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ABSTRACT

Aims. We study the effects of letting dark matter and gas in the Universe couple to the scalar field of the symmetron model, a modified
gravity theory, with varying coupling strength. We also search for a way to distinguish between universal and non-universal couplings
in observations.
Methods. The research is performed utilising a series of hydrodynamic, cosmological N-Body simulations, studying the resulting
power spectra and galaxy halo properties, such as density and temperature profiles.
Results. In the cases of universal couplings, the deviations in the baryon fraction from ΛCDM are smaller than in the cases of non-
universal couplings throughout the halos. The same is apparent in the power spectrum baryon bias, defined as the ratio of gas to dark
matter power spectrum. Deviations of the density profiles and power spectra from the ΛCDM reference values can differ significantly
between dark matter and gas because the dark matter deviations are mostly larger than the deviations in the gas.
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1. Introduction

One of the most challenging problems in the field of cosmol-
ogy is to understand the accelerated expansion of the late-time
Universe (Riess et al. 1998). The Λ cold dark matter (ΛCDM)
model is the most accepted explanation for this expansion and
is reached by modifying general relativity (GR) through adding
a cosmological constant, dark energy, to the energy-momentum
tensor.

An alternative to adding a dark energy component to GR is
to modify gravity, by altering the Einstein-Hilbert Lagrangian,
which the Einstein tensor is derived from. Many of these mod-
ified gravity theories exist (Brans & Dicke 1961; de Felice &
Tsujikawa 2010; Sotiriou 2006; Clifton et al. 2012; Boehmer
& Mota 2008) and several have previously been studied (Brax
et al. 2013; Barreira et al. 2013; Li et al. 2011, 2012;
Davis et al. 2012; Barrow & Mota 2003; Mota et al. 2008;
Puchwein et al. 2013; Winther et al. 2012). These theories are
often implemented by introducing a scalar field to the Einstein
tensor, which couples to the matter component of the Universe.
This scalar field gives rise to a fifth force, an additional
gravitational force, which is negligible at solar system scales
and below, according to laboratory experiments (Hoyle et al.
2004; Dimopoulos et al. 2007) and solar system gravity probes
(Bertotti et al. 2003; Will 2014).

If we assume that this fifth force acts on larger scales than
the solar system, then some mechanism is needed to negate the
fifth force on solar system scales. One way to achieve this is to
utilise one of the screening mechanisms found in the literature
(Khoury 2010; Brax et al. 2012; Hinterbichler & Khoury 2010;
Khoury & Weltman 2004; Vainshtein 1972; Koivisto et al. 2012)
that screens the fifth force based on a series of different criteria.

In this paper, we study the symmetron model (Hinterbichler &
Khoury 2010), which screens the fifth force in regions of high
density.

With these modified gravity theories comes the challenge
of finding methods to test them against observations (Terukina
et al. 2014; Wilcox et al. 2015). Theorists in the past have
mainly used predictions from models and simulations that only
include dark matter due to the simplistic nature of dark matter,
when constraining modified gravity theories. Use of models that
only include dark matter can be justified by the matter compo-
sition of the Universe, which is 84.4% dark matter and 15.6%
baryonic matter, according to the Planck Collaboration XIII
(2015). However, astronomers observe the electromagnetic spec-
trum emitted from the baryonic components of the Universe,
leaving the community with a disconnect between theories and
observables.

Introducing the concept of a bias between the dark matter
and baryonic components is one way to rectify this disconnect.
The bias assumes that the behaviour of the two components are
the same, but that the strength or amplitude of the behaviour
might be different. The community generally assumes that the
bias of the standard model ΛCDM is equal to one, which jus-
tifies studying the Universe and comparing the observations to
simulations that only include dark matter. However, if the bias
is not unity researchers might greatly underestimate or overesti-
mate their findings.

The bias can deviate from unity even in ΛCDM because of
baryonic effects other than a non-universal coupling, such as
AGN-feedback (van Daalen et al. 2011) or the hydrodynamic
effect observed in the Bullet cluster (Tucker et al. 1998; Clowe
et al. 2006). This means that these baryonic processes need to
be comprehensively understood before the bias can be used to
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test a non-universal coupling. Recent work (Schaller et al. 2015)
has made progress in studying the differences between galaxies
(gas) and dark matter in the ΛCDM model.

