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In order to satisfy limits on the allowed variation of particle masses from big bang nucleosynthesis until

today, the chameleon scalar field is required to reach its attractor solution early on in its cosmological

evolution. Brax et al. [Phys. Rev. D 70, 123518 (2004)] have shown this to be possible for certain specific

initial conditions on the chameleon field at the end of inflation. However the extreme fine-tuning necessary

to achieve this poses a problem if the chameleon is to be viewed a natural candidate for dark energy. In this

paper we revisit the behavior of the chameleon in the early universe, including the additional coupling to

electromagnetism proposed by Brax et al. [Phys. Lett. B 699, 5 (2011)]. Solving the chameleon evolution

equations in the presence of a primordial magnetic field, we find that the strict initial conditions on the

chameleon field at the end of inflation can be relaxed, and we determine the associated lower bound on the

strength of the primordial magnetic field.
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I. INTRODUCTION

Gravity theories which extend general relativity by
introducing a new degree of freedom have received
increased attention lately due to combined motivation
coming from high-energy physics, cosmology and astro-
physics; see Ref. [1] for a recent review. If they claim to
account for dark energy or dark matter, then they are only
valid if they pass the many weak-field limit tests. For many
this is only possible if they have a chameleon mechanism
[1–5]. Such mechanisms have the effective mass of the
scalar degree of freedom being a function of the curvature
(or energy density) of the local environment, so that in
effect the mass is large at Solar System and terrestrial
curvatures and densities, but small at cosmological curva-
tures and densities.

The original chameleon model was formulated by
Khoury and Weltman [5,6] as a scalar field model for
dynamical dark energy. It is a scalar-tensor theory in which
the new degree of freedom is identified with the chameleon
field in the Einstein frame. The interaction of the chame-
leon � to matter is through the conformal metric
A2
mð�Þg��. It was later shown in Ref. [7] that the coupling

of the chameleon to charged matter naturally generates a
direct coupling between the chameleon and electromag-
netic field of the form AFð�ÞF��F

��. This extra term

should not be neglected in these models. The interaction
between the chameleon and electromagnetic fields leads to
conversion between chameleons and photons in the pres-
ence of a magnetic field, which has the potential to alter the
intensity and polarization of radiation passing through
magnetic regions. The astrophysical and laboratory tests

for this direct chameleon-photon interaction have been
investigated extensively [8–18]. We discuss the chameleon
model in more detail in Sec. II.
The early universe behavior of the chameleon, consid-

ering only the interaction of the chameleon with matter
species, was analyzed by Brax et al. in 2004 [19]. They
assumed that the chameleon field was generated at some
phase transition during inflation, and that at the end of
inflation the field value was left at some arbitrary position
within the effective potential. The chameleon then rolls to
the minimum of its effective potential and in some cases
oscillates about it. Brax et al. [19] assumed a 10% limit on
the variation of particle masses from big bang nucleosyn-
thesis (BBN) until today which requires the maximum
amplitude of the chameleon oscillations to be below a
certain threshold at BBN. Their analysis, which neglected
the electromagnetic interaction, found that the chameleon
field initial conditions needed to be strongly fine-tuned if
the chameleon’s approach to the minimum were to satisfy
the constraints placed on the field at BBN. In this paper we
reanalyze the early universe behavior of the chameleon,
but this time including the direct coupling between the
chameleon and electromagnetic fields. We find that a pri-
mordial magnetic field (PMF), produced from some
symmetry-breaking phase during inflation, can drive the
chameleon towards the minimum of its potential more
quickly. Thus satisfying the constraints at BBN for a
much wider range of initial conditions.
The existence of a large-scale PMF in the early universe

is a matter of current debate. It has so far gone undetected
by observations and only upper bounds at the OðnGÞ level
have been placed on its magnitude. Theories explaining the
origin of the PMF are speculative, but it has been suggested
that a large-scale magnetic field could be produced during
inflation if the conformal invariance of the electromagnetic
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field is broken [20–26]. See Ref. [27] for a recent review. A
PMF is often invoked to explain the order �G magnetic
fields observed in nearly all galaxies and galaxy clusters.
The origin of these galactic magnetic fields is unclear, but a
natural argument is that they develop by some form of
amplification from a pregalactic cosmological magnetic
field. Two popular formation scenarios are either some
exponential dynamo mechanism which amplifies a very
small seed field of order 10�30 G as the galaxy evolves or
the adiabatic collapse of a larger existing cosmological field
of order ð10�10�10�9Þ G. See Refs. [28–32] for reviews on
the subject. The generic model for the primordial magnetic
field is of a stochastic field parametrized by a power-law
power spectrum,PðkÞ ¼ ABk

nB , up to a cutoff scale k < kD,
where AB is some normalization constant. The spectral
index nB must be greater than �3 to prevent infrared
divergences in the integral over the power spectrum at
long wavelengths. Normalization of the power spectrum
is achieved by convolving the magnetic field with a
Gaussian smoothing kernel of comoving radius �B

[33,34]. Constraints on the PMF are then derived in terms
of the mean-field amplitude B� of the smoothed field, the
smoothing scale �B and the spectral index nB. Kahniashvili
et al. [33] placed bounds on the magnitude of the PMF from
comparing the WMAP 5-year data to predicted cosmic
microwave background (CMB) power spectra that included
Faraday rotation effects induced by a PMF. They found that
the upper limit on the mean-field amplitude of the magnetic
field on a comoving length scale of �B¼1Mpc was in the
range 6� 10�8–2� 10�6 G (95% CL) for a spectral index
nB ¼ �2:9 to �1. This range for the spectral index was
based on the likely formation scenarios for the primordial
magnetic field [20–23] and current exclusion bounds on the
spectral index [35]. More recent work analyzing the
WMAP 5-year data in combination with other CMB experi-
ments such as ACBAR, CBI and QUAD have placed tighter
constraints on the amplitude of the PMF with B1Mpc<

2:98�10�9 G and spectral index nB <�0:25 (95% CL)
[36]. An analysis of the latest WMAP 7-year data by
Ref. [37] derived upper bounds of B1Mpc<5:0�10�9 G

and nB<�0:12 (95% CL).
This paper is organized as follows: We begin in Sec. II

by introducing the chameleon scalar field model and deriv-
ing the equations governing the chameleon behavior in the
early universe. Section III is dedicated to finding a semi-
analytic solution to the evolution of the chameleon for a
range of initial field values at the end of inflation. We
discuss our results in Sec. IV. We determine the implied
bounds on the primordial magnetic field and chameleon
parameters from satisfying constraints at BBN in Sec. V,
and conclude with a summary of our findings in Sec. VI.

