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In the first-order formalism of gravitational theories, the spacetime connection is considered as an

independent variable to vary together with the metric. However, the metric still generates its Levi-Civita

connection that turns out to determine the geodesics of matter. Recently, ‘‘hybrid’’ gravity theories have

been introduced by constructing actions involving both the independent Palatini connection and the metric

Levi-Civita connection. In this study a method is developed to analyze the field content of such theories, in

particular to determine whether the propagating degrees of freedom are ghosts or tachyons. New types of

second-, fourth- and sixth-order derivative gravity theories are investigated and the so-called fðXÞ theories
are singled out as a viable class of ‘‘hybrid’’ extensions of general relativity. These are the theories in

which the corrections to Einstein’s theory are written in terms of the deviations from the usual trace

equation X ¼ R� �2T.
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I. INTRODUCTION

Motivated by the oddities discovered by recent astro-
nomical observations, a plethora of modified theories of
gravity has been advanced during recent years. Their main
scope is to reproduce the observed behavior of our
Universe without invoking any undetected entity, such as
dark matter, dark energy or the inflaton field. Although
some of them may succeed in reaching the goal, some
others give rise to unphysical features such as, for example,
the appearance of ghosts.

Among all these modified theories, the most considered
are the so-called fðRÞ theories of gravity, where the action
is taken to depend on a general function of the Ricci scalar
R; see [1] for some reviews. Their popularity comes from
the fact that they are both theoretically viable and suffi-
ciently simple to study in cosmology and other frame-
works. To these ends, the fðRÞ action is usually varied
with respect to the metric tensor in order to produce the
field equations governing the dynamics of gravitation. This
approach is known as the metric (sometimes second-order)
variational principle, and it is the one first employed by
Hilbert to derive the Einstein field equations. However,
there is a second well-known variational method, formu-
lated by Einstein but for historical reasons [2] named the
Palatini (sometimes first-order) variational principle. It
consists of an independent variation with respect to the
metric and the (torsionless) connection. If applied to the
Einstein-Hilbert action, it gives back the Einstein field
equations, meaning there are no physical differences for
general relativity (GR). However, when considered for

other theories, such as fðRÞ gravity, it produces completely
new dynamical field equations, resulting in a different
phenomenology; see [1,3] for reviews.
The metric and Palatini approaches have been recently

combined1 to give birth to a new class of modified gravi-
tational theories, which has been named the hybrid metric-
Palatini or fðXÞ gravity principle [8]. The action is taken to
depend linearly on the metric curvature scalar R but non-

linearly on the Palatini curvature scalar R̂, which is modu-
lated by an arbitrary function in analogy with Palatini fðRÞ
theories. Some cosmological and astrophysical applica-
tions of these theories have already been studied, and it
has been shown that they can both pass the solar system
experiments and predict a late-time accelerated cosmologi-
cal expansion. For this reason they can constitute a prom-
ising theoretical explanation for dark energy. The hybrid
metric-Palatini approach has then been generalized con-

sidering a general function of both R and R̂ [9], indepen-
dently from an earlier work which considered similar ideas
for different reasons [10]. The cosmological evolution
of these generalized theories has also been analyzed and
late- time acceleration can be achieved in this context.
Moreover, it has been proved that this class of theories is
dynamical equivalent to a nonminimally coupled biscalar
theory of gravity, and that one of the two scalars disappears
in the fðXÞ subclass. In other words, the theory introduces
two new scalar degrees of freedom, one in the fðXÞ case, on
top of the metric ones.

*tomi.koivisto@fys.uio.no
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1See Refs. [4,5] for other frameworks for unifying the
variational principles. For a classic analysis of GR, employing
a first-order formalism, recall [6]. Reference [7] explores odd-
derivative actions in the Palatini formulation.
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In this paper we will consider a further generalization of
gravitational theories within the hybrid metric-Palatini
framework. In particular, we will take the gravitational

action to arbitrarily depend on R, R̂ and Q̂H ¼ R��R̂��.

