
SYMPIX: A SPHERICAL GRID FOR EFFICIENT SAMPLING OF ROTATIONALLY INVARIANT OPERATORS

D. S. Seljebotn and H. K. Eriksen
Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo, Norway; d.s.seljebotn@astro.uio.no

Received 2015 April 20; accepted 2015 December 1; published 2016 February 10

ABSTRACT

We present SymPix, a special-purpose spherical grid optimized for efficiently sampling rotationally invariant linear
operators. This grid is conceptually similar to the Gauss–Legendre (GL) grid, aligning sample points with iso-
latitude rings located on Legendre polynomial zeros. Unlike the GL grid, however, the number of grid points per
ring varies as a function of latitude, avoiding expensive oversampling near the poles and ensuring nearly equal sky
area per grid point. The ratio between the number of grid points in two neighboring rings is required to be a low-
order rational number (3, 2, 1, 4/3, 5/4, or 6/5) to maintain a high degree of symmetries. Our main motivation for
this grid is to solve linear systems using multi-grid methods, and to construct efficient preconditioners through
pixel-space sampling of the linear operator in question. As a benchmark and representative example, we compute a
preconditioner for a linear system that involves the operator D B N BT 1+ -  , where B and D may be described as
both local and rotationally invariant operators, and N is diagonal in the pixel domain. For a bandwidth limit of
ℓmax =3000, we find that our new SymPix implementation yields average speed-ups of 360 and 23 for B N BT 1- 
and D, respectively, compared with the previous state-of-the-art implementation.

Key words: cosmic background radiation – cosmology: miscellaneous – methods: data analysis – methods:
numerical – methods: statistical

1. INTRODUCTION

Unlike the plane, it is impossible to construct a regular
discretization of the sphere. Instead, every conceivable
spherical grid comes with its own set of trade-offs, emphasizing
one or more features at the cost of others. Thus, there is no such
thing as a perfect spherical grid, but the optimal grid instead
depends sensitively on the application under consideration.

In this paper, we will restrict our attention to high-resolution
grids designed for fast and accurate spherical harmonic
transforms (SHTs). In such cases, the primary consideration
is that the grid must allow for efficient ℓmax

3() SHTs, where
ℓmax denotes the upper harmonic space bandwidth limit of the
field in question, as opposed to the ℓmax

4() scaling resulting
from naive brute-force summation. This requires the use of
FastFourier Transforms (FFTs) in the longitudinal direction,
which in turn implies that (i) sample points must be placed on a
set of iso-latitude rings, and (ii) sample points within each ring
must be equidistant. However, there is still flexibility in
choosing the latitude of each ring (0,j []q pÎ), the number of
grid points along each ring (nj), and the initial offset of each
ring (j0,f).

Three popular spherical grids are the equiangular grid, the
Gauss–Legendre (GL) grid (e.g., Doroshkevich et al. 2005),
and HEALPix1 (Górski et al. 2005). Of these, the equiangular
grid is the most straightforward, simply defined by evenly
spaced grid points (θi, fi) in both directions. This grid is
typically used for geographical maps, and it is therefore also
called a geographical grid.

Similarly, the standard GL grid has a constant number of
grid points per ring. However, the ring latitudes θj are defined
such that P cos 0N jrings ()q = , where Pn is the Legendre
polynomial of degree n. This simple modification allows
efficient spherical harmonic analysis to machine precision, and
the grid is thus optimized for spherical harmonics transforms.

Both of these grids suffer from a massive oversampling of
the polar regions (θ close to 0 or π) compared to the equatorial
region (θ≈π/2), and this renders them sub-optimal, and
sometimes even useless, for certain practical applications. An
important example is the solution of discretized and bandwidth-
limited linear systems. If there is a large number of sample
points within the correlation length implied by ℓmax , the system
becomes degenerate and numerically unstable. Grids with
nearly constant pixel areas perform much better than grids with
strongly varying pixel areas for these types of applications.
One example of such grids is HEALPix, which is short for

“Hierarchical Equal Area and Latitude Pixelization.” By
construction, this grid has both constant area pixel area per
pixel and grid points located on iso-latitude, so it is a good
general-purpose grid. However, this generality comes at the
cost of spherical harmonics precision, as well as a low level of
internal pixel symmetries.
The latter point is particularly important for our applications.

Consider a function of two grid points, n1̂ and n2ˆ , that is both
localized and rotationally invariant,

f n n
f n n n n k

,
if arccos

0 otherwise,
11 2

1 2 1 2(ˆ ˆ) (ˆ · ˆ) (ˆ · ˆ) ()=
< D⎧⎨⎩

where Δ denotes the average distance between two neighbor-
ing grid points. Thus, f is assumed to be identically zero if the
two grid points are separated by more than k grid units. In our
applications, which employ multi-grid and/or preconditioning
methods, we need to evaluate f for all relevant pairs n n,1 2(ˆ ˆ).
Furthermore, because f typically is computationally expensive,
it is important to minimize the total number of function
evaluations, and large speed-ups can be gained by exploiting
symmetries and caching.
For HEALPix, f needs to be evaluated k N2

pix() times,
because the angular distances between neighboring grid points
are all different, up to a handful of overall symmetries. In
contrast, for the equiangular and GL grids only k N2

pix()

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February doi:10.3847/0067-0049/222/2/17
© 2016. The American Astronomical Society. All rights reserved.

