
Recommendation System for Sports
Videos

Choosing Recommendation System Approach in

a Domain with Limited User Interaction Data

Simen Røste Odden

Master’s Thesis
Informatics: Programming and Networks

60 credits

Department of Informatics
The Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

May 2017

II

III

Recommendation System for Sports

Videos

Choosing Recommendation System Approach in a Domain with Limited User Interaction

Data

IV

© Simen Røste Odden

2017

Recommendation System for Sports Videos

Simen Røste Odden

http://www.duo.uio.no/

Print: Reprosentralen, Universitetet i Oslo

http://www.duo.uio.no/

V

Abstract

Recommendation systems help users find interesting items and reduce the information

overflow problem on websites. Much research has been conducted on such systems the last

decades, and there exist several recommendation approaches with different strengths and

weaknesses. In this thesis, we investigate which recommendation approach or combination

of approaches that can recommend the most interesting content for each individual user of

the sports video application Forzify.

We use previous research and literature to find the approaches that are best suited for the

data gathered in Forzify and the features wanted in a new recommendation system. Three

approaches turn out to be the best suited: item-based collaborative filtering, model-based

collaborative filtering and content-based filtering. We implement one algorithm from each

of these approaches and a baseline algorithm. The four algorithms are evaluated in an

offline evaluation to find out which of the approaches that performs best in terms of

recommendation accuracy, both for new and old users, and scalability. As Forzify so far

has gathered limited user interaction data, we have to test the approaches on other datasets.

To increase the validity, we investigate the accuracy of the algorithms in datasets from

different domains. This makes it possible to check whether it is consistencies in the

accuracy of the algorithms across the domains.

From our evaluation of the accuracy of the algorithms, we can see both differences and

similarities across the domains. The accuracy of the different algorithms is more even in

some domains than in others, and some domains generally have higher accuracy, but there

is a tendency that the algorithms performing well in one domain also do so in the other

domains. Due to this cross-domain consistency, our results provide a good basis for

choosing the best approach for Forzify. We conclude that the model-based collaborative

filtering approach is the best choice for Forzify. It gives accurate recommendations for

both new and old users across the datasets, and it scales well for larger numbers of users

and items.

VI

VII

Acknowledgments

I would like to thank my supervisor, Pål Halvorsen, for valuable guidance and discussions,

and for giving me the opportunity to work on this research topic. I also want to thank

Forzify, who have made this thesis possible.

I want to thank my mother, Sigrun, my father, Odd-Erik, and my sister, Oda, for good

support. In addition, I will thank all my friends and fellow students.

Oslo, April, 2017

Simen Røste Odden

VIII

IX

Table of contents

1 Introduction ... 1

1.1 Motivation and background .. 1

1.2 Problem statement .. 3

1.3 Limitations .. 4

1.4 Research method ... 5

1.5 Main contributions .. 6

1.6 Outline .. 6

2 Recommendation systems ... 8

2.1 Recommendation systems explored ... 8

2.2 Recommendation system approaches ... 11

2.2.1 Collaborative filtering ... 11

2.2.2 Content-based filtering .. 15

2.2.3 Demographic-based ... 16

2.2.4 Knowledge-based .. 17

2.2.5 Community-based ... 19

2.2.6 Hybrid .. 20

2.3 Recommendation systems in practice ... 20

2.3.1 Amazon ... 20

2.3.2 Netflix .. 21

2.3.3 Facebook ... 22

2.3.4 YouTube .. 23

2.4 Comparison of approaches ... 25

2.5 How to evaluate recommendation systems... 29

2.5.1 Experimental settings .. 29

2.5.2 Dimensions and metrics .. 31

2.5.3 Measuring accuracy ... 33

2.5.4 Datasets ... 37

2.6 Summary ... 41

3 Case: Forzify ... 43

3.1 Context .. 43

3.2 Recommendations in Forzify .. 44

X

3.3 Data in Forzify .. 47

3.4 Features wanted in the recommendation system .. 49

3.5 Discussion of suitable approaches .. 50

3.6 Summary ... 51

4 Implementation of a recommendation system... 53

4.1 Recommendation frameworks and libraries ... 53

4.1.1 Mahout .. 53

4.1.2 LensKit .. 54

4.1.3 MyMediaLite ... 54

4.1.4 Spark MLlib .. 55

4.1.5 Comparison of frameworks ... 55

4.2 Algorithms .. 57

4.2.1 Item-based collaborative filtering ... 58

4.2.2 Model-based collaborative filtering .. 63

4.2.3 Content-based filtering .. 68

4.2.4 Popularity baseline .. 71

4.3 Summary ... 72

5 Evaluation .. 74

5.1 Experimental design ... 74

5.1.1 Experimental setting and metrics .. 74

5.1.2 Datasets ... 80

5.1.3 Implementation of an evaluation framework .. 85

5.2 Results .. 86

5.2.1 General accuracy ... 86

5.2.2 Accuracy for new users ... 94

5.2.3 Scalability .. 100

5.3 Discussion of cross-domain accuracy ... 105

5.4 Discussion of best algorithms for Forzify .. 107

5.5 Summary ... 110

6 Conclusion ... 113

6.1 Research questions ... 113

6.1.1 Q1: Approaches suited for Forzify according to literature.......................... 113

6.1.2 Q2: Differences in accuracy across domains .. 114

XI

6.1.3 Q3: Best approach for Forzify according to evaluation 114

6.2 Main Contributions ... 115

6.3 Future Work .. 117

References ... 119

Appendix A – Source code .. 123

XII

XIII

List of Figures

Figure 1: Example of two rating matrices with data about six users’ ratings for movies

(Aggarwal 2016, 13) ... 9

Figure 2: Hierarchy of collaborative filtering approaches .. 12

Figure 3: Example of recommendations when visiting an item at Amazon 21

Figure 4: Recommendations of videos in Netflix (Amatriain and Basilico 2015, 393) 22

Figure 5: Recommendations of games in Facebook ... 23

Figure 6: Recommendations of videos on Youtube (Manoharan, Khan, and Thiagarajan

2017) .. 24

Figure 7: Input and background data used in different recommendation approaches......... 26

Figure 8: Screenshot of the home page of Forzify .. 44

Figure 9: Recommended videos for a user in Forzify ... 45

Figure 10: Recommendation of related videos in Forzify ... 46

Figure 11: Example of tags for a video in Forzify .. 48

Figure 12: Design of the implementation of our recommendation algortihms 58

Figure 13: Similarity computation between items in a rating matrix (Sarwar et al. 2001,

289) .. 60

Figure 14: Example of matrix factorization for a rating matrix (Aggarwal 2016, 95)........ 65

Figure 15: Typical partitioning of ratings for recommendation evaluation (Aggarwal 2016,

237). ... 75

Figure 16: Netflix Prize partitioning of ratings (Aggarwal 2016, 237) 76

Figure 17: The 5-fold cross validation method used in our evaluation 76

Figure 18: MAP for our algorithms performed on MovieLens ... 87

Figure 19: MAP for our algorithms performed on Million Song Dataset 88

Figure 20: MAP for our algorithms performed on Book-Crossing 88

Figure 21: MAP for our algorithms for the different datasets, with recommendation list size

= 10 .. 90

Figure 22: MAP for our algorithms for the different datasets, with recommendation list size

= 20 .. 90

Figure 23: Various accuracy measures for algorithms on MovieLens, tested with 10

recommendations .. 92

Figure 24: Various accuracy measures for algorithms on MovieLens, tested with 20

recommendations .. 92

Figure 25: Various accuracy measures for algorithms on Million Song, tested with 10

recommendations .. 93

Figure 26: Various accuracy measures for algorithms on Million Song, tested with 20

recommendations .. 93

Figure 27: Various accuracy measures for algorithms on Book-Crossing; tested with 10

recommendations .. 93

Figure 28: Various accuracy measures for algorithms on Book-Crossing, tested with 20

recommendations .. 93

Figure 29: MAP for our algorithms on datasets with a given-2 approach 95

XIV

Figure 30: MAP for our algorithms on datasets with a given-5 approach 96

Figure 31: MAP for our algorithms on datasets with a given-8 approach 96

Figure 32: MAP for MovieLens for different rating splitting conditions 98

Figure 33: MAP for Million Song for different rating splitting conditions 98

Figure 34: MAP for Book-Crossing for different rating splitting conditions 99

Figure 35: Training time for our algorithms on the different datasets 101

Figure 36: Prediction time for our algorithms on the different datasets 101

Figure 37: Training time used by our algorithms on different subsets of MovieLens 103

Figure 38: Prediction time used by our algorithms on different subsets of MovieLens ... 104

XV

List of tables

Table 1: Advantages and disadvantages of recommendation approaches 27

Table 2: Confusion matrix for possible classifications of an item 35

Table 3: Comparison of domain features of datasets .. 38

Table 4: Comparison of inherent features of datasets ... 39

Table 5: Comparison of sample features of datasets ... 40

Table 6: Comparison of properties of the recommendation frameworks 56

Table 7: Summary of our experimental design ... 79

Table 8: Domain features of Forzify’s data .. 81

Table 9: Inherent features of Forzify’s data .. 81

Table 10: Statistics about ratings, items and users for the sampled datasets 84

Table 11: Statistics about the content information for the sampled datasets 85

Table 12: Properties of the MovieLens subsets used for scalability testing 85

Table 13: Summary of findings relevant for choosing recommendation approach 108

XVI

1

1 Introduction

In everyday life, we often rely on recommendations from other people when we do not have

enough information about our choices. This could be advice from friends and colleagues,

recommendation letters, restaurant reviews and travel guides, which all help in decision

making. Recommendation systems fulfil the same function in a digital context (Resnick and

Varian 1997). “Recommendation systems”, “recommender systems”, “recommendation

engines” and “recommendation agents” are all terms used interchangeably to describe systems

that make recommendations to users about items (Xiao and Benbasat 2007, Ricci, Rokach,

and Shapira 2015). In this thesis, we will use the term “recommendation system”. The aim of

this thesis is to investigate which recommendation system approaches that are best suited for

the sports video application Forzify.

