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ABSTRACT

We test anisotropic dark energy models with the 7-year WMAP temperature observation data. In the presence of imperfect sources,
large-scale gradients or anisotropies in the dark energy mean that the CMB sky will be distorted anisotropically on its way to us by the
ISW effect. The signal covariance matrix then becomes non-diagonal for small multipoles, but at � >∼ 20 the anisotropy is negligible
for any reasonably probable values of the already constrained dark energy fluid parameters. As a consequence, only possible large-
scale anisotropies are studied in this paper. We parametrize possible violations of rotational invariance in the late universe by the
magnitude of a post-Friedmannian deviation from isotropy and its scale dependence, where the deviation from isotropy is modeled
through a mismatch between the φ and ψ potentials that arise due to anisotropic stresses caused by some (unknown) mechanism. In
this sense, our model is general. In this paper we explore the possibility that the stresses are caused by an imperfect dark energy
component in the form of a vector field aligned with some axis. This way we may obtain hints of the possible imperfect nature of dark
energy and the large-angle anomalous features in the CMB. A robust statistical analysis, subjected to various tests and consistency
checks, is performed to compare the predicted correlations with those obtained from the satellite-measured CMB full sky maps. The
preferred axis points toward (l, b) = (168◦,−31◦) and the amplitude of the anisotropy is �0 = (0.51 ± 0.94) (1σ deviation quoted).
The best fit model has a steep blue anisotropic spectrum (nde = 3.1 ± 1.5). In light of recent studies, the model provides an interesting
extension of the standard model of cosmology, since it is able to account for the apparent deficit in large-scale power in the spectrum
through a physically motivated late time ISW effect. Further studies of this class of models are justified by the results of the analysis,
which suggest that it cannot be ruled out at present.
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1. Introduction

In the past two decades great advances have been made in ob-
servational cosmology. The single most striking discovery is the
current acceleration of the universe expansion, now confirmed
by many independent experiments. The most powerful probe of
precision cosmology is observation of the cosmic microwave
background (CMB; Bennett et al. 2003; Hinshaw et al. 2007),
which seems to support the model of a universe that is flat,
isotropic, and homogeneous at large scales, as firmly predicted
by inflation. However, increasing evidence of slight but statisti-
cally significant deviations from isotropy have been discovered.
This would imply violation of the cosmological principle, which
is perhaps as striking a change of paradigm as the introduction of
dark energy. Therefore it is extremely interesting to study theo-
retical links between the acceleration and anisotropies, in partic-
ular, the possibility of constraining them observationally (Copi
et al. 2010; Amendola et al. 2013).

Several distinct statistically anisotropic features have been
reported in the data analysis of the CMB sky. Among the most
curious is the hemispherical asymmetry (Eriksen et al. 2004).
Investigations exploiting the five-year WMAP data have found
that the evidence for this asymmetry is increasing and extends
to much smaller angular scales (� ∼ 600) than previously be-
lieved (Hansen et al. 2008; Hoftuft et al. 2009). Alignment of the

quadrupole and octupole, the so-called axis of evil (AOE; Land
& Magueijo 2005) could also seem an unlikely result of statis-
tically isotropic perturbations, even without taking into account
that these multipoles also happen to be aligned to some extent
with the dipole and with the equinox. A subsequent reinvesti-
gation of the AOE by Land & Magueijo (2007) did, however,
weaken the significance of the effect. In the CMB spectrum, the
angular correlation spectrum seems to be lacking power on the
largest scales. The alignments seem to be statistically indepen-
dent of the lack of angular power (Rakic & Schwarz 2007). For
other studies, see Prunet et al. (2005) and (Gordon et al. 2005).

The reports of anomalies in the temperature data have been
noticed. The WMAP team addressed these issues in Bennett
et al. (2011) and concluded that the lack of large-scale power
and the alignment of multipoles were statistically consistent with
the ΛCDM model, but mere oddities that are bound to occur in
a rich data set. They also pointed out that the evidence of any
hemispherical asymmetry was weak. Evidence of, in particular,
large-scale anomalies and the claim of a posteriori statistics and
systematic artifacts was adressed again by Bennett et al. (2013)
in light of the nine-year WMAP data release. The same data
has also been studied by Axelsson et al. (2013), where a power
asymmetry extending to smaller angular scales (� ∼ 600) at the
3σ level was found. This effect was also found to have an impact
on cosmological parameter estimates.
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With the advent of the Planck data and subsequent analysis
(Planck Collaboration I 2014), new light has been shed on the
matter of anomalies. The Planck satellite has measured the tem-
perature anisotropy at an even higher angular resolution (5′), and
measurements are performed at nine different frequency bands,
thus giving data analysists a wealth of high-resolution data with
lower uncertainties to work with. Statistical methodologies that
avoid a posteriori choices have been applied, and an analysis
(Planck Collaboration XXIII 2014) of the Planck data maps
show that the mode alignment between the quadrupole and the
octopole is still significant between the 96.7% and 98% confi-
dence levels, depending on which component separation algo-
rithm is used. There is also evidence of a violation of statisti-
cal isotropy on large scales, relative to the fiducial Planck sky
model.

Thus, the by now infamous CMB anomalies have been de-
tected in two separate experiments, and this argues strongly
against the case that these anomalies should have their origin
in either systematic artifacts or diffuse foreground radiation. In
addition, Planck‘s broader coverage in wavelength provides a
further argument against foreground residuals being the explana-
tion. As a result, one can infer the possibility that at large scales
the observed microwave sky may not be described completely
by the current standard model of cosmology.

It is natural to associate the apparent statistical anisotropy
with dark energy, since the anomalies occur at the largest scales,
and these enter the horizon at the same epoch that the dark en-
ergy dominance begins. The paramount characteristic of dark en-
ergy is its negative pressure. One may then contemplate whether
this pressure might vary with the direction. Then the universal
acceleration also becomes anisotropic, and one would indeed see
otherwise unexpected effects that would presumably be strongest
at the smallest multipoles of the CMB since they describe the
large angular scales that are most directly affected during the
later epochs of the universe. Specifically, as the photons travel
from the last scattering surface toward us, their temperature gets
blue- and redshifted as they fall in and climb out of the gravi-
tational wells. When the potentials evolve, there is a net effect
in the temperature of the photons: this is the integrated Sachs-
Wolfe effect (ISW). Furthermore, if the average evolution of the
potentials was not the same in different directions of the sky,
the effect would be anisotropic. However, to explain the lack
of large-angle correlations, a cancellation should occur with the
Sachs-Wolfe effect from the potentials’ last scattering surface
that typically contribute to the large angles with a similar or-
der of magnitude to the ISW. This issue has been considered in
Afshordi et al. (2009), where they found that some fine-tuning
seems to be necessary for the effect to occur.

