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ABSTRACT

We revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation
with the goal of minimizing computational costs through linear compression. This idea was originally proposed for
CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for
large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases
(pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-
plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most
efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen–Loeve and
Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836
unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error
increase of any single multipole of 3.8% at ℓ� 32 and a maximum shift in the mean values of a joint distribution of
an amplitude–tilt model of 0.006σ. This compression reduces the computational cost of a single likelihood
evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly
regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically
stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which
requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ� 32, rendering low-ℓ QML CMB power
spectrum analysis fully tractable on a standard laptop.
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1. INTRODUCTION

Through a series of increasingly sensitive experiments
measuring the cosmic microwave background (CMB) led by
COBE (Mather et al. 1990), WMAP (Bennett et al. 2013), and
Planck (Planck Collaboration et al. 2014a), during the last two
decades, cosmologists have established a successful cosmolo-
gical concordance model (Planck Collaboration et al. 2014c).
According to this model, the universe is isotropic and
homogeneous, and filled with Gaussian random fluctuations
drawn from a nearly scale-invariant primordial power spec-
trum; its energy budget is composed of 68% dark energy, 27%
dark matter, and 5% baryonic matter. Remarkably, only six or
seven parameters are required to model accurately millions of
data points.

The connection between those millions of data points and the
handful of cosmological parameters is made through the so-
called likelihood function, and cosmological parameter estima-
tion essentially amounts to mapping out this function,
for instance, using Markov Chain Monte Carlo (Lewis &
Bridle 2002), multi-dimensional gridding (Mikkelsen et al.
2013), or nonlinear optimization (Planck Collaboration et al.
2014d). Since the CMB fluctuations are observed to be (at least
close to) Gaussian distributed, the analytic expression for the
likelihood is formally given by a multivariate Gaussian.
However, this expression is of limited practical use for modern
CMB experiments because of the high dimensionality of the
associated covariance matrix. For Planck, the number of pixels

is Npix∼ 5× 107, and since brute-force likelihood evaluation
requires a Cholesky decomposition of this matrix, computa-
tionally scaling as N ,pix

3( ) a single evaluation would cost
∼106 CPU years and require 104 TB RAM (see, e.g., Borrill
1999, for a related discussion).
Obviously, the direct brute-force likelihood approach is not

feasible for modern full-sky CMB experiments, and a few
alternative methods have therefore been proposed and
implemented in the literature. These can largely be broken
into two groups. First, the most widely adopted approach is that
of a hybrid likelihood, which simply splits the full likelihood
into two components according to angular scales. Large
angular scales are analyzed using some exact method that
fully accounts for the non-Gaussian nature of the likelihood,
whereas small angular scales are analyzed using faster
likelihood approximations motivated by the Central Value
theorem. Usually, the two likelihoods are sufficiently uncorre-
lated that they may be joined into a single all-scale expression
either by straight multiplication or by explicitly accounting for
overlap correlations (Gjerløw et al. 2013). The second group of
methods may be characterized as samplers, for instance, as
implemented through Gibbs sampling (Eriksen et al. 2004;
Jewell et al. 2004; Wandelt et al. 2004), which draws samples
from the CMB posterior. The computational scaling of this
approach is N ,pix

3 2( ) and therefore is computationally feasible
even for high-resolution data. However, further work is
required for this potential to be fully realized because
the computational expense is still considerable (Seljebotn
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et al. 2014) and, in practice, samplers are still mostly used on
large and intermediate angular scales (Planck Collaboration
et al. 2014b).

Although one could argue that the ever-advancing progress
of computer technology lessens the need for clever likelihood
approximations, one could at the same time argue that reducing
the time needed to perform likelihood evaluations allows us to
expand our field of interest. As an example, there is little to
gain in terms of computational time if we restrict our interest to
the standard six-parameter ΛCDM model, which can presently
be tackled by a standard laptop in a comfortable time frame.
Presently, however, considering extensions to this model is
gaining more and more interest. Such extensions expand the
parameter space of interest, which reintroduces the need to
make our likelihood evaluations as fast as possible while still
being reasonably accurate.

In this paper, we revisit the problem of exact brute-force
likelihood evaluation on large angular scales, exploiting the
ideas initially introduced for CMB analysis purposes by
Tegmark et al. (1997) to reduce the computational cost through
linear compression. Rather than crudely downgrading the data
in pixel space until the computational costs are acceptable, we
compress the data into a lower-dimensional basis set using a
more general linear transformation, thereby reducing computa-
tional costs while retaining most of the important information.
Furthermore, we also show how this formalism naturally leads
to a very efficient implementation of the Quadratic Maximum
Likelihood (QML) power spectrum estimator.

2. BASIC DEFINITIONS

In their most basic form, CMB observations may be
modeled7 as a linear sum of a cosmological CMB signal, s,
observed by some instrumental beam convolution operator, B,
some set of foreground contaminants, f , and random noise, n,

d Bs f n. 1( )= + +

The signal and noise terms are usually both assumed to be
Gaussian distributed with zero-mean and covariances
S B ss Bt t= and N nn ,t= respectively, and the total data
covariance matrix is C S N,= + neglecting for the moment
the foreground term.

In most cases, the CMB signal is assumed to be isotropic,
and it is therefore especially convenient to expand this
component into spherical harmonics:

s Y Yss . 2
ℓ

ℓ

m ℓ

ℓ

ℓm ℓm
0

max

˜ ( )å å= º
= =-

Here we have defined Y as a matrix listing all of the spherical
harmonics (both spin-0 for temperature and spin-2 for
polarization; see Zaldarriaga & Seljak 1997 for details) up to
some maximum band limit, ℓmax column-wise, and s̃ to be a
vector containing the spherical harmonics coefficients of s. We
additionally define the symbol Y 1- to denote the inverse
spherical harmonic transform,

s Y s Y sd , 3ℓm
4

1˜ ( )*ò= W º
p

-

but emphasize that this is not a true inverse of Y, as neither Y
norY 1- is square, and any spherical pixelization introduce non-
orthogonality between modes on small angular scales; we only
use Y 1- for high-ℓ mode filtering in the combination P YY 1= -

in this paper, for which exact orthogonality is not required.
Under the assumption of statistical isotropy, the signal

covariance takes on a particularly simple form in spherical
harmonic space, and is given by the angular power spectrum,
C .ℓ Assuming further that the instrumental beam is circularly
symmetric and fully described by a set of Legendre
coefficients, bℓ, and that any smoothing effects from discrete
pixelization may be described in terms of an effective pixel
window function, pℓ, the harmonic space elements of the signal
covariance matrix read