1.1 Motivation and background

Websites today often contain a huge amount of information, enough to overwhelm the user.

The number of items for the user to choose from is so large, that each item cannot be

reviewed, making it a challenge to find interesting items. This is where recommendation

systems come in. By recommending items to the user, it becomes easier for the user to

explore new material, and the problem with information overload is reduced (Ricci, Rokach,

and Shapira 2015). Recommendation systems are used in a wide range of applications and can

recommend everything from news, books and videos to more complex items like jobs and

travels, or as in our case, sports videos.

The main purpose of a recommendation system is to make easily accessible recommendations

of high quality for a large user community (Jannach et al. 2010, xiii). Recommendations can

be either personalized or non-personalized. Personalized recommendations mean that

different users or user groups get different recommendations based on their preferences, while

non-personalized recommendations mean that all of the users get the same suggestions (Ricci,

Rokach, and Shapira 2015). Non-personalized recommendations are much easier to make, and

may for instance be a list of the ten most bought books or the top 20 rated movies. Even

though this kind of recommendations can be useful in some situations, they do not reflect the

individual user’s taste and preferences, and consequently cannot give the same benefits as

2

personalized recommendations. Therefore, they are not typically addressed in research on

recommendation systems, and they will not be the focus in this thesis either.

The personalized recommendations give possibilities that would be impossible in the physical

world. Jeff Bezos, CEO of Amazon, illustrates this: “If I have 3 million customers on the

Web, I should have 3 million stores on the web” (Schafer, Konstan, and Riedl 2001). By

giving all users a personalized experience, both the users and the owner of the system benefit.

It gives better user satisfaction because the user finds relevant and interesting items, it

increases the number of items sold and it helps the company to sell more diverse items (Ricci,

Rokach, and Shapira 2015).

Even though recommendation systems are used in a wide range of domains, few studies have

examined how the performance of recommendation systems differ across different domains.

Most research has either examined algorithmic performance, like algorithms’ accuracy and

scalability, or examined applications in a specific area, like music, movies or web pages (Im

and Hars 2007).

New websites or applications that want to make good recommendations to their users often

have little user data, making it difficult to evaluate the successfulness of their

recommendations. One option is to wait for the application to gather enough user data before

developing the recommendation system to make sure the system is built on a suitable

approach. But then, the system will miss the benefits of recommendations for a period of

time. Another option is to evaluate the recommendation system on user interaction data from

other applications. Several datasets consisting of user and item data are published on the

Internet, making it possible to measure the performance of recommendation systems.

However, it is not always possible to find a dataset matching the domain of a given

application. In such cases, it is crucial to investigate whether the recommendation system

perform consistent across domains.

Herlocker et al. (2004) point out algorithmic consistency across domains to be a research

problem particularly worthy of attention in recommendation system research. If no

differences had existed for algorithms across domains, it would have simplified the evaluation

process of recommendation systems, since researchers could use datasets with suitable

properties without doing domain-specific testing when evaluating algorithms. Im and Hars

(2007) have investigated this problem by comparing the results of two recommendation

3

algorithms in the domain of movies with the results in the domain of books, and found that

the accuracy was higher for book recommendations than for movie recommendations. This

implies that the accuracy of recommendation algorithms is not domain independent. Much

recommendation system research makes generalizations of the performance of algorithms

based on testing of the algorithms in a single domain (Im and Hars 2007). This gives weak

external validity, i.e., to which degree the results are generalizable to other situations and user

groups (Jannach et al. 2010, 168), and can possibly give invalid conclusions.

In this thesis, we will present the case of Forzify, which is a sports video application where

users can watch, share and redistribute videos. Forzify does today give recommendations to

its users, but a new recommendation system is wanted, that can give the users better and more

accurate recommendations. We will look at which recommendation system approaches that

are suitable for Forzify and will give the best recommendations for the users. Not much data

has yet been gathered in the application, so it will be necessary to use other datasets to test the

performance of the new recommendation system. As we are not aware of any datasets for user

and item data in the sports video context, we will look at the algorithmic consistency across

datasets from different domains.

1.2 Problem statement

In this thesis, the overall goal is to find out which recommendation approach that can

recommend the most interesting content for each individual user of the sports video

application Forzify. To reach this goal, we first want to answer the following research

question:

- Q1: According to previous research and literature, which recommendation approaches

are best suited for the case of Forzify?

To answer Q1, we will review the main recommendation approaches, compare these both in

terms of advantages and disadvantages, and data required for each approach. Further, we will

analyse the case of Forzify, to find appropriate approaches for this case.

Having identified suitable approaches for the case of Forzify, we want to test which of these

approaches that produce the best recommendations. A measure for this, is the prediction

accuracy, which is the most researched property of recommendation systems (Gunawardana

4

and Shani 2015). This measure, which also is called the correctness of the recommendations,

says to which degree the recommendations are correct for the users, by comparing the

recommendations given by the recommendation system with real user data (Avazpour et al.

2014). We therefore want to evaluate the accuracy of the recommendation approaches. In

addition, we want the recommendation system to scale for larger number of users and items,

so the users can get instant recommendations.

Because Forzify at the moment has limited existing data about user interaction, we need to

test the approaches on other datasets. Therefore, we want to answer the two following

research questions:

- Q2: Do the accuracy of recommendation system approaches differ across datasets

from different domains?

- Q3: Which recommendation approach or combination of approaches can give the most

accurate recommendations to both new and old users of Forzify, and at the same time

give high scalability?

For Q2 and Q3 to be answered, we will test a set of recommendation algorithms on different

datasets, to both investigate which recommendation algorithms that have highest accuracy

overall in the datasets and to see if the accuracy of the individual algorithm differs across the

datasets. The algorithms that will be tested, will be chosen based on the discussion of suitable

approaches done for Q1. In addition, we will test a non-personalized baseline algorithm,

which is useful to compare the personalized algorithms against. Q2 will give valuable

information about the generalisability of the accuracy of the recommendation approaches

across domains, which is important when we want to use the results from the tests on the

other datasets to decide which approach that are best to use in Forzify. We will also measure

the training and prediction times of the algorithms on datasets to evaluate their scalability. In

Q3, new users mean users with limited item interaction history, which we define as less than

10 interactions, while old users mean users with more item interaction history.

1.3 Limitations

Ideally, to investigate which recommendation approach that gives the best recommendations

for the users of Forzify, we would have tested the approaches on Forzify’s data. However, as

5

we explained in the previous sections, this is not possible as Forzify has limited user

interaction data.

Recommendation systems is a large research area, consequently we can only cover a small

part of it. The success of such systems depends on several characteristics, from quantitative

characteristics as accuracy and scalability, to more qualitative characteristics as the usability

of the recommendation system. The research problems will be investigated from a user’s

perspective. This means the recommendation system should be as good as possible for the

user, giving accurate and fast recommendations. We will limit ourselves to look at the

recommendation approaches and algorithms, not surrounding factors, like usability, which

can be more important to look at when the recommendation approaches are decided. We will

not use the perspective of the owners of the system, where the aim may be to increase profit,

and thereby recommending the most profitable content. We will neither use a system

perspective, where the focus is on architecture and how the recommendation system can be

integrated with the application.

1.4 Research method

The design paradigm specified by the ACM Task Force of Computer Science (Comer et al.

1989) will be used as the research method in this thesis. This paradigm consists of the

following four steps:

1. State requirements.

2. State specifications.

3. Design and implement the system.

4. Test the system.

We look at the data that are collected in Forzify and which features that are wanted in a new

recommendation system, and use literature to find which approaches that are best suited for

this case. Based on this, we choose four recommendation algorithms that we implement. We

test the algorithms by conducting an offline evaluation of the algorithms, using

recommendation accuracy metrics and scalability metrics, with datasets from three different

domains.

6

1.5 Main contributions

Much research on recommendation systems focuses only on one approach, or one kind of

algorithms inside one approach. We instead investigate a practical problem by using an

extensive approach where all main recommendation approaches are considered and analysed

in order to find the most suitable approaches for Forzify. We further implement four

algorithms from different approaches and an evaluation framework for these algorithms. The

algorithms are evaluated in this framework on three datasets from the movie, book and song

domain, in order to see which approaches that perform best in both accuracy and scalability

measures. We evaluate the accuracy both for new and old users. This gives valuable results

about how well the different approaches perform in different domains, and in addition, it

gives an important contribution to the research on algorithms’ consistencies in accuracy

across domains, which have not been prioritized much in earlier research, as noted by Im and

Hars (2007).