II. THE CHAMELEON SCALAR FIELD MODEL

In this section we outline the chameleon scalar field
model, and derive the equations governing the chameleon’s

cosmological evolution. This analysis includes the direct
coupling between the chameleon and electromagnetic
fields. We consider the effects of a background primordial
magnetic field and ignore the second order contribution
from the interaction of the chameleon with electromag-
netic radiation.
The action describing the chameleon scalar field model

is that of a generalized scalar-tensor theory:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
M2

PlR� 1

2
g��@��@��� Vð�Þ

� 1

4
AFð�ÞF��F

��

�
þ

Z
d4xLmatterðc ðiÞ; A2

i ð�Þg��Þ;
(1)

where MPl ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
8�G

p
is the reduced Planck mass, and we

have explicitly included the kinetic term of electromagnetism
outside the matter Lagrangian. The above theory is expressed
in the Einstein conformal frame, in which the scalar field� is
minimally coupled to gravity. In the Jordan frame, described

by the metric gðiÞ�� � A2
i ð�Þg��, the matter fields c ðiÞ are

minimally coupled to gravity and are independent of �;
however in the Einstein frame the different matter species
couple to the scalar field through the conformal metric
A2
i ð�Þg��. It is standard practice to assume the chameleon

couples to the different matter species equally so Aið�Þ ¼
Amð�Þ. The coupling between the chameleon and electro-
magnetic gauge fields is determined by the function AFð�Þ.
Although the strength of the chameleon interaction with
matter and electromagnetism is likely to be of similar mag-
nitude, we do not require it. The coupling functions Amð�Þ
and AFð�Þ are generically taken to be of exponential form:
expð�=MÞ and expð�=MFÞ respectively. For most situations
the chameleon is in theweak-field limit,� � M,MF, and so
the coupling functions can be Taylor expanded:

Am � 1þ�=M; AF � 1þ�=MF;

where 1=M and 1=MF describe the strength of the chame-
leon to matter and photon interactions respectively.
In this analysis, we take the Universe to be described by

a Friedmann-Robertson-Walker metric and assume ap-
proximate spatial flatness, so that

d s2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; (2)

where t is cosmological time and aðtÞ is the time-
dependent scale factor describing the expansion, normal-
ized to a0 ¼ 1 today.
The equation of motion for the � field comes from

varying S with respect to ��:

h� ¼ V0ð�Þ þ 1

4
F2A0

Fð�Þ � 1ffiffiffiffiffiffiffi�g
p �Lmatter

��
;

where h� � 1ffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
g��@��Þ, and for the metric in

Eq. (2),
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h� ¼ � €�� 3H _�þ 1

a2
r2�;

where HðtÞ � _a=a is the Hubble expansion rate. The
stress-energy tensor in the Jordan frame is defined by

TðiÞ
�� � �2ffiffiffiffiffiffiffiffiffiffiffi�gðiÞ

p �Lmatter

�g��
ðiÞ

;

in which particle masses are constant and independent
of �. This leads to

h� ¼ V 0ð�Þ þ 1

4
F2A0

Fð�Þ � A3
mð�ÞA0

mð�Þg��
ðiÞ T

ðiÞ
��:

The stress-energy tensor for a perfect fluid with density �
and pressure p is

T�	 ¼ ð�þ pÞu�u	 þ pg�	;

where the 4-velocity of the cosmological fluid is
u� ¼ ð1; 0Þ in this metric, and so T�� ¼ diagð�; a�2p;
a�2p; a�2pÞ. The contraction of the stress-energy tensor
is then T

�
� ¼ ��þ 3p. The energy densities in the physi-

cal Einstein frame, defined by T�� � �2ffiffiffiffiffi�g
p �Lmatter

�g�� , are re-

lated to those in the Jordan frame by T
�
� ¼ A4

mT
�ðiÞ
� . Thus

h� ¼ V 0ð�Þ þ 1

4
F2A0

Fð�Þ � T�
�A�1

m ð�ÞA0
mð�Þ: (3)

In general � is in the weak-field limit and so we can
approximate A�1

m ð�Þ � 1. This allows us to define an
effective potential that the chameleon moves in,

Veffð�Þ � Vð�Þ þ 1

4
F2AFð�Þ � T�

�Amð�Þ: (4)

These equations determine the behavior of the chameleon
in the early universe in the presence of a primordial mag-
netic field. In general F2 ¼ 2ðjBj2 � jEj2Þ and T

�
� ¼

��m, where E and B are the background electric and
magnetic fields respectively and �m is the density of the
surrounding matter. The mass of small perturbations, m�,

in the chameleon field is given by

m2
� � Veff

;��ð�min; �F
2; ��mÞ; (5)

where �F�� and ��m are the background values of the fields,
and �min is the minimum of the effective potential.

The Friedmann equations governing the expansion of
the Universe are also modified by the presence of chame-
leon dark energy:

3M2
Pl

�
_a

a

�
2 ¼ �� þ �EM þ �;

6M2
Pl

�
€a

a
þ

�
_a

a

�
2
�
¼ ð�� � 3p�Þ þ ð�� 3pÞ;

where we have defined the energy density and pressure in

the scalar field, neglecting spatial variations in �, as �� �
_�2=2þ Vð�Þ and p� � _�2=2� Vð�Þ respectively, and

defined the conserved energy density in the electromag-
netic field by �EM � AFð�ÞðjBj2 þ jEj2Þ=2. Combining
these two equations leads to the conservation equation
for each species,

�i ¼ �i0a
�3ð1þwiÞ; (6)

where p ¼ wi� defines the equation of state parameter wi.
For radiation we have w ¼ 1=3, while for nonrelativistic
matter w ¼ 0. In general the energy density in the back-
ground electromagnetic fields is much less than the energy
density of relativistic matter in the Universe, �r, and so

3M2
PlH

2ðaÞ ¼ �� þ �m0a
�3 þ �r0a

�4; (7)

which is the standard expression for the Hubble expansion
in the presence of dynamical dark energy.
Equations (3) and (7) form the starting point for our

analysis of the chameleon evolution in the early universe.
The remainder of this section is dedicated to a brief
summary of the properties of the chameleon model, and
the experimental bounds that have been placed on its
parameters.
The self-interaction potential of the scalar field, Vð�Þ,

determines whether a general scalar-tensor theory is
chameleon-like or not. For a chameleon we require the
mass of small perturbations about the minimum to depend
on the surrounding matter density. This imposes that Vð�Þ
is of runaway form; in other words it is monotonically
decreasing and all of V, (V;�=V) and (V;��=V;�) tend to

zero as � tends to infinity, and to infinity as � tends to
zero. A typical choice can be described by

