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We investigate the variation of the fine-structure constant, α, in symmetron models using N-body sim-
ulations in which the full spatial distribution of α at different redshifts has been calculated. In particular, we
obtain simulated sky maps for this variation, and determine its power spectrum. We find that in high-density
regions of space (such as deep inside dark matter halos) the value of α approaches the value measured on
Earth. In the low-density outskirts of halos the scalar field value can approach the symmetry breaking value
and leads to significantly different values of α. If the scalar-photon coupling strength βγ is of order unity we
find that the variation of α inside dark matter halos can be of the same magnitude as the recent claims by
Webb et al. of a dipole variation. Importantly, our results also show that with low-redshift symmetry break-
ing these models exhibit some dependence of α on lookback time (as opposed to a pure spatial dipole)
which could in principle be detected by sufficiently accurate spectroscopic measurements, such as those of
ALMA and the ELT-HIRES.
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I. INTRODUCTION

These are exciting times for cosmology and particle
physics. They both have successful standard models, which
are in agreement with a plethora of experimental and obser-
vational data. Nevertheless, there are also strong hints that
neither of these models is complete. In particular, the obser-
vational evidence for the acceleration of the Universe [1,2]
(which presently adds up to several tens of standard
deviations, if all available data are combined) implies
the existence of new, currently undiscovered physics.
The question is then what new degrees of freedom may
be relevant, and what consistency tests can be used to
confirm their presence.
After a quest of several decades, the recent LHC detection

of a Higgs-like particle [3,4] finally confirms that fundamen-
tal scalar fields are part of nature’s building blocks. A press-
ing follow-up question is whether the associated field has a
cosmological role, or indeed if there is another cosmological
counterpart. Regardless of the answer to these questions
scalar fields are ubiquitous as explanations for a range of
theoretical paradigms in cosmology—including possible
explanations for the acceleration itself.
Moreover, when a new dynamical degree of freedom

such as a scalar field is responsible for the recent acceler-
ation, one can show [5] that if it couples to the rest of the
model (which it will naturally do, unless one postulates a
new symmetry principle to suppress these couplings) it
will also lead to variations of nature’s dimensionless

fundamental couplings, which one can hope to detect
through direct astrophysical or local (laboratory) measure-
ments [6]. There have been several claims of variations of
the fine-structure constant α at the parts per million level,
culminating in the recent evidence for a dipole in the
variation [7,8]. If confirmed, then this is direct evidence
of new physics.
Do the fundamental constants vary? In addition to its

intrinsic relevance, answering this question has key impli-
cations for cosmology and fundamental physics, and in par-
ticular can shed light on the enigma of dark energy [9–13].
An ESO-VLT Large Program, whose data analysis is
ongoing [14,15], is trying to clarify this issue, but an unam-
biguous answer may have to wait until a new generation of
high-resolution ultrastable spectrographs such as PEPSI,
ESPRESSO and ELT-HIRES is available. Moreover, a res-
olution demands not only better data, but also independent
ways to search for these variations, which may confirm or
contradict these indications.
In this paper we will investigate whether the tentative

claims of α variations can be explained in the context of
scalar-tensor modifications of gravity by looking at a par-
ticular modified gravity model, the symmetron.
The simplest model that produces a variation of α is

obtained by promoting the fine-structure constant to a
scalar field via the field-strength tensor F2

μν → fðφÞF2
μν.

