene sheet and graphene-
substrate coupling might break its sublattice symmetry.
In addition, the carrier density was engineered as low as
n ≈ 1015m−2, and low carrier density reduces the screen-
ing of Coulomb potential fluctuations, thus enhancing the
SiC substrate effect on the conducting graphene sheet.30

This may be the reason for the ΓR symmetry and the
resulting insulator phase distinguishing this system from
the usual case of monolayer graphene with no 0-plateau
and ΓS symmetry.

The data that best fit the flowlines are taken from one
of the least disordered samples which also had the highest
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Figure 14. (Color online) Reconstruction of temperature-
driven scaling data (discrete icons) exploring the plateau-

insulator transition 0 = ⊗⊕ ⊗←→ ⊕ = 2 in graphene.30

surface roughness (called EG2 in [30]). Data taken from
the other sample (EG3) has been modified by a constant
shift of 0.03e2/h in the positive σD-direction, to make it
fit the flowlines perfectly. The need for this shift may be
the result of a small systematic error in the experiment,
however the shift in itself may be well within the random
error of the experiment.

VI. UNIVERSALITY CLASS ΓS

Plateau-plateau transition (−1 = ⊕ ⊗←→ ⊕ = 1), ob-
tained by measuring surface conductivities of the bismuth
antimonide topological insulator (Bi1−xSbx)2Te3.27

VII. UNIVERSALITY CLASS ΓQ

We have already mentioned the spectrum of plateaux
observed in some experiments on graphene. The compe-
tition between several scales is not easy to disentangle,
especially in crossover regions where the lowest Landau
level may be more resistant to symmetry breaking than
the higher levels. However, so far it seems that the sym-
metries we have discussed (compare Fig. 1) suffice to ac-
count for the plateau-data.

A much more stringent test is, as we have seen in the
non-relativistic case, to compare the unstable fixed points
with experimental quantum critical points. Scaling ex-
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periments on graphene are still in their infancy, and the
paucity of data means that this analysis is far from con-
clusive. Unfortunately, so far a meaningful comparison
is only possible for the doubly degenerate IQHE, which
should be compared with the phase- and flow diagram in
Fig. 2.

Because of the zero-mode there is no QHI (⊕σ = ⊗⊕ = 0)
in this case, so ΓT and ΓR are immediately eliminated as
potential symmetries. A glance at the defining charac-
teristics of the groups in eq.(1) shows that, up to a factor
of two, ΓS is the only viable candidate. Because of de-
generacy the observed conductivity should be doubled,31

σ → 2σ = G(σ), giving the ΓQ-symmetric phase- and
flow-diagram shown in the bottom panel of Fig. 2.

An immediate consequence is that fractional plateaux
in the doubly degenerate QHE should appear only at
σH = 2(2n + 1)/(2m + 1) /∋ ±1/3. In fact, σH = 1/3 has
also been observed, but only when the magnetic field is
so strong that one expects the spin-valley degeneracy to
be lifted.

A. IQHE in graphene

Fig. 15 is a reconstruction of some experimental quan-
tum Hall data for graphene,32–34 compared with modular
critical points (blue ⊗). As explained in Section II, ide-
ally we would like to have a family of scaling data deep
inside the scaling domain, in which case we could obtain
the experimental critical point from the temperature in-
dependent crossing point of the curves. Unfortunately
such data are still not available for graphene. The family
of data published recently are consistent with our esti-
mate, but not good enough to resolve any discrepancy in
detail.34 This is why only the data obtained at the lowest
temperature (4.1 K) has been used in Fig. 15(c).

In lieu of such “family portraits” the following sym-
metry argument has been used to extract the experi-
mental critical points shown in Fig. 15. Since the tran-
sitions probed in these experiments are between integer
plateaux, we expect the critical points in the conductiv-
ity plane to be precisely half way between two plateaux,
shifted horizontally by 4e2/h relative to its neighbours.
If we are close enough to the scaling domain the criti-
cal point should therefore lie on the vertical lines with
σH = 4n (compare Fig. 2). Mapping these lines to the
experimental plots in the resisitivity plane gives the con-
tinuous (red) semi-circles shown in Fig. 15(d). The points
where an experimental graph crosses these arcs is there-
fore our best estimate for the location of critical points.
These are the values of ρ(⊗) used in Fig. 15(a-c) to iden-
tify the critical values of the magnetic field.

Fig. 15 (a) is our reconstruction of the first data on

the 2
⊗←→ 6 transition, discovered by Zhang et al. in

2005.32,35

Fig. 15 (b) shows the 2
⊗←→ 6

⊗←→ 10
⊗←→ 14 transitions

discovered in 2009.33 The latter two are magnified in the
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Figure 15. (Color online) (a-c) Experimental quantum Hall
data for graphene reconstructed from [32–34], compared with
modular critical points (blue ⊗). (d) Scaling flow derived from
reconstructed graphene data published in [34], superimposed
on the phase diagram with ΓQ-symmetry (compare Fig. 2).

inset, but the distinction between experimental and ΓQ

critical points is still not resolved in this plot.

Fig. 15 (c) shows more recent data on the

2
⊗←→ 6

⊗←→ 10 transitions.34 In this case the fixed
point of ΓQ is completely eclipsed by the experimental
critical point. In all cases the overlap of experiment and
theory is reasonable, and possibly within experimental
error, although no error analysis has been provided by
these authors.

Fig. 15 (d) shows a scaling flow derived from recon-
structed graphene data published in [34], superimposed
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on the phase diagram with ΓQ-symmetry (compare
Fig. 2).

We see that, at least for the first transition, it is pos-
sible that the earlier experiments had not reached the
scaling limit, which is where an approximate low-energy
symmetry would appear. The good agreement with the
most recent data in Fig. 15 (c) notwithstanding, it is pre-
mature to claim that these experiments unambiguously
demonstrate the emergence of a modular symmetry in
graphene. This question can only be settled by more
accurate experiments involving transitions to fractional
plateaux.

B. Spin-resolved spectrum

The spectrum of observed plateaux in graphene
changes when the magnetic field is increased above about
10 T. New integer plateaux at σH = 0,±1,3,±4 have been
reported.36,37 As already mentioned fractional values at
σH = 1/3, ..., which do not fit the symmetry of doubly
degenerate graphene, have also been reported.37–39

When the field is this strong it is no longer a good
approximation to ignore the Zeeman splitting, and this
is presumably the reason the spectrum changes. The
crossover region is difficult to disentangle, but no obvious
contradiction with modular symmetry is apparent.

C. FQHE in graphene

Since they were discovered in 2009 many fractional
plateaux have been found in graphene.37,38 A recent
study found some intriguing new fractional plateaux in
graphene:39

σH/GK =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
3 ,

2
3 ,

2
5 ,

3
5 ,

3
7 ,

4
7 ,

4
9 for 0 < ν < 1

4
3 ,

8
5 ,

10
7 ,

14
9 for 1 < ν

The first sequence is consistent with ΓT, in which case
both the spin and pseudo-spin has been resolved. Bar-
ring coincidences, the second sequence appears to be con-
strained to have only even numerators. Since 4/3, 8/5 /∈⊕Q, the only possibility appears to be ΓR, which has
plateaux

⊕R = 2n

2m + 1
∋ 4

3
,

8

5
,

10

7
,

14

9
. . . .

A possible interpretation is that for higher levels the
pseudo-spin symmetry has been completely broken (with
no surviving Dirac cones), while the spin remains degen-
erate. This is consistent with the first sequence appear-
ing for strong fields and the second sequence appearing
at lower fields, and also with the theoretical expectation
that the lowest level will be most susceptible to symmetry
breaking.

	-1	

	a	
	0.1	

	0.5	 	0	

	1	
	2	

Figure 16. (Color online) Reconstruction of temperature-
driven scaling data (discrete icons) exploring the transitions

0 = ⊗⊕ ⊗←→ ⊕ = 1
⊗←→ ⊕ = 2 in GaAs with self-assembled InAs

dots, for various values of the spin-splitting (parametrized by
a), which was tuned using a backgate voltage.40 All flow lines
(solid curves) are theoretical. They were derived by numer-
ical integration from the unique one-parameter family ϕa of
Γ(2)-invariant RG-potentials, as discussed in Sects. II C and
VIII.