Vð�Þ ¼ �4
0 exp

�
�n

�n

�
; (8)

where n�Oð1Þ. This is also the desired form for quintes-
sence models of dark energy [38]. For the chameleon to
be a suitable dark energy candidate, we require �0 ¼
ð2:4� 0:3Þ � 10�3 eV, and we assume ��Oð�0Þ for
reasons of naturalness. The resulting chameleon effective
potential is plotted for two different values of �m in Fig. 1.
The shape of the effective potential depends on both the
background electromagnetic (EM) fields and the density of
the surrounding matter. In this plot we neglect the EM
contribution and assume Amð�Þ ’ expð�=MÞ. From this
we can see that the curvature of the effective potential at
the minimum increases as the density of the surrounding
matter, �m, increases. Thus, in the low density environ-
ments of space the chameleon is very light and can drive
the cosmic acceleration, while in high density environ-
ments, such as in the laboratory, the chameleon is much
heavier and evades detection.
Nonlinear self-interactions in the chameleon model also

help the scalar field satisfy fifth-force constraints through a
property termed the thin-shell effect [6,39]. In the thin-
shell effect the bulk of the variation in the � field, from its
equilibrium value inside a test body to its equilibrium value
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in the surrounding medium, occurs in a narrow band at the
surface of the body. The acceleration felt by a test mass
from the force mediated by the chameleon particle is
proportional to 1

Mr�. Thus for a thin-shelled object, it is

as if the chameleon field only interacts with the narrow
band of matter near the surface of the test body where the
variation in� occurs, and the resulting fifth force mediated
by the chameleon is strongly suppressed. In general large,
dense objects have thin shells while smaller objects do not.
The strength of the chameleon-matter coupling 1=M is
constrained by existing laboratory experiments [39–43].
The best direct bound comes from particle physics experi-
ments, M * 104 GeV [39,42,43].

The strength of the chameleon to photon interaction
1=MF is more tightly constrained. Laser-based laboratory
searches for these particles, such as PVLAS [44,45] and
GammeV [46], place an upper bound on the strength of the
photon interaction, MF * 106 GeV. However, the effects
of chameleon-photon mixing will accumulate most during
propagation through large-scale astrophysical magnetic
fields, and so these scenarios offer the best testing ground
for the theory. The constraint coming from considering the

limits on the production of starlight polarization in the
galactic magnetic field is MF * 1:1� 109 GeV [17],
while measurements of the Sunyaev–Zel’dovich effect in
galaxy clusters place a lower bound on MF in the range
MF * ð0:25–1:14Þ � 109 GeV, depending on the model
assumed for the cluster magnetic field [14,15].

III. THE CHAMELEON EVOLUTION

In this section we proceed to solve the chameleon evo-
lution equations, developed in the previous section, for a
range of initial field values at the end of inflation. This is a
nontrivial task since the equations governing the chame-
leon are highly nonlinear. While it is possible to approxi-
mate the behavior of the chameleon near the minimum of
its potential by a harmonic oscillator, the field at the end
of inflation is likely to lie far away from this point and so
the assumption of linearity breaks down. A numerical
approach to solving the evolution equations exactly is
also extremely difficult due to the very different scales
governing the two sides of the effective potential. In this
analysis we find a semianalytical solution to the chameleon
evolution, using the shape of the potential to our advantage
in making a few simplifying assumptions.
There are a number of steps necessary to build up a

framework for solving the chameleon behavior: in
Sec. III A we determine that an attractor solution exists
for the chameleon in which the field rolls along the slowly
varying minimum of its effective potential. In Sec. III B we
solve for the initial trajectory of the field towards the
minimum and discuss the necessary assumptions that are
applied to its effective potential. In Sec. III C we iterate this
solution to solve for the subsequent oscillations of the
chameleon. An extra contribution to the chameleon evolu-
tion comes from particle species dropping out of thermal
equilibrium, which we include in our calculations in
Sec. III D.

A. Evolution along the attractor

The effective potential describing the chameleon behav-
ior was defined in Eq. (4). The minimum of the potential
will evolve over time as the energy density in the matter
and electromagnetic fields decreases with the expansion of
the Universe. We begin our analysis by checking that the
minimum provides a viable attractor solution for the cha-
meleon when the electromagnetic interaction is included in
the chameleon model. This requires the evolution of the
potential to be slow enough for the chameleon to respond
to these changes and follow the minimum. We follow a
similar procedure to that outlined in Ref. [19].
The shift in the minimum of the potential is as a result of

the expansion of the Universe, and so the characteristic
time scale for the change is approximately a Hubble time
H�1. The characteristic response time of the chameleon is
the period of oscillations about the minimum which is
given by m�1

� . For the chameleon to adjust quickly enough

φ

V
ef

f(φ
)

V(φ)

ρ
m

exp(φ/M)

φ

V
ef

f(φ
)

ρ
m

exp(φ/M)

V(φ)

FIG. 1 (color online). The chameleon effective potential, Veff ,
is the sum of the scalar potential, Vð�Þ, and a density-dependent
term. In high density environments (upper plot) the mass of the
chameleon is much greater than in low density environments
(lower plot).
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to changes in the position of the minimum, the ratiom�=H

needs to be greater than one.
The minimum of the effective potential occurs when

V 0
effð�Þ ¼ 0, for which

V 0ð�minÞ þ �PMF

MF

þ �m

M
¼ 0;

where we have defined the energy density in the PMF,
�PMF � jBj2=2. We assume �min � M, MF such that
A0
m � 1=M and A0

F � 1=MF. For the self-interaction
potential given in Eq. (8) we have

n�n��ðnþ1Þ
min Vð�minÞ ¼ �PMF

MF

þ �m

M
: (9)

Substituting into the expression for the chameleon mass (5)
and rearranging,

m2
� ¼ 1

�

�
�PMF

MF

þ �m

M

��
ð1þ nÞ �

�min

þ n

�
�

�min

�
nþ1

�

þ �PMF

M2
F

þ �m

M2
:

Under the assumptionM�MF and taking �min � M, we
approximate

m2
�

H2
� 3M2

Plð�PMF þ�mÞ
�M

�
ð1þ nÞ �

�min

þ n

�
�

�min

�
nþ1

�
;

where �PMF � �PMF=3H
2M2

Pl and �m � �m=3H
2M2

Pl are

the fractional energy densities in the magnetic field and in
nonrelativistic (matter) degrees of freedom respectively. In
the limit �min � �,

m2
�

H2
� 3M2

Plð�PMF þ�mÞ
�M

n

�
�

�min

�
nþ1

*
3nM2

Plð�PMF þ�mÞ
�M

:

The smallest value of the function, �PMF þ�m,
occurs at early times (�m � 10�7 at a� 10�23) and
for the limiting case of �PMF ¼ 0. The largest natural
value for the mass parameter of the chameleon coupling
M is OðMPlÞ. Taking �� 10�3 eV and n�Oð1Þ, we
expect

m2
�

H2
* 1024:

Similarly for the limit when �min � �,

m2
�

H2
� ð1þ nÞ 3M

2
Plð�PMF þ�mÞ

�M

�

�min

;

and we can approximate Vð�minÞ � �4 in Eq. (9) to deter-
mine �min. Then,

m2
�

H2
� 3ð1þ nÞM2

Pl

�M

�
3M2

PlH
2

nM�3

� 1
nþ1ð�PMF þ�mÞnþ2

nþ1:

The function ðHH0
Þ2ð�PMF þ�mÞnþ2 is minimized at late

times. It is greater than 10�5 for all n�Oð1Þ. Again taking
M�MPl and �� 10�3 eV, we expect

m2
�

H2
* 1031� 35

nþ1:

Thus, we can confirm that at all times the ratio m�=H is

much greater than unity, and so the minimum does provide
a viable attractor solution for the chameleon. Once the
chameleon has settled to the minimum of its potential it
will always be able to track the minimum as the Universe
expands.