The potentials parametrizing the perturbations to the metric
can be written in the longitudinal gauge as

ds2 = a2(η)
[
−(1 + 2ψ)dη2 + (1 − 2φ)dxidxi

]
. (1)

The Poisson equation relates the spacetime curvature φ to the
matter sources. As is well known, in the absence of anisotropic
stress, the potentials φ and ψ are equal. Thus, a detection of
inequality of these potentials in the present universe would in-
dicate the presence of an imperfect energy source, either in
the form of dark energy fluid or a modification of gravity
(Koivisto & Mota 2006; Daniel et al. 2008; Manera & Mota
2006; Dvali et al. 2000). Clearly, the difference in the poten-
tials can be constrained much more tight at solar system scales
than at cosmological scales (Mota et al. 2007; Daniel et al.
2009; Gies et al. 2008; Ferreira & Skordis 2010; Skordis 2009;

Hu & Sawicki 2007). In the present study we consider the pos-
sibility that the anisotropy described by the difference in the po-
tentials does not cancel out on average, i.e., that the anisotropy is
statistical.

This amounts to promoting each Fourier mode of the po-
tentials to depend not only on the length but also on the direc-
tion of the wavevector. This is a generic prediction of perturba-
tions in a non-FRW universe and also for non-scalar field mod-
els, in particular vector fields (Armendariz-Picon 2004; Koivisto
& Mota 2008a; Zuntz et al. 2010; Li et al. 2008). It has been
speculated whether cosmological fine-tunings could be more
naturally alleviated by introducing a dynamical dark energy
component that is modeled using a more general field than a
scalar. Vector field dynamics could accelerate the universe to-
day (Kiselev 2004; Jimenez & Maroto 2008) having phantom
evolution without UV pathology (Rubakov 2006; Libanov et al.
2007) possibly connecting the acceleration to the electromag-
netic scale (Jimenez & Maroto 2009; Beltran Jimenez & Maroto
2010; Jimenez et al. 2009).

There has also been interest in anisotropies from inflation
(Gumrukcuoglu et al. 2006; Ackerman et al. 2007; Boehmer
& Mota 2008; Yokoyama & Soda 2008; Watanabe et al. 2009,
2010; Dimastrogiovanni et al. 2010), their predictions (Bartolo
et al. 2009a,b, 2012; Watanabe et al. 2011) and comparison to
the data (Groeneboom & Eriksen 2009; Groeneboom et al. 2010;
Armendariz-Picon & Pekowsky 2008). The anisotropy in the pri-
mordial spectrum could be generated by vector fields (Golovnev
et al. 2008; Koivisto & Mota 2008b; Dimopoulos et al. 2009)
or more general n-forms (Germani & Kehagias 2009; Koivisto
et al. 2009; Koivisto & Nunes 2009). In particular it can be ro-
bustly realized by the vector curvaton paradigm (Dimopoulos
et al. 2010) which Dimopoulos et al. (2013) has recently im-
plemented within D-brane inflation in type II string theory by
taking the U(1) gauge field into account that lives on the brane.
Perturbations have also been studied in anisotropically inflating
backgrounds (Pereira et al. 2007; Gumrukcuoglu et al. 2007)
and in the shear-free cosmologies considered in Koivisto et al.
(2011) and Zlosnik (2011), where the expansion is isotropic
but the spatial curvature depends on the direction. These ho-
mogeneous but anisotropic universes could emerge by tun-
nelling from a lower dimensional vacuum (Adamek et al. 2010;
Graham et al. 2010).

In the presence of such a variety of possibilities, we choose
to rather employ a general parameterization than study a partic-
ular model. To that purpose, we parametrize directly the angular
variation of the gravitational potentials. This can be seen as a
step toward a more complete anisotropic post-Friedmannian pa-
rameterization of the deviation from standard GR ΛCDM cos-
mology, inspired by the recent development of a fully consistent
parameterization encompassing statistically isotropic models
(Ferreira & Skordis 2010; Baker et al. 2011). In Sect. 2 we derive
the signal covariance matrix in the presence of generalized per-
turbation sources. In Sect. 3 we describe our parameterization
of such sources and their interpretation as anisotropies of the
dark energy field or as some spontaneous anisotropization of the
CMB radiation. In Sect. 4 we discuss the analysis, along with
the method we use in detail. Finally, the results are presented in
Sect. 5.

2. CMB from anisotropic scalar sources

The temperature anisotropy field is conventionally expanded
in terms of the spherical harmonics and, on the other hand,
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considered in Fourier space,

Θ(x, ê, η) =
∞∑
�=0

�∑
m=−�

a�mY�m =
∫

d3k
(2π)3

eik·xδ(k)Θ(k, ê, η), (2)

where we have normalized the transfer function Θ(k, e, η) with
respect to the initial amplitude δ(k). One makes contact between
the two expansions by using the Rayleigh formula

eix·k =
∞∑
�=0

i�(2� + 1) j�(kx)Y∗�m(k̂)Y�m(x̂), (3)

together with the addition theorem for the spherical harmonics

P�(k̂ · p̂) =
4π

2� + 1

�∑
m=−�

Y∗�m(k̂)Y�′m′( p̂) (4)

for the second equality in Eq. (2), and then, by exploiting the or-
thonormality of the spherical harmonics, pick up the coefficients
in the first equality in Eq. (2). These are

a�m = i�
∫

d3k
2π2

δ(k)Y∗�m(k̂)Θl(k), (5)

where we have defined

Θ�(k) =
∫

j�(kr(η))Θ(k, η)dη. (6)

We assume, as usual, that the primordial spectrum of perturba-
tions is statistically isotropic,

〈δ(k)δ∗(k′)〉 = P(k)(2π)3δ3(k − k′). (7)

However, we allow the transfer function an anisotropic part,

Θl(k) = Θ0
� (k) + ω(k̂ · n̂)ΘA

� (k). (8)

The second term can then incorporate the anisotropic ISW con-
tribution from dark energy, and the factor ω schematically quan-
tifies the level of anisotropy present. The last piece of the second
term in Eq. (8) is then given by Eq. (24). We are then interested
in the correlators

〈a�ma∗�′m′ 〉 =
2i�−�′

π

∫
d3kP(k)Y∗�m(k̂)Y�′m′ (k̂)Θl(k)Θ∗l′ (k). (9)

The expression follows directly from Eq. (5). One may arrive at
the same result by inverting Eq. (2) to obtain the a�m, expanding
Θ(k, ê, η) as a Legendre series and using the addition theorem
Eq. (4) to eliminate the Legendre polynomials P� when integrat-
ing over direction in the sky.

