
A Programming Language for
the Internet of Things

Magnus Åsrud
Master’s Thesis Spring 2017

A Programming Language for the Internet of
Things

Magnus Åsrud

2nd May 2017

2

Abstract

The Internet of Things (IoT) is becoming more integrated with our daily
lives for each passing day. Some households are already equipped with
smart devices which perform tasks such as monitoring the indoor climate
to mowing the lawn. There exists open source frameworks designed for IoT
which can be used by hobbyist and professionals for their own projects.
However, many of those tools require the user to know programming
languages such as C, Python and JavaScript. Users who do not know
much programming and who would like to tinker with IoT may find it
challenging to work with those tools.

In this thesis we’ll look at how to design a programming language tar-
geted specifically at IoT. The language is targeted at amateur programmers
with the goal to make it easy to program any IoT device. We’ll discuss the
current limitations of the IoT hardware and how the language should work
around them. Finally, we’ll look at how to implement an interpreter for this
language on a Raspberry Pi 3 Model B.

3

4

Contents

I Background 13

1 Introduction 15
1.1 Impulse SmartCity . 15
1.2 The Current Project . 16
1.3 Acknowledgements . 16

2 The Internet of Things 17
2.1 Internet of Things . 17

2.1.1 What is the Internet of things? 17
2.2 Sensors . 18

2.2.1 Energy efficiency . 20
2.3 Communication . 20

2.3.1 Bluetooth . 20
2.3.2 WiFi . 22
2.3.3 WiFi HaLow . 23

3 Related Projects 25
3.1 Alternatives . 25

3.1.1 Scriptr . 25
3.1.2 Libelium Waspmote Plug & Sense 25
3.1.3 Johnny-Five . 26
3.1.4 Tessel 2 . 26

3.2 Evaluation . 26

II Design 27

4 Requirements for an IoT Programming Language 29
4.1 The Target Platform . 29
4.2 The Target Audience . 29
4.3 The Core Requirements . 30
4.4 Hot Swap Scripts . 30
4.5 Interpreting vs Compiling . 30

4.5.1 Compiling . 30
4.5.2 Interpretation . 32
4.5.3 Evaluation . 32

4.6 The Type System . 32
4.6.1 Static Typing . 32

5

4.6.2 Dynamic Typing . 33
4.6.3 Inferred Typing . 33
4.6.4 Evaluation . 33

4.7 Event Oriented Programming 34
4.7.1 Handling Events . 34

4.8 Security . 34
4.9 Errors and Exceptions . 35
4.10 Handling a Software Crash 35

4.10.1 Alternative 1: Reset . 35
4.10.2 Alternative 2: Remove the script 36
4.10.3 Alternative 3: Ignore it 36
4.10.4 Alternative 4: Terminate 36
4.10.5 Alternative 5: Inform the user 37
4.10.6 Watchdog Daemon . 37

4.11 Sensors and Actuators . 37
4.12 The Standard Library . 38

5 Designing Daspel 39
5.1 What is Daspel? . 39
5.2 The syntax . 39
5.3 Data types . 39
5.4 Integer . 40

5.4.1 Integer Syntax . 40
5.5 Real . 40

5.5.1 Real Syntax . 41
5.6 Boolean . 41

5.6.1 Why include boolean? 41
5.7 String . 42

5.7.1 Unicode . 42
5.7.2 Dynamic Size . 42
5.7.3 Single Character . 42
5.7.4 String Syntax . 42

5.8 List . 43
5.8.1 List Syntax . 43

5.9 Nil the Error Type . 43
5.10 Variables and Variable Declaration 43

5.10.1 Variable Declaration Ambiguity 44
5.10.2 Variable Declaration Part 44
5.10.3 Variables and Scopes 45

5.11 Scoping . 45
5.11.1 Variable Scope . 46
5.11.2 Library Scope . 47
5.11.3 Global Scope . 47
5.11.4 Function Scope . 47

5.12 Operators . 47
5.13 Statements . 48

5.13.1 For Loop . 49
5.13.2 While Loop . 49

6

5.13.3 Conditionals aka. If-Else 49
5.13.4 Functions . 49

5.14 Things That Did Not Make It To The Language 50
5.14.1 Variadic Function . 50
5.14.2 Tuple . 50
5.14.3 Type Annotation For Function Parameters 50
5.14.4 Data Type Methods . 51

5.15 Unicode Syntax . 51

III Implementation 59

6 Proof of Concept 61
6.1 The Goal of the Implementation 61
6.2 The Hardware . 61
6.3 The Interpreter . 61
6.4 Source Code . 62
6.5 Disclaimer . 62

7 The Raspberry Pi and the Sense HAT 63
7.1 Raspberry Pi 3 Model B . 63

7.1.1 Software . 64
7.2 Sense HAT . 64

7.2.1 Sensor Communication 65
7.2.2 Byte Encoding . 65
7.2.3 The Sensors . 65
7.2.4 The LED Matrix . 66
7.2.5 RTIMULib . 67
7.2.6 Errors In Reading Temperatures 67

8 Implementation 69
8.1 Criteria . 69
8.2 Implementation Language . 69

8.2.1 Python . 70
8.2.2 C . 70
8.2.3 C++ . 71
8.2.4 Rust . 72
8.2.5 Conclusion . 73

8.3 Work setup . 73
8.3.1 Required Software . 73

8.4 Porting the Sense HAT library to Rust 74
8.4.1 Writing the C wrapper 74
8.4.2 The Framebuffer . 75
8.4.3 Reimplementing the Sense HAT module from C to Rust 76

8.5 The Lexical Analysis and Syntax Analysis 76
8.5.1 The Scanner . 76
8.5.2 The Parser . 77

8.6 Representing the Data Type Real in Rust 78

7

8.6.1 Arithmetic Operations 78

IV Summary 81

9 Conclusion 83
9.1 Analysis . 83
9.2 Future Work . 83

8

List of Figures

1.1 A program for controlling a fan using graphical notation . . 16

2.1 Range representation of the WiFI bands 23

4.1 Flowchart for the program execution 31

5.1 The bit pattern of a fixed point number 41
5.2 An example of how variables can be declared in a language

with a static type system . 46

7.1 The Raspberry Pi 3 Model B. Source [39] 63
7.2 The Sense HAT. Source [41] 65
7.3 The orientation. Source [43] 66
7.4 The RGB 565 bit field after a RGB 888 value has been encoded

by the Python library. 66

8.1 A tagged union in C . 71

9

10

List of Tables

5.1 Arithmetic operators . 48
5.2 Logical operators . 48
5.3 Emojis for nil . 52
5.4 Emojis for send . 52
5.5 Emojis for power . 53
5.6 Emojis for timer . 53
5.7 Emojis for microphone . 53
5.8 Emojis for speaker . 54
5.9 Emojis for GPS . 54
5.10 Emojis for temperature . 54
5.11 Emojis for humidity . 55
5.12 Emojis for pressure . 55
5.13 Emojis for LED . 55
5.14 Emojis for Light . 56
5.15 Emojis for monitors . 56
5.16 Emojis for On/Off action . 56
5.17 Emojis for loop . 57
5.18 Emojis for If-Else . 57
5.19 Emojis for function . 57

7.1 The Raspberry Pi 3 Model B specification [36] 64
7.2 The Sense HAT sensor modules [42] 66
7.3 The Sense HAT specification [40, 48] 67

11

12

Part I

Background

13

Chapter 1

Introduction

1.1 Impulse SmartCity

This project was initially going to be a contribution to another project called
Pulse SmartCity. Pulse SmartCity is, as the name implies, a smart city
project lead by Jon Bøhmer. The idea was to use hundreds of IoT devices
scattered accords a city to gather information about weather, temperature,
movement of vehicles and to monitor the electrical consumption. The
system would consist of a gateway, nodes and tags. The nodes would
communicate with a gateway to transmit data. The tags would be used
as identifiers and nodes would be able to recognise them.

The contribution to Pulse SmartCity was to design a script language for
this system. Part of the nodes design was that the user should be able to
program them through a Web UI. To make the programming easier, the UI
would use graphical elements to construct a script. Similar concepts can
be found in programming languages such as scratch [1]. The graphical
notation would be converted to a textual form behind the scenes. The
language had to be simple so that anyone could use it.

The second part of the contribution would be to design an interpreter
for the language. The scripts would be interpreted on the IoT devices. The
devices also had to be able to switch out running scripts with new ones
at any time. The goal was to make the nodes as independent as possible,
even if they were placed in hard to reach areas. This means that the user
can simply send a new script to a node through radio waves.

There were a few restrictions that had to be addressed when designing
both the programming language and the interpreter. The nodes have
limited storage space, RAM and processing power. They also have a small
battery, so the goal was to minimise the power consumption as much as
possible. The scripts had to be as small and compact as possible in terms of
file size. This is to reduce the amount of data which has to be transmitted to
a node as sending and receiving to radio signals consumes a lot of power.

The data collected by the nodes would be sent to a cloud service, such
as the Amazon AWS, where it would be processed. The nodes themselves
would be able to do some of the processing themselves. As a result,
less data will be transmitted over the network which will free up some

15

bandwidth. The nodes would be able to conserve more energy by not
having to use generate radio waves as often.

Figure 1.1: If the temperature is above 30 units, turn on the fan at 65%
power. The unit was not specified by the creator. Credit: Jon Bøhmer.

1.2 The Current Project

As time went by, the goal of this thesis changed. The focus moved
away from the idea of creating a programming language for one specific
platform. Instead, the programming language would be designed to work
for all IoT devices, regardless of architecture.

Most of the original goals remain the same. The main objective is
to create a small scripting language which is easy to use. The language
is designed to resemble a traditional imperative programming language.
The target audience are people who possess basic knowledge about
programming. The functionality of the interpreter remains the same.

1.3 Acknowledgements

I’d like to express my gratitude to my supervisor, Dag Langmyhr, for his
excellent help and guidance. His cheerful mood and optimism kept me
going throughout the duration of the project.

I would also like to thank two students, Vetle Volden-Freberg and Olav
Wegner Eide, who kept me company throughout the last couple of months.

16

Chapter 2

The Internet of Things

2.1 Internet of Things

Technology has come a long way since the early days of computing. The
first digital computers were big, expensive and consumed a lot of energy.
Writing a program for solving a particular task could take more time a
few decades back than it would today. As time passed, computers became
smaller, faster, more energy efficient and most importantly: cheaper. The
power of a supercomputer from back then can now be found in modern
smartphones. This technological advance has come with many benefits.
Communication and exchange of information over the whole globe and
even to space has been possible for a few decades now and is part of
our every day life. All kinds of information from various media is now
available at the tip of our fingers.

Technology has in recent years been taking a step in a new and
unexplored direction and a new phrase for this phenomena emerged: The
Internet of Things (IoT).

2.1.1 What is the Internet of things?

The Internet of Things (IoT) is a concept of connecting devices through the
Internet with the ability to gather and exchange data. These devices or
gadgets are usually embedded with micro-controllers, software, sensors,
actuators and Internet connectivity[2]. Such gadgets may include regular
household items like washing machines, fridges, sound systems, coffee
makers, alarm clocks and much more. There are also IoT applications
used in cities like sensors which monitor traffic, air and water pollution
and electrical energy consumption. In the feature, self driving cars will be
transporting people to their destinations and these cars will use sensors
and wireless technology to communicate with each other in the traffic. It is
estimated that there will be 6.4 billion (6.4 · 109) devices connected and in
use by the end of 2016 and that this number will increase to 20.8 billion in
2020 [3].

17

2.2 Sensors

"A sensor is a device that detects and responds to some type
of input from the physical environment. The specific input
could be light, heat, motion, moisture, pressure, or any one
of a great number of other environmental phenomena. The
output is generally a signal that is converted to human-readable
display at the sensor location or transmitted electronically over
a network for reading or further processing."[4]

IoT devices are usually equipped with one or more sensors which they
use to gather information. This information is then processed internally
on the device or sent back to a server (ex. Amazon Cloud Services or a
local computer).

Position, placement and displacement

This sensor is able to detect how the distance to another object. In
other words, distance. A different type of this kind of sensor is able to
determine how far it has travelled from a fixed point be measuring angular
movement, or by rotation. For example, a robot can know how far it has
travelled based on how many times its wheels have rotated.

Presence and motion

Sensors which sense presence have the ability to detect if an object is
located nearby. For example, a lamp can be equipped with a presence
sensor. It can light up if its sensor detects that a human has entered the
room. The sensor can detect movement, body heat or both. Another way
of sensing a specific presence would be to use a tracking device. This device
could for example be placed on a pet. Then the sensor can detect when the
pet with the device moves in to or out of its range.

Speed

These senors can measure how fast an object is moving with the help
of magnets or light. Example of use can be found in Anti-spin Break
Systems(ABS) in cars which measure how fast the wheels are spinning.

Temperature

A type of sensor commonly found in households. A well known example
is a digital thermometer for measuring temperature inside and outside a
house. A more advance system would involve could be able to measure
temperature in all the rooms inside a house and control temperature
regulating devices. The system would detect whenever it has to turn on
the heating panel, the heat pump or the air conditioner if it is too hot or
cold based on temperature readings.

18

Humidity and moisture

The ability to measure the amount of water in air. This is also a very
common sensor which can be found in devices which also measure
temperature. Equipment installed with humidity sensors can be found in
homes, bundles together with a thermometer. They can also be found in
greenhouses, air conditioning systems, offices and cars[5].

Sound, acoustic and vibration

This sound detecting sensor is more commonly known as a microphone.
The microphone can be designed in various ways. It can be designed to
only pick up specific types of noises like a door closing shut or a pair of
hand clapping.

Light

These are sensors which can detect human visible light. Much like
proximity sensors, these sensors use visible light to detect changes and
movement in an environment. For example, a lamp can turn itself on
automatically if it detects that there is too little light present in a room and
it can turn itself off if there is too much light.

Motion and rotation

These are more commonly known are gyroscopes and they sense rotational
motion and changes in orientation. Cameras can use gyroscopes to detect
shaking and irregular movement which helps them stay in position. This
results in less shaky photos and video capture.