An important part of the thesis is the theoretical background that is presented. Based on this,

we can choose the most suitable approaches, datasets and frameworks. We review the main

recommendation system approaches and compare them in terms of strengths, weaknesses and

data needed. We review the most commonly used datasets in recommendation system

research, and compare them in terms of domain features, inherent features and sample

features, which are the three levels of dataset features presented by Herlocker et al. (2004).

Further, we review four popular recommendation frameworks supporting different

algorithms, and compare these and their properties. All of these reviews and comparisons can

be useful for other researchers and developers that plan to implement or evaluate a

recommendation system.

1.6 Outline

Chapter 2 lays the theoretical foundation of this thesis, and gives the theoretical background

for answering which recommendation approaches that are suited for Forzify. In this chapter,

recommendation systems are presented more in detail, recommendation approaches are

presented and compared in terms of strengths, weaknesses and data needed, and some

examples are given of how recommendation systems are used in practice in some well-known

applications. We also give a review of how recommendation systems are evaluated, and we

7

present and compare different datasets that can be used for evaluation of recommendation

systems.

In Chapter 3, we present the case of Forzify, look at recommendations in this context and

review which data that are collected in the application and which features that are wanted in a

new recommendation system. Further, we discuss which recommendation approaches that are

best suited for the data in Forzify and the wanted features, in order to answer research

question Q1.

Chapter 4 describes the implementation of a set of candidate algorithms for Forzify, which are

chosen based on the discussion of suitable approaches for Forzify. We review

recommendation system frameworks and compare them in term of their properties, to find out

which frameworks that are appropriate to use in our case.

In Chapter 5, we present our evaluation of the implemented algorithms. First, we look at the

experimental design of the evaluation, which includes which measures and datasets to use,

how datasets are split and which experimental setting that is used. We further present and

discuss the results of the evaluation. Based on the results, we discuss if there are consistencies

or differences in the accuracy across the datasets to answer research question Q2, and we

discuss which recommendation approaches that most probably will give high accuracy and

scalability for Forzify, in order to answer research question Q3.

In Chapter 6, we present our conclusions by answering the research questions. Finally, we

present the main contributions of the work and suggest future research to further explore the

main topics of the thesis.

8

2 Recommendation systems

In this chapter, we lay the theoretical basis of this thesis, and give the theoretical background

for answering which recommendation approaches that are suited for Forzify. First, we will

look more in detail at recommendation systems and the problems they try to solve. There will

be a presentation of different recommendation system approaches, and a comparison of these

in terms of their strengths, weaknesses and data needed. There will also be given examples of

how recommendation systems are used in practice by some large companies in their

applications. Further, there will be a description of how such systems can be evaluated.

2.1 Recommendation systems explored

Recommendation systems are information filtering techniques used for either of the two

different, but related problems of rating prediction and top-n recommendation (Deshpande

and Karypis 2004). Rating prediction is the task of predicting the rating a given user will give

for a given item, while the latter task is to find a list of n items likely to be of interest for a

given user, either the n most interesting items presented in an ordered list or just a set of n

items expected to be of relevance for the user (Ning, Desrosiers, and Karypis 2015).

User feedback is essential in most recommendation systems. This information, which can be

both explicit and implicit user ratings, is typically stored in a rating matrix 𝑅, with ratings 𝑟𝑖,𝑗,

where 𝑖 ∈ 1 … 𝑛 and 𝑗 ∈ 1 … 𝑚. This matrix stores the ratings of a set of users 𝑈 =

{𝑢1, … , 𝑢𝑛}, for a set of products 𝑃 = {𝑝1, … , 𝑝𝑚}. Figure 1 shows an example of two rating

matrices that holds data about six users’ ratings for six movies. The first one is a typical

example of a rating matrix for explicit feedback, where each rating is given on a scale from

one to five, where low values mean dislike and high values mean that the user likes the item.

The second one is a rating matrix for unary ratings. Unary ratings are ratings that let the users

indicate liking for an item, but where it is no mechanism for detecting a dislike (Aggarwal

2016, 11). This is also called positive only feedback (Gantner et al. 2011). Unary ratings can

either have binary values as in this case, where 1 indicates a user interaction and no rating

indicates a lack of such interaction, or it can be arbitrary positive values, indicating for

example, number of buys or number of views. (Aggarwal 2016, 12). Explicit ratings can be

unary ratings, e.g., when there is a like-button and no dislike-button, but unary data are in

most cases implicit ratings, collected from user actions. In both of the rating matrices, the

9

missing values indicate that a preference value are missing. For most recommendation

systems, most values are missing, i.e., the rating matrix is sparse, because most users will

only interact with or explicitly rate a small portion of the items (Jannach et al. 2010, 23).

Figure 1: Example of two rating matrices with data about six users’ ratings for movies (Aggarwal 2016, 13)

In the rating prediction problem, the recommendation system fills in the missing values of the

rating matrix, by utilizing the given values. For this task, the recommendation system needs

explicit user ratings for items. This information can, together with implicit ratings, be used to

predict the rating a user will give to an item. The predicted rating can then be compared with

the real rating for evaluating the prediction. Explicit user ratings can be numerical, as in 1-5

stars, ordinal, as in selection of terms like “loved it”, “average” or “hated it”, and binary, as in

“like”- and “dislike”-buttons (Ning, Desrosiers, and Karypis 2015). Top-n recommendation,

on the other hand, does not need explicit user ratings. Recommendations in this task can

instead be based on only implicit ratings, like user clicks, views and purchases, which are

logged as the user interacts with the application. Also in this task, there could be used explicit

ratings, but this is not necessary, like in rating prediction.

Explicit user ratings offer the most precise description of users’ preferences, but give

challenges to the collection of data because the users must actively rate the items (Schafer et

al. 2007). Implicit ratings, on the other hand is easier to collect, but gives more uncertainty.

For example, if a user rates an element with five out of five stars, we can be sure the user

liked the item, but if a user has watched or bought an item, we only know that the user has

shown an interest for the item, not that he actually liked it. In the opposite case, lack of item

10

interaction can indicate that the user is not interested in the item or just that she has not

discovered the item yet. In other situations, implicit ratings can be as good as explicit ratings,

e.g., when play counts are logged for music or video streaming. Then, a high play count can

be as indicative for user preference as a rating on a five-star scale.

Recommendation systems have a large and diverse application area. They are today used in

areas such as e-commerce, search, Internet music and video, gaming and online dating

(Amatriain and Basilico 2015). In highly renowned websites like Amazon, Netflix, Facebook

and YouTube, these kinds of systems play an important role, both for the users and for the

owners of the systems. How these websites use recommendations will be described more in

detail in Section 2.3.

Recommendation systems have in recent years faced a huge increase in interest, not only in

the industry, but also in science. Dedicated recommendation systems courses are given at

universities around the world, and conferences and workshops are held for this research area,

e.g., the annually ACM Recommender Systems (RecSys) conference, which was established

in 2007 (Ricci, Rokach, and Shapira 2015).

A major event in the research on recommendation systems was the Netflix Prize, which was

announced in 2006 (Amatriain and Basilico 2015). This was a competition for rating

prediction on a dataset given by Netflix, with explicit ratings on a scale from 1 to 5. One

million dollars were offered to the team that could reduce the root mean squared error

(RMSE) by 10 % compared to what was obtained by Netflix’ existing system. RMSE is a

measure for rating accuracy, where a low RMSE value indicates high accuracy. RMSE and

other evaluation methods will be presented in Section 2.5. The Netflix Prize highlighted the

importance of personalized recommendations and several new data mining algorithms were

designed in the competition (Ricci, Rokach, and Shapira 2015).

Another notable recommendation system competition is the Million Song Dataset Challenge

which was held in 2012 (McFee et al. 2012). Here, an implicit feedback dataset consisting of

the full listening history for one million users were given, and half of the listening history for

another 110 000 users. The task of the competition was to predict the missing half of songs

for these users, and mean average precision (MAP), which will be described more in detail in

Section 2.5.3, was used as the evaluation metric. This is a typical example of the top-n

11

recommendation problem, where the goal is to predict the most interesting items, not to give

each item a predicted rating value as in the Netflix Prize.

2.2 Recommendation system approaches

In short, recommendation systems work by predicting the relevance of items for users by

analysing the users’ behaviour, browsing history, ratings, interaction with items, demography

or other information that can learn the system about the users and the items. This can be done

in many different ways, with collaborative filtering and content-based filtering as the two

main approaches (Bari, Chaouchi, and Jung 2014, 23). Other important approaches are

demographic-based, knowledge-based, community-based and hybrid approaches (Ricci,

Rokach, and Shapira 2015). Each of these approaches will be presented here.