A spacetime variation of φ will then induce a variation
of α [16–18].
In the symmetron model [19,20], the vacuum expecta-

tion value (VEV) of a scalar field depends on the local mass
density, becoming large in regions of low density, and small
in regions of high density. The coupling of the scalar to
matter is proportional to the VEVand this leads to a viable
theory where the scalar can couple with gravitational
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strength in regions of low density, but is decoupled and
screened in regions of high density. This is achieved
through the interplay of a symmetry breaking potential
and a universal quadratic coupling to matter. In vacuum,
the scalar acquires a VEV which spontaneously breaks
the Z2 symmetry φ → −φ. In the regions of sufficiently
high matter density, the field is confined near φ ¼ 0,
and the symmetry is restored. The fifth force arising from
the matter coupling is proportional to φ making the effects
of the scalar small in high density regions.
The cosmology of coupled scalar field models is usually

strongly constrained by local gravity experiments, which
put limits on the range and the coupling strength of the
scalar field [21–23]. For the symmetron this restricts the
Compton wavelength of the scalar field to be less than a
few megaparsecs in vacuum. There do exist cases in which
signatures on the linear perturbations are found [24,25], but
in most cases the signatures are found in the nonlinear
regime. If the symmetry breaking happens in the very early
Universe the symmetron could act as the inflaton [26];
however in this case the late time cosmology is indistin-
guishable from Cold Dark Matter (ΛCDM).
In [25,27] the effects on nonlinear structure formation

using N-body simulations were investigated. Such studies
have shown that the fifth force leads to an enhancement of
the matter power spectrum on nonlinear scales and in the
low mass tail of the halo mass function. Another interesting
signature found in the model, and other scalar-tensor modi-
fied gravity models, is an environmental dependence of
observables [28]. In [29] a significant difference between
the lensing and dynamical masses of dark matter halos
was found in the symmetron model which depends on both
the halo’s mass and environment.
The key feature in such scalar-tensor theories which

leads to the environmental dependence of certain physical
observables is the clustering and the spatial inhomogene-
ities of the scalar degree of freedom. The latter, due to
the coupling to baryons and dark matter, becomes inhomo-
geneous at scales of its Compton wavelength. Within the
framework of varying alpha models, this was computed
in [16] in the linear regime and in [17,18] in the nonlinear
regime of structure formation. Spatial inhomogeneities in
the gravitation constant, G, were calculated in [30].
The setup of this paper is as follows. In Sec. II we give a

brief review of the symmetron model, in Sec. III we present
the results from the analysis of the N-body simulations and
in Sec. IV we present the numerically determined power
spectrum for the α variations and compare it with an ana-
lytic estimate. Finally in Sec. V we present the conclusions.
In this paper we use units of c ¼ 1 throughout.

II. THE SYMMETRON MODEL

In this section we give a brief review of the symmetron
model. This is not meant to be exhaustive, but only to
describe the aspects that will be relevant for our analysis.

We refer the reader to the literature already cited above for a
more detailed description. The symmetron model is a sca-
lar-tensor modification of gravity described by the action

S ¼
Z

dx4
ffiffiffiffiffiffi−gp �

R
2
M2

pl − 1

2
ð∂ϕÞ2 − VðϕÞ

�

þ SmðΨm; gμνA2ðϕÞÞ (1)

where g ¼ det gμν,Mpl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
, Sm is the matter action

and we have used units of ℏ ¼ c≡ 1. The matter fields Ψm
are coupled to the scalar field via a conformal coupling

~gμν ¼ gμνA2ðϕÞ: (2)

Because of this coupling the matter fields will experience a
fifth force, which in the nonrelativistic limit is given by

F⃗ϕ ≡ dAðϕÞ
dϕ

∇⃗ϕ ¼ ϕ∇⃗ϕ
M2

(3)

where the last equality only holds for the symmetron.
For the symmetron the potential is chosen to be of the
symmetry breaking form

VðϕÞ ¼ − 1

2
μ2ϕ2 þ 1

4
λϕ4 (4)

where μ is a mass scale and the conformal coupling is
chosen as the simplest coupling consistent with the poten-
tial symmetry ϕ → −ϕ

AðϕÞ ¼ 1þ 1

2

�
ϕ

M

�
2

(5)

where M is a mass scale and λ a dimensionless coupling
constant. A variation of the action with respect to ϕ gives
the field equation

∇2ϕ ¼ dVeff

dϕ
: (6)

The dynamics of ϕ is determined by the effective potential

Veff ¼ VðϕÞ þ AðϕÞρm
¼ 1

2

�
ρm

μ2M2
− 1

�
μ2ϕ2 þ 1

4
λϕ4: (7)

In the early Universe when the matter density is high the
effective potential has a minimum at ϕ ¼ 0 where the field
will reside. As the Universe expands the matter density
dilutes until it reaches a critical density ρSSB ¼ μ2M2 for
which the symmetry breaks and the field moves to one
of the two new minima ϕ ¼ �ϕ0 ¼ μ=

ffiffiffi
λ

p
.