It is useful to introduce the spherical components as in
Ackerman et al. (2007) of the direction vector

n± = ∓
(

n̂x ∓ in̂y√
2

)
, n0 = n̂z, (10)

since then one may write

k̂ · n̂ = 2

√
π

3

[
n+Y

+1
1 (k̂) + n−Y−1

1 (k̂) + n0Y0
1 (k̂)

]
. (11)

We arrive at

〈a�ma∗�′m′ 〉 =
2i�−�′

π

[
δm′,mδ�′,�I� + ζ�m;�′m′ I

A
��′ + ξ�m;�′m′ I

AA
��′

]
. (12)

Here the source integrals are

I� =
∫ ∞

0
dkk2P(k)

[
Θ0
� (k)

]2
, (13)

IA
��′ =

∫ ∞

0
dkk2P(k)

[
ωΘ0

�′ (k)ΘA
� (k) + ω∗Θ0

� (k)ΘA
�′ (k)

]
, (14)

and

IAA
��′ =

∫ ∞

0
dkk2P(k)|ω|2ΘA

� (k)ΘA
�′(k). (15)

The first term in Eq. (12) is the isotropic contribution. The sec-
ond is the cross term, for which the geometric coefficients are
given by

ζ�m;�′m′ = n+ζ
+
�m;�′m′ + n−ζ−�m;�′m′ + n0ζ

0
�m;�′m′ , (16)

where

ζ+�m;�′m′ = δm′,m−1

⎡⎢⎢⎢⎢⎢⎢⎢⎣δ�′,�−1

√
(� + m − 1)(� + m)
2(2� − 1)(2� + 1)

− δ�′,�+1

√
(� − m + 1)(� − m + 2)

2(2� + 1)(2� + 3)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (17)

ζ−�m;�′m′ = δm′,m+1

⎡⎢⎢⎢⎢⎢⎢⎢⎣δ�′,�−1

√
(� − m − 1)(� − m)
2(2� − 1)(2� + 1)

− δ�′,�+1

√
(� + m + 1)(� + m + 2)

2(2� + 1)(2� + 3)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (18)

ζ0
�m;�′m′ = δm′,m

⎡⎢⎢⎢⎢⎢⎢⎢⎣δ�′,�−1

√
(� − m)(� + m)

(2� − 1)(2� + 1)

+ δ�′,�+1

√
(� − m + 1)(� + m + 1)

(2� + 1)(2� + 3)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ · (19)

One can check that ζ∗�m;�′m′ = ζ�′m′;�m. The last term in Eq. (12)
is the auto-correlation of the anisotropic piece. The geometric
coefficients ξ�m;�′m′ have been previously presented in Ackerman
et al. (2007). We have them with an extra minus sign for the off-
diagonal components1. The factor i�−�′ also results in odd-parity
correlations being imaginary.

To obtain more generality in our model parameterization, we
introduce scale dependence in the form of a spectral index nde
for the dark energy fluid. It does not enter the cosmological per-
turbation evolution equations, but appears in the initial power
spectrum of the anisotropic fluid: Pde ∝ (k/k0)nde−1, in Eqs. (14)
and (15) with initial conditions set at a late time owing to spon-
taneous breaking of anisotropy.

Although our cosmology features anisotropies, we assume
that the underlying model is Gaussian. For a pedagogic discus-
sion of these statistical properties and their tests, see Abramo &
Pereira (2010).

1 The reason for this discrepancy was a forgotten i�−�′ factor in the
Ackerman paper.
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3. Anisotropically stressed dark energy

The main reason for disregarding anisotropic stress in the dark
energy fluid might be that a minimally coupled scalar field, un-
der the conventional parameterization of the inflationary energy
source, cannot generate anisotropic stresses. However, since
there is no fundamental theoretical model to describe dark en-
ergy, one might miss the underlying physics of acceleration
by sticking to the assumption of zero anisotropic stress. Such
stresses are quite generically produced by viscous fluids, any
higher spin fields and non-minimally coupled scalar fields as
well (Appleby et al. 2010; Battye & Moss 2009; Rodrigues
2008; Campanelli 2009; Dimastrogiovanni et al. 2008; Cooray
et al. 2010; Akarsu & Kilinc 2010; Cooke & Lynden-Bell 2010).
To study such a generic property with many possible theoretical
realizations, it is useful to employ a parameterization of its phys-
ical consequences.

An efficient way to describe possible deviations from
perfect-fluid cosmology is to introduce the post-general relativ-
ity cosmological parameter � along the lines of Caldwell et al.
(2007), which is defined as the difference of gravitational poten-
tials in the Newtonian gauge,

ψ = (1 +�)φ, (20)

where the line element reads

ds2 = a2(η)
[
−(1 + 2ψ)dη2 + (1 − 2φ)dxidxi

]
. (21)

This parameter then appears as a cosmological generalization of
the post-Newtonian γ, for which one has tight constraints from
solar system scales (Will 2001). An economic assumption is then
that such a generalized parameter depends, on all relevant scales,
on the ratio of matter and dark energy densities,

� = �0
ρDE

ρM
, (22)

which evolves as ∝ 1/a3. In the present epoch this ratio is
fixed according to the WMAP best fit value (ρDE/ρM)z=0 =
2.759 ± 0.320. Then one has reasonable constraints on �0 from
various scales, and an �0 of order one would imply a variety of
phenomenology on different scales, ranging from solar system
physics to cosmology, just at the verge of detection. Here we
study cosmological effects from dark energy and adopt recipe 3
of Caldwell et al. (2007) as the basis for parametrizing the shear
stress of dark energy.