1 http://healpix.sourceforge.net

1

mailto:d.s.seljebotn@astro.uio.no
http://dx.doi.org/10.3847/0067-0049/222/2/17
http://crossmark.crossref.org/dialog/?doi=10.3847/0067-0049/222/2/17&domain=pdf&date_stamp=2016-02-10
http://crossmark.crossref.org/dialog/?doi=10.3847/0067-0049/222/2/17&domain=pdf&date_stamp=2016-02-10
http://healpix.sourceforge.net

evaluations are needed. Since the number of grid points is
constant for every ring, we only need to evaluate f for the first
grid point on every ring, accounting for all its neighbors, after
which all function evaluations along the same ring will be
given by symmetry.

In this paper, we construct a novel spherical grid called
SymPix that combines the spherical harmonics transform
precision of the GL grid with the nearly uniform sample point
distances of HEALPix, while at the same time maintaining a
high degree of symmetries within each ring, ensuring that fully
sampling f n n1 2(ˆ · ˆ) scales as k N2

pix() .

2. THE SYMPIX GRID

2.1. Ring Layout Basics

The main role of the SymPix grid is that of a supporting grid
in internal multi-grid and/or preconditioning calculations, so
maintaining high numerical precision is therefore essential. For
this reason, we adopt the GL latitudinal ring layout as the basis
of our grid. This provides support for both spherical harmonic
synthesis (i.e., transforming from harmonic coefficients to pixel
space) and analysis (transforming from pixel space to harmonic
coefficients) to machine precision, by virtue of having an exact
quadrature rule on the form

a Y n f n d Y n f n w , 2ℓm
i

i i i(ˆ) (ˆ) (ˆ) (ˆ) ()* *ò å= W =
W

where wi is a set of quadrature weights. By placing rings
exclusively on the zeros of the ℓmax ’th polynomial, one is
guaranteed that P cos 0ℓ i1max ()q =+ , and the discretized field is
algebraically bandwidth-limited to harmonic modes
with ℓ ℓmax.

Next, we need to include enough sample points along each
ring to fully resolve all spherical harmonic modes with
ℓ ℓmax. Formally speaking, this requires N2 rings grid points
per ring. However, this requirement is somewhat counter-
intuitive because it suggests massive oversampling of the polar
regions compared to the equatorial region. And indeed, our
intuition is correct: the spherical harmonic modes Y ,ℓm ()q f are
very close to zero in the polar regions for high ℓ and m, and
these are the only modes that can cause high-frequency
variation in the longitudinal direction. For this reason, the
libsharp SHT package (Reinecke & Seljebotn 2013;
Reinecke 2011) omits Y ,ℓm ()q f whenever

m m ℓ ℓ2 cos sin max 100, 0.01 , 32
max max() ()q q- - >

exploiting the fact that contributions from higher-ordered
harmonics are numerically irrelevant. An explicit bound on
the number of pixels required for machine precision was
derived by Prézeau & Reinecke (2010), and Reinecke &
Seljebotn (2013) used this to construct the reduced GL grid.
Explicitly, for a given ring located at some latitude θ,
Equation (3) defines the maximum m such that Y ,ℓm ()q f does
not vanish. The minimum number of pixels on that ring is then
given by m2 1+ , resulting in a longitudinal sample frequency
that exceeds the Nyquist frequency.

2.2. Tiling

As discussed in Section 1, our primary usecase is evaluating
a function f n n,1 2(ˆ ˆ) for all possible pairs n n,1 2(ˆ ˆ), but with the

restriction that f is zero unless n1̂ and n2ˆ are close together. To
avoid unnecessary searches over vanishing pairs, we therefore
partition our grid into a set of k×k-sized tiles, where k is
chosen such that f n n, 01 2(ˆ ˆ) = unless n1̂ and n2ˆ are either in
the same tile or in two neighboring tiles. Thus, finding all
relevant partner points for a given grid point simply amounts to
a closest neighbor tile look-up. However, this also requires that
the number of rings is divisible by k (letting N ℓ 1rings max> +
if necessary), and that a set of k consecutive rings must have the
same number of sample points. We will refer to each such set
of k rings as a band.

2.3. Enforcing Symmetries

The main remaining step is to define the number of tiles per
band. On the one hand, it must satisfy the minimum number of
pixels given by Equation (3). On the other hand, it may be
beneficial to increase it beyond this, in order to increase
symmetries within and across bands. For instance, if we sample
f from Equation (1) for all point pairs within a tile, the result
can obviously be reused for all tiles in that band, since all
between-point angular distances are conserved between tiles.
Similarly, we can reuse results between neighboring tiles
within the same band due to longitudinal symmetry.
In addition, we exploit the additional degrees of freedom in

choosing the number of tiles to ensure symmetries with respect
to latitudinally neighboring tiles. Specifically, we require that
the number of tiles can increase from one band to the next only
by a factor of exactly 3, 2, 1, 4/3, 5/4, or 6/5. Additionally, at
least two bands in a row must have the same number of tiles,
except for the polar bands. Finally, in order to avoid special
cases we allow no equatorial ring (i.e., we insist that Nrings is an
even number), and, purely conventionally, the location of the
first grid point in a given ring is chosen to be half the pixel
distance within that same ring. Together, these requirements
ensure that the pattern of neighboring tiles repeats itself with a
short period, and the total number of different cases evaluates
scales as Nring() rather than Npix() . We employ a dynamic
programming algorithm to find the optimal number of tiles per
band, subject to the constraints defined above, as detailed in
Section 2.5. An example grid corresponding to k=2 tiling is
illustrated in Figure 1.

