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Cosmological perturbations due to statistical thermal fluctuations in a single fluid characterized by an

arbitrary equation of state are computed. Formulas to predict the scalar and tensor perturbation spectra and

non-Gaussianity parameters at a given temperature are derived. These results are relevant to cosmological

scenarios, such as cyclic or emergent universes, where cosmic structures may have been seeded thermally

instead of originating purely from quantum vacuum fluctuations.
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I. INTRODUCTION

In the standard inflationary paradigm, the seeds for
cosmic structure are generated as quantum fluctuations.
During inflation, the quantum fluctuations of the fields
present are stretched by the cosmic expansion to macro-
scopic sizes and become classical [1]. These small inho-
mogeneities are then amplified in the later evolution of the
Universe by gravitational collapse and eventually form the
galaxies and other structures we observe around us today.
The predictions of the simplest inflationary models can
be matched with observations that require a nearly scale-
invariant but slightly red-tilted spectrum with only upper
limits having been set on gravitational waves and any
deviations from the simplest statistical properties in terms
of non-Gaussianity (NG) or statistical anisotropy [2].

Thermal fluctuations introduce another possible origin
for small inhomogeneities and anisotropies. Thermal fluc-
tuations are different from fluid hydrodynamical fluctua-
tions [1,3]. In general, fluid fluctuations can arise from two
different sources. There can be fluctuations in energy
density and the associated temperature driven, for instance,
by quantum fluctuations; this is what is traditionally dis-
cussed in the literature. However, even if one can define a
unique temperature in a given volume, there are fluctua-
tions in energy within the volume due to the statistical
nature of thermal physics. These are random fluctuations
in all finite-temperature systems that arise already at the
classical level, and this is what is commonly referred to as

thermal fluctuations.1 In the early Universe the tempera-
tures could be very high, and therefore these fluctuations
could be significant. The reason why in typical inflationary
scenarios we do not worry about these fluctuations is that
once inflation begins any ‘‘preinflationary’’ thermal matter
is expected to dilute away rapidly leaving us with an almost
pure vacuum state. However, there are cosmological
models where thermal fluctuations could be solely or to a
significant amount responsible for the initial seeds of
inhomogeneities. For instance, in cyclic inflationary sce-
narios [4,5], where particle/entropy production keeps up
with the inflationary dilution, thermal fluctuations become
relevant2; for some of the interesting results we have found
the reader is referred to our companion paper Ref. [8]. In
bouncing cosmologies, where the big bang singularity is
replaced by a smooth evolution from a contracting to an
expanding phase, different matter sources become impor-
tant near the bounce (for a recent review see Ref. [9]),
again making the thermal fluctuations relevant.
In the present study we shall not refer to particular

models but rather strive for generality. The purpose is to
develop the general formalism to tackle cosmological
perturbations due to thermal fluctuations. We are going to
make the following assumptions:
(i) The universe contains a thermal fluid in ‘‘significant’’

abundance, i.e. the interactionswithin the fluid are able
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1In Appendix B, we provide the condition when the statistical
thermal fluctuations dominate over the fluid fluctuations, clar-
ifying some of the physics issues in the process.

2For other inflationary scenarios where thermal matter is
relevant see Refs. [6,7], but for such complex systems where
there are multiple fluids interacting with one another we do not
expect our analysis to be directly applicable.
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to maintain thermal equilibrium; this requires both
kinetic and chemical equilibrium (see Refs. [10–12],
and for a more recent discussion Refs. [13,14]).
Typically this means that the relevant scattering rates
have to be larger than the Hubble expansion rate. This
requirement is often referred to as the ability of the
fluid to maintain ‘‘local’’ thermal equilibrium.

(ii) For the sub-Hubblemodes, (i.e. physical wavelength
smaller than the Hubble radius, or the appropriate
cosmological time scale), the statistical thermal fluc-
tuations dominate over the quantum vacuum fluctu-
ations inherent in the fluid. We will provide a
quantitative criteria for this to occur in Appendix B.

(iii) There is no significant isocurvature perturbations
due to the possible presence of other fluids.

(iv) There are no anisotropic stresses in any of the fluids.
(v) There is some cosmological mechanism in place for

the modes to exit from the sub-Hubble to the super-
Hubble phase, after which the fluctuations evolve
according to the usual hydrodynamical equations
coupled to gravity.3 For a general discussion on
different ways of realizing such a mechanism see
Ref. [17]. As in previous literature dealing with
thermal fluctuations [15,18–20], we also assume
that the transition from the sub- to super-Hubble
phase is instantaneous. To study the precise nature
of the transition would involve nonequilibrium ther-
modynamics in curved space-time which is clearly
out of the scope of the present paper, but we do not
expect the results to be affected beyondOð1Þ factors.

(vi) At least, near the sub to super transition we can trust
general relativity (GR) and the usual laws of
thermodynamics.

