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ABSTRACT

Scalar fields, strongly coupled to matter, can be present in nature and still be invisible to local experiments if
they are subject to a screening mechanism. The symmetron is one such mechanism that relies on restoration of a
spontaneously broken symmetry in regions of high density to shield the scalar fifth force. We have investigated
structure formation in the symmetron model by using N-body simulations and find observable signatures in both
the linear and nonlinear matter power spectrum and on the halo mass function. The mechanism for suppressing the
scalar fifth force in high-density regions is also found to work very well.
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1. INTRODUCTION

Our current standard model of cosmology, ΛCDM, has been
very successful in explaining a large range of observations
probing a vast range of length scales. We should nevertheless
be open to the possibility that ΛCDM is just a first-order
approximation of some more fundamental theory. Many theories
of high-energy physics, like string theory and supergravity,
predict light gravitationally coupled scalar fields (see, e.g.,
Binetruy 2006; Linde 2008, and references therein). These
scalars may play the role of dark energy (quintessence). If these
scalar fields have non-minimal coupling to matter fields, then
they could mediate extra forces that are potentially detectable
in local experiments.

Over the past few decades, several laboratory and solar system
experiments have tried to detect a sign of such fundamental
coupled scalar fields (Adelberger 2002; Hoskins et al. 1985;
Decca et al. 2007; Bertotti et al. 2003), but the results so far
have been negative. Naively, the results of these experiments
have ruled out any such scalar fields. However, one should bear
in mind that a coupled scalar field might exist but is undetected
because of some sort of screening mechanism.

To date we know three types of theoretical mechanisms
(see Khoury 2010 for a review) that can explain why such
light scalars, if they exist, may not be visible to experiments
performed near the Earth. One such class, the chameleon
mechanism (Khoury & Weltman 2004; Brax et al. 2004; Clifton
et al. 2005; Mota & Barrow 2004a, 2004b), operates when the
scalars are coupled to matter in such a way that their effective
mass depends on the local matter density. In space, where
the local mass density is low, the scalars would be light and
deviations from general relativity (GR) would be observed. But
near the Earth, where experiments are performed, the local mass
density is high and the scalar field would acquire a heavy mass,
making the interactions short range and therefore unobservable.

The second mechanism, the Vainshtein mechanism
(Vainshtein 1972; Deffayet et al. 2002; Arkani-Hamed et al.
2003), operates when the scalar has derivative self-couplings
that become important near matter sources such as the Earth.
The strong coupling near sources essentially cranks up the ki-
netic terms, which translates into a weakened matter coupling.

Thus, the scalar screens itself and becomes invisible to experi-
ments. This mechanism is central to the phenomenological via-
bility of braneworld modifications of gravity and galileon scalar
theories (Dvali et al. 2000; de Rham et al. 2008; Nicolis et al.
2009; Hinterbichler et al. 2010; Mota et al. 2010; Gabadadze
2009; de Rham 2010; Brax et al. 2011a).

The last mechanism, the one explored in this paper, is
the symmetron mechanism (Hinterbichler & Khoury 2010;
Hinterbichler et al. 2011; Olive & Pospelov 2008; Brax et al.
2011b; Clampitt et al. 2012). In this mechanism, the vacuum
expectation value (VEV) of the scalar depends on the local
mass density, becoming large in regions of low mass density and
small in regions of high mass density. By taking the coupling
of the scalar to matter to be proportional to the VEV, we can
have a viable theory where the scalar couples with gravitational
strength in regions of low density but is decoupled and screened
in regions of high density. This is achieved through the interplay
of a symmetry breaking potential and a universal quadratic
coupling to matter. A similar screening mechanism applies in
the case of the environmentally dependent dilaton model (Brax
et al. 2010a).

In vacuum, the scalar field acquires a VEV that spontaneously
breaks the Z2 symmetry φ → −φ. In the regions of sufficiently
high matter density, the field is confined near φ = 0, and the
symmetry is restored. The fifth force arising from the matter
coupling is proportional to φ making the effects of the scalar
small in high-density regions.

In contrast to chameleons, where the strongest constraints
(Mota & Shaw 2006, 2007; Brax et al. 2007a, 2007b, 2008,
2010c; Gannouji et al. 2010; Gies et al. 2008) come from
laboratory experiments that in effect wash out any observable
effects in the solar system, the symmetron predicts a host of
observational signatures in experiments designed to look for
deviations from GR, which are just below the current bounds
and within reach of the next-generation experiments.

In the simplest formulation (Hinterbichler & Khoury 2010),
which is the one studied here, the symmetron cannot account
for dark energy (Hinterbichler et al. 2011). To have a success-
ful cosmology, a cosmological constant must be added to the
model. The model is nevertheless a concrete example of a vi-
able modification of gravity that can leave observable imprints
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on cosmological scales. Indeed, the symmetron model was con-
structed as a scalar-tensor theory with a screening mechanism
to suppress fifth forces in solar system tests of GR. Whilst fifth
forces are screened in the solar system they could still have
observable effects cosmologically. In this paper we address this
issue. In particular we investigate the effect the symmetron has
on structure formation in order to obtain results that can be
compared with observation.

The cosmology of coupled scalar field models is usually
strongly constrained by local gravity experiments, which could
put limits on the range and the coupling strength of the scalar
field. There do exist several cases in which signatures on the
linear perturbations are found, but in most cases the range of the
field is well below linear scales. To proceed into the region of
nonlinear structure formation, one can use the spherical collapse
model to obtain the qualitative behavior, but in order to obtain
accurate quantitative results deep into the nonlinear regime, one
is almost required to perform N-body simulations.

Studies of coupled scalar field models, and other models
where a fifth-force is present, using N-body simulations (Zhao
et al. 2010, 2011; Brax et al. 2011c; Li & Barrow 2011a, 2011b;
Li et al. 2011a; Li & Zhao 2010; Ferraro et al. 2011; Oyaizu
et al. 2008; Schmidt et al. 2009; Schmidt 2009; Baldi et al. 2010;
Baldi 2009; Hellwing & Juszkiewicz 2009; Hellwing et al. 2010)
have revealed several interesting signatures that can in principle
be detected by observations in the near future. For example, in
Zhao et al. (2011) and Schmidt (2010) it was found that f (R)
theories can give rise to a dependence on the environment of the
dynamical to lensing mass ratio of halos; an observable feature
that is not found in ΛCDM. This signature is also present in the
symmetron model (Winther et al. 2011).

In this article we will study the effects a symmetron field
has on structure formation. By performing high-resolution
N-body simulations, we demonstrate explicitly how the sym-
metron mechanism works in screening the fifth force and obtain
observables such as the matter power spectrum and the mass
function.

2. THE SYMMETRON MODEL

In this section we review the symmetron model, explaining the
screening mechanism, and discuss the local constraints on the
model parameters. At the end of this section we reparameterize
the model parameters by introducing more physically intuitive
parameters that will help us discuss the results in the following
sections more clearly.

The action governing the dynamics of the symmetron model
is given by

S =
∫

dx4√−g

[
R

2
M2

pl − 1

2
(∂φ)2 − V (φ)

]
+ Sm(g̃μν, ψi), (1)

where g is the determinant of the metric gμν , R is the Ricci
scalar, ψi are the different matter fields, and Mpl ≡ 1/

√
8πG,

where G is the bare gravitational constant. The matter fields
couple to the Jordan frame metric g̃μν via a conformal rescaling
of the Einstein frame metric gμν given by

g̃μν = A2(φ)gμν. (2)

The coupling function A(φ) is chosen to be an even polynomial
in φ (to be compatible with the φ → −φ symmetry)

A(φ) = 1 +
1

2

(
φ

M

)2

+ O
(

φ4

M4

)
(3)

described by a single mass scale M. For the range of parameters
we are interested in we have (φ/M)2 � 1. Thus, we can neglect
the higher order correction terms. The potential is chosen to be
of the symmetry breaking form

V (φ) = V0 − 1

2
μ2φ2 +

1

4
λφ4, (4)

where V0 is a cosmological constant (CC). We will for simplicity
absorb all contributions to the CC into V0 by simply putting
V0 ≡ Λ. We will later see that Λ must be taken to be the
usual CC to obtain late time acceleration of the universe. Thus,
the symmetron model considered here cannot account for dark
energy. It will be interesting to see if a more complicated setup,
e.g., extensions of the proposals discussed in Hinterbichler et al.
(2011), can lead to dark energy. This is, however, beyond the
scope of this work.

