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DBI Galileons in the Einstein frame: Local gravity and cosmology
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It is shown that a disformally coupled theory in which the gravitational sector has the Einstein-Hilbert
form is equivalent to a quartic Dirac-Born-Infeld Galileon Lagrangian, possessing nonlinear higher
derivative interactions, and hence allowing for the Vainshtein effect. This Einstein frame description
considerably simplifies the dynamical equations and highlights the role of the different terms. The study of
highly dense, nonrelativistic environments within this description unravels the existence of a disformal
screening mechanism, while the study of static vacuum configurations reveals the existence of a Vainshtein
radius, at which the asymptotic solution breaks down. Disformal couplings to matter also allow the
construction of dark energy models, which behave differently than conformally coupled ones and introduce
new effects on the growth of large scale structure over cosmological scales, on which the scalar force is not
screened. We consider a simple disformally coupled dark matter model in detail, in which standard model
particles follow geodesics of the gravitational metric and only dark matter is affected by the disformal
scalar field. This particular model is not compatible with observations in the linearly perturbed regime.
Nonetheless, disformally coupled theories offer enough freedom to construct realistic cosmological

scenarios, which can be distinguished from the standard model through characteristic signatures.
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I. INTRODUCTION

In the standard ACDM model of cosmology [1], the
Universe at the present day appears to be extremely fine-
tuned. The energy scale of the A component is extremely
small compared to the naive quantum corrections [2,3],
and yet large enough to be detectable through its effect on
the cosmological expansion [4—6]. This mystery has trig-
gered numerous proposals in which the cosmological con-
stant is exchanged with scalar field sourced dynamical dark
energy [7] or alternative theories of gravity [8].

The set of viable theories is severely limited by
Ostrogradski’s theorem [9]. It states that there exists a
linear instability in any nondegenerate theory whose fun-
damental dynamical variable appears in the action with
higher than 2nd order in time derivatives: the Hamiltonian
for this type of theory is not bounded from below and
therefore it accepts configurations with arbitrarily large
negative energy [10,11]. This result can be bypassed by
considering degenerate theories, i.e., those in which the
highest derivative term can not be written as a function of
canonical variables. In this case, the dynamics is described
by second order equations of motion, even while the action
contains higher derivative terms. If gravity only involves a
rank two tensor, Lovelock’s theorem [12] states that the
Einstein-Hilbert (EH) action with a cosmological constant
is the only theory based on a local," Lorentz-invariant

'"There is some evidence that there exist viable nonlocal
theories ameliorating the fundamental problems of gravity
[13,14].
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Lagrangian depending on the metric tensor and its deriva-
tives which gives rise to second order equations of motion
in four space-time dimensions.

The addition of a scalar degree of freedom provides a
generous extension of the possibilities. The most general
gravitational sector for a scalar-tensor theory was first
derived by Horndeski [15] and has received considerable
attention recently [16-22]. It is given by the Horndeski
Lagrangian

Up to total derivative terms that do not contribute to the
equations of motion, the different pieces can be written
as [20]

L, =Gy(X, ¢), ()

Ly = —G(X, ¢)0, 3)

L, = Gy(X, )R+ Gyx[(O¢) — b, 6] (4)

£5 = Go(X, $)G,, 0 — <Gy [(Og)
- 3(|:|¢)¢;,uv¢;'uv + 2¢;M;V¢;v;/\¢;,\;ﬂ]- (5

Here R, G wy are the Ricci scalar and the Einstein tensor,
X = —% 8" ¢, is the scalar field canonical kinetic
term and commas and semicolon represent partial and
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TABLE I. Horndeski projection of modified gravity and dark energy theories. The possibilities shown take into account the
Horndeski Lagrangian (1) (see also Ref. [20]), the arguments by Bekenstein leading to the disformal metric (6) and the possibility of
defining disformally related frames (see Sec. III). It is then possible to consider a theory of the form Syg = [d*x(\/~gLy +
V—8g" Ly (g!,. ¢)) as the most general case with a universal coupling to matter. Here M3 = 87G)™', X = —1¢ ,¢* and y =
ﬁ is a brane Lorentz factor.

Theory G2 G3 G4 G5 g%,,
.. M2
General relativity A 0 = 0 8uv
. MZ
Quintessence X + V(g) 0 = 0 Suv
Generalized k-essence® K(X, @) 0 MT‘Z 0 Suv
Old school scalar-tensor i
Jordan frame X + V(g) 0 h(é)=E 0 Suv
Einstein frame X+ V() 0 M3 0 W (P)g
Covariant Galileon® [16] c1d — X imX MT; - %Xz ?V[LSX2 A(D)gpur
.. . Ly M
Kinetic gravity braiding [24,25] KX, ¢) G(X, ¢) = 0 Suv
Purely kinetic gravity [26] X 0 MT‘Z’ —)\M% 8uv
DBI Galileon® [27] — Ay~ ~Miy? y M2 —BY 2
Disformally coupled scalar [28,29] X + V(¢) 0 0 0 Agu, + B, ¢,

4See Table 1 in Ref. [30] for an assortment of k-essence models constructed using disformal relations.

"The usual Galileon [31] is recovered in the absence of curvature. The analysis of these theories often postulates a conformal coupling
between the matter and the field (conformal Galileon).

“References [32,33] provide generalizations constructed within the probe brane scheme.

covariant derivatives, respectively. On top of a generalized  covariance [34]. When it only involves a scalar field ¢, it
k-essence term (2), the remaining pieces (3)—(5) fix the is given by the disformal relation
tensor contractions, which rely on the antisymmetric struc-
ture of the ¢. wv terms to trade higher derivatives with the -

wy =A +B . 6
Riemann tensor in the equations of motion. Note that & (#)8s (@) ©
Einstein gravity is recovered by a constant G, = M,ZJ /2, )
while a field dependence G, = w(¢) Mlz; /2 yields an old The freg fqnctlons A.and B may also dePend upon the
school scalar-tensor theory, without adding higher deriva- s.calar kinetic term X mn general,' buF we will focus on .the
tive interactions (when combined with a suitable Kinetic simpler case her.e. Previous ap plications of sqch a relatlp n
term for the scalar, e.g., Brans-Dicke [23]). The theories in to cosmology include varying speed of light theories

which the free functions in (3)—(5) depend on the canonical [35’3.6 . Lorep tz invariance violation [37], inﬂation. [.2 8.]’
kinetic term X require the presence of degenerate terms massive gravity [38,39], dark energy [30,40], relativistic

with higher derivatives. Theories for which Gs, G, Gs theories for modified Newtonian dynamics [41,42] and

have simple X dependences are usually known as covariant extensmng of da}rk 1.natt.er (DM) [43,44]. The present
Galileons [16-18], while theories with more general X work studies the implications of such a coupling, expand-

dependence are often known as generalized Galileons. m%r;)ln (Zlgrfprevul)us im;.ﬂy5156[29]' 150 b dvated i
Some of the possibilities considered so far are listed ¢ disformal relation (6) can also be motivated in

in Table I theories with extra dimensions, in which matter is confined
) . . . to a 3 + 1 dimensional brane embedded in a larger bulk

In the pursuit of generality, one can further consider 2732 334550 Ref. [53] . 2 Th
theories in which the scalar field is allowed to enter the space [27,32,33,45-52] (see Ref. [53] for a review). N

matter sector directly. This type of relation is found in old action fgr these types of theories is .constructed using
. . geometric scalars computed out of the induced metric

school scalar-tensor theories, which can be expressed as

Einstein’s theory, plus a scalar field entering the matter _ ,

sector by means of a conformal transformation [8]. Euv = 8uv T TLuTy, )

Bekenstein studied the most general relation between the

physical and the gravitational geometry (i.e., the two met- The disformal relation also appears in condensed matter

rics out of which the gravitational and the matter systems, e.g., to study two dimensional lattices such as

Lagrangians are constructed) compatible with general  graphene [54].
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where the moduli fields 77/ represent the coordinates or-
thogonal to the brane and g, ,, is the bulk metric prior to the
embedding, necessary to describe gravity. In the case of a
single extra dimension [27], the most general Lagrangian
contains four terms with a particular form of the Horndeski
free functions (2)—(5) and arbitrary prefactors. The
quadratic term is due to the brane tension and has the

Dirac-Born-Infeld (DBI) [55] form, G, « /1 + (37)%.
Therefore, these models are known as DBI Galileons
[27]. The higher order terms arise from curvature invari-
ants computed out to the induced metric (7), which pro-
duce second order equations of motion [12]: G5 arises from
the trace of the extrinsic brane curvature, G, from the Ricci
scalar and G5 from a combination of extrinsic curvature
terms and the induced Einstein tensor. DBI Galileons with
more than one extra dimension only accept the general-
ization of the quadratic and quartic terms G,, G4 in their
Lagrangians [45,49]. This restriction is necessary to pre-
serve the symmetry between the directions transverse to
the brane, e.g., the moduli fields 7; in (7).

The usual Galileon terms [31] are obtained from
DBI Galileon Lagrangian by assuming a flat bulk metric
guv — My, and taking the nonrelativistic limit [i.e., low
order corrections in (97)%]. Galileon theories have
attracted considerable attention recently [56—81] because
they capture interesting features of higher dimensional
models such as Dvali- Gabadadze-Porrati [82], including
the Vainshtein screening mechanism [83]. This effect hides
the presence of the scalar force due to the nonlinear
derivative self interactions of the field, which suppress
the field’s spatial gradients around matter sources within
the so-called Vainshtein radius. The extra force is active on
larger distances, potentially having significant cosmologi-
cal implications.

This work presents results that may simplify consider-
ably the analysis of theories based on higher dimensional
models. Section II presents the coupling to point particles
and Sec. III introduces theories constructed out of two
metrics which are disformally related. In Sec. IIT A it is
argued that by performing a disformal transformation, a
theory in which the gravitational sector is standard, but the
matter metric is constructed disformally (6), can be rewrit-
ten in a form equivalent to the quartic DBI Galileon
Lagrangian (4), which arises from the scalar curvature
computed using the induced metric (7) [27]. Disformally
coupled theories therefore provide an Einstein frame (EF)
description of certain braneworld constructions, similar
to the way in which the field dependent coefficient of
the Ricci scalar can be moved from the gravitational to
the matter sector in old school scalar-tensor theories.
In Sec. IV, the equations of motion are derived in the
Einstein frame, in which the gravitational sector has the
EH form but the matter action includes the scalar field as
prescribed by Eq. (6). Some properties of the field and the
coupling are discussed in Secs. IVA and IV B.
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The Einstein frame description of disformally coupled
theories unravels the existence of a disformal screening
mechanism [29], in which the coupling vanishes if the field
is static and the coupled matter behaves as nonrelativistic
dust. Section V explores the dynamics in high density,
nonrelativistic environments for the simpler case of a
canonical scalar with a potential and no conformal
coupling. In Sec. VA, a simple solution is derived in which
the field rolls homogeneously regardless of the matter
distribution, hence avoiding the formation of spatial
gradients that would give rise to an additional force. The
study of static, spherically symmetric configurations
performed in Sec. V B reveals the existence a characteristic
radius at which the effects of the coupling modify the
asymptotic solution. This is analogous to the Vainshtein
radius, at which the nonlinear derivative self coupling of
the field becomes important, and which lies at the core of
the Vainshtein screening mechanism. Finally, Sec. VC
presents some regimes in which the effects of the disformal
coupling might be observed.