In previous literature thermal statistical fluctuations
have been considered in a variety of contexts. The earliest

hint that these could be relevant for CMB was perhaps
provided by Peebles [21], and further developed in
Refs. [18,20,22] (see also Ref. [23]). Since then thermal
fluctuations have found applications in several models:
string cosmology [16,19], inflation (in particular warm
inflation [24,25]—for reviews see e.g. Refs. [6,7]—but
see also Refs. [26–29]), bouncing cosmologies [15] and
the Milne/holographic universe [30–32]. In the present
paper we first generalize the calculation of the curvature
perturbations to the case when the thermal matter could
have an arbitrary equation of state,4 in the process clarify-
ing several conceptual issues related to gauge choices, and
the transfer of perturbations from sub- to super-Hubble
phase. These generalizations can be particularly important
and interesting for early-Universe cosmology where
stringy thermodynamics [33–40] and/or phase transitions
may be relevant, neither of which is described by a con-
stant equation-of-state parameter which is what previous
studies have been mostly confined to. Next, we provide
general formulas to compute not only the scalar power
spectrum, but also the spectrum of gravity waves and
higher-point correlation functions. These results when ap-
plied to phase transitions in cyclic inflationary models turn
out to produce interesting signatures for Planck, and will
be discussed in Ref. [8].
The paper is organized as follows. In Sec. II we will

derive the curvature perturbation in a universe filled with a
thermal fluid with an arbitrary equation of state. We also
compute the spectrum of gravity waves expected in this
setup, or equivalently the tensor-to-scalar ratio. These
derivations are somewhat technical, but only familiarity
with standard cosmological perturbation theory is as-
sumed.5 In Sec. III, we will derive the non-Gaussianity
parameters due to the thermal fluctuations, and in Sec. IV
we illustrate the application of our formulas for a radiation-
dominated contracting universe. Section V briefly con-
cludes the paper. Appendix A concerns a technical issue
of going over from real to Fourier space that is needed to
make contact with the usual cosmological perturbation
analysis, in Appendix B we compare the relative strengths
between quantum/hydrodynamical and statistical thermal
fluctuations, and in Appendix C we calculate thermal
pressure fluctuations for completeness.

II. THE CURVATURE PERTURBATION FROM
THERMAL FLUCTUATIONS

A. Curvature perturbation and the appropriate
gauge choice

We are going to consider a cosmological setup where the
dominant fluid component of the universe is thermal, i.e.

3Most conservatively, if one only wants to consider a single-
ideal-fluid scenario within GR, then the consistency of thermo-
dynamic analysis dictates that we restrict ourselves to a
contracting universe. This is because if the equation-of-state
parameter ! is negative, so is the specific heat, typically in-
dicating some sort of instability in the system, but in the
expanding phase to have the modes exit one requires !<
�1=3. If one admits multiple components, however, various
other possibilities may open up. For instance, the presence of
a cosmological constant in addition to a thermal fluid is perfectly
consistent with all of our assumptions. This is why our analysis
can be applied directly to the cyclic inflation model which
contains a negative cosmological constant. If a positive cosmo-
logical constant is present, one could even have modes exit in the
expansion phase. More generally, if one has fluids which are not
interacting with each other, then one should be able to apply our
analysis as long as the isocurvature perturbations can be ignored,
and whether the latter is true or not needs to be checked on a
case-by-case basis. A similar setup was previously considered in
Refs. [15,16]. If, on the other hand, the fluids start to interact, as
for example in the warm inflation scenario [6,7], the analysis
becomes more involved, and we do not expect our calculations to
remain valid.

4This is going to be particularly relevant for applications to
cyclic inflation models.

5For a very pedagogical and transparent introduction, see
http://www.theory.physics.helsinki.fi/~genrel/CosPerShort.pdf.
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there exists local thermal equilibrium, so that as long as the
wavelengths of fluctuations are smaller than the cosmo-
logical time scale their power spectrum is determined by
the thermal fluctuations in the thermal fluid. Once the
modes become super-Hubble, thermal correlations over
the relevant physical wavelengths can no longer be main-
tained; instead the fluctuations evolve according to the
usual hydrodynamical differential equations coupling the
metric and the matter fluctuations. Essentially, in this setup
the thermal fluctuations act as initial conditions to seed the
super-Hubble fluctuations.

Now, the super-Hubble modes are easy to track because
they behave as zero modes and it is well known [1] that the
curvature perturbation, �k, remains a constant even if the
equation-of-state parameter does not.6 In fact, the above
statement is true even if general relativity is not valid [44],
but as long as we are only looking at adiabatic super-
Hubble perturbations. This makes our analysis applicable
to several bouncing/cyclic models which resort to modify-
ing gravity to obtain a nonsingular bounce (modulo the
caveats about mode mixing mentioned in the previous
footnote). However, if the universe does contain more
than one type of fluid/field, then isocurvature perturbations
could be important, but we are not going to consider them
in this paper.

