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ABSTRACT

We propose an efficient Bayesian Markov chain Monte Carlo (MCMC) algorithm for estimating cosmological
parameters from cosmic microwave background (CMB) data without the use of likelihood approximations. It
builds on a previously developed Gibbs sampling framework that allows for exploration of the joint CMB sky
signal and power spectrum posterior, s dP C, ℓ( ∣ ), and addresses a long-standing problem of efficient parameter
estimation simultaneously in regimes of high and low signal-to-noise ratio. To achieve this, our new algorithm
introduces a joint Markov chain move in which both the signal map and power spectrum are synchronously
modified, by rescaling the map according to the proposed power spectrum before evaluating the Metropolis–
Hastings accept probability. Such a move was already introduced by Jewell et al., who used it to explore low
signal-to-noise posteriors. However, they also found that the same algorithm is inefficient in the high signal-to-
noise regime, since a brute-force rescaling operation does not account for phase information. This problem is
mitigated in the new algorithm by subtracting the Wiener filter mean field from the proposed map prior to
rescaling, leaving high signal-to-noise information invariant in the joint step, and effectively only rescaling the low
signal-to-noise component. To explore the full posterior, the new joint move is then interleaved with a standard
conditional Gibbs move for the sky map. We apply our new algorithm to simplified simulations for which we can
evaluate the exact posterior to study both its accuracy and its performance, and find good agreement with the exact
posterior; marginal means agree to 0.006σ and standard deviations to better than ∼3%. The Markov chain
correlation length is of the same order of magnitude as those obtained by other standard samplers in the field.

Key words: cosmic background radiation – cosmological parameters – cosmology: observations –
methods: numerical

1. INTRODUCTION

Observations of the cosmic microwave background (CMB)
provide a direct image of the early universe (Bennett
et al. 2013; Planck Collaboration 2015a), and have revolutio-
nized our understanding of the composition and evolution of
the universe as a whole (Hinshaw et al. 2013; Planck
Collaboration 2015e). The new insights derive primarily from
heroic community-wide efforts in microwave instrumentation,
leading to steadily improved detector performance and noise
levels. However, with improved data sets follow more stringent
requirements on analysis techniques, and optimal statistical
CMB analysis has become a rich scientific field in its own right
during the last 20 years.

One branch of this community-wide effort has revolved
around optimal exploration of the full joint CMB posterior, and
among the most successful of such methods is the CMB Gibbs
sampler. This framework, which was originally introduced by
Jewell et al. (2004), has proved particularly powerful because
of its ability to seamlessly and jointly account for astrophysical
and instrumental nuisance parameters together with the primary
CMB parameters, thereby both mitigating and propagating
systematic uncertainties in final science results. This method
has already been applied successfully to evaluation of power
spectra for COBE (Wandelt et al. 2004), WMAP (Eriksen et al.
2007; Hinshaw et al. 2013), and Planck (Planck Collaboration
2015d), and it has played a central role in separation of
astrophysical components for Planck (Planck Collaboration
2015b, 2015c).

By virtue of being a Gibbs sampler, this overall method
consists of a series of iterated conditional Markov chain moves,
in which one or more parameters are changed at a time, leaving

all other parameters fixed. Each conditional parameter move is
usually fairly simple, and always associated with a well-
established sampling algorithm. For instance, the conditional
distribution of the CMB power spectrum is an inverse Wishart
distribution, that of the CMB sky map is a multivariate
Gaussian (Jewell et al. 2004), while astrophysical foreground
conditionals can usually be described in terms of some fairly
simple χ2 evaluations (Eriksen et al. 2008). Still, the
computational cost per sample is certainly non-trivial, with
the primary cost being driven by the multivariate Gaussian sky
distribution, and can easily amount to several CPU hours per
sample, requiring more advanced algorithmic treatment
(Eriksen et al. 2004; Seljebotn et al. 2014; Jasche &
Lavaux 2015).
In this paper, we revisit the problem of estimation of

cosmological parameters and the CMB power spectrum within
the Gibbs sampling framework, with the goal of establishing an
efficient algorithm in both high and low signal-to-noise regimes,
and thereby reducing the overall computational cost of the
method. The same problem has been discussed and addressed
repeatedly in the literature already (e.g., Eriksen et al. 2004;
Jewell et al. 2009), but no definitive and general solution has
been presented until now. In Section 2 we present the intuition
behind our new algorithm, and we compare the new approach to
existing sampling schemes. Then, in Section 3 we formalize the
algorithm in standard mathematical notation, before testing it on
simplified simulations in Section 4. We conclude in Section 5.

2. INTUITION AND MOTIVATION

As noted already by Eriksen et al. (2004), the most severe
complication for estimation of the CMB power spectrum and
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cosmological parameters with the Gibbs sampling framework
concerns the relationship between effective signal-to-noise
ratio and Markov chain correlation length: while the width of
the full power spectrum posterior is given by both cosmic
variance and instrumental noise, the step size of the Markov
chain power spectrum in the default algorithm (Jewell et al.
2004; Wandelt et al. 2004) is given by cosmic variance alone.