In our previous work (Hammami et al. 2015), we studied the
effects of adding a hydrodynamic gas to an existing N-body code
with the symmetron model implemented (Llinares et al. 2014)
with the assumption that the scalar field would couple to the gas
and the dark matter to a universal coupling. There are, however,
no justifications for assuming that the dark matter and gas have
the same coupling to the scalar field. In fact, several known par-
ticles, such as neutrinos and baryons, do not interact in the same
manner with electromagnetic forces, and it therefore stands to
reason that it is worthwhile to study the effects of non-universal
coupling between the scalar field and matter components.

In this paper, we study density and temperature profiles and
power spectra of dark matter and gas for symmetron models with
different values for the coupling strength. The paper starts with
an introduction to the symmetron model in Sect. 2, followed by
a very brief section on the simulation parameters in Sect. 3, pre-
senting and discussing the power spectra in Sect. 4 and the den-
sity and temperature profiles in Sect. 5, and finishes with con-
clusions in Sect. 6.

We work with some models that are extremely coupled to
the scalar field to push any signatures of the non-universal
coupling to their limits and possibly reveal signatures that
would not immediately be clear from more sensible scalar field
couplings.

2. The symmetron model

Introduced by Hinterbichler & Khoury (2010) the symmetron
model is a scalar theory of gravity using a symmetric potential,
where the action (Sotiriou 2006; Fujii & Maeda 2003) is

S =

∫
d4x
√
−g

[
R
2

M2
pl −

1
2
∂iψ∂iψ − V(ψ)

]
(1)

+ S m(g̃µν, Ψ̃i),

where ψ is the scalar field1, R is the Ricci scalar, Mpl is the
Planck mass, and g = |gµν| is the determinant of the metric ten-
sor in the Einstein frame, which can be converted to the Jordan
frame by

g̃µν = A2(ψ)gµν. (2)

The conformal factor satisfies A ' 1 for the symmetron model
and we use this approximation throughout. For more on these
frames and the transformations between them and possible er-
rors, see Faraoni et al. (1999) and Brown & Hammami (2012).

To preserve the behaviour of gravity, as described by GR,
the symmetron model utilises a screening mechanism that trig-
gers based on a set density value ρassb at the solar system scale(a
region of high density). In regions of low density, the symmetron
would produce a modification of order one on the gravity. To ac-
complish this, the potential in the action above is defined to be
symmetric, as in

V(ψ) = V0 −
1
2
µ2ψ2 +

1
4
λψ4, (3)

1 We only study the quasi-static limit (Llinares & Mota 2013; Noller
et al. 2014) of the scalar field, where time derivatives are ignored.

where ψ is the scalar field, µ is a mass scale, and λ a di-
mensionless parameter. Likewise, the coupling factor is also
symmetric,

A(ψ) = 1 +
1
2

(
ψ

M

)2
,

with M being another mass scale.
To find the stress energy tensor for the symmetron model, we

vary the action with respect to the metric

Tµν = A(ψ)T (m)
µν + T (ψ)

µν

= A(ψ)
[
(P + ρ)uµuν + Pgµν

]
(4)

+ ∇µψ∇νψ − gµν

(
1
2
∂iψ∂iψ + V(ψ)

)
,

where P and ρ are the pressure and density, respectively.
The scalar field component of the stress energy tensor is not

covariantly conserved, i.e.

∇νT (ψ)
µν , 0,

while the total stress energy tensor is (Misner et al. 1973)

∇νTµν = 0. (5)

The equation of motion for the scalar field is found by varying
the action again, this time with respect to the scalar field,

�ψ = V ′(ψ) − A′(ψ)T (m), (6)

where T (m) is the trace of the stress energy tensor T (m) = gµνT (m)
µν .

The right side of Eq. (6) can be recognised as an effective
potential, and, using Eq. (4), we write

Veff(ψ) = V0 +
1
2

(
ρm

M2 − µ
2
)
ψ2 +

1
4
λψ4. (7)

With this potential, the scalar field goes to zero in regions of high
density, ρm � M2µ2, while in regions of low density it reaches a

minimum of ψ0 = ±µ
√

1
λ
. The addition to gravity, the fifth force

scales with the value of the scalar field, and we see from this that
it is suppressed in regions of high density.