Our goal in this section will be to compute �k arising
from thermal fluctuations in the sub-Hubble phase where
thermal correlations can exist. In particular we will evalu-
ate this at the Hubble crossing which, according to our
previous discussion, will provide us with the primordial
spectrum for the cosmic microwave background radiation
(CMBR). In the next section, we are going to calculate the
two- and the three-point correlation functions as well as the
gravity-wave spectrum. We do not make any assumptions
about whether we have an expanding or a contracting
universe (again modulo the previous comments about
mode matching) or whether there is a single thermal fluid
or several energy components. However, we shall make the
crucial assumption that the fluctuations are dominated by
the thermal fluctuations of a single fluid, ��, where � is the
energy density of the thermal fluid. We parametrize the
contribution of the thermal fluid to the energy budget by

� ¼ a2�

3M2
pH 2

; (1)

where a is the scale factor of the universe,H ¼ _a=a is the
conformal Hubble rate, Mp is the reduced Planck mass,

and here and in the following the overdot denotes the
derivative with respect to conformal time. Thus, if the
thermal fluid is the only component in the universe,� ¼ 1.
We would now like to relate the perturbations in the fluid

to a gauge-invariant degree of freedom describing the
metric perturbations. The scalar perturbations in the metric
can be parametrized as [1]

ds2 ¼ a2ð�Þ½�ð1þ 2�Þd�2 þ B;id�dx
i

þ ðð1� 2c Þ�ij þ E;ijÞdxidxj�: (2)

We also need to parametrize the perturbations in the
matter content, which will be treated as a perfect fluid,
so no anisotropic stresses are present. Then the energy-
momentum tensor can be written as

T0
0¼��ð1þ�Þ; T0

i¼�ð1þwÞv;i; Ti
j¼�ðwþc2s�Þ:

(3)

Since we assume a thermal fluid, all the background
quantities are given solely by the temperature,

� ¼ �ðTÞ; p ¼ pðTÞ; (4)

and so is wðTÞ and c2sðTÞ.7 In the following the prime
will always denote the derivative with respect to the
temperature, and we often drop the explicit argument T.
An overdot will refer to a derivative with respect to the
conformal time �.
Now we want to calculate the gauge-invariant curvature

perturbation, which in a general gauge reads as

� ¼ ���H ðv� BÞ: (5)

Since it is a gauge-invariant quantity we can evaluate it in
any gauge of our choice. Let us choose to work in the
longitudinal gauge where E ¼ B ¼ 0. In this gauge the
metric can be written in terms of the gauge-invariant
Bardeen potentials

� � �� 1

a

��
�Bþ _E

2

�
a

��
(6)

and

� � c þ 1

6
r2E� _a

a

�
B� _E

2

�
(7)

as

ds2 ¼ a2ð�Þ½�ð1þ 2�Þd�2 þ ð1� 2�Þdx2�; (8)

6In a contracting universe one of the two modes of �k is
growing (the one which is decaying in an expanding universe),
while the second is constant [41,42]. We will here assume that
the growing mode in the contracting phase couples only to the
decaying mode in the expanding phase. Whether this is the case
or not depends on the specific model of the transition between
contraction and expansion. For a discussion of this issue see e.g.
Ref. [43].

7Unlike in the case of hydrodynamical fluctuations, the pres-
sure fluctuation is not given by the adiabatic value, �p ¼
ðp0ðTÞ=�0ðTÞÞ��, but is rather determined via stress-energy
conservation; see Appendix C for the precise formula. We will
see shortly that to compute the spectra we do not need the
explicit form of the sound speed squared. However, as the modes
exit the horizon, the perturbations are expected to relax to their
adiabatic value which guarantees the constancy of the curvature
perturbation at large scales.
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and the 0i component of the Einstein’s equations deter-
mines v in terms of the Bardeen potentials,

_�þH� ¼ a2

2M2
p

ð1þ wÞ�v: (9)

Using this in Eq. (5) we have that

� ¼ ��� 2M2
pH

ð1þ wÞa2� ð _�þH�Þ: (10)

Please note that the above equation is written in a
completely gauge-invariant form and is therefore valid in
any gauge. This is important for us because it will become
necessary for us to switch to the comoving gauge on
physical grounds. This is actually a subtle issue which, to
our knowledge, has not been explained before. The point
is that all thermodynamic calculations, such as those rele-
vant when we will derive the energy fluctuations in a given
volume, are typically carried out in Minkowski space-time.
In order to generalize the analysis to the Friedmann-
Lemaı̂tre-Robertson-Walker metric (or any other metric
for that matter) one has go to a frame where the back-
ground fluid is at ‘‘rest’’ [45], which is none other than the
comoving gauge. This gives a gauge-invariant definition of
�� which is consistent with the Minkowski calculations; it
is related to the Bardeen potential via the relativistic
Poisson equation,

� ¼ � 1

2

�
a

kMp

�
2
��C: (11)

The superscript ‘‘C’’ refers to the comoving gauge which
we are going to subsequently drop as all the thermody-
namic calculations implicitly assume this same gauge
choice for the perturbation in the matter density field.