This problem is illustrated in the top two panels of Figure 1.
Each move (illustrated by black arrows for sky map parameters
and colored for power spectrum parameters) affects only one

parameter at a time. Each arrow therefore points parallel to
either coordinate axis. In the high signal-to-noise regime (top
left panel), the sky signal is highly constrained, and the
corresponding marginal posterior is very narrow. The power
spectrum marginal, however, still has significant uncertainty
due to cosmic variance, even if the noise contribution is small.
However, since the sky map distribution essentially converges
to a delta function with increasing signal-to-noise ratio, the
joint distribution is nearly uncorrelated between the two
directions, and pure Gibbs steps (defined by a Gaussian

Figure 1. Illustration of the performance of different sampling algorithms in different signal-to-noise regimes.We sketch the exploration of the joint distribution of
proposedCℓ and the signal map’s power spectrum ℓ s1 2 1ℓ ℓm

2( ) ∣ ∣s = + å . In the high signal-to-noise limit (left column), standard Gibbs sampling steps (proposingCℓ

according to the cosmic variance (CV) and solving Equation (10)) achieve both good acceptance rates and correlation lengths. In the low signal-to-noise limit (right
column), the cosmic variance, and therefore the step length, is much smaller than the noise contribution to the posterior, and standard Gibbs sampling results in a long
correlation length. Joint sampling steps in which the sky map is rescaled by the power spectrum, as proposed by Jewell et al. (2009) and illustrated in the bottom right
panel, avoid this problem if one proposes Cℓʼs with a variance that includes noise in addition to cosmic variance. Unfortunately, as illustrated in the bottom left panel,
the corresponding signal rescaling does not perform well in the high signal-to-noise regime. When proposing Cℓ according to the cosmic variance and the noise, naive
rescaling leads to a large change in the amplitude of the signal map, without correspondingly modifying the phase information of the map, and most steps are rejected
in the Metropolis–Hastings acceptance evaluation through a poor effective 2c . This problem is solved by the sampling algorithm introduced in the present paper, in
which we exclude the high signal-to-noise Wiener filter component of the signal from the rescaling operation, and only modify the fluctuations around this mean-field
map. The net result is an algorithm that works in both low and high signal-to-noise regimes.
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distribution in the vertical direction and an inverse Wishart
distribution in the horizontal direction) are able to navigate the
full posterior efficiently.

In the low signal-to-noise regime (top right panel), this is no
longer true. In this case, there is significant uncertainty in the
true sky signal, and for each sky map value the power spectrum
conditional follows an inverse Wishart distribution centered on
a value given by the sky map. The joint distribution therefore
becomes highly degenerate. To move from one end of the joint
distribution to the other, a very large number of orthogonal
moves are thus required. Such degeneracies are a well-known
problem for the Gibbs sampling algorithm in general.

This problem was first identified and studied by Eriksen et al.
(2004), and a first proper attempt at solving it was subsequently
presented by Jewell et al. (2009). They introduced a new type
of joint Markov chain move that consists of three steps. First,
one proposes an arbitrary change to the power spectrum,
C T Cℓ

i
ℓ
i1 ( )¬+ , where T is some proposal rule. Second, one

rescales the corresponding sky map, s S S si
i i

i1
1

1 2 1 2¬+
+

- ,
where S S ssCi ℓ

i t( )= = á ñ is the signal-only covariance matrix.
This rescaling operation leaves the quantity s S st 1- invariant,
and one can show that any determinant factors in the
corresponding Metropolis–Hastings accept probability cancel,
and the final accept ratio is given by χ2ʼs only (Jewell et al.
2009). The third and final step is therefore to evaluate this
accept probability, and apply the Metropolis–Hastings rule.

Intuitively, this algorithm corresponds to diagonal moves in
Figure 1, as illustrated in the bottom two panels. With an accept
rate given by χ2ʼs alone, this kind of move works very well in
the low signal-to-noise regime (bottom right panel), since the
effective χ2 does not change appreciably when changing the
amplitude of the map. However, in the high signal-to-noise
regime the χ2 becomes sensitive to the phase information in the
sky map, and large map rescaling factors are generally
associated with very low accept probabilities; only very short
moves are allowed in order to stay within the acceptable region.