The equivalence between the disformally coupled theory
and a covariant Galileon and the aforementioned results
imply that the disformal and Vainshtein screening mecha-
nisms are related. These two effects rely on the higher
derivative form of the field kinetic terms (Vainshtein) and
the kinetic mixing between the field and the coupled matter
(disformal). The other available screening mechanisms are
essentially different, as they exploit the interplay between
the field potential and the coupling to matter: the
chameleon fields rely on the high mass of the field in dense
surroundings [84], and the symmetrons are screened in
high ambient density due to their field-dependent coupling
[85]. Screening mechanisms are central to the construction
of alternative theories of gravity in which modifications
are allowed to occur over cosmological scales, while the
gravitational physics operating in the Solar System are
close enough to general relativity to satisfy current preci-
sion tests [86].

The cosmological implications for these models are
considered in Sec. VI. The intensity of the purely disformal
coupling is approximately proportional to the scalar field
energy density p 4, unlike in the conformally coupled case
for which it is proportional to the coupled matter density
pm- The equations for nonrelativistic coupled fluids are
given at both the background and linearly perturbed level,
including the analysis of fixed points and an analytic ex-
pression for effective gravitational constant on small
scales. The cosmological equations are solved numerically
for a simple disformally coupled dark matter (DCDM)
model, in which dark matter is the only coupled species.
The model is presented and analyzed in detail in Sec. VI A,
including the computation of dark matter and baryonic
power spectra. The simple DCDM model enhances the
growth of the coupled dark matter density contrast too
much to be compatible with observations. However, the
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model contains significant freedom to provide phenomeno-
logically successful alternatives. Several possibilities to
render the model viable are discussed in Sec. VI B.

We conclude in Sec. VII with a discussion of the main
results and future research directions. Appendixes A, B,
and C contain a summary of disformal relations and some
lengthy expressions that were not necessary for the main
discussion. Throughout the present work, quantities com-
puted or constructed using the metric (6) are denoted
“barred” or “disformal.” Quantities constructed using
guv are denoted as “‘unbarred” and do not involve the
scalar field. The metric signature is (—, +, +, +) and units
in which the speed of light ¢ = 1 are assumed unless
specified otherwise.

II. A TEST PARTICLE IN A DISFORMAL METRIC

Let us start with the simple exercise of determining the
dynamics of a pointlike particle with mass m coupled to the
disformal metric (6). A Lagrangian density for such a
system is given by

b= —m[= g, 5 8Pk — xE (X)), (8)

where the dot means derivative with respect to the affine
parameter A along the trajectory x(A) and the correct
weight for the delta function has been taken.? The effects
from the coupling can be seen from the barred four-
velocity modulus in (8)

2T

g upXH i = AX* + B(¢ ,i#) 9)

Distances are dilated by the conformal factor A, as usual.
The disformal factor B gives an additional direction-
dependent effect proportional to the projection of the
four-velocity along the field gradient. The equations of
motion can be obtained by maximizing the proper time
of the particle along its path. The result is the disformal
geodesic equation

g+ ThpieiP =0, (10)

where the barred Levi-Civita connection has been assumed
to be torsion free and such that the metric compatibility
relation holds for barred quantities, i.e., V,,3 wy = 0. It can
be computed from (6) and written in terms of unbarred
covariant derivatives of the barred metric in a rather com-
pact form

The one-dimensional definition of the delta function requires
that its generalization to higher dimensions cancels out the
tensor density in the integrand 5%')()( - Xg) = \/%EHU‘O‘ p(x¥ —
x8) le.g., in spherical coordinates (r2sin)~'6®(x) =
Sp(r)6p(0)8,(d)]. Hence it does not matter whether ,/~g or

/—& is used in the integration, as long as the delta function is
consistent with it.
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_ _ _ 1 B
Fos = Tap * g’”(%gﬁm - EVAgaﬁ). (11)

Here the symmetrization is defined as 7,5 =
3(tap t+ 15,). No assumption about the dependence of A,
B has been made to obtain the above expression, which
remains valid if A, B depend on X. Note that the difference
between the two connections is a tensor, as expected.
Appendix A 1 shows the expansion of (11) in terms of A,
B and its derivatives, which is rather lengthy to be included
here. In the case of a constant disformal coupling B(¢) =
M~* with no conformal coupling (A(¢) = 1) the equation
simplifies considerably,

PP

M a7 .

Iy, =Ta, +
Then in the nonrelativistic limit ' ~ v/c < 1 = i°, the
force produced by such a coupling is Fod v ¢/M*. This
is essentially different from the fifth force produced by a
conformally coupled field F = (log A),¢§¢.
The stress energy tensor with respect to the unbarred
metric can be computed by variation of (8) with respect
t0 0

XHXY

2 3WRLw _ ,
Ve ¥

V=8 08

Ty = 8g)(x“ — x*(X)).

(13)

If the gravitational metric is the unbarred one, this is the
energy momentum tensor sourcing the space-time geome-
try.4 This result can be used to express the particle
Lagrangian in terms of the energy momentum tensor

/ =7 B v — v
_g‘[:[) = Tp + Zd),u(ﬁ,vT# = g,uVT# . (14)

The above expression gives an effective form for the
coupling to matter. It shows how the kinetic term of the
scalar mixes with the matter content, a very important
property that lies at the heart of disformally coupled theo-
ries, including the disformal screening mechanism ex-
plored in Sec. V.

III. DISFORMALLY RELATED THEORIES

The previous section presented a simple example of a
theory in which the matter Lagrangian is constructed using
a disformal metric (6). Although no gravitational sector
was specified, the simplest possibility is to assume that it is
given by the EH form computed out of the unbarred metric
guv- In this case, Einstein equations retain the usual form

Nt is possible to write (13) in the perfect fluid form
T = putu” if the coupled matter four-velocity and the

energy density are identified with u, = x,/v—i* and p =
mdy (et = A1 = Bk ,)2) 12,
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TABLE II.
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Physical frames for disformally coupled theories. The intermediate frames are named after the effects of the disformal

coupling, e.g., a disformal coupling in the matter sector (disformal frame) and a quartic Galileon term in the gravity sector (Galileon
frame). The transformation rules (solid arrows) are based on the action (15) and given in terms of the definitions (16)—(19). Note that
the transformations commute. Dotted arrows indicate whether the conformal and disformal parts of the coupling enter the gravitational

or the matter sector for each given frame.

Aguv C/—9Lm < > || Einstein (16) ‘ < > B ud C/—9Lum
A A
B T~ 1
Juv >guv—F P,udP,v Iuv—A" guv
\ \
Galileon (18) Guv = S Guw — B ud. Disformal (17)
A A
Guv—A" g ju,v)‘uBo‘“,{
\ \
Bo,up,, C/—gR < > | Jordan (19) || < > Agu Cv/—gR

and are sourced by the energy momentum tensor (13). We
shall refer to disformally coupled theories in which the
gravitational sector is standard as being expressed in the
EF, in analogy with old school scalar-tensor theories. More
generally, one wishes to know what kind of theories can be
constructed using two metrics that are disformally related
and study the connections between them. This generalizes
the conformal equivalence between old school scalar-
tensor theories minimally coupled to matter and theories
with a standard gravitational sector, but with a nonminimal
coupling between matter and the scalar.

In order to consider theories which allow an Einstein
frame description, one starts with a general bimetric theory
where the gravity sector has the EH form, but with
unspecified forms for the gravitational and matter metrics

s= [ax(V-e Rl + =" Lutelt ). 15)

Playing with the disformal relations between g, and g%,
allows one to write the above theory in different frames.
Besides the Einstein frame, an obvious possibility is to
consider the Jordan frame (JF), a description in which
matter appears minimally coupled and the field only enters
the gravitational sector. But since the disformal coupling
has two parts, two more intermediate frames can be
defined, in which only a certain part of the coupling enters
the matter action. The four possibilities are described
below and summarized in Table II, together with the trans-
formations that provide the connections between them. For
the sake of simplicity, the Einstein frame has been defined
using a matter metric of the form (6), consistently with the
notation used in most of the paper.
(1) Einstein frame:

8%, = 8uw g, =Ag,, t B, b, (16)

This is the formulation used throughout the rest of

the paper. The equations in this frame are derived in

Sec. II for a point particle and in Sec. IV in general.
(2) Disformal frame:

1
G _—
g,uv - Zg/.w’

uv = 8uv T Bb u,. (17
The disformal part enters the matter Lagrangian
explicitly. The conformal factor enters the gravita-
tional sector through a coupling to R, like in old
school scalar-tensor theories.

Galileon frame:

3

B
g,LGLV = 8uv _K¢,u¢,u’ g%l’ :Agp,v' (18)
The conformal part enters the matter Lagrangian
explicitly and the field couples directly to gravity
as a DBI Galileion; see Sec. IIT A.
(4) Jordan frame:

1

G 2 &

Suv

B
_Z¢,M¢,V’ g;AA/,[V = 8ur (19)
Matter is minimally coupled to a metric and the field
enters the gravitational sector exclusively.
The JF is the most convenient frame to analyze certain
properties of the theory and its predictions, as matter
follows the geodesics of the simple metric g,,,. The matter
metric in the remaining frames contains the scalar field
explicitly, and therefore matter moves along geodesics that
involve the field variations (10) in these representations.
These frames are still interesting to analyze the theory. For
example, the equations simplify considerably in the EF,
just like in conformally related theories. Once these are
solved, the solutions can be used to write down the Jordan
frame metric.
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The explicit computation of the curvature scalar for a
metric which includes a disformal part allows one to con-
nect the theory studied in the Einstein frame with a par-
ticular sector of the Horndeski Lagrangian (1). As
anticipated in the Introduction, the thus obtained theory
is related to a type of DBI covariant Galileon when ex-
pressed in the Galileon or Jordan frames.