At this point it is useful to set� ¼ �, since we assumed
that the anisotropic stresses can be neglected. We can then

compute _�k in terms of the density fluctuations from
Eq. (11) and substitute it in Eq. (10) to obtain

� ¼ 1

2

�
a

kMp

�
2
�
1þ 2M2

pH
2

ð1þ wÞ� ð3þ rÞ
�
��; (12)

where the time evolution of the density fluctuation is
parametrized as

r ¼ d log��

d loga
¼ ð��Þ0

��

_T

H
: (13)

We remind the readers that the prime corresponds to the
derivative with respect to the temperature.

More succinctly,

�k ¼ AðTkÞ
H2

kM
2
p

��k; (14)

where we have defined a time-/temperature-dependent
proportionality coefficient

AðTÞ � 1

2

�
1þ 2ð3þ rÞ

3ð1þ wÞ�
�
; (15)

for later convenience. These quantities will depend on the
temperature at the time of the ‘‘exit’’ of a given comoving
mode.

B. Thermal density fluctuations

We will now use the thermodynamics to quantify fluc-
tuations in the fluid and then use the results of the previous
section to relate them to the metric perturbation spectra.
This is more of a review of what has been discussed in the
previous literature [15,19,20], and our results agree to
within Oð1Þ factors, until a crucial step highlighted at the
end of this subsection.
One defines the average fluctuation in energy, �E, via

h�Ei2L � hE2i � hEii2 ¼ 1

Z

@2Z

@�2
�

�
1

Z

@Z

@�

�
2 ¼ @2 lnZ

@�2

¼ � @hEi
@�

¼ T2CL; (16)

h��2iL ¼ T2CV

L6
¼ T2

L3

@�

@T
; (17)

where CL is the heat capacity of the thermal system for a
given volume L3. Note we have also introduced a subscript
L in ð�EÞ2L to denote that we are considering fluctuations in
a given volume.
The next step is to go from real space to momentum

space. This is a tricky procedure as it depends to some
extent on the window function one chooses. In
Appendix A, we consider in detail this procedure using a
Gaussian window function8 and obtain

��2
k¼

�2

k3
h��2iL¼a=k with �¼2

ffiffiffi
2

p
�3=4�6:7: (18)

Thus we have

��2
k ¼

�2

a3
T2�0; (19)

leading to

�2k ¼ A2ðTkÞ�
2

a3
T2�0

H4
kM

4
p

; (20)

and eventually

P � ¼ k3h�2k i ¼ A2ðTkÞ�2 T2
k�

0
k

HkM
4
p

¼ ffiffiffiffiffiffiffi
3�

p
�2A2ðTkÞ T2

k�
0
k

M3
p

ffiffiffiffiffiffi
�k

p ; (21)

using the standard definitions of the power spectrum. The
subscript k refers to the fact that all these quantities have to

8Different schemes typically yield slightly different values for�.

BISWAS et al. PHYSICAL REVIEW D 88, 023517 (2013)

023517-4



be evaluated at the Hubble crossing condition, Hk ¼ k=a,
which we have also used along with Eq. (1) to eliminate the
Hubble factors. A few comments are now in order. Firstly,
as in all previous literature on the subject, in deriving
Eq. (21) we have implicitly assumed an instantaneous
transition from the thermally correlated sub-Hubble phase
to the hydrodynamical super-Hubble phase. This is obvi-
ously not realistic but a careful investigation of such a
transition is very challenging because it will involve non-
equilibrium thermodynamics on curved space-time, which
is clearly out of the scope of the present paper.

Secondly, one can see that the factor AðTÞ basically tells
us what is the difference between the spectra of the gravi-
tational potential (or, via the Poisson equation, the density
perturbation) and the spectra of the gauge-invariant curva-
ture perturbation. It is crucial to take this into account: one
can imagine physical situations where A can even vanish or
diverge. This is where our results differ significantly from
previous studies which typically only computed �k and
are directly applicable only for constant equation-of-state
parameters when making comparisons with observations.

C. The prefactor AðTÞ
The last missing piece required to obtain the power

spectrum is an expression for AðTÞ. Explicitly, our
definition is

AðTÞ ¼ 3ð1þ wÞ�þ 2ð3þ rÞ
6ð1þ wÞ� : (22)

w can be obtained straightforwardly as a function of
temperature from the partition function, or pðTÞ. A useful
thermodynamic relation in this context is

�ðTÞ ¼ T
dpðTÞ
dT

� pðTÞ; (23)

so that

w ¼ p

Tp0 � p
: (24)

The computation of � at the exit temperature depends on
the specific model under consideration, and one cannot
make any further simplifications at this point. Obviously,
if the thermal fluid is the only energy component in the
universe, then � ¼ 1.