VIII. REDUCED MODULAR SYMMETRY

We turn now to an experiment that explored the tran-
sition from degenerate (unpolarized) to non-degenerate
(fully polarized/spin-split) bands, by tuning the spin-
splitting using a backgate voltage. By the arguments
discussed in the first section, we expect these data to
interpolate between the two maximal submodular sym-
metries ΓR (unpolarized) and ΓT (polarized). When the
Zeeman splitting is between these extremes the modular
symmetry must be at least partially broken, but possibly
only to the main congruence group Γ(2).

Fig. 16 shows a reconstruction of temperature-driven
scaling data (discrete icons) exploring the transitions 0 =⊗⊕ ⊗←→ ⊕ = 1

⊗←→ ⊕ = 2 in GaAs with self-assembled InAs
dots.40 The transition from degenerate (unpolarized) to
non-degenerate (fully polarized/spin-split) bands is ex-
plored by tuning the spin-orbit interaction using a back-
gate voltage, and compared to the family of physically
viable Γ(2)-invariant RG-potentials (compare Sect. II)
ϕa ∝ lnλ + (a − 1) ln(λ − 1),11 with values of the real
parameter a ranging from aR = −1 to aT = 1/2 in this
experiment. All solid lines are flow trajectories derived
by numerical integration from the gradient flow gener-
ated by this potential. For clarity we display only those
parts of the modular phase boundaries (red sheets) that
are above all separatrices (blue canopies).

By comparing the data for the 0
⊗←→ 1 transition with

the flow derived from ϕ1/2 (left hand side of front panel),
we see that the scaling flow in this case appears to respect

ΓT-symmetry. This is not so for the 1
⊗←→ 2 transition.

A partial fit is obtained at a ≈ 0.35 (in order to make
the flow visible from this viewing angle it is shown on
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Figure 17. (Color online) (placeholder) Reconstruction of temperature-driven scaling data (discrete icons) exploring various
parts of the landscape of Γ(2)-symmetric scaling flows, derived from a wide range of different 2D materials. (Not to scale,
compare Figs. 4 and 16)

a panel only slightly recessed behind the panel at a =
1/2 showing the 0

⊗←→ 1 transition), but several of the
experimental flow-lines still cross the separatrix (dashed
blue semi-circle).

This is a rare example where the Γ(2)-symmetry ap-
pears to be broken, presumably due to the intervention
of new physics that is not relevant for the other experi-
ments. It is conceivable that some (maximal?) subgroup
of Γ(2) has survived, but we have insufficient data to
investigate this. It is also conceivable that a systematic
error of unknown of origin is responsible, but we have
no way of investigating this either. New physics would
be more interesting, and it could aid in the construction
of a phenomenological function a = a(B,T, . . . ) (the dots
include material properties that are capable of break-
ing modular symmetry), which could be used to predict
which type of modular symmetry (if any) that is to be
expected in the transport coefficients of new materials.

Finally, Fig. 17 summarizes other work not discussed in
detail here.11 Our reconstruction of temperature-driven
scaling data (discrete icons), derived from a wide range
of different 2D materials, explores various parts of the
landscape of Γ(2)-symmetric scaling flows. As in all our
diagrams, solid lines are flow trajectories derived by nu-
merical integration from the gradient flow generated by
the RG-potential ϕa.

IX. DISCUSSION

In addition to the fact that some modular predictions
have been verified at the per mille level, it is perhaps the
overall agreement of the unique modular family of level
two flow diagrams with a wide range of different materi-
als and experimental circumstances that is the most con-
vincing evidence for “modular universality” in the QHE.

There are some data that appear to disagree with the
modular symmetries discussed here. Most, if not all, are
“transition materials” that appear to be a superposition
of two symmetries. We offer a plausible explanation for
one of these anomalies.

Fig. 18 presents a conjectured modular explanation of
a peculiar crossover observed in graphene41. They ap-
pear to find that an insulator phase can inject itself into

the standard graphene sequence −6
⊗←→ − 2

⊗←→ 2
⊗←→ 6,

without being accompanied by other new plateaux:−6
⊗←→ −2

⊗←→ ⊗⊕ ⊗←→ 2
⊗←→ 6. The QHI at σ⊗⊕ = 0 means

that the original ΓQ has been broken to ΓR:

σ(⊗)Q = 2i
splits−−−Ð→ σ(⊗)R = ±1 + i,

or equivalently, to ρ(⊗)R = (±1+ i)/2. If so, there should
be more structure, signalling new plateaux, emerging in

the ±2
⊗←→ ± 6 transitions, etc. Even if both the new
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Figure 18. (Color online) (placeholder) Cartoon of data ob-
tained in [41], illustrating how peaks in σD can be suppressed
by poorly articulated plateaux that still are not visible in σH ,
as seen in this experiment probing the cross-over ΓQ → ΓR

(compare Fig. 3).

plateau and the new zero in σD are insufficiently devel-
oped to be visible, the new zero in σD that eventually
develops at σ⊕ = ±4 will force the maximum value of σD
to shrink. In other words, when a critical point “splits”
in order to make room for a new phase, the presence

of this new pair of crtical points could at first appear
as a suppression of the old peak, as is seen in this ex-
periement. When the plateau is fully developed there
will be two peaks instead of one, both smaller than the
original peak, compare location of critical points in Fig. 2.

Arguably, the biggest outstanding problem in the QHE
is to determine the value(s) of the critical (delocaliza-
tion) exponent(s), which would completely nail down the
quantum Hall universality class(es). This exponent is de-
termined by curvature of the RG-potential at a critical
point, and therefore depends on the normalization of the
β-function, which does not follow from symmetry alone.
Finding it requires information about the dynamics of
the collective (emergent) modes relevant at low energy.

A useful analogy is the Ising model. Kramers and Wan-
nier managed to calculate the exact value the critical
temperature (location of the critical point) by exploit-
ing a Z2-duality that is similar to S-duality acting on
Iσ = σD, but the value of the critical exponent remained
beyond reach until Onsager solved the model completely.

However, while modular symmetry by itself is not suffi-
cient to find the low-energy effective field theory, it does
severly limit the supply of candidate models, and may
therefore provide valuable assistance in the search for this
theory.
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A
Mathematical structures

A.1 A hierarchy of structure

We will encounter two large classes of structures in this work - the algebraic and
the geometric. These are shown in the below figure, where roughly speaking
the top half represents the algebraic and the bottom the geometric. Of course,
these structures like to play, and often we will meet objects with several types of
structure.

Sets

Semi
groups

Top.
spaces Manifolds G-

structures

Lie groups

Groups Abelian
groups

Rings Fields Vector
spaces Algebras

Hilbert
spaces

Lie Algebras

By algebraic structure we mean the following. Given a set S with elements
si we can add structure to it by defining one or more binary operations that sat-
isfy certain axioms. Binary operations are maps S× S→ S that produce a third
element of the set by a first and a second. One of the most important structures
stemming from one binary operation is that of a group structure. If a set G has
a binary operation ◦ : G× G→ G that satisfy closure and associativity the set is
called a semi-group. By including an identity element one gets a monoid. These
naturally appear in the discussion of effective field theories. By adding a fourth
axiom, namely invertibility, the set is promoted to a group. In this case the binary
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operation is called a group multiplication. When the multiplication is commuta-
tive the group is called commutative or Abelian.

With more than one binary operation the two most important structures are
those of rings and vector spaces. A ring is a set with two operations normally
called addition and multiplication, both of which are binary maps on the same
set. The trivial example of a ring is the ring of integers. A field is a ring where
the two operations are commutative. A vector space is a set with operations
+ : V×V→ V and · : V× F→ V where F is a field. In this sense, a vector space is
an Abelian group with respect to +, with the additional operation of "scalar mul-
tiplication" by elements of the field F. In principle one can add more and more
structure to the sets. For example, a ring that is equipped also with a differenti-
ation operation is called a differential ring.