In particular, we explore the case that the anisotropic stress
has a preferred direction as in Koivisto & Mota (2008a). For each
Fourier mode of cosmological perturbations, we write

� = i(k̂ · n̂)�0
ρDE

ρM
, (23)

where n̂ is the direction of anisotropy and �0 is real. Consider
then the transfer function in Eq. (8). The Θ0

� (k) would now be as
usual. Thus it includes contributions from both the early and the
late time universe. On the largest scales, the Sachs-Wolfe effects
are known to dominate the anisotropy sources. The second part
would be given by the rotationally non-invariant part of the ISW
contribution, which in our present description is

ΘA
� (k̂ · n̂) = −i�0

∫
e−κ(η) d

dη

(
ρDE

ρM
φk(η)

)
jl[kr(η)]dη, (24)

where φk(η) is given by the standard computation. We simply
add the extra contributions due to Eq. (24) to the sources from

which to compute the correlators as described in the previous
section. Therefore it becomes straightforward to determine the
features in the CMB sky in this prescription.

This parameterization describes a gradient-type modification
of the effective CMB sources. We note that Tangen (2009) has
determined the implications of a super-horizon perturbation, and
Erickcek et al. (2008) considered such a spatial variation of the
curvaton field at inflation. In our model, the anisotropy is formed
dynamically and becomes important with the dominance of dark
energy. Explicitly, we have a spontaneous modification of the
effective CMB sources through the gradient operator as

ψ(x) = [1 + (n · ∇)] φ(x) (25)

when |n| = �0(ρDE/ρM). This amounts to shifting the Fourier
modes of the perturbations exactly as prescribed in Eqs. (20)
and (23),

ψk =

[
1 + i(k̂ · n̂)�0

ρDE

ρM

]
φk. (26)

Since the anisotropic part develops as a result of the evolution of
the universe, it is a property of the transfer functions and not of
the primordial spectrum of perturbations. One does not expect
odd Δ� couplings of primordial origin since they violate parity.
The presence of the imaginary unit is necessary for reality of the
perturbations, which can be checked as follow: Since the physi-
cal perturbation is a convolution of the primordial physical per-
turbation and the Fourier transformation of the transfer function,
one notes that the latter should also be real. We find that

ψ(x)
ψPrimordial(x)

=
�0

2π3

∫ ∞

0
dk

k
x

sin (kx) (27)

×
[
1 + (x̂ · n̂)

(
1
kx
− cot (kx)

)]
φ(k),

where φ(k) is the (real, isotropic) transfer function, which only
depends on the magnitude of the wavevector, and the right-
hand side is the anisotropic transfer function in the configuration
space that retains its reality.

In summary, we introduced a mismatch of the two gravita-
tional potentials in the Newtonian gauge. This mismatch, quan-
tified by �, is given by a gradient along a preferred axis n̂. In
the following, we also allow the scale dependence of this effect
by introducing the spectral index nde. This parameterization can
then be used to constrain the presence of such gradients in the
late universe, since they would be seen in the CMB (practically
only) through their impact on the time evolution of the gravi-
tational potentials due to the ISW effect. Physically, these gra-
dients could be caused by a large-scale inhomogeneity entering
our horizon, spontaneous formation due to, say coherent mag-
netic fields or simply the possibly imperfect nature of the dark
energy field.

To clarify the difference in our approach compared to all pre-
vious literature, we must mention that odd modulations may be
considered to occur at three distinct levels. The temperature field
itself can be modulated, and for a recent example, see Aluri &
Jain (2012). This would effectively describe some systematics in
the data. Strangely enough, the primordial spectrum itself could
contain parity violating contributions (Koivisto & Mota 2011).
It is only consistent in the context of non-commutative quan-
tum field theory, and thus it provides a unique signal for such
high-energy modifications of the standard model (Groeneboom
et al. 2010). Finally, the cosmological structures may statistically
evolve oddly, which is the case we focus upon here.
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4. Model fitting

In this section we describe in detail the confrontation of the
model with the WMAP data. We will now discuss the method
used to obtain the set of parameters that gives the best fit between
our model and the observations. Our basis is the evaluation of the
likelihood function in a four-dimensional parameter space. After
explaining the general likelihood procedure, we explain the dif-
ferent steps taken to calculate and maximize the likelihood in
more detail.

4.1. Data model and notation

Given a set of data {di} our goal is to find the set of parame-
ters that maximizes the posterior. For ease of notation we let
α = (θ, ϕ,�0, nde) = (n̂, �0, nde) denote the set of parameters to
be determined. By Bayes’ theorem we know that the posterior
distribution P(α|d) ∝ P(d|α)P(α) = L(α)P(α) whereL(α) is the
likelihood and P(α) is a prior. We take a conservative approach
and assume that we have no prior knowledge of the anisotropic
parameters, and thus P(α|d) = L(α) up to a normalization con-
stant. If we manage to compute the likelihood function in all of
the parameter space, then we automatically have the posterior
distribution and our job is essentially done.

Although our model is anisotropic, we still assume that the
underlying distribution is Gaussian, and thus the likelihood is

L(α) ∝ e−
1
2 d†C−1(α)d

√
detC(α)

(28)

where the data vector d consists of the a�m from the observed
masked map. The correlation matrix C = S + N is the sum of
the CMB signal covariance matrix S and the noise covariance
matrix N. Our analysis is performed in harmonic space where
the signal covariance S �m;�′m′ = 〈a�ma∗�′m′ 〉 is computed from
Eq. (12) and thus contains non-diagonal anisotropic contribu-
tions from dark energy. This matrix contains the dependence on
cosmological parameters.

Finally the observed data vector d may be written in har-
monic space as

d�m = b�w� s�m + n�m (29)

where b� is the instrumental beam,w� the pixel window function,
and n�m the (Gaussian) noise term. Since there is no correlation
between the signal and the noise we have

〈d�md∗�′m′ 〉 = 〈s̃�ms̃∗�′m′ 〉 + 〈n�mn∗�′m′ 〉 (30)

where s̃�m = b�w� s�m is the observed signal. Our goal is now to
maximize this likelihood with respect to the model parameters,
but we first explain in some detail how we calculate the covari-
ance matrices involved in the likelihood calculation.