We are finally left with the evaluation of r. From the
expression we obtained for thermal energy density fluctua-
tions (19) we first find

r ¼ � 3

2
þ

�
2�0 þ T�00

2�0

�
d lnT

d ln a
:

Now, recalling the continuity equation

_�þ 3H ð1þ wÞ� ¼ 0; (25)

we see

d lnT

d ln a
¼ �3ð1þ wÞ �

T�0 : (26)

Thus we finally have

r ¼ � 3

2

�
1þ ð1þ wÞ�ð2�0 þ T�00Þ

T�02

�
: (27)

Note that the sign of this also remains the same in the
contracting phase; then the temperature is getting lower
with time, but the Hubble rate is also negative. We will
illustrate the computation of the power spectrum for the
special case of radiation towards the end of the next section.

D. Gravity waves

Another interesting probe of our early Universe are the
primordial gravitational waves, which are stretched like the
scalar perturbations. However, for a linearized Einstein’s
gravity there is no source term for the gravitational waves.
In principle the initial conditions for the gravitational
waves could be set purely classically [46] or from the
quantum vacuum condition [1].9 Assuming that the initial
conditions for the primordial gravitational waves are set by
quantum vacuum, i.e. Bunch-Davis, the gravitational-wave
spectrum is given by

P h ¼ 1

4�2

�
H

Mp

�
2 ¼ �

12�2M4
p�

: (28)

The tensor-to-scalar ratio is then given by

rt=s � P h

P �

¼ 1

�2

1

12
ffiffiffi
3

p
�3�

3
2A2ðTÞ

�
3
2

MpT
2�0 : (29)

In general, the temperature dependence of this and the
scalar spectra depend very nonlinearly on the properties
of the thermal fluid, but these are straightforward to
compute once we know �ðTÞ.

III. NON-GAUSSIANITY: BI- AND TRISPECTRUM
FOR THE CURVATURE PERTURBATIONS

In the previous section we evaluated the CMB power
spectrum as a two-step process. In Sec. II B we calculated
the thermal density fluctuations from the partition function
(or pressure) governing the thermodynamics of the fluid in
the comoving gauge in which the fluid is ‘‘at rest’’ and
therefore the Minkowski space-time calculations can be
applied [45]. In Sec. II A we found how these thermal
fluctuations are related to the curvature fluctuations, which
then allowed us to obtain the two-point correlation function
in the CMB. We can apply the same prescription to obtain
higher-point correlation functions—we just have to com-
pute the appropriate higher thermodynamic cumulants

9In fact, any thermal matter can only act as sources of
gravitational waves if its partition function is nonextensive
[19,34], a scenario not considered here.
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(see also Ref. [18] for an earlier study of non-Gaussianities
from thermal fluctuations).

The third- and the fourth-order centered cumulants are
given by

� @3 lnZ

@�3
¼ hE3i � 3hE2ihEi þ 2hEi3 � h�E3i; (30)

�@4 lnZ

@�4
¼ hE4i � 4hE3ihEi þ 6hE2ihEi2 � 4hEihEi3

� h�E4i: (31)

From the above thermodynamics we infer that

h��3iL ¼ T3ð2�0 þ T�00Þ
L6

; (32)

h��4iL ¼ 2T4ð3�0 þ 3T�00 þ �000Þ
L9

; (33)

where one considers fluctuations in a box of size L.
These formulas hold in the real space, but can be converted
to momentum space using window functions as before10;
we have

h��3i ¼ �3

k
9
2

h��3iL; h��4i ¼ �4

k6
h��4iL: (34)

Using the standard definitions of the spectrum and non-
Gaussianity parameters (see Refs. [2,47]), we are ready to
write down the results using Eq. (20) in Eq. (34),

fNL ¼ 5

8
k�3

2
h	3

ki
h	2

ki2
¼ 1

��AðTÞ
�
5�ð2�0 þ T�00Þ

24Tð�0Þ2
�

� FðTÞ
��AðTÞ ; (35)

gNL ¼ 25

54
k�3 h	4

ki
h	2

ki3

¼ 1

�2�2A2ðTÞ
�
25�2½3ð�0 þ T�00Þ þ T2�000�

243T2ð�0Þ3
�

� GðTÞ
�2�2A2ðTÞ : (36)

In deriving the expressions for the non-Gaussianity pa-
rameters we have used Eq. (14) to relate fluctuations in
the energy density to the curvature fluctuations, and also
Eq. (1) to eliminate the Hubble factors.

Physically, the most important aspect about the thermal
NG parameters is that they depend on how the pressure/
density varies as a function of the temperature. Moreover,

the higher the order of the correlation function, the higher
the derivatives that becomes relevant. It is not hard to
realize then that if the exit temperature is close to a thermal
phase transition, we might be able to see its effects in the
enhancement of NG parameters. This is precisely what we
observed in the context of a cyclic inflation scenario [8].
For the present, we will just illustrate the various compu-
tations of the cosmological observables by considering the
ordinary relativistic fluid. In particular, we will see that for
pure radiation, the non-Gaussianities and the tensor-to-
scalar ratio are too small to be observed by the Planck
experiment.