These algebraic types of mathematical structure are well known to most physi-
cists, and we will not spend much (if any) time discussing them except for the
case by case appearances. The Non-algebraic structures, however, will play a
much more central role in our discussion. Foundational for our geometric dis-
cussions are topological spaces. A topological space is a set X together with a
collection of subsets S= {Si} such that unions and intersections of these are in S
and X itself is in S. The subsets are called open sets. If Si is a open set that con-
tains x ∈ X and Si is contained in a subset V ⊂ X we call V a neighborhood of the
point x . We will mostly be dealing with connected topological spaces. These are
the topological spaces that cannot be seen as a union of disjoints sets. These no-
tions will allow us to define manifolds, and from them the notion of a G-structure.

A.2 Categories and functors

Category theory is a framework for reasoning in mathematics, where many gen-
eral ideas are captured. Roughly speaking, a category is some collection of objects
and a collection of morphisms ( also called "arrows") between them [7]. Maybe
most important is the change of perspective category theory presents regarding
mathematical structures. In a category the relation between objects is put on
equal footing as the objects themselves, and discussing one without the other is
in some sense an incomplete story. In fact, one can generalize this idea and study
a category where the objects are the morphisms, and morphisms are morphisms
of morphisms.

A category C is a collection of objects a, b, c, ... in Ob(C) and a collection
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HomC(a, b) of morphisms

a
f
−→ b

between any two objects [8][7]. These morphisms satisfy a composition rule so
that given two morphisms we can create a third

a
f
−→ b , b

g
−→ c

a
g◦ f
−→ c

There is also a special morphism 1a ∈ HomC(a, a) called the identity, which can
be composed with any other morphism from the left or right without any effect.
Often the objects in a category will be sets equipped with additional structure,
like groups or vector spaces. The morphisms, which then for example may be
maps between groups, are then often chosen to be maps that preserve the rele-
vant structure. For example the category Set of sets have as objects sets and as
morphisms functions between sets. In the category Grp of groups the objects are
groups and the morphisms maps between groups compatible with the axioms of
the group composition. These maps are called group homomorphisms. This is
closely related to both group actions and group representations, which we discuss
shortly.

One can also define maps between categories. Given categories C and D the
map sends Ob(C) to Ob(D), and the morphisms in the one category to morphisms
in the second in such a way that the composition rule is satisfied. These maps are
called functors [7]. For example, one could consider a category where the ob-
jects are categories and morphisms are functors. This category is often denoted
Cat. We discuss how such functors give rise to the idea of an action of a set with
algebraic structure on the objects of some category in the appendix. In particular
group actions and group representations naturally emerge from this discussion.

One can also generalize to the higher categories, where one also have mor-
phisms between morphisms. If we call the morphisms in the above discussions
1-morphisms, the morphisms between 1-morphisms are called 2-morphisms. The
general case where we have n-morphisms is called a n-category. For example, a
2-category can be drawn as

a b

f

g

α
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Here the composition rules are somewhat more complicated, see for example
[7]. From this perspective a set is simply a 0-category, where there is only objects.
The category Cat of categories is in fact a 2-category where so-called natural
transformations are 2-morphisms. These are maps between functors α : F→ G.
If f : c1 → c2 is a morphisms in C, then a natural transformations associated
to ci a morphism αci

: F(c1) → G(ci). The map α is a natural transformation
if G( f ) ◦ αc1

= αc2
◦ F( f ). These 2-morphisms in Cat in fact play a role in the

representation theory of groups. Another interesting example is the category
Mfdn constricted as follows. The objects are 0-manifolds, e.g. an union of points.
The 1-morphisms are 1-manifolds connecting the points, called cobordisms. The
2-morphisms are 2-manifolds connecting the 1-manifolds and so on.

•

•

•

•

•

•

The 2-morphisms would be surfaces interpolating between two of these one
dimensional morphisms, i.e. a cobordism between cobordisms. This is similar to
the (1-) category nCob where the objects are (n-1) dimensional manifolds, and
the morphisms are n-manifolds.

A.3 Monoids, groups and actions

Groups are often imagined as an abstraction of the intuitive notion of a symmetry.
Note however that the definition of a group does not include any reference to the
way a group acts on certain objects. This intuitive picture of a group as some
set of transformations often results from studying the morphisms that respect the
group structure.

Recall from our discussion of category theory that a functor is a map F : C→D

between categories that respect the associativity of the category morphisms and
the identity. Imagine a category C• with only one object •. The morphisms are
arrows that start and end on •. To be a category these arrows need to be both
associative and have an identity. If we recall the definition of a monoid, these
structures exactly coincide. If the arrows of the category C• are invertible, we get
a group. Is this way monoids and groups can be seen as one-object categories
[36].
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The notion of an action of a monoid or a group on some objects can be for-
mally represented by a functor A : C•→D where D contains the desired objects.
Since we only have one object in our original category, the functor associates to
• a single object A(•) in the D category. The morphisms fi : • → • get realized as
maps A( fi) : A(•)→A(•) that are compatible with the properties of the original
morphisms. This is abstractly the notion of a monoid action or group action.

Sometimes the name group (monoid) action is reserved to the case where
the category D is the category Set. In this case the functor associates to the
morphisms in the abstract one-object category elements of Aut(X), where X =
A(•). More conventional notation then denotes a group (monoid) action as

G× X→ X

that takes one element of the group or monoid and lets it act on a point x ∈ X,
denoted g(x) [35]. We will discuss what one can do with such group actions
further when we discuss topological spaces.

When the category D is the category of vector spaces, the group action is
called a group representation. First, note that many sets well known to physicists
have a natural group structure. Most importantly, the set of n×n matrices GLn(R)
is a group under matrix multiplication. Almost all groups we will encounter will
be subgroups of this group, i.e. a subset of GLn(R) that by themselves satisfy the
four group axioms. We can also consider the linear map on a finite dimensional
vector space V, denoted GL(V). However, due to the remarkable classification of
finite dimensional vector spaces1 these coincide.

We want to discuss group actions on vector spaces. To do this we need the
notion of a morphism of groups that can cary the group structure from the group
over to a realization as linear maps on a vector space. A group homomorphisms
is a map that preserves the group structure [74]. Given groups G and H with
group multiplications ◦G and ◦H respectively, a group homomorphism is a map
f : G→ H such that

f (g1 ◦G g2) = f (g1) ◦H f (g2)

A representation of the group is then defined as follows. If GL(V) is the group
of linear transformations on a vector space V, a group representation is a group
homomorphism

φ : G→ GL(V).

The space V is then called the representation space [35]. The notion of equiva-
lence of representations is defined as follows. If f : V1→ V2 is a invertible map of

1Two vector spaces are isomorphic if and only if they have the same dimensions. Hence they
are isomorphic toRn. A equally remarkable statement can be made for so-called separable Hilbert
spaces - every one of them is isomorphic to the Hilbert space `2(N) of square summable sequences.
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vector spaces, and φ1 and φ2 are their respective representations of a group G.
Then if

f ◦φ1(g) = φ2(g) ◦ f

the two representations are called isomorphic [35]. Representation theory aims
to find all non-isomorphic representations. In the representation space V of a
representation has no invariant subspaces W ⊂ V, the representation is called
irreducible [35].

A.4 Classification and moduli spaces

The main lesson from category theory is that the objects of a category and its
morphisms are equally important, and both are needed to define a category. In
this sense we should not discuss one without the other. This naturally motivates
may interesting classification questions, where equivalence classes are searched
for in terms of some map compatible with a given structure. Classifications nat-
urally introduce the concept of a moduli space. The name "moduli" comes from
B. Riemanns study of surfaces with complex structure, where the complex struc-
tures were classified with a parameter, or modulus. We will use the words moduli
and parameter more or less synonymously in this thesis.

A classification problem often comes in two steps. First, one tries to find dis-
crete invariants, often of the topological type. This divides the objects one is
studying into disjoint cases one can study in more detail on their own. The sec-
ond step is to see if the objects in one of these discrete classes are parametrized by
some remaining continuous parameter, or moduli. It may also be that this mod-
uli parametrizes not just a single object, but rather a whole isomorphism class
of these objects. The space of these moduli is what we will refer to as a moduli
space. In mathematical literature, a moduli space sometimes has stricter defini-
tions, but these will not be important for our purposes. See for example [42].