The fifth force between two test particles residing in a
region of space where ϕ ¼ ϕlocal can be found to be
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Fϕ

Fgravity
¼ 2β2

�
ϕlocal

ϕ0

�
2

; β ¼ ϕ0Mpl

M2
(8)

for separations within the Compton wavelength λlocal ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Veff;ϕϕðϕlocalÞ

p
of the scalar field. For larger separations

the force is suppressed by a factor e−r=λlocal. In the cosmo-
logical background before symmetry breaking ϕlocal ≈ 0
and the force is suppressed. After symmetry breaking
the field moves towards ϕ ¼ �ϕ0 and the force can be
comparable with gravity for β ¼ Oð1Þ. In high density
regions, like the Sun and our Galaxy, nonlinear effects
in the field equation ensure that the force is effectively
screened thereby evading local gravity constraints.
In the following discussion it will be convenient to intro-

duce the variables

aSSB ¼
�
ρm0

ρSSB

�
1=3

(9)

λϕ0 ¼
1ffiffiffi
2

p
μ

(10)

together with the already defined quantities

β ¼ ϕ0Mpl

M2
(11)

ρSSB ¼ μ2M2: (12)

Here β is the coupling strength relative to gravity, ρSSB is
the density in at which the symmetry is broken, aSSB is the
corresponding scale factor for when this happens in the
cosmological background and λϕ0 is the range of the fifth
force when the symmetry is broken. Local gravity con-
straints [19,21,24,25] force the range of the field to satisfy

λϕ0 ≲Mpc=h (13)

for symmetry breaking close to today, i.e. aSSB ∼ 1.

A. Coupling ϕ to electromagnetism

The electromagnetic field is unaffected by a conformal
transformation because of the conformal invariance of the
EM action, SEMðAμ; gμνA2ðϕÞÞ≡ SEMðAμ; gμνÞ. We can
however consider generalizations where the EM field is
coupled to the scalar field via

SEM ¼ −
Z

dx4
ffiffiffiffiffiffi−gp

A−1
γ ðϕÞ 1

4
F2
μν: (14)

With this coupling we still have that perfect fluid radiation
does not affect the Klein-Gordon equation for the scalar
field because the stress-energy tensor of the EM field is
traceless. This coupling leads to the fine-structure constant
depending on ϕ as

α ¼ α0AγðϕÞ (15)

where α0 is the laboratory value.
We will consider two different coupling functions below.

1. Quadratic coupling

The simplest choice for Aγ, compatible with the ϕ → −ϕ
symmetry of the symmetron, is

AγðϕÞ ¼ 1þ 1

2

�
βγϕ

M

�
2

(16)

where βγ is the scalar-photon coupling relative to the scalar-
matter coupling; i.e. a value of βγ ¼ 1 implies that the
scalar-photon coupling is the same as the scalar-matter cou-
pling. Avariation ofϕ leads to a variation of the fine-structure
constant α with respect to the laboratory value α0:

Δα
α

¼ AγðϕÞ − 1 ¼ 1

2

�
βγϕ

M

�
2

: (17)

For the symmetron we have

1

2

�
βγϕ

M

�
2 ≃ β2β2γ

�
0.5
aSSB

�
3
�
ϕ

ϕ0

�
2
�

λϕ0
Mpc=h

�
2

×

�
Ωm0

0.25

�
× 10−6: (18)

For our fiducial model parameters aSSB ∼ 0.5, β ∼ 1, λϕ0 ∼
1 Mpc=h we can have a maximum variation of alpha,
achieved in the broken phase ϕ ¼ ϕ0, of

Δα
α

����
max

≃ β2γ × 10−6 (19)

which for βγ ∼ 1 are close to the recent analysis by Webb
et al. [7,8].