The field equation for φ follows from the variation of the
action Equation (1) with respect to φ and reads

�φ = Veff, φ. (5)

The effective potential is given in terms of the trace, Tm, of the
matter energy-momentum tensor by

Veff(φ) = 1

2

(
− Tm

M2
− μ2

)
φ2 +

1

4
λφ4 (6)

= 1

2

( ρm

M2
− μ2

)
φ2 +

1

4
λφ4 (7)

depending on the two mass scales μ, M and the dimensionless
coupling constant λ. It is convenient to define the critical matter
density (and the critical redshift) as

ρSSB ≡ μ2M2 = 3H 2
0 M2

plΩm(1 + zSSB)3, (8)

where SSB stands for spontaneous symmetry breaking, Ωm is
the matter density parameter in the universe today, and H0 is
the Hubble parameter. In regions where ρm > ρSSB (where ρm

is the local matter density) the symmetry φ → −φ is upheld
and the effective potential has a minimum at φmin = 0, whereas
in regions where ρm < ρSSB the symmetry is spontaneously
broken and the field acquires a VEV

φmin = ±φ0

√
1 − ρm

ρSSB
, (9)

where φ0 ≡ μ/
√

λ is the symmetry breaking VEV for ρm → 0.
The mass of small fluctuations around the minimum of the
effective potential is given by

m2
φ ≡ Veff, φφ =

(
ρm

ρSSB
− 1

)
μ2 + 3λφ2

min

=
⎧⎨
⎩

μ2
(

ρm

ρSSB
− 1

)
, ρm > ρSSB

2μ2
(

1 − ρm

ρSSB

)
, ρm < ρSSB.

(10)
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The symmetron field acquires the longest range, λφ ≡ 1/mφ , in
low-density regions where

λφ = λ0 ≡ 1√
2μ

. (11)

For future convenience we introduce the dimensionless quantity
L ≡ λ0/(Mpc h−1), which is the maximum range of the force
mediated by the symmetron in units of Mpc h−1.

The gravitational field equation for gμν is given by

Gμν = 8πGTμν (12)

where the total energy-momentum tensor Tμν is the sum of the
matter and scalar field parts:

Tμν = A(φ)T m
μν + φ;μφ; ν − gμν

(
1

2
(∂φ)2 + V (φ)

)
. (13)

Note that the matter part itself is not conserved, but instead
satisfies

∇νT
μν
m = d log A(φ)

dφ

(
Tm∇μφ − T μν

m ∇νφ
)
. (14)

In N-body simulations we are interested in describing the
matter sector by particles. The energy-momentum tensor of an
individual particle with mass m0 at position r0 is given by

T μν
m (r) = m0√−g

δ(r − r0)ṙμ

0 ṙ ν
0 , (15)

where r is the general spatial coordinate. Taking the divergence
of Equation (12) and using the Bianchi identity, we get the
geodesic equation for the matter particles

r̈
μ

0 + Γμ
αγ rα

0 r
γ

0 = −d log A(φ)

dφ

(∇μφ + φ̇ṙ
μ

0

)
(16)

which for A ≡ 1 reduces to the standard geodesic equation
in GR.

From Equation (16) we see that the symmetron field gives
rise to a fifth force on the matter fields that, in the nonrelativistic
limit, is given by

�Fφ = φ

M2
�∇φ = β

Mpl

(
φ

φ0

)
�∇φ, (17)

where we have introduced the coupling constant β ≡
φ0Mpl/M

2.
The static, spherically symmetric solutions of the field equa-

tions were found in Hinterbichler & Khoury (2010). For two
test masses in a region where φ = φB it was shown that the fifth
force is simply

Fφ

FN

= 2β2

(
φB

φ0

)2

. (18)

In a low-density region (ρ � ρSSB) we have φB = φ0 and the
fifth force is comparable with gravity for β = O(1).

For very large bodies, the situation is quite different. The
symmetry is restored in the interior of the body and the fifth
force on a test mass outside becomes

Fφ

FN

= 2β2

(
φB

φ0

)2 1

α
, α−1 = 2

ρSSB

ρbody

(
λ0

Rbody

)2

. (19)

The fifth force is suppressed by a factor α−1 � 1 − similar
to the thin shell factor found in chameleon theories (Khoury &
Weltman 2004).

We also see that if the test masses are inside a screened region
(φB/φ0 � 1) the force will be further suppressed.

Since the field is long ranged (and universally coupled) in
almost all situations today, the theory is best constrained by
solar system experiments that have been performed with high
precision.

It turns out that as long as our Galaxy is sufficiently screened
(10 � αG), our Sun will also be screened and the combined
effects discussed above are enough to evade the current param-
eterized post-Newtonian (PPN) constraints.

By assuming that φ → φ0 outside our Galaxy, i.e., that
our galactic neighborhood is not screened, these constraints
were derived in Hinterbichler & Khoury (2010) and Brax et al.
(2011b) and require

M � 10−3Mpl. (20)

If the assumption about the value of φ outside our Galaxy, which
is very likely to be true, can be relaxed, then the bound above
can be relaxed somewhat as well. The constraint on M turns into
a constraint on the range of the field and the redshift in which
the SSB takes place:

λ0 � 2.3

√
0.3

Ωm

(1 + zSSB)−3/2 Mpc h−1. (21)

Thus, for transitions that take place close to the present time,
the fifth force can have a range of at most a few Mpc h−1.

In the rest of this article, instead of working with the param-
eters {μ,M, λ}, we will instead choose to work with the more
physically intuitive quantities {L, β, zSSB} : the cosmological
range of the fifth force in Mpc h−1, the strength of the fifth force
relative to gravity, and the redshift at which the SSB takes place
in the cosmological background, respectively.

The transformation between the two sets of parameters is
given by

μ

H0
= 2998√

2L
(22)

M

Mpl
= 10−3

√
Ωm

0.27

(
L

2.36

)
(1 + zSSB)3/2 (23)

λ =
(

1060H0

Mpl
· 0.27

Ωm

)2
1.38 × 10−100

β2L6(1 + zSSB)6
. (24)

For typical parameters L ∼ β ∼ 1 and zSSB ∼ 0 we have
μ ∼ 103H0, M ∼ 10−3Mpl, and λ ∼ 10−100. Thus, the
symmetron is very weakly self-coupled. As with other models
with screening mechanisms, our parameters require a certain
degree of fine-tuning. This means that SSB is a rather late-time
phenomenon.

We will choose to work with values of the parameters that are
close to the local constraints and in which the symmetron can
produce observable cosmological effects. This means we will
be most interested in the parameter space L = O(1), β = O(1),
and 0 � zSSB � 2.
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3. SYMMETRON COSMOLOGY

In this section we discuss the cosmological evolution of the
symmetron field from the background evolution to linear pertur-
bations and derive the nonrelativistic limits of the field equations
to be implemented in the N-body code. The analysis in this sec-
tion is mainly for comparison with the N-body simulations. For
a more thorough discussion regarding the background cosmol-
ogy and linear perturbations in the symmetron, see Hinterbichler
et al. (2011) and Brax et al. (2011b), respectively.

