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ABSTRACT
In this paper, we present the first results from implementing two scalar–tensor modified gravity
theories, the symmetron and the Hu–Sawicki f(R)-gravity model, into a hydrodynamic N-body
code with dark matter particles and a baryonic ideal gas. The study is a continuation of
previous work where the symmetron and f(R) have been successfully implemented in the
RAMSES code, but for dark matter only. By running simulations, we show that the deviation
from � cold dark matter (�CDM) in these models for the gas density profiles are significantly
lower than the dark matter equivalents. When it comes to the matter power spectrum, we find
that hydrodynamic simulations agree very well with dark matter only simulations as long as
we consider scales larger than k ∼ 0.5 h Mpc−1. In general the effects of modified gravity on
the baryonic gas is found to not always mirror the effects it has on the dark matter, but when it
does, it does it to a lesser extent. The largest signature is found when considering temperature
profiles. We find that the gas temperatures in the modified gravity model studied here show
deviations, when compared to �CDM, that can be a factor of a few larger than the deviations
found in density profiles and power spectra.

Key words: gravitation – hydrodynamics – galaxies: haloes – large-scale structure of Uni-
verse – cosmology: theory.

1 IN T RO D U C T I O N

The current standard model of cosmology is the � cold dark mat-
ter (�CDM) model, and even though it is remarkably accurate in
many aspects, it still has several problems that remains to be solved
(Kroupa et al. 2010). Furthermore, �CDM has no proper moti-
vation for adding the � constant other than the fact that it gives
rise to the acceleration of the expansion of the Universe (Peebles
& Ratra 2003). This can also be explained by introducing a new
fluid known as dark energy (Copeland, Sami & Tsujikawa 2006) to
the matter content of the Universe. Alternatively, the acceleration
of the Universe might be a signal that gravity is modified on the
largest scales. Modifying gravity is usually done by modifying the
Einstein–Hilbert Lagrangian densityLEH = R by replacing it with a
more general function including terms of higher order in derivatives
of the metric (R2, RμνRμν , RαβμνRαβμν . . . ) or by introducing new
dynamical degrees of freedom, such as scalar fields (Capozziello &
de Laurentis 2011), coupled to the matter sector (Brookfield et al.
2006).

General Relativity (GR) have been thoroughly tested in the lab
(Hoyle et al. 2004; Dimopoulos et al. 2007) and in the Solar system
and no deviation have so far been found (Bertotti, Iess & Tortora
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2003; Will 2014). This places strong constrains on any model that
seeks to modify gravity and for such models to have any cosmo-
logical signatures, apart from modifying the background expansion
history, a screening mechanism is required. A screening mechanism
(Khoury 2010; Brax et al. 2012) is a way of suppressing the effects
of modifications of gravity in high-density regions, compared to the
critical density, such as on Earth and in the Solar system. In this pa-
per, we will take a look at the symmetron (Hinterbichler & Khoury
2010) and f(R)-gravity models (Hu & Sawicki 2007), which are but
two of numerous scalar–tensor field theories that possess such a
screening mechanism.

With the ever increasing number of theoretical modified gravity
models it is important to find ways to compare these models to
observations in order to exclude the ones that are not viable. Local
gravity experiments typically gives constrains on modified gravity
models that translates into signatures being in the non-linear regime
of structure formation. Therefore, one of the ways to find useful
observables is to use N-body simulations. So far the majority of the
cosmological N-body community that works with modified gravity
has focused solely on simulations made with collisionless dark
matter (Llinares, Knebe & Zhao 2008; Oyaizu 2008; Schmidt 2009;
Li, Mota & Barrow 2011; Zhao, Li & Koyama 2011; Li et al. 2012;
Barreira et al. 2013; Brax et al. 2013; Li, Zhao & Koyama 2013;
Puchwein, Baldi & Springel 2013; Gronke, Llinares & Mota 2014;
Llinares & Mota 2014; Llinares, Mota & Winther 2014). However,
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in doing so we neglect a wealth of physics, after all what is observed
are photons emitted from luminous matter. To go beyond dark matter
(DM) and try to describe the plethora of baryonic effects that take
place in our Universe is very challenging. Over the last decade,
several codes have been written that combine N-body simulations
with hydrodynamics (Cen 1992; Ryu et al. 1993; Teyssier 2002;
Springel 2005; Vogelsberger et al. 2014) and include recipes for
handling star formation and feedback processes.