S b p s s p b C b p , 4ℓm ℓ m ℓ ℓ ℓm ℓ m ℓ ℓ ℓ ℓ ℓ ℓℓ mm,
2 2˜ ( )* d dº =¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

where, for simplicity, we have defined the power spectrum
coefficient, Cℓ, to denote a 3× 3 block incorporating all of the
temperature and polarization auto- and cross-spectra:
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From Equation (2) we see that the corresponding signal
covariance matrix in the map domain simply reads S YSY ,T˜=
and it is easy to show that the entries of this matrix are given by
the two-point correlation function.
Properly accounting for the foreground term is a far more

complicated problem, and extensive literature has been written
on this topic (e.g., Leach et al. 2008; Planck Collaboration et al.
2015, and references therein). In this paper, we limit ourselves
to a very basic foreground model in which f may be described
by a finite set of spatial templates, each known perfectly up to
an overall amplitude:

f t Taa , 6
i

i i ( )å= =

where T is a matrix listing all of the templates column-wise and
a is a vector of template amplitudes. Accounting for such
templates is most easily implemented by solving the normal
equations for a, and redefining the data vector and data
covariance matrix as follows:

d d T T S N T T S N d 7t t1 1 1( )( ) ( ) ( )¬ - + +- - -

N N TT ; 8t ( )a¬ +

here, α is a parameter that estimates the uncertainty in the
template fit and a  ¥ corresponds to full projection.
However, from a numerical point of view, it is more convenient
to set α to a large numerical value to avoid an otherwise
singular covariance matrix. In this paper, we let T consist of the
monopole and three dipoles, all normalized to a maximum of
unity, and let α= 103.
With the above data model, the data likelihood depends only

on the angular power spectrum, and is given by a multivariate

7 Bold lower case letters denote vectors, and bold capital letters matrices. In
the pixel basis, vectors consist of the Stokes I, Q, and U parameters stacked
sequentially, and matrices consist of 3 × 3 block matrices containing II, IQ,
IU, etc.
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Gaussian:
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where we have implicitly accounted for template margin-
alization by the redefinitions in Equations (7) and (8). In
principle, this expression can be used directly for CMB power
spectrum or cosmological parameter estimation when coupled
with some nonlinear optimization or MCMC implementation.
However, as already noted, this expression contains both a
matrix inverse and a determinant, and therefore scales
computationally as N .pix

3( ) Direct likelihood evaluations are
therefore computationally very expensive, and the main goal of
this paper is to speed up this expression simply by reducing the
effective number of pixels.

3. THE 9-YEAR WMAP LOW-ℓ LIKELIHOOD

For pedagogical purposes, we specialize the discussion in
this paper to the low-ℓ WMAP likelihood,8 as presented by
Hinshaw et al. (2013). However, we note that the same
approach should be fully applicable to corresponding Planck
low-ℓ polarization observations once available.

The 9-year WMAP low-ℓ likelihood function is implemented
as a hybrid between a pure temperature likelihood using a
Blackwell–Rao estimator (Chu et al. 2005), and a pure
polarization brute-force likelihood, similar to that described
in Equation (9). Correlations between the two are handled by
explicitly decorrelating the temperature component from the
Stokes Q and U maps, given some fixed estimate of the full-sky
temperature sky map and Cℓ

TE (Page et al. 2007). For
computational speed, the polarization data are degraded onto
a very low-resolution grid, defined by the HEALPix9

pixelization with a resolution parameter of Nside= 8. This
pixelization has a pixel size of 7°× 7° and reliably supports
harmonic modes only up to ℓmax= 16, although the WMAP
likelihood implementation formally includes modes up to
ℓ= 23. After applying a Galactic mask removing contaminated
pixels, a total of 1100 low-resolution polarization (Q and U)
pixels are included in the likelihood.

This approach leads to a fast and flexible low-ℓ likelihood.
However, several assumptions have been made in the process,
most notably that the temperature noise is fully negligible
(enabling the temperature–polarization split) and that the full-
sky temperature modes are well described by the WMAP ILC
map. Neither of these assumptions are obvious (see, e.g.,
Finelli et al. 2013 for a relevant discussion), and in particular
the assumption of no temperature noise has significant
consequences in terms of the effective prior of the likelihood.
An absolute mathematical requirement for any likelihood is
that the total covariance matrix, S N,+ be positive definite,
while a softer physical requirement is that the signal covariance
S alone be positive definite. Enforcing these requirements
consistently is not trivial with a split likelihood, and we will see
in Section 7 that the WMAP likelihood has nonphysical “holes”
as a result of this, as well as a generally complicated behavior
near the singularity regions.

A second issue with the WMAP likelihood implementation
lies in its resource requirements. To accelerate the likelihood
evaluations, the WMAP code precomputes the Legendre
polynomials for each pair of pixels, thereby saving CPU time
for building the signal covariance matrix. However, this is
costly in terms of memory, and requires 1 GB RAM already at
Nside= 8, which only supports ℓ 16. Doubling the resolution
in order to probe scales up to ℓ 32 increases this requirement
to 33 GB, which is more than most computers can handle
comfortably today.
In this paper, we present a more direct implementation of a

low-ℓ WMAP likelihood that relies only on the brute-force
likelihood expression in Equation (9). Both temperature and
polarization sky maps are considered at a common resolution
parameter of Nside= 16. Otherwise, we adopt data combina-
tions that are as close as possible to those used for the official
WMAP likelihood (Hinshaw et al. 2013). Specifically, for
polarization, we include only the foreground-reduced WMAP
Ka, Q, and V bands in the following, not the K band, which is
used for foreground cleaning, or the W band, which is known
to have more poorly correlated noise and/or systematics issues
than the other frequencies. For the temperature component, we
adopt the 9-year WMAP ILC map, smoothed to 10° FWHM.
The individual foreground-reduced polarization frequency

maps are co-added into a single “clean” CMB map by inverse
noise variance weighting,

d N N d , 10
i

i
i

i i
1

1

( )
⎛
⎝⎜

⎞
⎠⎟å å= -
-

where Ni is the full covariance matrix for band i, which also
take into account the additional noise contribution from the
foreground reduction. The noise covariance of the co-added
map reads

N N . 11
i

i
1

1

( )
⎛
⎝⎜

⎞
⎠⎟å= -
-

Finally, we add 2 μK regularization noise to the ILC
temperature map to make the temperature covariance matrix
invertible. The full noise covariance thus consists of a diagonal
temperature block and a dense polarization block, with no
cross-terms between the two.
We adopt the WMAP KQ85 mask for the temperature

component and the P06 mask for the polarization components
(Bennett et al. 2013), leaving a total of 2326 temperature and
4510 polarization (Q and U) pixels for analysis, or a total of
6836 elements in the data vector. The instrumental beams are
taken to be a perfect Gaussian of 10° FWHM for the
temperature, and a Gaussian of 30.6 arcmin for polarization,
corresponding roughly to the Q-band beam, and adopted as a
rough average of the three channels; its impact is very small for
the multipoles considered in the following, with a minimum
amplitude of bℓ= 0.993 at ℓ= 30.