2.2.1 Collaborative filtering

Collaborative filtering is an approach used to make personalized recommendations that are

based on patterns of ratings and usage by the users of a system (Koren and Bell 2011). The

idea behind this approach is that if a group of users share opinion on a set of topics, they may

also share opinion on another topic (Bari, Chaouchi, and Jung 2014, 23). The system collects

large amounts of data, and analyses it to find latent factors or similarities between users or

between items. A major advantage of this approach is that no machine-readable representation

of the items is needed to generate the recommendations, making the approach work well for

complex items like music and movies (Burke 2002). As Figure 2 shows, there are two main

groups of collaborative filtering: neighbourhood-based and model-based.

Neighbourhood-based

In the neighbourhood-based approach, the ratings are used directly in the computation to

predict the relevance of items, by either finding similar items or users, depending on whether

it is item-based or user-based (Ning, Desrosiers, and Karypis 2015). This approach is a

generalization of the k-nearest neighbours problem. The main advantage of neighbourhood-

based approaches is their simplicity, which both make them easier to implement and to justify

the recommendations for the user (Ning, Desrosiers, and Karypis 2015).

12

Figure 2: Hierarchy of collaborative filtering approaches

In item-based collaborative filtering, recommendations of items are based on the similarity

between items (Isinkaye, Folajimi, and Ojokoh 2015). The similarity between one item to

another is dependent on the number of people who interacts with both of the items or the

similarities of the ratings given to the two items. Two items both watched by a high number

of persons will be more similar than two items that are rarely watched by the same persons. In

this way, the system can recommend the items most similar to the items a user previously has

interacted with. For example, if Martin, who is looking for a good movie, has rated The

Shawshank Redemption highly, and the users who have rated this movie tend to rate Forest

Gump similarly, then Martin can be recommended to watch Forest Gump.

User-based collaborative filtering is an approach that makes recommendations of items that

are highly rated by users similar to the one receiving the recommendation (Desrosiers and

Karypis 2011). The similarities between users depend on their resemblance in item interaction

history, and the recommended items are those with highest average ratings given by the set of

most similar users. For example, if Martin has rated ten movies with highest score and Anna

has given the same rating for nine of them, but has not made a rating of the tenth movie, then

the system can recommend the tenth movie to Anna. Similarities between users or items are

typically calculated with cosine or correlation measures (Isinkaye, Folajimi, and Ojokoh

2015).

13

Model-based

In model-based collaborative filtering, machine learning and data mining are used to make a

predictive model from the training data (Aggarwal 2016, 9). This training phase is separated

from the prediction phase. Examples of machine learning techniques that can be used for

building such a model are decision trees, rule-based models, Bayesian models and latent

factor models (Aggarwal 2016, 9). One of the main advantages of the model-based

approaches compared to the neighbourhood-based ones, is that they tend to give better

prediction accuracy (Ning, Desrosiers, and Karypis 2015). Another advantage is that they also

are more scalable, both in terms of memory requirements and speed (Aggarwal 2016, 73).

Latent factor models are some of the most successful and commonly used of the model-based

approaches. They characterize items and users on latent factors based on user feedback

(Koren and Bell 2011). For example, if Martin likes to watch biographies and dramas, the

recommendation system can identify these latent preferences. Martin can then be

recommended Schindler’s List, which is both biographical and a drama, without the system

needing to have a definition of these concepts. The system only needs to know that the movie

has the same latent factors as Martin, which the system can find out by conducting a matrix

factorization of the rating matrix.

Strengths and weaknesses

Collaborative filtering is the most implemented and most mature of the recommendation

approaches (Isinkaye, Folajimi, and Ojokoh 2015). The strength of this approach is that it can

recommend items without any domain knowledge and its ability to make cross-genre

recommendations (Burke 2002). This is possible because it bases its recommendations on

user data, like views, ratings and likes, so that all kinds of complex items can be

recommended, also between genres and content. For example, if users who like action movies

also tend to like rock music, then a user who likes action movies can be recommended rock

music, even though the items have different content. Collaborative filtering also has the

advantage of improving its recommendations over time, as more data comes in, and can

gather information from the users without needing to explicitly ask for it. Another advantage

is that it is generally more accurate than other recommendation approaches (Koren, Bell, and

Volinsky 2009).

14

The downside of this approach is that recommendations cannot be made when there is

insufficient data about a user or an item. This is called the cold start problem, which can

happen when a new user is registered or a new item is added (Felfernig and Burke 2008).

User-based collaborative filtering suffers from the cold start problem both when there is a

new user and a new item. This is because user history is needed to find similar users, and an

item cannot be recommended to similar users if it has not been rated or viewed by a set of

users. Item-based collaborative filtering, on the other hand, only has this problem when a new

item is added, since data about the use of an item is needed to find similar items. Model-based

approaches also have cold start problems, but these are often smaller because they reduce the

rating matrix to a smaller model and utilizes both similarities among users and items.

Another problem in collaborative filtering is sparsity (Bari, Chaouchi, and Jung 2014, 31).

There is often a huge number of items on a website, and each user may only have rated or

viewed a small amount of these. This can result in sparsity in the user ratings, i.e. few users

have rated the same items, making it difficult to make recommendations to a user. Model-

based approaches have less problems with sparsity compared to neighbourhood-based ones

(Su and Khoshgoftaar 2009). Sparsity is particularly a problem in user-based collaborative

filtering, where similar users are found by searching for overlap in user ratings. It can also be

a problem in item-based collaborative filtering, but in general each item has a higher

frequency of interaction than a user has. Sparsity gives challenges in domains where new

items are frequently added and there is a huge collection of items, like in online newspapers,

where it is unlikely that users have a large overlap in the ratings, unless there is a huge user

base (Burke 2002).

The computation in user-based and item-based collaborative filtering is quadratic in either

number of users or items respectively. This is because we for each user in user-based, or item

in item-based, must compute the similarities to all other users or items, dependent on if it is

user-based or item-based. However, item-based filtering is considered more scalable because

it allows for precomputation of similarities (Ekstrand, Riedl, and Konstan 2011). This is

because the similarities between a user and the other users in a user neighbourhood change

when any of the users in a neighbourhood rates a new item, and consequently user similarities

must be computed at the time of recommendation in user-based collaborative filtering. The

item-similarities are not affected in the same way when it comes a new rating because items

usually have more ratings than users have, and they can therefore be precomputed in item-

15

based collaborative filtering. Model-based approaches are usually even more scalable. For

example, latent factor models can, like alternating least squares, compute a model which

scales linearly in the number of users and items (Hu, Koren, and Volinsky 2008).

The problems with cold start and sparsity, do that collaborative filtering works best for

websites with large historical datasets, without frequent changes in items (Burke 2002). If

there is not enough user history, the recommendations will be of low quality or it may not

even be possible to give recommendations. This makes collaborative filtering an ideal

candidate to use together in a hybrid solution with another approach that has less problems

with these problems, so that recommendations can be given from the start, but the benefits of

the collaborative approach can be achieved when more data is generated.

2.2.2 Content-based filtering

The main idea in content-based filtering is to recommend items that have the same features

that a user likes (Ricci, Rokach, and Shapira 2015). A user can explicitly state which features

he or she likes, or different machine learning techniques can be used to interpret the user’s

preferences based on former interaction with items (Bari, Chaouchi, and Jung 2014, 32). The

features are often tagged keywords or the categories of the item (Felfernig and Burke 2008).

The advantage of this approach, is that recommendations can be made with small amounts of

data. There are no problems of recommending new items, because the recommendation

system has access to the features of the items (Felfernig and Burke 2008). New users will get

recommendations as soon as they have interacted with an item or made a user profile, because

the system can recommend items similar to that item or to the preferences expressed in the

user profile. The content-based approach thereby avoids the cold start problem. For example,

if Martin watches a movie tagged with the keywords “Norwegian” and “thriller”, he can be

recommended thrillers and Norwegian movies, even if there are no other users in the system.

However, the recommendations made to a new user will often be of low quality, because the

system has not learned enough about the users’ preferences.

Content-based filtering has, like collaborative filtering, the advantage that the

recommendations improve as the user interacts with more items, because the system learns

more about which features a user likes (Drachsler, Hummel, and Koper 2008). But content-

based filtering has one large weakness compared to collaborative filtering; it cannot

16

recommend items of different genres or content (Burke 2002). The reason for this, is that the

recommender only recommends items similar, in terms of features, to the ones liked before.

This may lead to recommendations that provide nothing new to the user (Bari, Chaouchi, and

Jung 2014, 33-35). Another negative aspect of this approach is that domain knowledge is

needed to make the feature tags of the items or to place the items in categories.

2.2.3 Demographic-based

Recommendation systems can make recommendations based on demographic information

about the users. The idea is that users with different demographic features like age, gender,

language, nationality and education will have different interests, and then should get

recommendations accordingly. In demographic-based recommendation systems, users are

categorized in terms of their personal attributes and the recommendations are made based on

demographic classes (Burke 2002). For example, Martin who is an 18 years old Norwegian

man, will be categorized in a group of persons with the same characteristics, and the items

recommended to him will be the items that are most preferred by the other members of the

group.