So far there has only been, to our knowledge, two attempts at
combining modified gravity with hydrodynamics in N-body codes
(Puchwein et al. 2013; Arnold, Puchwein & Springel 2014). In this
paper, we show the first results from a hydrodynamic N-body code
with the symmetron model, and also reproduce and expand upon
the same f(R)-gravity theory as presented in Puchwein et al. (2013)
and Arnold et al. (2014). The code that this paper is based on is a
slight modification of ISIS (Llinares et al. 2014), which in turn is
a modification of the RAMSES hydrodynamic N-body code (Teyssier
2002). This paper will only concern itself of the modifications made
in order to combine the modified gravity part of the N-body code
with the hydrodynamic part of RAMSES. For more on the implemen-
tation of the scalar fields and other technicalities we refer the reader
to Llinares et al. (2014). The aim of this paper is to study the effects
of modified gravity on the baryonic gas, compared to the effects
that modified gravity has on the DM physics. For this purpose, we
will focus on simple observables such as the matter power spec-
trum and density and temperature profiles for both the DM and gas
components separately.

The structure of this paper is as follows. In Section 2, we give an
introduction to scalar–tensor theories of gravity and take a look at
how the equations differ from those of standard gravity. Section 3
briefly details the code implementations and the run parameters
of our simulations. We show our results for density profiles in
Section 4, for temperature profiles in Section 5 and for power spectra
in Section 6. We finish the paper with a short discussion in Section 7.

2 SC A L A R – T E N S O R TH E O R I E S O F G R AV I T Y

We are interested in scalar–tensor theories that are defined by the
following action (Sotiriou 2006; Fujii & Maeda 2003):

S =
∫

d4x
√−g

[
R

2
M2

pl − 1

2
∂iψ∂iψ − V (ψ)

]

+ Sm(g̃μν, �̃i), (1)

where g is the determinant of the metric tensor, gμν in the Einstein
frame, which is related to the Jordan frame metric tensor g̃μν by a
conformal factor A(ψ),

g̃μν = A2(ψ)gμν, (2)

and R is the Ricci scalar. The conformal factor satisfy A � 1 for all
the models we consider in this paper and we will use this approxima-
tion throughout. For more on these frames and the transformations
between them and possible errors see Faraoni, Gunzig & Nardone
(1999) and Brown & Hammami (2012).

Varying the action with respect to the scalar field and the metric
gives us the scalar field equation of motion and the stress–energy
tensor, respectively,

�ψ = V ′(ψ) − A′(ψ)T (m), (3)

where T(m) is the trace of the stress–energy tensor, T (m) = gμνT (m)
μν ,

and

Tμν = A(ψ)T (m)
μν + T (ψ)

μν

= A(ψ)
[
(P + ρ)uμuν + Pgμν

]

+ ∇μψ∇νψ − gμν

(
1

2
∂iψ∂iψ + V (ψ)

)
. (4)

Note that the total stress–energy tensor is covariantly conserved,
while the scalar field component itself is not

∇νT (ψ)
μν �= 0.

We will now briefly go through the derivation of the fluid equa-
tions we get by using basic principles on the above action, and show
what form they take for the symmetron model and the f(R)-theory.

2.1 The fluid equations

We can derive the fluid equations of scalar–tensor theories from
basic principles. We use the general action equation (1) and stress–
energy tensor equation (4) and start by computing the covariant
derivative of the stress–energy tensor, which is a conserved quantity
(Misner, Thorne & Wheeler 1973)

∇μTμν = 0. (5)

We work in the Newtonian Gauge,

ds2 = −(1 + 2
)dt2 + a2(1 − 2
)δij dxidxj , (6)

and from the conservation of the stress–energy tensor and by im-
posing the quasi-static limit (Llinares & Mota 2013; Noller, von
Braun-Bates & Ferreira 2014) for the scalar field, in which time-
derivatives of the scalar field is ignored relative to spatial gradients,
we find the fluid equations for scalar–tensor theories of gravity,

∂ρ

∂t
+ ∇(vρ) + 3Hρ = 0, (7)

a2(P + ρ)

[
Hv + ∂v

∂t
+ (v · ∇)v + 1

a2
∇


]
(8)

+ ∇P + A′(ψ)

A(ψ)
ρ∇ψ = 0,

∂E

∂t
+ 2HE + P

ρ
· ∇v = −(v · ∇)
 − A′(ψ)

A(ψ)
(v · ∇)ψ. (9)