2.4. Memory Layout and Pixel Ordering

While the above constraints fully define the geometric
properties of the SymPix grid, they do not imply a canonical
memory layout or “pixel ordering.” To fix this, we adopt two
additional rules, both designed to maximize memory access
efficiency and programming convenience.
First, the northern and southern hemispheres are band-wise

interleaved. That is, we first list the northernmost polar band,
followed by the southernmost polar band, followed by the
second northern band and so on. The main advantage of this
organization lies in convenient distributed programming across
multiple computing nodes; interleaving the two hemispheres
ensures that the same node can readily exploit north–south
symmetries.
Second, grid points are latitudinally major-ordered within a

given tile, i.e., the pixel ordering increases most rapidly along
the θ direction. While the order within each tile could have
been in any direction, this choice implies that pixel ordering is

2

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

continuous across longitudinal tile borders, which is particu-
larly convenient for SHTs.

Figure 2 provides an example of the resulting pixel ordering.
Note that the resolution is lower than the corresponding
illustration in Figure 1.

2.5. Grid Optimization

We end this section by describing the algorithm used to
optimize the number of of tiles in each band, subject to the
constraints defined in Section 2.3. We will only discuss the
northern hemisphere, as the southern hemisphere is given
directly by symmetry.

Figure 1. Geometric layout of SymPix sample points, implementing a cylindrical projection of the sphere. Each rectangle indicates a tile of (in this case) 2×2 sample
points. For white tile-bands, the bands above and below have the same number of tiles, and angular distances between sample points in a given tile and sample points
in the neighboring tiles are therefore constant throughout the band. Function evaluations depending only on angular distances may therefore be cached and reused.
Colored tile-bands increment the number of tiles by a factor of 2 (red), 4/3 (blue), 5/4 (yellow), 6/5 (green), and 4/3 again (blue) toward the equator. For these bands,
the neighboring tile relationship repeats itself (as indicated by shading), and there are still only a few cases that need to be computed and cached for each band.

Figure 2. Memory ordering of SymPix sample points. Note that the resolution is lower than in Figure 1. Within each band the pixel order increases first latitudinally,
i.e., along the θ direction. This ensures that access within the same tile is local in memory, and there are no discontinuities along each ring, which is convenient for
SHTs. Additionally, to support efficient distributed programming, we interleave northern and southern bands, such that they naturally are assigned to the same node
without explicit additional bookkeeping.

3

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

To initialize the algorithm, the user must provide a tile size k
and a total number of rings Nrings, where Nrings must be divisible
by both 2 and k. The grid will be able to accurately represent
fields that are band-limited at ℓ N 1max rings= - . Together,
these parameters specify the angular resolution of the grid,
and correspond in principle to the HEALPix Nside parameter.
We then number the bands by i N0 ,... 1bands= - º
N k2 1rings () - , such that each band consists of k rings. We
also define αi to be the minimum number of tiles in each band
subject to the constraint that the southmost ring within the band
fulfills Equation (3).

Deriving the optimal SymPix grid is now equivalent to
determining the number of tiles, Ti, for each band. For this
optimization process we adopt the following cost function,

c T T c T T,..., , 4N
i

i i
i

i i0 1
2

bands() () () ()å å aº º --

which must be minimized, subject to

T

T

6

5
,

5

4
,

4

3
, 1, 2, 3 . 5i

i

1 { } ()Î+

Additionally, we initialize the recursion by defining T0 as the
smallest number larger than α0 that is only a product of the
factors 2, 3, and 5, and for computational speed we add the
heuristic (or modification to the cost function) that Ti<3αi,
i.e., that no band should be over-pixelized by more than three
times the Nyquist frequency.

The actual calculation is then a simple exercise in dynamic
programming, as described in any standard text on algorithms
(e.g., Cormen et al. 1989). Our implementation is summarized
in Figure 3, which has a worst-case computational complexity
of n N Nn rings

2
pix() () ()  a = = , and the same worst-case

memory use. Due to the low computational complexity and the
fact that the optimization only needs to be performed once per
grid resolution, we do not present benchmarks for this
operation; its computational cost is negligibly small for our
purposes.

3. BENCHMARKS AND COMPARISONS

Before considering specific applications, we first character-
ize the basic performance of the SymPix grid in terms of
computational efficiency and numerical accuracy.

3.1. Geometric Efficiency

We start by quantifying the geometric efficiency of our grid,
as characterized by the overall number of grid points and the
pixel area uniformity. For these tests, we consider an example
grid with ℓmax =2000 and k=4, sufficient to discretize a
spherical field with an angular resolution of 15′ FWHM.
Running the algorithm summarized in Figure 3 with these input
parameters yields a SymPix grid with 5.6×106 grid points.

In Figure 4 we compare the number of SymPix grid points
per ring with the optimal number of points per ring used by the
reduced GL grid (Reinecke & Seljebotn 2013). The ratio
between the solid and dashed lines thus indicates the amount of
longitudinal oversampling implied by the SymPix grid. Except
for very close to the poles, where there are very few points in
terms of absolute numbers, this ratio is never larger than 1.35.

A similar illustration is provided in Figure 5, where we plot
the pixel area as a function of latitude, defining pixel borders
strictly along longitudes and latitudes. The pixel area is given

in units of the pixel area averaged over the full-sky, i.e.,
N4 pixp , such that a perfectly uniform pixelization, like

HEALPix, corresponds to a constant value of unity. Overall,
we see that the effective pixel areas vary at most by 20%
relative to the average, except near the poles, where the
normalized area may be as low as 0.1.
Figure 6 shows a histogram of normalized pixel areas, and

we see that the vast majority of grid points have a normalized

Figure 3. Dynamic programming algorithm for optimizing the SymPix grid
layout. In summary, the algorithm considers all possible solutions, and employs
look-up tables of partial solutions for bands 0 to i 1- when considering band i.
The condition P ti t1, prevprev =- ensures that at least two bands in a row have the
same number of tiles, except (possibly) for the first two rows, T T1 0¹ .