This generalization is done in analogy with the Ricci
square modified gravity, which has been largely studied
in both metric [11,12] and Palatini [13] formulations. Note

however that the invariants Q̂H we are considering can
only appear within a hybrid metric-Palatini context and
thus were never considered before. Our analysis aims at
characterizing the flat space propagator in order to verify
the presence of ghosts for such theories. It is a well-known
result that Ricci square modifications always lead to a spin-
2 ghost called the Weyl ghost [11]. It is thus interesting to
perform the ghost analysis also for this class of hybrid
theories in order to check if these models are also inevita-
bly haunted by ghosts.

The paper is organized as follows. In Sec. II we will
introduce the action of the theory and derive the field
equations, discussing how they can be solved in general.
In Sec. III we will consider an expansion around
Minkowski space and compute the field equations in this
weak field limit. In Sec. IV we will then invert the field
equations to calculate the flat space propagator. An analy-
sis for several subcases included in the class of theories we
consider will be briefly carried out in order to check that
the results are consistent with previous works, and a health
diagnosis will be performed for the new theories included
in our action. Finally we draw our conclusions in Sec. V.
In what follows we will set �2 ¼ 8�G=c4 for the sake of
simplicity.

II. ACTION AND FIELD EQUATIONS

The action we will adopt for our analysis is given by

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðR; R̂; Q̂HÞ; (1)

where R ¼ g��R�� and R̂ ¼ g��R̂�� are the metric and

Palatini curvature scalars, respectively. The first one is
composed with the usual Levi-Civita connection ��

��,

and it is completely determined by the metric g��,

R�� � ��
��;� � ��

��;� þ ��
���

�
�� � ��

���
�
��: (2)

The second one depends on an independent torsionless

connection �̂�
�� forming the following Ricci tensor:

R̂�� � �̂�
��;� � �̂�

��;� þ �̂�
���̂

�
�� � �̂�

���̂
�
��: (3)

The function f in action (1) arbitrarily depends on R, R̂ and

Q̂H ¼ R��R̂��; (4)

which will be denoted as the hybrid Ricci square invariant.

Note that though R̂�� is in general asymmetric, only its

symmetric part enters the action (1).

Action (1) generalizes the theory considered in [9],
where the hybrid Ricci square invariant was absent. As
shown in [9,10] such a theory is dynamically equivalent to
a nonminimally coupled biscalar theory. Here we under-
take the study of viability of such a biscalar theory. It is
interesting also to consider theories with other higher-order
invariants in the hybrid metric-Palatini context. Although
several new invariants can be built within this framework,

we decide to work only with Q̂H, since it is the simpler
among the higher-curvature invariants not appearing in
pure metric and Palatini gravities and thus never consid-
ered in the previous literature.
Variation of (1) with respect to the metric produces the

following field equations,

f;RR�� � 1

2
g��fþ g��hgf;R �r�r�f;R þ f;R̂R̂��

þ 2f;Q̂R
�
�R̂�� þ 1

2
hgðf;Q̂R̂��Þ þ 1

2
g��r�r�ðf;Q̂R̂��Þ

� r�rð�ðf;Q̂R̂�
�ÞÞ ¼ �2T��; (5)

where f;R, f;R̂ and f;Q̂ are the derivatives of f with respect

to R, R̂ and Q̂H. Round brackets between two indices
denote symmetrization and hg ¼ g��r�r�. The energy-

momentum tensor on the right-hand side of (5) has been
derived, adding a standard matter action to (1). Variation of

action (1) with respect to the independent connection �̂�
��

yields, after some manipulations, the condition

r̂ �ð ffiffiffiffiffiffiffi�g
p

f;R̂g
�� þ ffiffiffiffiffiffiffi�g

p
f;Q̂R

��Þ ¼ 0; (6)

where r̂� denotes the covariant derivative of �̂�
��. In

order to solve this equation, a new metric ĝ��, implicitly

defined by2

ffiffiffiffiffiffiffi�ĝ
p

ĝ�� ¼ ffiffiffiffiffiffiffi�g
p ðf;R̂g�� þ f;Q̂R

��Þ; (7)

emerges in Palatini theories. If the right-hand side of (7) is

independent of the connection �̂�
��, a solution is given by

�̂ �
�� ¼ 1

2
ĝ��ð@�ĝ�� þ @�ĝ�� � @�ĝ��Þ: (8)

In other words, the independent connection is given by the
Levi-Civita connection in terms of the metric ĝ��.