A. Disformal curvature: The Galileon frame

It is possible to get a sense of disformally coupled
theories in a different frame by applying the transforma-
tions sketched in Table II to known actions.’ The simplest
case is the canonical scalar field as was described in
Ref. [30], where it was shown that the transformation
produced the disformal quintessence Lagrangian

Jgx - vyt F(X - V)

A3/2\/——( N mv) (20)

up to the ambiguity in the definition of the kinetic term
described in Sec. 2.4 of Ref. [30]. The above theory en-
compasses several dark energy models in certain limits,
which are obtained by appropriate choices of A, B and V.

Considering similar relations when the disformal trans-
formations involve the gravitational sector in (15) requires
the computation of the Ricci curvature for a barred metric
that includes the scalar field as in (6). The starting point
is the difference between the standard and the barred
connection (11),

_ B _ 1 _
jca,u,v = FZV - lel = gaA<v(,ugV)/\ - Ev)\g,u,v)’ (21)

where the symmetrization is defined as f,p5 =
3(tap + tg,). The barred Riemann tensor is obtained
from the usual definition, and it can be related to the
unbarred one in a manifestly tensorial form in terms
of (21)

Ry, = o 00, + T, 17,

- Raﬁ,u,l/ + V[#K V]B

Buv

I I e (22)

where antisymmetrization is defined without the usual
% coefficient Aj,5) = A,p — Aga- The Ricci scalar follows
from the contraction

R =gMR® ., (23)

with the inverse barred metric

1 B
L | i — Y 7/ A | 24
g A(g A—ZBX¢ ¢) (24)

5The authors of Ref. [87] define a Galileon frame through a
conformal transformation, which is therefore essentially differ-
ent from the one considered here.
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Finally, the disformal Einstein-Hilbert Lagrangian density
requires the barred volume element (A4) to be covariant,

J-z= \/——gA21/1 - 2§X. (25)

Note that no assumption has been made about the functions
A, B out of which the geometric quantities (21)—(23) are
computed. However, the general computation is very
lengthy, and it is useful to adopt some simplifications.
Let us focus for the time being on a theory in the
Galileon frame, for which the disformal part is absorbed
into the gravitational sector. The following computation
assumes thus a gravitational metric of the form (18)

=8u» T D) P ., (26)

where the disformal factor D(¢) is yet to be specified.® The
Jordan frame can be obtained at the end of the computa-
tion by inverting the conformal transformation g,, —
A7 (¢)g,, in the resulting metric and curvature objects.
Since the transformation rules for curvature tensors under
conformal relations are well known [88], and Galileon-like
theories usually retain a conformal coupling to matter in
phenomenological applications (e.g., Ref. [89]), the Jordan
frame curvature will not be computed explicitly.

The barred metric (26) can be simplified by a redefini-
tion of the field

g,LGLV = g,ur/

Zur = 8uy ¥ T, with 7= f D(¢)dd, (27)

where we have assumed that B(¢) = 0. The above
expression has the same form as the effective metric in
probe-brane theories (7). It simplifies considerably the
computation of the connection tensor (21), which now
reads

a

_ zal
K, =g Mmym, T.

v

) =ym (28)

Here

1
Y S o — (29)

J1+m,me

is a Lorentz factor that arises from the inverse metric (24).
The barred Riemann tensor can be computed directly from
(22), rewriting antisymmetrized derivatives in terms of the
curvature Vi,V X p = 3R, XA — SiRE X5

ApvSa T Buv AL
The result is also 51mple

SJust as in the rest of the paper, D has been assumed to be
independent of the field derivatives X. This assumption is
important in order to simplify the computations performed
below. However, given the importance of the X dependence of
higher derivative terms in the Horndeski Lagrangian (1) and
related theories, it is worth considering the more general case
D(¢, X), although in this case the equations would become very
involved.
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Ra,B,uV = ga/\(R)\B,u,V + ’)/277;/\[##;1/]'3). (30)

The barred Ricci scalar can be easily obtained by a second
contraction,

R=(g,, — 27?7, 7 )R* + y* (w0 — m# ,m)]
(3D

Finally, the gravitational Lagrangian \/—gR just requires
multiplying by the barred volume factor (25) to make it
covariant.

The total action for the theory in the Galileon frame is
obtained by adding a matter Lagrangian with a conformal
factor A(¢) in the matter metric

M2
Sor = [y TR Lop + 42 LyAg, ], G2)
where Lo = \ER reads

1
Lop= ;R —2ym 7 R* + y(Ow) — ., ")
= 2ymr v O — ki ,memw,). (33)

These results were previously obtained by de Rham and
Tolley [27] in the context of higher dimensional gravity
theories. In particular, the above action corresponds to a
quartic DBI Galileon term. This expression can be rewrit-
ten in a much simpler form up to a total derivative,’

1 .
‘EGF = ;R - 7((|:|7T)2 - 7T;,uV7T”U'V)' (34)

It is now clear that the action (34) has the right form of the
Horndeski Lagrangian (4), with G, = y~ ! = /1 = 2X. It
reduces to the quartic covariant Galileon term in the non-
relativistic limit X = — 17, 7# < 1, with the right non-
minimal coupling to gravity to yield second order
equations of motion.

Actions (33) and (34) are formed by one of the possible
terms yielding second order equations of motion. The
reader is referred to Sec. 5 of Ref. [27] for results on other
curvature invariants leading to the cubic and quintic DBI
Galileon terms for probe branes with a single extra dimen-
sion (see also Sec. 3.4 of Ref. [67] for a summary). If the
number of extra dimensions is larger than one, only (34)
and the quadratic DBI brane tension terms G, = —Ay~!
are allowed, as they respect the symmetry between the
directions transverse to the brane [45,49].

The disformal transformation of the metric is analogous
to the one used in the analysis of (perturbatively) ghost-free
massive gravity proposed by de Rham et al. [38,39]. In the

"This can be done by subtracting the divergence of ¢* =
2y(m*07 — w*Pm,) and using the fact that V,y =
-y mem,, and mPV Vgm® =R, gm*mP.
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decoupling limit, the helicity-0 mode is described by a
scalar field with nonlinear derivative self interactions. It is
possible to write the interactions for the helicity-0 mode as
a Galileon Lagrangian by means of a disformal transforma-
tion of the metric (e.g., Eq. (35) of Ref. [67]), therefore
expressing the theory in a frame which features a conformal
as well as a disformal coupling to matter. However, massive
gravity is more general than this theory, as it contains other
interactions between the different degrees of freedom
which are not encoded in the Galileon Lagrangian.

The Jordan frame expression of covariant Galileons was
considered by Appleby and Linder [61], where both the
conformal and the disformal coupling to matter were
shifted to the gravitational side of the action. The theory
studied there is essentially different from (34), as it in-
cludes all the standard Galileon terms (which are obtained
from the DBI Galileon terms in the limit of small X),
instead of considering only the quartic term (33). In the
context of inflation, Renaux-Petel et al. [64,65] studied a
theory including quartic DBI Galileon terms in the Jordan
frame. Their model also included an EH term computed
out of the unbarred metric. Therefore, it does not allow for
the construction of an Einstein frame and essentially differs
from the theory considered here. However, their study
stresses the bimetric structure of such theories and uses
interesting techniques to analyze the dynamical equations.

IV. EQUATIONS IN THE EINSTEIN FRAME

In this section, the equations for a disformally coupled
theory which admits an Einstein frame description will be
derived. Such a theory is given by the following action:

Ser = fd“x[ﬁ(% + £¢)
VL@ )] (35)

The interacting matter sector ./—g L, is to be constructed
using the barred metric (6), as it has been made explicit in
the second line using the explicit form of g,, and its
determinant (25)

V&L (G ¥)

’ B -
= \/__—-gA2 1= 2ZX£m(Ag,u,V + B¢,,u¢,w (p) (36)

It will be further assumed that there is no dependence on
the barred metric derivatives.® A scalar field Lagrangian

8This implies that the disformal connection (11) does not
appear in the action. This assumption holds for scalar fields
and gauge vectors vanishes due to the lack of indices and
antisymmetry of the kinetic term, respectively. Although other
fields may couple to g, ,, the assumption simplifies the equa-
tions considerably and 1s common in the analysis of scalar-tensor
theories.
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density of the k-essence type L, = L (¢, X) has been
also included. A more general dependence on the field
derivatives may be considered, but this term gives rela-
tively simple equations of motion, and is general enough to
accommodate both a canonical £, = X-V and a disfor-
mally self-interacting scalar field [30,40]. The matter
Lagrangian may include other pieces with different cou-
plings. An uncoupled matter sector can be included by the
addition of a Lagrangian ,/~g /L, constructed out of the
unbarred metric.

The stress energy tensors for both species will be further
defined in terms of the contravariant gravitational metric

v 2 o(J=gLy)
TR = , 37
¢ T8 88 G

2 8(J=zL,)
R 38
T 8. %)

such that the Einstein field equations take the usual form
G*¥ = 8wGTH* and the total energy momentum is cova-
riantly conserved with respect to the unbarred metric by
virtue of the Bianchi identities: V,(Th" + Tf; Y =0.
However, the coupling causes that this relation does not
occur for each component separately, and in general,

v,T" =V, T8, =09, (39)

1% (¢)V K~ (m)y
where the form of the interaction (last equality) can be seen
by explicitly computing the divergence of the scalar field
stress tensor,

T4 =

o Lo
= <£¢,¢ L8,

As the term in parenthesis is equal to the Lagrangian field
variation 6L4/8¢, the equation for the scalar field,
8S/6¢p =06L,/6¢ + 6L,,/6¢ =0, allows one to write
Q in terms of the variation of the matter Lagrangian,

1 a(\/__g'zm)_ __'
ﬁ(vu 75, «/“g'ﬁw). (41)

The coupling can be evaluated by application of the chain
rule. For the specific form of the barred metric (6), the
variation with respect to the field yields

6(\/ _gz:m) ag,ul/ ag,uu _ VAR TMV(A/g
08uv 08uy 00 2A e

v,Tt

o (z;b)u >¢ v Q¢,V’ (40)

Q=

+ B'b,b,),

(42)

and similarly for the derivative with respect to the field
gradient,

8(J=28L,) 98uv 08 v _ \/-_—gETf,j”(j) . (43)
Sg,uv 8gl“f a¢’“ A :
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The coupling can be obtained after replacing (42) and
(43), in (41),

0=v,(B10.) - [25s

Bl
+— (ol §
S ERE T

The equations for the coupled matter component and the
field are then

VT = —0¢”, (45)

M b+ Ly

(#) - 2X£¢,X¢ = Q, (46)

where M(¢) (Lyxg"" — Lyxxd*¢?) is the general
kinetic term for the scalar. Finstein equations G*” =

87wG(Th" + T(’;;;) together with (45), (46), and (44) deter-

mine unambiguously the evolution of matter, the scalar
field and the metric. These equations naturally contain the
case of a conformally coupled field, where only the cou-
pling to the trace of energy momentum is present in Q.
Note that so far this result is general and does not depend
upon the matter content as long as the matter action only
depends on the field through the barred metric (6)
algebraically.