2. Linear coupling

Another possibility is the well-motivated exponential
coupling

AγðϕÞ ¼ e
βγϕ

Mpl ≃ 1þ βγϕ

Mpl
(20)

which we have expanded as a linear function since the
argument of the exponential is required by observations
to be much less than unity. However, this coupling does
not respect the ϕ → −ϕ symmetry. For the symmetron
model we find
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Δα
α

¼ βγϕ

Mpl

¼ βγβ

�
0.5
aSSB

�
3
�
ϕ

ϕ0

��
λϕ0

Mpc=h

�
2
�
Ωm0

0.25

�
× 10−6 (21)

which for βγ ∼ 1 is again of the same order as found above
for the quadratic coupling. In [31] it was shown that quantum
effects captured by the change of the fermion measure in the
path integral imply this type of coupling with βγ ≃ 0.023.
The implications for the symmetron were studied in [32].
Note that in the last scenario the variation is proportional

to ϕ instead of ϕ2. This means that the variation can have
both signs if the symmetry is broken differently in different
places in the Universe, i.e. if we have domain walls. At a
naive, qualitative level, a domain wall–based scenario
capable of accounting for the claimed dipole would simul-
taneously require low tension walls (so they evade other
cosmological constraints) and presumably a number of
walls per Hubble volume of order unity; those two require-
ments are not necessarily compatible for the simplest
domain wall models [33,34], although they may be made
so with some fine-tuning [35,36]. This will be interesting to
study further, although it will require N-body simulations
where the full time evolution of the scalar field is solved [37].
We thus leave these issues for subsequentwork, and in the rest
of this paper we will only consider the quadratic coupling.

III. Analysis of N-body simulations

Wewill quantify the possible variations of α in this class of
models by resorting toN-body simulation results, inwhich the
full spatial distribution of ϕ at different redshifts has been
calculated. Variations of α have been studied in N-body sim-
ulations for theBekenstein-Sandvik-Barrow-Magueijomodel
in [38,39]. The N-body simulations for the symmetron which
we use were taken from the analysis in [25].
The physical parameters used in the simulations are as

follows: the present dark-energy fractional energy density
ΩΛ ¼ 0.733 and Ωm ¼ 0.267, H0 ¼ 71.9 km=s=Mpc,
ns ¼ 0.963 and σ8 ¼ 0.801. These values are consistent
with the WMAP7 best-fit ΛCDM model [40]. The size
of the simulation box is 64 Mpc=h, in which h ¼ H0=
ð100 km=s=MpcÞ and N ¼ 2563 dark matter particles were
used. The background evolution in the symmetron model is
very close to that of ΛCDM justifying this choice.
However, the presence of a fifth force in the simulations
alters structure formation. An example of this can be seen
in Fig. 1 where we show the mass function for our symme-
tron simulations (presented below) compared to ΛCDM.
The symmetron parameters for the three simulations (all

performed with the same initial density configuration) we
have analyzed are1

A∶ aSSB ¼ 0.66; λϕ0 ¼ 1.0; β ¼ 1.0 (22)

C∶ aSSB ¼ 0.50; λϕ0 ¼ 1.0; β ¼ 1.0 (23)

E∶ aSSB ¼ 0.33; λϕ0 ¼ 1.0; β ¼ 1.0: (24)

Thus the three models have symmetry-breaking phase tran-
sitions at redshifts of 0.5, 1 and 2 respectively, well within
the range of current optical and radio tests of the stability of
fundamental couplings [6].
The value of β does not influence the solution to the

Klein-Gordon equation directly—only indirectly in the
clustering of matter. This implies that the value of α for
a model with a different value of β will be the same modulo
differences in structure formation. In the limit β → 0 the
power spectrum, mass function and other clustering related
observables reduce to those of ΛCDM.