We redefine the free parameters µ, M, and λ to β, λ0, and
aSSB to a set of parameters that are more physical intuitive as
described in Winther et al. (2012),

β =
Mplψ0

M2 , (8)

a3
SSB =

3H2
0ΩmM2

pl

M2µ2 , (9)

λ2
0 =

1
2µ2 , (10)

where H0 is the Hubble factor at present day (z = 0) and Ωm is
the matter density parameter.

The relative strength of the fifth force to the gravitational
force is represented by β, the moment of breaking symmetry is
represented by the expansion factor aSSB = (Ωm0ρc0/ρSSB)1/3,
and the range of the fifth force is represented by λ0 in units
of Mpc/h.
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A dimensionless scalar field χ is defined as

χ ≡
ψ

ψ0
, (11)

with an equation of motion in the quasi-static limit (Llinares
et al. 2014)2 as

∇2χ =
a2

2λ0

[(aSSB

a

)3 ρm

ρm
χ + χ3 − χ

]
, (12)

where ρm is the mean density.
The equation of motion for the position x of the dark matter

N-Body particles has been derived from Eq. (1) in Llinares et al.
(2014) and takes the form

ẍ + 2Hẋ +
1
a2∇Φ +

1
a2

A′(ψ)
A(ψ)

∇ψ = 0, (13)

where Φ is the Newtonian gravitational potential.
The fluid equations for the symmetron model is a special

case of the general fluid equations for a scalar-tensor theory. Via
the action Eq. (1), stress-energy tensor Eq. (4), conservation law
Eq. (5), and working in the Newtonian Gauge,

ds2 = −(1 + 2Φ)dt2 + a2(1 − 2Φ)δi jdxidx j, (14)

the fluid equations are derived,

∂ρ

∂t
+ ∇(vρ) + 3Hρ = 0, (15)

a2(P + ρ)
[
Hv +

∂v

∂t
+ (v · ∇)v +

1
a2∇Φ

]
(16)

+ ∇P +
A′(ψ)
A(ψ)

ρ∇ψ = 0,

∂E
∂t

+ 2HE + v · ∇E +
P
ρ
· ∇v = −(v · ∇)Φ −

A′(ψ)
A(ψ)

(v · ∇)ψ,

(17)

where H = ȧ
a is the Hubble factor, v is the velocity of the fluid,

and E is the internal energy of the fluid.
To remove explicit dependencies on a and H from the equa-

tions above, we use a variation of the super-comoving coordi-
nates from Martel & Shapiro (1998), represented by a tilde,

χ̃ = aχ, dt̃ = a−2dt, ρ̃ = a3ρ, ṽ = a2v, (18)

ψ̃ = aψ, P̃ = a5P, Φ̃ = a2Φ, Ẽ = a2E; (19)

all equations from this point on are in comoving coordinates.
By excluding terms of second order and assuming static

pressure, the field Eqs. (15)–(17) transform to3

∂ρ̃

∂t̃
+ ∇(ṽρ̃) = 0, (20)

∂ṽ

∂t̃
+ (ṽ · ∇)ṽ = −

1
ρ̃
∇P̃ − ∇Φ̃ −

A′(ψ̃)
A(ψ̃)

∇ψ̃, (21)

∂Ẽ
∂t̃

+ ṽ · ∇Ẽ +
P̃
ρ̃
· ∇ṽ = −(ṽ · ∇)Φ̃ −

A′(ψ̃)
A(ψ̃)

ṽ · ∇ψ̃. (22)

2 Simulations beyond the static limit were presented in Llinares &
Mota (2013, 2014), finding only sub-percent differences between the
static and non-static solutions.
3 With this transformation, the derivative in A′(ψ̃) is now with respect
to ψ̃.

Table 1. Coupling factor combinations explored.