IV. EXAMPLE: RADIATION

For the purpose of illustration let us consider a radiation-
dominated contracting universe. Since in this case the
Hubble radius contracts faster (as 1=t) than the physical
wavelengths (as 1=

ffiffi
t

p
), the latter is pushed out of the

Hubble radius and the various perturbative spectra become
imprinted at the time of the mode exit. We can use the
formulas of the previous section to compute the different
cosmological observables.
For relativistic radiation fluid we have that

�ðTÞ ¼ gT4 and pðTÞ ¼ g

3
T4; (37)

where g depends on the number of relativistic degrees of
freedom. It follows immediately that

w ¼ 1

3
and r ¼ �4;) A ¼ 1

4
: (38)

In general, these parameters need not be constant, but they
happen to be in this simple case, or whenever pressure is a
power law in temperature.
The amplitude of the primordial spectrum, according to

our convention, is then given by

P � ¼
ffiffiffiffiffiffi
3g

p
�2

4

�
T

Mp

�
3
; (39)

where T corresponds to the temperature when the given
mode exit becomes super-Hubble. Evidently, the spectrum
is not scale invariant because the amplitude depends
strongly on the temperature, and T / 1=a giving rise to a
very large blue tilt. We should point out that our claim that
Eq. (39) is the primordial spectrum relevant for CMBR
relies crucially on the fact that there is no mixing between
the mode of �k which is growing in the contracting phase
with the dominant mode in the expanding phase—the
constant mode—and in addition on the assumption that
there are no entropy modes which become important and
which could change the spectrum of the curvature fluctua-
tions on super-Hubble scales. If there is unsuppressed
mixing between the growing mode in the contracting phase
and the constant mode in the expanding phase (see
Ref. [48] for examples where this is the case), then the

10The relations to the Fourier-space spectra are tricky, and the �
factors for the different correlation functions could be different
depending upon the window functions used, but the difference is
only expected to provide Oð1Þ modulations.
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amplitude of the resulting curvature fluctuations changes,
but the spectrum remains as given by Eq. (39). The reason
that there is no change in the shape of the spectrum (in
contrast to the case of a matter-dominated phase of con-
traction where the index of the power spectrum changes by
�2; see Refs. [41,42]) comes from the fact that for a
radiative equation of state the canonical fluctuation vari-
able v [49,50] which is related to � via � � a�1v has a
vanishing squeezing factor and hence remains conserved.
Thus, there is no preferential growth of long-wavelength
modes compared to short-wavelength modes which would
come from the fact that long-wavelength modes spend
more time on super-Hubble scales in the contracting phase.
For a discussion of this point see Ref. [48].

For radiation we obtain the following numbers for the
non-Gaussianity parameters:

fNL ¼ 25

24�
� 0:16; (40)

gNL ¼ 25

216�2
� 0:003: (41)

Not surprisingly for radiation, which is free from any
internal scales, both the fNL and the gNL parameters turn
out to be scale invariant. The above approximate values
correspond to the � value for the Gaussian window func-
tion (see Appendix A) which is unfortunately beyond
Planck’s sensitivity.

Let us compute the tensor-to-scalar ratio for radiation.
We readily obtain

rt=s ¼
4

ffiffiffi
g

p
75

ffiffiffi
3

p
�3�2

T

Mp

: (42)

For a given temperature, we can fix the unknown g by
matching the amplitude of perturbations (39) with the
observed one. This then fixes the tensor-to-scalar ratio
(42). In other words, we can deduce the primordial tem-
perature from observations,

T

Mp
¼ 8

75�2�
3
2

ffiffiffiffiffiffiffiffi
2A0

rt=s

s
¼ 1

75�3

ffiffiffiffiffiffiffiffi
2A0

rt=s

s
> 6:1� 10�8: (43)

In the second equality we have used the Gaussian window
value for �, and the lower bound is obtained from the
present best-fitWMAP value for the amplitude A0 ¼ 2:4�
10�9 and the bound rt=s < 0:24, which both apply at the

scale k ¼ 0:002=MpC. The minimal allowed temperature
corresponds to a huge number of effective degrees of
freedom, g� 1022. For g� 1 of order unity, the observed
amplitude requires T=Mp � 10�4, in which case the

tensor-to-scalar ratio will be too low to be measured.
To conclude, thermal fluctuations in usual radiation

cannot account for the CMBR spectrum as the spectrum
is heavily tilted, not surprisingly. We also found that such
fluctuations cannot produce large non-Gaussinities or

gravity-wave signals. Similar conclusions hold for simple
polytropic thermal fluids, but as we will see in Ref. [8]
richer thermodynamics may indeed yield detectable non-
Gaussianities.