B. Approaching the minimum of the potential

We now turn our attention to the approach of the cha-
meleon to the attractor solution. Although the origin of the
chameleon field is speculative, it is reasonable to assume
that it is produced at some phase transition during inflation,
and that at the end of inflation the field value is left at some
arbitrary position within the effective potential. We expect
the field to roll to the minimum of the potential, and
oscillate about the minimum before then settling to its
equilibrium value. The presence of a large-scale magnetic
field provides an additional source term driving the cha-
meleon to its minimum. The Universe becomes a good
conductor during the reheating phase at the end of infla-
tion, after which any electric fields in the Universe will be
dissipated and the primordial magnetic field becomes
frozen-in, so that from then on jBj2 / a�4.
The equations governing the chameleon evolution were

derived in Sec. II. Assuming the field is spatially homoge-
neous, Eq. (3) simplifies to

� d2�

dt2
� 3H

d�

dt
¼ V0ð�Þ þ �PMFA

0
Fð�Þ � T

�
�A0

mð�Þ;
(10)

which describes a weakly damped oscillator, where the
friction term proportional to H is due to the expansion of
the Universe. The evolution of HðtÞ was given in Eq. (7).
Prior to BBN the Universe is radiation dominated and so
we can approximate

H2ðaÞ ’ H0�r0a
�4; (11)

where�r0 � 8�G�r0=3H
2
0 is the fractional energy density

in radiation. In general the stress-energy tensor T�
� ¼

��m, where �m is the energy density in nonrelativistic
matter. Soon after reheating, all particle species are rela-
tivistic and so the driving term in the chameleon effective
potential has T�

� � 0. However, as the Universe cools the
particles drop out of thermal equilibrium. This causes a
short-lived contribution to T�

� which can significantly
affect the chameleon as it rolls to the minimum. We follow
[19] and refer to these contributions as ‘‘kicks.’’ The first
kick occurs at a redshift of approximately z� 1014 as the
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top quark drops out of thermal equilibrium. To start with
we neglect this contribution and solve for the initial behav-
ior of the chameleon. We include the contribution from
these kicks in Sec. III D.

Neglecting the contribution from the kicks for now, the
effective potential characterizing the chameleon motion in
Eq. (4) can be expressed as

Veffð�Þ ¼ �4 exp

�
�

�

��n þ �PMF exp

�
�

MF

�

þ �m exp

�
�

M

�
:

Notice that M, MF � � and so the left-hand side of the
potential with �<�min is many orders of magnitude
steeper than that for �>�min. The exponential decay of
the functions means that for �<�min the potential is
almost entirely dominated by Vð�Þ, while for �>�min

the dominant driving force is from the �m and �PMF

terms. This strong asymmetry in the chameleon effective
potential allows us to make a few simplifying assump-
tions so that the chameleon evolution can be determined
analytically.

Whenever �>�min we assume Vð�Þ is negligible.
Approximating Amð�Þ, AFð�Þ � 1, we can solve for the
evolution along this side of the potential so that Eq. (10)
becomes

1

a2
H

d

da

�
a4H

d�

da

�
’ ��PMF0

MF

a�4 � �m0

M
a�3;

where we have converted from cosmological time to the
scale factor using the relation HðaÞ � _a=a. The contribu-
tion from (nonrelativistic) matter, �m, will be negligible
prior to BBN and can be omitted. Substituting Eq. (11) for
the evolution of the Hubble expansion, we find

d�

da
¼ �	a�1 þ Aa�2;

�ðaÞ ¼ �	 loga� Aa�1 þ B;

(12)

where

	 � �PMF0=�r0H
2
0MF: (13)

The constants A and B are determined by the initial
conditions.

Conversely, when �<�min the �PMF term is negligible
compared to Vð�Þ. The friction term proportional to H in
Eq. (10) is also negligible since the steepness of the po-
tential dominates. The roll up or down on this side of the
potential will be very rapid and we treat it as instantaneous.
Thus as the chameleon approaches from larger field values,
Vð�Þ acts as a perfect elastic collision.

We assume the chameleon starts from rest at some initial
value �i at the end of inflation, ai � 10�23. For starting
values with�i & �min, the chameleon falls very quickly to
the minimum and overshoots to the other side of the

potential before coming to a halt. The self-interaction
potential Vð�Þ dominates the initial roll to the minimum.
From Eq. (10),

d2�

dt2
’ �V0ð�Þ;

and so the velocity as it shoots past the minimum is �;t ’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vð�iÞ

p
[since Vð�iÞ � Vð�minÞ]. We treat this as instan-

taneous and occurring at a ¼ ai. Beyond the minimum the
evolution is determined by Eq. (12). The initial conditions,

�ðaiÞ ¼ �minðaiÞ and �;aðaiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vð�iÞ

p
=aiHðaiÞ, deter-

mine the constants A and B. Substituting, we find that the
field comes to a halt at

amax ’ ai þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vð�iÞ

p
	HðaiÞ ai;

�max ¼ �	 ln
amax

ai
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vð�iÞ

p
HðaiÞ ;

where we have assumed �max � �min. The chameleon
will then start to fall back towards the minimum and evolve
identically to the case when �i � �min, but with amax and
�max as the initial conditions. Depending on the size of the
background magnetic field and the initial starting value for
the chameleon field, either the field falls to the minimum
and starts oscillating about it, or the friction term domi-
nates and the field remains frozen at its initial value until
the first kick occurs as the top quark drops out of thermal
equilibrium.