Figure 4. Number of SymPix grid points per ring as a function of latitude
(solid line). The dotted line shows αi, i.e., the same quantity for the reduced
Gauss–Legendre grid (Reinecke & Seljebotn 2013).

4

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

area between 0.9 and 1.1. The tail below 0.8 corresponds to the
over-pixelized polar caps, and these contain only 0.4% of the
total number of grid points for this particular example. Overall,
the SymPix grid implies an oversampling of about 11%
compared to the reduced GL grid, which is acceptable for our
purposes.

3.2. Accuracy of Spherical Harmonic Quadrature

Next, we compare the numerical accuracy of spherical
harmonics transforms as implemented on the SymPix,
HEALPix, and reduced GL grids. This test is carried out
through the following experiment.

1. We draw a fiducial signal a aℓm{ }= in a spherical
harmonic domain, band-limited by some ℓmax. The
spherical harmonics coefficients are drawn such that they
correspond to an random isotropic and Gaussian field
with a power spectrum (coefficient variance)
C ℓ ℓ1 1ℓ (())º + for ℓ 0> and C 10 º , i.e., the same
overall properties as signals of interest for cosmic
microwave background (CMB) analysis.

2. We project this signal onto the respective grid sample
points by spherical harmonic synthesis.

3. We convert the real-space signal back to harmonic space
through spherical harmonic analysis, including multi-
poles up to ℓmax, to recover a.

4. We repeat this procedure Nsim times, and summarize the
results in terms of relative round-trip
errors, e a a Cℓm

i
ℓm
i

ℓm
i

ℓ()() () ()º - .

Before presenting the results, we note that no fundamental
band-limit and/or resolution parameter Nside exist for HEALPix
for a given angular resolution. For instance, changing the band-
limit ℓmax will add/reduce aliasing for all scales. A quantitative
head-to-head comparison at a given resolution is therefore
difficult, as additional parameter tuning can affect the results.
With this caveat in mind, in Table 1 we present results for three
different band-limits, ℓ N2.0, 2.5, 3.0max side{ }= , with
N 256side = , quoting both the maximum and mean errors as
evaluated over all error coefficients eℓm

i(). Each case includes
N 100sim = simulations, and the SymPix tile size is fixed
at k=8.
Starting with the highest-bandwidth case, ℓ N3max side= , we

first note that the regular GL grid is the only grid that achieves
overall machine precision, with a mean error of 10 14() - and a
maximum error of 10 12() - . For comparison, the correspond-
ing mean and maximum SymPix errors are 10 6() - and

10 2() - , respectively, while HEALPix achieves 10 1() - and
1() for this high-bandwidth case. Reducing the band-limit to

ℓ N2max side= improves the latter by about two orders of
magnitude. As already noted by Górski et al. (2005), the large
difference between the average and maximum error is largely
driven by the m=0 modes, which integrate poorly on iso-
latitude rings; both types of errors can, however, be reduced by
iterative quadrature.
The statistics listed in Table 1 provide only a very coarse

comparison point, because the round-trip errors are highly
scale-dependent. In Figure 7 we therefore plot the error as a
function of multipole, ℓ, choosing the SymPix and HEALPix
band-limits such that the corresponding grids roughly match a
HEALPix N 256side = grid in terms of the total number of
sample points. For SymPix, this corresponds to ℓ 735max = ,
and for the GL grid it is ℓ 628max = .
Starting with the GL grid (blue lines), we see that the error

reaches machine precision up to the bandwidth limit; at higher
multipoles no information is carried by the grid. In contrast, the
SymPix grid reaches machine precision up to ℓ ℓ0.5 max,»
while the error increases more smoothly at higher multipoles.
However, even though the high-ℓ error increase is smooth, it is
still exponential, and the mean and maximum statistics listed in
Table 1 are therefore strongly dominated by the small-scale
errors. Thus, by virtue of deriving its main geometric grid
layout from the GL grid, we see that the numerical performance
of the SymPix grid is excellent on large and intermediate
angular scales, and the cost of its superior symmetry properties
primarily comes in the form of sub-optimal small-scale
residuals. For comparison, the HEALPix errors are roughly
constant at 10 4() - – 10 2() - , and vary only weakly with
angular scale. Note that in all cases the errors can be reduced by
iteration techniques, essentially using least squares minimiza-
tion to find the spherical harmonic signal with the least power
that projects exactly to the map, and employing the result of
spherical harmonic analysis as a preconditioner.
The large errors seen for the GL grid above ℓmax are due to

undersampling, or equivalently, aliasing. In Figure 8 we study
this effect directly by varying the spherical harmonics

Figure 5. SymPix pixel area as a function of latitude in units of N4 pixp (solid
line). For the HEALPix grid, pixel areas are perfectly uniform (dotted line),
while significant oversampling occurs close to the poles for the SymPix grid.

Figure 6. Histogram of normalized SymPix pixel areas. The tail extending
below 0.8 corresponds to polar oversampling, and contains about 0.4% of the
total number of pixels for this particular grid setup.