However, in (7) the two functions fR̂ and fQ̂ still implicitly

depend on �̂�
��. Within the purely Palatini framework, one

usually employs field equations (5) in order to algebrai-

cally relate R̂ and Q̂ to the matter fields [13]. In this way

2From the disformal form of the relation, it appears that the
hatted metric could have, in principle, a different signature from
the physical metric, or even be degenerate. However, there is
some evidence from studies of disformal theories that such ‘‘sign
flippings’’ do not occur in physically motivated models [14]. The
study of generic requirements for this is outside the scope of the
present paper.
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one can substitute these invariants with matter fields
wherever they appear in the field equations. In particular,
replacing them inside the condition (7) allows us to solve
for the independent connection as in (8). In our case,
however, this cannot be done in general since in the field

equations (5), derivatives of Q̂H explicitly appear and thus
an algebraic relation with matter fields is impossible to
achieve. Although this prevents finding general solutions
of the field equations in a simple algebraic way, we will
see in the next section that in the weak field limit needed
for the ghost analysis, the right-hand side of (7) will be

independent of �̂�
�� at first order in the perturbations.

The explicit form of the (inverse) metric ĝ�� can be read
off from Eq. (7) by taking its determinant. Defining

r�� ¼ f;R̂g
�� þ f;Q̂R

�� (9)

and 1=r ¼ det ðr��Þ, we find

ĝ �� ¼
ffiffiffiffiffiffiffi�r

p
ffiffiffiffiffiffiffi�g

p r��: (10)

III. WEAK FIELD LIMIT

We now consider an expansion around Minkowski
spacetime. The metric tensor will be then given by

g�� ¼ 	�� þ h��; with jh��j � 1; (11)

where 	�� is the Minkowski metric. All the standard

properties of the weak field limit approximations will
hold; in particular, h�� is Lorentz covariant and can be

treated as a Lorentz tensor on Minkowski spacetime.
Up to second order in h��, we have g�� ¼ 	�� � h�� þ
oðh2Þ and

g ¼ �1þ hþ oðh2Þ; (12)

where we define h ¼ 	��h�� and denote with oðh2Þ sec-
ond and higher orders in h��.

At this point we need to expand f and its derivatives.

Since these are functions of R, R̂ and Q̂H, we need first to
know in which order these invariants are in h��. The metric

curvature scalar R is, of course, of order one and has no
zeroth order term as it happens in GR. The Ricci tensor
formed with the Palatini connection does not depend ex-
plicitly on the metric. However, if one had a solution of

�̂�
�� in terms of g��, this problem would not be present. In

what follows we will assume that R̂�� is also of order one
in h�� and that its zeroth order term vanishes. This ansatz

will be verified at the end of the calculations, where we
will indeed show that this is true. With this assumption we

have R̂� oðhÞ and Q̂H � oðh2Þ. The expansion of f (and
thus of all its derivatives) will be given by

fðR; R̂; Q̂HÞ ¼ fð0Þ þ fð0Þ;R R
ð1Þ þ fð0Þ

;R̂
R̂ð1Þ þ oðh2Þ; (13)

where fð0Þ, fð0Þ;R and fð0Þ
;R̂

are the constant values of the

functions evaluated at R ¼ R̂ ¼ Q̂H ¼ 0, and Rð1Þ and

R̂ð1Þ are the first-order terms of R and R̂, respectively.
In what comes next wewill make another ansatz, namely

fð0Þ
;R̂ R̂

¼ 0; or, in other words, the second derivative of f

with respect to R̂ has to vanish when evaluated at R ¼ R̂ ¼
Q̂H ¼ 0. This assumption is needed in order to solve (6)
in the weak field limit approximation; i.e., it allows r�� to