GPS

Global Positioning System (GPS) is a system which allows a device to
measure its position and velocity anywhere in the world[6]. GPS receivers
use satellites orbiting the Earth to determine their position. At least four
satellites are required to get an accurate position. The margin of error is
usually within a few meters with a good signal. The satellites broadcast
their positions and time via radio waves and these signals are picked up by
a receiver. The receiver knows how much time has passed after the signal
was sent and it is able to determine its location on Earth.

Some IoT gadgets have a GPS sensor installed so they can log or signal
their current position and speed. The GPS sensor can be used to keep track
of the location of humans, animals and items. A household animal pet,
such as a cat, can carry collar installed with a GPS tracker so that the owner
can know where his or her pet is located.

19

2.2.1 Energy efficiency

Low energy consumption is a important key element for the IoT. Because
the devices can be placed in remote or hard to get locations, it will usually
be necessary to equip them with an internal power source. New technology
with low power consumption in mind is being created for the use of IoT.
For example, a new version of Bluetooth, called Bluetooth Low Energy [7]
and the Wi-Fi HaLow [8].

The devices spend most of their time in a low power state where they
lie dormant and only turn on if the sensors pick up a signal or the device
has to send/receive information. This requires intelligent hardware and
low energy consuming sleepmode compatibility [9].

3D RAM and 2.5D and 3D processors are technologies which are design
for higher performance with lower power consumption as well as lower
manufacturing costs [10][11]. The development of these technologies is
partly driven by IoT like smartphones.

2.3 Communication

The IoT usually use wireless communication technology to transmit
information. This information can be send to other IoT devices, terminals
or servers on the Internet. In some instances, it may not be necessary
to send data over the Internet. For example, a smartphone which has
received a message via a social media application can send a notification
over Bluetooth to the owner’s smartwatch. The watch can then display
the message on its screen. In other situations, a message is send over the
Internet to notify a remote party over varying distances, from just a few
meters to entire continents.

As the IoT phenomenon has grown, the need for better and more energy
efficient technologies have emerged. Wireless communication is one of the
technologies which have been modified and developed to fit the need of
IoT. The IoT devices have very low battery capacity but they usually don’t
send a lot of information at any given time. This means that developers can
create new or modify existing communication protocols to use less energy
at the cost of less throughput. The next sections will cover two upcoming
and popular wireless protocols aimed at improving the battery life and
range of modern IoT.

2.3.1 Bluetooth

Bluetooth is a wireless technology designed for exchanging data over short
distances. The technology allows for continuous streaming of data between
two devices at a high transfer rate (25 Mbit/s theoretical bandwidth).
Bluetooth uses radio signals and operates between 2,4 GHz and 2,485
GHz, meaning it operates within the frequency spectrum of other wireless
technologies like WiFi[12]. Bluetooth devices can connect with each other
by pairing. Bluetooth does not send signals in a general direction. Instead,
it broadcasts a signal so other nearby devices can see it and pair up.

20

However, they need to be in close range, usually up to 10m. Bluetooth
also comes with the benefit of backwards compatibility, meaning devices
with newer versions of Bluetooth can still communicate with devices with
older versions of Bluetooth.

Common usage

This technology is very popular and easy to use which is why it is used
in many common electronic devices like smartphones. For example, a
user can pair up a phone to a wireless headset and stream music to it.
Bluetooth can also be used to exchange data from one device to another,
making it easy to transfer images from a phone to a computer for backup,
or to synchronise data on two devices. In recent years there has been a
development in the use of Bluetooth beacons in retail stores. The beacons
can inform a person through his or her phone about the location and
information about the store. Both Apple and Google, the two major
smartphone operating system developers, provide support for Bluetooth
beacons in iOS and Android[13][14]. This technology works by having the
phone constantly listening to information sent from such beacons while
consuming as little battery power as possible. When it receives a signal
from a beacon, it can then notify the user by displaying a message or
opening a designated application.

Bluetooth Low Energy (Bluetooth Smart)

Standard Bluetooth is excellent for transferring data continuously but this
feature may not be a necessity for IoT devices, which does not stream data,
but rather transmit it via short bursts and otherwise stay in a low energy
(sleep) mode. Therefore, a new version of Bluetooth was created: Bluetooth
4.0, also known as Bluetooth Low Energy (BLE)[15]. This version was
designed with IoT in mind, meaning it offers low energy consumption by
staying is a low energy state when not communicating with other devices
and by sending small amounts of data at a high transfer rate (1 Mbit/s).
BLE also spends little time pairing with devices which draws less power.
While classic Bluetooth can spend around 100ms to connect, BLE needs
only around 6ms. Battery-wise, this technology can make a small device
last a couple of years with only a small coin sized battery as a power source.
In terms of range, BLE has around the same range as standard Bluetooth at
around 10m indoors and up to 100m outdoors with no obstacles.

Bluetooth version 4.1 and 4.2

Bluetooth 4.0 was previously know as Wibree and was developed by Nokia
from 2001 to 2006 before changing name[16]. The technology was first
implemented in the iPhone 4S in later 2011 and has since been added in
other devices from other manufacturers. At the time of writing, two new
version of the Bluetooth 4.x specification have been released: version 4.1
and 4.2. Version 4.1 was a software update to the existing specification

21

which added new features which would improve both user and developer
usability. One feature fixed a commonly know issue where Bluetooth 4.0
and 4G (LTE) signals would interfere with each other, resulting in worse
performance and more power consumption. (version 4.2)

Bluetooth 5

The next version of Bluetooth was announced in June 2016 by the Bluetooth
Special Interest Group (SIG), which is the caretaker and innovator of
Bluetooth technology[17]. The new version promises increased range,
transfer speed and broadcasting messaging capacity. The range is
quadrupled from a theoretical maximum of 100m to 400m outdoors and
10m to 40m indoors. The transfer speed is doubled from 1Mb/s to
2Mb/s. Bluetooth 4.2 allows devices to send packets of 31 bytes in size
but Bluetooth 5 increases this amount to 255 bytes, resulting in an 800%
increase in capacity. These major improvements allow for devices to stay
connected even at long distances and possibly reducing the amount of
repeaters needed in a network of Bluetooth devices. Data transfer is higher,
meaning more information can be transferred in less time. As a result, less
power is consumed due to less time being used to send data. Since version
4.2, devices can connect to each other without pairing up like one usually
does when pairing up a phone to a wireless headset. Bluetooth beacons
use this type of pair-less connection to send information and location data
to smartphones. Bluetooth 5 allows such beacons to send a lot more
information per message than previous versions.

2.3.2 WiFi

WiFi is a technology which allows devices to connect to a wireless LAN
(WLAN) network. This allows the devices to wirelessly connect to
other devices or to the Internet. WiFi operates in the 2,4 GHz and 5
GHz frequency spectrum. The Institute of Electronics and Electronics
Engineers (IEEE) is an association which defines standards and protocols
for communication technologies in industries like telecommunication. The
IEEE uses uses unique numbers for each standard. The 802 is the prefix
used by any protocol or amendment that entails area networking. For
instance, Bluetooth personal area networks are designated by 802.15 while
WLAN is designated by 802.11 [18]. Today, most devices and gadgets use
802.11n or 802.11ac, also known as WiFi N and WiFi AC respectively. WiFi
N, which was released in 2007, has a transfer rate around 300-450 Mb/s
depending on the number of antennas used and the range while WiFi AC
from 2013 can reach a speed of 1 Gb/s. However, WiFi AC only uses the
5 GHz frequency band. While the high frequency screens the signal from
the popular 2,4 GHz (resulting in less interference) it loses a lot of range.
WiFi N can operate in both bands. Both of these standards are backwards
compatible with the older A, B and G standards.

22

Figure 2.1: The image is not to scale with actual range. Source [19]

2.3.3 WiFi HaLow

While standard WiFi allows for high transfer rates, it uses a lot of energy to
send data. For example, the Amazon IoT Button is a device which registers
button pressed and sends a message over the Internet to the Amazon AWS
service. While the device itself stays in sleep mode most of the time,
when pressed it wakes up and connects to the WiFi. Connecting to a WiFI
network consumes a lot of energy. The device ends up only lasting around
a 1000 presses before its battery runs out[20]. This is highly inefficient.

A new generation of WiFi is currently being developed by the WiFi
alliance[8]. The next generation WiFi protocol goes under the name of WiFi
HaLow and its specifications are described by the standard IEEE 802.11ah.
The WiFi HaLow protocol is, like the Bluetooth LE, designed with Internet
of Things in mind. It is a competitor to the BLE standard, but the two
protocols differ in that WiFi HaLow allows devices to directly connect to
the Internet.

Specification

WiFi a/b/g/n/ac works in the 2,4 GHz band while WiFi HaLow operates
in the 900 MHz Band. The 900 MHz band is a lower frequency meaning
it takes less power to send data. WiFI HaLow signals can travel further
than normal WiFi signals. WiFi HaLow is expected to have a range of 1
km[21]. The lower bandwidth also means that the signals are better at
penetrating walls, meaning a building can do with fewer WiFI repeaters
for their IoT devices. This strengthens the ability to place IoT devices in
remote areas as they can operate over longer distances. WiFI Halow has

23

a minimum throughput of 100-Kbps which may not seem like a lot, but
it should suffice for the short bursts of data transfer IoT devices employ.
Devices which support WiFI HaLow are supposed to use the 2,4 GHZ,
5 GHZ and 900 MHz bands, meaning they can communicate with both
new and old technology, making WiFI HaLow more accessible and easier
to integrate.

24

Chapter 3

Related Projects

In this chapter we’ll look at projects which incorporate scripting languages
for the IoT platform.

3.1 Alternatives

3.1.1 Scriptr

Scriptr.io, or just script, is a cloud based platform for IoT, mobile and web
applications. It offers developers to write and deploy server-side scripts
which serve as custom back-end APIs for their IoT solutions [22]. The
scripts can be written in either JavaScript or in Blocky. Blocky is a visual
programming language where the user can drag and drop code “blocks”
to create programs and it is similar to the programming language Scratch.
Scriptr offers a web hosted user interface and provides secure connections
for devices connecting to the service by the means of authentication tokens.
In addition to existing functionality in JavaScript, Scriptr also offers a
variety of modules such as managing devices and connection to social
media platforms.

3.1.2 Libelium Waspmote Plug & Sense

Libelium is a wireless sensor network platform provider for Smart City
solutions and is the developer of the Waspmote Plug & Sense (WPS) [23].
The WPS is an encapsulated wireless sensor device which allows system
integrators to implement scalable and modular wireless sensor networks
[24]. It can be powered through solar power through a solar panel, it
has options for many types of radio communication technologies such
as WiFi, Zigbee, 3G, and its eight modules can be integrated with more
than 60 sensors [24]. Most importantly, its program can be swapped
wirelessly, meaning it can be placed in out of reach areas while allowing
the maintainer to effortlessly change the currently running program. The
programs run by the WPS devices are written in C/C++. Similarly
to Arduino code, the WPS C/C++ code also require setup and loop

25

functions. The WPS can also be accessed through a graphical programming
interface.

3.1.3 Johnny-Five

Johhny-Five is an Open Source JavaScript platform for Robotics and IoT.
The framework supports a wide range of microcontrollers and single board
computers such as Arduino and Raspberry Pi and many others. The
framework relies on node.js to interpret the JavaScript programs. Johnny-
Five has support for a wide range of sensors and actuators used by IoT
devices, such as LEDs, servos, GPS, motors and environmental sensors.

3.1.4 Tessel 2

Tessel 2 is a robust IoT and robotics development platform [25]. More
specifically, the Tessel 2 is a open source development board with on-board
WiFi capabilities that allows you to build scripts in Node.js [25, 26]. It is
also capable of running Rust programs. The platform offers official and
community-created modules for various sensors and actuators [25].

3.2 Evaluation

JavaScript is a popular programming language. It is used the web and
in desktop applications [27] and IoT [28]. JavaScript is able to run on
IoT devices thanks to Node.js. Node.js is a open-source, cross platform
JavaScript run time environment [29]. It uses the Google V8 execution
engine to compile JavaScript code to native machine code for improved
speed and performance [29, 30]. V8 can be run on on multiple systems,
including the ARM processors. With Node.js and JavaScript it becomes
easy to write applications which can connect to the Internet and use web
services directly on the IoT device.

JavaScipt can also be used on the server side instead. The physical
devices can use programming languages which operate on a lower level,
such as C. This approach raises the required knowledge of the user as low
level C is harder to get right than working with a language with high level
abstractions.

The reason why Node.js and JavaScript is no used for this project is
because JavaScript is big and complex. One of the goals of this project is to
create a small and simple programming language.

26

Part II

Design

27

Chapter 4

Requirements for an IoT
Programming Language

In this chapter we will discuss the requirements for implementing a
scripting language for the IoT. We will also look at the IoT platform, the
interpreter and its requirements.

4.1 The Target Platform

The language is targeted at IoT devices. These devices are not only very
power efficient and usually small in size, but they are also limited in terms
of processing power, space and ram capacity. IoT devices do not perform a
whole lot of data processing and in most cases only gather data from their
surroundings and transfer it to an external device, such as a remote server.

IoT devices are not necessarily meant to be used as a general purpose
computer or micro-controller, like the Raspberry Pi or the Arduino, but
are instead carry out small and particular tasks. The Raspberry Pi is more
suited for general purpose applications. That is not to say that device such
as a Raspberry Pi cannot be used in IoT, but they may not be as efficient at
doing a particular task as a custom device would be.

In some cases, programs for embedded devices are written in C as
the language allows the programmer to write fast programs with a small
memory footprint and file-size. C gives the programmer a lot of control
over the behaviour of the program, but it requires a good understanding
of the hardware it’s running on. On the other hand, there already exists
scripting solutions for IoT which utilise JavaScript for the scripting part.
These applications may trade away some the speed brought by a custom,
low level solution for a the benefit of easy setup and deployment.

4.2 The Target Audience

The target audience are students or people who know a little about
programming aspects and constructs. Furthermore, the users are people
who are interested in programming and IoT. The language should provide

29

the means to write simple IoT project in a short amount of time. As such,
the language must offer the basic functionality required to quickly deploy
simple IoT solutions.

4.3 The Core Requirements

The language must be simple and easy to use. The target demographic
are amateur programmers, so the language should be restricted in terms
of complexity. This should ease out the learning curve and make the users
more productive.