This approach has a resemblance to user-based collaborative filtering, in the way that it finds

similarities between users and suggests items based on the preferences of these users. The

difference lies in how the approaches find similarities between users. User-based

collaborative filtering finds similar users on the basis of interaction patterns, while the

demographic-based approach finds similar users on the basis of demographic attributes.

The demographic-based approach is, like collaborative filtering, independent of the domain

knowledge, but it does not require the same amount of user history (Drachsler, Hummel, and

Koper 2008). Instead, this approach requires the users to fill in demographic information

about themselves, so they can get recommendations based on the preferences of users with

similar demographic attributes. The advantage of this is that there is no learning period where

the system learns about the preferences to the new user. This makes it possible for the system

to give recommendations from the first second after registration. Other strengths of this

approach is that the recommendations improve with time as more data are gathered, and the

ability to recommend items with different genres and content than the items previously

interacted with (Burke 2002).

17

One negative aspect of demographic-based recommenders is that the system must gather the

demographic information from the user. This is done in dialogue with the user and cannot be

done implicitly, like in collaborative filtering and content-based filtering (Drachsler, Hummel,

and Koper 2008). This could be time consuming for the user, and some users do not want to

share personal information. If the users choose not to enter the data or some parts of it, the

recommendations will suffer (Drachsler, Hummel, and Koper 2008). Another disadvantage of

this approach is the “grey sheep” problem, which happens when a user does not fit well in any

of the groups used to classify users (Burke 2002). This leads to recommendations that are not

based on the user’s preferences. The grey sheep problem is also found in collaborative

filtering. Demographic-based filtering also has problems with cold start when there are new

items, because the item must be interacted with by a set of users for the system to being able

to recommend it.

2.2.4 Knowledge-based

Knowledge-based recommendation systems give recommendations based on domain

knowledge about how different item features meet user needs and how items are useful for the

user (Ricci, Rokach, and Shapira 2015). They do not try to make any long-term

generalizations about the users, but instead base the suggestions on an evaluation of the match

between a user’s need and the options available (Burke 2002). For example, if Martin is going

to see a movie together with his little sister, who is eight years old, he will look for a different

type of movie than what he usually likes. Therefore, it is better that the recommendations he

gets from the system are based on the actual need in this situation, rather than on his usual

preferences. With a knowledge-based system, Martin can specify together with his sister

which features they would like the movie to have, e.g., “maximum 1 hour” and “children’s

movie”, and the system will find the movies that best fits their needs.

There are two types of knowledge-based recommendation systems: case-based and constraint-

based. These two types are similar in terms of used knowledge, but they use different

approaches for calculating the recommendations (Felfernig and Burke 2008). While case-

based systems base recommendations on similarity metrics, constraint-based systems use

explicit rules of how to relate user requirements to items features (Felfernig et al. 2011).

Knowledge-based recommendation has its advantage compared to other recommendation

approaches when the items have a low number of ratings, e.g., houses, cars, financial services

18

and computers, and when preferences change significantly over time, such that the user needs

would not be satisfied by recommendations based on old item-preferences (Felfernig et al.

2011).

The knowledge-based approach does not suffer from the problems of cold start and sparsity.

Instead of learning more about the users as more user data comes in, it uses a knowledge base

to make recommendations that satisfy a user need. On the one hand, this gives no start-up

period with recommendations of low quality, but on the other hand, the recommendation

ability is static, not improving over time as in the learning-based approaches (Burke 2002).

The approach works better than the others at the start of use, but it cannot compete with the

other approaches after some time if no learning methods are used to exploit the user log

(Ricci, Rokach, and Shapira 2015). Hence, it can be used successfully for websites where

users have few visits and the user data does not make a good fundament for making long time

generalizations of the users. It can also be used successfully together with an approach that

suffers from the cold start problem.

However, the main disadvantage of knowledge-based recommendation systems is that much

time and work is needed for converting domain expert’s knowledge to formal and executable

representations (Felfernig et al. 2011). In these systems, three kinds of knowledge are needed:

catalogue knowledge about the items to recommend, functional knowledge about how items

satisfy user needs and user knowledge with information of the user and her needs (Burke

2002). While catalogue knowledge and functional knowledge must be specified by someone

with domain knowledge, user knowledge must be gathered, either explicitly or implicitly,

from the user.

All recommendation approaches that use the log of user’s interactions to make

recommendations, have the stability versus plasticity problem (Burke 2007). Users tend to

change preferences over time, but this can be difficult for the system to notice when a user

profile is made. If the recommendation system makes recommendations based on old ratings,

it can result in recommendations that does not reflect the current preferences of the user. For

example, if a person who like hamburgers becomes a vegetarian, recommendations of

hamburger restaurants will be of low value for the user. The solution to this can be to give a

lower weight to old reviews or only use data from a limited period, but this can result in loss

of important information. The knowledge-based approach does not have this problem,

because it only looks at the user’s needs and the options available. Thus, the approach is more

19

sensitive to changes in the user’s preferences, making this a suitable approach for domains

where preferences are expected to change frequently.

2.2.5 Community-based

Recommendation systems that are community-based gives recommendations based on the

likings and preferences of a user’s social connections (Ricci, Rokach, and Shapira 2015). This

builds on people’s tendency to prefer recommendations by friends compared to those from an

online system (Sinha and Swearingen 2001). The idea is to utilize the ratings from friends to

make recommendations that are as good as if they were given by friends. This can be done by

collecting information about the user’s social relations at social networks and then

recommending items highly rated by the user’s social community (Sahebi and Cohen 2011).

For example, if a high proportion of Martin’s friends on Facebook like the same movie, he

can be recommended this movie.

People usually have more trust in recommendations from friends than from strangers and

vendors, because of the stable and enduring ties of social relationships (Yang et al. 2014). In

this approach, the mutual trust between users are exploited to increase the user’s trust in the

system (Ricci, Rokach, and Shapira 2015). Recommendations in this approach can be both

cross-genre and novel for the user (Groh and Ehmig 2007). This is because the

recommendations are based on patterns in user activity of the user’s friends and not on the

content tags of the items. There is no need for domain knowledge in this approach either.

The disadvantage of the community-based approach is that data from social networks are

needed to generate the recommendations. Not all persons are member of such services, and

will thereby not get any recommendations if the system is purely community-based.

Sparseness is also a problem because a user has a limited number of friends in online social

networks. To cope with this, some variants of the community-based approach traverses the

connections in the social network, using the ratings of friends of friends, their friends again

and so forth. The ratings provided by users with a nearer connection to the user, are then

given a higher weight than those provided by the more distant users. However, this can make

the user’s trust in the recommendations suffer, since the recommendations no longer are

provided only by first-hand friends.

20

2.2.6 Hybrid

Each of the presented approaches has advantages and disadvantages. Hybrid recommendation

systems combine two or more approaches to reduce the drawbacks of each individual

approach, and by this getting an improved performance (Burke 2002). For example,

collaborative filtering, which in general has good performance, but suffers from the cold start

problem, can be combined with an approach that does not have this problem, like the content-

based approach. Several methods can be used to make a hybrid recommendation system. The

approaches can be implemented separately and combine the results from each, some parts of

one approach can be utilized in another approach or a unified recommendation system can be

made by bringing together the different approaches (Isinkaye, Folajimi, and Ojokoh 2015).

2.3 Recommendation systems in practice

As shown, there are many different recommendation system approaches and combinations of

these that can be used. To illustrate how recommendation systems work in real life and the

diversity of systems, some recommendation systems used by large companies will be

presented here. Note, however, that companies have business secrets, so the presentation of

the recommendation systems is based on articles and public information about their

recommendation systems, and may have changed from the publication of this information.

2.3.1 Amazon

The American e-commerce company Amazon (amazon.com) was one of the first companies

to use recommendations in a commercial setting. They are famous for recommendations like

“Customers who bought this item also bought…” and “frequently bought together”, as

illustrated in Figure 3. Amazon bases its recommendations on buying behaviour, explicit

ratings on a scale from 1 to 5 and browsing behaviour (Aggarwal 2016, 5).

Linden, Smith, and York (2003) explains how Amazon uses an item-based collaborative

filtering approach to recommend products to its customers. The algorithm builds a similar-

items table by finding items often bought together. This is done by iterating over all the items

in the product catalogue, and for each customer who bought it, record that this item is bought

together with each of the other items bought by this customer. Then, similarity is computed

between all pairs of items collected, typically done by a cosine measure. This calculation is

21

made offline, so the most similar products from the similar-items table can be presented fast

to the user.

Figure 3: Example of recommendations when visiting an item at Amazon

2.3.2 Netflix

Netflix (netflix.com) is a company that provides streaming of movies and series. It offers its

customers a personalized interface, where previous views, ratings and items added to the

user’s list give basis for the titles presented to the user. Netflix typically recommends a set of

videos in a particular genre or a set of videos based on a user’s interaction with an item, as

Figure 4 shows. The recommendations are then justified by what the set is based on, as

“Because you watched …”, “Comedies” or “Top list for you”. Each set is presented as a

horizontal list of items and the user is presented to several rows of such sets.