be �̂�
�� independent in this limit. Note that this puts a

constraint on the general expression f can assume. If f is

independent or linear in R̂, this assumption is automatically
satisfied. However, this is true for more general functions

f, and thus we will still consider a general R̂ dependency.
Within these assumptions, the expansion of r�� is

given by

r��¼fð0Þ
;R̂
	���fð0Þ

;R̂
h��þfð0Þ

;R̂R
Rð1Þ	��

þfð0Þ
;Q̂
Rð1Þ��þoðh2Þ: (14)

One can immediately notice that now r�� is �̂�
�� indepe-

dent up to first order in h��. Thanks to (14), we can also

find the expansion of 1=r which is given by

1

r
¼ fð0Þ

4

;R̂

�
�1� hþ

4fð0Þ
;R̂R

þ fð0Þ
;Q̂

fð0Þ
;R̂

Rð1Þ
�
þ oðh2Þ: (15)

We are now ready to expand ĝ�� given by (10). Up to first
order in h�� we find

ĝ �� ¼ fð0Þ
3

;R̂
ð	�� � ĥ��Þ þ oðh2Þ; (16)

where

ĥ �� ¼ h�� þ
6fð0Þ

R̂R
þ fð0Þ

;Q̂

2fð0Þ
;R̂

Rð1Þ	�� þ
fð0Þ
;Q̂

fð0Þ
R̂

Rð1Þ��: (17)

The inverse of ĝ�� is given by

ĝ �� ¼ fð0Þ
�3

;R̂
ð	�� þ ĥ��Þ þ oðh2Þ; (18)

and one can indeed verify that ĝ��ĝ�� ¼ 

�
� þ oðh2Þ. We

can now give the solution of �̂�
�� up to first order in h��,

using (8). The result is

�̂ �
�� ¼ 1

2
	��ð@�ĥ�� þ @�ĥ�� � @�ĥ��Þ þ oðh2Þ: (19)

Note that the constant factor in front of (18) is completely

unimportant since it cancels out in �̂�
�� and then will not

appear in the field equations. This is in agreement with the
fact that ĝ�� can always be rescaled by a constant factor

without altering the physics.

The expression (19) for �̂�
�� allows us to write down the

expansion of R̂�� as
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R̂ �� ¼ R̂ð1Þ
�� þ oðh2Þ

¼ @�@ð�ĥ��Þ �
1

2
@�@�ĥ� 1

2
hĥ�� þ oðh2Þ; (20)

where of course ĥ ¼ 	��ĥ��. One can now realize that our

previous assumptions that R̂�� has a vanishing zeroth order

term are indeed verified. We can now expand Rð1Þ
�� in terms

of h��. Defining

A ¼
6fð0Þ

R̂R
þ fð0Þ

;Q̂

2fð0Þ
;R̂

; and B ¼
fð0Þ
;Q̂

fð0Þ
R̂

; (21)

we find

R̂ð1Þ
�� ¼ Rð1Þ

�� � A@�@�@�@�h
�� � A

2
	��h@�@�h

��

þ
�
Aþ B

4

�
h@�@�hþ A

2
	��h

2h

� B

2
@�@ð�h��Þ þ

B

4
h2h��: (22)

We have now all the ingredients to expand the field equa-
tions (5) up to first order in h��. Following [15,16] we can

write them in the form

fð0Þ

2
ð	�� þ h��Þ þ aðhÞhh�� þ 2bðhÞ@�@ð�h��Þ
þ cðhÞð	��@�@�h

�� þ @�@�hÞ

þ dðhÞ	��hhþ eðhÞ
h

@�@�@�@�h
�� ¼ �2�2T��;