V. CONCLUSIONS

We considered statistical thermal fluctuations as a pos-
sible source for cosmological large-scale structures. We
presented a robust derivation of scalar and tensor spectra in
this context. We also explicitly provided the formulas for
the bi- and trispectrum, and outlined the procedurewhich is
straightforward to implement in order to obtain non-
Gaussianity at an arbitrary order. The results were applied
for the case of radiation for illustration, and they are easily
applied to any other fluid, given nothing but its thermody-
namic properties specified by the equation of state, or
equivalently, the temperature dependence of its energy
density. Fundamentally, these follow from the partition
function.
Another question is whether there are realistic cosmo-

logical models in which statistical thermal fluctuations are
dominant instead of the usual quantum fluctuations to seed
the large-scale structures. We believe the cyclic inflation-
ary scenario presents a plausible framework where this
indeed turns out to be the case, and in a companion paper
we shall apply the results obtained here to study this
scenario in detail and show that there are parameter regions
compatible with the present observations and falsifiable
predictions for both the tensor-to-scalar ratio and non-
Gaussianity.
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APPENDIX A: WINDOW FUNCTION

Here we are going to take a closer look at how the
fluctuations in energy in a given physical volume are
converted to the power spectrum. We should clarify that
this is essentially a review of what has already been dis-
cussed in the literature [15,18–20]; although the algorithm
for converting real-space fluctuations to momentum space
is a well-known subject and included in several books [51],
since it is an important part of the discussion on thermal
fluctuations, we felt it would be convenient for the readers
to include this sub-derivation and make the overall pre-
sentation self-contained. For a slightly different approach
to the problem, see Ref. [23]. To begin with we note that
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the thermodynamic computation of energy fluctuations is
done in an ‘‘adiabatic’’ approximation scheme where we
ignore the cosmological evolution. Thus �L tells how in a
given ‘‘Euclidian’’ time slice the ‘‘relative energy’’ in a
given physical volume L3 fluctuates. The question we are
interested in asking is that for a given time slice, if we
know how �L depends on L, how we can compute the
Fourier components of relative density fluctuations in
that same time slice. To understand such a ‘‘kinematical/
statistical’’ relationship we can thereforework with physical
coordinates and momenta. Once we derive the relationship,
it is relatively easy to convert the results into ‘‘comoving’’
language, which is more useful for cosmology.

To keep things finite we first choose a ‘‘fiducial’’ volume
in our universe, �V, which is big enough that it contains all
the relevant scales we are interested in i.e., L � �L. We are
not going to provide all the rigorous details/justifications
for doing this, which are presented in Ref. [51]. We are also
going to assume periodic boundary conditions, so that
physical momenta are confined to integral values,

k ¼ 2�
�L
n: (A1)

We can now define the Fourier components via

~�n ¼ 1
�V

Z
�V
�ðxÞ exp ði2�n 	 x= �LÞd3x; (A2)

�ðxÞ ¼ X
~�n exp ð�i2�n 	 x= �LÞ; (A3)

and the relative density fluctuations are defined in the
usual way,

�ðxÞ � �ðxÞ � h�i
h�i ; where h�i �

R
�V �ðxÞd3x

�V
: (A4)

Now, what we are interested is to obtain a statistical
measure of �. However, statistically one expects

h�i ¼ 0: (A5)

Thus, one has to obtain an estimate of �k using a root-
mean-square approach. The standard approach is to use the
correlation function,

�ðrÞ � h�ðxÞ�ðxþ rÞi �V ¼ X
nn0

�
~�n

~�n0 exp

�
� i2�n 	 ðxþ rÞ

�L

�
exp

�
� i2�n0 	 x

�L

��

¼ X
nn0

�
~�n

~�

n0 exp

�
� i2�ðn� n0Þ 	 x

�L

�
exp

�
� i2�n 	 r

�L

��
¼ X

n

hj ~�nj2i exp
�
� i2�n 	 r

�L

�
: (A6)

Our final step is to go from the discretized momentum
space to a continuum limit ( �V ! 1 limit). To achieve this,
as is always done in statistical mechanics, we have to
convert sums into integrals and go from the n-space to
k-space,

X
n

hj ~�nj2i!
Z
d3nhj ~�nj2i�

Z
d3k�2

k)�2
k¼

�V

ð2�Þ3 hj
~�nj2i;

(A7)

since the n- and k-spaces are related via the density of
states,

d3n ¼ �V

ð2�Þ3 d
3k: (A8)

Thus the correlation function can now be expressed as

�ðrÞ ¼ X
n

hj ~�nj2i exp
�
� i2�n 	 r

�L

�

¼ 1

ð2�Þ3
Z

d3k�2
k exp ð�ik 	 rÞ: (A9)

In other words, �2
k is just the Fourier transform of the

correlation function. Since the correlation function is a
physical quantity i.e., it does not depend on the fiducial

volume over which the averaging is performed, it is also
clear that �2

k is also a physical quantity.
Using a similar analysis one can also statistically com-

pute the mass/energy variance in a given physical volume.
We find (the derivation is straightforward and given in
Sec. 13.3 of Ref. [51])