A. Variation of α inside dark matter halos

We first extract the position of the particles in the
simulation and the corresponding scalar-field values.
Then we run the halo-finder code Amiga Halo Finder
[41] to locate the halos. Having identified the location
of the halos we bin the particles belonging to the different
halos and the scalar-field values to get the scalar-field pro-
files for halos of different sizes.
In Figs. 2–4 we show the halo profile inside halos of

different masses at redshifts z ¼ 0 and z ¼ 1. Instead of
plotting ϕðrÞ directly we show the corresponding variation
of α (relative to the value measured on Earth)

Δα
α

¼ 1

2

�
βγϕðrÞ
M

�
2

: (25)

As expected from the screening property of the model,
larger halos correspond to smaller values of ϕ. We also

10-4

10-3

1012 1013 1014

n(
M

)

M  (Msun/h)

Λ CDM
Model A
Model C
Model E

FIG. 1. Mass function for the symmetron models A, C and E
at z ¼ 0. For comparison, the mass function of ΛCDM is also
shown.

1The simulation’s labels correspond to those in [25].
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see that models where the symmetry breaks early on have
larger values of ϕ. This is also as expected from the screen-
ing property; the earlier the symmetry breaks the larger is
the critical density threshold for screening.
For all the models we have considered here, the varia-

tion of α from inside to outside of dark matter halos is of
order ∼10−5β2γ. Thus for the scalar-photon coupling βγ of
order unity the variation of α from Earth to the outskirts
of dark matter halos is of the same order of magnitude as
the tentative claims by Webb et al. [7,8]. Comparison of
Figs. 2 and 4 also suggests a moderate redshift depend-
ence of the values of α. Although currently available
measurements do not have the sensitivity to search for
these effects, they should be detectable by the next
generation of ultrastable spectrographs, for example by
observing lines of sight where several absorption clouds
can be found [14].

B. Skymaps of Δα=α
In Fig. 5 we show the variation of α over the whole sky at

z ¼ 0 for the models A, C and E. The maps are produced by

first placing an observer at the center of our N-body
simulation box and then projecting down the values of α
for all particles within a sphere with comoving radius R ¼
60 Mpc=h centered around the observer. In other words,
the maps show the value of α across the whole sky for a
thin redshift slice around a given redshift.
We see a clear correlation with the time symmetry break-

ing takes place and the fraction of the sky where α deviates
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FIG. 2. Variation of α inside halos of different masses
(M ¼ 5 × 1012 Msun=h above and M ¼ 5 × 1013 Msun=h below)
for models A, C and E at z ¼ 0.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1 1

∆α
 / 

α 
(1

0-5
β γ

2 )

r (Mpc/h)

M=1x1014

M=5x1013

M=1x1013

M=5x1012

0

0.05

0.1

0.15

0.2

0.25

0.1 1

∆α
 / 

α 
(1

0-5
β γ

2 )

r (Mpc/h)

M=1x1014

M=5x1013

M=1x1013

M=5x1012

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 1

∆α
 / 

α 
(1

0-5
β γ

2 )

r (Mpc/h)

M=1x1014

M=5x1013

M=1x1013

M=5x1012

FIG. 3. Variation of α inside halos of different masses for
models A (top), C (middle) and E (bottom) at z ¼ 0.
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from its value on Earth. For model E, symmetry breaking
takes place at redshift zSSB ≡ 1=aSSB − 1 ¼ 2 and almost
all the sky (at z ¼ 0) except inside massive clusters shows
a large Δα=α deviation. For model A where symmetry
breaking takes place at zSSB ¼ 0.5 a larger fraction of
the sky will have the same value as on Earth. In all the
maps, the value of α is highly correlated with the matter
density field as we found from the halo analysis (see also
the next two sections).
In Fig. 6 we show Δα

α over the whole sky at three different
redshifts for model E. As we go back in time a larger frac-
tion of the sky obtains α≃ α0. For redshifts z > zSSB the
whole sky (except very shallow voids) will have α≃ α0.
This implies that if α is found to deviate from α0 at redshift
z� then zSSB > z� is required for the symmetron model to be
able to explain it.