3.1. Background Cosmology

The background evolution of the symmetron in a flat
Friedmann–Lemaitre–Robertson–Walker (FLRW) metric

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) (25)

is determined by the field equation

φ̈ + 3Hφ̇ + Veff, φ = 0 (26)

together with the Friedman equations

3H 2M2
pl = ρmA(φ) + ρφ (27)

ρ̇m + 3Hρm = 0 (28)

where

ρφ = Λ − 1

2
μ2φ2 + λφ4 +

1

2
φ̇2. (29)

When the field follows the minimum of the effective potential,
we have ∣∣∣∣ρφ − Λ

Λ

∣∣∣∣ � μ4

λΛ
= β2 ρSSB

Λ

(
M

Mpl

)2

(30)

� 10−6β2(1 + zSSB)3. (31)

Thus, for β, zSSB ∼ O(1) the dynamical part of the potential
is too small to contribute significantly to the energy density of
the universe and we are left with the cosmological constant to
account for dark energy.

In the same regime, the coupling function A(φ) satisfies

|A(φ) − 1| = 1

2

(
φ

M

)2

� β2

(
M

Mpl

)2

� 10−6β2 (32)

which is also too small to produce an observable effect on the
background expansion. This implies that the symmetron evades
Big Bang Nucleosynthesis (BBN) bounds on the variation of
masses of the standard model particles (see Section 3.5). It
might be possible to make the symmetron responsible for dark
energy by changing the form of the potential and coupling.
One such modification was proposed in Hinterbichler et al.
(2011); however, it was shown that additional fine-tuning of
the parameters was required to yield the desired late-time
cosmology.

In Figure 1 we see the background evolution φ(z) for zSSB = 2
together with the analytical minimum. Note that the field does
not start to follow the minimum immediately after SSB. This has
important consequences for the evolution of the perturbations,
which will be discussed in Section 3.4.

Figure 1. Background evolution of the symmetron for β = 1, L = 1, and
zSSB = 2 together with the analytical background (dashed lines). The symmetry
is broken at z = 2 and the field settles at one of the two branches.

3.2. Linear Perturbations

The most general metric in a perturbed FLRW space-time is
given by

ds2 = − (1 + 2α)dt2 − 2aB, idtdxi

+ a2((1 + 2ψ)δij + 2γ, i;j )dxidxj , (33)

where the covariant derivative is given in terms of the spatial
metric, which in the case of our flat background reduces to δij .
We decompose the field φ into the background and perturbated
parts: φ(x, t) = φ(t) + δφ(x, t). The energy-momentum tensor
of nonrelativistic matter can be decomposed as

T 0
0 = −ρm(1 + δm), T 0

i = −ρmvi, (34)

where v is the peculiar velocity of nonrelativistic matter and δm

is the matter density perturbation defined by

δm ≡ δρm

ρm

− ρ̇m

ρm

v ≡ δρm

ρm

in the comoving gauge. (35)

The equation determining the evolution of the perturbations,
neglecting anisotropic stresses, follows from the Einstein equa-
tions. The scalar perturbations can be read off from the formu-
lation of Hwang & Noh (2002), which is independent of gauge.
In the following we use units of Mpl ≡ 1. After solving for the
different metric potentials, we find that the scalar perturbations,
in the comoving gauge (v = 0), are determined by

δ̈m + 2Hδ̇m − 1

2
ρmδm

− φδφ

M2

(
6H 2 + 6Ḣ + ΩmH 2 − k2

a2
+ 2φ̇2

)

− φ

M2
( ¨δφ + 5H ˙δφ) − 2φ̇

M2
( ˙δφ + Hδφ)

+ Veff, φ

(
1 +

1

M2

)
δφ − 2φ̇ ˙δφ = 0 (36)

¨δφ +

(
3H +

2φφ̇

M2

)
˙δφ +

φρmδm

M2
− φ̇δ̇m

+

(
m2

φ +
k2

a2
− 2φ

M2
Veff, φ +

2φ̇2

M2

)
δφ = 0. (37)
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Figure 2. Evolution of the growth index γ (z) when zSSB = 1 (left) and zSSB = 2 (right) for four different wavenumbers k = {0.01, 0.05, 0.1, 0.2} Mpc h−1 (from top
to bottom in each figure). The solid line shows the prediction of ΛCDM.

In studying the perturbations it is convenient to introduce the
growth index

γ (z, k) =
log

(
d log δm

d log a

)
log(Ωm(z))

. (38)

In ΛCDM we have γ ≈ 0.55 (for 0.2 � Ωm � 0.3), which
is scale and almost redshift independent. In modified theories,
however, γ can have significant scale and redshift dependence
as shown in Gannouji et al. (2010) and Mota & Winther (2011)
for the case of chameleon models, Tsujikawa et al. (2009),
Brax et al. (2008, 2010b), Motohashi et al. (2010), Narikawa
& Yamamoto (2010), and Appleby & Weller (2010) for f (R)
modified gravity, and Baldi (2011) for interacting dark energy.

If we assume that the field is rolling slowly along the mini-
mum, we can neglect all terms proportional to φ̇ and the oscillat-
ing term Veff, φ . The perturbations in φ will evolve more slowly
than the perturbations in δm for scales deep inside the Hubble
radius. Thus, the terms ρmβ,φ δm and (m2

φ + (k2/a2))δφ will
dominate over the δφ time derivatives in Equation (37). Under
these assumptions, we can simplify Equation (36) to

δ̈m + 2Hδ̇m = 3

2
ΩmH 2 Geff

G
δm (39)

Geff

G
= 1 +

2β2φ2/φ2
0

1 + a2

λ2
φk2

(40)

which are the equations we use to integrate the perturbations.
At times before SSB we have φ ≈ 0 and therefore Geff ≈ G.

After SSB the field approaches the minimum φ = φ0, in this

regime we have

Geff

G
=

{
1 a

k
� λφ

1 + 2β2 a
k

� λφ.
(41)

Thus, small scales will feel a stronger gravitational constant.
In Figure 2 we show the redshift evolution of γ for several

different wavenumbers, and in Figure 3 we show contour plots
for γ (k, z = 0) for two comoving wavenumbers. The evolution
of the growth index is very similar, with a minimum at some
redshift z > 0, to the behavior found in other coupled scalar field
models in the literature (see the references below Equation (38)).

The growth rate on really large scales (k � 0.01 h Mpc−1)
is not affected by the symmetron fifth force unless L, β � 1.
However, on the smallest, linear scales we can still have a devi-
ation from the predictions of GR. Note that we have integrated
the perturbations using the approximation Equation (39) instead
of the full equations (36) and (37). The explanation for this is
given in Section 3.4.

3.3. Linear Power Spectrum and the CMB

In Figure 4 we show the factional difference of the linear
power spectrum of the symmetron to that of ΛCDM, defined
as ΔP (k)/P (k) ≡ (P (k) − PΛCDM(k))/PΛCDM(k). Note that
on linear scales (k � 0.1 h Mpc−1) the power spectrum is
very close to ΛCDM. Going down to scales comparable to the
length scale of the symmetron (k ∼ L−1 h Mpc−1) the power
spectrum starts to deviate significantly. However, in this regime
the perturbations are already nonlinear and we cannot trust the
results of the linear perturbation theory. Once we discuss the
N-body results, we will see that the symmetron mechanism
is at work in this regime, thereby suppressing the fractional
difference from ΛCDM in the power spectrum predicted by
linear perturbation theory.
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Figure 3. Growth index γ (z = 0) for zSSB = 1.0 (left) and zSSB = 2.0 (right) for two comoving wavenumbers: k = 0.2 Mpc h−1 (above) and k = 0.01 Mpc h−1

(below). The red region shows the GR regime γ � 0.555, the blue region shows the regime where 0.5 < γ < 0.55, the green region shows 0.4 < γ < 0.5, and the
white region shows γ < 0.4.

(A color version of this figure is available in the online journal.)

Figure 4. Linear power spectrum relative to that of ΛCDM for three different
SSB redshifts: zSSB = 0.5 (dotted), zSSB = 1.0 (dashed), and zSSB = 2.0
(solid). We have fixed L = 1 and shown the results for the two values β = 0.5
and β = 1.0.