We now perform a change of variables by implementing a vari-
ation of the so-called supercomoving coordinates, introduced by
Martel & Shapiro (1998),

dt̃ = a−2dt, ρ̃ = a3ρ, ṽ = a2v, (10)

ψ̃ = aψ, P̃ = a5P , 
̃ = a2
, Ẽ = a2E, (11)

where the tildes represent quantities in the supercomoving coordi-
nates. The purpose of these coordinates is to eliminate unwanted
dependences on the scale and Hubble factors. The equations then
take the form1

∂ρ̃

∂t̃
+ ∇(ṽρ̃) = 0, (12)

1 This result is reached by excluding terms of second order and assuming
static pressure and fields.
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∂ṽ

∂t̃
+ (ṽ · ∇)ṽ = − 1

ρ̃
∇P̃ − ∇
̃ − A′(ψ̃)

A(ψ̃)
∇ψ̃, (13)

∂Ẽ

∂t̃
+ ṽ · ∇Ẽ + P̃

ρ̃
· ∇ṽ = −(ṽ · ∇)
̃ − A′(ψ̃)

A(ψ̃)
ṽ · ∇ψ̃, (14)

which are the equations we have implemented in the N-body code.

2.2 Symmetron model

The symmetron model was introduced by Hinterbichler & Khoury
(2010) as a new screening mechanism, similar to the one found in
the Chameleon models (Khoury & Weltman 2004; Mota & Shaw
2007). It utilizes a screening mechanism so that we recover GR
in regions of high density (such as the Solar system where gravity
has been very well tested) whereas we get an order 1 modification
of gravity in low-density regions. This is done by introducing a
potential on the symmetry breaking form

V (ψ) = V0 − 1

2
μ2ψ2 + 1

4
λψ4, (15)

where ψ is the scalar field, μ is a mass scale and λ a dimensionless
parameter.

The coupling factor just mentioned is also chosen to be symmetric
in the same manner as the potential

A(ψ) = 1 + 1

2

(
ψ

M

)2

,

where M is another mass scale.
From the field equation we have that the dynamics of the field is

determined by an effective potential given by

Veff (ψ) = V0 + 1

2

( ρm

M2
− μ2

)
ψ2 + 1

4
λψ4. (16)

In regions of high density (ρm 	 M2μ2), the field is driven towards
the minimum ψ = 0, while in regions of low density we get a

minimum at ψ0 = ±μ
√

1
λ

for which the field will reside close to.
The fifth-force (see below) is proportional to the local value of
the scalar field so in high-density regions ψ ≈ 0 and it will be
suppressed.

We want, however, to work with slightly other parameters, for
which the physical interpretation is more clear, as presented in
Winther, Mota & Li (2012). This entails changing our free param-
eters μ, M and λ to β, λ0 and aSSB like

β = Mplψ0

M2
, (17)

a3
SSB = 3H 2

0 mM2
pl

M2μ2
, (18)

λ2
0 = 1

2μ2
. (19)

Now β represents the strength of the scalar fifth-force (relative to
the gravitational force), aSSB is the expansion factor at the time of
symmetry breaking, and is also related to the density at which the
screening mechanism kicks in via the relation ρSSB = m0ρc0a

−3
SSB,

and λ0 is the range of the scalar fifth-force in units of Mpc h−1.
Further the scalar field itself is replaced by a dimensionless scalar
field χ by

ψ̃ = ψ0χ. (20)

The equation of motion for this scalar field in the quasi-static limit
is (Llinares et al. 2014)

∇2χ = a2

2λ0

[(aSSB

a

)3 ρm

ρm

+ χ3 − χ

]
. (21)

Simulations beyond the static limit were presented in Llinares &
Mota (2013, 2014), finding only sub-per cent differences between
the static and non-static solutions.

The fifth-force in the symmetron model takes the form

Fψ = A′(ψ̃)

A(ψ̃)
∇ψ̃ = ψ̃

M2
∇ψ̃

= 6mH 2
0

(βλ0)2

a3
SSB

χ∇χ, (22)

which is how it is represented in our code. For more on the sym-
metron model we refer to Hinterbichler & Khoury (2010).