A. Properties of the scalar field equation

The first term in the coupling (44) contains higher
derivatives of the variables T#”,,, ¢.,, due to the kinetic
mixing in the mater action; cf. (14). These have to be
solved for in order to integrate the evolution equations
(45) and (46), which can be done after adopting a coor-
dinate system. It is possible to eliminate the matter deriva-
tives in the scalar field equation by contracting (45) with
¢" and solving for ¢ ,V, T);". The result can be inserted
back in (46) and rearranged as

A
e t w o+ =0,
MYV, T=98% Q.,.,T V=0 @7
where we have defined
BTLY
M#Er = L, xg"" — Lyxxdpd” T AT BX (48)
Al A'B B
Q=g tut (G5 2g)Put @9

This equation can then be used instead of (46) to determine
the evolution of the scalar field. It displays very clearly the
role of the coupling, which enters not only as a modifica-
tion to the effective potential (second term), but also in the
coefficient for the higher derivatives of the field. This
feature will be ultimately responsible for the screening
mechanism that these models exhibit in high density re-
gions, which is explored in Sec. V.
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Equation (47) also shows that the different components
of the energy momentum tensor may modify the signs of
the coefficients of the second order field derivatives. It is
then necessary to analyze whether the scalar field propa-
gation has a good initial value formulation, as was pointed
out and first analyzed by Bruneton and Esposito-Farese
[901.° Equation (47) is a quasilinear, diagonal second order
equation [91], of the form

d);#yj\/lﬂll((f), ¢,)u Taﬁ) + f((rb’ d),/\r Taﬁ) = 0. (51)

However, its hyperbolic character relies on the signature of
M#¥ which involves the coupled matter energy-
momentum tensor. For a canonical scalar field £, = X-V
disformally coupled to a perfect fluid, the derivatives tensor
reads M*H, = §Y — 5 diag(—p, p, p, p) in coordi-
nates comoving with the fluid. Positive energy density keeps
the correct sign of the time derivative term if B > 0, avoid-
ing the existence of ghosts modes. However, a large pressure
can flip the sign of the spatial derivatives coefficient, in-
troducing a gradient instability. This might have important
consequences in sufficiently relativistic environments.

Addressing the viability of the theory hence requires
determining under which conditions the instability may
occur dynamically, which in turn requires considering the
evolution of the coupled matter components including
the nonlinear terms in (44) and (47). In certain cases, the
system might respond to a situation in which Bp ~ 1 —
BX by diluting the (Einstein frame) pressure below the
threshold value or softening the spatial gradients of
the scalar field. In this sense, the instability induced by
the pressure may be analogous to the potential existence of
singularities in the disformal volume element (25) when-
ever § * A —2BX — 0. This singularity in the barred
metric is avoided by the field evolution, as it slows down
whenever B> — A. The mechanism exploited to induce a
slow roll phase in cosmological applications is precisely
this dynamical resistance to pathology (cf. disformal cou-
pling to matter described in Sec. VI A and disformal quin-
tessence [30,40]).

Studying the conditions under which the pressure insta-
bility can be avoided dynamically might as well restrict the
allowed functional forms of the conformal and disformal
factors. In the worst case, it might spoil the disformal
screening mechanism, or even completely forbid the

°Disformally coupled theories are discussed in Sec. IIIC of
Ref. [90] from a field theoretical perspective. There it is argued
that some dependence on X on either the conformal or the
disformal factor is necessary for the theory to have a
Lorentzian signature for all values of X (cf. Eq. (3.22) in
Ref. [90]). However, the dynamics of the scalar field might
prevent it from acquiring arbitrary values of X, as it is argued
below and shown explicitly for a cosmological model in which
2BX < 1 at any time (see Fig. 1). Reference [90] also studies the
hyperbolic condition within dynamical pressureless matter,
which is complementary to the analysis presented below.
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occurrence of a disformal coupling. Determining whether
or not this is the case will be the objective of future work.
The Einstein frame pressure p will be neglected as a part of
the approximation scheme in the following analysis, im-
plicitly assuming that Bp << A — 2BX, in order to avoid
potential issues.

B. Coupling to perfect fluids

Assuming a perfect fluid in the Einstein frame 7" =
(p + p)utu” + pg*” with u®u, = —1, it is instructive to
project (45) along and perpendicular to the matter four-
velocity. This determines how the local law of energy
conservation and the geodesic equation are modified by
the coupling

uVop + (p + p)\Vou® = Q¢ ,u, (52)

(p + puVu* + [gF* + utu*](V,p + OV, ) = 0.
(53)

In the first equation the coupling modifies the energy
conservation relation, due to the energy transferred from
the scalar field, which is modulated by the projection of the
field gradient along the four-velocity. The second equation
determines the departure of geodesic motion with respect
to the gravitational metric. The first term describes the
force arising from the pressure gradient and the second
the additional force exerted by the scalar field. Both forces
are projected into the direction L u* (coefficient in brack-
ets) due to the orthogonality of the four-velocity and four-
acceleration.

The analogue of (47) for the covariant matter conserva-
tion equation without second order field derivatives can not
be obtained without choosing a time slicing due to the
different high derivative structure in both equations.
Nevertheless, there is no need to do so, since we already
found a bona fide field equation (47) that can be integrated
consistently with the corresponding equation for matter
(45), substituting the appropriate value of Q. It is possible
to solve for the time derivatives of all the variables after a
metric ansatz has been chosen, as will be done in Sec. VI
for the study of Friedmann-Robertson-Walker (FRW)
models and cosmological perturbations.

V. THE DISFORMAL AND VAINSHTEIN
SCREENING MECHANISMS

In this section we consider the compatibility of gravita-
tional theories based on a disformal coupling and local
gravity tests. Due to the stringent bounds on scalar forces
and post-Newtonian effects [86,92], some sort of screening
mechanism is necessary to hide the coupling in dense
environments such as the Solar System. The disformal
contribution to the conservation equations vanishes for
static, pressureless configurations [93]. This is obvious
from (45), since only the 7% component is nonzero for
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dust, and when contracting the field derivatives with the
stress tensor, a nonvanishing result requires time evolution
of the scalar field. Therefore, addressing the effects of
disformal couplings requires studying the field dynamics
in high density environments.' As it will be shown in the
next subsection, the kinetic mixing induced by the disfor-
mal coupling makes the scalar field evolution insensitive to
the matter distribution, as long as it is sufficiently non-
relativistic and its energy density is high.

For the sake of concreteness, let us restrict ourselves to a
canonical scalar field coupled to a perfect fluid. The gen-
eral equation (47) then reads

(Xgh” — BTE" )WV, V, — XV' + Q,, T =0, (54)

where X = A — 2BX < A is bounded in order to avoid a
singularity in the volume element of the barred metric (25)
and @, is given by Eq. (49). The form of the field
equation strongly suggests that the dynamics of the
coupled system will be different in high than in low density
environments. Since the energy momentum tensor appears
as a coefficient of the higher derivatives as well as in
the effective potential, there is a well defined limit
T% = p — o0, in which the field equation simplifies con-
siderably. This property will be crucial for the disformal
screening mechanism [29]. Additionally, the study of static
vacuum configuration around point sources allows one to
derive the existence of a Vainshtein radius, at which the
asymptotic solution « r~! breaks down. This property
arises from a singularity in X = A — 2BX for sufficiently
high field gradients, whenever B < 0. The disformal
screening mechanism, the existence of the Vainshtein ra-
dius and potential signatures of disformally coupled theo-
ries will be analyzed in below.

A. Dense, nonrelativistic and static matter

The study of the Solar System and laboratory tests of
gravity requires considering energy densities that are much
higher than the cosmological average and pressure is com-
pletely subdominant. As a first approximation, this regime
can be explored using the general scalar field equation (54)
for a static, nonrelativistic matter distribution p(X) in the
limit p — o0. More precisely, the following dimensionless
ratios will be assumed to be negligible:

197t is possible to obtain some insight into the dynamics of the
field from the analysis of the background cosmology given in
Sec. VI, where it is argued that for the purely disformal case the
coupling was proportional to the scalar field energy density;
cf. Eq. (68). This causes the existence of two regimes, a matter
dominated regime in which the effects of the coupling are small,
and a field dominated regime in which the coupled matter
equation of state is modified; see Fig. 1. When denser regions
form, the scalar field energy density becomes insufficient to
produce large effects on the matter distribution, unless the field
gradients follow the matter distribution and intensify the addi-
tional force.
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p P ( dg )2 X X
p b

> - 1 _V//$)
p\d; ¢ Bp

Bp Fgo(?b)ﬂ/d;NO’

(55)

and Bp < A — 2BX, as argued in Sec. IVA. These approx-
imations quantify to what extent the effects of gravity and
pressure are disregarded, the requirement of having “‘soft”
spatial gradients relative to the time evolution and the fact
that Bp is large enough. These conditions will be briefly
discussed at the end of the section, focusing on systems in
which their lack of fulfillment might lead to observable
signatures.

The set of assumptions (55) simplifies the field equation
(54) considerably,

oo enli )

B )
50
where the first equality is general and the second applies to
a purely disformal coupling with exponential forms, such
as the example cosmological model presented in Sec. VI A.
The above expression departs substantially from the simple
conformal coupling, for which the p — oo limit is ill
defined. Two important features of the above equation
endow the theory with the disformal screening mechanism:

(1) The spatial derivatives become irrelevant, as they are
suppressed by a p/p factor with respect to the time
derivatives.

(i) The equation becomes independent of the local
energy density, making the field evolution insensi-
tive to the presence and distribution of massive
bodies.

These features ensure that the field rolls homogeneously
and avoids the formation of spatial gradients between
separate objects, which would give rise to the scalar force
(cf. Sec. II). The above properties are caused by the kinetic
mixing between the field and matter degrees of freedom,
and lay at the core of the decoupling between both
components.

Let us analyze the simpler, purely disformal exponential

case. The second equality of Eq. (56) can be easily
integrated,

. M M -1
¢(1) = —”(t + —p) . (57)
B B(0)
In this solution the field time variation is approximately
M,

and slows down afterwards as <«

constant while r << 20

1/t. Since the coupling to nonrelativistic matter is propor-
tional to ¢, stronger couplings decay earlier. It is possible
to obtain a solution for A = 1, p = 0 keeping the potential

‘”Equation (56) also follows from taking the limit p > A/B,
¢? in the FRW coupling density Q, (65), precisely due to the
absence of spatial derivatives.
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V, but otherwise assuming the simplifications (55). It is
given as an implicit function,

B(¢')
Co —2V(¢)/p

r— 10 = (58)

where (f)z = % - _2\;}(55) 12

with respect to the energy density. In tracking dark energy
models, such as the one explored in Sec. VIA, V is a
decreasing function of the field and c,zS >0. Therefore, V
is of the order of magnitude of the average cosmic density
po and can be safely neglected if p is much higher, recov-
ering the simpler solution (57). As the field slows down
with time if B’/B > 0, the order of magnitude of the field
time derivative is also cosmological, ¢ ~ Hy.