The short range (�Mpc) of the fifth force means that it will not
affect the cosmic microwave background (CMB) unless L, β �
1. Take L = 1 and β = 2 as an example: we find a maximal
increase in power (due to the integrated Sacks–Wolfe effect)
of ∼ 0.25% for multipoles around l ∼ 100. One needs a much
larger β and/or L to have a detectable signature in the CMB. The
second case is not allowed by local experiments, while the first
case implies a growth rate of the linear perturbations that should
have difficulty satisfying constraints coming from large-scale
structure surveys.

A more thorough analysis of the linear perturbations in the
symmetron model can be found in Brax et al. (2011b). There
it was shown that strong signatures appear in other interesting
linear observables such as the weak-lensing slip parameter and
the modified gravity parameter.

3.4. Tachyonic Instability in the Perturbations

The perturbations in Section 3.2 were integrated using the
approximate Equation (39), which is equivalent to using the
analytical minimum as the background field. The reason we did
not use the full equations is because perturbation theory breaks
down close to zSSB.

Immediately before zSSB the field is still close to φ = 0; as
z → zSSB the mass of the field vanishes. This means that the
field cannot follow the minimum and starts to lag behind as
seen in Figure 1. The global minimum of the effective potential
φ = 0 now becomes a local maximum, and the mass squared of
the field becomes negative, leading to an exponential growth in
the perturbations.

To see what happens, we can simplify Equation (37) by
discarding all but the most important terms:

¨δφ +

(
m2

φ +
k2

a2

)
δφ � 0. (42)

If m2
φ + k2/a2 < 0, then the solution to the above equation reads

δφ ∝ exp(t
√

|m2
φ+k2/a2|), which is exponentially growing.

In a realistic situation the field would roll very quickly down
from the false minimum φ = 0, making m2

φ positive and thereby
stabilizing the field close to the symmetry breaking minimum
(Felder et al. 2001). Since perturbation theory is only valid as
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long as the perturbations δφ are small, we get a breakdown of the
perturbation theory when using the true background solution.
The blowup in δφ, in turn, leads to a blowup in the matter
perturbations, and the numerical results cannot be trusted.

We have investigated this further by using N-body simula-
tions. In Figure 10 we see a snapshot of the φ-distribution
both before and after z = zSSB = 2.0. There we see the same
sort of behavior as is familiar from symmetry breaking in con-
densed matter physics: symmetry breaking takes place at dif-
ferent places at different times according to the local matter
density. This type of dynamics is not taken care of in the stan-
dard perturbation theory approach, which leads to the apparent
instability.

Note that by using the analytical minimum when integrating
the perturbations we do not have control over the accuracy of
our results. A full analysis of this phenomenon could be handled
with N-body simulations, but in our simulations we have not
explicitly taken into account the time variation of the scalar
field (we work in the quasi-static limit), and our simulation box
is also too small to reach far enough into the linear regime. We
leave this study for future work.

3.5. Varying Constants

One important constraint on coupled scalar field theories
comes from the time variation of the gravitational constant G in
the Jordan frame, or equivalently in the masses of the standard
model particles in the Einstein frame. Wilkinson Microwave
Anisotropy Probe (WMAP) constrains any such variation to be
less than about 5% since recombination (Nagata et al. 2004).
Light-element abundances provide similar constraints between
the time of nucleosynthesis and today (Accetta et al. 1990).

Due to the conformal coupling to matter, A(φ), a constant
mass scale in the Jordan frame becomes time and space varying
in the Einstein frame. The mass variation between today and
recombination is given by

Δm

m
= A(φrec) − A(φtoday)

A(φrec)
� 1

2

(
φtoday

M

)2

, (43)

where we have put φrec � 0 since zrec � zSSB in all interesting
cases. If we further assume φtoday = φ0, we get the conservative
constraint

Δm

m
� 1

2

(
φ0

M

)2

= β2

(
M

Mpl

)2

< 10−6β2. (44)

The WMAP constraint |Δm/m| � 0.05 is satisfied for all
β � 100.

Analysis of absorption spectra of quasars has led some to
claim that the fine structure constant α might have evolved
by approximately one part in 105 over the redshift range
0.2 < z < 3.7. If this turns out to be true, then general
covariance would imply that α can vary both in space and in
time, that is, it must be a function of a field.

Since we have so far assumed that the symmetron couples
conformally to matter fields, and since the Maxwell action is
conformally invariant, at tree level the symmetron does not lead
to a time-varying α. By considering a coupling of the symmetron
to photons of the form

Sγ = −1

4

∫
d4x

√−gAγ (φ)FμνF
μν (45)

where

Aγ (φ) = 1 +
ζγ

2

(
φ

M

)2

(46)

then variations in φ will lead to variations in α. Here ζγ is the
symmetron-photon coupling relative to the symmetron-matter
coupling. The variation in the fine-structure constant between
Earth (E) and another place (S) in the universe is given by∣∣∣∣Δα

α

∣∣∣∣ = Aγ (φE) − Aγ (φS)

Aγ (φE)
� ζγ

2

(
φS

M

)2

. (47)

If S is a very low density environment where φS ≈ φ0, then∣∣∣∣Δα

α

∣∣∣∣ � ζγ 10−6β2 (48)

which for O(1) � β, ζγ is close to the reported detection.
However, the local density in most Lyα-emitting systems is

usually much larger than the cosmological background density
today (see, e.g., Brax et al. 2004 and references therein), which
implies φS � φ0 and the above estimate becomes even smaller.

To be able to account for the reported claims, we need zSSB
to be well before the observed redshift of these systems and/or
these systems to be located in voids to produce the desired 10−5

effect. This makes it possible that the symmetron is responsible
for the claimed variations, but will probably require a fine-tuning
ζγ � 1. A more detailed analysis, as done in Li et al. (2011b),
is required to see if this is the case. This is beyond the scope of
this paper.

3.6. N-body Equations

To implement the general relativistic Equations (5), (12), (13),
and (16) in N-body simulations, it suffices to work in the
nonrelativistic limits, since the simulations only probe the weak
gravity regime and small volumes compared with the cosmos.
We write the perturbed metric in the (flat) conformal Newtonian
gauge as

ds2 = −a2(1 + 2Ξ)dτ 2 + a2(1 − 2Ψ)dxμdxμ, (49)

where τ is the conformal time and xμ is the comoving coordi-
nate. In Appendix A we list the expressions for the Christoffel
symbols, the Ricci tensor, and the Ricci scalar for the metric
Equation (49), which are used in deriving the equations below.

The scalar field equation of motion in terms of the perturbed
quantities becomes

− (1 − 2Ξ)φ′′ + ∇2
xφ − φ′(2H (1 − 2Ξ) − Ξ′ − 3Ψ′)

= a2
(
φ

( ρm

M2
− μ2

)
+ λφ3

)
. (50)

Taking the quasi-static limit of this equation, in which we can
neglect terms such as Ξ′, Ψ′, and Hφ′ since the time derivative of
a quantity is much smaller than its spatial gradient, and removing
the background part, we obtain

∇2
xφ ≈ a2

M2
(ρmφ − ρmφ)

+ a2(μ2(φ − φ) + λ(φ3 − φ
3
)), (51)

where we have also used the approximation A(φ) ≈ 1 to
simplify the equation further.
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The (0, 0)-component of the Ricci tensor and the trace of
the total energy-momentum tensor in the perturbed quantities
become

a2R0
0 ≈ − ∇2

x Ξ + 3

(
a′′

a
− H 2

)
(1 − 2Ξ)

− 3Ψ′′ − 3H (Ξ′ + Ψ′) (52)

T ≈ −A(φ)ρm − 4V (φ) +
1

a2
(1 − 2Ψ)φ′2. (53)

The (0, 0)-component of the Einstein equation with the back-
ground part removed gives the nonrelativistic Poisson equation

∇2
x Φ ≈ 4πG

(
ρm − ρm

)
a3, (54)

where we have neglected the contribution from the potential
(V (φ) − V (φ)), put A(φ) ≈ 1, and taken Φ = aΞ for
convenience.