2.3 f(R)-gravity

All f(R)-gravity theories revolve around promoting the Ricci scalar
in the Einstein–Hilbert action to a function of the Ricci scalar in-
stead. In the N-body code the Hu–Sawicki f(R) model (Hu & Sawicki
2007) has been implemented and this is the model we focus on in
this paper. The action for f(R)-gravity is given by

S =
∫ √−g

[
R + f (R)

16πG
+ Lm

]
d4x, (23)

and in the Hu–Sawicki model f(R) has the form

f (R) = −m2 c1(R/m2)n

1 + c2(R/m2)n
, (24)

where n, c1 and c2 are the free parameters and m2 = H 2
0 m0. We

can reduce the number of free parameters from three to two by
demanding that c1 = 6c2

�

m
(to yield dark energy) as demonstrated

in Hu & Sawicki (2007). Further it is convenient to use a parameter
fR0 instead of c2 (Llinares et al. 2014)

fR0 = −6n�

c2m

(
�

3(m + 4�)

)n+1

. (25)

By applying the conformal transformation equation (2) to the action
equation (23) using

A(ψ) = e
−βψ
Mpl (26)

with β = 1/
√

6 we recover the general scalar–tensor theory action
equation (1). This model is then further characterized by the fR

function

fR = A2(ψ) − 1 ≈ −2βψ

Mpl
. (27)

In order to get the field-equation on a convenient form for a nu-
merical implementation we must perform a change of variables. As
justified in Oyaizu (2008) we introduce a substitution of the form

fR = −a2eu, (28)

combining this with equation (27) we see that this is essentially a
substitution like

ψ = a2 Mpl

2β
eu ⇒ ∇ψ = a2 Mpl

2β
eu∇u. (29)

In Oyaizu (2008), it has been shown that the equation of motion for
this scalar field is then
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∇ · (eu∇u) = maH 2
0

⎡
⎣(ρ̃ − 1) +

(
1 + 4a3 �

m

)

− a3

(
1 + 4

�

m

) (
a2fR0

) 1
n+1 e− u

n+1

⎤
⎦, (30)

where fR0 is related to the range of the scalar field via λ0 ∝ 1/
√

fR0.
The fifth-force is given by

Fψ = A′(ψ̃)

A(ψ̃)
∇ψ̃ = a2β

Mpl
∇ψ̃

= 1

2
eu∇u, (31)

which is how it is represented in our code. For more on f(R)-theories
of gravity see the review by de Felice & Tsujikawa (2010).

3 C O D E IM P L E M E N TAT I O N A N D
RU N PA R A M E T E R S

Implementing scalar–tensor theories of gravity to the hydrody-
namic part of the N-body code is rather straightforward, thanks
to the scalar–tensor theories all giving contributions as a fifth-force
and the fact that RAMSES, which ISIS is based on, has been widely
used, thoroughly tested and optimized. Wherever the code normally
works with the gravitational force, call it FGR, we simply replace
it with an effective force Feff that includes the effects of modified
gravity

Feff = FGR + Fψ, (32)

which is then naturally permeated throughout the code. For more on
the implementation of the scalar field solver itself see Llinares et al.
(2014). In the next two subsections we present our initial conditions
and other parameters we used in our runs. For both models we
also made a run with standard gravity (�CDM) to use as a base of
comparison. All initial conditions have been generated by using the
GRAFIC code, which is a part of COSMICS (Bertschinger 1999), based
on the parameters described below.

3.1 Parameters for the symmetron simulations

The symmetron simulations were run using 1024 cores, 2563 DM
particles, with a box width of 256 Mpc h−1 and six levels of
refinements. The background cosmology is a standard �CDM
background with h = 0.65, � = 0.65, m = 0.35 and b =
0.05.

The symmetron parameters are presented in Table 1. These pa-
rameters were chosen to focus on various aspects of the symmetron
models. Varying β changes the strength of the fifth-force while
changing aSSB changes the time of symmetry breaking (i.e. it is the
scalefactor for which the fifth-force kicks in) and also the density
criteria for the screening mechanism.

3.2 Parameters for the f(R) simulations

The f(R) simulations were run using 1024 cores, 2563 DM particles
with a box width of 200 Mpc h−1 and eight levels of refinements.

Table 1. Overview of the model pa-
rameters for the symmetron and f(R)
models.

Name β aSSB λψ

Sym_A 1.0 0.5 1.0
Sym_B 1.0 0.33 1.0
Sym_C 2.0 0.5 1.0
Sym_D 1.0 0.25 1.0

Name fR0 n

FofR04 10−4 1
FofR05 10−5 1
FofR06 10−6 1

The background cosmology is a standard �CDM background with
h = 0.70, � = 0.727, m = 0.272 and b = 0.045.2

The f(R) parameters are presented in Table 1. These parameters
as briefly introduced above were chosen as they give the full range
of effects found in the model: from almost no screening and large
deviations from �CDM for FofR04 to much screening and small
deviations from �CDM for FofR06. The main effect of changing
fR0 is to change the range over which the fifth-force is acting on and
also the density threshold for screening.