Configuration βDM βGas

DM1G1 1.0 1.0
DM10G10 10.0 10.0
DM0.1G0.1 0.1 0.1
DM10G1 10.0 1.0
DM1G10 1.0 10.0
DM0.1G1 0.1 1.0
DM1G0.1 1.0 0.1

With this approach, the symmetron model version of the fifth
force is

Fψ = −
A′(ψ̃)
A(ψ̃)

∇ψ̃ = −

ψ̃

M2

1 + 1
2

(
ψ̃

M

)2∇ψ̃ ≈ −
ψ̃

M2∇ψ̃

= −6ΩmH2
0

(βλ0)2

a3
SSB

χ̃∇χ̃. (23)

For more on the symmetron model, see Hinterbichler & Khoury
(2010).

3. Parameters

The coupling factor defined above is split into two new coupling
factors,

β→

{
βDM

βGas,
(24)

which replace the coupling factor in the dark matter and fluid
equations, respectively.

In order to study the effect, we choose couplings of varying
orders of magnitude4 and our chosen configurations are shown
in Table 1.

The simulations were run using 1024 cores, 2563 dark mat-
ter particles, with a box width of 256 Mpc/h, and six levels of
refinements. The background cosmology is a standard ΛCDM
background, with h = 0.65, ΩΛ = 0.65, Ωm = 0.35, and
Ωb = 0.05. The chosen symmetron model has aSSB = 0.33 and
λ0 = 1 Mpc/h.

Because of the use of extremely coupled models, we ran a set
of convergence tests to verify that the errors induced by extreme
coupling were not too extensive. The tests showed that the code
handled the extreme models well for the most part, however, for
the power spectra there were slight errors at the smallest scales
k > 4 Mpc/h and for the halo profiles at radius above R > 3R200c.
These errors were not significantly large, but results from the
extreme models should be taken with a grain of salt in these
regions.

All results in the following sections only focus on the present
day epoch, which corresponds to z = 0.

4 The extreme couplings with β = 10 can induce accelerations upwards
of Fψ = 200FGR. Accelerations of this kind can result in relativistic
velocities, requiring a relativistic set of equations to properly describe
the systems. Luckily, none of our models induced relativistic velocities,
the fastest dark matter particle in our simulations reached a speed of
vmax = 0.033c for the DM10G10 model, barely a factor of 2 higher than
the fastest dark matter particle in the ΛCDM model with vmax = 0.016c.
We continue with the extreme models to push any signatures of non-
universal coupling to its limit.
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Fig. 1. Top: power spectra for all our models. Middle: power spectra deviations of our extreme models from the ΛCDM model. Bottom: power
spectra deviations for the remaining models. Left column shows the dark matter component, while the right column shows the gas component. All
results are at z = 0.

4. Power spectra

With the use of the open POWMES code (Colombi & Novikov
2011), we compute the power spectra for both dark matter and
gas. To calculate the gas power spectrum, we treat each cell as a
particle with a mass defined as

m = ρVcell, (25)

where ρ and Vcell is the gas density and volume of the cell,
respectively.

In Fig. 1 we present the power spectra for all our models and
the deviations of these power spectra from ΛCDM for both the
dark matter and gas components.

At the large scale range of the power spectra, k < 1 Mpc/h,
the extreme dark matter models (DM10G10 and DM10G1) show
stronger effects of the scalar field in dark matter power spectra
than in gas power spectra. This is because the power spectra of a
component are most sensitive to changes to that component. The

smaller differences between the various models in the gas spec-
tra are due to the simulation, which is strongly dominated by
dark matter compared to the gas, so that the extreme gas model
(DM1G10) is suppressed by dark matter. This also accounts for
that fact that DM1G10 is not clearly distinguishable in dark mat-
ter spectra.

On smaller scales, k > 1 Mpc/h, the variations between the
models are most noticeable in gas spectra, as is to be expected as
the baryonic processes are strong at the smaller scales. Overall,
we see a clear example that big deviations in dark matter power
spectra do not mean big deviations in the gas power spectra.

4.1. Power spectra deviations

The main difference between DM10G10 and DM10G1 in dark
matter power spectra deviations is that the latter is shifted
slightly towards smaller scales and has a slightly smaller am-
plitude. The addition of the extremely coupled gas increases
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clustering on larger scales, while decreasing clustering on
smaller scales.