4. LINEAR COMPRESSION AND BASIS DEFINITIONS

4.1. Basic Formalism

Any linear transformation of a set of Gaussian random
variables results in another set of Gaussian random variables.

8 http://lambda.gsfc.nasa.gov
9 http://healpix.jpl.nasa.gov
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Therefore, we consider some linear combination of the form

d Pd, 12¯ ( )=

where P is some N× Npix transformation matrix with N�Npix,
and d̄ is a transformed data vector. If d is a zero-mean Gaussian
field with covariance C, then d̄ will be a zero-mean Gaussian
field with covariance C PCP .t¯ = Using the data model
described above, the corresponding likelihood for these
compressed data therefore reads

d
S N

PS P PNP

C
e

C

e

C
. 13

d S N d
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The interesting question is now whether or not there exists
some transformation P that retains the relevant information in
d with a smaller number of data points, N< Npix.
Before explicitly defining a set of candidate bases, it is useful

to introduce some additional notation. First, since there are
always parts of the sky that are unavailable for cosmological
CMB analysis due to foreground contamination from our own
Galaxy, we introduce a pixel space masking operator, M,
defined in terms of an Nmask× Npix matrix that contains one
row for each unmasked pixel, with a value of 1 in the column
corresponding to the pixel number; all other entries are zero.
When applied to full-sky data vectors, this operator simply
picks out the unmasked pixels, leaving all of the values
numerically unchanged.

Second, we define a harmonic space truncation operator,
P MY Y M ,h ℓ ℓ

T1
t t

º - where only spherical harmonics up to some
truncation multipole, ℓt� ℓmax, are included in the spherical
harmonics operator. This operator filters out any spherical
harmonics above ℓt, evaluated only over masked pixels; since
only masked pixels are included, the operator is not a sharp
operator in multipole space, but rather corresponds to a pseudo-
aℓm projection operator with non-zero coupling to multipoles
above ℓt (e.g., Hivon et al. 2002).

Third, we define A[ ] as the set of eigenvectors of A with a
fractional eigenvalue larger than ò relative to the maximum
eigenvalue. That is, let V be the matrix containing the
eigenvectors of A, and W be the diagonal matrix of
eigenvalues, such that A VWV ;t= then, A[ ] contains all
columns of V with an eigenvalue larger than Wmax .· ( ) This
operator removes those modes that have low eigenvalues,
which in turn will be used to eliminate modes with a low
signal-to-noise ratio. However, due to the very different signal
amplitudes in temperature and polarization, we define two
different eigenvalue thresholds, òT and òP, for the temperature
and polarization modes, and set the temperature–polarization
cross-elements in A to zero before performing the eigenvalue
decomposition.

4.2. Basis Sets

Using the above notation, we define five candidate bases to
be considered for further analysis:

P M

P P M

P P N P M

P P S N P M

P P S N S P M

Pixel

Harmonic

Inverse noise

Signal plus noise

Signal to noise,

h

h h
t

h h
t

h h
t

1

2

3
1

4

5
1 2 1 1 2( )

[ ]
‐

( ) ‐ ‐

‐ ‐

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
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=
=

=

= +

=

-

-

where S S Cℓ
fid( )= is the signal covariance matrix computed

from some fiducial model.10 Each basis is either commonly
encountered in the literature (i.e., pixels, harmonics, signal-to-
noise eigenmodes) or has a well-defined, specific purpose (e.g.,
the inverse noise basis is particularly well suited to test
systematics by suppressing poorly measured modes, while the
signal-plus-noise basis corresponds to numerical regularization
of the data covariance matrix). It is also worth noting that the
signal-to-noise basis is closely related to the Karhunen–Loeve
(or Principal Component) transform originally proposed for
cosmological applications by Tegmark et al. (1997). A
potential dependence on the assumed fiducial spectrum, C ,ℓ

fid

is considered in Section 7; we find no significant detrimental
effects by adopting a power spectrum far from the best-fit
spectrum.
There are two tunable parameters in this framework, ℓt and ò,

both of which have a very intuitive interpretation: lowering ℓt

removes high-ℓ spherical harmonic modes, while increasing ò
removes low signal-to-noise modes. However, it is important to
note that no choice of either ℓt or ò can ever bias the power
spectrum, but only modify the uncertainties. Linear compres-
sion simply amounts to removing irrelevant modes, and is
mathematically fully equivalent to removing masked pixels.
However, lowering ℓmax (as opposed to ℓt) will both bias the
power spectrum and increase χ2 because it changes the data
model, not simply the data selection. This is an important
difference between our approach and that implemented by the
official WMAP polarization likelihood code, which simply
downgrades the actual sky maps from Nside= 16 to 8.
Before proceeding with basis optimization, it is useful to

make some intuitions about the various basis candidates.
Therefore, in Figure 1, we show an example basis vector, and
in Figure 2 we show the eigenvalue spectrum for each basis as
computed from the 9-year WMAP data (Section 3). The
example basis vectors all correspond to the vector with the
thirtieth largest eigenvalue, ò30, for both temperature and
polarization. Only the Stokes Q field is shown for polarization,
as Stokes U looks qualitatively similar.
Starting with the pixel basis, in Figure 1, we see that, in this

case, each pixel corresponds to an independent basis vector.
Furthermore, as seen in Figure 2, the eigenspectrum is
completely flat, and no truncation limit, ò, can remove any
degrees of freedom. The pixel basis is therefore always
complete and all information stored in the uncompressed data
is (by definition) retained in this basis. In the following, we
adopt the pixel basis as the reference against which we measure
data loss for other bases.
The second row in Figure 1 shows a temperature and

polarization mode of the spherical harmonics basis, and the

10 We set C Cℓ
BB

ℓ
EE,fid ,fid= when constructing the basis signal covariance

matrix in the following analyses to ensure good sampling of both spectra.
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dashed line in Figure 2 shows its eigenspectrum. Both of these
highlight a problematic feature of this particular basis: it is
susceptible to numerical errors at high multipoles. Ideally,
Y Yℓ ℓ