(23)

where aðhÞ, bðhÞ, cðhÞ, dðhÞ and eðhÞ are functions of

h ¼ 	��@�@�. In these equations, fð0Þ represents the cos-
mological constant and will not influence the upcoming
analysis. In our case the functions appearing in (23) are
given by

aðhÞ ¼ fð0Þ;R þ fð0Þ
;R̂

� fð0Þ
;Q̂

B

4
h2; (24)

bðhÞ ¼ �fð0Þ;R � fð0Þ
;R̂

þ fð0Þ
;Q̂

B

4
h2; (25)

cðhÞ ¼ fð0Þ;R þ fð0Þ
;R̂

� 2ðfð0Þ;RR þ 4fð0Þ
;RR̂

þ fð0Þ
;Q̂
Þh

þ
�
fð0Þ
;RR̂

ð6Aþ BÞ þ fð0Þ
;Q̂

�
2Aþ B

4

��
h2; (26)

dðhÞ ¼ �fð0Þ;R � fð0Þ
;R̂

þ 2ðfð0Þ;RR þ 4fð0Þ
;RR̂

þ fð0Þ
;Q̂
Þh

�
�
fð0Þ
;RR̂

ð6Aþ BÞ þ fð0Þ
;Q̂

�
2Aþ B

4

��
h2; (27)

eðhÞ ¼ 2ðfð0Þ;RR þ 4fð0Þ
;RR̂

þ fð0Þ
;Q̂
Þh�

�
fð0Þ
;RR̂

ð6Aþ BÞ

þ fð0Þ
;Q̂

�
2Aþ B

2

��
h2: (28)

We can immediately notice that the following relations
hold

aþ b ¼ 0; cþ d ¼ 0; bþ cþ e ¼ 0: (29)

At first order these constraints must be true in any gravi-
tational theory, preserving diffeomorphism invariance in as
much as they directly follow from the Bianchi identities

[15,16]. Note also that in the GR limit fð0Þ;R ! 1, fð0Þ
;R̂

! 0,

fð0Þ
;Q̂

! 0 (or equivalently fð0Þ;R ! 0, fð0Þ
;R̂

! 1, fð0Þ
;Q̂

! 0), we

recover the right values a¼�b¼c¼�d¼1 and e ¼ 0.
With the field equations expanded at first order in h��,

we can now compute the flat space propagator and check if
ghosts appear in the theory.

IV. FLAT SPACE PROPAGATORS

In this section, we will analyze the field content and
viability of the theories contained in our general class of
actions. We adopt the formalism presented in Ref. [16],
which was originally introduced by van Niewenhuizen in
Ref. [17], employed in Ref. [18] to study the class of fðRÞ
models and recently generalized in Ref. [15] for general
metric theories of gravitation involving arbitrary combina-
tions of curvature invariants at an arbitrary order in deriva-
tives. The main result is that the propagator � for metric
fluctuations around a flat background can be written, in the
Fourier space, as

k2� ¼ P 2

að�k2Þ �
P 0

að�k2Þ � 3cð�k2Þ ; (30)

where P 2 picks up the spin-2 and P 0 the scalar modes of
the fluctuations.

Let us start by considering the class of fðR; R̂Þ theories.
Without significant loss of generality, we may assume that

fð0Þ;R þ fð0Þ
;R̂

¼ 1, so that we recover Einstein’s general rela-

tivity for the graviton propagator at the infrared limit. The
sum may converge to another positive constant than unity
in this limit, but taking that into account amounts to an
overall rescaling, which is irrelevant for our purposes. We
readily see then that

a ¼ �b ¼ 1;

c ¼ �d ¼ 1� 2ðfð0Þ;RR þ 4fð0Þ
;RR̂

Þhþ 6Afð0Þ
;RR̂

h2;

e ¼ 2ðfð0Þ;RR þ 4fð0Þ
;RR̂

Þh� 6Afð0Þ
;RR̂

h2:

(31)

The propagator we then obtain is
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�fðR;R̂Þ ¼ �GR

þ
3ðfð0Þ;RR þ 4fð0Þ

;RR̂
þ 3Afð0Þ

;RR̂
k2Þ

2ð1þ 3fð0Þ;RRk
2 þ 12fð0Þ

;RR̂
k2 þ 9Afð0Þ

;RR̂
k4ÞP

0;

(32)

where the GR propagator is given by

�GR ¼ 1

k2

�
P 2 � 1

2
P 0

�
: (33)

A subtlety here is that though the scalar propagator comes
with the wrong sign, it does not imply a ghost but rather
cancels the unphysical longitudinal degree of freedom
contained in the spin-2 propagator P 2 [16,17]. Let us first
check that the result agrees with the previously known
results in other appropriate limits and then proceed to study
the new generalizations.