4.2. Signal covariance

From Eqs. (12)–(19) we see that the covariance matrix, in addi-
tion to the diagonal isotropic contribution I� contains the cross-
term coefficients ζ�m;�′m′ which couple � to �′ = [� ± 1] and
m to m′ = [m,m ± 1]. The last term ξ�m;�′m′ is the Ackerman
(Ackerman et al. 2007) term for which we have couplings when
�′ = [�, � ± 2] with m′ = [m,m ± 1,m ± 2]. All other terms are
zero.

Fig. 1. (Unnormalized) Integrals (Eqs. (31)–(33)) computed from a
modified version of CAMB Lewis et al. (2000). The anisotropic inte-
grals decay toward zero after only a few multipoles. These integrals are
all used in constructing the signal covariance matrix. An anisotropic
scalar spectral index of nde = 1.0 is used in this plot, and we have not
normalized them. The amplitude �0 has been set to unity.

Fig. 2. (Binned) Modified spectra from Eq. (35) plotted as function of
dark energy spectral index. Amplitude �0 = 0.9 is used in all instances.
Dark energy spectral index values of nde = 0, 1, 2 are used in this plot.
The modified spectra are plotted against the binned WMAP 7-yr data
(black stapled line) and the best fit ΛCDM spectrum (black solid line).
Error bars indicate 1σ cosmic variance + measurement uncertainty and
have been obtained from the diagonal of the Fisher matrix supplied by
the WMAP team.

We now express the integrals in Eqs. (17)–(19) in terms of
power spectra C�, CA

��′ , CAA
��′ as

C� =
2
π

I�� (31)

CA
��′ =

2
π

IA
��′ (32)

CAA
��′ =

2
π

IAA
��′ . (33)

From Eqs. (17)–(19) we see that CA
��′ and CAA

��′ only give contri-
butions for �′ = �±1 and �′ = �±2. In Fig. 1 we have calculated
(using a modified version of CAMB) and plotted these integrals
(because of symmetry the �′ = �+1 and �′ = �+2 terms are equal
to the �′ = �−1 and �′ = �−2 terms plotted) and compared them
to the isotropic power spectrum. From this figure we clearly see
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that the anisotropic contribution from the dark energy compo-
nent becomes negligible except on the largest scales where the
anisotropic contribution even exceeds the isotropic. The most
prominent modification stems from the anisotropic integral CAA

��−2
contributing to the off-diagonal elements of the signal covari-
ance matrix. This quadrupole modulation completely dominates
the corresponding dipole modulation represented by CA

��−1. This
is observed for all nde values. Owing to the short range of the
anisotropic integrals we altered the pivot scale in CAMB from
k0 = 0.05 Mpc−1 to k0 = 2 × 10−3 Mpc−1. In this way, we ensure
that the spectral index enters correctly to tilt these integrals.

4.3. Transformation of variables

We have noticed from simulations that there was a significant
degeneracy between the anisotropic spectral index nde and the
amplitude �0 because they both regulate the magnitude of the
non-diagonal signal matrix elements. To ease the estimation pro-
cedure we introduce a new variable�a

0 instead of�0. The “new”
variable is defined as �a

0 = �0/
√

a where we define a through
a = A(IAA

��−2(1.0))/A(IAA
��−2(nde)). Here A(IX

��′(nde)) is the area un-
der the anisotropic integral IX

��′(nde), where X = {A, AA} and nde
is the dark energy spectral index. The parameters nde and �a

0 are
not degenerate and can thus more easily be estimated for. In the
end, we convert to the physical parameter �0, and all results are
quoted in terms of this parameter.

4.4. Modification of spectrum

The angular power spectrum C� will receive a contribution from
the anisotropy that could have an observable impact at the largest
scales of the universe. This can be seen from Eqs. (17)–(19) and
the form of the ξ�m;�′m′ elements (see Ackerman et al. 2007, for
details). One must therefore be careful when performing the full
analysis, making sure that any choice for �0 does not signifi-
cantly drive the power spectrum away from the WMAP best fit
spectrum, but mainly contributes to the anisotropic contribution
to the correlations between a�ms.

To quantify these statements, we calculate the net extra
power from the anisotropic contribution. It is given by the di-
agonal part of the anisotropy, which can be written as

ΔC� =
2IAA

��

π

�2
0

2� + 1

�∑
m=−�

ξ�m;�m. (34)

Using the explicit form of ξ�m;�m to perform the summation, we
find the modified power spectrum (see the Appendix for details):

Cmod
� = C� +

2
3π
�2

0IAA
�� (nde) ≡ C� +

�2
0

3
CAA
� . (35)

The extra contribution to the power spectrum from the
anisotropic sources depends on the amplitude parameter�0 (de-
gree of isotropy breaking) and the dark energy spectral index
(parameterization of the fluid scale dependence), which we have
included explicitly as an argument in IAA

�� .
We see from Eq. (35) that there is a limit to what values the

amplitude �0 may take in order to obtain a power spectrum that
is consistent with the WMAP7 best fit. This is, however, only
true when we assume that the other cosmological parameters
have the WMAP best fit values. Clearly the new parameters that
we have introduced allow for the other parameters to vary, and

one should in principle re-estimate the other cosmological pa-
rameters together with �0 and nde. To save computational time,
we chose to avoid a full re-estimation of the cosmological pa-
rameters. Instead we run the analysis in two different manners:

1. We fix the cosmological parameters to the WMAP best fit
parameters. In principle one could have used only the high-�
spectrum, which is not influenced by the anisotropic model
to fix the parameters, but the contribution from the lowest
TT multipoles � < 30 to the cosmological parameters is in-
significant due to the large cosmic variance. We confirmed
this using CosmoMC (Lewis & Bridle 2002) with and with-
out the lowest multipoles.. In this case only the anisotropic
parameters vary. The likelihood maximization ensures that
the low-� spectrum does not fluctuate far away from the best
fit spectrum.