4 D ENSI TY PROFI LES

In this section, we present density profiles for multiple haloes identi-
fied by using the ROCKSTAR code developed by Behroozi, Wechsler &
Wu (2013) and incorporated into the YT-Project (Turk et al. 2011).
We filter all the haloes that have not reached a relaxed state. This
is done by following the methods described in Neto et al. (2007)
and Shaw et al. (2006), where we use relations between the kinetic
and potential energy and the surface pressure to determine if a halo
is relaxed or not. We used the method presented by Gronke et al.
(2014) to take into account the effects of modified gravity in the
virialization state of the haloes. A halo is defined to be relaxed if∣∣ 2T −Es

U

∣∣ ≤ 0.2. See Gronke et al. (2014) for more on this limit and
its implications.

We are also interested in seeing how the behaviour depends on
the mass of the haloes. We will therefore study haloes with masses
in the ranges 1–5 × 1013 and 1–5 × 1014 h−1 M�. The density
profiles are calculated by binning DM particles and the baryonic
gas density in annular bins for each halo, then averaging over all
haloes. We focus only on the present day epoch which corresponds
to z = 0.

Our calculated density profiles are averages of all density profiles
of the proper size, ranging from 10 per cent of the virialization
radius, r = 0.1R200c, to ten times the virialization radius, r = 10R200c.
This range was chosen to properly catch all behaviours of the fifth-
force on the DM and gas haloes while also avoiding the inner
regions of the haloes where the resolution of our simulations is not
sufficient.

In Fig. 1, we present the deviations from �CDM of the density
profiles for the DM and the baryonic gas for the symmetron model,
while in Fig. 2 we present the same figures for the f(R)-gravity
model.

2 These �CDM parameters were chosen to coincide with those of Puchwein
et al. (2013) to enable cross-checking.
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Figure 1. The top figures show the deviations from �CDM for our symmetron models for CDM and baryons, respectively, for all density profiles with a mass
between 1014 and 5 × 1014 h−1 M�. The bottom figures show the same for all density profiles with a mass between 1013 and 5 × 1013 h−1 M�.

Figure 2. The top figures show the deviations from �CDM for our f(R) models for CDM and baryons respectively for all density profiles with a mass between
1014 and 5 × 1014 h−1 M�. The bottom figures show the same for all density profiles with a mass between 1013 and 5 × 1013 h−1 M�.
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Figure 3. The left-hand figure show the gas temperature profiles for �CDM and our symmetron models for all haloes with a mass between 1014 and
5 × 1014 h−1 M�, the right-hand figure show the deviations from standard �CDM for the same models.

The DM density profiles for modified gravity show in general
stronger clustering at the outskirts of the haloes than the inner
regions. The additional force from the scalar field will increase the
rate at which DM and the gas collapses towards the centre. When
the density criteria is then met and the fifth-force is screened the
DM particles will have gained such velocities that they overshoot
the centre of the halo and does not cluster there. The particles that
overshoot the centre will then end up in the outskirts as we see in
the density profile deviations.

We observe that overall the gas profiles behave closer to the
�CDM counterpart than that we find in the DM profiles. In pre-
vious works similar effects on the power spectra have been at-
tributed to AGN feedback (Puchwein et al. 2013). In our simulations
however we do not have these effects, as we chose to implement
only the most rudimentary of baryonic components, a perfect fluid,
clearly this effect is much more intrinsic to baryons than before
assumed.

What we see here might be an environmental effect, from the
DM, on the gas component. The DM collapses faster than the gas
component, due to the CDM being collisionless while the gas com-
ponents are hindered from collapsing due to friction and pressure
as enforced by the Euler equations (12) and (13), this means that
the DM will cluster faster than the gas and reach higher densities
earlier than the gas. The total density, DM and gas, will trigger the
density criteria that turns on the screening mechanism before the
baryonic gas has had a chance to collapse as much as the DM. In
other words, DM cuts off the fifth-force before it has had the time to
work on the gas component to the same effect as it does on the DM.