The recommendation algorithm uses a set of factors to make its recommendations. Which

genres the available movies and series have, the user’s streaming and rating history and all

ratings made by users with similar tastes, are factors that affect the recommendations a user

gets (Netflix 2016). This is an example of a hybrid recommendation system, that uses both

22

collaborative filtering – as similar users’ ratings are used to recommend, and content-based

filtering techniques – as genres are used to recommend. The rating scale in Netflix is, as in

Amazon, from 1 to 5 stars.

Figure 4: Recommendations of videos in Netflix (Amatriain and Basilico 2015, 393)

2.3.3 Facebook

The social networking site Facebook (facebook.com) makes recommendations to its users at

multiple areas of the website. Recommendation systems are used to suggest new friends,

choose which posts should be showed at the top of a user’s newsfeed, propose pages for a

user to like and recommend apps to download. The algorithm used for recommending apps in

Facebook’s app centre will here be presented to give an understanding of how Facebook

recommends content to its users.

The recommendation system used in Facebook’s app centre has three major elements

(Facebook Code 2012). The first is candidate selection, where a number of promising apps are

selected. This selection is based on demographic information, social data and the user’s

history of interaction and liking of items. The second element in the recommendation system

is scoring and ranking. Explicit features like demographic data and dynamic features like

number of likes are important when the ranking scores for the apps are calculated, but the

most important feature is learned latent features. This is features learned from the user’s

history of interaction with items. The predicted response for a user to an object, is calculated

23

by the dot-product of two vectors, where one is the latent features of the user and the other is

for the characteristic of the object. The last element of the recommendation system is real

time updates. With a huge number of users and new apps coming in frequent, the indexes and

latent features must be updated in real-time to ensure the best possible recommendations.

This is a good example of a model-based latent factor model that also utilizes the

demographic- and community-based approach. Figure 5 shows recommendations of games in

the app centre. Facebook is known for its like-rating, but uses also ratings on a scale from 1 to

5, as seen in the figure.

Figure 5: Recommendations of games in Facebook

2.3.4 YouTube

The world’s most popular online video community, YouTube (youtube.com), gives

personalized recommendations of videos to its users, with a goal of letting the users be

entertained by content they find interesting (Davidson et al. 2010). Figure 6 shows an

24

example of recommendations in YouTube. An important part in YouTube’s recommendation

system is to find the most similar videos for each video. This is done in a similar fashion to

the item-based approach to collaborative filtering used by Amazon. Two videos are regarded

as similar if they have a high co-visitation count, i.e., if they are watched together by the same

user within a given period of time, typically 24 hours. This number is then normalized with a

function that takes the video’s global popularity into account, to avoid that the most watched

videos get an advantage over the less popular ones. A mapping is then made between each

video and its N most similar videos.

To select the recommendation candidates for a user, a seed set of videos are generated. This is

all the videos the user has liked explicitly or implicitly. A candidate set of videos are

generated by taking the union of all videos that are similar to the videos in the seed set. The

candidate set is then extended with all videos similar to the videos in the set, and this is

repeated several times to increase the span of the videos. YouTube wants the

recommendations to help the users to explore new content, and then it is important that not all

videos are too similar to videos in the seed set.

Figure 6: Recommendations of videos on Youtube (Manoharan, Khan, and Thiagarajan 2017)

25

The videos in the candidate set is then ranked according to video quality and user specificity.

Video quality is computed by variables independent of the user, like total view count and the

total number of positive ratings for a video. YouTube has explicit data in form of likes and

dislikes, and implicit data from for example viewing history, comments and sharing of videos.

To ensure the relevance of the video for the user, the user specificity reflects if the video is

closely matched with the user’s unique taste and preferences. In the end, not only the videos

that are ranked highest are recommended. Videos from different categories are selected to

increase the diversity of the recommendations.

2.4 Comparison of approaches

The approaches will here be compared in terms of their characteristics, strengths and

weaknesses. One of the most important aspects when comparing the different

recommendation approaches is what kind of data that are used and how this data is used to

make recommendations. Figure 7 illustrates the data inputs and background data that are used

in each of the approaches.

In demographic-based, community-based and collaborative filtering, the user rating database

for the whole set of users constitutes the background data for the recommendations.

Demographic-based filtering uses in addition the demographic information about the users.

The individual user’s demography, her social connections or her ratings are then used as input

data, depending on which of these three approaches it is, so that the system can categorize the

user in a group of users. Recommendations can then be made based on the preferences in this

group of users. Item-based collaborative filtering, does not use the ratings to find similar

users, but instead uses them to find items that are similar to the items rated highly by the user.

In model-based collaborative filtering, ratings are used to make a predictive model, which is

used to recommend items.

As Figure 7 shows, content-based filtering uses the user’s ratings or interests as input data.

The database of items and the associated metadata are used as background data, instead of the

user ratings, as in collaborative filtering. Based on the user’s ratings and interests, items

similar in content are found from the item database. The knowledge-based approach is the

only approach that does not use any data about user ratings to make recommendations.

Instead it uses a knowledge base to map a user need to an item in the item database.

26

Figure 7: Input and background data used in different recommendation approaches.

All of the approaches have strengths and weaknesses, which is illustrated in Table 1. With the

exception of the knowledge-based approach, all the presented approaches use some kind of

learning. This means that the systems learn more about the users as more data are gathered

about them and the items, and that the recommendations consequently are improved. As a

result, the knowledge-based approach is inferior to the other approaches when the system is

used for an extended period of time. On the other hand, if the system operates in a domain

where the user is likely to change preferences, the learning can lead to recommendations that

are not relevant for the user because they are based on the user’s old habits. In cases like this,

the learning gives a negative impact on the recommendations, and the knowledge-based

approach could be a better option because it is more sensitive to changes in preferences. But

27

in general, the learning-based approaches will give the best recommendations for a frequent

user.

The absence of learning in the knowledge-based approach gives recommendations of the

same quality for new users as for old users. This means the users can get relevant

recommendations from the first time they use the system, which is not the case for all of the

approaches that use learning. Without enough data about the users’ interaction with items,

these approaches will generate recommendations of low quality.

 Approach

Feature

Collaborative

filtering

Content-

based

Demographic-

based

Knowledge-

based

Community-

based

Improvement over

time
+ + + +

Sensitive to

changes
 +

Cold start – new

user
- +

Cold start – new

item
- - + -

Only needs

implicit data
+ - +

Needs data from

social media
 -

Increased trust +

Needs knowledge

engineering
 -

Needs domain

knowledge
 - -

Cross-genre and

cross-feature
+ - + +

Table 1: Advantages and disadvantages of recommendation approaches. “+” indicates an advantage for this

feature, “-“ indicates a disadvantage for this feature, while no sign indicates neither advantage or disadvantage

28

Collaborative filtering, demographic-based filtering and community-based filtering all have

the cold start problem. Cold start consists of two different but related problems: the new user

problem and the new item problem. Item-based collaborative filtering, demographic-based

filtering and community-based filtering do all have the new item problem, while user-based

collaborative filtering has problems with both new users and items. Model-based

collaborative filtering does also have cold start problems, but not to the same extent.

Content-based filtering does not have the cold start problem because it can explicitly ask for

the user’s interest, and then recommend items that have content in accordance with these

interests. If the system does not collect these interests explicitly, or the user chooses not to

enter her preferences, the recommendations will suffer, but as soon as at least one item is

interacted with, items with similar content will be recommended. Even if the user is the first

user of the system, there will be given recommendations because the approach is independent

of the ratings to users other than the one getting the recommendation. When new items are

added, they can be recommended from the first second because they have content tags.

As Table 1 tells us, collaborative filtering and community-based filtering have the advantage

of only needing implicitly gathered data. Demographic-based filtering, on the other side, must

explicitly ask the users for demographic information to be able to categorize the users in

terms of demographic attributes, while content-based filtering needs to explicitly ask for the

user’s interests to avoid the cold start problem, but can otherwise use implicit data to learn

content preferences. Knowledge-based filtering can both use explicit and implicit ratings to

understand the need of the user.

Despite the fact that community-based filtering only needs implicit ratings, it is dependent on

social connections from social networks. Without this information, the approach cannot

provide any recommendations. This will be the case when a user is not a member of social

networks, or does not want to share this information. However, the strength of using this kind

of data is that it can increase the users’ trust in the recommendations, by exploiting the trust in

social relationships.

One downside of the knowledge-based approach is that knowledge engineering is needed to

make the knowledge base. This can be a time-consuming process where domain knowledge is

needed. Content-based filtering also requires domain knowledge because knowledge about

the items are needed to make the item tags, but this can be added by the owners of the items

29

as they are added. The other approaches, on the other hand, are independent of domain

knowledge.

An often-desired feature in recommendation systems is the possibility to make

recommendations with different content or genres than the items the user has interacted with

in the past. These recommendations that are relevant for the user, but do not contain

characteristics that are in the user’s profile, are called serendipitous recommendations.

Collaborative filtering, demographic-based filtering and community-based filtering can all

make these because they base the recommendations on similarities in user data, rather than on

the properties of the items. This gives the advantage of letting the user explore new exciting

and varying material. This feature is also possible in knowledge-based recommendation

systems, but then, this must be specified in the knowledge base, and is not done

automatically. In content-based filtering, it is not possible with serendipitous

recommendations because the recommendations are made on the basis of preferences in types

of content.