In the present paper we solve this problem by introducing a
small but critical variation of the previous scheme. First, as
detailed by Jewell et al. (2004) and Wandelt et al. (2004), we
note that the sky signal map may be decomposed into the sum
of a Wiener filter component, ŝ, and a fluctuation term, f̂ , in
the form s s fˆ ˆ= + . The high signal-to-noise information is
contained in ŝ, while the noise-dominated component is
described by f̂ . Exploiting the intuition described above, we
now note that the optimal Markov chain move should leave ŝ
invariant, and rescale only f̂ by the power spectrum.
Specifically, we introduce a partially rescaled proposal rule in
the following form

s s S S s s 1i i
i i

i i1 1
1

1 2 1 2ˆ ( ˆ ) ( )= + -+ +
+

-

s S S f 2i
i i

i1
1

1 2 1 2ˆ ˆ ( )= ++
+

-

where siˆ is the Wiener filtered sky map evaluated with Cℓ
i.

This new move is contrasted to the previous joint sampler in the
bottom two panels of Figure 1 in terms of yellow versus blue
arrows. In the low signal-to-noise regime (right panel), the two
perform nearly identically, since s f̂» . However, they perform
very differently in the high signal-to-noise regime: since f̂ is very
small in the signal-dominated regime, only small changes are
proposed to s in the new scheme, maintaining a high net
accept rate.

3. ALGORITHMS

In this section, we first define necessary notation and review
previous CMB Gibbs sampling algorithms, before formalizing
the intuition described above into a well-defined and opera-
tional algorithm. The technical derivation of the Metropolis–
Hastings accept probability is deferred to the Appendix.
Let us start by considering a data model of the form

d As n, 3( )= +

where d denotes a data vector in pixel space; A represents
convolution with an instrumental beam, usually represented by
a Legendre transform bℓ; s is a Gaussian signal with covariance
S; and n denotes Gaussian instrumental noise with covariance
N . We further assume that the signal s is statistically isotropic,
and define its power spectrum as C s s Cℓ ℓm ℓ m ℓ ℓℓ mm* d dº á ñ =¢ ¢ ¢ ¢,
where s Ysℓm ℓm ℓm= å . The signal covariance matrix is then
given as S Cℓm ℓ m ℓ ℓℓ mm, d d=¢ ¢ ¢ ¢.
The overall goal of this paper is to characterize the marginal

power spectrum posterior dP Cℓ( ∣ ) somehow. In the literature,
this is conventionally done in several different ways, for
instance by adopting either single-ℓ or binned estimates of the
power spectrum. While the algorithm presented here certainly
is suitable for such parameterizations as well, we will in the
following instead focus directly on cosmological parameters,
which are the ultimate goal of any CMB experiment.
Furthermore, adopting a high-level parameterization that
depends on both low and high multipoles (and therefore both
high and low signal-to-noise regimes) puts maximum pressure
on the algorithm itself. Note that this method is also naturally
suitable for sampling power spectrum coefficients, Cℓ, which
can be useful to reveal features or anomalies in the data.
For convenience, we adopt a standard six-parameter ΛCDM

model in the following, with baryon density hb
2W , cold dark

matter density hc
2W , optical depth at reionization τ, amplitude

and tilt of the primordial fluctuations As and ns, and the Hubble
parameter H0 as free parameters. To evaluate corresponding
power spectra, we employ CAMB3 (Lewis et al. 2000). In the
rest of the paper, we will denote this vector of parameters as θ.
Thus, our goal is to map out dP ( ∣ )q . To do so, we use Bayesʼ

theorem to write the joint density s dP ,( ∣ )q as

s d
s d
d

d s s
d

N S d

P
P

P
P P

P

P

e e P

P

,
, ,

. 4
d As N d As s S st t1

2
1 1

2
1

( ∣ ) ( )
( )

( ∣ ) ( ∣ ) ( )
( )

∣ ∣ ∣ ∣
( )
( )

( )
( ) ( )

q
q

q
q

q

= =

=
- - - -- -

For clarity, we have dropped the dependence of S on θ, as well
as any factor of 2p. Optional priors on θ are described by P(θ),
and from now on we will neglect the overall normalization
factor, dP ( ), often called the evidence. We note that our target
distribution is obtained by marginalizing the joint distribution
over s,

d s d sP P d, . 5( ∣ ) ( ∣ ) ( )òq q=

3 CAMB (http://camb.info) parameters not explicitly described in this paper
are left at their default values as defined by the Jan15 CAMB version.
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3.1. Gibbs Sampling

To recap, the basic idea behind Gibbs sampling is to draw a
sample from the joint posterior s dP ,( ∣ )q by iteratively
sampling from the corresponding conditional probabilities,

s s dP , 6i i1 ( ∣ ) ( )q¬+

s dP , . 7i i1 1( ∣ ) ( )q q¬+ +

As discussed by Jewell et al. (2004) and Wandelt et al. (2004),
the former of these distributions may be recognized as a
standard multivariate Gaussian by rewriting the exponent in
Equation (4) as follows:

d As N d As s S s

s s S A N A s s , 8

t t

t t

1 1

1 1

( ) ( )
( ˆ) ( )( ˆ) ( )