As seen in Table 1, we remember that all our symmetron simu-
lations have the same coupling strength and force range, but with
varying symmetry breaking criteria. The exception is Sym C which
has the same symmetry breaking criteria as Sym A, but with twice
the coupling strength. Due to this we will temporarily ignore Sym
C when studying the effects of the symmetron parameters.

We immediately see that the lower aSSB is, meaning the fifth-force
has been acting upon the Universe for a longer time and also screens
at a higher density, the bigger the deviations from �CDM are in the
extremities of the density profile plots, with the differences between
the models being smallest near the virialization radius. One might
naı̈vely expect that models with a lower aSSB should break off from
�CDM closer to the centre of the halo, where the density is higher;

however, it is clear from these profiles that the length of time that
the fifth-force has been working on the particles is the stronger of
the two effects.

Returning to Sym C, we note that the increased coupling strength
amplifies the amplitude of Sym A, while also making it behave as
if it had a slightly lower aSSB than it actually has, in short it simply
boosts the effects of the fifth-force. Looking at the low-mass figures
we note that the profiles follow the same trend as before, but that
the effects from the stronger coupling in Sym C is much stronger.
This is due to the fact that the haloes of this mass range have sizes
that are approximately of the order of the force range and we get a
stronger resonance.

For the f(R) case the main difference between the parameters is
the range of the fifth-force, and the behaviour of these f(R)-gravity
models have been discussed before in Lombriser et al. (2013). What
is worth noticing is that we observe the same behaviour when com-
paring the DM density profiles to the gas density profiles as we did in
the symmetron case. The only exception is for the high-mass haloes
in the FofR06 simulation, which is the model closest to �CDM, as
is expected, in the DM case. However, the gas profiles show slightly
lower clustering in the inner regions than what we have for the DM
(similar to what we see for Sym B, but to a larger extent).

5 TEMPERATURE PROFI LES

In this section, we provide the temperature profiles for the haloes
in our simulations. The motivation for showing this is that the
temperature of the gas in our Universe is one of the direct, and
easiest, observables that we can use to compare to our results,
furthermore this is something that, to our knowledge, has never
before been presented for modified gravity theories. To calculate
the temperature from the simulations we utilize the ideal gas law,

p = RsρT , (33)

where p is the thermal pressure, Rs = kB
mH

is the specific gas constant

and p/ρ is provided to us from the simulation output.3 In Figs 3
and 4, we show both the profiles and the deviations in the profiles

3 The profiles we show are mass-weighted, i.e. T =
∑

miTi∑
mi
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Figure 4. The left-hand figure show the gas temperature profiles for �CDM and our f(R) models for all haloes with a mass between 1014 and 5 × 1014 h−1 M�,
the right-hand figure show the deviations from standard �CDM for the same models.

Figure 5. Gas temperature deviations from standard �CDM for our f(R)
models for haloes with a mass between 1013 and 5 × 1013 h−1 M�.

with respect to �CDM for our symmetron and f(R)-gravity models,
respectively, while in Figs 5 and 6 we show the deviations for the
smaller set of halos.

For the models we have simulated the screening properties for
(DM) Navarro-Frenk-White (NFW) haloes have been studied in
Gronke et al. (2014) and these results are very useful to understand
the results we find.

The first thing to notice from the temperature profiles is that
the effect of modified gravity can be larger than what we find in
the density profiles and power spectra. This is a similar kind of
signature as has been found in the velocity field in modified gravity
simulations previously (Li et al. 2013) and not surprising as the
temperature of the gas is closely related to how fast (and faster
means more turbulent) the gas is moving.

The largest haloes we study are so massive today that they have
been screened (as modifications of gravity is a late time effect
in our models) during most of their evolution. This is also re-
flected in the temperature profiles for FofR05, FofR06 and all
the symmetron models where we see a close to zero deviation
in the centre of the largest haloes. The only exception is FofR04
where we see a deviation even in the centre. As seen in fig. 6

Figure 6. Gas temperature deviations from standard �CDM for our sym-
metron models for haloes with a mass between 1013 and 5 × 1013 h−1 M�.

of Gronke et al. (2014) all of our simulations, except FofR04,
have a large degree of screening for our largest halo mass range.
FofR04 does not have much screening even for the largest haloes
and consequently the modifications of gravity are active inside our
most massive haloes leading to a non-zero deviation even in the
centre.