5

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

bandwidth limit between ℓ 512max
SH = , 735 and 900; note,

however, that the actual grid resolution parameters are kept
fixed at the above values, and the higher resolutions enforced
here therefore no longer match the respective grid properties.
Considering first the GL grid with a SHT band-limit of
ℓ 512max = , we see, as expected, that the errors reach machine
precision at all scales. However, for the higher band-limits,
ℓ 735max = and 900, both of which are higher than the grid
resolution of ℓ 628max

grid = , the errors saturate at a multipole
below the grid resolution. To be specific, the critical multipole
is ℓ ℓ2 max

grid
max
SH- , corresponding to the well-known aliasing

limit from standard Fourier theory. However, at lower multi-
poles no aliasing is observed for the GL grid, which implies

that it is fully robust with respect to undersampling, given a
known band-limit.
In comparison, the corresponding HEALPix errors are non-

local, in the sense that increasing the spherical harmonics band-
limit increases the errors at all angular scales: the dotted line
(ℓ 900max =) lies consistently higher than the dashed line
(ℓ 735max =), which in turn lies consistently higher than the
solid line (ℓ 512max =). The HEALPix grid is thus not robust
against undersampling, and it is very important to choose a grid
resolution appropriate for the bandwidth of the signal under
consideration, which in several applications may imply over-
sampling the signal.

Table 1
Comparison of Different Grids in Terms of the Number of Pixels and the Accuracy of Spherical Harmonic Analysis

ℓmax Grid Parameter Npix N Npix pix
HEALPix Max. Error Mean Error CPU Time for SHT (ms)

511 HEALPix Nside=256 786 432 1.00 2.1·10−2 2.9·10−5 160
SymPix ℓmax =511 390 656 0.50 7.8·10−3 8.1·10−7 67
Gauss–Legendre ℓmax =511 524 288 0.67 7.5·10−13 2.8·10−14 66

639 HEALPix Nside=256 786 432 1.00 2.2·10−1 1.3·10−3 219
SymPix ℓmax =639 591 232 0.75 7.2·10−3 1.1·10−6 118
Gauss–Legendre ℓmax =639 819 200 1.04 1.2·10−12 3.2·10−14 118

767 HEALPix Nside=256 786 432 1.00 1.6·100 6.8·10−2 287
SymPix ℓmax =767 838 656 1.07 4.0·10−2 4.8·10−6 188
Gauss–Legendre ℓmax =767 1 179 648 1.50 1.0·10−12 3.8·10−14 188

Note. The HEALPix resolution is kept constant at Nside=256, while the spherical harmonic band-limit varies over ℓ N2.0, 2.5, 3.0max side{ }= . The SymPix and
Gauss–Legendre band-limits are identical to the spherical harmonic band-limit.

Figure 7. Spherical harmonic round-trip error as a function of multipole, summarized in terms of maximum (dotted lines) and mean (solid lines) errors, averaged over
both harmonic quantum number m and N 100sim = simulations. Black lines show results for a SymPix grid with ℓ 735max = and tile size 8; red lines show results for a
HEALPix grid with N 256side = and ℓ 735;max = and blue lines show results for a regular Gauss–Legendre grid with ℓ 628max = . All grids have roughly the same
number of grid points, N 780, 000pix » .

Figure 8. Error induced by undersampling (aliasing) as a function of multipole in terms of average errors, averaged over both harmonic quantum number m and
Nsim=100 simulations. The experimental setup is the same as in Figure 7, but the spherical harmonic bandwidth limit varies between ℓ 512max = (solid), ℓ 735max =
(dashed), and ℓ 900max = (dotted).

6

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

The SymPix grid performance lies, as expected, between
those of GL and HEALPix. On large angular scales, it achieves
numerical precision, while on small scales the aliasing
increases exponentially with multipole, and eventually reaches
similar levels as HEALPix.

3.3. Computational Speed of SHTs

Before ending this section, we compare the performance of
the SymPix, HEALPix, and GL grids in terms of computational
speed. The rightmost column in Table 1 lists the CPU time for
each of the cases considered above in units of wall-clock
milliseconds, while Figure 9 presents a head-to-head compar-
ison of the SymPix and HEALPix grid performance as a
function of Npix. All benchmarks were performed using
libsharp on a single Intel Core i7 Q840 at 1.87 GHz
(SSE2); for full details including CPU times in absolute
numbers, we refer the interested reader to Reinecke &
Seljebotn (2013).

Overall, SymPix perform similarly to the GL grid, and both
execute about 30% faster than HEALPix. This latter difference
may be explained by the fact that the HEALPix grid points
form a zig-zag pattern in which every other ring is long-
itudinally shifted by half a pixel width. This implies a grid
point organization that comprises about 30% more rings than
GL and SymPix grids, which exhibit more regular longitudinal
pixel organizations. This is relevant, because the computational
complexity of SHTs scales as

C N ℓ N
N

N

ℓ ℓ ℓ

log

log . 6

SHT ring max
2

pix
pix

ring

max
3

max
2

max

()

() () ()

 

 

= +

= +

⎛
⎝⎜

⎞
⎠⎟

The first term represents the cost of computing the associated
Legendre polynomials for each ring, and dominates the second
term, which accounts for evaluating FFTs along each ring.
Thus, the number of grid points per ring is not critical for the
overall speed of SHTs, while the total number of rings is.

In addition, by construction, SymPix grids have rings with
pixel numbers that are only products of 2, 3, and/or 5, which

ensures efficient FFTs. In contrast, many HEALPix rings have
pixel numbers that includes large primes, and therefore the
Bluestein algorithm must be employed for these. This effect is
more important for lower-resolution grids, for which the cost of
FFTs is relatively higher.

4. APPLICATIONS

We now turn our attention to practical applications, and in
particular to the construction of efficient preconditioners.
Before doing that, however, we consider a simpler application,
namely real-space convolution, in order to build up intuition
regarding the relevant operations. We emphasize that the
purpose of this preliminary discussion is not to provide a real-
world alternative to SHTs, or the methods presented by Elsner
& Wandelt (2011) and Sutter et al. (2012) for such
convolutions, but simply to quantify the computational
efficiency of the SymPix grid on a simple and intuitive
application.