- - +
= - + -

- -

- -

where we defined the mean-field map ŝº
S A N A AN dt1 1 1 1( )+- - - - . Given this expression, we sample
the sky signal according to

s d s S A N AP , , , 9i t1 1 1( ∣ ) (ˆ ( ) ) ( )q = +- - -

where ,( ) m is a Gaussian multivariate, with a mean vector
m and a covariance . Specifically, we generate two random
vectors, 0w and 1w , drawn from 0, 1( ) , and solve the
equation

S A N A s AN d S AN . 10t1 1 1
0 1

1
2

1
2[ ] ( )w w+ = + +- - - - -

Solving Equation (10) in the context of a realistic experiment
with anisotropic noise and non-trivial masks can be computa-
tionally expensive (Seljebotn et al. 2014; Jasche & Lavaux
2015). However, this is a purely computational problem of
algebraic nature, and fully independent of questions regarding
Monte Carlo correlation lengths and signal-to-noise levels. In
this paper, we therefore circumvent this problem entirely, and
consider only an ideal data set in the harmonic domain with
uniform noise and full sky coverage. In this particular case, the
noise matrix may be described by a noise power spectrum,
N Nℓm ℓ m ℓ ℓℓ mm, d d=¢ ¢ ¢ ¢, and Equation (10) may be solved directly
in harmonic space at negligible computational cost:

s d
b

N
C

N C

N b C
11ℓm ℓm

ℓ

ℓ
ℓ

ℓ ℓ

ℓ ℓ ℓ
2

ˆ ( )=
+

f w w b
C

N

N C

N b C
. 12ℓm ℓm ℓm ℓ

ℓ

ℓ

ℓ ℓ

ℓ ℓ ℓ
0 1 2

ˆ ( )
⎛
⎝⎜

⎞
⎠⎟= +

+

Finally, the second conditional distribution in Equation (7)
reduces to an inverse Wishart distribution with a well-known
sampling algorithm. This particular sampling step, however,
will not be needed for the purposes of the current paper, and we
therefore refer the interested reader to the referenced papers for
further details.

3.2. Joint Sampling by Metropolis–Hastings MCMC

Adopting the above notation, Jewell et al. (2009) introduced
the following joint sampling step to mitigate the slow
convergence rate discussed in Section 2 in the low signal-to-
noise regime:

C C C 13ℓ
i

ℓ
i

ℓ
1 ( )d= ++

s s
C

C
, 14ℓm

i ℓ
i

ℓ
i ℓm

i1
1

( )=+
+

where Cℓd denotes a random fluctuation drawn from a normal
distribution with zero mean and variance given by the sum of
cosmic variance and instrumental noise. They then showed that
the corresponding Metropolis–Hastings accept probability for
such a joint move reduced to the ratio of exponentiated χ2ʼs,

A
e

e
min 1, . 15

d As N d As

d As N d As

i t i

i t i

1
2

1 1 1

1
2

1 ( )
( ) ( )

( ) ( )

⎛
⎝⎜

⎞
⎠⎟=

- - -

- - -

+ - +

-

Although efficient in the low signal-to-noise regime, this
particular move performs very poorly in the high signal-to-
noise regime.
To solve this, we propose in this paper a slight—but critical

—variation of the above scheme, as discussed in Section 2.
Specifically, rather than rescaling the full signal map, we
propose to rescale only the fluctuation component, such that

f f
C

C
, 16ℓm

i ℓ
i

ℓ
i ℓm

i1
1

ˆ ˆ ( )=
+ +

or written in terms of si 1+ as in Equation (2),

s s S S s s . 17i i
i i

i i1 1
1

1 2 1 2ˆ ( ˆ ) ( )= + -+ +
+

-

Again, the underlying intuition behind this proposal is to leave
the high signal-to-noise component of the sky signal invariant,
and modify only the low signal-to-noise component, to which
the total χ2 is largely insensitive.
We derive the Metropolis–Hastings accept rate for this new

proposal in the Appendix, and find it to be given by

A
w

w

P

P
min 1, , 18

i

i

i i

i i

i

i

1 1

1

1( )
( )

( ∣ )
( ∣ )

( )
( )