One of the effects of the coupling is to modify the energy
conservation equation for matter in the Einstein frame
[cf. Eq. (52)] inducing a variation of the gravitational
mass. In a gravitationally bound two body system, this
effect is degenerate with a possible time evolution of

The potential appears suppressed

Newton’s constant g — % + % to a first approximation, as
can be argued by deriving the expression for the Newtonian
force with respect to time. Lunar laser ranging measure-
ments place precise bounds on this effect to the level of
G/G < 1073/Gy [94]. The magnitude of energy density
variation induced by a disformal coupling can be estimated
as p=~ —(¢ + V). Assuming ¢$>~V ~ py as dis-
cussed above, Bpo = 1'% and the solution (57), typical
mass variation rates M/M are as small as ~107°/Gy for
the interstellar medium and ~107%° /Gy for the average
Earth density, well beyond the sensitivity of lunar laser
ranging measurements.

B. Static field in vacuum

The equivalence between disformally coupled theories
and quartic DBI Galileons presented in Sec. IIT A suggests
arelation between the disformal and the Vainshtein screen-
ing mechanisms. The Vainshtein mechanism, which occurs
in Galileon theories and their generalizations, is due to the
nonlinear, derivative self interactions of the scalar field,
which suppress the field gradients within a certain distance
from point sources in static configurations. Such a distance
is known as the Vainshtein radius ry, and it signals the
breakdown of the asymptotic vacuum solution as the non-
linear terms become dominant.

“Under these assumptions Eq. (54) can be written as ¢ +

2%([)2 —’; = ﬁ E(Bd) /2 + V) = 0. The second equality can
be directly integrated, giving the constraint ¢? = b? - 2‘;&‘?,

Wthh can be integrated again to obtain (58).

3This assumptions are made for order of magnitude estimates.
For cosmological applications in which the field’s potentlal
accelerates the Universe, p, V are significantly larger than ¢?
and Bp > 1 occurs while B¢? < 1; cf. Fig. 2.
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Let us consider static and spherically symmetric solu-
tions of the scalar field equation (54). For perfect vacuum
Th" = 0, it reduces to the Klein-Gordon equation in the
vacuum: [J¢p — V' = 0. For the sake of concreteness, we
will assume that V = 0 throughout this section. Then the
vacuum solution is

)= =+ o 59)

If the field is conformally coupled to matter, such a static
field configuration would produce an additional force,
which is unscreened (screened) if A/|S| = GM (A'|S]| <«
GM) in the regime of validity of the above solution.

The Vainshtein radius can be found by determining the
breakdown of the conditions that lead to solution (59). In
order to do so, let us consider a very small, but nonzero
ambient energy density such that BSTh"¢.,, < 0.
Then the field equation (47) reduces to

O¢ + (A +2B(¢,)*)'Q,,8Th" = 0. (60)

The vacuum solution satisfies [1¢p = 0, ad hence the above
equation is only satisfied as long as the second term
remains small. But if solution (59) is assumed and B < 0,
the coefficient in parenthesis has a singularity at

2BS*\1/4
rv=< I ) . (61)

We can identify ry as the Vainshtein radius, as it
determines the breakdown of the naive vacuum solution,
which is independent of 87" (note that an experimental
set-up able to measure the scalar force would generically
introduce such a nonvanishing energy content).'* This is
analogous to the Vainshtein radius in the Jordan or
Galileon frames, at which the nonlinear derivative self
interactions of the scalar field become important.
Disformally coupled theories do therefore display the
Vainshtein effect in static, vacuum configuration for nega-
tive B, while they are endowed with the disformal screen-
ing mechanism for positive B. It is worth noticing that both
effects are essentially different: the disformal screening
relies on the kinetic mixing of the matter and the field,
which can render the field evolution independent of
the energy density. When regarded in the Einstein frame,
the Vainshtein mechanism is related to a singularity in the
barred metric, as g <A —2BX =~ A — B> + B(@c/))2
approaches zero."> Moreover, the occurrence of each
mechanism required a different sign of the disformal

"It is natural to include a nonvanishing energy component to
regularize the equations: in the absence of a matter Lagrangian,
the results of Sec. III A imply that a theory described by a quartic
DBI Galileon (34) is equivalent to general relativity, as the scalar
field can be eliminated by a redefinition of the metric [the
canonical kinetic term for the scalar field would transform into
a dlsformal quintessence term (20)].

>This is similar to the mechanism to induce slow roll through a
disformal coupling; cf. Sec. VI A or self coupling [30,40].
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coupling function B: B > 0 gives rise to the disformal
screening mechanism while B <0 is related to the
Vainshtein effect. In both cases the relevant energy scale
for the screening is given by B ~ M4, and in particular by
the dimensionless quantities Bp (disformal) and
B(%d))z/A (Vainshtein). The relationship between the
two screening mechanisms, as well as a more detailed
comparison with other theories that feature the
Vainshtein screening will be investigated in future work.

C. Potential signatures

It has been shown that modifications of gravity might be
rendered small in the Solar System by the action of the
disformal and Vainshtein screening mechanism. New local,
astrophysical and cosmological signatures may be found
by relaxing the approximations assumed in the previous
sections. Some situations where the coupling might be-
come observable include:

(a) Matter velocity flows: The spatial component of the
matter four-velocity 7% mixes the time and space
derivatives of the field, which may source the field
evolution (as nonzero velocities introduce terms pro-
portional to ¢.;; and ¢5¢,I-). These effects are sup-
pressed by a relativistic v/c factor, but they may be
important in certain systems such as binary pulsars.

(b) Pressure: Applications of the disformal coupling in the
context of dark energy arguably require a value Bp >
1, where p is the average cosmic density. Then, even
though the pressure is usually negligible with respect to
the energy density, it should be easy to find systems for
which Bp is also much larger than one. This might
have important consequences for the stability of the
theory, as was briefly discussed in Sec. IVA.

(¢) Radiation: Unlike in the conformal case, the disfor-
mal coupling has nontrivial effects on ultra-relativistic
fields for which T = 0; cf. (44). Some authors have
initiated the study of the disformal coupling in sce-
narios featuring radiation. Brax et al. [95] considered
high-precision, low-energy photon experiments,
which might be able to detect the influence of a
disformal coupling on top of a conformal one. The
distortions in the baryon-photon chemical potential
induced by a disformal coupling and their signatures
on the cosmic microwave background (CMB) small
scale spectrum have been studied by van de Bruck and
Sculthorpe [96]. Other effects may follow if electro-
magnetism is formulated in terms of the barred metric,
such as varying speed of light or modified gravita-
tional light deflection [97]. A radiation-exclusive dis-
formal coupling has also been shown to affect the
evolution of the CMB temperature [98].

(d) Strong gravitational fields: The connection coeffi-
cient I'fy¢ , in the field derivative term is not sup-
pressed by Bp. It represents the effects of gravity,
and was neglected because it is small in most solar
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system applications, since 1, = Gr—3M(r —2GM) in
the Schwarzschild metric. However, this term might
become relevant in strong gravitational fields, such
as the vicinity of black holes or compact objects.
(e) Spatial field gradients: Inthe Bp > 1, p > p limit,
the equation for the scalar field (56) becomes inde-
pendent of the matter content and the field deriva-
tives. Therefore, if the field acquires a spatial
modulation before reaching this limit, it will be
preserved by the subsequent evolution. Spatial gra-
dients of the field formed when the linear perturba-
tion theory is valid would then be present today, with
their actual value depending on the details of the
transition between the perturbative, e.g., the small
scale limit of cosmological perturbations (77), and
the screened regimes. Gradients of cosmological
origin might be seen as preferred direction effects
pointing towards cosmic structures when analyzed
in the Solar System. Spatial derivatives of the field
may also be important if the field is rolling suffi-
ciently slow as to overcome the p/p factor in (55).
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FIG. 1 (color online). Background evolution of disformally
coupled matter. Upper panel: Evolution of the energy density
for the field (red, light lines) and coupled matter (blue, dark
lines) for different choices of the coupling slope 8. Lower panel:
Equation of state for the field (red, light lines) and coupled
matter (blue, dark lines). High values of B/ (solid, dashed
lines) give a good fit to observations, while low values (dotted
lines) do not produce enough acceleration.
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These and other settings might lead to characteristic
signatures and new bounds for disformally coupled theo-
ries, which will be investigated in the future. It should be
also possible to obtain the coefficients of the parameterized
post-Newtonian approximation, which would allow a more
systematic comparison to local gravity tests.

VI. COSMOLOGY

Having addressed the viability of the theory in the Solar
System, let us consider its cosmological implications.
Using the Einstein frame description, the Friedmann equa-
tions have the usual form

P2
o+ k 87TG< 10} )’

7 (62)

H+ H?* = —4%G(p +2¢4%—2V), (63)

but the conservation equations for matter and the scalar
field have to be computed from (45) and (47),

p+3Hp = 0, (64)
¢ +3He +V' = —Q, (65)
where p is the energy density of the coupled matter com-
ponent and the background coupling factor reads
A’ —2BBH¢ + V' +4 %) + B/ >
2(A+ Blp — ¢%)

Qo = (66)

after solving away the higher derivatives. In the following
we restrict to flat space, K = 0.