�2
L ¼ X

n

~�2
nW

2ð2�nL= �LÞ; (A10)

where the window function is defined as

W½kL� �
�
1

V

Z
V
exp ½ik 	 y�d3y

�
: (A11)

Again we can pass from the discrete n-space to the
continuum momentum k-space to find

�2
L¼

1

ð2�Þ3
Z
d3k�2

kW
2ðkLÞ

¼ 1

2�2

Z
dkk2�2

kW
2ðkLÞ� 1

2�2

Z
dkk2PðkÞW2ðkLÞ:

(A12)

One can write down an analytical expression for the
window function (A11) in terms of Bessel functions.
However, to avoid some technical complications in
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previous studies other window functions are often used,
such as

WGðkLÞ � exp

�
� 1

2
ðkLÞ2

�
: (A13)

We emphasize that in the above formulas k and L represent
physical momenta and lengths respectively. The inversion
thus gives us

�2
k ¼ PðkÞ � T2@�

�2@T
: (A14)

The final step involves going from the physical Fourier
components to the comoving Fourier modes. The two are
defined via

�2
~k
¼ 1

ð2�Þ3
Z

d3 ~x�2ð ~xÞei ~k	 ~x; (A15)

�2
k ¼ 1

ð2�Þ3
Z

d3x�2ðxÞeik	x; (A16)

where we now denote the physical coordinates as vectors
~x ¼ aðtÞx. It is now clear that

�2
k ¼ a�3ðtÞ�2

~k
: (A17)

APPENDIX B: QUANTUM VS THERMAL
FLUCTUATIONS

To estimate the relative contributions to the density
perturbations originating from thermal statistical vs the
quantum vacuum fluctuations, let us consider an ideal fluid
with a constant equation-of-state parameter 0<w< 1.
This corresponds to having a polynomial pressure as a
function of temperature,

pðTÞ ¼ m4

�
T

m

�1þw
w

and p ¼ w�; (B1)

where m is a mass scale associated with the fluid. Thus
according to our formula for the spectrum, its parametric
dependence on the temperature is given by

P th /
�
m

Mp

�
3
�
T

m

�3wþ1
2w
: (B2)

In contrast, the quantum vacuum fluctuations yield a
power spectrum that is proportional to the density of the
background fluid [1],

P vac /
�
�

M4
p

�
�

�
m

Mp

�
4
�
T

m

�1þw
w
: (B3)

We immediately notice that the vacuum fluctuations have
an extra Planck suppression,

R � P vac

P th

�
�
T

Mp

�1�w
2w

�
m

Mp

�3w�1
2w
: (B4)

For instance, for radiation, since w ¼ 1=3, we have

R � T

Mp

: (B5)

More generally, for the range 1 � w � 1=3, since both
the exponents in Eq. (B4) are positive, as long as T,
m<Mp, the vacuum fluctuations are suppressed as com-

pared to the random thermal fluctuations. If 1=3 � w> 0,
then depending upon the value of w, if T is sufficiently
larger than m, the vacuum fluctuations may be able to
dominate over the thermal fluctuations. However, in most
physical scenarios one expects T & m for the validity of
the physics involving the thermal fluid. Thus in most
physical scenarios we actually expect the thermal fluctua-
tions to dominate the show, but the formal condition for
this to happen is given by�

m

Mp

��
T

m

�1�w
2w

< 1: (B6)

APPENDIX C: PRESSURE PERTURBATION

For a fluid in thermal equilibrium, the thermodynamic
properties of the fluid determine the density fluctuation.
This, through Einstein’s field equations it is related to the
gravitational potential, which in turn determines the pres-
sure fluctuation. We can thus compute the explicit form of
the latter. This is a straightforward but tedious task and we
omit the details of the algebra here.11 The result is

c2s¼�p

��

¼ a2�

4k2M2
pT

2ð�0Þ4 ½9�
2T2ðwþ1Þ2ð�00Þ2þT2ð5w�2Þð�0Þ4

þ�ðwþ1Þð�0Þ2ðT2ð1�15wÞ�00þ24�ðwþ1ÞÞ
�2�Tðwþ1Þð15wþ2Þð�0Þ3
�6�2Tðwþ1Þ2�0ð�ð3ÞT�2�00Þ�: (C1)

For radiation this yields c2s ¼ ð2=3ÞðaT2=kMpÞ2. This is

certainly different from c2adi, which again highlights the

difference between thermal and hydrodynamic perturba-
tions. In particular, the properties of the fluid and the
background expansion need to be taken into account
(both of which in principle are determined by the tempera-
ture), but in addition the relation is scale dependent. In fact,
approaching the small-volume limit k ! 1 the pressure
fluctuation becomes negligible, and at the largest-scale
limit k ! 0 the result formally diverges, but of course
thermal correlations are only expected to exist as long as
k=a < H.

11A convenient starting point is Eq. (15.21) in http://
www.theory.physics.helsinki.fi/~genrel/CosPerShort.pdf.
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