C. Oscillations about the minimum

In general, the velocity of the chameleon when it first
reaches the minimum will be very large and cause it to
overshoot. It will then oscillate about the minimum with a
large amplitude which gradually decays due to the damp-
ing term from the Hubble expansion. We apply the
approach outlined in the previous section to iterate over
multiple oscillations and determine the evolution of the
amplitude of the chameleon oscillations.
Let us consider a single oscillation which starts from rest

at � ¼ �1 at some time a1 with �1 � �min. The field is
governed by Eq. (12) as it rolls to the minimum.
Substituting the initial conditions to determine A and B
gives

d�

da
’ �	a�1

�
1� a1

a

�
;

���1 ’ �	

�
log

�
a

a1

�
þ a1

a
� 1

�
:

At the minimum,
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d�

da

���������min

’ �	a�1
min

�
1� a1

amin

�
;

�min ��1 ’ �	

�
log

�
amin

a1

�
þ a1

amin

� 1

�
;

(14)

which form the initial conditions for rolling back up.
Equation (14) can be inverted to determine amin under
the assumption �min � �1. Following the approximation
discussed in the previous section, we assume the field
undergoes an instantaneous perfect elastic collision at
the minimum and rebounds with the same velocity.
Substituting into Eq. (12), the chameleon as it rolls back
to larger field values is governed by

d�

da
’ 	a�2ð2amin � a� a1Þ;

���1 ’ �	

�
log

a

a1
þ 2

�
a1
amin

þ amin

a

�
� 3� a1

a

�
:

It comes to a halt at the retracement point �2 at some
time a2:

a2 ’ 2amin � a1; (15)

�1 ��2 ’ 	

�
log

�
a2
a1

�
þ 2

�
a1
amin

� 1

��
: (16)

This evolution from one retracement point ð�1; a1Þ to
another ð�2; a2Þ can be iterated to determine the chame-
leon behavior.

An analytic approximation for the evolution of the
retracement point �max exists in the limit of fast oscilla-
tions when amin=a1 � 1þ �, � � 1. In this limit, Eq. (14)
becomes

�1

	
þ 1 ’ 1þ 1

2
�2 þOð�3Þ;

which implies � ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�1=	

p
. Similarly Eqs. (15) and (16)

can be approximated in the limit of small �, such that

�a � a2 � a1 ’ 2�a1;

��max � �2 ��1 ’ � 2

3
�3	:

In the limit of fast oscillations we can approximate

d�max

da
���max

�a
��2

3

�1

a
) log�max ’ �2

3
logaþ const:

(17)

This power-law behavior is independent of the strength of
the magnetic field. In this regime, the magnetic field
strength will dictate how rapidly the chameleon oscillates
but not how long it takes to settle to the minimum.

D. Kicks

In addition to the oscillations described in Sec. III C, the
chameleon behavior is modified by an extra contribution to
T
�
� as particle species drop out of thermal equilibrium.

This manifests itself as a short-lived boost to the driving
term on the right-hand side of Eq. (10). The contribution as
each particle, labeled by k, goes nonrelativistic is

T
�ðkÞ
� ¼ � 45

�4
H2ðaÞM2

Pl

gk
g?ðTÞ 


�
mk

T

�
; (18)

where


ðxÞ � x2
Z 1

x
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � x2

p

eu � 1
;

and the � sign is for fermions and bosons respectively
[19,47,48]. The 
 function is plotted in Fig. 2. It is ap-
proximately Oð1Þ for x� 1 and negligible otherwise. The
temperature of the Universe redshifts as T ¼ T0a

�1. The
maximum contribution to T

�
� occurs when the temperature

of the Universe has cooled sufficiently for it to match the
mass of the particle, mk � T. The mass of the different
species, along with the ratio of the number of degrees of
freedom to the effective number of relativistic degrees of
freedom, gk=g?, is listed in Table I.
An exact solution to the chameleon evolution with the

kicks is not possible. Instead we consider the two limiting
cases: when the duration of the kick is very much less than
the oscillation period of the chameleon, we can approxi-
mate the contribution to T

�
� as a delta function similar to

the procedure outlined in Ref. [19]; on the other hand
when the chameleon is oscillating rapidly about the mini-
mum, we can make an adiabatic approximation and assume
the function 
 is constant over one oscillation. What is a
reasonable estimate for the duration of the kick? Referring
to Fig. 2, the width of the 
 function runs from approxi-
mately a=ak ¼ 0:1–10, beyond which it has dropped to
less than 10% of its maximum value. We therefore assume

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

τ  
(x

)

fermions
bosons

FIG. 2 (color online). The function 
ðxÞ ¼ x2
R1
x du

ffiffiffiffiffiffiffiffiffiffi
u2�x2

p
eu�1 ,

where the � is for fermions and bosons respectively.
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the transition between the two regimes occurs when
the period of oscillation satisfies a2=a1 � 100, where
a2 � a1 ¼ �aosc.

E. Case 1: �akick � �aosc

For the situation when the duration of the kick is much
less than the chameleon period of oscillation, we take the
contribution to T

�
� to be approximated by a delta function.

The chameleon spends most of its time during oscillations
on the right-hand side of the potential (�>�min), and so
we make the reasonable assumption that the chameleon
will be rolling along this side of the potential when the kick
occurs. As before, Eq. (10) is approximated by

1

a2
H

d

da

�
a4H

d�

da

�
’ ��PMF0

MF

a�4 þ 1

M
T�
�;

and HðaÞ is given by Eq. (11). Approximating 
ðxÞ as a
delta function centered on a ¼ ak for each kick, Eq. (18)
becomes

T�ðkÞ
� � � 45

�4
H2ðaÞM2

Pl

gk
g?ðakÞak��ða� akÞ;

where ak � T0=mk, and � � 4:9� 4:6 is the total
area under the 
ðxÞ curve. Note that the delta function
satisfies �ðx=x0 � 1Þ ¼ x0�ðx� x0Þ. Then, defining �k �
45MPlðgk=g?Þ=�4M,

d

da

�
a2

d�

da

�
’ �	� �kMPl�ak�ða� akÞ;

where as before 	 � �PMF0=�r0H
2
0MF. Integrating,

we find

d�

da
’
8<
:
�	a�1 þ Aa�2; a < ak;

�	a�1 þ Aa�2 � �kMPl�aka
�2; a > ak;

and

�ðaÞ ’
8<
:
�	 loga� A

a þ B; a < ak;

�	 loga� A
a þ B� �kMPl�

�
1� ak

a

�
; a 	 ak;

where A and B are constants that are determined from the
chameleon evolution prior to the kick. The change in the
chameleon from its free evolution without the kick is

�� ¼ ��kMPl�

�
1� ak

a

�
; (19)

which tends to ��kMPl� in the limit a � ak. The above
result assumes the particle drops out of thermal equilib-
rium instantaneously relative to the background evolution,
which is only valid when the duration of the kick is much
smaller than the oscillation period.

F. Case 2: �akick � �aosc

For the situation when the duration of the kick is sig-
nificantly greater than the oscillation period of the chame-
leon, we use an adiabatic approximation treating 
ða=akÞ
as constant over one oscillation. We follow the same
analysis as in Secs. III B and III C but with the extra source
term from T�

� :

1

a2
H

d

da

�
a4H

d�

da

�
’ ��PMF0

MF

a�4 �H2MPl

X
k

�k


�
a1
ak

�
;

where a1 is the scale factor at the start of the oscillation and
we are assuming 
 does not change significantly from a1 to
a2 (the scale factor at the end of the oscillation).
Substituting in Eq. (11) for the Hubble expansion, and
solving, we find

d�

da
’ �	effa

�1 þ Aa�2;

�ðaÞ ’ �	eff loga� Aa�1 þ B;

(20)

which is identical to Eq. (12) but with 	 replaced by

	eff � 	þMPl

X
k

�k


�
a1
ak

�
:

In this regime the effect of the kicks is similar to a tempo-
rary increase in the magnetic field strength, and generally
boosts the oscillations into the ‘‘fast oscillations’’ regime
described by Eq. (17).