At this stage it is possible to understand the difference
between the pure conformal (B =0) and disformal
(A = 1) cases by writing (66) in terms of the equation of
state and the scalar field energy density,

©_ A

=—0p, 67
0 T 54P (67)

B/ V/
(d)
V3
+ ﬁ((l + W({))ptotp({))l/z; (68)
P

where in the pure disformal case it has been assumed that
Bp > 1 = B¢>. This approximation is satisfied by the
model presented in the next subsection when the coupling
is active; see Fig. 2. The last term in (68) represents the
contribution from the Hubble term, which is subdominant
when the slopes of B, V are large. The above expressions
imply that the conformal and disformal coupling between
dark energy and dark matter are related to essentially different
phenomenological parameterizations, where the interaction is
either proportional to p = pgy, [99-101] or p,4 [102,103].
The equations governing cosmological perturbations
can be obtained from Eq. (41), which can be used to read
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FIG. 2 (color online). Evolution of the dimensionless disfor-
mal factors B(ﬁ2 (solid lines), Bp (dashed lines) and BV (dot-
dashed lines). Higher values of 8/« produce a sharper transition
and lead to higher B at late times.

both the disformal matter nonconservation and the field
dynamical equation. Working in the Newtonian gauge

ds? = —(1 + 2@)d* + a>(1 — 2W)d7>  (69)

avoids potential misinterpretations when swapping be-
tween different frames, which are known to occur when
these are related by conformal transformations [104].
Solving for the higher order derivatives, the perturbed
continuity and Euler equations for the disformally coupled
matter contrast 84 = 8p/p and the divergence of its

velocity 6 = ik;T{), = ik;v/pa~" read
5dc+€+%¢5dc:3q}+%5¢+—Q¢» (70)
a p p p
6 + 0(H + %d)) = k2(c1> + @(sgb), (71)
p p

while the scalar field evolution is determined by
" . k2
6 +3H6¢p + (—2 + V”)Sd)
a
= =80 —2®(Qy + V) + $(® +3¥), (72

with
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809 = —(z—z Bﬁp + (2BV" — B”dﬂ)ﬁ + (2B'(V! + 3H) + B?$*(p — ¢?))
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o

(1= B¢y + (B~ BOH - pB'd) — PV + 38(p + §7)) 1550

+ <—B’<z5 + B(6H — pB'¢) + 2B*(3Hp + v/qs))_2¢ n

for a purely disformal coupling A = 1, where M =1 +
Bp — B$?. The coupling perturbation 6Q is given in
Appendix B for the general case. This expression is a
much more cumbersome combination of the fluid and field
perturbations than for the purely conformally coupled case

1 1
500 = 3 log (A)' pd4. + 3 log (A)"pd¢. (74)

Note that, unlike in the conformal case, the first term
in (73) is proportional to k* and hence the coupling in-
troduces explicit scale dependent terms at the level of the
equations. This feature will be reflected in the growth of
perturbations and the power spectrum, studied below for an
example model.

To extract the most relevant new features by analytic
means, we shall consider the subhorizon approximation. In
the small scale limit, taking into account only the matter
perturbations and the gradients of the field, there is a
simple expression for the perturbed interaction 6Q. In
this Newtonian limit, we further relate the field gradient
to the matter perturbation through the field equation (72),
which yields the simple expression

80N = 08, (75)

Combining Eqgs. (70) and (71) together with the usual
Poisson equation, we obtain the evolution of the coupled
dark matter overdensity,

84+ [2H + %d;:lsdc = 47GepSye.  (76)

p

In addition to an extra friction term, the source term is
modulated. The last effect is captured by defining an
effective gravitational constant G that determines the
clustering of dark matter particles on subhorizon scales

Geff —1= Q%
G 47Gp*’

(77)

This approximation has the same expression as the simple
conformal case, although with a significantly different
functional form of the coupling Q,, which is now given
by Eq. (66).

A. Disformally coupled dark matter

In what follows it will be assumed that the field is only
coupled to dark matter, while radiation and baryons follow

3Bpé
M M

po

v, (73)

geodesics of the gravitational metric and do not feel the
scalar interaction directly: If baryons are also coupled, then
the ratio pg,,/p, remains fixed, because both species feel
the same effective metric.'® Postulating that the baryonic
and electromagnetic sectors are constructed out of the
gravitational metric also avoids problems with precision
gravity tests and the subtleties related to the existence of
different frames, hence simplifying the analysis of cosmo-
logical observations.

To study the dynamics within a particular example, we
focus on a simple DCDM model, constructed with the
following prescriptions:

(1) Dark matter disformally coupled to a canonical

scalar field, following Eqgs. (64)—(66).

(i) An exponential parametrization for the disformal

relation and the scalar field potential,

B = ByeP4=d)/M,, (78)
V = Vye Y¢/M, (79)
A=1 (80)

with M, = (877G)~'/2. The conformal factor A has
been set to the trivial value in order to focus on the
novel features. Furthermore, the coupling is chosen
to be negligible in the early Universe, and hence
initial conditions and early evolution are not
affected.

(ii1) Uncoupled baryons, photons and neutrinos, which
follow the usual barotropic scaling relations p =
a1*)_ Zero cosmological constant.

This model can be motivated in DBI scenarios in type
IIB string theory, in which dark matter is given by the fields
residing on the brane, which is allowed to move in the
compact dimensions, being then automatically dark and
disformally coupled [105]. Besides being motivated from
some high energy scenarios, the exponential forms
(78)—(80) facilitate the choice of natural scales for the
constant prefactors by shifting the zero point of the
field (e.g., Bo~M,*, Vo~M,, A, dimensionless).

15This can also be seen directly from (66): in the denominator
of Oy, the energy density has to be substituted by the total one
p — Pam T pp, while the multiplicative coefficient p would
refer to each individual species.
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Furthermore, these forms allow a convenient exploration of
the phase space of the system. In addition to the previously
studied fixed points [7,100], we find only one new, a
disformal scaling solution that is not an attractor. The
details of this analysis can be found in Appendix C.

1. Background evolution

The model set up is similar to the uncoupled self-
interacting field case described in Ref. [30]. In par-
ticular, the potential ensures a tracking stage for the
field and the value of ¢ is chosen to tune the transition
time when the disformal coupling becomes relevant.
Although only dark matter is affected by the coupling,
radiation and baryons are included in order to provide a
more realistic description. The evolution at early times is
then as in the usual exponential quintessence model,
where the field tracks the dominant fluid component
and the slope of the potential 7y determines the amount
of early dark energy (EDE) [7],

Qede = %(1 + Wm)! (81)

Y

which depends on the dominant matter component equa-
tion of state parameter w,. The new features appear
when the disformal factor B¢> becomes of order one.
Then the clocks that tick for dark matter, go0 = —1 +
Bq")z, slow down and make the effective equation of
state approach minus unity asymptotically. The field
also slows down to avoid a singularity in the effective
metric g,,, and the Universe enters into a de Sitter
stage. This natural resistance to pathology was also
observed in the disformal self-coupling scenario de-
scribed in Refs. [30,40]. The disformal coupling pro-
vides then a mechanism that triggers the transition to an
accelerated expansion. The relatively steeper the slope
of the disformal function is, i.e., the higher the ratio
B/, the faster the transition happens, as seen in Figs. 1
and 2. This transition also produces a short “bump” in
the equation of state, which affects the growth of
structure.

The evolution of G for the disformally coupled dark
matter example model (78)—(80) is shown in Fig. 3. It is
characterized by a bump at the transition, whose height
increases with 8, and a further increase when the potential
becomes dominant. At the later stage, the dependence is
approximately G/G — 1 ~ (yV/p)? and yields a large
value since dark energy domination requires V = p and
v = 15 is necessary to avoid the effects of early dark
energy (81) [106]. This enhancement occurs on observable
scales and spoils the formation of large scale structure in
this particular case. Problematic growth enhancement also
occurs in conformally coupled models that attempt to
address the coincidence problem [101]. The observable
effects will be analyzed using the full perturbation 6Q
within the disformally coupled dark matter model.
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FIG. 3 (color online). Effective gravitational constant on small
scales (77) for different values of S, y. The value is large at the
transition due to the disformal friction term B’ 2, and latter due
to the contribution of the potential term BV’ (see text and
compare to Fig. 1).

Several alternatives to render the model viable will be
described in Sec. VIB.

2. Perturbations

The full system of linearized equations (72)—(74) was
solved numerically using a modified version of the
Boltzmann code CMBeasy adapted to the disformally
coupled dark matter model described in Sec. VI A. Since
matter is essentially uncoupled until z =< 10 there was no
need to modify the initial conditions, which have been
assumed adiabatic. Figure 4 shows the evolution of the
density contrast of disformally coupled matter. The bary-
ons, which are uncoupled in this particular example, are
also shown for comparison. Figure 5 displays the power
spectra for disformally coupled matter and baryons at
z =0 for different values of the parameters. Figure 6
shows the CMB power spectrum and the baryon-DM bias
induced by the coupling at z = 0.

Besides the effect of early dark energy and late time
scalar force captured in G, the disformal coupling causes
a considerable integrated Sachs-Wolfe effect, a fundamen-
tal bias between disformally coupled matter and baryons
and large scale oscillatory features beyond the baryon
acoustic oscillation (BAO) scale. The numerical results
and the discussion are restricted to the DCDM model,
and focus on the role of the potential slope y, which mostly
determines the late time value of G.. It remains to be
studied whether or not similar effects occur in viable
models such as the ones described in Sec. VIB, and
to what extent they might be observable by current or
future surveys.

(a) Early dark energy: Both the baryons and the
coupled dark matter are indistinguishable as long
as the coupling is negligible. They are equally af-
fected by the presence of early dark energy (see
Fig. 4), which produces a departure from the matter
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FIG. 4 (color online).

Growth of disformally coupled matter and (uncoupled) baryons. Upper panels: Thick purple lines correspond

to the disformally coupled matter and thin brown lines to baryons at the same scales. The presence of early dark energy affects
the slope at early times. Afterwards, the dark matter perturbation starts growing rapidly, as deduced in the small scale approximation
(see Fig. 3). Lower panels: Evolution of the power spectrum at z = 0 (thick, solid lines), 0.3, 0.6, 1 (thick, dotted lines), 2, 4 and 10
(thin, dotted lines). DM and baryons can be distinguished because the latter have a lower P(k) on smaller scales, at any given redshift.

The gray line corresponds to a reference ACDM model. Units of k are Mpc™'.

(b)

domination result 6 « a: EDE increases the expan-
sion rate without clustering, reducing the formation
of structure. This effect was also found for the
uncoupled scalar field [30,40], and is most notice-
able for models with higher Q4. (e.g., y = 4).
Late enhanced growth: The growth of structure is
enhanced after the transition takes place, consis-
tently with the small scale approximation (77).
The large value of G./G overcomes the additional
friction term, and structures form much faster than
in the standard CDM scenario. Models with less
EDE suffer a higher enhancement, because the ef-
fective gravitational constant G g * y? is larger and
the transition occurs earlier (i.e., the field takes
longer to dominate the energy content). The effect
from the bump in the effective Newton’s constant
associated to the transition is not obvious in the
evolution of &, and is subdominant with respect to
potential domination.

The enhanced growth effect is partly canceled by

1

power spectra with y = 4 and the DM power for
the standard model on small scales, but fails any-
where else. It would be worth exploring this cancel-
lation in a more systematic way (e.g., Markov chain
Monte Carlo exploration of the model parameters),
which would in turn require a better understanding
of the baryon bias induced by the coupling (see
below). However, such an exploration is postponed
for future work.