4.1. Spherical Convolution

The convolution of a spherical image f with a kernel b is
given by the spherical surface integral

g n b n m f m d, . 7m
4

(ˆ) (ˆ ˆ) (ˆ) ()ˆò= W
p

In our case we assume an azimuthally symmetric kernel, and
b n m,(ˆ ˆ) therefore depends only on the distance between n̂ and
m̂, such that

g n b n m f m d . 8m
4

(ˆ) (ˆ · ˆ) (ˆ) ()ˆò= W
p

This integral is most commonly performed in a spherical
harmonic domain, turning full-sky convolution into coefficient-
wise multiplication with a corresponding transfer function, bℓ,
which is given by the Legendre transform of b n m(ˆ · ˆ). These
computations are dominated by the SHTs, and therefore have a
computational scaling of N ℓpix

3 2
max
3() () = .

If b is spatially narrow compared to the required pixelization,
as is usually the case, one could instead consider the pixel-
domain convolution by evaluating

g n b n n f n , 9i
j

N

i j j
1

pix

(ˆ) (ˆ · ˆ) (ˆ) ()å=
=

where the convolution kernel reads

b x
ℓ

b P x
2 1

4
. 10

ℓ

ℓ

ℓ ℓ
0

max

() () ()å p
=

+

=

One would then make the approximation that b n n 0i j(ˆ · ˆ) =
whenever sample points i and j are more than k sample point
distances apart, as discussed in Section 1.
For HEALPix, almost all sample point distances are

different, and b must therefore be evaluated N kpix
2()

times. The computational complexity of pixel-domain
convolution on the HEALPix grid therefore scales as

N k ℓ k ℓpix
2

max
2

max
3() () = , which is clearly inferior to the

harmonic approach both in terms of speed and accuracy.
With SymPix, however, the large number of symmetries
allows us to reduce the computational complexity to

k N N ℓ k N2
pix pix max

2
pix() () + = : one simply needs to

choose a tile size k such that only sample point pairs within a

Figure 9. Comparison between spherical harmonic transforms cost as
performed with SymPix and HEALPix as a function of Npix, plotted in terms
of their ratios (black solid line). The dashed line shows the ratio between the
number of grid point rings.

7

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

tile and between neighboring tiles must be considered. Then
for, each band of k rings, b n m(ˆ · ˆ) only needs to be evaluated
for the first few tiles of the band, as other distances within the
same band will be identical within the remainder of the band.

The speed-ups for evaluating all necessary b n m(ˆ · ˆ), when
approximating b n m 0(ˆ · ˆ) = whenever n̂ and m̂ are not in
neighboring tiles, are given in Table 2. In addition to scaling
better than the Npix

3 2() SHTs, this approach should also be
easier to parallelize and implement efficiently on a GPU.

Note that yet another method for spherical convolution with a
symmetric kernel has been implemented in the ARKCoS code
(Elsner & Wandelt 2011; Sutter et al. 2012), with a computa-
tional scaling of k ℓ ℓ k N Nlog logmax

2
max pix pix() () = .

Whether a SymPix-based convolution would improve relative
to their work for relevant resolution parameters and accuracy
requirements remains to be explored.

4.2. Preconditioner Construction for Linear Systems

Finally, we are in the position to discuss the application of
the SymPix grid to our main usecase, namely for solving linear
systems involving rotationally invariant operators in a pixel
domain, either through multi-grid methods or constructing
efficient preconditioners. The simplest example of such a
system is

YBY x b, 11T ()=

where Y, as usual, is the matrix corresponding to spherical
harmonic synthesis and B is a diagonal matrix in a spherical
harmonic domain, B bℓm ℓ m ℓ ℓ ℓ mm, ,d d=¢ ¢ ¢ ¢. The productYBYT is a
pixel-domain operator with strong spatial couplings within the
correlation length implied by b. Of course, this particular
system could have been trivially solved by converting to a
spherical harmonic domain, which would diagonalize the
coefficient matrix. However, if there are more terms in the
operator, this is no longer possible, and iterative solvers like
Conjugate Gradients or multi-level algorithms are needed. In
these cases SymPix is useful to construct preconditioners or
smoothers.

Our own main interest lies in drawing constrained Gaussian
realizations of the CMB sky by using a multi-level solver
(Seljebotn et al. 2014). This maybe performed by solving the
following linear system (Eriksen et al. 2004; Jewell et al. 2004;

Wandelt et al. 2004),

Y D BY N Y B Y x r, 12T T
1 obs

1
obs 1() ()+ =-

where D and B are diagonal matrices in a spherical harmonic
domain, characterized by transfer functions dℓ and bℓ, N 1- is a
diagonal (inverse noise covariance) matrix in a pixel domain,
pixelized on some external grid iq , and r is a stochastic term
that depends on the data set in question.
Two different spherical grids are involved in a system. First,

the outermost spherical harmonics transform, Y1, denotes
synthesis to a grid of our own choosing. We will use a
SymPix grid of resolution ℓmax for this operator in the
following. The inner transform, Yobs, is determined by some
external experiment, and is thus not flexible. Here we will
assume that this operator is defined on a full-sky HEALPix grid
of N 2048side = , typical for the CMB maps published by the
Planck experiment (Planck Collaboration 2015).
Of course, from the viewpoint of the overall linear system,

the details of any individual operator are irrelevant, and the
only crucial point is that the combined operator remains the
same. In order to speed up the calculations through the use of
symmetries, we therefore substitute the innermost HEALPix-
based noise covariance matrix product with a corresponding
SymPix-based product,