1
t t

- should be identically equal to one for ℓ� ℓt, and zero
otherwise. However, because all of the operations are
performed on a finite pixelization that supports only a finite
number of multipoles, there is always some leakage between
multipoles in this operator. Furthermore, there is no guarantee
that Y Y dℓm ℓm*ò W will be smaller than one. On the contrary, the
worst-behaved modes often have a square-integral substantially
larger than one. This is observed as three distinct regions in the
eigenspectrum of the spherical harmonics basis: the flat plateau
from about 50 to 1500 corresponds to well-resolved modes
with good support on the masked sky; the rapid decrease above
1500 corresponds to modes that are filtered either by the high-ℓ
truncation operator or are degenerate because of the sky
mask;11 and, finally, the modes below 50 are numerically
unstable high-ℓ modes with an eigenvalue larger than 1. The
harmonic mode shown in Figure 1 is an example of such
a mode.

The third basis corresponds to the eigenvectors of the inverse
noise covariance matrix. For the low-resolution WMAP data,
this matrix is given by a spatially constant regularization noise
RMS amplitude of 2 μK for temperature and the actually
measured instrumental noise covariance for polarization,

including both scanning strategy and correlated noise effects.
For temperature, the inverse noise basis functions are therefore
identical to the pixel basis, with one pixel per value, with one
exception: this basis explicitly highlights the effect of fore-
ground template projection in the form of a sharp drop in the
eigenspectrum, corresponding to the monopole and dipole
modes which are manually assigned a numerically large
uncertainty. For polarization, the dominant feature is the
scanning strategy, which can clearly be seen in the example
basis mode in Figure 1. This basis may be useful for
systematics studies, since instrumental systematics are often
strongly associated with poorly measured modes.
The fourth basis is defined as the eigenvectors of the total

data covariance matrix, S N.+ This could be a relevant basis
for cases that have an ill-conditioned covariance matrix, as
often happens for strongly signal-dominated temperature data,
S N , for instance. Since S, by construction, is spanned by
ℓ N1max

2
pix( )+ < modes, this situation leads to a poorly

conditioned total covariance matrix that needs to be regularized
before further analysis. The two most common approaches are
either to add a small amount of white noise to the data (known
as “regularization noise”) or to increase ℓmax beyond the

Figure 1. Example basis vectors for temperature (left column) and polarization
(right column) for each of the five basis sets considered in this paper, computed
from the 9-year WMAP data. In each case, the basis vector with the thirtieth
highest eigenvalue is shown, and only the Stokes Q component is shown for
polarization; the Stokes U components look qualitatively similar.

Figure 2. Eigenvalue spectra for all five bases defined in the text, shown both
for temperature (top) and polarization (bottom), as evaluated for the 9-year
WMAP data, using no high-ℓ truncation. The eigenvalues are normalized to the
maximum value and sorted according to decreasing values; increasing values
from left to right indicate negative eigenvalues.

11 Note that the absolute value of the eigenvalue is plotted here; the sharp
feature indicates the mode for which the eigenvalue becomes negative.
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Nyquist limit formally supported by the pixelization. A third
option would be to use the S N+ basis proposed here, which
simply removes by hand poorly conditioned modes from the
data set.

Finally, the fifth basis is given by the eigenvectors of the
signal-to-noise covariance matrix, S N S ,1 2 1 1 2- written in an
explicitly symmetric form to minimize numerical errors. In this
case, a prior spectrum is introduced that allows one to select
modes based on individual signal-to-noise ratios, only retaining
those which actually contribute useful information. Several
variations of this have already been discussed extensively in the
literature, resulting in various implementations of the same
underlying ideas, two of which are the Karhunen–Loeve and
Principal Component transforms. This was also the basis set
originally proposed by Tegmark (1997). For a related
application to non-Gaussianity, see Rocha et al. (2001).

4.3. A Condition Number-based Prior

Before proceeding to further analysis, we comment briefly
on a technical issue already mentioned in Section 3, namely,
that the total data covariance matrix, C, must be positive
definite in order for the likelihood to be well defined.
Intuitively, and not mathematically rigorously, this condition
breaks down whenever S N .ℓm ℓm ℓm ℓm, ,< - However, the like-
lihood surface actually becomes unstable well before this limit
due to numerical errors, as illustrated in Figure 3. The only
difference between the main frame and the inset is the x-axis
range. First, the thick dashed line shows a slice (arbitrarily
normalized) through our pixel basis likelihood for C ,BB

2( )
keeping all of the other multipoles fixed at their maximum-
likelihood values. This slice exhibits perfectly normal behavior
for large values of C ,BB

2 following roughly the behavior of an
inverse Gamma distribution. However, near the value of
C 0.0175 KBB

2
2m= - , the likelihood rapidly increases and

essentially diverges to infinity.
This behavior is a generic feature of any likelihood near the

boundary at which it becomes singular: even if the matrix may

be positive definite and invertible, the numerical value cannot
be trusted sufficiently near the singularity boundary. Fortu-
nately, this problem can be resolved in several ways, and our
preferred solution is to monitor the covariance matrix condition
number, i.e., the ratio of the largest to smallest eigenvalue. This
quantity is shown as a solid thick line in Figure 3 for the above
case. For any power spectrum value not close to the singularity
boundary, we see that the condition number is highly stable,
with a numerical value around 15,000 for this particular case.
However, once the covariance matrix approaches singularity, it
starts to increase rapidly and does so sooner than the actual
likelihood. The combination of a high degree of stability within
the main parameter volume and a rapid increase toward the
edges makes the condition number an effective monitor of the
likelihood robustness. Therefore, rather than requiring that the
covariance matrix simply be positive definite (for instance, as is
enforced by the official WMAP likelihood), we demand that the
condition number must be smaller than some pre-defined
threshold. The specific value of this threshold must be
determined by some initial likelihood scans, but in practice
this is very straightforward. For the above basis, we adopt a
numerical threshold of 50,000, and the resulting regularized
likelihood is shown as a dashed thin line. The slight difference
with respect to the unregularized likelihood at higher values is
due to the slightly different maximum-likelihood power
spectrum coefficients at other multipoles caused by the same
prior.