The equation of motion for the N-body particles follows from
the geodesic equation and reads

ẍ + 2H ẋ = − 1

a3
∇xΦ − 1

a2

φ

M2
∇xφ − φφ̇

M2
ẋ. (55)

By rewriting this equation in terms of the conjugate momentum
to x, p = a2x, we have

dx
dt

= p
a2

(56)

dp
dt

= −1

a
∇xΦ − φ

M2
(∇xφ + φ̇p). (57)

Equations (51), (54), and (56) are all we need to put into the
N-body simulation code in order to study structure formation in
the nonlinear regime. The discretization of these equations, as
implemented in the N-body code, is shown in Appendix B.

4. N-BODY SIMULATIONS

Below we describe the algorithm and model specifications of
the N-body simulations we have performed. We also give results
from tests of the code to show that the scalar field solver works
accurately.

4.1. Outline

For our simulations we have used a modified version of
the publicly available N-body code MLAPM (Knebe et al.
2001). The modifications we have made follow the detailed
prescription of Li & Barrow (2011a), and here we only give a
brief description. The MLAPM code has two sets of meshes:
the first includes a series of increasingly refined regular meshes
covering the whole cubic simulation box, with, respectively, 4,
8, 16,..., Nd cells on each side, where Nd is the size of the domain
grid, which is the most refined of these regular meshes. This set
of meshes is needed to solve the Poisson equation using the
multigrid method or fast Fourier transform (for the latter only
the domain grid is necessary). When the particle density in a cell
exceeds a pre-defined threshold, the cell is further refined into
eight equally sized cubic cells; the refinement is done on a cell-
by-cell basis, and the resulting refinement could have arbitrary

Table 1
The Symmetron Parameters Used in Our Simulations

Model A B C D E F G H ΛCDM

zSSB 0.5 0.5 1.0 1.0 2.0 2.0 1.0 1.0 0.0
β 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.0
L 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 0.0

shape, which matches the true equal density contours of the
matter distribution. This second set of meshes is used to solve
the Poisson equation using the linear Gauss–Seidel relaxation
scheme.

The symmetron field is the most important ingredient in the
model studied here, and we have to solve for it to obtain detailed
information about the fifth force. In our N-body code, we have
added a new scalar field solver. It uses a nonlinear Gauss–Seidel
scheme for the relaxation iteration and the same criterion for
convergence as the default Poisson solver in MLAPM. However,
it uses V-cycle instead of the self-adaptive scheme in arranging
the Gauss–Seidel iterations.

The modified Poisson equation is then solved using nonlinear
Gauss–Seidel relaxation on both the domain grid and the
refinements. With the gravitational potential Φ and the scalar
field φ at hand, we can evaluate the total force on the particles
and update their momenta (velocities), which are used to
advance the particles in space.

4.2. Simulation Details

The physical parameters we use in the simulations are
as follows: the present dark-energy energy density ΩΛ =
0.733, total matter density Ωm = Ωb + Ωc = 0.267, baryon
density Ωb = 0.045, CDM density Ωc = 0.222, H0 =
71.9 km s−1 Mpc−1, ns = 0.963, and σ8 = 0.801. We
use a simulation box with size 64 Mpc h−1, in which h =
H0/(100 km s−1 Mpc−1). We simulate nine different models;
see Table 1 for the symmetron parameter values.

These parameters are chosen so that they predict local fifth
forces that are of the same order of magnitude as allowed by
current experiments and observations and are such that we can
see the effect of the different parameters. In this way the results
from our N-body simulations will show the maximum allowed
deviation from ΛCDM. Note that the energy density in the
symmetron is always much less than that of dark energy and
therefore does not alter the background cosmology, which in all
runs will be that of ΛCDM.

In all those simulations, the particle number is 2563, so that
the mass resolution is 1.114×109 Mpc h−1. The domain grid is
a 128×128×128 cubic and the finest refined grids have 16,384
cells on each side, corresponding to a force resolution of about
12 kpc h−1. The force resolution determines the smallest scale
on which the numerical results are reliable. Our simulations are
purely N-body, and baryons are treated as CDM, which means
that no baryonic physics has been included in the numerical
code.

The simulation box used, B = 64 Mpc h−1, is small compared
to linear scales, and we are therefore possibly neglecting effects
of mode coupling between linear and nonlinear scales. This
will have to be checked by simulations with a larger box size.
However, since the fifth force has a short range (� Mpc), it does
not reach far into the linear regime (see Figure 11), and therefore
we expect the accuracy on large scales to be the same as for the
ΛCDM simulations.
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Figure 5. Scalar field relative to the analytical solution before (random initial
values above) and after (below) the Newton–Gauss–Seidel relaxation.

4.3. Initial Conditions

Initial conditions for the simulation were generated using
GRAFIC2 (Bertschinger 2001; Prunet et al. 2008) by using the
parameters described above. The same initial conditions were
used for all the simulations in order to see clearly the effect of
the symmetron compared with ΛCDM.

This choice needs some justification. First of all, we start the
simulation at z = 49, a time in which the symmetron has no
effect on the growth of the perturbations. This means that the
only change the symmetron will have on the initial conditions
is on the value of σ8 today, which is used to normalize the
perturbations. Since the symmetron field has a rather short range
compared to the linear regime, we do not expect a large effect
on σ8 for the range L � O(1) we are considering.

To check this assumption, we integrated the perturbations and
calculated the value of σ8 (by normalizing to the CMB) for our
simulation models and found that the model with L = 1 that
is furthest away from ΛCDM, namely, F in which zSSB = 2.0,
L = 1, and β = 1, only has σ8 � 1.01σ LCDM

8 , justifying the use
of ΛCDM initial conditions.

If one is to consider models in which L is much larger than 1,
then this becomes an issue that should be dealt with properly.

4.4. Code Tests

Before we run simulations, we have to make sure that
the scalar field solver, which is the main modification to the
MLAPM code, works accurately by performing code tests
for situations where the outcome is known from analytical
solutions.

The scalar field solver uses the nonlinear Newton–Gauss–
Seidel relaxation scheme to compute χ ≡ φ/φ0, and an
indicator that it works is to show that, given the initial guess
of the solution that is very different from the true solution, the
relaxation could produce the latter within a reasonable number
of iterations. We consider a simulation box with homogeneous
density (obtained by putting particles on a regular grid inside
the simulation box); then the true solution is given by χ = χ :
the background solution. We therefore make an initial guess for
χ that is randomly scattered around χ and let the scalar field
solver solve for χ . The results for |χ − χ | before and after
the relaxation scheme are shown in Figure 5. The difference
between the initial guess and the true solution varies between
0.001 and 0.1, while after the relaxation the difference is of order
10−8. By using double-precision numbers in all the calculations,
we obtained exactly the analytical solution (to double precision

Figure 6. Scalar field value as a function of distance from the center for a
spherical overdensity embedded in a background of homogenous density ρb

together with the analytical solution for ρc = 4000, 6000, and 8000 times ρb .
The points shown here are calculated by binning the scalar field value using a
bin width Δ(r/R) = 0.01 and taking the average. We used the same amount
of particles, 1283, in each run so that the background density ρb differs for the
three cases shown above.

≈ 10−15), while using only floating point numbers the accuracy
dropped to 10−6, which is exactly the accuracy in floats. This
shows that the scalar field solver works accurately.

The most important effect of the symmetron is the screening
mechanism, in which the local value of the field should be
pushed down toward χ = 0 in high-density environments. We
therefore consider a spherical overdensity, located at the center
of the box, with a given radius R, homogeneous density ρc inside
R, and embedded in a background of homogenous density ρb.
The analytical solution reads

χ (r) = χ (0)
sinh [mcr]

mcr
, r < R (58)

χ (r) = χb +
(χ (R) − χb)R

r
e−mb(r−R), r > R (59)

where

m2
c �

( ρc

M2

)
, m2

b �
( ρb

M2
+ μ2

(
3χ2

b − 1
))

χb �
√

1 − ρb

ρSSB
, χ (R) = χb

(
1 + mbR

mcR

tanh(mcR) + mbR

)

χ (0) = χ (R)
mcR

sinh(mcR)
. (60)

For the trial solution on the grid we use the background value χb

and perform the test for a range of densities ρc. The results after
relaxation for the most massive cases are shown in Figure 6.
There are some small discrepancies from the analytical solution
in the region R < r < 2R for the most extreme cases
ρc > 103ρb. This is not a surprise as the density suddenly
drops over 3 orders of magnitude at r = R, meaning that we
need a lot of particles in this region in order to get accurate
results. In the region r < R and r > 2R the scalar field solver
produces the analytical solution to high accuracy.