2. To test the anisotropic model without running a full cosmo-
logical parameter estimation one may renormalize the co-
variance matrix for a given set of parameters (�0, nde) in
such a way that the power spectrum is kept constant in the
best fit WMAP model. In this case the signal covariance
becomes

S Norm
�m;�′m′ =

⎛⎜⎜⎜⎜⎜⎝ S �m;�′m′√
S �m;�mS �′m′;�′m′

⎞⎟⎟⎟⎟⎟⎠C� (36)

where S �m;�m = C� + ξ�m;�m�
2
0CAA

� . With this normaliza-
tion, the diagonal part of our signal covariance matrix will
match the WMAP power spectrum regardless of amplitude
and spectral index for the dark energy, while the off-diagonal
components describe relative anisotropy. In addition, the
renormalization in Eq. (36) breaks the degeneracy between
the anisotropic set (�0, nde) and the scalar power spectrum
amplitude As. It is clear from our analysis results in Sect. 5
that by fixing the spectrum one allows anisotropic parameter
values that may otherwise be excluded by the data. In this
way we check that an anisotropic model is preferred by the
data even when we let other cosmological parameters fluctu-
ate outside of the bounds given by higher multipoles. If no
significant detection of the anisotropic model is found even
with this additional freedom, we will know that the more ex-
act analysis will not give a detection.

4.5. Noise covariance

The noise in pixel space is assumed to be uncorrelated between
pixels, i.e., Ni j = 〈nin j〉 = σ2

i δi j where i and j are pixel indices,
and σi is the noise root-mean-square deviation. The noise co-
variance matrix in pixel space is therefore diagonal. When tran-
sitioning to spherical harmonic space, the harmonic coefficients
of the noise are correlated, and N�m;�′m′ = 〈n�mn∗�′m′ 〉 is therefore
a dense matrix.

Expanding the noise harmonic coefficients in terms of pixel
space quantities, we eventually find that the expression for the
noise matrix in harmonic space becomes

N�1m1;�2m2 = (−1)m1

√
(2�1 + 1)(2�2 + 1)

4π

2�max∑
�3=0

a�3m3

√
2�3 + 1

×
⎛⎜⎜⎜⎜⎜⎜⎝ �3 �1 �2

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ �3 �1 �2

m3 −m1 m2

⎞⎟⎟⎟⎟⎟⎟⎠ . (37)

The Wigner 3j symbols contain a Kroenecker delta function. It is
also required that the triangle condition |�1 − �2| ≤ �3 ≤ �1 + �2 is
fulfilled. Owing to this relation the sum over �3 goes up to 2�max.
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The a�3m3 coefficients stem from a spherical transform of
the variance of the noise map, σ2

i . Equation (37) is then imple-
mented into our code. It only needs to be computed once for each
run of the code and is added to the signal covariance matrix in
the step before the skycut is applied.

4.6. Correlations introduced by the mask

If we let C�m;�′m′ denote the covariance matrix without mask and
C̃�m;�′m′ denote the corresponding matrix, including correlations
from the sky cut, then the relation between them in harmonic
space is

C̃�m;�′m′ =
∑
LM

∑
L′M′

W�m;LMCLM;L′M′W
∗
�′m′;L′M′ , (38)

which can be written compactly in matrix form as C̃ =WCW†.
The operation in Eq. (38) can be shown to be additive so the
covariance matrix is the sum of the signal-plus-noise correlation
matrices. The multipole range here is L, L′ ∈ [2, �max], and the
sums over M, M′ here run over positive values. The Hermitian
coupling matrix is W�m;�′m′ defined by

W�m;�′m′ =

∫
dΩM(Ω)Y∗�m(Ω)Y�′m′ (Ω) (39)

is a function of the pixel space mask M(Ω) (where Ω = (θ, ϕ) is
the angular position on the sky) and so depends on the resolution
Nside. It quantifies the new couplings between modes that arise
because we are now not analyzing a full sky.

Starting with the WMAP KQ85 mask at Nside = 512, we
degrade our mask so that the operation of applying the mask
in pixel space can be traced exactly by applying the kernel
matrix W in harmonic space. This is done by first smoothing
with a Gaussian beam of FWHM = 744 arcmin, and then set-
ting M(p) = 0 (where p is a HEALPix pixel index) where
M(p) < 0.80. We then band-limit the mask so that it contains
multipoles in the desired range (Armendariz-Picon & Pekowsky
2008). These operations ensure that our mask does not contain
small-scale structures. In the process the mask is expanded so
that it now covers about 25% of the sky.

It now remains to give an expression for the coupling ker-
nel. Equation (39) can be transformed by decomposing the mask
into spherical harmonics and then performing the resulting in-
tegral over all angles to obtain again Wigner 3 j symbols. This
is exactly the same analytical procedure as the one that led to
Eq. (37) with some minor modifications. The result in this case
becomes

W�1m1;�2m2 = (−1)m2

√
(2�1 + 1)(2�2 + 1)

4π

2�max∑
�3=0

a�3m3

√
2�3 + 1

×
⎛⎜⎜⎜⎜⎜⎜⎝ �3 �1 �2

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ �3 �1 �2

m3 m1 −m2

⎞⎟⎟⎟⎟⎟⎟⎠ , (40)

which is almost identical to Eq. (37). As in the previous case, the
internal sum covers multipoles up to 2�max, and the main differ-
ence is a change in sign of m1,m2. We find that the mask cou-
pling matrix is conditioned relatively well and further manipula-
tions are not necessary. This has been tested by simply inverting
the matrix W constructed from the resulting mask, which is used
in the analysis of the WMAP data.

4.7. Likelihood maximization scheme

To maximize the likelihood we use a nonlinear Newton-Rapson
search algorithm2 for the direction and amplitude. Finding the
maximum of the likelihood is equivalent to finding the minimum
of the quantity

−2 logL = d†C−1 d + Tr log C, (41)

which has a global minimum when the likelihood function has
a global maximum. The algorithm minimizes a general uncon-
strained function by evaluating the first and second derivatives.
Thanks to the symmetry of the signal covariance matrix, �0 is
constrained to be larger or equal to zero. A negative amplitude
can always be replaced by a positive one and a shift in the angles
(θ, ϕ): S(−�0, nde, θ, ϕ) = S(�0, nde, π − θ, π + ϕ). This is easily
seen from the definition of the signal covariance matrix.