FofR04 is our simulation that is closest to act as a linear (non-
screened) model. For this reason the modification in the temper-
ature profiles is close to a constant over the whole profile for
both mass-ranges. This is to be expected since if we neglect the
finite interaction range of the fifth-force then the modifications
of gravity can be thought of as just a rescaling of the strength
of gravity (i.e. of Newton’s constant). For FofR04, the difference
in amplitude in the temperature with respect to �CDM is seen
to be slightly larger in the centre for our smallest haloes. This
is likely related to the range of the fifth-force, being density de-
pendent and smaller for denser objects, making the effect of the
fifth-force (through not much screened) smaller for the largest
haloes.

For FofR05, we see a modification in the centre only for our
smallest haloes. This is also to be expected from fig. 6 in Gronke
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et al. (2014) which shows that for FofR05 our large haloes are
very much screened, but our small haloes are not much screened.
For FofR06, we see only a very small (a few per cent) devia-
tion in the temperature for both of our haloes mass-ranges over
the whole profile again consistent with the findings of Gronke
et al. (2014). The FofR06 model has the highest amount of
screening and generally the shortest range of all models and to
see sizeable deviations in this model we would need to go to
much smaller halo masses which is beyond the resolution of our
simulations.

For the symmetron models, we also see the effect of the additional
symmetron screening mechanism. Sym D is the symmetron model
that has the least amount of (non-linear) screening and the fifth-
force has been in operation for the longest time. However, opposed
to FofR04, the deviation in the centre of the largest haloes is rather
small. The reason for this is that the coupling to matter β(ϕ) ∝ ϕ is
field-dependent and goes to zero for large and dense haloes giving
rise to additional screening which we do not have the f(R) model
where β is a constant. This effect suppresses the modifications of
gravity inside large haloes even though we do not have a large degree
of (non-linear) screening. For the other symmetron models (Sym A
mostly), we also have a large degree of non-linear screening further
suppressing the fifth-force and thereby suppressing the deviations
seen in the temperature profiles.

The temperature profiles show all the different aspects of screen-
ing we have in the models we have simulated and because of this
we would also expect to see an environment dependence of the
temperature profiles for haloes residing in different environments
similar to what was found in Winther et al. (2012) for DM haloes.
This is left for future work.

6 POW ER SPECTRA

The power spectra were computed using the publicly available
POWMES code (Colombi & Novikov 2011), for both the DM and
the gas. In order to use POWMES to compute the gas power spectrum
we needed to extract the mass of each cell from the density of the
cell. This is done by assigning a mass to grid cells using

m = ρVcell, (34)

where ρ and Vcell correspond to the gas density and volume of each
cell.

We will start by studying the effects modified gravity have on the
ratio between the gas power spectrum and the DM power spectrum,

b = PDM

Pgas
. (35)

In Figs 7 and 8, we show the fractional difference of the gas–
DM bias with respect to �CDM for both the f(R) and symmetron
simulations, respectively. We first note how the bias is strongly scale
dependent. At large scales (k � 0.5 h Mpc−1) we see that all theories
converge to the bias of �CDM. However, once we move to smaller
scales k � 0.5 h Mpc−1 we see that the deviations of the bias grow
at an increasing rate for most models.

Looking at Sym A, B and D (again, Sym C mirrors Sym A, but
is more extreme) we see that the bias can both be higher and lower
than the �CDM bias depending on aSSB. The bias seem to rotate
in a clockwise motion as aSSB increases. We also see a direct link
between the strength of the coupling and the increased deviations in
the bias when comparing Sym A and Sym C. For the f(R) simulations
we see that FofR04 has a bias that increases strongly when we go to
smaller scales, whereas FofR05 and FofR06 has a bias that is close

Figure 7. We show the deviation of the bias from �CDM, for f(R) gravity.

Figure 8. We show the deviation of the bias from �CDM for the symmetron
model.

to �CDM. It should be pointed out that Sym A and Sym B together
with FofR05 and FofR06 are the most realistic models, whereas
FofR04 and Sym D are extremes (which most likely can be ruled
out already based on current data). The main thing we observe is that
the behaviour of the bias can be very different depending on how
long the fifth-force have been in operation, the range over which it
acts, the coupling strength to matter and the amount of screening
that is in play. This makes it hard to give a general prediction for
what the gas does in these theories as it is very dependent on the
model parameters. However, we do notice that it is in the simulations
where we have a lower degree of screening (Sym D, FofR04 and to
a lesser degree Sym B) that the relative bias grows significantly with
scale. A possible explanation for this is that it is only the very dense
gas inside clusters that experience much screening of the fifth-force
and therefore do not cluster as expected.