The gas spectra deviations show that the spectra is greatly
influenced by both the dark matter and gas. This is evident be-
cause DM10G10 has the strongest deviations, while the second
and third largest deviations come from DM1G10 and DM10G1,
respectively. The effect of dark matter on the gas spectra is much
stronger than the effect of the gas on the dark matter spectra, a
consequence of the dominance of dark matter.

DM1G1 and DM1G0.1 show that a minimally coupled gas
reduces the amplitude of the power spectra in the range k ∈
[0.1, 3), with the largest difference from DM1G1 at k ∼ 1 Mpc/h.
However, at the smallest scales these models end up with the
same amplitude, indicating that at this point the gas coupling is
irrelevant for dark matter spectra.

The models DM0.1G0.1 and DM0.1G1 reveal that the gas
has an impact on dark matter spectra, although not significantly,
and the same very minor effect was also evident when comparing
DM1G10 to DM10G10 and DM10G1.

The gas spectra is more susceptible to changes to dark
matter coupling, however, it is still most dependent on gas
coupling, as demonstrated by the increasing amplitude as
DM10G1 < DM1G10 < DM10G10. All the models with an ex-
treme coupling have very low amplitude at small scales, and at
the very smallest scales, they all end up at more or less the same
value regardless of whether the coupling is universal or not. The
same effect is seen when comparing DM1G1 to DM0.1G1.

4.2. Bias

The bias is defined as the ratio between the gas power spectrum
and the dark matter power spectrum,

b =
PGas

PDM
, (26)

and is shown in Fig. 2. In the very large scale region, k <
0.3 Mpc/h, the DM1G10 model has a bias that sky rockets to val-
ues larger than the ΛCDM bias. On the other hand, DM10G1 ex-
hibits the exact opposite behaviour with a lower bias that rapidly
decreases. DM10G10 displays behaviour intermediate between
these two models, but much closer to DM10G1.

The remaining large scales, 0.3 < k < 1 Mpc/h, prove a
turning point for all models. DM1G10 stops its growing bias
and starts to decrease, and DM10G1 slows its rapid decrease
and seems to stabilise at a constant value with bψ = 0.25bΛCDM.
Similarly, DM10G10 starts to level out, however, as DM1G10
starts to decrease DM10G10 does as well.

On smaller scales, the biases of these models start to dimin-
ish and eventually all are at lower values than the ΛCDM bias.
Bias deviations in the smaller, non-linear scales are strongly cor-
related with gas coupling, while also dependent on the coupling
to the dark matter. DM10G10 reveals that the components com-
pound the effect of the deviations so that the DM10G10 devia-
tion is larger than the sum of the DM10G1 and DM1G10 devi-
ations. DM0.1G0.1 exhibits almost no deviations from ΛCDM,
as is to be expected. In the final models, the behaviour of the
bias deviations act in extremely different manners depending on
what components are strongly coupled.

For DM1G0.1, we see that the bias deviations plummet at
large, non-linear scales until they reach more or less constant
values that are decreasing slightly from k ∼ 1 Mpc/h and out.
The DM0.1G1 model exhibits the exact opposite behaviour at
large, non-linear scales. DM1G1 displays a behaviour interme-
diate between the other two models at the large scales, and then
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Fig. 2. Deviation of the bias from the ΛCDM bias for our various mod-
els. The top image shows the extreme models, the bottom image the
remaining models. All results are at z = 0.

eventually starts to decrease to much less than the sum of the
respective deviations. The power spectrum bias at larger scales
shows that models with a universal coupling have fewer de-
viations from the ΛCDM model than the models with a non-
universal coupling.

For observational astronomers the implications of this be-
haviour is that if the bias deviations are greater than unity,
bψ > bΛCDM, then researchers who infer dark matter properties
from baryonic physics features will make predictions with val-
ues of the power spectrum that are too high. The opposite is true
if the bias deviations are less than unity, bψ < bΛCDM.

5. Halo profiles

In this section, we present density and temperature profiles for
multiple halos identified by using the Rockstar code developed
by Behroozi et al. (2013). We study massive halos with mass
in the range [1 × 1014h−1M�, 5 × 1014 h−1M�), the high mass
of these halos should ensure that the screening mechanism are
triggered in dense regions.