A. Metric fðRÞ models

In the pure metric fðRÞ case, fð0Þ
;RR̂

¼ A ¼ 0, and we

have [18]

�fðRÞ ¼ �GR þ 1

2ðk2 þ ð3fð0Þ;RRÞ�1ÞP
0: (34)

Thus we have an extra scalar degree of freedom, as we
expect since the fðRÞ models are known to be equivalent
to Brans-Dicke theories with a vanishing parameter

!BD ¼ 0. The mass of the ‘‘scalaron’’ is m2 ¼ ð3fð0Þ;RRÞ�1,

and as long as f00ðRÞ> 0, the theory is stable; otherwise, a
tachyonic mass spoils the stability around Minkowski
space. This agrees with the stability condition found in
[19] and generalized in [4].

B. Palatini fðR̂Þ models

It is well known that the Palatini-type fðR̂Þ models are
equivalent to Brans-Dicke theories with the parameter
!BD ¼ �3=2. This particular value corresponds to the
vanishing kinetic term of the field, which is thus nondy-
namical. Therefore, we expect that no additional scalar
degree of freedom should appear. As previously, we may

assume that fð0Þ
;R̂

¼ 1, and we have now of course that

fð0Þ;RR ¼ fð0Þ
;RR̂

¼ fð0Þ
;Q̂

¼ 0. Hence,

�fðR̂Þ ¼ �GR; (35)

confirming our expectation.
A comment here has to be made for the sake of general-

ity. Recall that we assumed the condition fð0Þ
R̂ R̂

¼ 0, which

actually restricts our analysis in the nonlinear Palatini case.
However, it easy to realize that Palatini fðRÞ gravity adds
no degrees of freedom from some considerations in

absence of matter fields. In vacuum the fðR̂Þ gravity field
equations are

f;R̂R̂�� � 1

2
g��f ¼ 0; (36)

r̂ �ð ffiffiffiffiffiffiffi�g
p

f;R̂g
��Þ ¼ 0: (37)

Once the function f is prescribed, the trace of (36) will give

an algebraic equation for R̂ whose solutions will generally

be R̂ ¼ R̂0 ¼ const. This implies that f;R̂ will be a con-

stant, too, and then Eq. (37) will reduce the independent
connection to Levi-Civita. The field equations (36) will
then become the Einstein field equations with a cosmo-
logical constant in vacuum which is a well-known result of
Palatini fðRÞ gravity. The propagator of the theory will
thus be equal to the GR one, as shown in (35), even if the

fð0Þ
R̂ R̂

¼ 0 constraint is relaxed.

C. Hybrid fðXÞ models

The Lagrangian of the form Rþ fðR̂Þ results in field
equations, where the corrections to Einstein gravity are
controlled by the failure of the GR trace equation X ¼
R� �2T, where T ¼ g��T�� is the trace of the energy-

momentum tensor; see Ref. [8] for details. They belong to
the algebraic class of scalar-tensor theories, which single
out the unique interpolation of the metric and Palatini fðRÞ
theories by requiring that the scalar field has an algebraic
expression in terms of the trace and the Ricci scalar, � ¼
�ðT; RÞ [20]. It was mentioned in Ref. [4] that this pro-
duces the peculiar fðXÞ-type of field equations, and their
implications and phenomenology have been recently
studied in the context of solar system constraints, cosmol-
ogy and wormholes [8]. It was already remarked in [20]
that in Ricci-flat spacetimes the fðXÞ theories share the
properties of Palatini fðRÞ theories, which in vacuum
reduce to GR with a possible cosmological constant.
Therefore, it is not a surprise that we find no new prop-
agating degrees of freedom in Minkowski vacuum,

�fðXÞ ¼ �GR: (38)

Interestingly though, this class of theories is not equivalent
to either of the previous two cases, since when one con-
siders curved spacetimes, a new scalar degree of freedom
appears. In this sense, the fðXÞ gravity is a quite minimal-
istic scalar-tensor extension of GR, as the scalar propagates
only in the presence of curvature. For the viability criteria
for these models in regards of cosmology and Solar system,
we refer the reader to [8].