So a moduli space is a space M where each point corresponds to a class of the
objects we would like to study. We can imagine a sort of family U of objects as a
distribution over the moduli space, such that every class appears once. Formally
we have a continuous map

π : U→M

such that π−1(p) is the equivalence class associated with p ∈M. The fact that this
map is continuous intuitively means that two nearby points in the moduli space
represents "very similar" objects. As a trivial example consider the classification
of circles. A circle is specified by a single number, namely the radius. In this case
the moduli space can be taken to be R+ where π−1(r) = S1r is a circle of radius r.
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Circles with approximately the same radius are "roughly identical".





B
Topology

Topology is one of many non-algebraic structures we will meet in this thesis. In
particular we will discuss the morphisms that preserve topological properties of
a space. Intuitively these are continuous deformations of the space.

Let X1 and X2 be topological spaces, and f : X1 → X2 a map between them.
The spaces are said to be homeomorphic if there exists such a map f which is
continuous and has a continuous inverse f −1 [45]. This puts an equivalence re-
lation on the spaces, where X1 ∼ X2 if they can be deformed into each other by
a homeomorphism. We say that the spaces fall into the same equivalence class,
or more precisely homeomorphic equivalence class. We will discuss equivalence
relations in more detail shortly.

As an example, a torus can be continuously deformed into a sphere with a han-
dle, with no cutting or ripping. However, the homeomorphisms are not always
intuitively clear and we need a somewhat more sophisticated tool for classifying
spaces topologically. In essence we will do something very familiar to physicists
- we use "conserved quantities" to simplify the problem. We would like to find
some quantities that are preserved under homeomorphisms, i.e. topological in-
variants. One important note is the following: If all topological invariants we are
aware of coincide for two spaces, they are not necessarily homeomorphic. This
is because we can not claim to know of all possible topological invariants, and
we will surely not cover more than a few in our discussions. What we can say
is that if two spaces have different topological invariants they are for sure not
homeomorphic.
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B.1 From equivalence relations to homotopy groups

Homotopy groups will be one of our main tools for studying topological proper-
ties of a space. The first homotopy group is a group associated with a space X
such that homeomorphic spaces have homotopy groups that are isomorphic. In
this way, we can use the group to say something about the topological structure
of X.

Before moving on to homotopy groups, let us consider quotient spaces. If X
is a topological space and π : X→ Y is a map from X to a space Y, one can define
subsets U ⊂ Y to be open if π−1(U) is open. If π is surjective and continuous it is
called a quotient map [45] .

An equivalence relation on X is a sort of identification ∼ of elements in X. An
equivalence relation has to satisfy the following relations [45]

x ∼ x∀x ∈ X

x ∼ y → y ∼ x

x ∼ y , y ∼ z , → x ∼ z

The equivalence class [x] is defined to be

[x] = {∀y ∈ X|y ∼ x}

The space of all such classes are denoted X/ ∼, as to indicate that one "divides
out" the equivalence. The projection map π : X→ X/∼ that sends

π : x → [x]

is a quotient map [45] and the resulting space is called a quotient space. This is
a very neat way of constructing new spaces from old. Intuitively, the equivalence
relation identifies point in X and the projection map cuts and glues the space ac-
cordingly, resulting in the new space X/ ∼. For example, if we take the real line
and identify all integer spaced points, the quotient space would be a circle, at
least topologically.

The idea of homotopy groups is to probe the topology of a space by the de-
formation of loops in that space. These loops feel topological obstructions as we
deform them, and can therefore be used to say something about the topology of
a space. We here make these notions more precise. The following definitions and
results are taken from [45].
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We let X be a topological space. We assume the space to be path-connected
in the sense that any two points may be connected by a continuous curve. By a
loop ` we mean a map

` : [0, 1]→ X

where `(0) = `(1) = x0 ∈ X. Since the space is assumed path connected the point
x0 plays no special role, and may be moved around arbitrarily on X. Given two
loops we may glue them together by what is called concatenation defined by

`1 ∗ `2 =
§

`1(2t) if t ∈ [0,1/2]
`2(2t − 1) if t ∈ [1/2, 1]

This simply means we traverse the second loop after the other, moving at double
parameter speed. We have here assumed that the two loops both start and end at
the same (but arbitrary) point x0. Two loops are said to be homotopic if there exist
a continuous map L : [0, 1]× [0, 1]→ X, which we denote L(s, t) ≡ Ls(t), where
L0(t) = `1(t) and L1(t) = `2(t). In other words Ls(t) describes a continuous
family of loops in X parametrized by s ∈ [0,1] that start at one loop `1 and end
at the other `2.

t

s

`1(t)

`2(t)

Figure B.1: The continuous family of loops can be seen as a deformation of the
first loop into the second. For any fixed s there is a loop homotopic to any other.

This introduces a equivalence relation on loops, i.e. `1 ∼ `2 if the two are
homotopic1. More generally, two maps are said to be homotopic if they can be
deformed into each other. A loop that is homotopic to the trivial loop, i.e the point
x0, is called null homotopic, meaning that it may be continuously deformed to a
point. With this notion of equivalence, we can construct equivalence classes

[γ] = {` : [0,1]→ X|`∼ γ}
1One can easily see that this relation satisfies the three requirements to be a equivalence rela-

tion.
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of all loops that are homotopic to some particular loop γ. One can further extend
the concept of concatenation to equivalence classes by the following observation.
Assume we have two equivalence classes of loops [`] and [γ], and two represen-
tatives of each of them, i.e.

`1,`2 ∼ `

γ1,γ2 ∼ γ

Then `1 ∗ γ1 ∼ `2 ∗ γ2, since the two loops may be deformed individually. This
means we have a well defined operation ∗ on the whole equivalence classes [`]
and [γ]. By noting that the concatenation with the trivial loop is an identity
operation, and that an inverse may be constructed by

[γ(t)]−1 = [γ(1− t)]

the set of equivalence classes of loops gains a group structure. This is called the
first homotopy group of X and it denoted

({[γ]},∗)≡ π1(X)

To identify this group one has to find the topologically distinct loops in X, i.e.
study the deformation of circles on X. For example, consider the case of X =
R3\{(0,0, z)} i.e. Euclidian 3-space with a line removed. In this space there is
an infinite number of topologically non-equivalent classes of loops, namely those
that wind around the removed line an positive/negative integer number of times.
Concatenating the class of loops that wind one time with the class that wind two
times clearly yields the class of loops that wind three times, and we see that the
first homotopy group behaves as the integers under addition:

π1(R3\{(0,0, z)}) = (Z,+)

By equality we here really mean group isomorphism.

These groups of loops are not only interesting by themselves but are useful
when classifying and constructing spaces. For example, the statement that the
first homotopy group is the trivial group is simply the statement that the space
X has no holes or other topological obstructions. In this case we call X simply
connected.

Now, consider two topological spaces X1 and X2 and an onto map π : X2→ X1

between them. Let also V be a neighborhood of x in X1. Then, if π−1(V) is a
disjoint union of subsets in X2, i.e.

π−1(V) =
⊔

i

ui , ui ⊂ X2
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and the restricted map π|ui
is a homeomorphism of ui and V then π is called a

covering map and (X2,π) is called a cover of X1. In the case where π1(X2) = {e}
we call X2 a universal cover and denote it X2 ≡ X̃.

We will often find ourselves studying curves on a space X1 that is not necessar-
ily simply connected. In this case it is a good idea to lift the curves to a covering.
If π : X2→ X1 is a covering map, and f : Y→ X1 is a continuous map, a lift is de-
fined as any map f̃ : Y→ X2 such that π◦ f̃ = f [45]. For lifting curves the map is
a parametrization of a curve f : R→ X1. The following results will be useful [45].

Path Lifting Property: Let f : (0, 1) → X1 be a path starting at f (0). For
π : X2→ X1 a covering map and p a point in X2 such that π(p) = f (0) there exists
an unique lift f̃ such that f̃ (0) = p.

Monodromy Theorem: Let f , g : (0,1)→ X1 be paths starting and ending at
the same points. Let also π : X2→ X1 be a covering map, and f̃ and g̃ be the lifted
curves both starting at some p ∈ X2. Then f̃ ∼ g̃ if and only if f ∼ g and if f ∼ g
then f̃ (1) = g̃(1).

Monodromy Acion: Let π : X2 → X1 be a covering map, and x ∈ X1 some
point in the base space. Then there is a group action of π1(X1) on the points
π−1(x) = {pi|π(p j) = x} called the monodromy action, acting by [γ] : p→ γ̃(1).