5. EFFICIENT AND STABLE QML IMPLEMENTATION

The formalism described in Section 4 can be used to derive a
computationally efficient variation of the QML estimator,
initially introduced by Tegmark (1997) and Bond et al. (1998)
as an efficient route to the maximum-likelihood CMB power
spectrum. For example applications, see, e.g., Gruppuso et al.
(2009, 2011, 2013) and references therein. Let C C Cb b, = ¶ ¶
denote the derivative of the data covariance matrix with respect
to some power spectrum parameter, Cb, with b ℓ ℓ, , ,n1{ }= ¼
where n denotes the number of multipoles included in the
spectral bin. The first derivative and the Fisher matrix of the
log-likelihood may then be written as

dd C C C C
C

ln 1

2
tr 14

b

t
b

1
,

1( )( )¯ ¯ ¯ ¯ ¯ ¯ ( )⎡⎣ ⎤⎦¶
¶

= - - -

C C C CF
1

2
tr ; 15bb b b

1
,

1
,¯ ¯ ¯ ¯ ( )⎡⎣ ⎤⎦=¢ - -
¢

see Section IIC of Bond et al. (1998) for full details.
The QML estimator is now defined as follows.

1. Make some initial guess at the power spectrum, C .b
0( )

2. Update the spectrum according to the following rule:

FC C
C

ln
. 16b

i
b

i

b
bb

b

1 1( ) ( )( ) ( ) å= +
¶
¶

-

¢

-
¢

¢

3. Iterate until convergence.

This algorithm is closely related to the Newton-Raphson
optimization method, with the one difference being that it
employs the (computationally cheaper) Fisher matrix instead of
the curvature matrix. The two algorithms converge to the same
(maximum-likelihood) solution (Bond et al. 1998).
In this paper, we note that Equations (14) and (15) can be

slightly rewritten to facilitate fast numerical evaluation.

Figure 3. Regularizing the likelihood with a condition number prior. Dashed
curves show slices through C BB

2( ) while fixing all the other multipoles at their
maximum-likelihood points. Solid lines show the condition number of the data
covariance matrix, S N,+ as a function of the power spectrum. Thick curves
show results with no prior on the condition number, and thin curves show
results when requiring the condition number to be smaller than 50,000.
Condition number regularization eliminates likelihood artifacts near the
singularity boundary.
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Specifically, the signal matrix may be written as
C PYSY P N ,t¯ ˜ ¯†= + where S̃ is the full-sky signal covariance
matrix in harmonic space, and all geometry and data selection
effects are encoded in the constant projection operators P and
Y. The derivative of this matrix with respect to Cb reads

C
PYI Y P

C
, 17

b
b

t ( )†¶
¶

=

where Ib is a harmonic space matrix containing the value 1 for
entries containing Cℓ in S̃ for ℓ b,Î and otherwise 0; it is very
sparse, and multiplication with this matrix is fast.

Inserting this expression into Equations (14) and (15), and
noting that the trace operator is invariant under cyclic
permutations, we see that

Y P C dd C C PY I
C

ln 1

2
tr 18

b

t t
b

1 1( ) ( )( )¯ ¯ ¯ ¯ ¯ ( )†⎡⎣ ⎤⎦¶
¶

= -- -

Y P C PY I Y P C PY IF
1

2
tr . 19bb

t
b

t
b

1 1( ) ( )¯ ¯ ( )† †⎡⎣ ⎤⎦=¢ - -
¢

While these expressions look somewhat formidable at first
glance, they are in fact computationally very efficient. Starting
with the first derivative, the important point is that all multipole
dependencies have been factorized away from expensive dense
matrix products. After precomputing PY (which only has to be
done once for every basis set) and grouping the matrix products
as indicated with parentheses in the above equations, the
computational cost of the first derivative is given by only two
matrix products plus one Cholesky factorization/solve, and the
total memory consumption is equivalent to four dense matrices.
The memory consumption is independent of the number of
power spectrum bins, and the CPU time is only weakly
dependent on the number of bins, involving only a single
sparse trace evaluation.

A similar consideration holds for the Fisher matrix. In this
case, the main computational cost lies in evaluatingY P C PYt 1¯† -

once, at the cost of one Cholesky factorization/solve and one
matrix multiplication. Computing the remaining product and
traces is computationally fast because of the high sparsity of the
Ib operator.
The iterative QML algorithm as described above has one

major weakness: the power spectrum proposed in iteration i
does not necessarily yield a positive definite total data
covariance matrix, C.¯ This typically happens whenever one
or more likelihood conditionals have a sharp edge beyond
which (symbolically) S N ,ℓm ℓm< - which is not uncommon in
the noise-dominated regime (see Section 7 for explicit
examples).

As a safeguard against this problem, we modify the QML
algorithm as follows.

1. Make some initial guess at the power spectrum, C .b
0( )

2. Update the spectrum according to the following rule:

FC C
C

ln
, 20b

i
b

i

b
bb

b

1 1( ) ( )( ) ( ) åa= +
¶
¶

-

¢

-
¢

¢

where the step length, α, maximizes C .b
i( )( ) We implement

the latter optimization with a standard line optimizer (linmin;
Press et al. 2007).

3. Convergence is defined when the log-likelihood has
changed by less than 0.1 over the last three iterations.

The underlying intuition is simply to tune the step size along
the proposed QML direction such that the likelihood is
maximized. Each step will necessarily lead to a higher
likelihood value, and the algorithm cannot diverge.
Unfortunately, this stability comes at a non-negligible

computational cost, as one now has to perform a nonlinear
optimization within each main QML iteration, and this
operation requires repeated likelihood evaluations. However,
since each likelihood evaluation is quite fast due to the
compression step described above (after all, the likelihood
function is designed to be an active component in an MCMC
cosmological parameter estimation framework), this is not a
showstopper; the benefit of additional stability more than
compensates for this expense.
Before turning to applications, we make one note regarding

error estimation. Often, F bb
1( )- is adopted as an uncertainty

on the QML estimate, a choice that is primarily driven by
computational efficiency. In this paper, we quote asymmetric
68% confidence limits, computed by mapping out the like-
lihood conditionally around the maximum-likelihood point for
each parameter, and finding the smallest range that encompass
68% of the conditional likelihood volume.