IV. RESULTS

The equations derived in Secs. III B to III D provide a
framework for determining the evolution of the chameleon
field given a specific starting value at the end of inflation.
Figure 3 contains a few examples of the resulting predic-
tion for the chameleon evolution after it is released from
rest at the end of inflation (z� 1023) through until BBN at
z� 108, for a variety of parameter values. They were
determined through numerical iteration of the methods
described in the preceding sections, and we included the
contribution from �m that was neglected in Eq. (12), for the
evolution after the electron drops out of thermal equilib-
rium in the last kick.

TABLE I. List of particle species that provide a kick to the
chameleon evolution as they drop out of thermal equilibrium.

Particle Mass, mk gk=g? (at T ¼ mk) Type

t 173 GeV 12=106:75 Fermion

Z 91 GeV 3=95:25 Boson

W� 80 GeV 6=92:25 Boson

b 4 GeV 12=86:25 Fermion


 1.7 GeV 4=75:75 Fermion

c 1.27 GeV 12=72:25 Fermion

� 0.14 GeV 3=17:25 Boson

� 0.105 GeV 4=14:25 Fermion

e 0.5 MeV 4=10:75 Fermion
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The behavior of the chameleon is strongly dependent on
its starting value and the strength of the chameleon inter-
action with the primordial magnetic field. The strength of
the magnetic interaction depends on both the size of the
magnetic field B0 and the coupling strength between the
chameleon and electromagnetic field 1=MF. The bounds

on the strength of the primordial magnetic field were
discussed in the introduction: observations of the
CMB limit the magnitude of B0 to be no greater than
approximately 5 nG. The strength of the electromagnetic
interaction in the chameleon model is constrained by
observations of starlight polarization in our galaxy to
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FIG. 3 (color online). Chameleon evolution from the end of inflation to BBN, for different �B,M and �i. The dashed blue line is the
evolution of�min. Green circles mark the actual location of the chameleon field including oscillations between its maximum amplitude
and the minimum, while the solid green line is the evolution of �max once it enters the fast oscillations regime. The red crosses mark
the location of the kicks as different particle species drop out of thermal equilibrium.
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MF * 1:1� 109 GeV [17] (see Sec. II). The chameleon
evolution after inflation depends on the parameter 	,
defined in Eq. (13), and as such is degenerate between B0

and MF. We define

�B �
�
B0

5 nG

�
2
�

MF

1:1� 109 GeV

��1
;

to characterize this dependence. Given the constraints on
B0 andMF, it is only realistic to consider the range �B & 1.
We assume the following values for the cosmological
parameters: h’0:7, �m0h

2’0:13 and �r0h
2’2:5�10�5

[49], where H0 � 100h km sec�1 Mpc�1, and we take
n ’ 2 in the model for the self-interaction potential.

The plots in Fig. 3 illustrate the two distinct regimes that
the chameleon evolution falls into, depending on the values
we choose for the different parameters. For larger magnetic
fields and/or when the chameleon lies closer to its mini-
mum at the end of inflation, we find that the chameleon
starts to roll towards the minimum of its potential and
begins oscillating. See for example Figs. 3(a) and 3(b).
Often the behavior satisfies the fast oscillations regime so
that the amplitude of the chameleon oscillations decays
according to the power law defined in Eq. (17). In this
scenario the effect of the kicks is to boost the chameleon
into the fast oscillations regime, or to have no effect if the
field is already oscillating rapidly.

For smaller magnetic field values, or when the chame-
leon is released far away from its minimum, we find that
the field remains stuck at its initial value until species start
dropping out of thermal equilibrium and push the chame-
leon towards the minimum. This process, however, is
highly unstable. If the kick is sufficient to overshoot the
minimum then the chameleon effectively bounces off the
steep left-hand side of the potential and can shoot back to
even larger field values. The chameleon to matter coupling
strength described by M determines the energy introduced
to the system by the kicks. We saw in Eq. (19) that in the
limit a � ak, �� ¼ ��kMPl�, where � / 1=M. Thus the
stronger the matter coupling, the greater will be the jump in
the � evolution as a result of the kicks. For example,
Figs. 3(d) and 3(e) have the same �B and �i but two
choices of M. The smaller M value sends the field to
much larger values as a result of the kicks. It is this second
regime that exists in the case of no primordial magnetic
field or when the electromagnetic interaction of the cha-
meleon is ignored. For this reason, the initial conditions
considered by Brax et al. [19] had to be finely tuned so that
the chameleon ended up near the minimum of its potential
at the onset of BBN.

The ratio of�i to �B dictates whether the chameleon has
started to oscillate before the first kick when the top quark
drops out of thermal equilibrium. We approximate the
transition between these two regimes by the requirement
that the field has oscillated exactly once between its release
at the end of inflation and the first kick. The oscillation

period is given by Eqs. (14) and (15). In the limit a2 � a1
we can approximate this by

a2
a1

’ 2 exp

�
�1

	
þ 1

�
:

Substituting for a1¼ai�10�23 and a2¼akick�
3:77�10�15 leads to the condition �1 � 18	, which
implies the transition occurs for

�ðcritÞ
i � 3:8�B � 105MPl: (21)

When the chameleon field value at the end of inflation is

less than �ðcritÞ
i the chameleon will immediately begin to

roll towards the minimum of its potential and start oscillat-

ing. For field values greater than �ðcritÞ
i the chameleon is

effectively frozen at this position until particle species
begin dropping out of thermal equilibrium. In the next
section we discuss the implication of these results on the
ability of the chameleon to satisfy constraints on the varia-
tion of particle masses after BBN.