For a much more detailed discussion of lifts of coves and the monodromy
action see [45]. In summary these results means the following. If we are given a
collection of curves at a point x ∈ X1 (not necessarily homotopic) we can lift these
curves to a covering space, where all the curves will start at the same point p, but
end somewhere else in π−1(x). These endpoints are obtained by the action of the
first homotopy group. These results is in fact what allows us to define quantum
mechanics on topologically non-trivial spaces - the inequivalent ways to quantize
a system is in bijective correspondence with the one dimensional representations
of the first homotopy group.

B.2 Classification of surfaces

In the case of two dimensions, the most important topological invariant is the
Euler Characteristic. To understand this invariant we need the notion of a trian-
gulation. A polyhedra is a surface that has flat polygonal faces, straight lines as
edges and corners called vertices. The process of creating this polyhedra out of
a smooth surface is called triangulation. A typical examples is the tetrahedron,
which may be seen as triangulations of the sphere. The Euler characteristics for
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a surface X homeomorphic to a polyhedra P is defined by

χ(X)≡ V(P)− E(P) + F(P) (B.1)

where V(P), E(P), F(P) are the number of vertices, edges and faces of P respec-
tively. A famous theorem due to Poincaré and Alexander [60] tells us that all
polyhedra homeomorphic to the surface X yields the same Euler characteristics
χ(X). For example, the 2-sphere is homeomorphic to a cube in 3-space, which
has 8 vertices, 12 edges and 6 faces. Hence the sphere has χ(S2) = 8−12+6= 2.
The sphere is also homeomorphic to a tetrahedron (triangular pyramid) which
has 4 vertices, 6 edges and 4 faces. Similarly then χ(S2) = 4−6+4= 2. A torus
is somewhat more tricky. The torus is obtained by identifying points in the plane
related by translation in the x and y directions, i.e. "gluing" together the sides of
a rectangle. We can thus draw edges and vertices on this rectangle to make the
counting relatively simple.

∼ v3 v3
v1

v2

v2 v4v4

v4v4

Figure B.2

We have to remember that edges are identified when we do the counting and
not count vertices and edges twice. After some counting we see that χ(T2) =
4 − 8 + 4 = 0. Thus the sphere and the torus are not topologically equivalent.
This is of course not a surprise as the torus has a hole in it while the sphere
does not, and thus can not be continuously deformed into each other without
ripping and tearing. The intuitive idea of "how many holes" a surface has may
be somewhat formalized. Intuitively we may think of a surface with g holes as
a topologically trivial surface (the sphere) with g tori on it, or rather g handles.
The number g is called the genus of the surface. This introduces the idea of a
connected sum, writen X1]X2, which is defined by cutting a hole in two surfaces
and connecting them by a cylinder [60]. For example the surface T2]T2 is given
geometrically by
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∼

]

Figure B.3

A surface that can not be expressed as a connected sum of two surfaces is
called prime.

Note that by triangulating the surface resulting from a connected sum, the
Euler characteristics changes not only to a sum of the characteristics for the fac-
tor surfaces [60]. Imagine removing from each triangulated surface a triangle
and connecting the two with a triangular cylinder. Then the number of faces de-
crease by -1 on each surface, while the total surface has gained three edges and
three faces from the triangular cylinder. Inserting this into the formula for Euler
characteristics we find that

χ(X1]X2) = χ(X1) +χ(X2)− 2

Consider now the surface Σg ≡ T2]...]T2 of g factors of the torus, i.e. (topo-
logically) an arbitrary genus g surface. Since the torus has vanishing Euler char-
acteristics we have

χ(Σ2) = −2= 2− 2 · 2

χ(Σ3) = −4= 2− 2 · 3

χ(Σ4) = −6= 2− 2 · 4
...

χ(Σg) = 2− 2g

What should be intuitively clear is that any nicely behaved2 surface is homeomor-
phic to either the 2-sphere or Σg . In other words, For such surfaces there are two
relevant prime surfaces: the sphere and the torus. This result implies that the
classification of surfaces by homeomorphisms is given uniquely from the genus
g of the surface. More abstractly stated, the topological isomorphisms classes of
compact surfaces corresponds to the set of positive integers.

2Compact, connected, orientable, Hausdorf and so on.
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1 2 g

Figure B.4: Classification of real orientable surfaces by their genus. Each real
integer g corresponds to a class of homeomorphic surfaces.



C
Lie groups and their algebras

Several places in this thesis we make use of Lie groups and algebras. We will not
present a detailed discussion of the subject, and refer the reader to for example
[35] for applications in quantum theory or [34] for a general discussion of Lie
theory and representations.

A Lie group is a smooth n-manifold G with a group structure [74]. The group
multiplication

◦ : G→ G

has to respect the smooth structure of the manifold, and hence are smooth maps
from the manifold to itself. The left action of a group on itself is defined by
h→ Lgh= gh. Similarly, one could define a right action Rg , but we will not need
this here. We know that a map between manifolds induce a map on the tangent
spaces. In this case, the left action induces a map L∗g : ThG → TghG that relates
tangent spaces over G. Imagine a vector field V over G. If the vector field at gh
can be obtained from the vector field at g by L∗g , the vector field is called left-
invariant [74]. In some sense, the vector field is generated by a tangent space
and the group structure.

In particular, let X be a vector at TeG, the tangent space at the identity element.
We can then construct a vector field VX that at a point g obeys

(VX)g = L∗gX

Recall that the Lie bracket [·, ·] mapped vector fields to vector fields, so we also
have [X, Y]gh = L∗g[X, Y]h. By collecting all left-invariant fields and equipping this
vector space with the binary map that is the Lie bracket, we get an algebra of
vector fields. This is called the Lie algebra of G, and denoted g. Since these fields
can be obtained by the pushforward L∗g from the identity, we associate the Lie
algebra with the tangent space TeG at the identity equipped with the Lie bracket
[74]. If we consider {Xa} as a basis for this tangent space, we can express [Xa, Xb]

213
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as a linear combination
[Xa, Xb] = f c

abXc

The coefficients f c
ab are called structure constants. They specify the Lie algebra,

and hence the Lie group for infinitesimal transformations.

To relate the Lie group and the Lie algebra we need the exponential map.
First, note that a curve γ : R→ G with the property γ(t) ◦ γ(t ′) = γ(t + t ′) can
be considered a Abelian subgroup of G. Note that γ(0) = e. These curves are
called one-parameter subgroups [60][74]. The tangent vectors to this curve are
left-invariant vectors, and we can think of the one-parameter subgroup as being
generated by the tangent vector at e [74][35]. Let X ∈ TeG and consider a curve
γX generated by this vector by the pushforward L∗g . Then the exponential map
exp : TeG→ G is defined by [35]

exp(tX) = γX(t)

When we are dealing with matrix groups, which is particularly relevant for finite
dimensional representations, the exponential can be defined as a Taylor series

eX =
∑

n

1
n!

Xn

This map satisfies [35]
e0 = 1

det(eX) = et r(X)

eX+Y = eXeYfor commuting fields.

(eX)−1 = e−X

By differentiating term by term in the series we see that γX
′(t)|0 = X. Often

this is how one identified the generators of the group.