Note that Fourier modes reach the nonlinear regime
earlier due to the enhanced growth. Upon the failure
of linear perturbation theory, the disformal screening
mechanism explored in Sec. V might hide these
dramatic effects and restore the standard growth, soft-
ening the deviations on small scales. Although this
seems unlikely to save the example model, it might be
necessary to take the effect into account to obtain a
fair comparison with observations.'”

7Similar enhanced growth effects have been considered in the

the early dark energy damping. This degeneracy  context of quintessence conformally coupled to neutrinos, where
causes the relative resemblance between DCDM the necessity of nonlinear analysis has been pointed out [107].
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FIG. 6 (color online).

CMB power spectrum (left panel) and bias between baryons and DCDM induced by the coupling (right panel).

The enhanced growth of dark matter structures on small scales produces a very large ISW effect. Note that the departures are worse for

models with less early dark energy (higher 7y), as derived in the small scale approximation (77). Units of k are Mpc™".

(c) Scale dependent growth and bias: The power spec-

tra show scale dependent evolution, as can be seen in
the different power spectra normalized to the corre-
sponding ACDM (second line of Fig. 5). In the
standard model, the linear growth factor is scale
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dark matter. For disformally coupled dark matter,
the scale dependent growth follows from the
k-dependent term in the perturbed coupling (73).
This feature does not appear in phenomenological



ZUMALACARREGUI, KOIVISTO, AND MOTA

(d)

(e

coupled models, in which the growth of the coupled
matter structures is enhanced, but in a scale inde-
pendent way (cf. Ref. [102]).

The coupling also modifies the relation between
baryonic and dark matter structures, since DM
couples directly to the field while baryons are only
indirectly affected. As baryons are dragged into the
potential wells created by the coupled matter, they
follow a scale dependent growth pattern, delayed
with respect to the dominant matter component.
The resulting bias between the two species is shown
in Fig. 6. The scale dependence of the bias vanishes
both on super-horizon scales (k/h < 0.001 Mpc™')
and the small scales (k/h = 0.1 Mpc™!), which
are well described by the scale-independent
Ger (77). The intermediate region shows the inter-
play between the scale dependent growth for the
coupled matter and the baryons following these
structures.

Since galaxies form out of baryons, this funda-
mental bias modifies the usual DM-galaxy power
relation [108]. Such a correction needs to be taken
into account when comparing the observed power
spectrum with disformally coupled models. On the
other hand, other measurements of the matter distri-
bution such as weak lensing would probe the struc-
tures formed by both components, and may be used
to break the degeneracy.

CMB integrated Sachs-Wolfe effect: The enhance-
ment of the perturbations after the transition causes
the very large Integrated Sachs-Wolfe effect appre-
ciated in Fig. 6, which becomes most noticeable for
the models with higher values of y. The model with
v = 4 gives a better fit on the / < 10 multipoles, but
departs considerably in the range 10 < [ < 200 due
to the effect of early dark energy after recombina-
tion. The model with less early dark energy has the
opposite problem: it produces a better fit in the
intermediate range 100 <[ <200 due to the lower
amount of early dark energy, but the integrated
Sachs-Wolfe (ISW) enhancement explodes at lower
multipoles due to the higher value of G.y. The
different amounts of early dark energy have an addi-
tional effect on the CMB normalization due to the
primary Sachs-Wolfe effect: by reducing the poten-
tial wells that redshift the photons, ). acts in-
creasing the height of the peaks.

Oscillatory  features beyond the BAO scale:
Oscillatory features can be appreciated in the
coupled matter power spectrum on very large scales.
These are likely created as field oscillations on
scales near k ~ H(z), which are then transferred to
the coupled component, when the coupling is active.
They are most noticeable for the models with a large
early dark energy component, e.g., larger field
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energy density. Although it constitutes a distinctive
feature of the model, the oscillations are not signifi-
cantly imprinted on the baryonic power spectrum.
This, together with the large survey volumes neces-
sary to explore such scales would make it difficult to
detect them through large scale structure surveys.
However, the large scale oscillations would be a
characteristic signature in models where the disfor-
mal coupling is universal, in which the same effects
occur to DM and baryons.

B. Viable scenarios

The study of cosmological perturbations within the dis-
formally coupled dark matter model (78)—(80) shows very
drastic departures in the formation of large scale structure,
which seem very difficult to reconcile with observations. It
would be interesting to obtain a more precise quantification
of these discrepancies through a Markov chain Monte Carlo
analysis and explore possible degeneracies (e.g., the growth
suppression from early dark energy and the enhancement
from the high G.4). However, it is necessary to address
the existence of alternative, viable scenarios already at
this stage.

Luckily, the action (35) is very general and there is
considerable room for improvement through different
choices of the functions A, B and L 4+ There are at least
two possibilities:

(i) Introduce a modulation in the disformal factor
B(¢) — f(¢)B(), to make Qy small enough after
the field enters the slow roll phase. This modification
can render 6G. arbitrarily small, except for a rela-
tively short time around the transition (see Fig. 1).
This type of models would allow us to study the
effects imprinted by the transition bump without
the problems caused by the high G at late times.

(i1) Constructing the field Lagrangian using a disformal
metric, as in the uncoupled model presented in
Refs. [30,40]. In this model the transition to slow
roll would be partially driven by the scalar field
Lagrangian itself, and the effects on matter may
be significantly reduced. In the minimal prescrip-
tion, the matter and field Lagrangian are constructed
using the same metric (6) and no extra parameters
are introduced. If this model turned out not to be
viable, a different disformal metric for the field and
the coupled matter would offer an alternative that
is able to interpolate between disformal quintes-
sence and the disformally coupled dark matter pre-
sented here (e.g., different disformal factors with
Bm = B(®)),

Other alternatives could be based on the interplay between
the conformal and the disformal part of the coupling.
Viable scenarios might be exploited to alleviate the
claimed problems of ACDM with small scale structure
formation, such as the tension between dark matter
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simulations and observations with regard to both the den-
sity profiles of dark matter halos and for the number of
predicted substructures inside a given host halo, the bar-
yonic Tully-Fisher relation, the constant galactic surface
density or the large scale bulk flows (see Ref. [109] for a
summary and references therein for further details).

As a final remark, let us note that the enhanced growth
rushes the Fourier modes into entering the nonlinear
regime at earlier times, breaking down the perturbative
approach followed here. As it was explained in Sec. V,
the disformal coupling comes equipped with a screening
mechanism, that hides the effects of the additional force on
dense environments. Addressing the consequences of the
disformal screening in a cosmological context would re-
quire considering the nonlinear backreaction of the field,
which is not properly captured in the approximations
considered so far. Chameleon-type theories also show a
strengthening of the screening when nonlinearities are
properly taken into account [110].

VII. DISCUSSION

The disformal relation provides a generalization of the
conformal transformation. It has been used to construct
theories of modified gravity, notably those which produce
nontrivial effects on null geodesics, such as varying speed
of light and gravitational alternatives to dark matter. It also
appears in the description of branes embedded in a higher
dimensional bulk space, in which the scalar fields represent
the brane position in a certain set of coordinates. The
results of the present work concern the set of theories
which can be expressed as general relativity plus a matter
Lagrangian, which is constructed using the disformal
metric. This provides a generalization of the old school
scalar-tensor theories in the Einstein frame: Test particles
follow geodesics which explicitly involve derivatives of the
scalar field, and the energy momentum of the field and
coupled matter (computed with respect to the gravitational
metric) is not conserved separately.

The existence of additional frames, in which only the
conformal or disformal part enter the matter action explic-
itly, provides novel connections between scalar-tensor
theories of gravity. In particular, it is possible to restore
the theory to a Jordan frame representation by reversing the
disformal relation, as was shown in Sec. III A. By doing so,
the transformed EH term is shown to be equivalent to a
quartic DBI Galileon Lagrangian when expressed in a
frame in which the disformal coupling is pushed towards
the gravitational sector. The resulting theory has the correct
Horndeski form (1), ensuring the second order nature of the
equations and the avoidance of Ostrogradski’s ghosts. In
particular, it introduces a derivative coupling between the
scalar field and gravity, together with higher derivative self
interactions. These endow the theory with the Vainshtein
screening mechanism, which allows the field to cause
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effects on cosmological scales while remaining undetect-
able in the Solar System.

The equivalence between certain higher derivative
theories (such as DBI Galileons with conformal or minimal
coupling to matter) and disformally coupled theories with
an Einstein-Hilbert gravitational sector provides new
means to analyze this type of models. Although the
equations for disformally coupled theories are rather
involved, they are much simpler than higher derivative
Horndeski theories in the Jordan frame and highlight the
properties of the different terms. Hence the analysis of
disformal theories in the Einstein frame can be regarded
as equivalent to (at least) some scalar-tensor theories
featuring the Vainshtein screening mechanism. The kinetic
mixing between the coupled degrees of freedom makes it
necessary to solve for the second time derivatives of the
different components. Although this generally requires
some assumptions, e.g., about the metric, a general equa-
tion without derivatives of the energy-momentum tensor
can be obtained (47). Once solutions are computed, it is
possible to restore to the Jordan metric in order to interpret
the results and compare to observations.

In high density environments (as measured by the
condition Bp >> 1) the field does not feel the presence of
disformally coupled, nonrelativistic matter. This provides a
novel disformal screening mechanism, which is distinct
from screening mechanisms based on the field potential
(Chameleon and Symmetron [111]). Our mechanism relies
on the existence of a well defined limit p — oo in the scalar
field equation,'® given by Eq. (56), for which the field
evolution is independent of the matter distribution and the
field gradients (up to effects of order ~p/p, v/c). If the
conformal part A is negligible, only a friction term remains
and the field coupling density (45) is a decreasing function
of time. As it evolves below its cosmological value (pro-
vided V/ < 0 and B’/B > 0), the effects of the coupling are
suppressed by a factor ~p,/p and the theory is consistent
with precision gravity tests. Potentially detectable signatures
may be obtained in the presence of matter velocity flows,
radiation pressure or relativistic matter, strong gravitational
fields or gradients of cosmological origin.