4.4 Hot Swap Scripts

The programs are scripts. The IoT devices will have software which can run
those scripts. Part of the design is the ability to swap out scripts with new
ones. This means that a device which is currently running one script can
receive a new script. When this happens, the software will have to check
if the new script is usable (ie. it does not contain any syntax errors). If the
new script is OK, the running script is stopped and deleted along with its
data (variables etc.). Then the interpreter starts running the new script. On
the other hand, the new script is deleted if the interpreter detects that it
contains an error. The execution of the old script is resumed.

The user must be able to upload a new script to the desired device
regardless of where it is located. This means that scripts can be uploaded
over wireless connections such as WiFi and Bluetooth. These mechanics
makes the platform more flexible and easier to use.

The flowchart in figure 4.1 on page 31 shows the various states the
interpreter can be in.

4.5 Interpreting vs Compiling

In this section we’ll look at benefits and downsides of program compilation
and program interpretation with regard to this project.

4.5.1 Compiling

A compiler is able to verify the semantics of a program before compiling
it to a executable format. The compiler can also create executable which
are tailored to a specific architecture for improved speed and memory
consumption. As a result, programs which are compiles tend to be fast.
Depending on the language, the analysis of the program can be used to
detect bugs which would occur during run time. Thus, compilers can add
additional safety guaranties. For example, the compiler can detect type
mismatches in a statically typed language.

30

Figure 4.1: Flowchart for the program execution

31

The downside is that the generated executable can (usually) only be
used on one target architecture. The compilation time can also be slow, at
the benefit of fast executable.

4.5.2 Interpretation

A language that is interpreted is run by an interpreter. This means that
the code is not compiled to a hardware specific language. Instead, it
is interpreted either directly by an interpreter or compiled to bytecode
first. For example, Java compiles to a Java specific bytecode which can
be interpreted by the Java virtual machine (JVM). A benefit of interpreted
programs is that they can be deployed fast. Interpreted languages are also
portable and can run on any machine as long as that machines architecture
is supported.

Interpreted programs are usually slower than compiled programs. A
compiler can generate can generate optimised binaries for a hardware
platform, while an interpreter has to keep interpreting the program.
That said, it is possible to optimise interpreted programs by generating
optimised bytecode. The interpreter can detect segments of code which
are used often and spend some time to optimise those. Eventually, the
interpretation can become faster for each optimisation.

4.5.3 Evaluation

The language is more suited to be an interpreted language as it will be used
as a scripting language. The issue with compiled programs is that it would
be hard to verify them on the IoT device. There is always a possibility
that something were to go wrong with the program as it is sent to the
device. For example, it is not impossible that bits get flipped or that some
packets with the data are lost. The compiler would have to support a wide
range of different architectures. That said, this argument may be mute as
an interpreter must be able to run on different architectures.

Part of the original design was to use an interpreter for a script
language. The reason was, and still is, the benefit of code verification in
multiple stages of deployment. This allows both the user and the receiving
device to verify the scripts. This should make the platform more robust.

4.6 The Type System

In this section we’ll discuss static typing and dynamic typing. We’ll also
discuss which type system is suited based on the given requirements.

4.6.1 Static Typing

With static typing the user must specify the type of a variable when a
variable is declared. The type of a variable cannot be changed once
assigned. This means that all variables have their types known during
compile time. The compiler can just check the type of each variable and

32

tell the user if there is a type miss-match. It can also prevent bugs which
would occur during run time. Static typing can lead to less bugs as errors
are caught early on during development.

As an example, let’s look at variable declarations in C. An integer
variable can be declared without an assignment (int x;) or with one (int
y = 42;), but it must always have a specified type.

4.6.2 Dynamic Typing

Dynamic typing allows variables to be declared without having to
explicitly declare their type. A variable is not bound to any type. Therefore
it can be reassigned to another value of a different type. Usually interpreted
languages use dynamic typing as there is no compiler to perform a type
checking. Any type errors are caught during run time. Below is a trivial
example on how dynamic typing can lead to subtle bugs. In a larger code
base, finding this type of bug can take up a lot of time.

1 def add(a, b):
2 return a + b
3
4 add(1, 2) # OK
5 add(3, "hello") # Run time error
6 add("abc", "def") # OK

4.6.3 Inferred Typing

Inferred typing allows the compiler to infer the type of a variable based on
how it is used. This allows users to skip writing out the type of a variable,
but they retain the benefit of type checking during compile time. Whenever
the compiler cannot infer the type of a variable, it will terminate with a
compiler error. This forces the user to specify the data type so the program
can compile. Inferred typing falls under the category of static typing as all
types are known during compile time.

As an example: In Rust we can write the following code.

1 let x = 128;
2 let y: u16 = 20 + x;

Here, x initially has no type, but the compiler knows it must be an
integer. The y is declared with the type u16, so the expression on the right-
hand side of the assign statement must return a value with type u16. The
compiler can then infer that x must have the type u16.

Inferred typing is more complex than normal static typing and it is
harder to implement. It also offers no practical benefit, but it can make
code look a little less verbose.

4.6.4 Evaluation

Dynamic typing means the user does not have to worry about types
declarations. Dynamic typing should also help lowering the learning
curve.

33

The script file sizes should be as small as possible. We can potentially
save a few bytes by not having to write out the type of each variable. The
less data the IoT devices have to send, the less power they have to consume
on wireless communication. This also means we can potentially free up
some space on disk and RAM.

A counter argument for dynamic types is that they increase the chance
of run time errors due to type mismatches. One of the goals of the language
is that it should never cause a crash, so choosing dynamic typing over static
typing is counter intuitive as the latter can prevent type errors.

4.7 Event Oriented Programming

Most of the programming languages that are used for IoT are imperative
languages [28]. It is probably the most used paradigm and it is easy
to understand as it is easy to follow the flow of the program execution
when reading imperative code. However, there is another programming
paradigm which is more suited for IoT and for the language of this project:
event oriented programming.

IoT devices are units which wait for their sensors and actuators to react
to changes. When an event it triggered, the software on the device must
handle the event. Event oriented programming allows the user to write
programs which model resemble the behaviour of the device. This should
make programming IoT feel more natural to the user.

It is possible to write event oriented programs in imperative languages,
but they can be clunky, verbose and not very intuitive. Instead of making
event handling an addition to the language, the language will be built
around handling events directly.

4.7.1 Handling Events

All events will be inserted into an event pool. The events will be sorted
based on their priority and when they are scheduled to run. The interpreter
will poll one event at a time and handle the event. When a event handler
is running, it will not be timed out and it will be allowed to run until it is
complete.

The interpreter will be single threaded. This means that no more than
one event can be handled at any time. This simplifies the implementation
and it eliminates the possibility of race conditions for shared data between
event handlers.

The type of event handlers range from user defined to input and output
from sensors, actuators and IO.

4.8 Security

Security is an important factor when it comes to IoT. The devices are rather
vulnerable as they are connected to the Internet. As such. they can be

34

accessed by a malicious third party. These device tend to have little to no
protection from outside attacks.

Regrettably, the security mechanisms of the language and the inter-
preter were not a primary concern for this thesis.

4.9 Errors and Exceptions

The interpreter should always be running and should never terminate
unless the device is turned off. Ideally, the interpreter should be able to
handle errors caused by user scripts, in the sense that it should never crash
when it encounters one. One the other hand, compilers and interpreters can
print out a warning if they detect an something unsound within the code
they are parsing. A program which causes an error due to an exception
or a logical error can terminate safely thanks to built in error handling.
Of course, some errors are beyond our control, while others are due to
implementation oversights or bugs. For example, the program may run
out of memory, it tries to access data which is out of bounds, it runs into
the infamous null pointer exception or simply causes a segmentation fault.
What ever the cause may be, many of these errors cannot be handled by
the interpreter itself and the underlying operating system will most likely
terminate the interpreter. We will later look at how we can try to maintain
a near 100% up-time by using a background process to monitor the status
of the interpreter.

4.10 Handling a Software Crash

When the interpreter detects an error in the user script it must now choose
an appropriate course of action. An error can be caused by various means,
depending on the implementation and design of the language. We will
now look at the several different ways of handling a crash.

4.10.1 Alternative 1: Reset

The interpreter restarts the interpretation of the script. This means that
it starts to interpret the script from the beginning. There are downsides,
however.

• All temporary data is lost.

• The program may encounter the error again, causing a never ending
cycle of resets.

• The user will be spammed with error reports if enabled.

There does not seem to be many advantages to this solutions. However,
the user does not need to perform any additional maintenance as the scripts
just restarts. It could be that the error was caused by a one time error which
means it could have been expected to happen.

35

4.10.2 Alternative 2: Remove the script

The interpreter removes the script altogether from the storage medium,
meaning the interpreter no longer has a script to interpret. This scenarios
may also results in loss of intermediate data. The interpreter enters its
default state, the standby state. In this state, the interpreter must now wait
for the user to provide it a script it can run.

The advantage of this approach is that the user knows the interpreter
will safely stop interpreting a script just like a normal program which has
encountered an error would on a desktop computer. Some exceptions can
be caused by severe errors and it might be safer to simply stop instead of
rerunning the same script again.

4.10.3 Alternative 3: Ignore it

The interpreter can choose to ignore the error and continue to interpret
the program. In JavaScript, there is a null value, which represents the
intentional absence of an object value. The user can use null in arithmetic
operations with other data types which can yield confusing results.

1 > 1 + null
2 1
3 > 1 * null
4 0
5 > {} + null
6 0
7 > {} * null
8 Syntax Error
9 > null * {}

10 NaN

Nevertheless, it is there by design and it may cause a program crash
in certain situations, which may force the programmer to check for null
values.

Returning to the interpreter, we could implement a similar mechanic if
the language implements a null type for representing an error or lack of
data. Now, if the interpreter were to detect the use of a null value, it could
choose to ignore it and allow data to become corrupted. However, some
exceptions are caused by more severe problems which cannot be ignored.
This solution would have to be implemented together with one or both of
the solutions discussed in the sections above.

4.10.4 Alternative 4: Terminate

The interpreter can terminate completely and never restart automatically.
What this does is that the user has to restart the program manually. This
can be done in various ways, depending on the hosting hardware and
software. For example, if the devices is a Raspberry Pi running a Linux
distribution, the user can restart the program, either remotely (through
ex. ssh) or locally. For other devices with simpler operating systems, the
user might have to physically approach the device and manually restart it,

36

by unplugging and replugging the power source or by hitting the power
switch.

Since we’d like our IoT devices to always be up and running.
Terminating the running process and the script would probably do more
harm than good.

4.10.5 Alternative 5: Inform the user

It would be beneficial to inform the user that an error has occurred. In the
case where the interpreter crashes or terminates, it will not be possible for
it to send a diagnostic message to a user, unless there is a watcher program
(daemon) witch detects the crash and is capable of reporting errors. On
the other hand, if only the script crashes or causes an error, the interpreter
itself can notify the user of when and what went wrong. The interpreter
must therefore know how and to whom it should send the message. The
diagnostic should contain information such as when the error occurred,
what caused it and the position in the script where it happened.

4.10.6 Watchdog Daemon

A daemon is a program which runs in the background and is not under
direct control of the user. On Unix-like systems, there is a daemon called
Watchdog which checks whether the operating system is running correctly
and can cause the kernel to perform a reset if an error has occurred.

In the case where the interpreter terminates, for whatever reason, a
daemon process could be responsible for starting a new instance of the
interpreter program. The daemon must be able to determine whether the
interpreter is running or not, or if its simply sleeping.

The daemon itself must be simple, small in size and perform as few
operations as possible while still being able to correctly assess the state of
the interpreter its watching. This is to reduce the power consumption and
to conserve as many system resources as possible as they may already be
limited due to the current nature of IoT devices.

Adding a daemon process may require the IoT device to be capable
of running an operating system which is capable of running multiple
processes, either in parallel or concurrently. In the case where the
interpreter is running as a integrated part of the system, aka there is no
underlying OS with a scheduler and resource manager, it may become
impossible to implement the desired daemon. Though, perhaps it would
be possible to mimic a daemons behaviour through other means.

4.11 Sensors and Actuators

The language will provide an interface to the sensors, actuators and IO.
This means that the user will never have to worry about implementing low
level functionality. This puts a lot of responsibility on the one responsible
for implementing the interpreter as he or she must implement the interface

37

for sensors and actuators. However, the interface becomes more efficient
as it is implemented in a lower level language and can be accessed directly
by the interpreter.

One of the goals of this project is to make a language you can use to
swiftly deploy IoT applications. By offering a built in interface to sensors
and Actuators we are able to fulfil this goal.

4.12 The Standard Library

The standard library (STD) will contain functions which allows the user to
access sensors, actuators and IO. In addition, the STD will contain functions
which allows the user to manipulate and interact with the built in data
types.

38

Chapter 5

Designing Daspel

5.1 What is Daspel?

Daspel is an event-oriented scripting language which is targeted at Internet
of Things devices. Daspel provides high level abstractions over the device,
including sensors, actuators, IO and network communication.

Naming the language

‘There are only two hard things in Computer Science: cache
invalidation and naming things.’ – Phil Karlton[31]

With the help of Vetle Volden-Freberg, I settled on a name for the script
language: Daspel. The name is derived from Event-Driven Actuator &
Sensor Programming Language, or EDASPL for short. However, EDASPL
isn’t easy to pronounce for English speaking users, so the letter E was
moved from the front to between P and L.

5.2 The syntax

The syntax is inspired by C, JavaScript and Rust syntax. Daspel is written
to resemble imperative programming languages in terms of function and
block structures.

5.3 Data types

In Daspel there are 5 fundamental data types.

• int

• real

• bool

• string

39

• list

There is also the nil type which is used for error values. Out of the five
types, three of them can be considered to be primitive types: int, real
and bool. The string and list are data structures and have a more
complex implementation.

The following sections, the data types will be referred to by using a
mono-spaced font. This is just to visually separate the data types and
concepts with the same name.

5.4 Integer

In Daspel, the int is a signed two’s-complement 32-bit integer. As such,
it should cover the range of numbers required for simple calculations an
IoT device will perform. Granted, it’s not given that every IoT device has
a 32-bit processor as they can also be 16-bit or 8-bit. However, a 16-bit
processor is fully capable of handling 32-bit and 64-bit data at the cost
spending more time on additional instructions as opposed to 16-bit data.
32-bits is a commonly used size for integers and is often the default size.