2.5 How to evaluate recommendation systems

When making a recommendation system, it is important to evaluate the qualities of the

recommender, both for selecting the right approach and to see if the system is successful

according to its goals. In this section, there will be a presentation of the different experimental

settings that can be used for testing recommendation systems, a presentation of which

characteristics that are commonly evaluated and a review of how to measure the accuracy of a

recommendation system.

2.5.1 Experimental settings

There are three types of experimental settings that can be used to evaluate recommendation

systems, namely offline experiments, user studies and online evaluation (Gunawardana and

Shani 2015). In offline experiments, the experimenter uses a pre-collected dataset consisting

of ratings or users’ item interactions to simulate the behaviour of users interacting with the

recommendation system. The advantage of this approach is that no interaction with real users

are needed, making it easy to evaluate different implementations and compare them to each

other. On the other hand, this approach can only be used to evaluate a small subset of the

30

features of a recommendation system, typically the accuracy of the predictions. Since this

approach only simulates how real users interact with the recommender, it is not possible to

measure the recommendation system’s influence on user behaviour.

The simulation in offline experiments can be carried out by collecting historical data, leaving

some of the data out and then comparing recommendations or predictions of ratings with the

hidden data. The goal of experiments in this setting is therefore often to find the algorithm

with the best prediction or to see how changes to one algorithm influence the accuracy of the

recommendations. The data used for training a model is called the training set, while the

hidden data is called the test set. The reason for using a separate dataset is to avoid overfitting,

i.e., making incorrect generalizations from random properties of the training data (Manning,

Raghavan, and Schütze 2008, 271).

While traditional recommendation system research has focused on algorithms’ accuracy,

research in this area has in recent years started to emphasize the importance of other aspects

of recommendation systems, like evaluating recommendation systems from a user experience

perspective (Konstan and Riedl 2012). To evaluate the user experience of a recommendation

system, the system must be tested in a lab or in the field with real users (Knijnenburg and

Willemsen 2015). User studies do the former, while online evaluations do the latter.

In a user study, a number of test subjects are asked to do a set of tasks that involves

interaction with the recommendation system, so their behaviour can be observed and

measured to gain quantitative data (Gunawardana and Shani 2015). In addition, the subjects

can be asked questions, to provide qualitative data about their opinions when it comes to the

use of the system. The advantage of user studies is its ability to answer a wide set of questions

of the qualities of the recommendation system. However, this approach also has a major

downside. It is an expensive evaluation method because it is time-consuming and a set of

subjects must volunteer or be paid to participate.

Online evaluation is conducted by measuring real users doing real tasks (Gunawardana and

Shani 2015). This type of evaluation is commonly carried out as A/B tests (Knijnenburg and

Willemsen 2015). An A/B test is done by changing exactly one thing from the original system

to an alternative system, and then redirecting a small percentage of the users to the alternative

system (Manning, Raghavan, and Schütze 2008, 170). This makes it possible to measure the

effects a change in a system makes on the users’ behaviour, like for example, if users in one

31

system follow recommendations more often than in another system. For such an evaluation to

be successful, it is important that users are randomly redirected to the different systems and

only one variable are changed between the systems. Online evaluation gives the best evidence

for the true value of a system, but is not conducted without risks (Gunawardana and Shani

2015). For example, if a recommendation algorithm with low accuracy is tested on real users,

it can result in dissatisfied users and decreased user visits and product sale. Because of this, it

is smart to use this experimental setting after offline evaluation and user studies are carried

out.

2.5.2 Dimensions and metrics

Recommendation systems have several characteristics, both quantitative and qualitative, that

can be important for determining its quality. Avazpour et al. (2014) list the following 16

dimensions that are commonly used to evaluate the successfulness of a recommendation

system:

- Accuracy, also called correctness, i.e., how close the recommendations are to a set of

predefined correct recommendations.

- Coverage, i.e., the proportion of the items and users that can be recommended or

given recommendations respectively.

- Diversity, i.e., to which extent the items recommended to the user are not similar to

each other.

- Trustworthiness, i.e., the users’ trust in the system. For example, good

recommendations and explanations of why items are recommended can increase a

user’s trust in the system, while recommendations of low quality can lead to a user

losing her trust in the system.

- Recommender confidence, i.e., the recommendation system’s trust in its

recommendations and predictions. For example, a system will get a high confidence in

a prediction if there is a high probability for it to be correct, as when the system has a

high amount of data about the given user and item. It is desirable that the system have

a high confidence in the recommendations presented to the user.

32

- Novelty, i.e., the systems’ ability to recommend items the user did not know about.

- Serendipity, i.e., the systems’ ability to give recommendations that are both surprising

and interesting for the user.

- Utility, i.e., the value the recommendations give to a user or to the owner of the

system. For example, good recommendations will give high utility for the user and

bad recommendations will give low utility, while an increase in the revenue will give

high utility for the system owner.

- Risk, i.e., the risk for a user associated with a recommendation. For example, if a

recommendation system is used to recommend stocks, it is important that the items

have a minimal risk, not only a possible high profit.

- Robustness, i.e., the stability of the system in case of false information, either given by

accident or on purpose. For example, if an owner of an item want to increase the

popularity of that item by giving good ratings from fake user profiles, a robust

recommendation system will be affected to a small extent by these false ratings.

- Learning rate, i.e., how fast a recommendation system can adapt the recommendations

to new information and trends.

- Usability, i.e., how user friendly the interface of the recommendation system is

regarded by the users. For example, a recommendation system with a chaotic

presentation of items can be of low value for the users, even though the

recommendations are accurate.

- Scalability, i.e., how the system can scale up to large datasets of items and users, both

with regards to time and space requirements. The scalability of a recommendation

system is often determined in terms of training time, prediction time and memory

requirements (Aggarwal 2016, 235). The training time is usually done offline and can

without problems be up to a few hours, while the test time must be very low as the

users are not interested in waiting for recommendations.

- Stability, i.e., how consistent the recommendations are over a period of time. For

example, systems that change its recommendations rapidly, without the user changing

33

her user habits, can result in confusion for the user and a subsequent decreased trust in

the system.

- Privacy, i.e., to which degree the users’ data stay private, not being available to any

third-party.

- User preference, i.e., the users’ perception of the recommendation systems. For

example, users can try several systems, and decide which they prefer.

Because different recommendation systems have different needs and goals, the developers of

the system must choose which dimensions that are important to evaluate in order to meet

these expectations. Some of the dimensions affects each other, either positively or negatively.

For example, an increase in coverage will often increase the accuracy, while an increase in

diversity, serendipity or novelty can result in a loss of accuracy.

2.5.3 Measuring accuracy

In Section 2.1, the rating prediction and top-n recommendation were presented as the two

main problems to solve for recommendation systems. In this section, there will be given a

review of how the accuracy of these two problems can be measured in an offline setting. To

answer research question Q2 and Q3, we must measure the accuracy of recommendation

approaches. This is the reason for reviewing the accuracy metric, and not the other metrics

presented in Section 2.5.2.

Predicting user ratings

If the recommendation system’s task is to predict users’ ratings of items, the metrics root-

mean-squared-error (RMSE) and mean-absolute-error (MAE) can be used to measure the

accuracy of the predictions. Ratings are divided into two independent sets: a training set and a

test set. The training set is used to learn a function for predicting the ratings, so that the

recommender can predict the users’ ratings of items in the test set. The predicted rating for

each item can then be compared to the actual rating in the test set to find the difference, or the

residual, of the ratings. As stated in Section 2.5.1, it is important that the training and test sets

are disjoint to avoid overfitting.

34

RMSE is possibly the most commonly used metric to evaluate the accuracy of rating

predictions (Gunawardana and Shani 2015). It was used as the metric in the Netflix Prize,

described in Section 2.1. When calculating RMSE for a test set 𝜏, the residuals of the

predicted rating 𝑟̂𝑢,𝑖 and the actual rating 𝑟𝑢,𝑖 are squared, the average of these values is

calculated and the square root is taken on the average:

𝑅𝑀𝑆𝐸 = √

1

|𝜏|
∑ (𝑟̂𝑢,𝑖 − 𝑟𝑢,𝑖)

2

(𝑢,𝑖)∈𝜏

(1)

MAE resembles RMSE, but calculates instead the average absolute deviation of the predicted

ratings from the correct ratings:

𝑀𝐴𝐸 =

1

|𝜏|
∑ |𝑟̂𝑢,𝑖 − 𝑟𝑢,𝑖|

(𝑢,𝑖)∈𝜏

 (2)

In both RMSE and MAE, a low value indicates high prediction accuracy. The main difference

between the two measures is that RMSE penalizes large differences in ratings more than

MAE, because it squares the residuals before calculating the average (Avazpour et al. 2014).

Predicting interesting items

When the task of the recommender is not to predict ratings, but instead to predict the top n

items for the user, it is necessary to use other metrics for accuracy than RMSE and MAE.