V. BBN CONSTRAINTS

The analysis of Brax et al. [19], which neglected the
chameleon interaction with electromagnetism, imposed a
constraint of 10% on the allowed variation of particle
masses after BBN. This places a limit on the maximum
amplitude of the chameleon oscillations at the onset of
BBN. The bound on the allowed variation of particle
masses coming from big bang nucleosynthesis is sensitive
to a number of parameters which are not well understood,
and so the constraint of 10% does not reflect a hard
experimental bound. We discuss the BBN constraints in
more detail below, but it is beyond the scope of this paper
to perform a full analysis. Instead, we investigate the
effects on the chameleon model of imposing a fractional
constraint, 
BBN, on the allowed variation of particle
masses, and explicitly consider the case 
BBN ¼ 0:1 for a
direct comparison to the results of Brax et al. [19].
The BBN constraints are relevant because the amplitude

of the chameleon oscillations can potentially result in a
large variation in the masses of fundamental particles. The
matter particles follow geodesics of the conformal metric,
A2
mð�Þg��. In the conformal (Jordan) frame, in which the

chameleon is nonminimally coupled to gravity, the particle
masses mJ are independent of �. However in the physical
Einstein frame they acquire a � dependence: mð�Þ ¼
Amð�ÞmJ [50]. Variation in �, therefore, leads to a varia-
tion in the observed mass of particles:��������

�mð�Þ
mð�Þ

��������¼
A0
mð�Þ

Amð�Þ j��j ¼ 1

M
j��j:

The earliest time at which cosmological observations can
constrain the variation in particle masses is at big bang
nucleosynthesis. The primordial element abundances are
sensitive to variation in the parameters of the Standard
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Model of particle physics. Dent et al. [51,52] investigated
the response of the element abundances to individual var-
iations in the fundamental parameters as well as consider-
ing unified models which combined the variation of more
than one parameter. Varying only one of the parameters at a
time, they were able to place 2� bounds on the allowed
variation for the different fundamental couplings from
BBN until today. The allowed range for the mass of the
electron was found to be �17% 
 � lnme 
 þ9%.
Although this result neglects the complex interactions
from multiple fundamental parameters varying, it allowed
Brax et al. [19] to estimate a constraint on the variation in
particle masses arising from the chameleon model to be
less than approximately 10%. In our analysis we generalize
this constraint to some fraction 
BBN, which imposes

�ðBBNÞ & 
BBNM; (22)

since �
ðtodayÞ
min � 108� � 
BBNM. The strength of the mat-

ter coupling described by M has a significant impact on
whether the constraints at BBN are satisfied. There are
subtler issues of whether the chameleon itself influences
the primordial element abundances; see Ref. [53] for a
general review of primordial nucleosynthesis and the ef-
fects of nonstandard physics. However, as first shown by
Brax et al. [19], the deviations of the chameleon model
from standard LCDM are insignificant at the scales rele-
vant for the expansion rate and baryon/photon ratio.

In the previous section we were able to categorize the
chameleon behavior into two distinct groups depending on
whether the parameter values were such that the chame-
leon was oscillating about the minimum of its potential
prior to the top quark dropping out of thermal equilibrium,
or whether the field was frozen at its initial value. It is this
second scenario that occurs when there is no interaction
between the chameleon and electromagnetic field, and
corresponds to the situation analyzed by Brax et al. [19].
When the particle species drop out of thermal equilibrium
they introduce a a short-lived boost of energy into the
system and kick the chameleon field towards its minimum.
The initial field value of the chameleon needs to be
strongly fine-tuned for the cumulative effect of the kicks
to result in the field being positioned close to the minimum
of its potential, rather than overshooting and rolling back
to even larger field values, as shown by the plots in
Figs. 3(c)–3(e). We find that in general, whenever the
chameleon starts out frozen at its initial value, it is impos-
sible to satisfy the constraints on the chameleon field at
BBN for all 
BBN <Oð1Þ without extreme fine-tuning.
Only if the allowed variation of particles is a few 100%
will the chameleon fall below the appropriate threshold at
BBN. The parameter space boundary that separates the two
regimes was derived in Eq. (21). For a given initial field
value �i, this implies the following constraint on B0 and
MF for all 
BBN <Oð1Þ:

�
B0

5 nG

�
2
�

MF

1:1� 109 GeV

��1
* 2:4� 10�6 �i

MPl

: (23)

Even when the primordial magnetic field is large enough to
cause the chameleon to oscillate prior to the onset of the
kicks, there is a limit on the speed with which the ampli-
tude of the oscillations can decay, which further constrains
the parameters. We consider the case when the chameleon
is in the fast oscillations regime from the very start of its
evolution. In this situation the chameleon converges most
rapidly on the minimum following the power-law behavior
described by Eq. (17). Although it requires a large ratio of
	=�i to place us in this regime, the convergence is inde-
pendent of 	. If the initial conditions for the field satisfy
�i=	 � 1, then the subsequent evolution is determined by

log

�
�max

�i

�
¼ � 2

3
log

�
a

ai

�
;

and so �ðBBNÞ
max � 10�10�i. To satisfy the BBN constraints,

this imposes

�i & 1010
BBNM: (24)

Figure 4 shows the exclusion bounds determined em-
pirically from requiring the chameleon to fall below the

BBN ¼ 0:1 threshold at BBN. These are presented for
two different choices of the matter coupling strength:
M ¼ 1:1� 109 GeV andM ¼ MPl, motivated by the con-
strained value of MF assuming M�MF and a natural
gravitational scale respectively. The bounds agree closely
with the limiting cases given in Eqs. (23) and (24). The
transition between when the chameleon is oscillating and
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BBN exclusion bounds for M=1.1×109 GeV and M=M
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FIG. 4 (color online). The parameter space of�i and �B that is
excluded by BBN constraints when 
BBN ¼ 0:1. The dashed
blue line marks the excluded region for M ¼ 1:1� 109 GeV,
and the dotted red for M ¼ MPl. The allowed parameter space
lies to the bottom right of the exclusion lines. The solid green
line marks the transition from the chameleon oscillating prior to
the kicks, and the one in which the field is frozen prior to the
kicks. It is independent of M.
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when it is frozen at its initial value marks the BBN exclu-
sion bound for small �i and, as we can see from Fig. 4,
there is a saturation point at�i � 1MPl for the case ofM ¼
1:1� 109 GeV, which is dependent onM but independent
of �B, which excludes larger values of �i. There is a small
range of intermediate �B values for which the field oscil-
lates more than once before the first kick, but is not actually
in the fast oscillations regime from the start of its evolution
[Fig. 3(b) for example], which forms a smooth transition
between the two limiting cases in the exclusion plot.