But what is the user would like to use smaller integers to save space?
The dynamic type system would make it a bit to specify a more specific bit
size for an integer as opposed to a static type system. In other languages,
there is usually no way to specify the integer size without resorting to
creating a new variable or casting. However, Daspel could borrow the
integer annotation used in Rust. The syntax consists of appending the data
type at the end of the number. For example, 100i32 is a signed 32-bit
integer with value 100 while 9u8 is an unsigned 8 bit integer with value 9.
This feature could have been added, but for the sake of simplicity and due
to time constraints it was not added in this version of Daspel.

5.4.1 Integer Syntax

The syntax for the int type is exactly the same as in other languages.

1 let a = 1;
2 let b = 2;
3 let c = a + b;

5.5 Real

The term real is used to represent the decimal numbers. There are two sub
types of reals: fixed point numbers and floating point numbers. Daspel
uses the fixed point notation. The data type which represents decimal
numbers is called real. Visually, there does not seem to be any difference
between the two types. However, fixed point numbers are stored as
integers. Fixed point numbers use integer arithmetic as opposed to floating
point arithmetic. This gives them an edge when it comes to computation
speed. On devices which do not have a floating point processor [32] (FPU),

40

floating point arithmetic is very slow. For this project it is assumed that
IoT devices do not have an FPU 1. Floating point numbers are also have a
higher precision than fixed point numbers due to the number bits used to
represent the fractions being higher for floats. However, the assumption is
that user of Daspel will not require the full precision of a float. It is much
more convenient to use the faster fixed point.

real in Daspel is a signed two’s-complement 32-bit fixed point
number. It uses 16 bits to represent the integer part and 16 bits to represent
the fractional part. We refer to this format as the Q format [33] which is a
format used for fixed point numbers. In other words, the real has the
format Q16.16. More specifically, it is a Q15.16 because one bit is used
for the sign. 16-bit fractions are able to represent decimal numbers with
a precision up to at least 0.9999. Figure 5.1 shows how the integer and
fractional bits are stored.

Just like with floating point numbers, precision can be lost during
multiplication and division. This is because there is not always enough
space to represent the full range of the fractional bits.

Figure 5.1: This particular pattern is the result of converting a float with
value 5,865 to a real.

5.5.1 Real Syntax

1 let pi = 3.14
2 let r = 2;
3 let area = pi * r * r;

5.6 Boolean

A Boolean is a binary value and can be either true or false.

5.6.1 Why include boolean?

Boolean is a clear representation of a condition which is used in conditional
structures. They make the programmers intentions clearer and can make
the code more readable. Other languages, such as C and JS, allow integers
to represent boolean values. Any non-zero integers is true and 0 is false.

1This is usually due to the high cost of FPUs.

41

This approach can be considered to be a form of implicit casting between
types and allowing one type to represent multiple forms of data at the same
time. There is nothing necessarily wrong with this approach, but in Daspel
we chose to separate the duality of C integers and instead separate the it
into two distinct types.

If Daspel did not feature conditional structures, it would no longer need
to have a boolean type.

5.7 String

Strings in Daspel are dynamically sized containers for Unicode encoded
text.

5.7.1 Unicode

The string type uses Unicode encoding instead of plain ASCII. It is to
make it more convenient for non-English speakers to send and receive text
in a language they speak from their IoT device.

At one point during the design process, emojis and other Unicode
symbols were considered to be part of the syntax. It therefore made sense
to also make string support Unicode text.

5.7.2 Dynamic Size

string is dynamically sized, meaning it can grow and shrink. The size
will be handled automatically by the interpreter.

Daspel could have used fixed sized strings, but then the user has to
make sure that the string is large enough when inserting new data into it.
Daspel is supposed to be as simple as possible and by using dynamically
sized strings the user has one less thing to worry about.

5.7.3 Single Character

Daspel does not feature a separate data type for single characters. This
is because a character can be expressed as a string and it reduces the
complexity of the language. Of course, this means that Daspel is slightly
less efficient as it has to allocate single character strings on the heap instead
of on the stack.

5.7.4 String Syntax

string uses the same syntax as most other programming languages. No
Unicode characters are shown in this example because LATEX does not
support Unicode symbols.

1 let s = "this is a string";
2 let empty_string = "";

42

5.8 List

List is a collection which can store any of the Daspel data types. Just like
string, list allocates data on the heap. This allows it to grow and
shrink as elements are added and removed from the list. The allocation
is handled automatically by the interpreter.

The issue with fixed size lists is that the user have to be careful when
appending new elements. The user must ensure that the list is always large
enough to fit new elements. In the case that it isn’t, the user must allocate
a bigger list. Instead, list does this work for you behind the scenes. This
is of course backed up by the goal to make Daspel as simple as possible.

Due to time constraints, the syntax for adding and removing elements
to a list were not added. However, it would most likely be similar to the
ones found in the Python implantation.

5.8.1 List Syntax

list has the same syntax as lists in Python. Each element in the list is
separated by a comma.

1 let positive = [1, 2, 3, 4, 5];
2 let any = ["hello", 13, true];
3 let nested = [1, [2], [[3]]];
4 let empty_list = [];

5.9 Nil the Error Type

nil is an error type in Daspel. It represent the absence of a value. It is
also used to represent an error. This type was included so it would be
possible to return some kind of error from functions which read sensor
and actuator data. For example, if the temperature sensor is not connected
and the program tries to read the temperature, the function will simply
return nil instead of a real. Instead of nil, default values could be used
instead. So in the example above, instead of returning a nil, the function
could return 0.0. This is problematic as 0.0 is also a legal value. Therefore,
having a dedicated error value makes errors more explicit and easier to
catch.

5.10 Variables and Variable Declaration

Like many other languages, Daspel has variables. A variable is a named
container which stores a value. In this section we’ll discuss how variables
are declared. In the scoping section we’ll look at where variables can be
declared.

The keyword for variable declaration in Daspel is let.

43

5.10.1 Variable Declaration Ambiguity

We’ll look at two ways to declare variables. In JavaScript, we declare a
new variable by using the var, let or const keyword (const creates an
immutable variable).

1 let x = 32;
2 x = x + 20 / 3;

In Python we can declare a variable without using a keyword.

1 x = 32
2 x = x + 20 / 3

However, there is an issue with the Python implementation. Because
there is no distinction between a variable declaration and an assignment,
we get semantic ambiguity. Consider the following code written in Python.

1 x = 1
2 if condition:
3 x = 2

The user may have intended to declare a new variable x in the if-statement,
but instead ends up mutating the x above. This may seem like a trivial issue
for experienced Python programmers, but it can lead to confusion among
beginners and can lead to run-time bugs. With explicit variable declaration,
we can avoid these kinds of bugs.

1 let x = 1;
2 if (condition) {
3 x = 3; // Mutates the x above
4 let x = 2; // Shadows x
5 }

To avoid this kind of ambiguity, Daspel requires explicit variable
declarations. This gives us a clear distinction between declaration and
assignment.

5.10.2 Variable Declaration Part

In the scoping we’ll discuss where variables can be declared. For now just
know that variables can only be declared at the beginning of each scope.
That section called the variable declaration part. As variable declarations
can only occur once place per scope, it becomes easy to check for misplaced
variable declarations.

A variable declaration part consists of three variants. If there are no
variables to declare, the declaration part is either empty or omitted entirely.
The second variant consists of a single declaration. The final variant
consists of multiple declarations.

The question is: how can we represent the variable declaration part and
it’s three states in a simple and elegant way?

One solution is to require each variable to be declared separately as
demonstrated below.

44

1 let a = 1;
2 let b = "heat";
3 let c = [4, 3, 2, 1];

The next solution is to group all declarations in one block. The block
can be empty or omitted if there are no local variables.

1 # empty
2 let {}
3
4 # single
5 let { x = true }
6
7 # multiple
8 let {
9 a = 1,

10 b = "heat",
11 c = [4, 3, 2, 1],
12 }

A third alternative is to chain the declaration. Something similar can be
done in C-like languages.

1 # single
2 let x = true;
3
4 # empty
5 let a = 1,
6 b = "heat",
7 c = [4, 3, 2, 1];

The last proposal is the simplest alternative which also happens to
require the least amount of characters. Thus it is the most suited syntax
for the variable declaration part.

5.10.3 Variables and Scopes

This section mostly applies to variables defined in the function scope.
When a user defined function is called it may declare some variables.

When the function call is over, the allocated data needs to be cleaned
up. In some languages this is done by a garbage collector. In Daspel
there is no manual memory management, but there is automatic memory
management. The string and list data types do allocated data on the
heap. To avoid filling up the heap to the point where it runs out of space,
Daspel needs to clean up allocated data. So when variables pointing to
string and list data go out of scope, the interpreter will automatically
free the data on the heap.

5.11 Scoping

In this section we’ll look at the scoping rules in Daspel. There are a total
of three scopes: the library scope, the global scope and the function scope.
The library scope is the outmost scope, followed by the global scope. The

45

function scope can only exist inside the global scope. There is only one
library and global scope, but the user can define many functions and thus
many function scopes. However, the function scope cannot be nested. In
other words, you cannot define functions inside functions.

5.11.1 Variable Scope

The variable scope determines where variables can be declared and where
they can be accessed from. Two designs for variable declaration were
considered during the design.

The first design is borrowed from imperative languages and it allows
variables to be declared anywhere in a scope. In figure 5.2 we see how
variables in a statically typed language are declared and how long they
live based on the scope they are defined in. This design makes certain
things a bit more complicated as the interpreter has to know exactly where
a variable is declared in a scope. This is to ensure that expressions and
statements don’t use variables which are technically not yet defined.

The second design simply requires all variables to be declared at the
beginning of each scope. While not enforced, this practice is not unusual in
C programs where some variables are reused for different purposes, such
as counters in for-loops.

Forcing variable declarations to the top of each scope makes it a bit more
simpler to design the parser. It also makes it clear of how many variables
are used per scope. For these reasons, it was decided that variables must
be declared in a variable declaration part.

1 {
2 let x = 1, y = 2;
3 # Some code...
4 let z = 3; # <- Illegal! Must be declared at the top
5 }

1 var global; // Lives in the global scope.
2 // Goes "out of scope" when the
3 // program terminates.
4 {
5 var x;
6 ... // Some code...
7 var y;
8 {
9 ...

10 var x; // Shadows variable x.
11 // x in the scope above is untouched.
12 var z;
13 } // x and z go out of scope here.
14 } // x and y go out of scope here.

Figure 5.2: An example of how variables can be declared in a language with
a static type system

46

5.11.2 Library Scope

The library scope is the outmost scope and it contains functions found
in the standard library. This scope can be accessed from the other two
scopes. Note that this functions and variables defined in this scope cannot
be changed by the user through a Daspel script as it is defined in the
implementation of the interpreter.

5.11.3 Global Scope

This is the scope the user sees when he or she is writing Daspel program.
In this scope, variables and functions can be declared. Variables must
be declared at the top of the scope in the variable declaration part. Any
function defined in this scope can be accessed from other functions,
regardless of the order in which they were defined. In other words, Daspel
avoids the problem C has where a function cannot access another functions
defined below it unless the user declares the function prototypes at the top
of the file or in a header file.

5.11.4 Function Scope

The function scope is the scope which exists in functions. This scope is
only accessible to the owning function, meaning no external functions can
access its contents.

1 # The global scope
2 # Cannot see what’s inside
3 # foo or bar
4 let glob = 10;
5
6 fn foo() {
7 # Can see glob and bar,
8 # but cannot see bar’s zap
9 }

10
11 fn bar() {
12 # Can see glob and bar
13 # Can see zap
14 let zap = [];
15 }

5.12 Operators

Daspel includes the standard arithmetic and logical operators. Data types
in Daspel cannot be used together with these operators. The exception is
that int and real can be used together in arithmetic operations. When
mixing the two types, the resulting value will always be a real. This is a
similar to the how other languages do it, including Python.

The reason why types cannot be mixed and used together by operators
is because it’s not always clear what the answer should be. For example,

47

• plus +

• minus -

• multiplication *

• division /

Table 5.1: Arithmetic operators

• equal ==

• not equal !=

• not !

• greater than >

• greater or equal >=

• less than <

• less or equal <=

Table 5.2: Logical operators

what should the result of true + 3 - "hello" be? It’s ambiguous and
it can potentially create weird values which can just confuse the user and
lead to bugs.

There is a special operator used for checking nil values. It is called the
question mark operator ? and it is similar to the nil? method found in
Ruby. By appending the ? to a value or variable, Daspel will perform a
nil check on the value. If it is nil it returns true, else it returns false.

1 let x = nil;
2 if x? {
3 # ...
4 }

5.13 Statements

1 let sum = 0;
2 for i in 1..4 {
3 # i will be 1, 2 then 3
4 sum += i;
5 }

Daspel has types of statement: while-loop, for-loop, if-else and functions.
Only functions can be defined in the global scope. while-loop, for-loop an
if-else statements can be defined in function scoped and they can be nested.

48

Functions cannot be be nested inside functions or other statements.
5.13.1 For Loop

The for-loop is similar to the loop found in the Rust programming
language. The structure defines a accumulator value and a range to iterate
over. The range is denoted by two ints separated by two dots (..). The
for-loop uses curly braces to capture the body of the loop.

The range notation expresses an exclusive range. More specifically:
<start>..<exclusive-stop>. The number on the left is the first value
assigned to the accumulator. The for loop will increment the accumulator
by one for each pass. It stop when the accumulator becomes equal to the
value on the right. For example, 0..5 yields 1, 2, 3, 4. By using three dots
(...), the range becomes inclusive, meaning it takes one additional step
before it stops. For example, 0...5 yields 1, 2, 3, 4, 5

At this point, there is no syntax for specifying the step for the interation.

5.13.2 While Loop

The while loop is the same as in other programming languages. It consists
of a conditional expression and a body surrounded by curly braces. A
conditional expression must return a boolean value.

1 while t > 3 {
2 t /= 2;
3 }

5.13.3 Conditionals aka. If-Else

IF-Else works exactly the same as in other languages. Just like the while
loop, it requires a conditional expression, except for the else case.