C. Variation of α with ambient matter density

We investigate the correlation between the variation of α
and the ambient matter density. For each N-body particle
we calculate the ambient matter density and the average
value of α in a sphere of radius r ¼ 1 Mpc=h around

the particle. The binned (in ρ=ρ̄) result can be seen in
Fig. 7. The spread in the figure shows the 1σ deviation from
the average in each bin.
This spread in values of α for any given density contrast

ρ=ρ̄ is a result of the local scalar field value depending
not only on the density, but also the local environment.
If we had, for example, an absorption cloud located inside
a large cluster and an identical cloud at the outskirts of a
cluster then in this class of models the values of α would
differ.
The environmental dependence of the scalar field

value can have other interesting signatures. For example,
in [29] it was found that this leads to an environmental
dependence on the dynamical and lensing mass
estimates of dark matter halos in the symmetron
model.
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FIG. 4. Variation of α inside halos of different masses for
models C (top) and E (bottom) at z ¼ 1.0.

FIG. 5 (color online). The variation Δα
α over the sky at z ¼ 0 for

models A (top), C (middle) and E (bottom).
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IV. THE α POWER SPECTRUM

The matter power spectrum is a useful way to character-
ize the clustering scales of matter in the Universe. Likewise,
a power spectrum of α will track the clustering scales of the
scalar field (which determines α). As we shall see below,
the α power spectrum is closely related to the matter power
spectrum for the symmetron model.
At the linear level and in the quasistatic approximation

we have that the perturbations of the scalar field in Fourier
space, ϕðk; aÞ ¼ ϕ̄ðaÞ þ δϕðk; aÞ, satisfy [42]

δϕ≃− ρ̄m
Mpl

βa2

k2 þ a2m2
ϕ

�
ϕ̄

ϕ0

�
δm (26)

where m2
ϕ ¼ Veff;ϕϕðϕ̄Þ is the scalar field mass in the cos-

mological background, δm is the matter density contrast and

FIG. 6 (color online). The variation Δα
α over the sky for model E

at z ¼ 0 (top), z ¼ 1 (middle) and z ¼ 2 (bottom).
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FIG. 7 (color online). The variation Δα
α as function of the am-

bient matter density contrast for the models A (top), C (middle)
and E (bottom). The spread shows the 1σ variation from the aver-
age value. Note the different scale of the vertical axis in each case.
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k is the comoving wave number. The Fourier modes of α at
linear scales then become

αðk; aÞ
α0

¼ 1þ 1

2

�
βγðϕ̄þ δϕÞ

M

�
2

≃ ᾱðaÞ
α0

þ β2γ ϕ̄δϕ

M2
(27)

¼ ᾱðaÞ
α0

−
�
ϕ̄

ϕ0

�
2
�
ρ̄m
M2

pl

β2γβ
2a2

k2 þ a2m2
φ
δm

�
(28)

where ᾱðaÞ≡ α0ð1þ 1
2
ðβγϕ̄ðaÞM Þ2Þ is the value of α corre-

sponding to the scalar field value in the cosmological back-
ground. To construct a power spectrum of α it is convenient
to compare αðk; aÞ relative to ᾱðaÞ since

αðk; aÞ − ᾱðaÞ
α0

≃−β2γβ2 3Ωm

a
H2

0

k2 þ a2m2
ϕ

δm (29)

is directly proportional to the matter perturbation δm.
We therefore define

Pα−ᾱðk; aÞ≡
����� αðk; aÞ − ᾱ

α0

����
2
�

(30)