5. NUMERICAL RESULTS

In this section we present the results from the simulations,
including the snapshots, the matter power spectrum, and the
halo mass function.
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Figure 7. Fifth force to gravity in a slice of the simulation box at z = 0 (left) and the comparison between four different redshifts (right) for a run with zSSB = 0.5,
β = 1, and L = 1. Black shows z = 0, red z = 0.25, blue z = 0.65, and green z = 1. The solid lines show (Fφ/Fgravity) = 2β2χ2

b (z), which is the prediction for the
(short-range) forces at the perturbation level (see Equation (39)). Note that the force will be dispersed around this prediction because we already have significant over-
and underdensities in which χ �= χb . At z = 1 the background field is close to χb = 0 and the force is small everywhere in space. As we move closer to z = 0, the
symmetry breaks, and the background value moves toward χb = 1. This means that the force in low-density regions (small gravitational force) will increase whereas
in high-density regions (strong gravitational force) the screening kicks in and the force becomes suppressed just as seen above. The numerical size of the forces is
given in terms of code units, which are H 2

0 /B times the physical force unit.

(A color version of this figure is available in the online journal.)

5.1. Snapshots

In the symmetron model χ ≡ φ/φ0, and thereby the fifth
force, is suppressed in high-density regions. In this subsection
we demonstrate these qualitative features using some snapshots.

Figure 7 shows the ratio of the fifth force to gravity today and
for redshifts both before and after zSSB.

At early times, the density is high everywhere and we expect
the fifth force on all particles to be strongly suppressed. At later
times we expect a screening in regions of high matter density.
These predictions are confirmed in Figure 7. We see that fifth
force on the particles that feel a strong gravitational force (i.e.,
particles in a high-density environment) is highly suppressed
whereas the fifth force on particles that feel a weak gravitational
force (i.e., particles in a low-density environment) follows the
unscreened theoretical prediction Fφ � 2β2χ2

b (z)Fgravity (see
Equation (39)).

Figures 8–10 show the density and scalar field distribution in
a slice of the simulation box at different redshifts for the three
cases zSSB = 0.5, 1.0, and 2.0 with β = L = 1.0 fixed.

For redshifts z > zSSB, χ is very close to the minimum
χ = 0 almost everywhere in space except in voids where the
symmetry has already been (weakly) broken. When we go down
to redshifts z < zSSB, the symmetry is broken in most parts of
the box, except in the high-density regions where we still have
χ ∼ 0. Comparing the scalar field distribution today for runs
with different zSSB, we see that the earlier the symmetry breaking
takes place, the part of the box that is unscreened (χ ∼ 1)
today becomes larger. This is because the critical density
for the symmetry breaking is larger for larger zSSB and therefore
the halos have to be more massive in order to be effectively
screened.

5.2. Matter Power Spectrum

The nonlinear matter power spectrum is an important observ-
able and could be used to distinguish between different models

of structure formation. As we have seen above, the symmetron
can have a strong effect on the growth rate of the linear pertur-
bations for parameters that are allowed by local experiments.
We expect these signatures to show up in the nonlinear matter
power spectrum.

Figure 12 displays the fractional difference in the mat-
ter power spectrum from that of ΛCDM, defined as (P (k) −
PΛCDM(k))/P (k), and in Figure 11 we show the actual power
spectra for the symmetron and ΛCDM together with the corre-
sponding predictions from linear perturbation theory.

Generally, the power spectrum is expected to be reliable up
to the scale

kmax = NeffkN/2, (61)

where kN/2 = πN
1/3
p /(4B) is half the particle Nyquist scale, Np

is the total number of particles, B is the box size, and Neff is a
factor determined by the adaptive nature of the code. For non-
adaptive simulations Neff = 1 and it was shown in Stabenau
& Jain (2006) that the power spectra cannot be trusted for
wavenumbers much larger than kN/2.

The MLAPM code, on the other hand, is adaptive, meaning
that Neff > 1, and allows us to go beyond the half Nyquist
scale. The exact value of Neff depends on the number of
refinements triggered in the whole simulation process, and for
our simulations we estimate Neff = 8–10. To be conservative,
we follow Zhao et al. (2011), which uses the same simulation
details as us but for the case of f (R) gravity, and take Neff = 7.
This translates into an estimate kmax � 22 h Mpc−1 for the
validity of our results.

This estimate can be invalidated by the contribution from shot
noise due to limited resolution at small scales. In Figure 13 we
show the expected shot-noise contribution in one of our simu-
lations together with the statistical error in the power spectrum
estimation computed by POWMES. We define kSN to be the
wavenumber such that the expected shot-noise contribution is
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Figure 8. Density distribution (left) and scalar-field distribution (right) for a run with zSSB = 0.5, β = 1, and L = 1. From top to bottom z = 1, z = 0.66, and z = 0.

(A color version of this figure is available in the online journal.)

below 5% for all k < kSN up to z = zSSB, which is the redshift
for which the symmetron power spectrum starts deviating from
ΛCDM, and overplot the scale k = min(kmax, kSN) in Figures 12
and 14. For all of our simulations we find kSN � kmax except
when zSSB = 2.0, where kSN � 12 h Mpc−1.

The power spectrum agrees with the predictions of linear
perturbation theory on large scales (k � 0.1 Mpc h−1), but
on smaller scales the results found here are weaker than
the prediction of linear perturbation theory seen in Figure 4.
This is because when linearizing the field equation we are
basically using the background matter density everywhere and
therefore preventing the symmetron mechanism from taking
effect in suppressing the fifth force when matter perturbations
become large. In contrast, the N-body simulation avoids this
approximation by taking full account of the suppression of the
fifth force.

The fractional difference relative to ΛCDM is growing with
zSSB and β as the fifth force has more time to operate and is

stronger. Comparing runs with the same β, we see an important
effect if the symmetry breaking is earlier. When zSSB = 2.0,
the fractional power is increasing until we reach a scale where
the screening mechanism becomes stronger and then starts to
decrease again toward ΛCDM, only to start growing again
at even smaller scales. This is because the critical density
for having screening is much higher for larger zSSB so that
most halos (which are on small scales and of low mass) are
unscreened.

In Figure 14 we show the redshift evolution of the power
spectrum. The power spectrum is found to be practically iden-
tical to that of ΛCDM for redshifts z > zSSB, but as soon
as the symmetry breaks at the background level, the sym-
metron fifth force can kick in and enhance the clustering of
matter.

It is clear from Figure 12 that there exist a large range of
parameters in which the symmetron model can be distinguished
from ΛCDM easily.
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Figure 9. Density distribution (left) and scalar-field distribution (right) for a run with zSSB = 1, β = 1, and L = 1. From top to bottom z = 1, z = 0.66, and z = 0.

(A color version of this figure is available in the online journal.)

5.3. Halo Profiles for χ

In Figure 15 we show the profile of χ inside the most massive
halos found in the simulation. Since the fifth force is proportional
to χ , this figure also provides information about the fifth force
in halos.

The field profile of χ is seen to increase from the inner to the
outer regions of the halos and shows that the fifth force is most
suppressed in the central region as expected.

The fifth force is stronger for smaller halos, because those
generally reside in low-density regions where the fifth force is
less suppressed. We see that the closer the symmetry breaking
redshift is to zero, the smaller χ becomes inside the halo and the
more suppressed the fifth force is. Again this is because early
symmetry breaking means a higher critical density and the halo
needs to be more massive to be effectively screened. This effect
is also seen in Figures 8–10 (note the difference in distribution
of χ at z = 0 between the different runs) and also on the matter
power spectrum in Figure 12.