1 if x > 10 {
2 # ...
3 } else if x == 2 {
4 # ...
5 } else {
6 # ...
7 }

5.13.4 Functions

Function in Daspel are declared by using the fn keyword, followed by the
name of the function and the parameters. The function statement does not
declare any return type due to the fact that Daspel is dynamically typed.
As such, the function statement is reminiscent of the one found in Python.

To return a value form a function, the return statement must be used.
By default, functions return the nil value.

1 fn blink_led(pin, time, colour) {
2 # ...
3 }

49

Functions are used to construct event handlers. By prepending an
annotation in front of the function, Daspel will understand that this is an
event handler. Annotations are used to specify which event the function
should handle or how often the function should be called. The annotations
start with the @ symbol followed by a name and an optional condition. In
the annotations, the user can specify the threshold for the event trigger. For
example, to create a handler which is only called when the temperature is
above 20 degrees Celsius we write the following:

1 @Temperature > 30 C;
2 fn handler() {
3 # handle event
4 }

5.14 Things That Did Not Make It To The Language

In this section we’ll briefly look at thinks which could have been a part of
Daspel, but were not included because of time constraints.

5.14.1 Variadic Function

A variadic function is a function which accepts a variable number of
arguments [34]. One can argue that variadic functions are not necessary
in a dynamically typed language as lists can hold any types and such lists
can imitate the variadic functionality.

1 fn variadic(*args) {
2 # args is a list
3 }
4
5 variadic(1, 2, 3);
6 variadic(2);
7
8
9 fn normal(list) {

10 # takes a single argument
11 }
12
13 normal([1, 2, 3]);
14 normal([2]);

5.14.2 Tuple

A tuple is a finite list of elements [35]. Tuples could be used when returning
multiple values from functions. However, lists can be used for the same
purpose, so tuples would not add anything of value to Daspel.

5.14.3 Type Annotation For Function Parameters

Allowing the user to add type to function parameters would make it easier
to see what the arguments are supposed to be. They would also reduce the

50

amount of type checking errors during run time as they would be caught
during type type checking That said, Daspel scripts are supposed to be very
small, so it would be easy to figure out the parameter types anyway. The
user can also just use comments to document the type of the parameters.

5.14.4 Data Type Methods

In the programming language Rust, primitive data types implement certain
methods. This also applies for complex data structures such as strings and
vectors. This can also be applied to Daspel. Standard library functions
for interacting and manipulating Daspel data types could instead be
implemented as methods. This would make the language feel more object
oriented as opposed to the current mix of imperative, event oriented and
functional.

1 # std function
2 let x = [2, 3, 1, 4];
3 sort(x);
4 # x is now [1, 2, 3, 4];
5
6 # built in method
7 x.sort();

5.15 Unicode Syntax

My supervisor suggested to use Unicode symbols for keywords and
function names. The idea was to have a Unicode symbol as an alternative
way to refer to keywords, functions, IO, sensors and actuators. Long
keywords use more bytes, but a Unicode symbol uses 1-4 bytes, depending
on the symbol. Scripts which use Unicode symbols can in most cases
be smaller and therefore reduce the amount of data which needs to be
transferred to a IoT device. It also means they take up less space in RAM
and on disk on the IoT device.

Below you’ll find tables of Unicode symbols. Note that only one
symbols would be used for each concept. Each table just shows the
alternatives. Unicode as keywords never made it into the language
specification, at least not at this stage. All symbols were found at https:
//unicode-table.com/en/ and http://getemoji.com/.

51

https://unicode-table.com/en/
https://unicode-table.com/en/
http://getemoji.com/

1/1

Nil

∅ U+2205 ⌀ U+2300 Ø U+00D8

⊘ U+2298 ⊗ U+2297 ⮾ U+2BBE

⦸ U+29B8 � U+1F6AB ❌ U+274C

✗ U+2717 ☓ U+2613 � U+1F5F4

� U+1F5F6 � U+1F5F5 � U+1F5F7

× U+00D7 � U+1F5D9 ⨯ U+2A2F

� U+1F480 ☠ U+2620 	 U+1F571

⚠ U+26A0 ⛔ U+26D4 � U+1F635

� U+1F44E � U+1F4A3 	 U+1F6A7

 U+1F4A9 ❗ U+2757

Table 5.3: Before settling on dynamic typing, types had to be written out.
This table shows the symbols for the value nil. nil represents an error or
an empty value, so Unicode depicting negative symbols were preffered.

1/1

Send

� U+1F4E7 ✉ U+2709

� U+1F583 � U+1F582

� U+1F4EE � U+1F4AC

� U+1F5E9
Table 5.4: Send means to send a message. A letter or speech bubble is a
good visual representation for sending something.

52

1/1

Power

� U+1F50B � U+1F5F2

⚡ U+26A1 � U+1F50C

Table 5.5: The power keyword or function would return a value represent-
ing how much battery is left.

1/1

Time/Timer

⏰ U+23F0 ⏱ U+23F1

⏲ U+23F2 � U+1F570

⌛ U+231B ⏳ U+23F3

⌚ U+231A

Table 5.6: A clock represent time and the time function would put the
device to sleep for a specified duration-

1/1

Sound (microphone)

� U+1F3A4 � U+1F508 � U+1F509

� U+1F50A � U+1F3B5 ♪ U+266A

♫ U+266B � U+1F3B6 � U+1F39C

� U+1F3A7 � U+1F442

Table 5.7: The microphone, ear and headphones gives a clear indication on
which sensor to use.

53

1/1

Sound (speaker)

� U+1F3A4 � U+1F508 � U+1F509

� U+1F50A � U+1F3B5 ♪ U+266A

♫ U+266B � U+1F3B6 � U+1F39C

� U+1F399 � U+1F444

Table 5.8: Play sound.

1/1

GPS

� U+1F310 � U+1F30E

� U+1F30D � U+1F30F

� U+1F5FA � U+1F6F0

� U+1F6F0 � U+1F4E1

Table 5.9: Planet Earth and satellites were the best fit for GPS.

1/1

Temperature

� U+1F321

Table 5.10: The simplest and most elegant representation for temperature
is a classic thermometer.

54

1/1

Humidity

� U+1F4A7 � U+1F4A6

Table 5.11: It was hard to find a good symbol for humidity. Water droplets
were the most accurate as humidity represent the amount of water vapour
in the air.

1/1

Pressure

� U+1F32C � U+1F300 ☁ U+2601

� U+1F327 ⛅ U+26C5 � U+1F326

� U+1F32A � U+1F32B � U+1F301

	 U+1F38F ↓ U+2193 ⇩ U+21E9

⬇ U+2B07 � U+1F83B � U+1F847

� U+1F89B

Table 5.12: Pressure was also hard to represent. In this case, pressure
represent air pressure, so clouds and downwards arrows were were the
best thing I could find.

1/1

LED (single or display)

� U+1F6A6 � U+1F4A1

☀ U+2600 ☼ U+263C

� U+1F308 � U+1F526

sTable 5.13: The lamp is probably the best alternative to represent an LED
light.

55

1/1

Light (sensor)

☀ U+2600

☼ U+263C

� U+1F308

Table 5.14: The light sensor measures light. It does not emit light, but senses
it, so finding an accurate representation was tricky.

1/1

Monitor

� U+1F4FA

� U+1F5B5

� U+1F4BB

� U+1F5B3

Table 5.15: A monitor is rather straight forward.

1/1

On/Off

� U+1F5F8 ✓ U+2713 ✔ U+2714

✖ U+2716 ✗ U+2717 ✘ U+2718

� U+1F197 ✋ U+270B � U+1F44D

� U+1F44E � U+1F592 � U+1F593

� U+1F44C

Table 5.16: On and Off represent the action of turning a device on or off.
They are also meant to symbolise the action accept and reject.

56

1/1

Loop

↺ U+21BA ↻ U+21BB

⟲ U+27F2 ⟳ U+27F3

⥀ U+2940 ⥁ U+2941

♻ U+267B

Table 5.17: Instead of writing for or while, the user would use a Unicode
symbol instead.

1/1

IF-ELSE

� U+1F914

Table 5.18: A thinking face symbolises a choice. The problem was that no
good alternatives for else if and else were found.

1/1

Function

λ U+03BB � U+1D6CC

� U+1D77A � U+1D453

� U+1D487

Table 5.19: The function symbol represents the function structure. Lambda
is often used for functions and closures.

57

58

Part III

Implementation

59

Chapter 6

Proof of Concept

6.1 The Goal of the Implementation

The goal for the implementation is create a proof of concept for the Daspel
interpreter.

In the following chapters we’ll look at the hardware the interpreter will
run. We’ll also look at the provided sensors and changing the pixels on the
display. Finally, we’ll go through the code implementation.

6.2 The Hardware

This thesis uses a Raspberry Pi 3 Model B (RPi) as a platform for developing
and running the interpreter. The Sense HAT add-on board sensors are used
for testing environment readings by the scripts.

6.3 The Interpreter

The interpreter consists of several parts.

• Scanning, parsing and analysing Daspel scripts.

• Generating an Abstract Syntax Tree.

• Setting up an event queue.

• Poll an event from the queue and interpret it.

Basically, when the device receives a new script, it has to parse it first.
The interpreter scans the new script and checks for syntactical errors. After
this is done, an Abstract Syntax Tree (AST) is generated. This tree is a
data structure which represents the script. The interpreter uses the AST
to reason about the program. From here, the interpreter has to verify that
the scrip (AST) does not contain any illegal actions, such as calling an
undefined function or using an undefined variable. Then an event pool is
initialised. The pool contains events which the interpreter can run. Events
from the sensors, the script and IO is put into the event pool.

61

6.4 Source Code

The code for the implementation can be found on my GitHub page.

• https://github.com/CodeGradox/Master-interpreter

• https://github.com/CodeGradox/daspel-nom

• https://github.com/CodeGradox/sensehat-rs

• https://github.com/CodeGradox/Rust-Sense-Hat

• https://github.com/CodeGradox/IoT-Interpreter

6.5 Disclaimer

The implementation is not finished because I ran out of time. Nonetheless,
I will describe what I managed to implement and how I did it.

62

https://github.com/CodeGradox/Master-interpreter
https://github.com/CodeGradox/daspel-nom
https://github.com/CodeGradox/sensehat-rs
https://github.com/CodeGradox/Rust-Sense-Hat
https://github.com/CodeGradox/IoT-Interpreter

Chapter 7

The Raspberry Pi and the
Sense HAT

7.1 Raspberry Pi 3 Model B

The Raspberry Pi 3 is the third generation Raspberry Pi which is part
of a series of small single-board computers, about the size of a credit
card [36, 37]. The RPi is a powerful device fully capable of running an
operating system such as a Linux distribution. The device provided for this
thesis came with an SD-card with the Raspbian operating system installed.
Raspbian is based on the Debian operating system and is optimised for the
Raspberry Pi hardware [38]. It comes with a set of software tools which can
be used for education, programming and general use [36]. The full list of
the hardware specification for the Raspberry Pi can be found in figure 7.1.

Figure 7.1: The Raspberry Pi 3 Model B. Source [39]

63

• A 1.2GHz 64-bit quad-core ARMv8 CPU

• 802.11n Wireless LAN

• Bluetooth 4.1

• Bluetooth Low Energy (BLE)

• 1GB RAM

• 4 USB ports

• 40 GPIO pins

• Full HDMI port

• Ethernet port

• Combined 3.5mm audio jack and composite video

• Camera interface (CSI)

• Display interface (DSI)

• Micro SD card slot

• VideoCore IV 3D graphics core

Table 7.1: The Raspberry Pi 3 Model B specification [36]

7.1.1 Software

For this project we had to download and install some additional software
to be able to implement the Daspel interpreter. The two most important
pieces of software were the Sense HAT Python library, which comes with
the RTIMULib C++ library, and the Rust compiler. The Rust compiler was
installed using rustup which is a tool-chain installer for Rust. Rustup also
provides Cargo, the package manager for Rust which manages external
dependencies for a code project. Other tools which were necessary for
developing on the RPi were SSH, GIT and Vim, but only Vim needed to
be installed as the former two were already pre-installed by Raspbian.

7.2 Sense HAT

The Sense Hat is an add-on board for the Raspberry Pi, made specifically
for the Astro Pi mission [40]. The board features a LED display, a joystick
and six sensors which can be accessed through a Python library. A full list
of features can be found in figure 7.3.

64

Figure 7.2: The Sense HAT. Source [41]

7.2.1 Sensor Communication

Both the sensors and the 8x8 RGB LED matrix uses the I2C protocol for
communication. On the RPi, the I2C has to be enabled before the Sense
HAT sensors can be used. The Linux kernel provides C functions for I2C
communication, making it relatively easy to write a custom read and write
functionality to the Sense HAT.

7.2.2 Byte Encoding

All data on the Sense HAT is encoded in little-endian.

7.2.3 The Sensors

Although the Sense HAT website specifies six different sensors, the board
only has three sensor chips. The Pressure sensors is a LPS25H sensors,
the relative humidity sensor is a HTS221 sensors and the 9 Degree of
Freedom (DoF) senors is a LSM9DS1 sensor [42]. Both the LPS25H and
the HTS221 sensors are capable of reading temperature from pressure and
relative humidity respectively. The LSM9DS1 is an IMU, which stands for
Inertial Measurement Unit [43]. The IMU is actually three sensors: a 3D
accelerometer, 3D gyroscope and a 3D magnetometer. The user can use the
data from the IMU to assert the movement the Sense HAT is experiencing
[43]. The picture in figure 7.3 displays the three axes the Sense HAT can
detect.

65

• LPS25H (Pressure)

• HTS221 (Humidity)

• LSM9DS1 (Accelerometer, gyroscope and magnetometer)

Table 7.2: The Sense HAT sensor modules [42]

Figure 7.3: The orientation. Source [43]

7.2.4 The LED Matrix

The 8x8 RGB LED matrix is controlled LED2472G connected to an Atmel
ATTINY88 communicating via I2C with the RPi [42]. The LED matrix has a
60 fps refresh rate and 15-bit colour resolution [44]. To use the LED matrix,
one does not need to use the I2C protocol directly. Instead, the framebuffer
of the display can be read from file or be mapped to memory with mmap. A
framebuffer is a portion of RAM containing a bitmap that is used to refresh
video display from a memory buffer containing the complete frame of data
[45]. In the Sense HAT Python library the framebuffer is read from file first.
Then new data is written to the file, which in turn updates the pixels on the
LED matrix.