In previous works (Hammami et al. 2015; Llinares et al.
2014), the halos that had not yet reached a relaxed state were fil-
tered out following the methods described in Neto et al. (2007)
and Shaw et al. (2006). The method used relations between the
kinetic and potential energy and surface pressure to determine
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Fig. 3. Density properties for the massive halos with mass in the range [1 × 1014 h−1 M�, 5 × 1014 h−1 M�). Top: density profiles for ΛCDM and
symmetron models. Middle: density profile deviations from ΛCDM for the extreme models. Bottom: density profile deviations from ΛCDM for
the remaining models. Left column shows the dark matter component, while the right column shows the gas component. All results are at z = 0.

if a halo was relaxed or not. Gronke et al. (2014) refined the
method to take the effects of modified gravity in the virialisa-
tion state of the halos into account. However, if we filtered the
non-relaxed halos, this would eliminate too many halos in the
extreme models and leave almost no remaining halos. For this
reason, we do not filter the non-relaxed halos from the relaxed
halos.

The halo profiles are calculated by sweeping over all the
cells in the simulations, binning dark matter particles and bary-
onic gas properties in annular bins for each halo5, then aver-
aging over all halos. The profiles range from 10% of the viri-
alisation radius, r = 0.1 R200c, to ten times the virialisation
radius, r = 10 R200c. This range was chosen to properly catch
all behaviours of the fifth force on the dark matter and gas ha-
los, while also avoiding the inner regions of the halos where the

5 Rockstar filters out unbound particles when calculating the halo
properties, while we construct the profiles by sweeping over all cells
and binning particles within r = 10 R200c, potentially including these
unbound elements.

resolution of our simulations is low. All profiles are calculated
at the present epoch z = 0.

5.1. Density profiles

The density halo properties are presented in Fig. 3. An extreme
coupling in the dark matter strongly affects both dark matter and
gas density profiles. For dark matter profiles, the effect is mostly
contained at the exterior of dark matter halos, while the gas pro-
files show signs of extreme dark matter coupling in all parts of
the halo and outside. The diminished clustering at the inner re-
gions of the halos can be explained with an environmental effect
from the dark matter on the gas.

The dark matter clusters faster than the gas because of its
collisionless nature, in which the gas is prevented from collaps-
ing, due to the pressure, and the dark matter clusters unhindered.
This means that the dark matter reaches higher densities at a
faster rate than the gas, and from the description of the screen-
ing mechanism, we know that the screening is triggered by a
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combined density, dark matter plus gas, threshold, resulting in
the dark matter triggering the screening mechanism before the
scalar field has had a chance to work on the gas component as
much as on the dark matter.

An extremely coupled gas has a minor, however, not negligi-
ble effect on the dark matter profiles, while it has a huge impact
on the gas profiles. This is expected as there is much more dark
matter than gas, resulting in the effect of the gas not being as
strong. Also, DM10G10 is the model with the biggest effect on
the gas profiles, while the dark matter profiles seem to prefer
DM10G1.

5.2. Density profiles deviations

The deviations from ΛCDM for the halos are found in the lower
two rows of Fig. 3. The deviations confirm the conclusions from
the total density profiles, and also reveal previously unseen ef-
fects. All models without extremely coupled dark matter make
dark matter halos cluster less at the inner regions than in those
two cases (DM10G10 and DM10G1). The exact opposite occurs
in the gas power spectra, where all extremely coupled models
(the two previously mentioned and DM1G10) cluster less than
the other models. This is due to baryonic physics preventing the
gas from collapsing as far inwards as the dark matter, and then
the gravitational contribution from the gas on the dark matter
also prevents the dark matter from clustering.

The peak of deviations does not occur at the same radius for
all the models. For DM1G10, the peak in deviations is closer to
the halo centre, while for DM10G10 and DM10G1 the devia-
tions peak further out. This effect is due to the extreme coupling
in the gas. The extreme coupling allows the scalar field to affect
the gas component to such an extent that it collapses further in-
wards before the environmental effect of the combined density
triggers the screening mechanism.