This has some important consequences for the local con-
straints. We mentioned in Section 2 that the local constraints
were derived by assuming that our galactic neighborhood was
not screened today, and lead to the constraint

L(1 + zSSB)3/2 � 2.3. (62)

From our numerical results we see that when zSSB = 2.0,
only the most massive halos are screened. This means that the
assumption that went into the constraint above is very likely to
be true. On the other hand, for SSB that happens very close to
today, halos of much smaller mass are in fact screened and it
might be possible to have a range L that exceeds Equation (62)
and still be in agreement with experiments.

We note that we have not seen any significant effect on the halo
density profiles. For a given mass range, the halo profiles seem to
have approximately the same distribution. There should be some
important differences for low-mass halos, but the resolution in
our simulation is too low to study this.
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Figure 10. Density distribution (left) and scalar-field distribution (right) for a run with zSSB = 2, β = 1, and L = 1. From top to bottom z = 2.33, z = 1, z = 0.66,
and z = 0.

(A color version of this figure is available in the online journal.)

However, the halo number counts were significantly different
as we shall see in the next section.

5.4. Halo Mass Function

The halo mass function n is another key structure formation
observable. It is defined to be the number density of dark matter

halos within a given mass range. Because of the symmetron
fifth force, we expect more halos to be formed relative to the
standard ΛCDM scenario.

We first look at the total number of halos (the integrated mass
function) with more than 100 particles, which clearly shows the
effect of the fifth force (see Table 2).
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Figure 11. Full nonlinear power spectrum for a run with zSSB = L = β = 1.0
(dashed black) and ΛCDM (solid black). For comparison we also show the
corresponding predictions from linear perturbation theory in red. We clearly
see the effectiveness of the screening mechanism. The linear predictions do not
take the symmetron mechanism into account and are hugely overestimating the
power on small scales relative to ΛCDM.

(A color version of this figure is available in the online journal.)

In Figure 16 we have shown the mass function of the
symmetron compared to ΛCDM at z = 0. We see a significantly
higher mass function, especially for low-mass halos, which are
generally found in low-density regions where the fifth force

Table 2
The Total Halo Count for Our Nine Simulations at z = 0.0

Simulation A B C D E F G H ΛCDM

Total halo count 1634 1694 1678 1871 1758 2051 1671 1788 1607

Note. The corresponding symmetron parameters for the runs A–H can be found
in Table 1.

is unscreened. The earlier symmetry breaking occurs and the
stronger the coupling strength β, the more halos are formed in
agreement to what we would naively expect.

The mass function converges to that of ΛCDM at very large
halo masses for most parameters we have looked at. This is
because the most massive halos have taken a very long time
to form, and therefore when the symmetron kicks in at some
low redshift, the halo is already massive enough to be screened.
However, for the largest zSSB = 2.0 we do have small increases
in both the halo number density and the mass of the most
massive halos. There have been reports of some tension between
observations and ΛCDM predictions with regard to very massive
halos. Unfortunately, for the symmetron model to be able to
elevate this tension significantly we would need values of the
parameters that are in conflict with local experiments.

On the other hand, the symmetron seems to produce a large
excess of low-mass halos for some values of the parameters.
These are many times the satellite structures of main galactic or

Figure 12. Fractional difference in the nonlinear power spectrum relative to ΛCDM for {zSSB = 1.0, L = 1.0} (top left), {zSSB = 1.0, L = 2.0} (top right),
{zSSB = 0.5, L = 1.0} (bottom left), and {zSSB = 2.0, L = 1.0} (bottom right). For each case we show the results for the two values β = 0.5 and β = 1.0. The
vertical dotted line shows the scale min(kmax, kSN) (see Equation (61)), for which we expect our results to be reliable.

(A color version of this figure is available in the online journal.)
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Figure 13. Expected 1/Nparticles shot-noise contribution to the power spectrum,
Pshot−noise/P (solid), together with the statistical error ΔP/P in the power
spectrum estimation (dashed) for the two redshifts z = 0.0 (black) and z = 2.0
(orange) for a simulation with {zSSB = 2.0, L = 1.0, β = 1.0}. See Colombi
et al. (2009) for details about how the statistical error is computed. The vertical
dotted line shows the scale kSN � 12 h Mpc−1 for which the expected shot-noise
contribution is 5% at z = zSSB = 2.0.

(A color version of this figure is available in the online journal.)

cluster-sized halos. This increases the long-standing satellite
problem of ΛCDM, i.e., the lower abundance of satellite
structures seen in observations compared to N-body simulations.
We do not draw any conclusions about this at the present as the
resolution for the low-mass halos is relatively low plus baryonic
physics has not yet been included in our simulations. This point
might prove to be a useful constraint on the symmetron model
and more general models with a fifth force in the future.

There is a large range of viable parameters for the symmetron
where the mass function deviates significantly from ΛCDM.

6. SUMMARY AND CONCLUSIONS

The symmetron mechanism is a modification of gravity in
which a scalar field is non-minimally coupled to matter, but the
screening mechanisms result in potential fifth forces evading
local gravity tests. Despite this, the symmetron does affect
structure formation. We have investigated this with N-body
simulations, finding observable signatures in the matter power
spectrum and the halo mass function. Whilst the symmetron

suffers from the same fine-tuning problems as chameleon
models, it has the advantage of looking like a more natural
effective theory.

The energy density of the symmetron is too low to contribute
to the dark energy, and we must therefore add a cosmologi-
cal constant to get accelerated expansion of the universe. The
background evolution of the symmetron model is simply indis-
tinguishable from that of the ΛCDM model.

This degeneracy is broken by the linear perturbations. In
particular, we have shown that the linear growth index γ (z, k)
can have a significant scale and redshift dependence together
with a value today that can be distinguished from the ΛCDM
prediction for a large part of the parameter space.

The structure formation in the nonlinear regime was inves-
tigated by using N-body simulations. N-body simulations have
the advantage over linear theory in its ability of fully captur-
ing the nonlinear environmental dependence of the symmetron
field. Our results confirm the expectation that in high-density
environments the fifth force becomes screened. Consequently,
the key observables such as the nonlinear matter power spec-
trum are closer to the ΛCDM predictions than expected from a
linear analysis.

We found that the symmetron can still produce large observ-
able signatures in both the nonlinear matter power spectrum and
the halo mass function, which could in principle be detected
by current and near-future cosmological observations such as
Euclid.

Note that in the simulations performed in this work, we have
treated baryons as dark matter. However, since the symmetron
field has a uniform coupling to all matter fields, we expect that
all the results will qualitatively remain even after baryons are
included. This has to be explicitly checked from simulations.
Baryons are known to have a significant effect on small-scale
structures, and a natural extension of our work is to study the
effects of baryons when a fifth force is present. This is much
more computationally expensive and is left for future work.

In conclusion, the symmetron model has been found to have a
wide range of observable cosmological effects on both linear and
nonlinear scales. This adds to the list of observational signatures
like making galaxies brighter (Davis et al. 2011), environment
dependence of dark matter halos (Winther et al. 2011), and
the possibility of being detected in near-future local gravity
experiments (Hinterbichler & Khoury 2010), to mention some.

Figure 14. Fractional difference in the nonlinear power spectrum relative to ΛCDM for {zSSB = 0.5, L = 1.0, β = 1.0} (left) and {zSSB = 1.0, L = 1.0, β = 1.0}
(right) as a function of redshifts. The vertical dotted line shows the scale min(kmax, kSN) (see Equation (61)), for which we expect our results to be reliable.

(A color version of this figure is available in the online journal.)
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Figure 15. Left: the halo profile of χ in the most massive halo of the simulation for three different symmetry breaking redshifts. Right: the halo profile of χ for four
halos of mass (from top to bottom) M = {5 × 1012, 1013, 5 × 1013, 1014}Msun/h in the same simulation where zSSB = 2.0. In both cases we have fixed β = L = 1.