The gradient is computed analytically, the derivative of
Eq. (41) with respect to any of the parameters in the set α is

∂(−2 logL)
∂α

= d†
∂C−1

∂α
d + Tr

(
∂ log C
∂α

)

= −d†C−1 ∂C
∂α

C−1d + Tr

(
C−1 ∂C

∂α

)
· (42)

To find the derivative of C−1 we differentiated the identity ma-
trix I = CC−1 and solved for the derivative of the inverse co-
variance matrix in terms of the derivative of the matrix itself.
The analytic derivative of C is computed from Eq. (12). The
second derivatives are estimated from the gradient using a se-
cant method. Depending on our initial parameter guesses and our
convergence criteria, the minimizer may or may not converge in
general to a global minimum. In our case, false convergence is
rarely a problem since the likelihood surface is well behaved,
and in rare cases, where local minima are found, they have small
amplitudes compared to the global one.

For the spectral index nde we run a grid calculation. In each
grid point, we apply the above maximization procedure and find
the value of the maximum likelihood for the given value of nde.
In the end we search the grid to find the full global maximum in
the four-parameter space.

5. Application to WMAP-data

We now discuss the results obtained with and without normaliza-
tion of our signal covariance matrix (see Sect. 4.4). We analyze
the V-band (61 GHz) data map, which is believed to be one of
the cleanest bands in terms of foreground residuals, and recom-
mended for cosmological analysis by the WMAP team. To this
map we apply the modified WMAP KQ85 galactic skycut, re-
moving 25% of the sky. Since we are only analyzing the largest
scales no special care is taken with regards to point-source mask-
ing. We take the V-band noise RMS pattern and the correspond-
ing beam properties into account. We analyze these maps up to a
maximum multipole moment �max = 20. The kernel matrices W
that emulate the effect of a skycut in harmonic space includes
multipoles up to �max = 40. Now that we have our data map, we
are ready to start the analysis.

5.1. Unnormalized covariance matrix

Performing a grid-calculation with a spectral index range of
−5 ≤ nde ≤ 5 with a stepsize of Δnde = 0.1, where for each value

2 Using dmng.f from www.netlib.org
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Table 1. Results from WMAP 7yr-data. Lower line shows the results
with normalized covariance matrix.

nde �0 n̂ (l, b)

3.1 ± 1.5 0.51 ± 0.94 (168◦,−31◦)
1.2 ± 0.7 7.12 ± 3.82 (179◦,−27◦)

Notes. The error bars on nde and �0 represent a consistency check on
the isotropic model because the ΛCDM model parameters have been
fixed to their best fit values from WMAP data.

Fig. 3. Two-dimensional plot of the raw likelihood (posterior distribu-
tion) as a function of dark energy spectral index nde and the transformed
amplitude �a

0, using WMAP 7-yr data. The spherical angles have been
fixed to their WMAP best fit values at �max = 20 to enable a projection.
The posterior mode value is located at nde = 3.1. The (transformed) am-
plitude found in this plot is higher than the value for the true anisotropic
amplitude noted in Table 1 due to a bias introduced by application of
the mask and a linear transformation.

of nde, we do a three-dimensional search for the peak of the like-
lihood function using our likelihood maximization scheme de-
scribed in Sect. 4.7. We find that the likelihood values for nega-
tive spectral index values are very insignificant. As we approach
nde = 0, the likelihood starts peaking slowly until we find a peak
at nde = 3.1. The best fit direction remains practically constant
as we move through the grid (the change is completely negligi-
ble compared to the uncertainty) indicating that the correlation
between the two sets (θ, ϕ) and (nde, �0) is weak.

We find Fisher matrix error bars calculating the Fisher matrix
using

Fαβ =
1
2

Tr

(
dC
dλα

C−1 dC
dλβ

C−1

)
, (43)

where the derivatives of the covariance matrix are found an-
alytically for the direction and amplitude and numerically for
the spectral index. Since the amplitude and spectral index are
weakly correlated, the off-diagonal elements are taken into ac-
count in the matrix. The results are shown in Table 1. As ex-
pected, in order for the model to be consistent with the power
spectrum, we find �0 consistent with zero within the 1σ er-
ror. In Fig. 3 we show the likelihood surface close to the peak.
The amplitude in this plot is the transformed amplitude �a

0 (see
Sect. 4.3), and the amplitude at the maximum of the likelihood
is biased with respect to the best fit amplitude. This bias results
from the complicated form of the likelihood introduced by the
mask. The bias is corrected for in the following manner: given

Fig. 4. Distribution of (θ, ϕ) values on the sphere from Gaussian (�0 = 0
input) simulations. The positions found in the simulations are randomly
distributed on the sphere and not aligned along some particular axis, in
clear agreement with a random Gaussian distribution.

Fig. 5. Map indicating the 1σ uncertainty in the preferred direction of
the axis. The background is the V-band (61 GHz) WMAP 7-yr data map
with the KQ85 mask. The two axes plotted are the directions given in
Table 1 for the unnormalized and the normalized cases.

the parameters found from the peak of the likelihood, we gen-
erate 100 anisotropic realizations. For each realization we esti-
mate the anisotropic parameters, and in the end compute the av-
erage bias in �a

0. Next we subtract the bias from the input value
and repeat the procedure until our average computed amplitude
matches the value found in the WMAP data. When the bias has
been subtracted, we are left with “the true” estimate of the trans-
formed amplitude �a

0. The original amplitude is then obtained
using �0 =

√
a�a

0. In the unnormalized case we find a final
amplitude value �0 = 0.51.

The best fit direction is somewhat close to the galactic center.
To check that this is not caused by the shape of the mask, we esti-
mated the direction on 1000 simulated isotropic maps and found
that there is no bias toward the galactic center. The estimated
directions are shown in Fig. 4.

The error in the amplitude has also been estimated using
1000 Monte Carlo simulations. We find that the error from simu-
lations agrees well with the error found using the Fisher matrix.
In Fig. 5 we show the best fit direction with error bars.

An isotropic universe is clearly preferred by the data when
using this model.