( )
⎡
⎣⎢

⎤
⎦⎥

p q
p q

q q
q q

q
q

=
+ +

+

+

where

e e e , 19d As N d As s S s f A N Afi 1 t t t t1
2

1 1
2

1 1
2

1( ) ( )( ˆ) ( ˆ) ˆ ˆ ˆ ˆp q =+ - - - - -- - -

and w i i1( ∣ )q q+ denotes the proposal distribution for θ in
Equation (13). Note that, for clarity, we dropped the i 1q +

dependence of S i 1( )q + , s i 1ˆ ( )q + , and f i 1ˆ ( )q + in the above
expression.
The proposal rule w is in principle arbitrary. However, for

standard cosmological parameter estimation, as implemented
for instance in CosmoMC (Lewis & Bridle 2002), overall faster
convergence is achieved when adopting a proposal rule that is
close to the underlying marginal posterior distribution.
Following CosmoMC and other samplers, we therefore adopt
a multivariate Gaussian for w of the form:

w e , 20Ci i1 i i t i i1
2

1 1 1( ∣ ) ( )( ) ( )q q = q q q q+ - - -q
+ - +

with a covariance matrix derived by some earlier analysis. (If
no such earlier analysis is available, we generate a short chain
with a diagonal covariance matrix, and compute a first
covariance matrix from that run.)
As in the case of the original method introduced by Jewell

et al. (2009), the sampling step introduced above explores by
itself only a very limited subspace of the full volume of the sky
signal posterior, namely that spanned by a single amplitude
rescaling. To explore the full posterior volume, this step must
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therefore be interleaved with a standard Gibbs step, as
described in Equation (8). Overall, the full sampler therefore
works as follows:

1. Propose some initial parameter vector θ0, and generate a
power spectrum Cℓ

0 with CAMB. Solve Equations (11)
and (12) to obtain the mean-field map s 0ˆ ( )q and the
fluctuation map f 0ˆ ( )q .

2. Propose a new parameter vector θ1 according to the
proposal rule w, and compute the corresponding power
spectrum Cℓ

1.
3. Compute the deterministically rescaled fluctuation map

f fC Cℓm ℓ ℓ ℓm
1 1 0 0ˆ ( ) ˆ ( )q q= , and evaluate the accept

probability according to Equation (18); accept or reject
the proposal according to the usual Metropolis–Hast-
ings rule.

4. Given the most recent parameter sample, make a standard
conditional Gibbs step for the sky map, according to
Equation (8), computing both the mean-field and
fluctuation maps.

5. Iterate 2–4.

3.3. Brute-force Direct Sampling

To validate and benchmark our new sampling scheme, we
compare it to a case for which we can evaluate the exact
posterior at negligible cost, namely a data set with uniform
noise and full sky coverage. In this case, the exact marginal
parameter posterior, dP ( ∣ )q , reads

d
A S A N

e
. 21

d A S A N d

t

t t1
2

1

( ∣ )
∣( ( ) ) ∣

( )
( ( ) )

q
q

P =
+

q- + -

To map out this distribution, we use a standard Metropolis
sampler with the same proposal distribution, w, as for the joint
Gibbs sampler.

4. VALIDATION AND BENCHMARKS

To validate and benchmark our method, we now apply it to a
simplified simulation generated as follows. We draw a random
Gaussian CMB sky realization from the Planck 2015 best-fit
ΛCDM power spectrum (TT + lowP; Planck Collaboration
2015e), and convolve this with a 13′ FWHM Gaussian beam.
Finally, we add white noise with a power spectrum amplitude
of N 1.84 10 Kℓ

3 2= ´ m- . Both the beam and noise level are
chosen to mimic WMAP, in order to probe both the high and
low signal-to-noise regimes within our effective multipole
range. To be specific, with these parameter choices we find a
signal-to-noise ratio per multipole of unity at ℓ 900= .

Next, since we consider only temperature observations in the
following, our constraints on τ are very loose. To produce more
realistic results, we therefore additionally impose an informa-
tive prior of τ=0.07±0.02.

As our first proposal matrix, we adopt the covariance matrix
obtained from the Planck2015 TT + lowP Markov chains,
which are publicly available from the Planck Legacy Archive.4

However, due to its higher signal-to-noise ratio and different
effective sky realization, this proposal distribution is quite
poor. We therefore first generate a set of chains with 50k
samples each, and compute the parameter covariance from the

latter 40k samples. We additionally rescale the resulting
distribution by C C2.4 6q q, as proposed in Dunkley
et al. (2005), for further optimization. Based on this proposal,
we run 40 chains with 30k samples each, for both the new joint
sampler and the exact sampler. After conservatively removing
burn-in, we retain a total of 1M samples for analysis. Note that
this is far more than is strictly required, but since each sample
is cheap, and our primary concerns here are of algorithmic
nature, optimization of chain lengths is not an issue.
We first consider the overall efficiency of the algorithm, as

measured in terms of Markov chain correlation lengths. These
are shown in Figure 2 for each of the six cosmological
parameters, and for both the new (dashed) and the exact
(dotted) samplers. Overall, we see that the correlation lengths
for the new sampler are roughly twice as long as for the
standard sampler, which translates into a computational cost
roughly double that of standard samplers. For comparison, we
typically find a correlation length of roughly 30–50 with
CosmoMC. Thus, the new sampler performs similarly to
existing samplers in terms of overall correlation length, within
a very small factor. This has never before been achieved within
the CMB Gibbs sampling framework.
Next, in Figure 3 we compare the 1D and 2D marginal

distributions derived using the two samplers. At least at a visual
level, all distributions agree very well. This agreement is
quantified in Table 1 in terms of posterior mean and standard
deviations for each of the two methods, and the relative
difference between the two. We find that the posterior means
are identical up to a few thousandths of a σ, while somewhat
larger differences are observed for the posterior standard
deviation—up to 3% for τ and As. The cause of this small
discrepancy is still under investigation, although we observe
that it vanishes if we loosen or remove the prior on τ. It is thus
not an intrinsic feature of the method as such, but rather related
to the use of external priors. Since most applications of this
type are anyway made without such external priors, and the
difference is in either case very small, we defer further
discussion and resolution of the issue to a future publication.