6. BASIS OPTIMIZATION

We now turn our attention to basis set optimization,
considering each of the five candidates defined in Section 4
as applied to the 9-year WMAP data described in Section 3. In
our framework, basis optimization corresponds simply to
determining the harmonic space truncation multipole, ℓt, and
eigenvalue thresholds, òT and òP, which result in the smallest
number of accepted modes under the constraint that the
information content over some range of multipoles be
conserved. For the main analysis, we consider 2� ℓ� 32 to
be the multipole range of interest, matching that of the official
WMAP temperature likelihood, and as a secondary test, we
consider a case in which the polarization range is constrained to
ℓ� 10, directly targeting the low-ℓ EE reionization peak.
The goal of our first test is to compare the efficiency of the

five candidate bases. For this, we base our statistic on the
Fisher information: for each combination of truncation multi-
pole and eigenvalue thresholds, we compare the Fisher
uncertainty (i.e., Fii

1 2- ) for the proposed basis with the
corresponding value computed from the full-pixel basis. We
then require that the uncertainty not increase by more than 10%
for any multipole within the range of interest. Thus, this test is
designed only to compare the relative compression efficiency
of the various bases, not measure the absolute information
content, as correlations between multipoles are not properly
quantified.
The results from these calculations are summarized in

Figure 4, plotting the lowest number of accepted modes for
each basis as a function of truncation multipole. First, we see
that higher truncation multipoles generally require more modes
in the basis in order to produce stable low-ℓ results. This makes
sense because many of the newly added high-ℓ modes have a
higher eigenvalue than some of the previous low-ℓ modes, and
therefore more modes have to be included to retain the same
low-ℓ information. Selecting modes based on harmonic content
rather than eigenvalue would circumvent this issue. Second,
and this is the main point of the plot, we see that the four
candidate bases behave quantitatively differently: while the
inverse noise basis requires more than 4500 modes to produce
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robust results for high truncation multipoles, only 3500 modes
are needed in the signal-to-noise basis, corresponding to a
reduction of 22% in the number of modes or a theoretical
speed-up of 2. The two other bases lie in between, and are
fairly close to each other. All four candidate bases achieve
substantial compression compared to the original pixel basis,
including a total of 6836 modes. In the following, we adopt the
signal-to-noise basis as our default compression basis.

In Figure 5, we plot the relative Fisher uncertainty increase
as a function of the truncation multipole for each of the four
cosmologically interesting power spectra (C ,ℓ

TT C ,ℓ
TE Cℓ

EE , and
Cℓ

BB) for this basis. Decreasing ℓt gradually from 32 to 26, we
observe two main effects. First, the most striking feature is that
the uncertainties increase by almost an order of magnitude for
any multipoles at ℓ ℓ .t> However, they do not become infinite
because of the non-orthogonality introduced by the mask. In
other words, there is information about high multipoles in cut-
sky harmonics (“pseudo-aℓms”). Conversely, the second effect
is that the uncertainty on multipoles below ℓt also increases
when removing high-ℓ modes, gradually increasing the low-ℓ
noise floor.

From Figure 4, we know that no Fisher uncertainties
between 2� ℓ� 32 increase by more than 10% when including
2500 modes or more in the signal-to-noise basis. However, this
is a quite crude criterion, and is not sufficient for establishing a
proper production likelihood; for this, we have to make sure
that correlations are also properly accounted for. We therefore
define a more directly applicable statistic through a simple two-
parameter amplitude–tilt model of the form C q n,ℓ ( )=
q ℓ ℓ C ,n

ℓpivot
fid( ) and map out the two-dimensional (2D) (q, n)

likelihood for each effective basis. The search is performed in
terms of the number of modes, and only the signal-to-noise
basis is subjected to this analysis.

A subset of the results derived in this calculation is shown in
Figure 6, in the form of 2D likelihood contours. Here, we see
that when including only 2473 modes, which resulted in a less
than 10% increase in any single multipole error bar, the
integrated uncertainties over the entire range lead to significant
changes. However, the agreement rapidly improves when
adding more modes, and with 3102 modes the agreement with

the pixel basis is very good. To quantify this statement, we
calculate the integrated absolute difference between the two
distributions,

dqdn, 211 2∣ ∣ ( ) òD = -

and compare the resulting parameter with that computed from
two bi-variate Gaussians with identical covariances but different
means. Numerically, we find a value of Δ= 0.002 for the
basis including 3102 modes, which corresponds to a shift of
0.006σ for two bi-variate Gaussians. Recomputing the Fisher
uncertainties with this new basis, we find that the relative error
increase is now smaller than 3.8% for all multipoles.
We emphasize that this particular number of modes is not to

be taken as a universal prescription, and will generally depend
on the signal-to-noise ratio of the data in question. However,
we should note that the required number of modes needed for
convergence lies close to the number of modes that are left after
truncating the multipole expansion for temperature and

Figure 4. Number of modes required for the Fisher uncertainty to increase by
no more than 10% relative to the pixel basis, including modes between
2 � ℓ � 32 and plotted as a function of truncation multipole.

Figure 5. Relative Fisher uncertainty increase as a function of truncation
multipole for each of the four cosmologically interesting power spectra (C ,ℓ

TT

C ,ℓ
TE Cℓ

EE and Cℓ
BB), evaluated for the signal-to-noise basis.

Figure 6. Two-parameter amplitude–tilt likelihoods for various eigenmode
cutoffs for the signal-to-noise basis (broken contours), compared to the
corresponding likelihood evaluated from the pixel basis (solid contours). The
contours indicate the peak and 1, 2, and 3σ confidence regions, respectively.
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polarization at ℓ= 32, namely, 3 32 1 3267,2· ( )+ = with the
difference between this number and the required number of
modes (3102) perhaps explained by the low signal-to-noise
ratio of the polarization data.