Again we notice that the constraint fð0Þ
R̂ R̂

¼ 0 prevents a

complete analysis also in this case. However, we can repeat
the same argument above and consider the fðXÞ field
equations in vacuum
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R�� � 1

2
g��Rþ f;R̂R̂�� � 1

2
g��f ¼ 0; (39)

r̂ �ð ffiffiffiffiffiffiffi�g
p

f;R̂g
��Þ ¼ 0; (40)

where now the Lagrangian is Rþ fðR̂Þ and the function f

only depends on the Palatini curvature scalar R̂. If we now
take the trace of (39), we obtain, once the function f

is prescribed, an algebraic equation relating R̂ to R. The
function f;R̂ will generally become a function of R and

Eq. (40) will reduce to its (metric) fðRÞ correspondent. The
propagator analysis will then equal the metric fðRÞ gravity
one meaning that in the end we will find a scalar propagat-
ing degree of freedom in addition to the graviton. As noted
in [8], the theory is thus quite different from Palatini fðRÞ
gravity presenting a richer phenomenology. Note that when
the metric Ricci scalar vanishes, as in Minkowski space-
time, the trace of Eq. (39) will again give the solution

R̂ ¼ R̂0 and the scalar degree of freedom will disappear
in agreement with (38). As said above the fðXÞ gravity
phenomenology differs from the fðR̂Þ gravity only in
curved spacetimes.

D. The hybrid fðR; R̂Þ models

The generalized hybrid Ricci scalar theories were intro-
duced in [9,10] and found to have qualitatively different
properties compared to the more restricted class of fðXÞ
models described above. In particular, the fðR; R̂Þ were
shown to be equivalent to a class of biscalar-tensor
theories. It is indeed seen from our formula (32) that these
theories have an extra P 0 spin-0 propagator with a double
pole, corresponding to two propagating scalar degrees of
freedom. From the formula, we can easily deduce the
masses of these scalar fields. We get

m2� ¼
fð0Þ
;R̂

18ðfð0Þ
;RR̂

Þ2 ðf
ð0Þ
;RR þ 4fð0Þ

;RR̂
� SÞ; (41)

where we have defined for convenience

S �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfð0Þ;RR þ 4fð0Þ

;RR̂
Þ2 � 12

ðfð0Þ
;RR̂

Þ2
fð0Þ
;R̂

vuuut : (42)

We note that the scalar particle with mass squared m2�
corresponds to the scalaron appearing in (34) in the limit
of pure fðRÞ gravity, but in general now has a shifted mass.
The other scalar is a new particle that occurs due to non-

trivial dependence upon R̂, and unlike in the case of fðXÞ
gravity, it propagates also in Ricci-flat spaces. The condi-
tion that neither of the scalars has a tachyonic instability
is given by

fð0Þ
;R̂

> 0; and fð0Þ;RR þ 4fð0Þ
;RR̂

� S > 0: (43)

The residues at the two poles corresponding to these
masses are

r� ¼
S� ðfð0Þ;RR þ 4fð0Þ

;RR̂
Þ

4S
: (44)

In order for neither of these scalars to be a ghost, we should
have both rþ > 0 and r� > 0. The second condition would
require that

fð0Þ;RR þ 4fð0Þ
;RR̂

� S < 0; (45)

in contradiction with (43). It seems then that we cannot
avoid both tachyons and ghosts in this theory.