The bottom row reveals that DM1G10 has a strong effect
on dark matter halos throughout the density profiles with higher
peak deviation than DM1G1. The gas profiles are under-dense at
the inner regions of the halos in the cases where the dark mat-
ter is normally (or extremely) coupled to the scalar field. In the
cases where the dark matter is minimally coupled, the profiles
approach ΛCDM at the centre of the halos. This behaviour fur-
ther asserts our conclusions about the environmental effect.

To study how deviations from ΛCDM differ in dark matter
and gas cases, we introduce the deviation bias δDM, defined as
the relative difference between the deviations

δDM =
∆DM − ∆Gas

∆Gas
=

ρDM−ρΛCDM
ρΛCDM

−
ρGas−ρΛGas
ρΛGas

ρGas−ρΛGas
ρΛGas

, (27)

where ρΛGas is the gas ΛCDM density and ρΛCDM is the
DM ΛCDM density.

The DM10G1 model represents a model that has an enor-
mous deviation from ΛCDM in the dark matter component of
∆DM ∼ 8.5 at R ∼ 4R200c, and a much smaller deviation
of ∆Gas ∼ 2.5 in the gas component, giving a deviation bias
of δDM ≈ 2.4. The same effect, but now with enourmous devia-
tions in the gas component, is present in DM1G10 where the de-
viations from ΛCDM are ∆Gas ∼ 1.5 for the gas and ∆DM ∼ 0.5
for the dark matter, giving a deviation ratio of δDM ≈ − 2

3 .

5.2.1. Baryon fraction profiles

One of our aims is to find a method of distinguishing be-
tween models that have universal coupling and models with
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Fig. 4. Baryon fraction profiles for the halos with mass in the range
[1 × 1014 h−1 M�, 5 × 1014 h−1 M�). Top: models with non-universal
coupling. Bottom: models with universal coupling. All results are at
z = 0.

non-universal coupling. For this purpose, we use the baryon frac-
tion (Kravtsov et al. 2005),

fGas =
ρGas

ρGas + ρDM
, (28)

and present the baryon fraction profiles in Fig. 4.
The baryon fraction shows that all the models have the

same behaviour as ΛCDM, except the three models DM10G10,
DM1G10, and DM10G1. DM10G10 converges with the ΛCDM
baryon fraction earlier than DM1G10 and DM10G1, however, in
general this model has a higher deviation at the inner region. In
fact, the models with a universal coupling seem to deviate less
from ΛCDM than the models with a non-universal coupling.

This is the same behaviour displayed by the power spec-
trum bias at larger scales, and allows us to conclude that signif-
icant deviations in the baryon fraction from the ΛCDM model
throughout the halos might be an indication of a non-universal
coupling.

5.3. Temperature
The temperature is a very interesting component to study due to
its close relation observables (Wilcox et al. 2015; Terukina et al.
2014). The temperature is not an output of our code and needs
to be reconstructed using the ideal gas law,

p = RsρT, (29)
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Fig. 5. Temperature properties for the our halos. Top: temperature pro-
files for ΛCDM and symmetron models. Middle: temperature profile
deviations from ΛCDM. Bottom: deviations with the extremely coupled
models filtered out. All results are at z = 0.

where p is the thermal pressure, Rs = kB
m̄ is the specific gas con-

stant, m̄ = 0.59mH is the mean mass of the gas, mH is the hy-
drogen mass, and ρ is the gas density. The temperature profiles
are made and analysed in the exact same manner as the density
profiles.

5.3.1. Total temperature profiles

The temperature profiles are presented in Fig. 5. The tempera-
ture is a product of the baryonic processes and is most sensitive
to strong coupling between the gas and scalar field (Hammami
et al. 2015).

The stronger the coupling to the scalar field is, the higher
the temperature in the halos is. The slope of the profiles outside
of the halo, as the temperature starts dropping, is shallower for

DM10G10, DM1G10, and DM10G1 than in the other models.
DM10G10 gives an even higher temperature than DM1G10, in-
dicating that the dark matter plays a vital role in the temperature
of baryonic halos. This is also evident from DM10G1, which has
a higher temperature than the less extreme cases.

5.3.2. Temperature profiles deviations

The temperature deviations from the ΛCDM temperature are
found in the bottom two rows of Fig. 5. DM0.1G1 and
DM0.1G0.1 are two similar models in which one has univer-
sal coupling and the other does not. These two models display
no signatures that can be interpreted as a trait of non-universal
coupling. DM1G0.1 and DM0.1G0.1, on the other hand, display
an increase in temperature outside of the virialisation radius.