Figure 2. Autocorrelation function for each cosmological parameter. The
correlation length, defined as the distance in the chain above which the
autocorrelation function drops below 10%, is around 50 for all chains using the
joint method (dashed), whereas with the direct method (dotted) chains have a
factor-of-two shorter correlation length.

4 http://www.cosmos.esa.int/web/planck/pla
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5. CONCLUSIONS

We have introduced a new sampling step for exploring the joint
CMB sky signal and power spectrum posterior that is suitable for
both high and low signal-to-noise regimes. This new step is very
closely related to an already introduced rescaling algorithm
(Jewell et al. 2009), but with a very important difference: rather
than rescaling the entire sky signal in each iteration, we now
propose to rescale only the component with low signal-to-noise
fluctuation. As a result, high Metropolis–Hastings accept rates are
maintained even in the high signal-to-noise regime.

Our focus in this paper has been on purely statistical–
algorithmic aspects of the method, not real-world applications.
To make the algorithm useful for such, it needs to be combined
with state-of-the-art constrained realization samplers (Eriksen et al.

2004; Seljebotn et al. 2014), in order to solve the computationally
expensive map-making step efficiently. Once that task has been
completed, it will finally be possible to go from raw sky maps to
cosmological parameters without the use of any likelihood
approximations whatsoever. In addition, full physical margin-
alization over astrophysical foreground contamination will be
straightforward (Eriksen et al. 2008; Planck Collaboration 2015c).
Finally, we note that while we have considered only CMB

temperature analysis in the current paper, the method
generalizes naturally to all other fields that employ joint Gibbs
sampling as their basic algorithm. Three specific examples
include CMB polarization analysis (Larson et al. 2007), large-
scale structure analysis (Jasche & Wandelt 2013), and weak
lensing analysis (Alsing et al. 2016).

Figure 3. Comparison of the recovered posterior distribution for the two sampling methods described in the main text. On the diagonal we show the marginal posterior
histograms for the direct method (red dashed) and the joint method (blue dotted). In the upper triangle, we show the 1σ 2D-Gaussian ellipses, whose mean value and
covariance are estimated from the chains. In the lower triangle, we show scatter plots for the joint method (green), as well as the 1σ (black dashed) and 2σ (gray
dotted) contours, computed from a Gaussian kernel density estimation on the chains.

Table 1
Summary of Cosmological Parameters

hb
2W hc

2W τ As ns H0

New joint sampler 0.02241±0.00035 0.1180±0.0029 0.067±0.019 3.063±0.037 0.972±0.01 68.2±1.5
Exact posterior 0.02241±0.00035 0.1180±0.0029 0.068±0.019 3.063±0.038 0.972±0.01 68.2±1.5

Posterior mean bias
1( )( )m

s
D −0.002 −0.002 −0.005 −0.006 −0.001 0.003

Posterior rms bias (%) 0.0 0.0 3.2 3.1 0.0 0.1

Note. Posterior mean and standard deviations for each of the six cosmological parameters are shown for the new sampling algorithm in the top row and for the exact
calculation in the second row. The third row shows the difference in the posterior means measured in units of σ1, the rms derived from the new method. The bottom
row shows relative difference in the derived posterior RMSs as a percentage. Note that an external prior was applied to τ.
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APPENDIX
TECHNICAL DETAILS OF THE PARAMETER

SAMPLING MCMC STEP

We review the technical details of constructing an MCMC
algorithm to sample from the Bayes joint posterior of
cosmological parameters θ and CMB signal maps s given data

s dp ,( ∣ )q , ideally striking a balance between overall computa-
tional expense and number of posterior samples. Transition
matrices for MCMC algorithms are constructed to be both
stationary and irreducible. The latter simply means that any
“state” is reachable with a finite (non-vanishing) probability
after enough iterations, while the former means that the target
distribution is invariant under repeated iterations of the
algorithm. These two properties are sufficient to establish
convergence in measure to the target distribution when started
from some initial probability density.