The disformal screening mechanism is also related to the
Vainhstein effect, which suppresses the gradients of the
scalar field and hides the additional force near massive
sources due to the higher order derivative self interactions.
The existence of a Vainshtein radius at which the asymp-
totic solution breaks down can be derived in the Einstein
frame by considering static, vacuum solutions. This prop-
erty holds if the disformal coupling has the opposite sign
than postulated when studying the disformal screening
mechanism, and therefore the two effects might be

¥0ne may show that this limit is independent of the assump-
tion of canonical kinetic term for the scalar field we adopted for
most of our discussion in this article.
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incompatible, at least for the simple models considered
here. In the disformal case, the screening relies on the
kinetic mixing between the scalar field and the coupled
degrees of freedom, which ultimately allows the existence
of a well defined p — oo, nonrelativistic limit in which the
field is free, or only subject to friction (up to conformal
interactions). Therefore, both the disformal and Vainshtein
mechanisms belong to the kinetic screening category, as
they rely on the form in which the field derivatives occur in
the action. In both cases, the scale at which the screening
takes place is determined by the coefficient of the disfor-
mal coupling B ~ M4,

The disformal coupling offers interesting possibilities to
build models for cosmic acceleration. In the FRW approxi-
mation, the same properties that gave rise to the disformal
screening mechanism make the background coupling ap-
proximately proportional to the dark energy density (68)
rather than to the coupled matter energy density. This
provides a concrete realization of a class of interacting
dark matter models which have been extensively studied
using phenomenological parameterizations. The equations
for linear perturbations around FRW contain scale depen-
dent terms. These are absent in the pure conformally
coupled case, and have hence the potential to distinguish
the two possibilities. An analytic equation for the coupled
matter perturbations was derived in the small scale limit.
On top of an additional friction term, the effect of the fifth
force can be encapsulated in the definition of an effective
gravitational constant (77) which depends on the back-
ground coupling factor.

In order to investigate the cosmological implications of a
disformal coupling in a simple setting, a DCDM example
model was proposed. This has the advantage of avoiding the
subtleties of the Einstein frame description, since gravity,
baryons and photons share the same physical metric. A
DCDM model with exponential functions and no conformal
coupling (78)—(80) provides a darkenergy model that tracks
the dominant energy component at early times. When the
coupling to dark matter becomes active, the scalar field
enters a slow roll phase in order to dynamically avoid a
singularity of the disformal metric. The free parameters can
be constrained by observations, and the model is successful
at the background level. When perturbations are included,
the DCDM model introduces a series of new effects. The
effective gravitational constant for this model is too large,
due to the persistence of the coupling at late times and the
domination of the scalar field in the energy budget. This
causes a too large enhancement of the growth factor, which
affects the normalization of the DM and baryon power
spectra, producing a very large ISW effect. Scale dependent
effects are reflected on matter oscillatory features on very
large scales and a scale dependent bias between the coupled
dark matter and (uncoupled) baryonic component.

There is considerable freedom in the model to produce
cosmologically viable scenarios. Models of the DCDM
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type with less dramatic growth of perturbations can be
constructed by modifying the functional dependence of
the disformal coupling (e.g., tuning it to become negligible
after the transition to slow roll), the scalar field Lagrangian
(e.g., constructing it with a disformal metric), or perhaps
by the interplay between the conformal and the disformal
parts of the coupling. Unlike in the conformal case, the
disformal coupling affects ultrarelativistic species and
hence variations or extensions of DCDM may postulate
or include disformally coupled neutrinos or photons.

Another phenomenological direction is to consider the
disformal screening mechanism in detail. The results pre-
sented here considered a purely disformal coupling, mono-
tonically increasing with the field. Certainly, including a
conformal coupling and more general functional forms is
of interest. These considerations might help to avoid the
gradient instability caused by the Einstein frame pressure if
Bp > 1, as it was discussed in Sec. IVA. Once different
set-ups are formulated, it is worth to explore the observable
signatures for the model by quantifying the effects outlined
at the end of Sec. VA.

The dependence of the free functions in the Horndeski
Lagrangian (4) and (5) on the field kinetic term X has a
very special role, as it relates the coupling to gravity to the
coefficients of the second derivative field terms. Therefore,
it would be worth considering the transformations between
frames in the more general case in which the disformal
relations are allowed to depend on X. The computation of
the Ricci scalar associated to this general disformal metric
would provide the Jordan frame representation of the most
general scalar-tensor theory that accepts an Einstein frame
description. Since the equations simplify considerably in
this frame, the phenomenology of these theories would be
relatively easy to address.

Finally, the existence of a well behaved p — oo classical
limit in the field equation suggests that disformally coupled
theories might introduce new interesting features for the
physics of gravitational singularities and other high energy
regimes. The implications of kinetic mixing for the for-
mation of black holes or the origin of the Universe is
beyond the scope of the present work, but it might provide
a fruitful exploration to pursue in the future. This discus-
sion provided just a glimpse to the potential applications of
the disformal relation. As a generalization of the conformal
case, which was very central to the development of gravi-
tation and cosmology in the 20th century, the use of dis-
formal transformation might provide novel ways to address
the gravitational physics of the 21st century.
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APPENDIX A: DISFORMAL RELATIONS

Consider the disformal relation between two metrics,
specified by the two scalar functions A, B, and a vector b,

Zuv = Aguy + Bb,b,. (A1)
The inverse metric can be found by contraction
1
g =2 (gh — Y bHb) (A2)
where
B
2=_ A3
Y T AT B (A3)

and b* = g*"b,b, = b*b,. The determinant of the
barred and unbarred metrics are related,

: [aB B
oA Sr = a1+ 22
g Y A

The above relation is derived in Appendix C of Ref. [41].

It is possible to write the relation of stress energy mo-
mentum tensor (associated to a Lagrangian ,/=g L) in the
two metrics by using the chain rule

pur =2 0/RD) _ Jgagaﬁ<
NET I TP 2068y

(A4)

2 cw——gﬁ))
\/:? aga,B .
(AS)

_ 1 1
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By identifying the quantity in brackets as 7#” and using
(A4), the following relation follows:

[ B .-
T = AL+ T

The equivalent relation with lower indices is considerably
more involved,

(A6)

Ty = o|2D,, %P T, (A7)

where

af = Sgaﬁ
Mmv 6g,uv

1
= Z(agaf — 292b%b(, 85 + y*b b, b bP).
(A8)

The inverse relations are provided below for
completeness,
1 - -
Euv =Z(g,u,1/ _Bb,u,bv)r (A9)
g = A+ P, P = (ALD)
A — Bb?

D# 5= A(858) + 27268(,bgb” + 7*b*b"bobp),
(A1)

where b* = gt'b,. Note that b, = b,,, b* = B/(Ay*)b*
and y*b* = Bb.

1. Disformal geodesics

The expression for the disformal connection (11) can be
expanded in terms of the functions in the disformal metric

1
FZ',B = FZB + 8{; IOgA’B) - 5 IOgA"MgaB + _(d)’#B,(a(rb,B) - EB‘Md),a(ﬁ,ﬂ)

A

2 1 1 1
L[ Awd 0 aga — 2X(Bads — 58" B1000) |5 V@ pd) 3V 0)

Here 2 = AngX arises from the inverse barred metric

Eq. (A2). The first term is just the connection of the
unbarred metric, and the following terms arise from the
purely conformal transformation involving derivatives of
A, the derivatives of the disformal function B and the
second order derivatives of the field.

(A12)

APPENDIX B: GENERAL PERTURBATIONS

The coupling density perturbation that enters the linear
equations (72) and (70) in the case where both the confor-
mal and the disformal parts of the coupling are relevant has
the rather complicated form
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8Q = 0,84 + 038 + Qypd + Qo ® + 0y ¥, (B1)
where
B B ,)\AA - 2B¢?) + B'¢p> — AQBV' + 6BH )
Q= p<1 2? ) 2(A + Bp — B$?)? ’ ®2)
B . . k2 A\2 . .
Q4 = ((1 —24 ¢2)A" +B'$* - 23(; + V”)) AGT Bpp o ((Z) (A% = 2B(2A + Bp)d* + 2B>*)
I(_ ! i ! 12 1(\/! i 2n2 12 12 P
+A=2B(V' + 3He) + B'(p + 2¢%) + 2AB (V' + 3H) + A2B2¢2(p — ))2(A e Y
B(A +2Bp)4 ¢ — (A + Bp)B'¢ + B(2BV'¢ + 3H(A + Bp + B?))
_ B(A+2Bp)4$ — (A+ Bp)B'¢ +2B3H(A + Bp) + BV'¢) |
o (A I Bp — B(ﬁz)z p¢’ (BS)
3Bpd
ARy TR vl e0

The equations for the perturbations can also be found in
Ref. [96] for the case in which the coupled fluid is allowed
to have pressure.

APPENDIX C: DYNAMICAL SYSTEM ANALYSIS

It is useful to reformulate the system in terms of the
dimensionless variables

_ 87Gp X = 477G@
2 ’ ’
3H V 3 dN 1
y — 8mGV _ BH?
3H? 87G’

and using the e-folding time N = loga as the time vari-
able. The Friedmann constraint then reads

1=Q+X*+7Y. (C2)

For concreteness, we assume the exponential forms
A = Age®?/M,, B = ByePo/My, V = Vye 7¢/M,,
(C3)

The fixed points are:

with M, = (47G/3)~ /2. Note that when @ = 3 one has a
simpler form

_ i 1
Buv=¢ ”Gw(gw + W"b‘“‘i””)'

We use Eq. (C2) to eliminate () from the system.
Equations of motion can then be rewritten in terms of the
remaining variables as

A = aAX, (C4)
X' = {4 = 326X + ¥ = D] AGX + Xa
—6XY+ 1)+ —1)a—2Yy)
— 6XZ(9X* + X3(2a — B) — 6XX(Y + 1)
+X(Y — 1)Q2a — B) — 2XYy — 3(Y — 1)?)]
Y = 3(1 + X% + %yX — Y)Y, (C5)
1
7 =— (1+X2—§,8X—Y)Z. (C6)

(i) Matter domination: {3 = 1, X = 0. This solution is always a saddle point, since the eigenvalues corresponding to it

are (3, —3, —a/2).

(ii) Scaling solution: ) = 1 — a?/4, X = —a//2. This point in the phase space is never an attractor.

(iii) Conformal scaling solution: () = Z(M)Z, X =

3a—2y

6
3a—2y"

The eigenvalues are
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6(B+ ) *(a —2y)2(—(4a? + 63)y? + a(a? — 54)y + 45a% + day® + 1296) — 3(a — 2y)(a — ¥)
( ST )

a—2y’

The general form of the stability condition is too messy to write down here.

(iv) Kinetic domination: ) = 0, X = =£1. This solution is stable given Ta < -6 A B <6 A £y < —6.

(v) Scalar dominated solution: ) = 0, X = —v/6. The stability conditions for this fixed point are modified in the
presence of the disformal coupling. To be explicit, this solution exists and is stable if either a + 3—y6 S22y Ay <

6A(B>0AYy>0)V(-6<B=0AB+7y>0) or a+%<2yAy+6>0A«y<OAﬁsOMNﬁ>

OAB+yYy<OAB=06)).

(vi) Disformal scaling solution: Q) = (36 — 82 = B3> — 36)/18, X = (B + /B> — 36)/6. This fixed point exists

when 8 > 6, but it is never stable.
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