Recall that a group homomorphism is a map from preserves the group struc-
ture. If φ : G1 → G2 is a homomorphism, there will be a map ψ : g1 → g2

between Lie algebras such that φ(eX) = eψ(X) [35]. This will be particularly im-
portant for representations of G. If ρ : G→ GL(V) is a representation on V, there
is a representation [35] π : g→ gl(V) such that

ρ(eX) = eπ(X)

Particularly interesting in quantum mechanics are the unitary representations,
where the group homomorphism is a map ρ : G → U(H), to the set of unitary
operators on a (finite dimensional) Hilbert space H. Recall that unitary operators
are those that satisfy 〈Av, Aw〉= 〈v, w〉.
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Some aspects of quantum mechanics

D.1 Operator algebraic quantization

To construct the relevant Hilbert space it is fruitful to study the algebra of observ-
ables in the theory. First recall some facts from classical mechanics. The tangent
vectors to the curve representing the particle trajectory trough M describe the
velocity of the particle. If we imagine the set of all paths from x(t1) to x(t2), the
physical path is the one satisfying the variational principle. Given a Lagrangian
L : TM→ R as a function of coordinates and velocities, the variational principle
states that

δS= δ

∫

d tL= 0

The Lagrangian is normally obtained by L = T − V where T is the kinetic en-
ergy and V a potential on M [60]. The canonical momentum conjugate to the
coordinate xµ is defined to be

pµ =
∂ L
∂ ẋµ

Note that under a coordinate transformation, the canonical momentum trans-
formers a 1-form on M. By performing a Legendre transform of L where we
replace ẋµ with the canonical momentum, we get the Hamiltonian formulation
of classical mechanics that lives on the cotangent bundle T∗M. Here the greek
indices run over the spatial dimensions of M. The Hamiltonian is given by

H(x , p) = pµ ẋµ − L(x , ẋ(p))

Note that a trivialization of the cotangent bundle is essentially R2n consisting
of 2n-tuples (x1, ..., xn; p1, ..., pn). The cotangent space is in the applications of
classical mechanics called the phase space of the system denoted P. The state
of the system is a point in phase space, and time evolution is a flow in P. The
equations of motion, obtained by the variational principle, reads [60]

ẋµ =
∂H
∂ pµ

215
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ṗµ = −
∂H
∂ xµ

These can be rewritten by introducing an algebra of observables. Consider smooth
functions C∞ on P and define the Poisson brackets by

{ f , g}=
∂ f
∂ xµ

∂ g
∂ pµ

−
∂ f
∂ pµ

∂ g
∂ xµ

for f , g ∈ C∞. The tuple (C∞(P), {·, ·}) makes up the algebra of classical ob-
servables AC. Note that for the coordinates and momenta themselves we have
{xµ, pν}= δµν . Now let F be an observable. The time evolution of this quantity is
given by the equation

Ḟ=
∂ F
∂ xµ

ẋµ +
∂ F
∂ pµ

ṗµ = {F, H}

by using the equations of motion. Hence there is a close relation between the
algebra of observables and the time evolution of an element of the algebra.

Canonical quantization is the procedure of mapping the classical algebra to a
quantum version of it

Q :AC −→AQ

where, by postulate, the quantum observables are Hermitian operators acting on
a Hilbert space H of states [60]. The standard rules of quantization are

Q : {·, ·} → [·, ·] = i}hQ({·, ·})

where}h is Plancks constant. The Hilbert space is then constructed as the eigenspace
of the observables. In particular, we are interested in the maximal set of com-
muting observables, as these operators can be simultaneously diagonalized. For
the canonical coordinates and momenta, the quantizatized operators satisfies
[xµ, pν] = i}hδµ

ν
. The typical solution is to take xµ simply as multiplication

by xµ, and pµ = i}h∂µ. Other observables O = O(x , p) can then be obtained
from the operator form of the canonical variables. The Hilbert space is in this
case imagined by be consisting of the delta-like position states |x〉 with gen-
eral state |ψ〉 =

∫

dvolMψ(x) |x〉. The state is determined by the wavefunction
ψ(x) = 〈x |ψ〉 which lives in the Hilbert space L2(M).

A popular method of constructing a Hilbert space of states is by the so called
ladder operator method. This way of quantizing is sometimes also called the al-
gebraic approach, in the sense that it relies heavily on Lie algebra theory. We try
to present a clear and precise description of this method.
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Formally, quantum mechanics deals with the construction and diagonalization
of a Cartan subalgebra of the algebra of observables. The Cartan subalgebras
are the maximal collection of commuting operators, with Hermitian generators
{Hi}, not to be confused with the Hamiltonian. Here i runs from 1 to m, called
the rank of the subalgebra. Imagine that we have diagonalized the Hi. Given a
representation on a Hilbert space, we label the states |λ〉 where

Hi |λ〉= λi |λ〉

Now assume that there are operators A±α with A−α = A†
+α satisfying the com-

mutation relations
[Hi, A±α] = ∓αiA±α

for each i. Then one can trivially show that the state A±α |λ〉 has eigenvalues

HiA±α |λ〉= (λ∓αi)A±α |λ〉

In this way the operators A±α raises and lowers the eigenvalues and are therefore
called ladder operators. The standard way to proceed is then the following. After
picking the Cartan generators, one should try to construct operators of the type
A±α so that the above algebraic relations hold. Then, by finding a lowest eigen-
state of one of the Cartan generators one can construct a larger Hilbert space of
states by the action of a+α.

The standard example of this method is the harmonic oscillator, with Hamil-
tonian H = 1

2(p
2 + x2). Classically {x , p} = 1, so by canonical quantization

[x , p] = i. We have set all physical parameters to 1 in this discussion for the
sake of clarity. Recall that x and p generate shifts is momentum and position re-
spectively. The Hamiltonian does not commute with these transformations, and
we can only diagonaliz one operator. We naturally pick H which plays the role of
our single Cartan generator. By defining operators

a =
x + ip
p

2
; a† =

x − ip
p

2
The Hamiltonian can be written H= a†a+ 1/2. The operators a, a† satisfies

[a†, a] = 1 ; [H, a†] = [a†a, a†] = a† ; [H, a] = [a†a, a] = −a

and will be the ladder operators. Hence, if we have a eigenvalue a†a |λ〉 = λ |λ〉
the state a |λ〉 has eigenvalue λ− 1. In fact, the spectrum of a†a is N, and a†a is
often called the number operator N. To see that the spectrum consists of integers,
assume that λ is non-integer and that n is the closest integer above λ. Then the
state an |λ〉 would have eigenvalue λ− n which is negative. However, since

λ= 〈λ|N|λ〉= (a |λ〉)†a |λ〉 ≥ 0

this is a contradiction and λ must be a positive integer. Hence the Hamiltonian
has the spectrum n+ 1/2 for n ∈ N. From an algebraic perspective this situation
is almost identical to that of a particle in a magnetic field.
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D.2 Magnetic fields and translation symmetry

When we discussed topological insulators and the Hall effect there is a small prob-
lem that we overlooked. The Hamiltonian of a particle moving in a magnetic field
is not translationally invariant, meaning Blochs theorem does not apply. Physi-
cally however it should be clear that a homogenous magnetic field is translation
invariant, but the electromagnetic gauge field is not. However, by introducing so
called magnetic translations the problem can be overcome.

We consider the quantum dynamics of a particle in a magnetic field. The
particle motion can classically be seen as a curve x : [t0, t1]→M trough a space
M. We will consider simply 2+1 dimensional Minkowski space in this section.
The classical action of the particle moving freely is

S=

∫

d t
1
2

mẋµ ẋµ

Given a U(1) gauge field Aµd xµ over M we add the current-gauge field term

S=

∫

d t
1
2

mẋµ ẋµ − q

∫

d t ẋµAµ

We write A0 = φ . For an electron with q = −e the action takes the form

S=

∫

d t
1
2

mẋµ ẋµ + e

∫

d t(φ − x iA i)

where latin indices run over spatial dimensions. The magnetic and electric fields
are as usual defined by

Bi = εi jk∂ jAk

Ei = ∂tA i − ∂iφ

For a magnetic field only the Lagrangian reduces to the form

L=
1
2

mẋµ ẋµu− e ẋ iA i

In the Hamiltonian framework with canonical momentum pi = mẋ i − eA i the
Hamiltonian reads

H=
1

2m
(pi + eA i)(p

i + eAi)

The mechanical momentum is πi = pi + eA i = mẋ i. To quantize the system we
need the classical Poisson brackets. We will quantize the mechanical momentum
as this is gauge independent. The Poisson brackets read

{πi,π j}= e(∂ jA i − ∂iA j)
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Using εµσλε
µνρ = δν

σ
δ
ρ

λ
−δρ

λ
δν
λ

we can write this as

{πi,π j}= −eεi jkBk

For a electron moving in two spatial dimensions with a perpendicular magnetic
field these relations reduce to

{πx ,πy}= −eB

where B is the magnetic field strength. Canonical quantization then promotes
these phase space functions to Hermitian operators on a Hilbert space by

Q : {πx ,πy} → [πx ,πy] = −ie}hBI

By introducing the complexified operators

a = (2πe}hB)−1/2(πx − iπy)

a† = (2πe}hB)−1/2(πx + iπy)

which satisfies [a, a†] = 1 we can write the single particle Hamiltonian

H= }hωB(a
†a+ 1/2)

Hence this problem has the same algebraic structure as that of the Harmonic
oscillator, with a Hilbert space constructed similarly. The energy levels En =
}hωB(n+ 1/2) are called Landau levels. For more on particles in magnetic fields
in connection with the Hall effect see [80], from which parts of this discussion is
borrowed.