High Byte Low Byte
R7 R6 R5 R4 R3 G7 G6 G5 G4 G3 G2 B7 B6 B5 B4 B3

Figure 7.4: The RGB 565 bit field after a RGB 888 value has been encoded
by the Python library.

66

RGB 565

The pixels on the LED display use the colour format RGB 565. Each pixel
requires 16 bits of data where 5 bits are used for red and blue values while
6 bits are used for green values. In figure 7.4 we see how each pixel is
formatted by the Python Sense HAT library. More specifically, the library
accepts colours formatted as RGB 888, which is the standard colour format
used on the web [46], and compresses them to the RGB 565 format. Because
RGB 565 is 1 byte smaller than RGB 888 (24-bit), some data is lost during
the conversion. Red and blue values lose their 3 least significant bits, while
green values only lose 2.

7.2.5 RTIMULib

The Python Sense HAT API provides an easy to use interface for the Sense
HAT board. However, the sensor data is not accessed by the API directly,
but through a C++ library called RTIMULib [47], which is maintained
by the Raspberry Foundation. The library is written in object-oriented
C++ and it uses Linux specific C libraries for communication over I2C.
RTIMULib is capable of detecting several kinds of environmental sensors
and IMUs, including those found on the Sense HAT board. RTIMULib also
creates a settings file which allows the user to change the settings for each
sensor.

• An 8x8 RGB LED matrix

• A five button joystick

• Gyroscope

• Accelerometer

• Magnetometer

• Temperature

• Barometric pressure

• Humidity

Table 7.3: The Sense HAT specification [40, 48]

7.2.6 Errors In Reading Temperatures

Due to the design of the Sense HAT board, it is impossible to read the
exact temperature from the Sense HAT when mounted directly above the
RPi. The temperature readings will show values which are much higher
than what they are supposed to be. This is caused by the heat generated
from the RPi CPU and the hot air around the RPi ends up affecting the
readings of the sensors. To counter this phenomenon, the Sense HAT

67

would have to be separated from the RPi or the readings would have to
be calibrated. However, accurate readings were not a primary concern for
the implementation, so the issue was ignored.

68

Chapter 8

Implementation

8.1 Criteria

The criteria for the Daspel interpreter are as follows:

• The binary size should be as small as possible.

• It should have a small memory footprint.

• It must use as little power as possible.

• It should be able to run on any IoT device.

• It must be able to switch running scripts.

• It must be robust, meaning it should never crash.

8.2 Implementation Language

The first step of writing the Daspel interpreter is to choose a programming
language. Based on the criteria in the section above, my supervisor
and I decided to not use languages which utilises garbage collection for
memory management. This excludes languages such as Python and Java
or interpreters such as Node.js. One of the reasons is that these languages
have a larger memory footprint than languages with manual memory
management. The second reason is that garbage collection takes time and
can in some implementations cause the program to pause during runtime.
IoT devices use systems operating in real time, so having a pause to reclaim
memory is not a scenario we want to deal with. That said, Java is the
most popular programming language for IoT development, followed by
JavaScript in 3rd place [28]. It is possible that the IoT devices which are
running Java are on par with the Raspberry Pi, so memory is not that big
of an issue.

In other cases Java and JavaScript are used on the server and the
gateway, meaning the IoT device don’t use these languages directly. On
another note, it would be possible to communicate with the Sense HAT

69

device through the I2C protocol with Java, JS and Python through external
dependencies. This makes it possible

Given the time limit for the thesis, it’s preferable that the implementa-
tion language makes it easy to represent dynamical sized strings and lists.
The language or its ecosystem (third party libraries) should provide sup-
port for Unicode text. The less time is spent on dealing dealing with those
the more time can be spent on the implementation.

8.2.1 Python

Python was briefly considered even though the language is interpreted
and uses automatic memory management. A reason to choose Python is
because the Sense HAT API is written in Python. This would mean that
only the scanner, parser and interpreter would have to be implemented.

8.2.2 C

C is the second most used programming language in the world [49]. C is
also the second most used programming language used in IoT [28]. The
C language is small and simple. It has a small memory footprint and
performs very well and it can generate small binaries. The language allows
the developer to interact closely with the hardware. As we can see, C
is a very promising choice. It fits the requirements perfectly. It is also
portable and it will most likely support more platforms than its contenders.
However, it was not chosen due to the following reasons.

Originally, C was planned to be used as the implementation language
for the Daspel interpreter. However, I am not a skilled C programmer, nor
am I too fond of C. This is admittedly one of the reasons why I did not want
to use C. I also did not want to spend time on implementing dynamically
sized lists and strings in C. Furthermore, I would also have to deal with
manual memory management. By this I mean I would have to keep track
of malloc allocations and I would have to ensure that I’m using free
in the right places. I have mostly been using Java during my time at the
university and therefore have very little experience with manual memory
management. To be clear, I am aware of tools which can check for memory
leaks, use after free and undefined behaviour in C programs. These tools
would definitely have been a great help.

Lists may be easy to implement by using linked lists. Strings, on the
other hand, must support Unicode characters. As a result, the parser must
also have to be able to parse Unicode symbols.

Daspel is dynamically typed and the interpreter must therefore be able
to represent dynamic types. The easiest way to do this is by using tagged
unions as shown in figure 8.1. With tagged unions it becomes possible
to represent multiple data-types through a single struct. It also makes it
possible to change a dynamic variable to another type by changing the
union value and swapping the enum tag. The issue is that I would have
to be careful to always check the tag before changing the union value as the
value can be a pointer.

70

1 #include "stdio.h"
2 #include "stdbool.h"
3
4 typedef enum TypeKind {
5 Integer, Boolean, String
6 } TypeKind;
7
8 typedef struct {
9 enum TypeKind kind;

10 union Value {
11 int num;
12 bool boolean;
13 char *str;
14 } value;
15 } Type;
16
17 Type type_new_int(int v) {
18 Type t;
19 t.kind = Int;
20 t.value.num = v;
21 return t;
22 }

Figure 8.1: A tagged union in C

Finally, the RTIMULib cannot be used by C directly as it is implemented
in C++. C cannot call C++ functions. This is due to the name mangling of
function and method names done by the C++ compiler. Using the extern
"C" construct will prevent the C++ compiler from name mangling function
names.

One solution is to rewrite the necessary parts of RTIMULib to C. A
quicker solution is to write a C wrapper. The wrapper acts as an interface
which allows C to make indirect calls on C++ functions. The wrapper is
just a C header file which has its function implemented in C++. Both the
C++ code and the wrapper are compiled together by a C++ compiler such
as gcc or clang. A C program can then simply use the header file and call
the header functions like normal C functions.

8.2.3 C++

Like C, C++ is a popular language used for IoT applications and it ranks
6th on the popularity list [28]. With C++ I’d be able to write the interpreter
in pretty much the same fashion as I would do with C. The main benefit of
using C++ is that the RTIMULib library can be uses directly. C++ also has
the std::String and std::Vector types defined in its standard library.
Both of these types can allocate data on the heap and re-size themselves
automatically. These types also implement a destructor method, meaning
that when a variable which owns a std::String or std::Vector goes
out of scope, the allocated data is freed automatically. This makes it easy to

71

implement Daspels string and list types. The issue is that it is not possible
to use these types inside of a union as unions only support primitive data-
types. To solve this, I’d have to use the Boost library and use the Any type.
The Any type is capable of holding more complex data-types and provides
a safe way to check the type of the value.

I ended up not choosing C++ because I did not want to depend on the
Boost library for the implementation and I was not sure it would even
compile on the Raspberry Pi. Furthermore, I have zero experience with
C++ programming and I’m slightly biased against C++. That said, I believe
C++ is a good candidate due to its portability, speed and memory footprint.

8.2.4 Rust

Rust is a systems programming language developed by Mozilla. It had
its first stable release in 2015 [50]. Rust aims to compete against C++ in
terms of performance, safety and memory consumption [51]. Safety in this
context means that Rust guarantees type soundness, memory safety and
prevents data-races. The Rust compiler prevents most, if not all unsafe
operations during compile-time by using static analysis and keeping track
of data ownership.

Rust has String and Vec, which are data structures similar to
std::String and std::Vector. The difference is that Strings in Rust
are UTF-8 encoded. Rust also has built in tagged unions which are called
Enum. In contrast to C/C++ unions, Enums in Rust can store any type,
be it a struct, pointer or a plain data type. These Enums work in a similar
fashion as datatype does in Standard ML.

Rust can call functions in C code, but it cannot call C++ functions. To
make a Rust implementation work with the RTIMULib, it must either use
a C wrapper or re-implement the RTIMULib in Rust.

The Rust compiler relies on the LLVM compiler back-end to translate
its intermediate representation (IR) to assembly [52]. The C/C++ compiler,
Clang, also uses LLVM. As such, it’s possible that Rust and C++ code can
be compiled to similar binaries. The issue with the Rust compiler is that
is used static linking instead of dynamic linking which can result is larger
binaries. This may be an issue for certain IoT platforms with very limited
space capacity.

Other than that, Rust usually performs similarly to C++ code in terms
of execution speed. Some benchmarks1 comparing Rust, C++ and C can be
found on The Computer Language Benchmarks Game 2.

!!!!! BOX PLOT HERE! !!!!!
I ended up choosing Rust due to the reasons mentioned above and

because I am more familiar with Rust programming. Rust handles most, if
not all memory management by itself and it enforces safe coding practises
thanks to static analysis during compile-time.

1Benchmarks are not the most optimal way of comparing language performance, so
please take the results with a grain of salt.

2https://benchmarksgame.alioth.debian.org/

72

https://benchmarksgame.alioth.debian.org/

8.2.5 Conclusion

The implementation language is not too important for the interpreter as
it’s only a proof on concept which will run on a fairly powerful device.
That said, if the goal was to create a more realistic implementation, I would
most likely have chosen C over Rust. This is because C has support for
vastly more CPU architectures, which makes it more portable.

8.3 Work setup

There are at least two way to interact with the Raspberry Pi. The first
one is to connect a monitor, a keyboard and a computer mouse directly
to the RPi. This allows us to use the RPi as a normal computer as the
Raspbian operating system features a graphical user interface. The desktop
environment can be disabled if the direct use of the command line interface
is preferred.

The second approach is to connect to the Raspberry Pi with SSH
through a remote computer. This is easy to set up at home where it is
possible to set a static IP address on your personal network. On the other
hand, the Raspberry Pi does not seem to be able to connect to the Eduroam
WiFi on IFI. A solution is to use an Ethernet cable and connect the RPi to a
computer and run SSH over the local connection. For Windows, there exists
a program called MobaXterm which is a graphical user interface for SSH
connections. It can also open remote files in a local editor. This allows you
to use programming environments on Windows for writing to program
files located on the Raspberry Pi if you don’t want to use Vim or Emacs
over normal SSH.

When I first started working on the Raspberry Pi I was using the first
approach. After a while it too cluttered to have two keyboards, two
computer mouse and two monitors all on the same desk, so I switched over
to using SSH instead. I started to use MobaXterm after I started to work on
the Rust implementation.

8.3.1 Required Software

The only important piece of software which must be downloaded is the
Rust compiler, as it is not part of the Raspbian distribution. For testing
and asserting that the Rust code is interacting properly with the Sense
HAT device is by using the Python Sense HAT module. This module must
also be downloaded, but unlike Rust it is available through the Raspbian
package manager. The RTIMULib library is installed together with the
Python module.

The Python module installs a few example programs which show how
to use the Python module and the RTIMULib C++ library. These programs
were useful when trying to understand how to work with the Sense HAT.

73

8.4 Porting the Sense HAT library to Rust

Initially the interpreter was supposed to be written in C. The work first
started with figuring out how to use the C++ library RTIMULib from C.

The code in RTIMULib is programmed as object oriented C++ and it
provides several classes which represent the sensors and IMUs. Through
the provided example code we see that a Settings object is created first. The
Settings class contains information about calibration, polling frequencies
and I2C addresses for the supported sensors and IMUs. The Settings class
initially tries to find and read a .ini file which contains the settings. If
no such file is found, it will create a local RTIMULib.ini file and save
the default settings in it. The Settings object is passed to a Pressure,
Humidity and Imu objects, which use the Settings for calibration. Each
sensor and IMU supported by the RTIMULib has its own class. When
using the Sense HAT, RTIMULib will create an instance of the LPS25H
class, the HTS221 class and the SM9DS1, which are subclasses of Pressure,
Humidity and IMU respectively. All three classes contain methods with
specific algorithms for reading and writing to their designated hardware
component.

8.4.1 Writing the C wrapper

As stated earlier, it is not possible for C code to call C++ functions directly.
To be able to use a C++ library from C a wrapper must be created first.
Through the wrapper it becomes possible to convert C++ types to C types.
The wrapper provides an interface which C code can see and and use to
interact with C++ code. Essentially, C simply calls the declared wrapper
functions declared in a header file. The actual implementation of these
functions resides in C++ files which follow the C++ conventions.

Since classes don’t exists in C, the wrapper must use special pointers,
called opaque pointers, which C can use instead. To make things easier, a
single Wrapper class is created. This class contains all of the four objects
required to use the Sense HAT, with methods for reading and writing data
to the sensors and the IMU. Since C has no concept of classes, it also has
no concept of methods. It is not possible to use the opaque pointer of the
wrapper class was a C++ object directly in C. Instead, the wrapper declares
C functions which takes an opaque Wrapper pointer as a parameter. The
functions then cast the opaque pointer to the appropriate C++ class and call
the appropriate method before finally returning.

There is an issue with calling C++ code from C: exceptions. C has no
concept of exceptions, let alone C++ exceptions. Thus, if the C++ were to
throw one, the C code would not be able to handle it. In the best case, the
program would just crash. To prevent this, the wrapper functions should
try to catch all exceptions, both when casting the opaque pointer and when
calling the object methods. The implementation of the C wrapper never
came far enough to provide a good mechanism to relay a message to C
code about errors which may have occurred.