Figure 7 shows the eigenspectrum of the signal-to-noise
eigenbasis once again, this time with the two proposed
eigenmode cutoffs marked as vertical lines. To achieve
reasonable accuracy on individual multipoles, it is sufficient
to include only the high signal-to-noise modes in the flat high
eigenvalue plateaus. However, to properly account for correla-
tions, it is important to also include the modes that lie in the
rapidly dropping regime; these are partially degenerate modes
that still carry some information. On the other hand, beyond
this rapid decrease, the remaining eigenvalues for all practical
purposes are zero, and can be excluded safely. Note that this
region starts around 32 1 2( )+ and 2 32 1 2· ( )+ for tempera-
ture and polarization, respectively, which makes intuitive
sense, given that these are the number of modes left after
truncating the multipole expansion at ℓ= 32. Thus, future basis
optimization can be performed quite simply by computing the

the eigenspectrum of the signal-to-noise basis, and determining
the cutoff at which the numerically singular region begins.
Before concluding this section, in Figure 8, we show the

CPU time per likelihood evaluation as a function of the number
of basis modes (top panel), as well as the corresponding speed-
up (bottom panel). Each point in this plot is computed as the
average of 50 consecutive single-CPU evaluations. For the
pixel basis that includes 6836 modes, each likelihood
evaluation requires 35 CPU seconds, while each signal-to-
noise basis evaluation (including 3102 modes) requires 7.5
CPU seconds. The realized speed-up is thus a factor of 5,
which, although significant, is lower than the theoretical limit
of (35/7.5)3= 11 by a factor of two. On the other hand, all of
the expensive operations are implemented using standard
Lapack routines, which are already highly optimized, and fully
gaining this factor is not trivial.

7. POWER SPECTRUM, LIKELIHOOD,
AND PARAMETERS

In this section, we assess the performance of the compressed
likelihood formalism in terms of the CMB power spectrum, the
likelihood, and cosmological parameters. Figure 9 shows the
low-ℓ WMAP temperature and polarization power spectrum as
derived with the QML estimator described in Section 5, using
the signal-to-noise basis containing 3102 basis modes from the
last section. Different colors show the results after different
numbers of QML iterations going from few (blue) to many
(red). The error bars indicate the asymmetric 68% errors for the
last iteration. Figure 10 shows the corresponding log-likelihood
as a function of the iteration.
Several interesting features can be seen in these plots. First,

the initial guess adopted for this calculation was the best-fit
Planck 2013 model, indicated as dashed lines in Figure 9, while
formal convergence was achieved after 12 iterations. However,
we see that already a single QML iteration results in a solution
which for most multipoles is quite close to the actual
maximum-likelihood solution. For exploratory work, for
instance, when trying to understand the effect of systematics
on low-ℓ polarization studies, a single-iteration QML power

Figure 7. Normalized temperature (top) and polarization (bottom) eigenvalue
spectrum for the signal-to-noise basis with ℓt = 32. The vertical lines indicate
the cutoffs determined by the Fisher uncertainty (dashed) and amplitude–tilt
(dotted) analyses. For robust results, all of the modes below the sharp decreases
should be included.

Figure 8. CPU time per likelihood evaluation as a function of the number of
basis modes (top), and corresponding speed-up relative to pixel basis
evaluation (bottom). The average was calculated from 50 evaluations running
on a single CPU. Vertical lines indicate the timing estimates for the two bases
found in the text.
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spectrum approximation may be quite useful, providing a near
optimal power spectrum estimate in less than two minutes of
CPU time. However, for final analysis, it is clear that several
iterations are indeed highly desirable, as the log-likelihood
increases by more than ln 5.5D = and 2 ln2 cD = - D
by more than 11. As a concrete example, the temperature
quadrupole converges slowly because of its intrinsically non-
Gaussian shape, and requires at least eight iterations before
stabilizing.
In Figure 11, we compare three different power spectrum

estimates, all computed by maximum-likelihood techniques
using the 9-year WMAP data, but with different underlying
likelihoods. Green points are derived directly from the official
WMAP low-ℓ likelihood through a nonlinear multivariate
Powell search (Press et al. 2007); blue points are derived from
the pixel basis likelihood described in this paper using the
iterative QML estimator; and red points are derived from the
corresponding signal-to-noise basis that includes 3102 modes.

Figure 9. 9-year WMAP QML power spectrum estimates as a function of QML
iteration (from blue to red). Error bars are asymmetric 68% confidence limits
computed from the conditional likelihood evaluated around the maximum-
likelihood point for the last iteration.

Figure 10. Log-likelihood of the QML power spectrum estimate as a function
of QML iteration.

Figure 11. Comparison of maximum-likelihood power spectra derived from
three different WMAP low-ℓ likelihood implementations. Error bars indicate
asymmetric 68% confidence regions computed from conditional likelihood
slices around the joint maximum-likelihood point.
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Figure 12 compares individual conditional likelihood slices
computed from the WMAP likelihood and the signal-to-noise
basis.

Overall, the agreement between the three spectra is very
good, and for most multipoles the relative shifts are much less
than 1σ. However, there are notable differences as well, and
perhaps the most striking is the different behavior of the error
estimates associated with the Cℓ

TE spectrum. Considering first
the WMAP spectrum in Figure 11, a total of 16 out of 31 power
spectrum coefficients have a vanishing error bar either toward
low of high values, indicating a maximum-likelihood point that
lies on a sharp likelihood boundary. For comparison, for the
pixel and signal-to-noise basis likelihoods, only 4 and 0 out of
31 coefficients, respectively, show similar behavior. This
difference is primarily due to the different effective priors
imposed by the two approaches; while the WMAP likelihood
only requires the data covariance to be positive definite, we
impose the stronger criterion that the condition number must
also be well behaved (see Section 4.3). The latter prior prevents
the nonlinear search algorithm from finding nonphysical power
spectrum solutions near the singularity boundary with artifi-
cially high likelihood values, which in turn forces the
correlated power spectrum coefficients away from their best-
fit values.

We also note that the pixel-based likelihood error bars are, in
a sense, less symmetric than those of the signal-to-noise basis.
This is most likely a cause of the fact that the pixel-based
likelihood is more ill conditioned due to the higher number of
redundant modes. This degeneracy makes the likelihood slices
behave worse in the pixel-based case than for the signal-to-
noise basis.