In this Appendix we concentrate on just the step involving
variations in cosmological parameters and deterministic
changes in the CMB map—this step allows large jumps in
the parameters, and represents a stationary step leaving the
Bayes posterior invariant. It is not, however, irreducible—but
we interleave standard Gibbs steps in between to produce an
overall transition matrix given by the product of the two that is
both stationary and irreducible. We now discuss the details of
the joint parameter and CMB map step, and derive its accept
probability.

A.1. Joint Proposal for Cosmological Parameters
and CMB Signal Map

We first assume joint proposals for both CMB maps and
parameters of the form

s s d

s s d s d

w

w w

, , ,

, , , , , . 22

i i i i

i i i i i i i

1 1

1 1 1

( ∣ )
( ∣ ) ( ∣ ) ( )

q q
q q q q=

+ +

+ + +

In words, we first generate a proposal for cosmological
parameters possibly dependent on the current state of the
MCMC chain, followed by a proposal for a new CMB map
given the current and proposed parameters θ i and i 1q +

respectively, the current CMB map, and the data (in the
numerical examples presented in this paper, a symmetric
proposal for the parameters was used for them, but we proceed
with the general case for now).

For the proposal for the new map si 1+ , we consider
variations about the new mean-field map

s A N A S AN d 23i t i1 1 1 1 1 1ˆ ( ( )) ( )q= ++ - - + - -

(note that the mean-field map is a function of information
conditioned on when proposing si 1+ , specifically i 1q + and the data
d). We consider, for some linear filter F ,i i1( )q q+ , general

proposals of the form

s s F s s, , 24i i i i i i1 1 1 1 2ˆ ( )( ˆ ) ( )q q b x= + - ++ + +

with ξ Gaussian-distributed with unit variance and β a scaling
factor controlling its variance. Our family of proposals for

s s dw , , ,i i i i1 1( ∣ )q q+ + is therefore

s s dw

e

, , ,

1

2
. 25

s s F s s

i i i i

ℓ

1 1

1 2

,
2

i i i i i i

max

1 1 1 2

( ∣ )

( )
( )( )

ˆ ( )( ˆ )

q q

pb
=

b

q q
b

+ +

+
-

- - -+ + + 

We take the limit 0b  , which reduces to a δ-function for the
map about the deterministic proposal

s s d

s s F s s

w , , ,

, . 26

i i i i

i i i i i i

1 1
0

1 1 1

( ∣ )
[ ˆ [ ]( ˆ )] ( )
q q

d q q



´ - - -
b b

+ +


+ + +

Finally, we focus on one choice of filter (used for the numerical
results in this paper):

F S S, 27i i i i1 1 2 1 1 2( ) ( ) ( ) ( )q q q q=+ + -

(see the discussion below for a generalization of this choice of
filter and its impact on the MCMC algorithm). To satisfy
detailed balance, note that we must have

s s F s s, , 28i i i i i i1 1 1ˆ [ ]( ˆ ) ( )q q- = -+ + +

which means that the filter must satisfy

F F, , 29i i i i1 1 1( ) ( ) ( )q q q q=+ - +

(which it does, as can be readily verified).

A.2. Functional Form of the Accept Probability

As reviewed in Jewell et al. (2009), stationary MCMC
transition matrices can be constructed by demanding detailed
balance, from which the probabilistic rule of accepting or
rejecting proposed changes in s,( )q can be derived. We will
require that the probability of rejecting a proposed move when
starting from state s,2 2( )q is equal to the probability of accepting
a transition TO the state s,2 2( )q from some other state:

s s s s s

F s s s d s d

s s s s s

F s s s d s d

d A

w P

d A

w P

Prob. of rej.

, , ,

, , , ,
Prob. of acc.

, , ,

, , , , . 30

1 1 1 1 2 2 1 1

1 2 2 2 1 2 2 2 2

1 1 2 2 1 1 2 2

2 1 1 1 2 1 1 1 1

( ) [ ∣ ] [( ˆ )

( )( ˆ )] ( ∣ )] ( ∣ )

( ) [ ∣ ] [( ˆ )

( )( ˆ )] ( ∣ )] ( ∣ ) ( )

⎡
⎣⎢

⎡
⎣⎢

ò

ò

q q q d

q q q q q

q q q d

q q q q q

= -

- -

= -

- -

The integration over the δ-function in the latter term is
equivalent to

s s s

s s F s s
F

s d s d

d A

w P

Prob. of acc.