74

The methods for the Wrapper class were imitating the Python imple-
mentation of the Sense HAT module and the wrapper did in fact work.
In retrospect it would have been possible to port the C++ implementation
almost directly to C code instead of writing a wrapper. RTIMULib use C
functions for reading and writing over the I2C protocol and all the calibra-
tion and calculations can easily be implemented in C. However, this could
require some time to do as there is a lot of calibration and calculations re-
quired for reading the IMU. The pressure and humidity sensors are rather
simple to interact with in comparison.

8.4.2 The Framebuffer

The Sense HAT module implements functionality to interact with the LED
matrix. It can write one pixel at a time, fill the whole screen or clear it along
with rotating the currently displayed image. It’s also capable of displaying
8x8 pixel images and text.

We will look at two ways of accessing the LED matrix framebuffer.
The first approach is use by the Python module and involves writing to
the framebuffer as a file, while the C approach is to memory map the
framebuffer.

The Python module first finds and saves the path to the framebuffer
when it is initiated. It never writes new pixel data to the framebuffer
directly. Instead, it writes all new data to a two dimensional numpy matrix
which acts as the current frame. The module writes this frame to the
framebuffer just like it would write data to a normal file. The Sense HAT
devices updates the LED matrix with the new frame automatically. It’s
worth noting that the framebuffer file is reopened every time the program
updates the frame. Frequent call on the drawing functions may lead to
slower execution times because the program has to wait for IO operations
to read the file.

With memory mapping, we’re able to write to the framebuffer directly.
An example on how to use the framebuffer in C can be found in the
provided Snake game which is located in the Sense HAT example folder.
The games uses the LED matrix to display the current game state. The
approach is similar to the Python module as it has to locate the correct
framebuffer first. It uses a struct with a 16 bit 8x8 array as a frame. The
framebuffer is then memory mapped to the struct which is located on the
stack. The program can then access any index of the frame and read or
write its data directly. Any change done to the array results in a change in
the framebuffer, which in turn changes the currently displayed image.

For the C implementation I choose to use permanent memory mapping.
This means that the framebuffer is memory mapped for the whole duration
of the program. This is because I intended access to the framebuffer to be as
fast as possible at. However, this may not be the best solution as the target
devices have very little memory available. It’s also subpar solution if the
display is never used by the script. A better solution would be to have the
interpreter calculate how often the script draws to the screen. It can then
determine if it should open the framebuffer permanently or not.

75

8.4.3 Reimplementing the Sense HAT module from C to Rust

A Rust implementation for interacting with the LED matrix was made in
parallel with the C implementation. It did turn out that there already
existed a Rust module for interacting with the framebuffer. This module
uses a Rust wrapper for C functions, such as mmap, and provides an
interface for writing to the memory mapped region. Rewriting the C
functions from my C implementation of the Sense HAT was fairly trivial.
Both implementations ended up having the same functionality.

At some point the implementation switched focus from C to Rust. By
then, only the C code was able to interact with the sensors thanks to the
RTIMULib wrapper. The Rust implementation was supposed to use the C
wrapper as Rust does not have a Foreign Function Interface (FFI) to C++.
This means Rust has to go through the C code to interact with C++, while
the C implementation interacts with C++ directly. At the end of February
a Rust module for the Sense HAT was released [53]. It only provides
functionality for reading pressure and humidity in its current release. This
module was forked and the framebuffer functionality was added. Work
was started to add the ability to read IMU data, but at this point time was
running short and the Rust Sense HAT module had to be left unfinished.
It’s worth mentioning that the third party Rust Sense Hat module does
not use a wrapper for the RTIMULib library, but instead copies the C++
RTIMULib implementation directly. In other words, it uses the I2C protocol
to communicate with the sensors and LED matrix on the Sense HAT board.

8.5 The Lexical Analysis and Syntax Analysis

The first phase of the interpreting starts with converting the program text
into an Abstract Syntax Tree (AST). This is the scanners job. The first step
is to convert sub-strings to tokens while skipping white-spaces, newlines
and comments. It is the scanners job to perform scan and generate the
tokens. The parser uses the tokens to generate a parse tree (the AST). It is
responsible for verifying that the program is following the correct syntax.
Any errors encountered during this phase returns an error. For example,
the scanner can find an illegal symbol while the scanner can detect an illegal
sequence of tokens.

8.5.1 The Scanner

No work was conducted on the scanner until the syntax of Daspel was
starting to take shape. At this point, the implementation language had
changed to Rust. Some example scanners written in Rust were found on the
Internet and were used for inspiration. The core mechanic of the scanner is
that it behaves like an iterator. The input program is read from file and is
stored in a string. The scanner object takes a string reference of the input
string and creates a peekable char iterator of the string. A char in Rust
is a 32-bit UTF-8 encoded character. More specifically, a char is a Unicode
scalar value [54]. The scanner has a method named next_token which

76

returns a Token. A token is an enum type which can represent keywords,
data types and identifiers. When the next_token is called, the scanner
first peeks at the next char in the file. It then performs a pattern match on
the char to figure what action to perform. For example, if it peeks a " then it
knows it is the start of the string literal. The scanner then calls the method
responsible for scanning string literals which in turn return a string literal
token. The scanner is finished when the internal iterator is depleted, which
happens when the end of file is reached (the end of the input string). The
scanner is very modular and it makes it easy to add or remove tokens to
look for.

The scanner reads the whole file in to a string instead of reading it
line for line. The problem is that it has to allocate enough space to fit
the whole input, instead of just allocating one line at a time. That said,
if the whole script does not contain any newlines, the whole file would
end up being read to RAM anyway. This potential issue is not a problem
for the Raspberry Pi considering its specifications, but for a very small
device it could become an issue if the scripts can become very large in
size. The second issue is that the current implementation of the scanner
does not allow it to rewind. This means that once some char or text has
been read, it cannot be read again. This is due to how iterators work.
A workaround would require changing how the scanner iterates over the
string. Instead of creating a char iterator, the scanner can keep track of the
current position and the last token position. It moves the cur pos index
based on a predicate and the chars between the two indexes is a sub-
string. The generated tokens are based on the semantic meaning of the
sub-strings. This is the approach the Go Language Lexer and the Rust Lexer
use. This approach allows the scanner to backtrack and peek ahead more
easily than our implementation, but it must also take Unicode symbols into
considerations when scanning.

8.5.2 The Parser

The parser was never finished because there was not enough time left
to implement it. I started working on two different implementations; a
handwritten parser and a parser generator. The first parser was supposed
to simply accept a string reference (of the input file) and internally create a
scanner object. The parser would then use the scanner to generate tokens.
It would then use tokens to determine the current syntax construct. For
example, a token Token::Function would mean the parser is looking at
the start of a function statement. The parser will then call the appropriate
syntax handler method which will check the incoming sequence of tokens.
If the sequence is syntactically correct, the method will return an AST
object. This parser is a recursive decent parser. This means syntax methods
use recursion to traverse the input. As such, the implementation will
resemble the EBNF notation of the Daspel synatx.

The second parser variant is created by using the nom crate3 [55] which

3Crates are what libraries are called in the Rust ecosystem

77

is a parser combinator. Nom allows the user to create small parsers and
combine them to make bigger parser, which is done with the help of Rust
macros. When the macros are expanded during compilation, they generate
a big state machine which can parse a u8 slice (a char* in C). Using
nom makes the scanner redundant, as nom acts as both a scanner and
parser. The parser macros end up resembling the EBNF notation they are
representing.

The downside of using nom is that it expands to a very big state
machine. More specifically, it generate many lines of pattern matching
statements. As a result the binary file can become larger than the binary
of a hand written scanner and parser. On the flip side it becomes relatively
easy to add new parsers for each language construct. This parser is, in its
current state, only capable of parsing expressions.

8.6 Representing the Data Type Real in Rust

A simple implementation for parsing reals was added when I was working
on scanner. The real data type is represented as a struct in the
implementation. The struct is called Real and it has one member of type
i32. The i32 is a signed two complement integer in Rust. Note that there
is no built in type real in Rust, only floats. The struct has a method which
takes a string as an argument and produces a Real. The string must be a
textual representation of a decimal number.

8.6.1 Arithmetic Operations

Arithmetic operations with Real is rather trivial. Subtraction and addition
is done is the same manner as you’d do with regular integers. No
additional operations are required. On the other hand, Multiplication
and division are a bit trickier. Fixed point numbers can be represented
by the Q number format [33]. Our real is a fixed point number with
the format Q15.16. When we multiply two reals, the products format
becomes Q30.32 [56]. This means the product requires 62 bits, which is
obviously way more than our i32 can represent. To handle this, we need
to cast both factors to a i64, multiply them, shift the product 16 bits to the
right and finally cast it back to a i32. For division, if we just divide the
two reals, we’d loose the fractional part. The process is almost identical
to multiplication. We cast both to i64, shift the dividend 16 bits to the
left, divide and finally cast the quotient to i32. Sadly, both multiplication
and division can result in loss of fractional bits, aka loss of precision. As
you may have noticed, we are only using integer operations. This means
that the operations are fast, much faster than floating point arithmetic,
especially if the device does not have an FPU.

The Real type can be used in arithmetic operations together with
numbers of type i32 and f32. This makes it easier to deal with integers
and reals during the interpretation as Daspel allows the two data types to
be used together in arithmetic operations. A variable a of type Real can

78

be used like this: a + 3 - (2 * a) or 3.14 + a + a - 1.2. This
works because Rust will translate an arithmetic operation to a method call.
For example, a + 3 becomes a.add(3).

79

80

Part IV

Summary

81

Chapter 9

Conclusion

The aim for this thesis was to create a programming language suited for
the Internet of Things. The language had to be small, simple and easy to
use by people who are new to the field of programming and IoT.

I have looked at the Internet of Things in terms of both sensors and
hardware. I have analysed the platform and established the constraints and
needs for developing on IoT devices. Furthermore, I have looked at how to
create a programming language for IoT which takes these restriction into
account.

9.1 Analysis

For this project I definitely spent too much time on trying to write the
interpreter instead of focusing on making a solid design for Daspel.

I also think that using a dynamic type system over a static type system
was a minor mistake. This is because dynamic typing can lead to run time
errors due to type mismatches which is something static typing would
avoid. However, I also believe that dynamic typing is more suited for
people who are new to programming, which are the target demographic
for this project.

9.2 Future Work

There is much work left to be done. First and foremost, Daspel needs to
be fleshed out in terms of core mechanics. It also needs a solid standard
library. Furthermore, the exact mechanics of the of the interpreter must be
fully designed and implemented.

There are quiet a few things which are lacking in Daspel, but it would be
exciting to see the language fully implemented and used in the real world.
I think Daspel has the potential to be used as teaching material for children
to get them interested in programming and also to teach them concepts in
programming. IoT is cheep and devices such as the Raspberry Pi is already
being used as part of the education in other countries. By adding sensors
the those single board computers along with Daspel, the children would

83

be able to create application which can interact with the real world. I think
this type of interaction between hardware, software and education is the
most creative way to teach programming to young minds.

84

Bibliography

[1] MIT. Sratch Programming Language. URL: https : / / scratch .mit . edu/
(visited on 04/27/2017).

[2] Internet of things. 2016. URL: https://en.wikipedia.org/wiki/Internet_
of_things (visited on 10/21/2016).

[3] Rob van der Meulen. Gartner Says 6.4 Billion Connected "Things" Will
Be in Use in 2016, Up 30 Percent From 2015. 2015. URL: https://www.
gartner.com/newsroom/id/3165317 (visited on 05/23/2016).

[4] sensor. 2012. URL: http : / / whatis . techtarget . com / definition / sensor
(visited on 10/07/2016).

[5] What is a Humidity / Dew Sensor? URL: http://www.futureelectronics.
com/en/sensors/humidity-dew.aspx (visited on 10/21/2016).

[6] What is the GPS - Global Positioning System ? URL: http : / / www .
sensorland.com/ (visited on 10/21/2016).

[7] Low Energy. URL: https : / /www . bluetooth . com/what - is - bluetooth -
technology / bluetooth - technology - basics / low - energy (visited on
08/26/2016).

[8] Wi-Fi Alliance® introduces low power, long range Wi-Fi HaLow™. URL:
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-
low-power-long-range-wi-fi-halow (visited on 10/22/2016).

[9] Rahul. Internet of Things Wiki. URL: http://internetofthingswiki .com/
requirements-internet-of-things/236/ (visited on 08/26/2016).

[10] What is 3D Integration? URL: http://www.3dincites .com/3d- incites -
knowledge-portal/what-is-3d-integration/ (visited on 05/23/2016).

[11] Harald Bauer, Mark Patel, and Jan Veira. The Internet of Things Sizing
up the opportunity. 2014. URL: http://www.mckinsey.com/industries/
high-tech/our-insights/the-internet-of-things-sizing-up-the-opportunity
(visited on 05/23/2016).

[12] Bluetooth. URL: https ://en .wikipedia .org/wiki/Bluetooth (visited on
10/22/2016).

[13] Google Beacons. URL: https://developers.google.com/beacons/ (visited
on 10/22/2016).

[14] iBeacon for Developers. URL: https : / / developer . apple . com / ibeacon/
(visited on 10/22/2016).

85

https://scratch.mit.edu/
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Internet_of_things
https://www.gartner.com/newsroom/id/3165317
https://www.gartner.com/newsroom/id/3165317
http://whatis.techtarget.com/definition/sensor
http://www.futureelectronics.com/en/sensors/humidity-dew.aspx
http://www.futureelectronics.com/en/sensors/humidity-dew.aspx
http://www.sensorland.com/
http://www.sensorland.com/
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-low-power-long-range-wi-fi-halow
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-low-power-long-range-wi-fi-halow
http://internetofthingswiki.com/requirements-internet-of-things/236/
http://internetofthingswiki.com/requirements-internet-of-things/236/
http://www.3dincites.com/3d-incites-knowledge-portal/what-is-3d-integration/
http://www.3dincites.com/3d-incites-knowledge-portal/what-is-3d-integration/
http://www.mckinsey.com/industries/high-tech/our-insights/the-internet-of-things-sizing-up-the-opportunity
http://www.mckinsey.com/industries/high-tech/our-insights/the-internet-of-things-sizing-up-the-opportunity
https://en.wikipedia.org/wiki/Bluetooth
https://developers.google.com/beacons/
https://developer.apple.com/ibeacon/

[15] Bluetooth Low Energy. URL: https : / / www . bluetooth . com /what - is -
bluetooth-technology/bluetooth-technology-basics/low-energy (visited
on 10/22/2016).