A different but related issue is seen in the plot of C EE
20( ) in

Figure 12. Here, one can see that the WMAP likelihood allows
for significantly negative values of C ,EE

20 but not values very
close to zero; there is a “hole” in the likelihood surface. This is
an artifact of the temperature–polarization split implemented by
the WMAP likelihood, in that positive definiteness is assessed
separately for the temperature and polarization components,
effectively resulting in three independent criteria (i.e., C 0ℓ

TT >
for the Blackwell–Rao temperature component, S N 0∣ ∣+ >
for the polarization component, and C C Cℓ

TE
ℓ
TT

ℓ
EE< for the

hybrid likelihood). With single joint likelihood implemented in
this paper, this problem becomes much simpler, in that there is
only a single (condition number based) numerical prior, and an
optional physical prior, C C C ,ℓ

TE
ℓ
TT

ℓ
EE< whose valid para-

meter volume lies fully within the numerical prior region.
Our final test relates to cosmological parameters, as

estimated using CosmoMC (Lewis & Bridle 2002) coupled to
different versions of the 9-year WMAP likelihood. All of the
cases used the same high-ℓ likelihood, including Cℓ

TT for
33� ℓ� 1200 and Cℓ

TE for 33� ℓ� 800, while at low ℓ’s four
different variations were considered:

1. the standard WMAP low-ℓ hybrid temperature–polariza-
tion likelihood;

2. the signal-to-noise basis likelihood derived in Section 6
including 3102 modes;

3. a similar signal-to-noise basis likelihood as (2), but with
polarization truncated at ℓ = 10;

4. the same as (2), but with the fiducial power spectrum
used for basis definition extracted from an incorrect part
of the original spectrum, specifically D Dℓ ℓ1000¬ - with
D C ℓ ℓ 1 2 .ℓ ℓ ( ) pº +

The latter is a simple test of potential sensitivity to the
assumed fiducial spectrum.
The results from these calculations are summarized in

Figure 13 and Table 1. First and foremost, we see that all of the
results are highly robust against these variations, with a
maximum change of any marginal mean of at most 0.2σ. Of
course, most of these parameters are dominated by small-scale
information, but the optical depth of reionization, τ, which
depends critically on the low-ℓ EE spectrum, also shows very
small variations. Even filtering away all of the polarization
multipoles above ℓ > 10 only affects the results by 0.18σ.
Finally, reversing the power spectrum does not make any

Figure 12. Comparison of conditional likelihood slices computed from the
official WMAP likelihood (solid lines) and the signal-to-noise basis defined in
the current paper (dashed lines). Other multipoles are fixed at the best-fit
Planck 2013 ΛCDM power spectrum.

Figure 13. Cosmological parameter distributions evaluated with CosmoMC for
three different likelihoods; the official WMAP likelihood (black), the signal-to-
noise basis derived in the current paper, truncated at ℓ = 32 (red), the same but
truncated ℓ = 10 for polarization (blue), and the signal-to-noise basis using a
reversed power spectrum (green).
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difference whatsoever, with results that are identical to the
default case up to the second digit in the uncertainties.

8. SUMMARY

Building on an idea proposed by Tegmark et al. (1997), we
have developed a framework for efficient low-ℓ CMB
polarization likelihood analysis using linear compression, and
we have applied this framework to the 9-year WMAP data. Five
different basis definitions were compared in terms of compres-
sion efficiency and, in agreement with earlier suggestions, we
find that an optimal basis may be defined in terms of the
eigenvectors of S N S ,1 2 1 1 2- picking out those modes with
high signal to noise. Within this basis, the original low-ℓ
WMAP data set comprising 6834 pixels may be compressed to
a smaller set of 3102 basis vectors with negligible loss of
accuracy, reducing the computational cost of a single like-
lihood evaluation by a factor of five.

Next, we used the same framework to implement an efficient
and stable version of the QML power spectrum estimator,
slightly rewriting the expressions for the covariance matrix
derivatives to use an explicit projection operator. The corre-
sponding code requires about 3 GB of memory and 2 CPU
minutes per QML iteration for the WMAP data at a HEALPix
resolution of Nside= 16, which is well within the capabilities of a
standard laptop. Additionally, we have shown how to stabilize
the QML estimator and avoid regions of parameter space in
which the data covariance matrix become non-positive definite.
This increases the overall computational cost by a small factor,
as it relies on a nonlinear optimization within each main QML
iteration, but for most cases this is not a major problem.

On a related topic, we have introduced a new and more
effective prior for removing nonphysical artifacts on the
likelihood surface. Previously, this was done by only requiring
the data covariance matrix to be positive definite, but this
leaves significant anomalies near the singularity boundary. A
better option is to place a constraint on the condition number of
the covariance matrix.

Finally, we note that while only the WMAP likelihood was
considered in this paper, we expect that the methods presented
here should be directly applicable to the upcoming Planck
polarization data.

We thank Antony Lewis for useful discussions. This project
was supported by the ERC Starting Grant StG2010-257080.
Part of the research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with NASA. Some of the results in this paper have
been derived using the HEALPix (Górski et al. 2005) software
and analysis package.
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Table 1
Summary of Cosmological Parameters

DEFAULT WMAP P TRUNC = 32 P TRUNC = 10 REVERSED POWER SPECTRUM

Constraint Constraint Deviation (σ) Constraint Deviation (σ) Constraint Deviation (σ)

Ωbh
2 0.0226 ± 0.0005 0.0227 ± 0.0005 0.12 0.0227 ± 0.0005 0.09 0.0227 ± 0.0005 0.12

Ωch
2 0.114 ± 0.005 0.114 ± 0.005 0.11 0.114 ± 0.005 0.09 0.114 ± 0.005 0.13

θ 1.040 ± 0.002 1.040 ± 0.002 0.06 1.040 ± 0.002 0.04 1.040 ± 0.002 0.05
τ 0.088 ± 0.014 0.089 ± 0.014 0.04 0.086 ± 0.014 0.18 0.089 ± 0.014 0.02
ns 0.974 ± 0.013 0.976 ± 0.014 0.14 0.976 ± 0.013 0.11 0.976 ± 0.013 0.15

Alog 10 s
10[ ] 3.10 ± 0.03 3.10 ± 0.03 0.001 3.09 ± 0.03 0.20 3.10 ± 0.03 0.03

H0 69.4 ± 2.17 69.7 ± 2.22 0.13 69.7 ± 2.21 0.11 69.7 ± 2.21 0.14

Note. Parameters derived with four different low-ℓ WMAP likelihood implementations; the official WMAP low-ℓ likelihood, and the signal-to-noise basis likelihoods
derived in this paper, truncated at ℓ = 32 and 10, respectively, for polarization, and one truncated at ℓ = 32 with a reversed power spectrum as the basis signal. The
fourth, sixth, and eighth columns show the relative shifts with respect to the WMAP approach measured in units of σ. The confidence intervals are 1σ, and the best-fit
points are marginal posterior means.
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