Again we recall that we have assumed fð0Þ
R̂ R̂

¼ 0 in our

analysis. It might be that relaxing this constraint allows for

viable fðR; R̂Þ theories. This would in any case depend on

the matter of degrees of freedom, since R̂ can only be
replaced in the field equations solving the trace of (5).
Besides the problems we already mentioned which disap-

pear with the fð0Þ
R̂ R̂

¼ 0 ansatz, a complete analysis for this

class of theories cannot be performed without explicitly
specifying the function f and a matter action.

E. The hybrid Ricci-squared fðR̂; Q̂Þ theories
Let us finally consider the Q̂H invariant. For simplicity,

we restrict to models here without nonlinear dependence
on the metric Ricci scalar; it is easy to see that this does not
affect our conclusions essentially. This sixth-order theory
of gravity has never been studied in previous literature, and
it is thus interesting to check its physical viability; see also
Ref. [21] for other works on sixth-order theories. Basically
the graviton propagator acquires its structure from the
function aðhÞ in (24), and now only the higher-derivative

term Q̂H modifies it. We can arrange the result for the
propagator in the form

�fðR̂;Q̂Þ ¼
�GR

ð1� 1
4ðfð0Þ;Q̂

Þ2k4Þ

þ
3fð0Þ

;Q̂
ð1þ 3

4f
ð0Þ
;Q̂
k2Þ

2ð1� 1
4ðfð0Þ;Q̂

Þ2k4Þð1þ3fð0Þ
;Q̂
k2þ2ðfð0Þ

;Q̂
Þ2k4ÞP

0:

(46)

The sixth-order theory we have at hand has a modulated
graviton propagator, which adds two extra poles. In addi-
tion, there appears a scalar propagator that has five poles.
This is in quite drastic contrast to the metric Q theory,
which contains only one additional spin-2 particle and
features fourth-order field equations. We need not analyze
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in detail the properties of the new degrees of freedom here,
since it is obvious that the theory, as such, is seriously
haunted by ghosts and thus not physical.

V. CONCLUSIONS

We considered theories of gravity in the generalized
hybrid framework, where besides the independent
Palatini connection, the metric Levi-Civita connection is
also allowed to enter into the fundamental action. In par-
ticular, we applied the formalism of [15–18] to uncover the
classical and quantum stability of the theories, i.e., to find
out which of the theories may be free of ghosts and
tachyonic instabilities.

To this end, we started with an action involving three
types of curvature invariants, constructed from the metric
and the independent connection, and brought the general
theory into the form of an effectively purely metric theory
at the relevant limit. The generalization of the analysis
to other types of invariants is not entirely straightforward
because an algebraic solution for the independent
connection in terms of the metric and the curvature invar-
iants may not be generically available, but instead one
would need to supplement the system with differential
equations of motion for the connection. Basically we found
that of the new classes of models, only the fðXÞ-type of
theories is viable.

For the simplest theories we reproduced the well-known
results: the metric fðRÞ is equivalent to a scalar-tensor

theory and stable given f00ðRÞ> 0, while the Palatini-

type fðR̂Þ theory carries no extra degrees of freedom.
Theories involving both Ricci invariants show quite
interesting properties: the fðXÞ theories with only linear
dependence upon the metric R are viable and in fact reduce
to GR in flat spacetime, whereas more general theories
with nontrivial dependence upon both of the Ricci
invariants inevitably contain instabilities. They introduce
two new scalar degrees of freedom, where either one
of them is a ghost or the other has a negative mass-
squared associated to its excitations around a flat
background.
It is well understood that in the metric formalism, the

fðRÞ theories are a special class of viable GR extensions
[22]—what we have found here is that the fðXÞ gravity
seems to have a similar unique place among all the theories
within the hybrid formalism. Though we have, for the
technical reason stated above, explicitly derived the propa-

gator only for theories involving the Q̂ besides the Ricci
scalar invariants, from the general structure of the equa-
tions we expect that similar conclusions would hold quite
generically for all the hybrid theories. Discovering either
exceptions (as the Gauss-Bonnet term in the metric
formulation) or a robust no-go theorem is a challenge for
future studies.
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