[16] Wikipedia Bluetooth Low Energy. URL: https://en.wikipedia.org/wiki/
Bluetooth_low_energy (visited on 10/22/2016).

[17] Bluetooth® 5 quadruples range, doubles speed, increases data broadcasting
capacity by 800%. URL: https://www.bluetooth.com/news/pressreleases/
2016/06/16/-bluetooth5-quadruples-rangedoubles-speedincreases-data-
broadcasting-capacity-by-800 (visited on 10/22/2016).

[18] Examining The Future Of WiFi: 802.11ah HaLow, 802.11ad (& Others).
2015. URL: http://www.link- labs.com/future- of-wifi- 802- 11ah-802-
11ad/ (visited on 10/07/2016).

[19] WiFi range. 2015. URL: http://mwrf.com/active-components/what- s-
difference-between-ieee-80211af-and-80211ah (visited on 10/07/2016).

[20] AWS IoT Button. URL: https://aws.amazon.com/iot/button/ (visited on
10/22/2016).

[21] What’s the Difference Between IEEE 802.11af and 802.11ah? 2015. URL:
http://mwrf.com/active-components/what-s-difference-between- ieee-
80211af-and-80211ah (visited on 10/22/2016).

[22] Documentation. URL: https://www.scriptr.io/documentation (visited on
03/31/2017).

[23] Libelium launches Waspmote Plug & Sense. URL: http : / / www .
energyharvestingjournal.com/articles/4843/libelium-launches-waspmote-
plug-and-sense (visited on 10/25/2012).

[24] Waspmote Plug & Sense! Catalogue. URL: http://liste.raspibo.org/wws/
d_read/meteo/libelium/waspmote_plug_and_sense_catalogue.pdf
(visited on 03/31/2017).

[25] TESSEL 2. URL: https://tessel.io/ (visited on 04/27/2017).

[26] Tessel 2. URL: https://www.sparkfun.com/products/13841?ref=tessel.io
(visited on 04/27/2017).

[27] Build cross platform desktop apps with JavaScript, HTML, and CSS. 2017.
URL: https://electron.atom.io/ (visited on 04/27/2017).

[28] IoT Developer Survey 2016. 2016. URL: https : / /www . slideshare . net /
IanSkerrett/iot-developer-survey-2016 (visited on 04/14/2017).

[29] Node.js. 2017. URL: https://en.wikipedia.org/wiki/Node.js#Threading
(visited on 04/27/2017).

[30] Seth Thompson. Introduction. 2015. URL: https : //developers . google .
com/v8/ (visited on 04/27/2017).

[31] TwoHardThings. URL: https://martinfowler.com/bliki/TwoHardThings.
html (visited on 03/29/2017).

[32] Floating-point unit. URL: https://en.wikipedia.org/wiki/Floating-point_
unit (visited on 01/29/2017).

86

https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
https://en.wikipedia.org/wiki/Bluetooth_low_energy
https://en.wikipedia.org/wiki/Bluetooth_low_energy
https://www.bluetooth.com/news/pressreleases/2016/06/16/-bluetooth5-quadruples-rangedoubles-speedincreases-data-broadcasting-capacity-by-800
https://www.bluetooth.com/news/pressreleases/2016/06/16/-bluetooth5-quadruples-rangedoubles-speedincreases-data-broadcasting-capacity-by-800
https://www.bluetooth.com/news/pressreleases/2016/06/16/-bluetooth5-quadruples-rangedoubles-speedincreases-data-broadcasting-capacity-by-800
http://www.link-labs.com/future-of-wifi-802-11ah-802-11ad/
http://www.link-labs.com/future-of-wifi-802-11ah-802-11ad/
http://mwrf.com/active-components/what-s-difference-between-ieee-80211af-and-80211ah
http://mwrf.com/active-components/what-s-difference-between-ieee-80211af-and-80211ah
https://aws.amazon.com/iot/button/
http://mwrf.com/active-components/what-s-difference-between-ieee-80211af-and-80211ah
http://mwrf.com/active-components/what-s-difference-between-ieee-80211af-and-80211ah
https://www.scriptr.io/documentation
http://www.energyharvestingjournal.com/articles/4843/libelium-launches-waspmote-plug-and-sense
http://www.energyharvestingjournal.com/articles/4843/libelium-launches-waspmote-plug-and-sense
http://www.energyharvestingjournal.com/articles/4843/libelium-launches-waspmote-plug-and-sense
http://liste.raspibo.org/wws/d_read/meteo/libelium/waspmote_plug_and_sense_catalogue.pdf
http://liste.raspibo.org/wws/d_read/meteo/libelium/waspmote_plug_and_sense_catalogue.pdf
https://tessel.io/
https://www.sparkfun.com/products/13841?ref=tessel.io
https://electron.atom.io/
https://www.slideshare.net/IanSkerrett/iot-developer-survey-2016
https://www.slideshare.net/IanSkerrett/iot-developer-survey-2016
https://en.wikipedia.org/wiki/Node.js#Threading
https://developers.google.com/v8/
https://developers.google.com/v8/
https://martinfowler.com/bliki/TwoHardThings.html
https://martinfowler.com/bliki/TwoHardThings.html
https://en.wikipedia.org/wiki/Floating-point_unit
https://en.wikipedia.org/wiki/Floating-point_unit

[33] Q (number format). 2017. URL: https : / / en . wikipedia . org / wiki /Q_
(number_format) (visited on 05/01/2017).

[34] Variadic function. 2017. URL: https://en.wikipedia.org/wiki/Variadic_
function (visited on 05/01/2017).

[35] Tuple. 2017. URL: https : / / en . wikipedia . org /wiki / Tuple (visited on
05/01/2017).

[36] RASPBERRY PI 3 MODEL B. URL: https : / / www . raspberrypi . org /
products/raspberry-pi-3-model-b/ (visited on 01/10/2017).

[37] Raspberry Pi. URL: https://en.wikipedia.org/wiki/Raspberry_Pi (visited
on 03/28/2017).

[38] Welcome to Raspbian. URL: https : / / www . raspbian . org/ (visited on
01/10/2017).

[39] URL: https://d1dr2mxwsd2nqe.cloudfront.net/media/catalog/product/
cache/1/image/9df78eab33525d08d6e5fb8d27136e95/2/5/252522540.
jpg (visited on 03/30/2017).

[40] SENSE HAT. URL: https://www.raspberrypi.org/products/sense-hat/
(visited on 01/13/2017).

[41] URL: https : / / d1dr2mxwsd2nqe . cloudfront . net / media / catalog /
product / cache / 1 / image / 9df78eab33525d08d6e5fb8d27136e95 / r / a /
raspisensehat3.jpg (visited on 03/30/2017).

[42] Sense HAT. URL: https : / /pinout . xyz /pinout / sense_hat (visited on
03/29/2017).

[43] Movement. URL: https://www.raspberrypi.org/learning/astro-pi-guide/
sensors/movement.md (visited on 04/22/2017).

[44] ASTRO PI: FLIGHT HARDWARE TECH SPECS. URL: https://www.
raspberrypi.org/blog/astro-pi-tech-specs/ (visited on 04/17/2017).

[45] Framebuffer. 2017. URL: https : / / en . wikipedia . org /wiki / Framebuffer
(visited on 04/17/2017).

[46] Tantek Çelik et al. CSS Color Module Level 3. 2011. URL: https://www.
w3.org/TR/css3-color/#rgb-color (visited on 03/30/2017).

[47] RTIMULib - a versatile C++ and Python 9-dof, 10-dof and 11-dof IMU
library. URL: https ://github .com/RPi - Distro/RTIMULib (visited on
03/30/2017).

[48] SENSE HAT. URL: https : / / www . raspberrypi . org / documentation /
hardware/sense-hat/ (visited on 03/29/2017).

[49] TIOBE Index for April 2017. 2016. URL: http://www.tiobe.com/tiobe_
index (visited on 04/14/2017).

[50] Version 1.0.0 (2015-05-15). URL: https ://github.com/rust- lang/rust/
blob/master/RELEASES.md (visited on 04/15/2017).

[51] Guaranteeing memory safety in Rust. 2014. URL: https://air.mozilla.org/
guaranteeing-memory-safety-in-rust/ (visited on 04/17/2017).

87

https://en.wikipedia.org/wiki/Q_(number_format)
https://en.wikipedia.org/wiki/Q_(number_format)
https://en.wikipedia.org/wiki/Variadic_function
https://en.wikipedia.org/wiki/Variadic_function
https://en.wikipedia.org/wiki/Tuple
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://en.wikipedia.org/wiki/Raspberry_Pi
https://www.raspbian.org/
https://d1dr2mxwsd2nqe.cloudfront.net/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/2/5/252522540.jpg
https://d1dr2mxwsd2nqe.cloudfront.net/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/2/5/252522540.jpg
https://d1dr2mxwsd2nqe.cloudfront.net/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/2/5/252522540.jpg
https://www.raspberrypi.org/products/sense-hat/
https://d1dr2mxwsd2nqe.cloudfront.net/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/r/a/raspisensehat3.jpg
https://d1dr2mxwsd2nqe.cloudfront.net/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/r/a/raspisensehat3.jpg
https://d1dr2mxwsd2nqe.cloudfront.net/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/r/a/raspisensehat3.jpg
https://pinout.xyz/pinout/sense_hat
https://www.raspberrypi.org/learning/astro-pi-guide/sensors/movement.md
https://www.raspberrypi.org/learning/astro-pi-guide/sensors/movement.md
https://www.raspberrypi.org/blog/astro-pi-tech-specs/
https://www.raspberrypi.org/blog/astro-pi-tech-specs/
https://en.wikipedia.org/wiki/Framebuffer
https://www.w3.org/TR/css3-color/#rgb-color
https://www.w3.org/TR/css3-color/#rgb-color
https://github.com/RPi-Distro/RTIMULib
https://www.raspberrypi.org/documentation/hardware/sense-hat/
https://www.raspberrypi.org/documentation/hardware/sense-hat/
http://www.tiobe.com/tiobe_index
http://www.tiobe.com/tiobe_index
https://github.com/rust-lang/rust/blob/master/RELEASES.md
https://github.com/rust-lang/rust/blob/master/RELEASES.md
https://air.mozilla.org/guaranteeing-memory-safety-in-rust/
https://air.mozilla.org/guaranteeing-memory-safety-in-rust/

[52] Projects built with LLVM. URL: http : / / llvm . org /ProjectsWithLLVM/
(visited on 04/15/2017).

[53] Jonathan Pallant. sensehat. 2017. URL: https://crates.io/crates/sensehat
(visited on 04/07/2017).

[54] Primitive Type char. URL: https://doc.rust- lang.org/std/primitive.char.
html (visited on 04/17/2017).

[55] Geoffroy Couprie. nom. 2017. URL: https : / / crates . io / crates / nom
(visited on 04/07/2017).

[56] Gabriel Ivancescu. Fixed Point Arithmetic and Tricks. 2017. URL: http:
//x86asm.net/articles/fixed- point- arithmetic- and- tricks/ (visited on
05/01/2017).

88

http://llvm.org/ProjectsWithLLVM/
https://crates.io/crates/sensehat
https://doc.rust-lang.org/std/primitive.char.html
https://doc.rust-lang.org/std/primitive.char.html
https://crates.io/crates/nom
http://x86asm.net/articles/fixed-point-arithmetic-and-tricks/
http://x86asm.net/articles/fixed-point-arithmetic-and-tricks/

	I Background
	Introduction
	Impulse SmartCity
	The Current Project
	Acknowledgements

	The Internet of Things
	Internet of Things
	What is the Internet of things?

	Sensors
	Energy efficiency

	Communication
	Bluetooth
	WiFi
	WiFi HaLow

	Related Projects
	Alternatives
	Scriptr
	Libelium Waspmote Plug & Sense
	Johnny-Five
	Tessel 2

	Evaluation

	II Design
	Requirements for an IoT Programming Language
	The Target Platform
	The Target Audience
	The Core Requirements
	Hot Swap Scripts
	Interpreting vs Compiling
	Compiling
	Interpretation
	Evaluation

	The Type System
	Static Typing
	Dynamic Typing
	Inferred Typing
	Evaluation

	Event Oriented Programming
	Handling Events

	Security
	Errors and Exceptions
	Handling a Software Crash
	Alternative 1: Reset
	Alternative 2: Remove the script
	Alternative 3: Ignore it
	Alternative 4: Terminate
	Alternative 5: Inform the user
	Watchdog Daemon

	Sensors and Actuators
	The Standard Library

	Designing Daspel
	What is Daspel?
	The syntax
	Data types
	Integer
	Integer Syntax

	Real
	Real Syntax

	Boolean
	Why include boolean?

	String
	Unicode
	Dynamic Size
	Single Character
	String Syntax

	List
	List Syntax

	Nil the Error Type
	Variables and Variable Declaration
	Variable Declaration Ambiguity
	Variable Declaration Part
	Variables and Scopes

	Scoping
	Variable Scope
	Library Scope
	Global Scope
	Function Scope

	Operators
	Statements
	For Loop
	While Loop
	Conditionals aka. If-Else
	Functions

	Things That Did Not Make It To The Language
	Variadic Function
	Tuple
	Type Annotation For Function Parameters
	Data Type Methods

	Unicode Syntax

	III Implementation
	Proof of Concept
	The Goal of the Implementation
	The Hardware
	The Interpreter
	Source Code
	Disclaimer

	The Raspberry Pi and the Sense HAT
	Raspberry Pi 3 Model B
	Software

	Sense HAT
	Sensor Communication
	Byte Encoding
	The Sensors
	The LED Matrix
	RTIMULib
	Errors In Reading Temperatures

	Implementation
	Criteria
	Implementation Language
	Python
	C
	C++
	Rust
	Conclusion

	Work setup
	Required Software

	Porting the Sense HAT library to Rust
	Writing the C wrapper
	The Framebuffer
	Reimplementing the Sense HAT module from C to Rust

	The Lexical Analysis and Syntax Analysis
	The Scanner
	The Parser

	Representing the Data Type Real in Rust
	Arithmetic Operations

	IV Summary
	Conclusion
	Analysis
	Future Work