Y N Y Y N Y , 13T T
obs

1
obs 2 2

1
2 ()=- -

where Y2 denotes an auxiliary SymPix grid; note that this does
not need to be the same as Y1, but its resolution can be adjusted
to trade numerical precision for computational speed. As
shown by Seljebotn et al. (2014), Equation (13) holds true if N2

is constructed from

W Y Y , 14T
2 2 2 obs ()q q=

in the same way as N is constructed from θ. In this latter
expression, W2 is a diagonal matrix containing the quadrature
weights used in the spherical harmonic analysis of the target
grid, while YT

obs lacks the ring weights one normally uses in
spherical harmonic analysis. Note that this operation is in fact
the opposite procedure compared to naive resampling, which
would be written as Y Y WT

2 obs obs in our notation. For full details,
we refer the interested reader to Seljebotn et al. (2014).
The precision of Equation (13) depends on the relative band-

limits of Y1, Y2, and Yobs. For instance, choosing ℓmax for Y2 and
Yobs to be twice that of Y1 yields a numerical precision of

10 10() - . Increasing these to four times that of Y1 results in an
accuracy of 10 14() - , whereas reducing it to only one, such
that Y Y1 2= , gives an accuracy of 10 2() - . Even the latter may
be acceptable for preconditioning purposes.
In order to derive an approximation to the full coefficient

matrix defined by Equation (12), we first rewrite the system as

D B N Bx r, 15
T

2
1 ()+ =- 

where

D Y DY B Y BYand . 16T T
1 1 2 1 ()= =

We now introduce the approximation that D 0ij = and B 0ij =
whenever two sample points i and j are not in the same or
neighboring tiles, as per the SymPix organization. The non-
zero elements (i.e., the “local” part) of D and B are evaluated
by Equation (10), at a cost of ℓmax() operations per matrix

Table 2
CPU Time and Theoretical Speed-up for Evaluating b n m(ˆ · ˆ)

CPU Time Speed-up

ℓmax (s) (factor)

3000 9.8 732
1500 3.6 335
750 1.4 149
375 0.74 70
188 0.50 26
100 0.31 14

Note. We have approximated b n m 0(ˆ · ˆ) = whenever n̂ and m̂ are not in
neighboring tiles. The third column shows the number of non-zero b n m(ˆ · ˆ),
which scales as O k N2

pix(), divided by the number of elements we had to
compute when making use of the SymPix symmetries, which scales as
O k N2

pix(). In this example we have chosen k=8.

8

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

element. However, as discussed in Section 4.1, evaluating all
required elements for a SymPix grid scales as k N2

pix() , as

opposed to k N2
pix() for less symmetric grids.

These calculations constitute essential components of the
pre-computation step of the multi-grid solver presented by
Seljebotn et al. (2014). In that paper, all evaluations were
performed without employing any symmetries, with a compu-
tational scaling of ℓ k Nmax

2
pix() as discussed above. Their

Table 2 summarizes the resulting computational costs in units
of CPU minutes. Here we repeat those calculations, adopting
the exact same overall parameters, facilitating a one-to-one
comparison, but we employ SymPix for intermediate calcula-
tions. The results are summarized in Table 3, in which the
second column is copied directly from Seljebotn et al. (2014),
and the third column shows the new SymPix results. The fourth
column shows the ratio between the two.

Clearly, the net gains achieved by the SymPix grid vary with
resolution. For the high-resolution levels the speed-up is driven
by symmetries drastically reducing the time taken to evaluate
B. The theoretical speed-up of 732 times for evaluating B at
ℓ 3000max = , found in Table 2, is reduced to 130 and 26 for
B N BT 1-  and D, respectively. This is due to work that was
previously unimportant now dominating the computation.

As already noted, the HEALPix grid also exhibits a handful
of internal symmetries that could have been exploited in a
similar manner to reduce the overall computing time. The
benchmarks presented here therefore do not represent a head-
to-head comparison of grids, but rather a comparison of
specific implementations. To be explicit, the implementation
presented by Seljebotn et al. (2014) may in theory be sped up
by a factor of 24 if exploiting all HEALPix symmetries, and
this factor should be compared to the results presented in the

third column of Table 2. However, at lower resolutions the
speed-ups seen in in Table 3 are almost entirely due to being
able to use the operator resampling given in Equation (13). This
degradation procedure is not as straightforward when using the
HEALPix grid, as the approximation is significantly less
accurate. Our previous code therefore used a resolution of
N 2048side = along columns on all the levels, leading to very
long computation times.
To summarize, the SymPix grid reduces what used to be

overnight jobs with our previous implementation to essentially
interactive tasks.

5. CONCLUSION

We have presented SymPix, a novel spherical grid for
efficiently sampling rotationally invariant operators. This grid
derives many of its properties from the GL grid, ensuring
overall excellent spherical harmonics transform performance.
The main difference between the two grids is that SymPix
sacrifices proper Nyquist sampling in the longitudinal direction
in order to increase pixel symmetries, such that all grid pair
distances repeat perfectly along constant-latitude rings. This
decreases the computational scaling of evaluating rotationally
invariant operators from Npix() to Npix() .
The intended primary application of the SymPix grid is

efficient construction of preconditioners (or smoothers) for
iterative linear solvers. In this paper we considered the specific
example of drawing constrained Gaussian realizations using a
multi-grid solver, which is an important problem in current
CMB analysis. Comparing with previous state-of-the-art results
(Seljebotn et al. 2014), we achieve average speed-ups of 360
and 23 for the two most important pre-computation steps when
using SymPix for internal calculations.
However, we emphasize that SymPix is a special-purpose

grid designed for precisely such tasks; it is not intended to
provide a general-purpose spherical pixelization that is suitable
for, say, mapmaking. HEALPix is clearly preferred for such
purposes due to its uniform pixel areas, regular pixel window,
and hierarchical pixel structure. Likewise, if machine precision
spherical harmonics transforms are required, the GL grid is the
obvious choice. However, for those particular applications that
can benefit from efficient pixel-space sampling of linear
operators, such as ours, SymPix holds a clear edge over
existing alternatives.