Figure 16. Halo mass function for {zSSB = 1.0, L = 1.0} (top left), {zSSB = 1.0, L = 2.0} (top right), {zSSB = 0.5, L = 1.0} (bottom left), and {zSSB = 2.0, L = 1.0}
(bottom right). The solid black line shows the prediction of ΛCDM (β = 0), and the dotted and dashes lines are for the two values β = 0.5 and β = 1.0, respectively.
We also show the fractional difference from ΛCDM. Note that we have smoothed the mass function over neighboring bins to remove noise arising from the binning
to show the trends more clearly.
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The symmetron is therefore a good candidate for the detection
of new physics beyond the standard model.
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APPENDIX A

USEFUL EXPRESSIONS

Up to first order in the perturbed metric variables Ξ, Ψ the
non-zero components of the symmetric Levi-Civita connection
are

Γ0
00 = a′

a
+ Ξ′ (A1)

Γ0
0k = Ξ, k (A2)

Γi
00 = Ξ, i (A3)

Γi
0k =

(
a′

a
− Ψ′

)
δi
k (A4)

Γ0
jk = δjk

(
a′

a
(1 − 2Ξ − 2Ψ) − Ψ′

)
(A5)

Γi
jk = −Ψ, kδ

i
j − Ψ, j δ

i
k + Ψi

,δjk. (A6)

From these expressions we find that the components of the Ricci
tensor and Ricci scalar are found to be

R00 = Ξ,ii −3

(
a′′

a
−

(
a′

a

)2
)

+ 3Ψ′′

+ 3
a′

a
(Ψ′ + Ξ′) (A7)

R0j = 2Ψ′
, j + 2

a′

a
Ξ, j (A8)

Rij = − Ψ′′δij − a′
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(Ξ′ + 5Ψ′)δij − Ψk

, kδij
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a
+

(
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)2
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− (Ξ − Ψ), ij (A9)
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)
− 6
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(
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(Ξ′ + 3Ψ′)

)
. (A10)

APPENDIX B

DISCRETIZATION OF EQUATIONS

To implement the nonrelativistic equations into our numerical
code, we have to rewrite them using code units, which are given
by

xc = x
B

, pc = p
H0B

, tc = tH0, χ = φ

φ0

�c = �

(H0B)2
, ρc = ρm

ρm
,∇ = B∇x, (B1)

where subscript c stands for code units, B is the box size,
H0 = 100 km s−1 Mpc−1, and an overline denotes background
quantities. In what follows we shall write ∇ = ∇c for simplicity.

B.1. Scalar Field Equation of Motion

The equation of motion for χ in code units becomes

ac2

(BH0)2
∇2χ � a3

(
χ − χ + χ3 − χ3

) (
μ

H0

)2

+ 3Ωm

(
Mpl

M

)2

(ρcχ − χ), (B2)

where χ is the background solutions and we have used φ2
0 =

μ2/λ to simplify. Note that χ varies in the region 0 � χ2 � 1.
Discretized this equation becomes Lh(χi,j,k) = 0, where

Lh(χi,j,k) = 1

h2

ac2

(BH0)2
(χi+1,j,k − 2χi,j,k + χi−1,j,k)

+
1

h2

ac2

(BH0)2
(χi,j+1,k − 2χi,j,k + χi,j−1,k)

+
1

h2

ac2

(BH0)2
(χi,j,k+1 − 2χi,j,k + χi,j,k−1)

− a3

(
μ

H0

)2

(χ − χi,j,k) ×

× (
1 − χ2

i,j,k − χχi,j,k − χ2
)

− 3Ωm

(
Mpl

M

)2

(ρcχi,j,k − χ ). (B3)

The Newton–Gauss–Seidel iteration says that we can obtain a
new and more accurate solution of χnew

i,j,k using our knowledge
about the old solution χold

i,j,k as

χnew
i,j,k = χold

i,j,k − Lh
(
χold

i,j,k

)
∂Lh

(
χold

i,j,k

)
/∂χold

i,j,k

(B4)

where

∂Lh(χi,j,k)

∂χi,j,k

= − 6

h2

ac2

(BH0)2
+ a3

(
μ

H0

)2 (
1 − 3χ2

i,j,k
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− 3Ωm

(
Mpl

M

)2

ρc. (B5)

B.2. Poisson Equation

Since we can neglect the scalar field contribution to the
Poisson equation, it remains unmodified from that of ΛCDM
and reads (in code units)

∇2Φc = 3

2
Ωm(ρc, i, j, k − 1). (B6)
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B.3. Particle Equation of Motion

Using the code units, Equation (56) can be rewritten as

dxc

dtc
= pc

a2
(B7)

dpc

dtc
= −1

a
∇Φc − χ

(
βM

Mpl

)2 (
c2∇χ

(BH0)2
+

dχ

dtc
pc

)
. (B8)

The factor (M/Mpl)2 can be also rewritten in terms of L, β, and
zSSB by using Equation (22).
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(Singapore: World Scientific), 9
Appleby, S. A., & Weller, J. 2010, J. Cosmol. Astropart. Phys.,

JCAP12(2010)006
Arkani-Hamed, N., Georgi, H., & Schwartz, M. D. 2003, Ann. Phys., 305, 96
Baldi, M. 2009, Nucl. Phys. B, 194, 178
Baldi, M. 2011, MNRAS, 411, 1077
Baldi, M., Pettorino, V., Robbers, G., & Springel, V. 2010, MNRAS, 403, 1684
Bertotti, B., Iess, L., & Tortora, P. 2003, Nature, 425, 374
Bertschinger, E. 2001, ApJS, 137, 1
Binétruy, P. 2006, Supersymmetry: Theory, Experiment, and Cosmology (Ox-

ford, UK: Oxford Univ. Press), 520
Brax, P., Burrage, C., & Davis, A.-C. 2011a, J. Cosmol. Astropart. Phys.,

JCAP09(2011)020
Brax, P., van de Bruck, C., Davis, A.-C., et al. 2011b, Phys. Rev. D, 84, 123524
Brax, P., van de Bruck, C., Davis, A.-C., Khoury, J., & Weltman, A. 2004, Phys.

Rev. D, 70, 123518
Brax, P., van de Bruck, C., Davis, A.-C., Li, B., & Shaw, D. J. 2011c, Phys. Rev.

D, 83, 104026
Brax, P., van de Bruck, C., Davis, A.-C., Mota, D. F., & Shaw, D. J. 2007a, Phys.

Rev. D, 76, 124034
Brax, P., van de Bruck, C., Davis, A.-C., Mota, D. F., & Shaw, D. J. 2007b, Phys.

Rev. D, 76, 085010
Brax, P., van de Bruck, C., Davis, A.-C., & Shaw, D. J. 2008, Phys. Rev. D, 78,

104021
Brax, P., van de Bruck, C., Davis, A.-C., & Shaw, D. 2010a, Phys. Rev. D, 82,

063519
Brax, P., van de Bruck, C., Davis, A.-C., & Shaw, D. 2010b, J. Cosmol. Astropart.

Phys., JCAP04(2010)032
Brax, P., van de Bruck, C., Mota, D. F., Nunes, N. J., & Winther, H. A.

2010c, Phys. Rev. D, 82, 083503
Clampitt, J., Jain, B., & Khoury, J. 2012, J. Cosmol. Astropart. Phys.,

JCAP01(2012)030
Clifton, T., Mota, D. F., & Barrow, J. D. 2005, MNRAS, 358, 601
Colombi, S., Jaffe, A., Novikov, D., & Pichon, C. 2009, MNRAS, 393, 511
Davis, A.-C., Lim, E. A., Sakstein, J., & Shaw, D. 2011, arXiv:1102.5278
de Rham, C. 2010, Phys. Lett. B, 688, 137

de Rham, C., Dvali, G., Hofmann, S., et al. 2008, Phys. Rev. Lett., 100, 251603
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