Using Eq. (29) we find

Pα−ᾱðk; aÞ ¼
�
3ΩmH2

0β
2
γβ

2

aðk2 þ a2m2
ϕÞ

�
ϕ̄

ϕ0

�
2
�
2

Pmðk; aÞ (31)

where Pmðk; aÞ ¼ hjδmðk; aÞj2i is the matter power spec-
trum. The background field value and the scalar field mass
are given by [25]

� ¯ϕðaÞ
ϕ0

�2

¼
�
1 −

�
aSSB
a

�
3
�
; a ≤ aSSB (32)

m2
ϕðaÞ ¼

1

λ2ϕ0

�
1 −

�
aSSB
a

�
3
�
; a ≤ aSSB (33)

and by using H0 ¼ h
2.998×103 Mpc we get

Pα−ᾱðk; aÞ ¼
�
0.33 ·Ωm10

−6β2γβ2

aððk=mϕÞ2 þ a2Þ
�

λϕ0
Mpc=h

�
2
�
2

Pmðk; aÞ:
(34)

In Fig. 8 we plot the α − ᾱ power spectrum at the present
time, calculated from our simulations, together with the
analytical result above. PmðkÞ is taken to be the full non-
linear matter power spectrum and we have normalized the
analytical result to agree with the numerical one on large
scales.2 The analytical result Eq. (31) is based on

perturbation theory, but gives a remarkably good fit (mod-
ulo a constant factor) up to k ∼ 3 h=Mpc which coincides
with the particle Nyquist frequency of the simulation and
the grid used to calculate the power spectrum (in other
words we cannot trust the results for larger wave numbers).
This result implies that the perturbations in the scalar

field track the matter perturbations very closely even in
the nonlinear regime. In modified gravity models with a
screening mechanism such as the symmetron this sort of
effect is expected as the scalar field will sit close to the min-
imum of the effective potential, which is determined by the
local matter density, in most regions of space.
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FIG. 8 (color online). The (α − ᾱ) power spectrum at z ¼ 0 for
the models A, C and E (solid) together with the analytical expres-
sion Eq. (31) (dashed).
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FIG. 9 (color online). The (α − α0) power spectrum at z ¼ 0 for
the models A, C and E (solid).

2The normalization constant is found to be well described by
x ¼ 0.06 · ð0.5=aSSBÞ3.
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For comparison, in Fig. 9 we show the α − α0 power
spectrum, Pα−α0ðk; aÞ≡ hj αðk;aÞ−α0α0

j2i, at the present time.
As expected, an earlier symmetry breaking leads to
more power.

V. CONCLUSIONS

We have investigated variations of the fine-structure
constant in a particular class of scalar-tensor modified grav-
ity model known as the symmetron. In these models the
VEV of a scalar field depends on the local mass density,
becoming large in regions of low density, and small in
regions of high density. The coupling of the scalar to matter
is proportional to the VEVand this leads to a viable theory
where the scalar can couple with gravitational strength
[β ¼ Oð1Þ] in regions of low density, but is decoupled
and screened in regions of high density. By coupling the
scalar field to the electromagnetic field-strength tensor a
spacetime variation of the scalar field will then induce a
variation of α.
The scalar field approaches ϕ ≈ 0 in high-density regions

of space (such as deep inside dark matter halos) and the
corresponding value of α approaches the value measured
on Earth. In the low-density outskirts of halos the scalar
field value can approach the symmetry breaking value
ϕ ≈ ϕ0 and leads to values of α different from the one

we measure on Earth. If the scalar-photon coupling strength
βγ is of order unity we found that the variations of α inside
dark matter halos are at the same level as the tentative
claims by Webb et al. [7,8].
Our results also show that with low-redshift symmetry

breaking these models exhibit some dependence of α on
lookback time, as opposed to a pure spatial dipole. As
the analysis of Webb et al. shows, currently available data
are insufficient to distinguish between these two scenarios.
It is clear that it also lacks the sensitivity to probe the char-
acteristic environmental dependence. Nevertheless, both of
these signatures can in principle be detected by sufficiently
accurate spectroscopic measurements, such as those of
ALMA and the ELT-HIRES.
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