More relevant for us is the observation that the magnetic Hamiltonian is not
translational invariant. This is an obstacle if we want to discuss the integer Hall
effect as a topological insulator, since these depended on Blochs theorem. This
obstacle can be overcome by introducing magnetic translations. Recall that the
magnetic field is Bµ = εµνρ∂νAρ(x). If we translate by R this becomes

εµνρ
∂

∂ (x +R)µ
Aρ(x +R) = εµνρ∂νAρ(x +R)

Since the magnetic field is homogenous this must equal εµνρ∂νAρ(x). Hence the
freedom we have is to pick Aρ(x+R) = Aρ(x)+∂ρω(x) for some functionω since
the contraction of a symmetric tensor with a antisymmetric one vanishes. This is
of course nothing but a U(1) gauge transformation. The combined transformation

TR = eieω(x)TR = eipµRµ+ieω(x)
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is called a magnetic translation and is the combination of a ordinary translation
and a gauge transformation. These are indeed symmetries of the system and
commutes with the Hamiltonian if we have periodic boundary conditions.

We pick the symmetric gauge where Aµ =
1
2ε
µνρBνxρ [80]. Performing a

translation on this gauge field by R we can easily read of

ω=
1
2
εµνρBνRρ xµ

We consider translations by a = (nxLx , nyL y), b = (mxLx , myL y) where we imag-
ine the Li ’s to be the lengths of the Hall sample and the n, m are integers. After
some algebra one can show that

TaTb = exp[ie(ny mx − nx my)BLxL y/}h]TbTa

In this sense, we can view the magnetic translations as a projective version of the
ordinary translations. We consider ny = mx = 1, nx = my = 0 and write this
extra phase as

eiφ/φ0

where φ = BLxL y and φ0 = }h/e. Hence for discrete values of the magnetic field
where φ = mφ0 the translations reduce to the usual commutative translations,
and Blochs theorem applies. In this case we have sort of cheated by copying the
Hall system over and over, making it translationally invariant. Thus the results
from the discussion of bundles and Chern numbers can again be applied, resulting
in a quantized Hall conductance σH [18].

D.3 Inequivalent quantizations and homotopy the-
ory

In classical mechanics the state of a particle is given by a fixed point in phase
space, corresponding to its position in configuration space as well as its canoni-
cal momentum. The fact that a state corresponds to a single point in configuration
space is no longer true in quantum theory. Here the quantum fluctuations of a
particle allow it to probe the global properties of the configuration space. We here
want to discuss a beautiful result in quantum theory concerning the topology of
the classical configuration space.

THEOREM: Given a classical system with configuration space M the inequivalent
ways to quantize the system is in unique correspondence with the one dimensional
unitary representations of the first homotopy group of M.
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This result yields a host of interesting quantum phenomena, most importantly
the notion of particle statistics. This result stems from the U(1) phase invariance
of quantum mechanics. In principle, we are free to use this extra U(1) gauge free-
dom as we please. However, when the configuration space M has a non-trivial
first homotopy group π1(M) 6= {e} there are restrictions on this phase. A similar
argument to what we will present below is found in [59].

Let M be a topologically non-trivial space and M̃ its universal cover. The pro-
jection map is π : M̃ → M, not to be confused with the homotopy groups. We
want to know in what way quantum mechanics on the universal covering space
is related to that on M itself. The motivation for this is the fact that unless we are
dealing with a simply connected configuration space, the U(1) phase is not glob-
ally well defined [59]. We consider wavefunctions to be sections of a complex
line bundle.

Figure D.1: Quantum mechanics on a topologically non-trivial configuration
space, with wavefunctions as sections of a line bundle.

Let us follow a closed loop in M. As we return to the initial point x , the
physical state has to be the same, meaning we have to return to the same ray in
Hilbert space as before. In other words, there may be a phase ambiguity.
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Figure D.2: As we follow a closed loop in the configuration space, we have
to arrive at the same physical state, i.e. in the same U(1) equivalence class of
wavefunctions.

The discussion on homotopy and covering spaces will be useful here. As we
know, there is a natural action of the first homotopy group on the cover that in
some sense permutes the points π−1(x), for x ∈ M. From our discussion on line
bundles in earlier chapters we know that a bundle over a space with a equivalence
relation given by a group action can be considered as a G-invariant bundle on
the original space. Hence π1(M)-invariant sections over M̃ should be considered
equivalent with sections on M. However, under the action of the homotopy group
we can allow a extra phase depending on the homotopy type. Thus, any wave
function must satisfy

ψ̃([γ] x̃1) = ψ̃( x̃2) = ρ([γ])ψ̃( x̃1)

ρ : π1(M)→ U(1)

when we move around the loop in M. Imagine now moving along a second loop
γ2 after the first γ1. In this case we have by the same argument that

ψ̃([γ2][γ1] x̃1) = ρ([γ1])ρ([γ2])ψ̃( x̃1)

But at the same time, we should be able to move along the concatenated curve
γ1 ∗ γ2 which would mean that

ψ̃([γ2] ∗ [γ1] x̃1) = ρ([γ1] ∗ [γ2])ψ̃( x̃1)

This leads to the conclusion that the phases must satisfy

ρ([γ1] ∗ [γ2]) = ρ([γ1])ρ([γ2])

In conclusion, the map ρ : π1(M)→ U(1) is a unitary scalar representation of the
first homotopy group of the configuration space. Hence for any representation of
this group there is a quantum system corresponding to a particular quantization.
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The most surprising effect of this result is that of particle statistics. In 1976
J. M. Leinaas and J. Myrheim published a paper [46] in the italian journal Il
Nuovo Cimento going into the true nature of identical particles. They argued
that the standard argument of exchanging particle coordinates in the wave func-
tion has nothing to do with the exchange of two particles, but simply a relabeling
of supposedly identical particles. Rather, as we will see, the statistics of identical
particles emerges from the topology of the configuration space.

Consider some particle moving on a space M. We assume the space to be
topologically trivial in the sense that π1(M) = {e} is the trivial group. In other
words, M is simply connected. For a system of many particles moving on M the
configuration space is a Cartesian product of n copies of M, i.e.

M×n =M× ...×M

However, as the particles can not pass trough each other, we need to remove the
points where the coordinates are equal

M×n→M×n −∆

Since the particles are also assumed to be identical, the have to mod out the action
of the symmetric group Sn, identifying any two particle positions. In conclusion,
we have that the configuration space is

C= (M×n −∆)/Sn

As we have just seen, when given a configuration space the natural thing to do is
to construct quantum mechanics on a universal covering space and in addition do
representations of the first homotopy group. For the current configuration space
we have

π1(C) =Bn , d=dim(M) = 2

π1(C) = Sn , d=dim(M) ≥ 3

Here Sn is the symmetric group on n letters andBn is the braid group on n strands.
To see that this is the case, consider particles moving on a surface Σ. As time
passes the worldlines of the particles lies in Σ×R.



224 Some aspects of quantum mechanics Chapter D

Figure D.3: Worldlines of particles as they move on a surface.

This is nothing but a geometric braid [47]. The set of such braids can be
given a group structure simply by placing one braid on top of another. In higher
dimension than 2+ 1 however, there is enough space to disentangle the braids,
reducing the effective action on the worldlines to a permutation. This is why the
first homotopy group in d ≥ 3 is the symmetric group. For the symmetric group,
we know that there are two scalar unitary representations, with are simply the
symmetric and antisymmetric representations.

ψ(x1, ..., x i, x j, ..., xn) =ψ(x1, ..., x j, x i, ..., xn) = ei·0ψ(x1, ..., x j, x i, ..., xn)

ψ(x1, ..., x i, x j, ..., xn) = −ψ(x1, ..., x j, x i, ..., xn) = eiπψ(x1, ..., x j, x i, ..., xn)

For a general representation we write the phase factor as eiθ and refer to the an-
gle θ as the statistics type. Bosons correspond to θ = 0, fermions to θ = π. The
particles with statistics associated with the braid group are called anyons and can
take any statistical angle.