In Figs 9 and 10, we present the deviations of the DM and
gas power spectra for the symmetron models and the f(R)-gravity
theories from �CDM, respectively. For both models we see that
the majority of the models peak at approximately 1 h Mpc−1,
which is the scale at which streaming velocities reach a value
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Figure 9. The left- and right-hand figures show the power-spectrum deviations from standard �CDM for our various f(R) models for CDM and baryons,
respectively.

Figure 10. The left- and right-hand figures show the power-spectrum deviations from standard �CDM for our various symmetron models for CDM and
baryons, respectively.

large enough to prevent further clustering. The results for DM is
found to be in good agreement with existing simulations in the
literature.

We start by noting a direct correlation between the amplitude
of the power-spectrum deviations and the time since symmetry
breaking. The longer time the fifth-force has had a chance to work
on the DM particles and the gas the larger deviations from �CDM
we find, in agreement with expectations.

Further we see that the higher aSSB we have, the lower the scale
at which the screening mechanism starts, we might have expected
a complete opposite effect as the density usually increases as we
go to smaller and smaller scale, however, this is clearly not what
we observe. This might tell us that the screening mechanism is less
effective for these values than naively expected.

By looking at Sym C, we can see the sensitivity of the power
spectrum with regards to the strength of the fifth-force. We observe
that the effect of doubling the strength of the force compounds dras-
tically in the non-linear regime, particularly for the gas component.

For the f(R) case we know that in the FofR04 simulations we have
much less screening than in the FofR05 and FofR06 simulations (as

can be observed by comparing full simulations with linearized no-
screening simulations, see Li et al. 2011). It is only in the most dense
regions of the simulation box where the fifth-force is significantly
screened for FofR04. As the most dense regions in the simulation
box largely consist of highly clustered baryonic gas, the gas will
experience much more screening than the DM counterpart and this
effect can explain the large growth of the bias with scale as we
observe for FofR04. For models where the screening mechanism
works effectively, like for FofR05 and FofR06 the fifth-force seem
to affect the DM and gas equally well.

7 D I SCUSSI ON

In this paper, we have studied the effects modified gravity has on
structure formation with DM and a baryonic gas. The aim being to
study the effects of modified gravity on the baryonic physics in its
simplest form.

We ran several simulations with 2563 particles for the symmetron
and f(R)-gravity models, respectively. With the data from these
simulations, we analysed the density profiles and power spectra for
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both the DM and gas components, while also commenting on the
behaviour of the gas–DM bias.

We have shown that great care must be taken when trying to
rule out modified gravity theories by comparing observations to the
DM predictions, as the addition of the baryonic gas reduces the
deviations from �CDM significantly, at least for density profiles.
The smaller effect of modified gravity on the gas density profiles
compared to the effect it has on the DM density profiles is most
likely due to an environmental effect from the DM. Namely that
the total density ρ tot = ρDM + ρgas gets sufficiently high to trigger
the screening mechanism before the gas component has had enough
time to be acted upon by the extra force to give the expected impact.
The collisionless nature of DM give rise to a lower density at the
inner regions of the DM haloes than the inner region density of the
gas haloes.

The analysis of power spectra shows us that it is mainly in the
non-linear regime that the differences between the DM and the
gas cases are significant, in agreement with previous findings. The
power spectrum is highly sensitive to the range of the scalar field,
and especially sensitive to the time that the fifth-force has had to
affect the content of the Universe.

We have found that temperature profiles of clusters can be a strong
signature of modified gravity. The deviation from the �CDM pre-
dictions can be a factor of a few larger than the same deviations
found in the density profiles and power spectra, and much more
sensitive to the fifth-force then previously assumed. It is also im-
portant to notice that the effects that modified gravity theories have
on the baryonic gas does not always exactly mirror the effects it has
on the DM.

Using these newfound characteristics of the symmetron and f(R)-
gravity models of modified gravity on the temperature we can start
comparing to probes of gravity such as in Terukina et al. (2014)
or as suggested in Jain et al. (2013) and hopefully produce better
constraints.

It is worth to note that our study have only focused on a simple
baryonic gas without taking into account important physical effects
we know take place in our Universe. In the future we aim to extend
this work by adding such effects as feedback and cooling into our
code. Feedback effects will particularly be interesting to see whether
they enhance the deviations we already observe or not, whereas
cooling might have significant effects on the extremities of the
temperature profiles, where we observe the extreme deviations.
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