5.2. Normalized covariance matrix

The model with an unnormalized matrix (see Eq. (12)) giving
the modified power spectrum in Eq. (35) is clearly not preferred
by the WMAP 7-yr data. However, if we allow other cosmolog-
ical parameters to vary we may be able to find a better fit as
explained above. We therefore repeated the procedure using the
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normalization in Eq. (36), which means fixing the diagonal part
of the covariance matrix to the best fit C� regardless of amplitude
and spectral index.

The lower line in Table 1 shows the results for the anisotropic
cosmological parameters from the exploration of the likelihood
space with a normalized covariance matrix. Again, a grid was
set up for the spectral index in the interval −5 ≤ nde ≤ 5 with the
same stepsize and for each value of nde, we estimated the best
fit values of (θ, ϕ,�0) and the corresponding value of the like-
lihood. The preferred amplitude is large in this case, but only
about 2σ away from zero. The result is not very consistent with
the istropic power spectrum, but a joint fit of the standard model
and anisotropy parameters together could yield a lower ampli-
tude because the diagonal contribution from the anisotropy to
the covariance matrix has a low statistical weight due to the high
sample variance at large scales.

6. Conclusions

In this work we tested anisotropic dark energy models with the
seven-year WMAP temperature observation data. Since the com-
pletion of this analysis, the WMAP team released their nine-year
data set. In addition, the Planck data has been made available.
It is, however, possible to argue for the validity of our analysis
with seven years of WMAP data since only the very low-� data
is used. WMAP seven-year data was already completely cosmic-
variance-dominated at these scales, the highly reduced noise and
smaller beam size of the Planck data only increased the signal-
to-noise ratio at much higher multipoles. Whereas the larger fre-
quency range of the Planck experiment in principle improves the
foreground subtraction at low multipoles, it has been shown in
practice that the differences between Planck and WMAP at these
very low multipoles � < 20 are much less than the cosmic vari-
ance (Planck Collaboration XV 2014). The error bars presented
in this paper are therefore cosmic-variance-dominated and an
analysis of the Planck data would not add new information.

If dark energy is not a perfect fluid but, for instance, a vector
field, the CMB sky will be distorted anisotropically on its way
to us by the ISW effect. The signal covariance matrix then be-
comes non-diagonal for small multipoles, but the anisotropy is
negligible at � >∼ 20. This can be used to constrain violations of
rotational invariance in the late universe and to obtain hints on
the possible imperfect nature of dark energy and the large-angle
anomalous features in the CMB.

To model this phenomenon, we introduced a mismatch of the
two gravitational potentials in the Newtonian gauge. The mis-
match, quantified by �, is proportional to a gradient along the
preferred axis n̂. We also allowed this effect to depend on the
scale by introducing the spectral index nde. Physically, such gra-
dient could be caused by a large-scale inhomogeneity entering
our horizon, spontaneous formation due to, say, coherent mag-
netic fields or simply to the possible imperfect nature of the dark
energy field. Many possible realizations of the latter possibil-
ity were discussed in the introduction and in Sect. 3. The domi-
nant effect on the CMB is then a quadrupole modulation (i.e., a
Δ� = 2 correlation type, see Eq. (15)), which has the same geo-
metrical correlation structure but different time and scale depen-
dence than in the models considered previously. Now in addition
a dipole modulation, though subdominant, is predicted from the
cross-term between the quadrupole modulation and the isotropic
contribution (i.e., a Δ� = 1 type correlation, see Eq. (14)).

We calculate the mode couplings introduced in the spheri-
cal harmonic coefficients of the CMB by the anisotropic model
and obtain the full likelihood for the lowest multipoles where

the dominant contribution to the model is expected to be found.
Maximizing the likelihood when taking the instrumental param-
eters of the WMAP experiment into account, we are able to find
optimal estimates of the anisotropic parameters. Analysis of the
masked WMAP V-band, when fixing other cosmological param-
eters, gave a best fit amplitude �0 = 0.51 ± 0.94 and nde = 3.1
consistent with an isotropic universe.

In comparison, tests of the isotropic version of this parame-
terization show that the data is then compatible with a vanishing
deviation, and allows a nonzero� on the order ofO(0.1) (Daniel
et al. 2010). At the level of solar system, no hints of deviations
are observed, and the post-Newtonian correction is constrained
to be at most O(10−5) (Will 2001). However, the numbers them-
selves cannot be directly compared, since our best fit model also
features a strong scale dependence of the deviation.

Another shortcoming of our parameterization is its inabil-
ity to incorporate the lack of large-angle power in the observed
sky, one of the most striking anomalies present in the data. This
justifies further investigation the possible origin and constraints
of imperfect source terms in cosmology. In particular, a fully
consistent post-Friedmannian parameterization along the lines
of Ferreira & Skordis (2010) and Baker et al. (2011), when tai-
lored to the study of directional dependence of deviations from
the standard predictions of linearized cosmology, remains to be
developed.
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Appendix A: Anisotropic contribution to the power
spectrum

The diagonal part of the covariance matrix is a sum of the
power spectrum due to the isotropy and a term determined by
the anisotropic parameters �0, nde and (θ, ϕ):

S �m;�m =
2
π

(
I� +�

2
0ξ�m;�mIAA

��

)
= C� + ξ�m;�m�

2
0CAA

� . (A.1)

The dependence on the spectral index comes from the integral
over the anisotropic transfer functions in IAA

�� . The diagonal part
of the geometric factor is (Ackerman et al. 2007):

ξ�m;�m=−2n+n−
(−1 + �(� + 1) + m2

(2� − 1)(2� + 3)

)
+ n2

0

(
2�(�+1)−2m2 − 1
(2� − 1)(2� + 3)

)
(A.2)

where the spherical components n+, n−, n0 containing the angu-
lar dependence have been defined in Eq. (10). Using a well-
known result from Mathematics:

�∑
m=1

m2 =
�(� + 1)(2� + 1)

6
(A.3)

3 http://healpix.jpl.nasa.gov
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we find that the average of the geometric factor is free from an-
gular dependence and simplifies nicely to

�∑
m=−�

ξ�m;�m =
2� + 1

3
· (A.4)

With this result one finds that the theoretical prediction for
the modified power spectrum due to the anisotropic component
becomes

Cmod
� =

1
2� + 1

∑
m

〈a�ma∗�m〉 = C� +
�2

0

3
CAA
� (A.5)

which is the modified power spectrum Cmod
�

quoted in Eq. (35).
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