Both of these effects come from the fact that these ha-
los are so massive that they are most likely screened from the
scalar field. The difference between DM1G0.1 and DM0.1G0.1
is that the regions outside of the halos are non-screened, and the
stronger coupling to dark matter allows DM1G0.1 to be influ-
enced by the scalar field to a larger extent than DM0.1G0.1.

6. Conclusions

We investigate scalar-tensor theories of gravity, which present
a non-universal coupling. That is, baryons and dark matter are
coupled with the scalar degree of freedom with different cou-
pling strengths. The models we investigate utilise a screening
mechanism to suppress the deviations from GR at small (solar
system) and large cosmological scales: the symmetron screen-
ing mechanism, specifically.

As a result of the screening mechanism, the strongest sig-
natures in these models are expected to occur at the non-linear
regime of structure formation. Therefore, in order to unveil the
imprints of these theories at astrophysical scales, we ran several
hydrodynamic cosmological N-body simulations. We compared
models with and without a universal coupling to the symmetron
scalar field, and showed that several astrophysical observables
(density profiles, temperature profiles and power spectra) show
significant differences between the dark matter and gas compo-
nents when the coupling is non-universal.

The deviations from ΛCDM are typically larger in the gas
than in the dark matter near the centre of the halo. The opposite
holds true at larger radii, where the dark matter deviates more
strongly from ΛCDM. However, this is not the case for models
in which coupling of the gas is significantly stronger than that of
the dark matter.

For power spectra, dark matter deviations are larger than that
of the gas in models with universal coupling or in models in
which dark matter coupling is stronger than gas coupling.

Our attempt to find signatures in density profiles and power
spectra, which would reveal whether coupling to the scalar field
is universal or not, revealed one signature: in the cases of univer-
sal coupling, the deviations in the baryon fraction and bias from
ΛCDM are smaller than in the cases of non-universal couplings
throughout the halos. This is expected, since GR is a universally
coupled theory. If observers find the baryon fraction or power
spectrum bias to deviate from the calculated ΛCDM bias, then
this might very well be a sign of a non-universal coupling, and
therefore a breaking of the equivalence principle.

Separating the dark matter and gas will prove to be a chal-
lenge for observers intending to compare their results with the-
ories, since the dark matter is not a direct observable, while
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the gas is observable. To work around this, we propose to use
the baryon fraction as presented in this paper. To measure this
baryon fraction, first we suggest the constructing of the total
density profile, ρTot = ρDM + ρgas, using rotational velocity pro-
files of individual galaxies to measure the dynamical mass, and
then constructing the gas density profile ρgas, using X-ray surface
brightness and X-ray temperature profiles.

A caveat with the above mentioned method is that the cal-
culated dynamical mass is dependent on the particular gravity
model used. An alternative option is to calculate the lensing mass
using gravitational lenses as the path of light that is independent
for all conformal scalar gravity theories (Bekenstein & Sanders
1994; Carroll 2004) and generally ideal for studying modified
gravity theories (Zhao et al. 2011).

The above method for detecting non-universal couplings
may not be possible with the current state of observational and
theoretical limits. The deviations we found from ΛCDM are all
quite small, when we exclude the extreme models, and also con-
tain large uncertainties depending on the modelling of feedback
physics.

Furthermore the observational baryon census of galax-
ies contains significant errors and may still be incomplete,
i.e. the halo missing baryon problem (Werk et al. 2014), while
the baryon consensus in galaxy clusters is less challenging as
the majority of the gas is hot enough to be visible in X-rays. The
above method is therefore more likely, yet still very challenging,
to work in galaxy structures than in galaxies.

If one takes seriously the possibility of matter components
with a non-universal coupling to a gravity scalar degree of free-
dom, then our work shows the bias will be greatly affected.
Therefore, attempts to rule out or constrain modified gravity
theories by comparing dark matter predictions to the observed
quantities based on baryonic properties may be misleading, and
one must consider the possibility of a non-universal coupling
that might skew the conclusions and dark matter properties that
are inferred from baryons.
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