The bounds in Eqs. (23) and (24) lead to a constraint on
B0,MF andM if we impose a range of �i that we consider
likely for the chameleon field at the end of inflation. They
only apply if the constraints at BBN limit the variation of
particle masses after BBN to be less thanOð1Þ, but they are
not sensitive to the exact value of 10% imposed by Brax
et al. [19]. We consider a few different physical energy
scales which could act as natural initial conditions for the
chameleon field at the end of inflation. The resulting
bounds are

�i�OðMPlÞ;
�
B0

5nG

�
2
�

MF

1:1�109 GeV

��1
*2:4�10�6;

�i�Oð�EWÞ;
�
B0

5nG

�
2
�

MF

1:1�109 GeV

��1
*6:4�10�22;

�i�Oð�QCDÞ;
�
B0

5nG

�
2
�

MF

1:1�109 GeV

��1
*5:3�10�25;

�i�Oð�SUSYÞ;
�
B0

5nG

�
2
�

MF

1:1�109 GeV

��1
*2:6�10�22;

where the electroweak energy scale �EW � 246 GeV, the
QCD energy scale �QCD � 200 MeV and we assume

some supersymmetric breaking scale with �SUSY �
1 TeV. The constraints on M with 
BBN & Oð1Þ are
already trivially satisfied by experiment for all but
OðMPlÞ initial conditions. When�i �OðMPlÞ this imposes
M * 108
�1

BBN GeV.
We can compare these constraints to the bounds placed

on B and MF from considering CMB photons mixing with
chameleons in the presence of a primordial magnetic field.
In Ref. [16] the effects on the CMB of photon-scalar
mixing in the PMF along the path from recombination
to reionization were analyzed. The predicted modifica-
tion to the CMB intensity spectrum was compared to
high precision measurements of the CMB monopole
made by the FIRAS instrument on board the COBE
satellite. This implied a degenerate bound in the range

ðB0=1 nGÞðMF=10
9 GeVÞ�2&3�10�6 to ðB0=1 nGÞ1=2 �

ðMF=10
9 GeVÞ�2 & 2� 10�8, at 95% confidence. The

range depends on the PMF spectral index, assumed to
run from nB ¼ �2:9 to �1:0. These bounds can be com-
bined with the above BBN constraints on B0 and MF.
Assuming order MPl initial conditions for the chameleon
in the early universe, and taking nB ¼ �2:9 (which gives

the most conservative bounds on the magnetic field
strength), we find the following allowed band for the
chameleon-photon coupling strength,

600

�
B0

1 nG

�1
2
&

�
MF

109 GeV

�
& 1:6� 104

�
B0

1 nG

�
2
:

For primordial magnetic fields smaller than 10�10 G, there
are no coupling strengths that can satisfy these combined
bounds. We note that the allowed degree of chameleon-
photon mixing in the early universe places an upper bound
on the PMF strength and chameleon-electromagnetic in-
teraction, while for the chameleon to be well behaved in
the early universe and satisfy constraints at BBN requires a
much stronger magnetic interaction to drive the chameleon
to its minimum in time. There is only a narrow band of
parameter values that satisfy these constraints and in all
cases they require B0 * 0:1 nG. For different values of the
magnetic field spectral index the bounds become even
stronger with B0 * 2 nG for nB ¼ �1:0.
These bounds hold for any <Oð1Þ constraint on the

variation of particle masses after BBN. They imply that a
sizable primordial magnetic field (� 0:1 nG) must exist if
the chameleon is to satisfy these constraints at BBN, and if
it is released from an arbitrary position within its potential
at the end of inflation that lies within some natural range
(�i & MPl). Without a primordial magnetic field we are
reduced to the solution considered by Brax et al. [19]
which required extreme fine-tuning of the initial condi-
tions. In this situation the chameleon field is frozen at its
initial value, and is only pushed towards the minimum by
particle species dropping out of thermal equilibrium. The
rebound at the minimum of the potential can cause the
chameleon to shoot to even larger field values by the end of
the kicks, and so fine-tuning is needed to satisfy the BBN
constraints.

VI. CONCLUSIONS

When the chameleon model was first suggested by
Khoury and Weltman [5,6], the authors in Ref. [19] exam-
ined the cosmological evolution of the chameleon and
determined that, for certain specific starting values for
the field around OðMPlÞ at the end of inflation, constraints
at BBN can be satisfied. However the extreme fine-tuning
necessary for these initial conditions is unsatisfactory if the
chameleon is to provide a natural candidate for dark en-
ergy. In Ref. [7] it was shown that the coupling of the scalar
field to electromagnetism should not be neglected in these
models. Not only does the electromagnetic interaction of
the chameleon lead to the prediction of new phenomena
such as chameleon-photon mixing in background magnetic
fields, it also allows the possibility of a primordial mag-
netic field modifying the early universe behavior of the
chameleon.
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In this article, we have demonstrated that the presence of
a primordial magnetic field can help drive the chameleon
field to the minimum of its potential. Without a primordial
magnetic field (or at least with a very weak one), the
chameleon is frozen at its initial value at the end of
inflation and requires the energy from particle species
dropping out of thermal equilibrium to drive it towards
the minimum. However, this process is very unstable since
the energy introduced by particle species going nonrela-
tivistic is akin to a delta function and easily causes the field
to overshoot the minimum and oscillate more violently. By
contrast, a strong PMF causes the field to oscillate about
the minimum of its potential with a decaying amplitude as
the Universe expands, and can satisfy constraints at BBN
for a range of initial conditions.

The paper by Brax et al. [19] that originally examined
the cosmological evolution of the chameleon in the case of
zero EM coupling imposed an upper limit on the chame-
leon field at BBN arising from a 10% constraint on the
variation of particle masses. This constraint was suggested
by Dent et al. [51,52] based on an analysis of the primor-
dial element abundances at BBN. However, the degener-
acies between the different factors influencing the element
abundances are not well understood and so this can only be
taken as an estimate.

In this work we have developed a semianalytical solu-
tion to the early universe evolution of the chameleon as it
falls towards the minimum of its potential, allowing for
the coupling of the chameleon to any electromagnetic
fields. This provides a valuable framework for anyone
wishing to analyze the evolution of the chameleon in
the light of new experimental bounds that may be placed
upon the theory. Although the 10% constraint on particle
masses at BBN is only an estimate, and a full analysis of
the BBN constraints is beyond the scope of this paper, we
tentatively suggest that a BBN constraint on the allowed
variation of particle masses being less than 100% is not
unreasonable. If we assume the natural scale for infla-
tionary scenarios is around the Planck mass, then a

natural value for the chameleon at the end of inflation is
up to and including �i �OðMPlÞ. Combined with the
tentative <100% constraint at BBN, this places a degen-
erate constraint on the PMF strength and chameleon-
photon coupling,�

B0

5 nG

�
2
�

MF

1:1� 109 GeV

��1
* 2:4� 10�6:

The degeneracy of the constraint can be broken by con-
sidering the effects of chameleon-photon mixing in the
primordial magnetic field [16]. This imposes a narrow
band of allowed parameters which can only be satisfied
for B0 * 0:1 nG. These magnetic field values are close to
the level that could be detected or ruled out by the next
generation of CMB experiments. We also find that the
chameleon to matter coupling strength is constrained by
the limit at BBN to have

M * 108 GeV;

which is many orders of magnitude greater than the
existing direct constraints on M.
Our analysis has been with specific reference to the

chameleon model [5,6]. However many theories of modi-
fied gravity are required to have some form of chameleon
mechanism if they are to satisfy the many weak-field limit
tests and explain dark energy or dark matter [1]. It would
be interesting to investigate the role that can be played by
primordial magnetic fields in these alternative theories, in
the light of our results.
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