It is worth emphasizing that particle statistics is a purely many-body phenom-
ena. It is the topology of the combined many-particle configuration space that
gives rise to the inequivalent ways to quantize a many-body system, not single
particle configuration spaces. It is quite remarkable that this topological effect
can be seen on macroscopic scales, for example in Bose-Einstein condensation.



E
Zeta functions

E.1 The Riemann and Hurwitz zeta functions

Several types of zeta functions has appeared throughout this thesis, both in phys-
ical as well as mathematical contexts. The most famous zeta function is the Rie-
mann zeta function, defined as [26][84]

ζ(s) =
∞
∑

n=1

n−s

where s ∈ C. This series is absolutely convergent for ℜ(s) > 1, and can be
extended to the entire complex plane except the point s = 1 [26]. Some values
for the zeta functions are

ζ(2) =
π2

6
; ζ(4) =

π4

90
; ζ(6) =

π6

945

ζ(8) =
π8

9450
; ζ(10) =

π10

93555

ζ(−2n) = 0

The points −2n are called the trivial zeros of the zeta function. The Riemann
hypothesis states that all on-trivial zeros lie on the line ℜ(s) = 1/2. At the time
of writing this thesis, no solution is in sight.

A generalization of the Riemann zeta function is the Hurwitz zeta function.
Similarly to the Riemann zeta, we have the definition [84]

ζH(s, a) =
∞
∑

n=0

(n+ a)−s
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for positive a. For a = 1 the Hurwitz zeta and the Riemann zeta coincide. We
also have the useful identities

ζH(0, a) =
1
2
− a

ζ′(0, a) = log Γ (a)−
1
2

log 2π

These identities are useful when computing functional determinants in quantum
field theory.

E.2 Spectral ζ-functions and functional determinants

A further generalization of the above zeta functions is the spectral zeta function,
which generalizes the idea of a determinant. In the case of finite dimensional
vector spaces, determinants of operators makes sense as a product over eigen-
values, since a finite product of finite numbers must be finite. However, in the
case where operators have a countably infinite spectrum, it is not so clear how to
define a determinant. The standard trick is to use zeta functions. These infinite
dimensional generalizations of determinants naturally appear in quantum field
theory, which we will show in a simple case of field theory on the circle.

Consider a finite dimensional vector space V and a operator Q : V → V with
spectrum {µn}. We define the spectral zeta function by

ζQ(s) =
∑

n

µ−s
n

Notice that this can be written
∑

exp(−slog(µn)) so that exp(−ζ′q(0)) =
∏

nµn =
detQ. This formula reproduces the determinant as we know it in the finite di-
mensional case. In stead of naively defining the determinant as a product, we
instead use the zeta function definition

detQ = e−ζ
′
Q(0)

which makes sense both in the finite and infinite case. These determinants natural
appear in field theory. Consider first a scalar theory ϕ : R2 → R with partition
function

Z=

∫

Dϕe−
∫

dn xϕQϕ

We expand the fields as
∑

nαnϕn where Qϕn = µnϕn are eigenfunctions of Q
orthogonal in the L2 sense. The freedom in the fields now lie in the coefficients,
and we take as integral measure

Dϕ =
∏

n

dαnp
π
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The partition function then takes the form

Z=

�

∏

n

∫

dαnp
π

�

e−
∑

n α
2
nµn =

∏

n

∫

dαnp
π

e−α
2
nµn = det−1/2(Q)

where we used standard Gaussian integral results. Using our definition of the
determinant we have

Z= exp
�

1
2
ζ′Q(0)

�

In the operator formalism, the creation and annihilation operators for the
fermionic part of Fock space satisfy anticommutation relations to achieve the an-
tisymmetry of fermionic states. In the field integral approach where the fields
are classical, this antisymmetry is introduced trough Grassmann algebras. Recall
that a vector space together with an operation

· :A ×A →A

is called an algebra. A Grassmann algebra is obtained from a vector space with
basis {θi}, i = 1, ..., n with the additional product such that

θi · θ j + θ j · θi = 0

We will not keep writing the ·. Note that θiθi = 0, so a generic element of the
Grassmann algebra is a polynomial that is at most first order in each of the gen-
erators. For example, for n= 2 we could have

f (θ1,θ2) = k0 + k1θ1 + k2θ2 + k12θ1θ2

as any higher order polynomials would include terms like θ 2
1 = 0. Differentiation

is defied as one would expect with

∂ θi

∂ θ j
= δi j

with the additional convention that the theta being differentiated must be moved
all the way to the left. This may induce a few minus signs. For example, again
with n= 2 we have

∂ f
∂ θ1

= k1 + k12θ2

∂ f
∂ θ2

= k2 − k12θ1

Modulo this sign business however, differentiation is nothing new. Integrals on
the other hand is another thing entirely. Note that any integral should satisfy

∂

∂ θi

∫

dθi f (θi) =

∫

dθi
∂ f (θi)
∂ θi

= 0
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if we assume no boundary terms. For Grassmann variable we define the integral
to be the same as the derivative

∫

dθi f (θi) =
∂ f (θi)
∂ θi

This may seem strange, but by applying the derivative we see that

∂

∂ θi

∫

dθi f (θi) =
∂ 2 f (θi)
∂ θ 2

i

= 0

since all elements are maximal of order one.

Consider now the two sets of Grassmann variable {θi} and {θ i}which in some
sense are conjugate variable. We want to evaluate the integral

I =

∫

dθ1dθ 1...dθndθ ne
∑n

i, j=1 θ iMi jθ j

Writing the exponential of the i-sum as the product of exponentials and Taylor
expanding the exponential we have that

e
∑n

i, j=1 θ iMi jθ j =
∏

i

�

1+ θ i

∑

j

Mi jθ j

�

To integrate this notice that integrals over Grassmann algebras essentially picks
out the coefficient with most indices, modulo some signs. In the n= 2 case, as we
then want to integrate over dθ1dθ 1dθ2dθ 2, the only expressions surviving will
have to be those that involve all four generators. Writing out the product these
terms are

θ 1M11θ1θ 2M22θ2 + θ 1M12θ2θ 2M21θ1

Writing the generators in appropriate order, the result after taking the integrals
(e.g. differentiating) is M11M22 −M12M21 = det M. This result generalizes [28],
and we have

I =

∫

dθ1dθ 1...dθndθ ne
∑n

i, j=1 θ iMi jθ j = detM

Notice the difference from the scalar case, where the Gaussian integral of the
same type was det−1/2 M. The partition function for fermionic fields ψ is then of
the form

Z=

∫

DψDψe−
∫

dn xψQψ = exp(−ζ′Q(0))

Of course, the operator Q is usually the Dirac operator D in d dimensions. Note
that both in the scalar and Grassmann case, the field integrals are turned into
spectral problems. In this sense, the fields seem almost auxiliary, in the sense
that they simply appear in order to calculate determinants.
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E.3 Functional determinant on S1

As promised we look at a simple example. Consider the sigma model ϕ : S1→ R
with action

S=

∫

S1

d t(∂tϕ)
2 =

∫

S1

d tϕ(−∂ 2
t )ϕ

where we integrated by parts. Hence, we should calculate the zeta-regularized
determinant of this Laplacian on the circle. First note that−∂ 2

t exp(iat) = a2 exp(iat)
and periodicity on the circle with circumference c implies that an =

p
µn = n2π/c.

Hence the spectral zeta function is

ζ−∂t
(s) = 2

� c
2π

�2s
ζ(2s)

where ζ(2s)is the Riemann zeta function, and the factor of 2 in front comes from
summing over both the negative and positive integers. Differentiating and chang-
ing to the natural variable 2s we have

d
ds
ζ−∂t
(s) = 2

d
d(2s)

�

2
� c

2π

�2s
ζ(2s)

�

= 4log(c/2π)(c/2π)2sζ(2s)+4(c/2π)2sζ′(2s)

Hence at s = 0 we get ζ′−∂t
(0) = −2log(c), by using the zeta function values

from above. The determinant is then det(−∂ 2
t ) = c2, and the partition function

Z= 1/c.
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