D.S.S. and H.K.E. are supported by European Research
Council grant StG2010-257080.

APPENDIX
CODE

The SymPix code has been developed as part of the
Commmander project, and does not yet have its own library.
For the benefit of the reader, however, we have copied the
source files relevant to this paper to their own repository
athttp://github.com/dagss/sympix. Please consult the accom-
panying README file for further details. This repository will
be updated if the code does eventually develop into a stand-
alone package.
The SHTs are all done using libsharp (Reinecke &

Seljebotn 2013), which, at the time of writing, is available
athttp://sourceforge.net/projects/libsharp/. We then con-
struct the grid geometry in our Python code and feed it to

Table 3
CPU Time for Constructing Preconditioner

Naive SymPix

ℓmax (CPU min) (CPU min) Speed-up

Evalution of B N BT 1- 

3000 727 5.4 130
1500 509 1.4 360
750 340 0.37 920
375 230 0.11 2 100
188 452 0.035 13 000
100 363 0.027 13 000
Sum 2 621 7.3 360

Evalution of D

3000 85 3.3 26
1500 15 0.83 18
750 2.4 0.22 11
375 0.36 0.07 5
188 0.05 0.02 3
100 0.01 0.01 1
Sum 103 4.5 23

Note. The top section lists the CPU time for preconditioner calculations that
depend only on data geometry (mask, beam, noise characterization), while the
bottom section lists the corresponding CPU time for calculations that depend
on dℓ, which in CMB applications typically corresponds to an angular power
spectrum, Cℓ. The second column is copied directly from Seljebotn et al.
(2014), which does not employ any symmetries. The third row shows similar
results using SymPix, while the fourth column shows the ratio between the two.

9

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

http://github.com/dagss/sympix
http://sourceforge.net/projects/libsharp/

libsharp. In the future we may port our Python code to C
and make it available directly in libsharp.

REFERENCES

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. 1989, Introduction to
Algorithms (Cambridge, MA: MIT Press)

Doroshkevich, A. G., Naselsky, P. D., Verkhodanov, O. V., et al. 2005,
IJMPD, 14, 275

Elsner, F., & Wandelt, B. D. 2011, A&A, 532, A35
Eriksen, H. K., O’Dwyer, I. J., Jewell, J., et al. 2004, ApJS, 155, 227

Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 2
Jewell, J., Levin, S., & Anderson, C. H. 2004, ApJ, 609, 1
Planck Collaboration 2015, A&A, submitted, (arXiv:1502.01582)
Prézeau, G., & Reinecke, M. 2010, ApJS, 190, 267
Reinecke, M. 2011, A&A, 526, A108
Reinecke, M., & Seljebotn, D. S. 2013, A&A, 554, A112
Seljebotn, D. S., Mardal, K.-A., Jewell, J. B., Eriksen, H. K., & Bull, P. 2014,

ApJS, 210, 24
Sutter, P., Wandelt, B. D., & Elsner, F. 2012, in Proc. Big Bang, Big Data, Big

Computers (Big3), 2012
Wandelt, B. D., Larson, D. L., & Lakshminarayanan, A. 2004, PhRvD, 70,

08351

10

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

http://dx.doi.org/10.1142/S0218271805006183
http://adsabs.harvard.edu/abs/2005IJMPD..14..275D
http://dx.doi.org/10.1051/0004-6361/201116963
http://adsabs.harvard.edu/abs/2011A&A...532A..35E
http://dx.doi.org/10.1086/425219
http://adsabs.harvard.edu/abs/2004ApJS..155..227E
http://dx.doi.org/10.1086/427976
http://dx.doi.org/10.1086/383515
http://adsabs.harvard.edu/abs/2004ApJ...609....1J
http://arXiv.org/abs/1502.01582
http://dx.doi.org/10.1088/0067-0049/190/2/267
http://adsabs.harvard.edu/abs/2010ApJS..190..267P
http://dx.doi.org/10.1051/0004-6361/201015906
http://adsabs.harvard.edu/abs/2011A&A...526A.108R
http://dx.doi.org/10.1051/0004-6361/201321494
http://adsabs.harvard.edu/abs/2013A&A...554A.112R
http://dx.doi.org/10.1088/0067-0049/210/2/24
http://adsabs.harvard.edu/abs/2014ApJS..210...24S

	1. INTRODUCTION
	2. THE SYMPIX GRID
	2.1. Ring Layout Basics
	2.2. Tiling
	2.3. Enforcing Symmetries
	2.4. Memory Layout and Pixel Ordering
	2.5. Grid Optimization

	3. BENCHMARKS AND COMPARISONS
	3.1. Geometric Efficiency
	3.2. Accuracy of Spherical Harmonic Quadrature
	3.3. Computational Speed of SHTs

	4. APPLICATIONS
	4.1. Spherical Convolution
	4.2. Preconditioner Construction for Linear Systems

	5. CONCLUSION
	APPENDIXCODE
	REFERENCES