, , ,

,

,

, , , 31

1 1 2 2 1 1

1 1 1 2 2 2

2 1

2 1 1 1 1

( ) [ ∣ ]

[( ˆ ) ( )( ˆ )]
∣ ( )∣

( ∣ )] ( ∣ ) ( )

⎡
⎣⎢ò q q q

d q q
q q

q q q

=

´
- - -

´
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where we explicitly note that

F
S
S

, 322 1 1
1 1 2

2 1 2
∣ ( )∣ ∣ ( )∣

∣ ( )∣
( )q q

q
q

=-

and where the last line follows from F F, ,1 2 1 1 2( ) ( )q q q q=- .
In order to have the two integrals for the reject and accept
probabilities be equal, we can demand that in detail the accept
probability satisfies

s d s d s s

s s
F

s d s d

P w A

A w

P

, , , , ,

, ,
1

,

, , , , 33

2 2 1 2 2 1 1 2 2

2 2 1 1
2 1

2 1 1 1 1

( ∣ ) ( ∣ ) [ ∣ ]

[ ∣ ]
∣ ( )∣

( ∣ ) ( ∣ ) ( )

⎛
⎝⎜

⎞
⎠⎟

q q q q q

q q
q q

q q q

=

´

which equivalently leads to the usual rule
s s s sA R, , min 1, , ,2 2 1 1 2 2 1 1( ∣ ) [ ( ∣ )]q q q q= with the ratio

defined as

s s
s d
s d

S
S

s d
s d

R
P

P

w

w

, ,
,

,

, ,

, ,
. 34

2 2 1 1
2 2

1 1

2 1 2

1 1 2

1 2 2
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( )

⎛
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⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟

q q
q
q

q
q

q q
q q

=

´

Explicitly substituting the form of the joint posterior s dP ,( ∣ )q ,

and using the fact that f S f f S f
1 1 1 1 2 1 2 2ˆ ( ) ˆ ˆ ( ) ˆq q=- - , we have

s s

s d
s d

R
P

P

e

e

e

e

w

w

, ,

, ,

, ,
, 35

s s S s

s s S s

f A N Af

f A N Af

2 2 1 1
2

1

1 2 2

2 1 1

t

t

1
2

2 2 1
2

2 1 2 2

1
2

2 1 1
2

1 1 1 1

1
2

2 1 2

1
2

1 1 1

( ∣ ) ( )
( )

( ∣ )
( ∣ )

( )

[ˆ ] ˆ ( ) ˆ

[ˆ ] ˆ ( ) ˆ

ˆ ˆ

ˆ ˆ

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
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⎛
⎝
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⎞
⎠
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⎞
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q q
q
q

q q
q q

=

´

c q

c q

- -

- -

-

-

-

-

-

-

where s d As N d Ast2 2 1[ˆ ] ( ˆ) ( ˆ)c = - -- . Above and from now
on, we drop the . t( ) notation for the transpose vectors. For the
choice of a parameter proposal matrix that is independent of the
CMB map and data and symmetric (for example wlog-

s d, ,i i i1( ∣ )q q+ wlog i i1( ∣ )q q= - + Ci i i i1 1 1( ) ( )q q q q~ - -q
+ - + )

the ratio of parameter proposals drops out and we are left with

s sR
P

P

e

e

e

e

, ,

. 36

s s S s

s s S s
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A.3. Generalization to Unity Accept Transitions versus
Computational Expense

We note here the interesting generalization of the scheme
outlined above which uses deterministic proposals for the CMB
signal maps and which leads to unity accept proposals.

We look for a filtering operation F ,i i1( )q q+ that leaves
invariant

f N S f f N S f . 37
i i i i i i1 1 1 1 1 1 1ˆ ( ( )) ˆ ˆ ( ( )) ˆ ( )q q+ = ++ - - + + - -

We can therefore set

F N S N S, .
38

i i i i1 1 1 1 1 2 1 1 1 2( ) ( ( )) ( ( ))
( )

q q q q= + ++ - - + - - - +

This has the desired invariance of the fluctuation map, as well
as satisfying the condition required for detailed balance,
F F, ,i i i i1 1 1( ) ( )q q q q=- + + . The determinant factor appearing
in the ratio for the accept probability is

F
N S
N S

S
S

N S
N S

,

39

i i
i

i

i

i

i

i

1
1 1 1 1 2

1 1 1 2

1 1 2

1 2

1 2

1 1 2

∣ ( )∣ ∣ ( )∣
∣ ( )∣
∣ ( )∣
∣ ( )∣

∣ ( )∣
∣ ( )∣

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

q q
q
q

q
q

q
q

=
+
+

=
+
+

+
- - + -

- - -

+

+

(with generalizations for the case when N 1- is singular). The
significance of the above is the following—everything in the accept
probability ratio R cancels if the proposals for the cosmological
parameters are from the “exact” form as discussed in this paper.
While it may appear somewhat paradoxical to consider

proposals in cosmological parameters from the exact posterior
marginal (therefore making MCMC unnecessary), the idea
provides insight into the correctness of the algorithm as well as
intuition if approximations to the inverse noise can be made. A
well-known approximation to the functional form of the
likelihood in CMB analysis has been to take only the diagonal
elements in a spherical harmonic basis. The above comments
simply show that in the limit that approximations to the noise
converge to the true instrument noise (and we can generate
proposals to parameters from the approximate posterior) we
will have high accept probabilities.
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