Precision and recall are two commonly used metrics for this case. As basis for these measures

are usually the items that a user has accessed, but it could also be the items that are rated

positively or are bought by the user. These items are considered as relevant for that user. The

user data are also in this case split into a training set and a test set. The training set is used to

learn a function that predicts for each item in the test set if it is relevant or not for the user, or

to produce a recommendation list where items are sorted based on their predicted relevance

for the user.

Each item can be classified as either true positive, false negative, false positive or true

negative, based on if it is recommended or not and if it is used or not, as Table 2 shows.

35

 Recommended Not recommended

Used True positive (TP) False negative (FN)

Not used False positive (FP) True negative (TN)

Table 2: Confusion matrix for possible classifications of an item

When all items in the test set are classified, precision and recall can be measured as follow,

depending on how many items that are classified in each of the classes:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

 (3)

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4)

Precision measures the proportion of the recommended items that are actually used, while

recall measures the proportion of the used items that are recommended. One weakness of

these two measures are that items not accessed are assumed not to be interesting, which is not

necessarily true (Gunawardana and Shani 2015). These items could be interesting for the user;

they are just not discovered yet. There is a trade-off between precision and recall, in the way

that an increase in precision often results in a decrease in recall (Avazpour et al. 2014). For

example, if the number of items in the recommendation list is increased, it will probably

improve the recall, but worsen the precision.

When the size of the recommendation list is predefined, it is appropriate to use precision at n,

which means to compute the precision for n recommendations, ignoring the other items. Then

we can measure the precision of the n recommendations in the recommendation list.

Otherwise, it is desirable to measure the precision for various sizes of lists. This can be done

by plotting the precision versus recall rates in a graph, which is called a precision-recall curve.

A measure commonly used when the recommendation list is ordered, is mean average

precision (MAP). MAP emphasizes the top recommendations and was the measure used in

The Million Song Dataset Challenge (McFee et al. 2012), presented in Section 2.1. This

measure is often used in implicit feedback situations (Aiolli 2013, Wu et al. 2016, Parra et al.

2011). Traditionally, this measure takes all recommendations into account. However, as

recommendation systems only recommend a limited number of items, it is common to use a

36

truncated version of this measure, where only the n first recommendations are taken into

account (McFee et al. 2012). We will therefore present this version of the measure, and refer

to this version when saying MAP. For this measure, average precision at n (AP@n) is first

calculated for each user in the following way:

𝐴𝑃@𝑛 = ∑ 𝑃(𝑘)/ min(𝑚, 𝑛)

𝑛

𝑘=1

(5)

Here, P(k) is the precision at k if the item in position k is considered relevant for the given

user, or otherwise it equals 0. The symbol m is the number of items the user has interacted

with and n is the size of the recommendation list. This means we take the average precision at

each recall point, i.e., each index in the recommendation list with an item considered relevant.

The MAP is then computed by taking the average of AP@n over all the users, the following

way, where N equals the number of users and n is the recommendation list size:

𝑀𝐴𝑃 = ∑ 𝐴𝑃@𝑛𝑖/𝑁

𝑁

𝑖=1

(6)

Other measures often used in implicit feedback situations are Hit-Rate (HR) and Average

Reciprocal Hit-Rank (ARHR) (Ning and Karypis 2011, Deshpande and Karypis 2004). HR

measures the partition of users who get at least one correct recommendation in the

recommendation list (Jannach et al. 2010, 181). ARHR, which is also referred to as mean

reciprocal rank, does, like HR, measure the proportion of users who get at least one correct

recommendation, but does in addition take the rank of the correct recommendation into

account. ARHR is measured the following way:

𝐴𝑅𝐻𝑅 =
1

𝑢𝑠𝑒𝑟𝑠
∑

1

𝑝𝑖

ℎ𝑖𝑡𝑠

𝑖=1

(7)

Hits denotes the number of users who get a correct recommendation in the recommendation

list, while 𝑝𝑖 is the position of the first correct recommendation for a user i, that get at least

one correct recommendation. For all of the metrics for predicting interesting items that are

presented here, larger values indicate higher prediction accuracy.

37

2.5.4 Datasets

The dataset used in an offline evaluation should be as similar as possible to the data expected

when deploying the system online (Gunawardana and Shani 2015). If the system has been

operational for a certain time and has a large user base, a dataset can be created by logging

user data. In other situations, this can be problematic, for example when the system is not yet

operational or it only has small amounts of data. Then, it is possible to use an existing

available dataset. If no existing dataset matches the domain of the recommendation system, an

alternative is to use synthesized data that matches the domain, but this does not give accurate

modeling of real users and real data (Herlocker et al. 2004).

Several datasets that can be used in recommendation system research are available online with

real user data. Some of the most commonly used are:

- MovieLens, which consists of several datasets of movie ratings and metadata, where

the largest has 20 million ratings by 138 000 users for 27 000 movies, while the

smallest have 100 000 ratings (Harper and Konstan 2016).

- Amazon dataset, with 144 million reviews of 9 million items (McAuley et al. 2015).

- The Book-Crossing Dataset, with both explicit and implicit user data for books

(Ziegler et al. 2005).

- The Jester Dataset, with explicit user ratings for 100 jokes (Goldberg et al. 2001).

- The Million Song Dataset, with 48 million song counts for 380 000 songs and 1.2

million users, with corresponding metadata (Bertin-Mahieux et al. 2011).

Comparison of datasets

When choosing a dataset for evaluation, it is essential to analyze the properties of the datasets

to see if they model the tasks of the recommendation system under evaluation in a good way.

Herlocker et al. (2004) divide properties of datasets into three categories: domain features,

inherent features and sample features. Domain features describe characteristics of the content

being recommended and rated, inherent features describe features of the ratings and data

collection practices, and sample features describe distribution properties of the data. The

38

different datasets will here be compared in terms of a subset of the features of these

properties.

As Table 3 shows, all of the presented datasets have different product domains, i.e., they

contain ratings for different types of items. MovieLens operates in the movie domain,

Amazon is in the e-commerce domain and has a diverse set of products, while Book-crossing,

Jester and Million Song is in the book, joke and music domains respectively. Different

domains tend to have different preference heterogeneity, which means they differ in the

preference pattern of the users (Im and Hars 2007). For example, there is a tendency that

peoples’ preferences overlap more in the movie domain than in the domain of research papers

(Im and Hars 2007). This can in turn affect the accuracy of the recommendation algorithms on

the different domains.

 MovieLens Amazon Book-Crossing Jester Million Song

Content Movies Various

products

Books Jokes Music

Context Web Web Web Web Web

Cost for false

negative

Low Low Low Low Low

Cost for false

positive

Low Intermediate Low Low Low

Benefit High High High Intermediate High

Table 3: Comparison of domain features of datasets

However, there are also some similarities for these datasets in the domain features presented

by Herlocker et al. (2004). The data for all of them are collected from web-settings and the

main user task supported by each of the recommendation systems is to find good items for the

user. There are very low costs for false negatives in all of the domains compared to for

example a recommendation system for juridical documents, where missing recommendations

of good items could be problematic for a lawyer. False positives do also have low costs in the

domain of these datasets as incorrect recommendations only could waste small amounts of

time and money for the users. The only exception here is Amazon, where incorrect

recommendations of retail items could be both costly and time-consuming for the user. In all

39

of the domains, except in Jester’s case, the recommendations could give huge benefits for

both the users and the companies by dealing with the information overload problem, as the

item catalogues are extremely large. Jester does not have this large number of items and are

thus not facing such a high potential benefit from its recommendations.

There is also differences in the datasets when it comes to the inherent features, as seen in

Table 4. MovieLens, Amazon and Jester have gathered explicit user ratings, The Million Song

dataset has gathered implicit data about play counts, while The Book Crossing dataset

contains both explicit and implicit data. All of the datasets have only one dimension for the

ratings, unlike for example TripAdvisor where one user can rate a hotel stay with several

dimensions, as service, location and cleanliness. MovieLens and Amazon do both have

ratings on a 1-5 scale, Book-Crossing has a rating scale from 1-10, while Jester has a

continuous rating scale from -10.0 to 10.0.

 MovieLens Amazon Book-Crossing Jester Million Song

Explicit or

implicit

Explicit Explicit Both Explicit Implicit

Scale 1-5 1-5 1-10 and

implicit

-10.0-10.0

continuous

Play counts

(unary)

Dimensions

of ratings

1 1 1 1 1

Timestamps Yes Yes No No No

Demographic

data collected

Yes No Yes No No

Content data

collected

Tags Tags Publisher

information

Text of jokes

Tags

Table 4: Comparison of inherent features of datasets

MovieLens and Amazon are the only ones of the datasets that contain timestamps. This

information can be useful if a researcher wants to simulate the system at a single test time,

where all ratings after that time is hidden. Content data and demographic information about

users are additional data that can be valuable in a dataset. MovieLens, Amazon and Million

Song have content data in the form of tags, while Jester has its jokes in textual form. The

40

Book-Crossing has publisher information about each book, as year published, title of the book

and the book’s publisher. Both Book-Crossing and MovieLens have demographic data about

its users.

The possibly largest differences of the datasets are found in the sample features. As Table 5

shows, the number of users ranges from 73 000 to 21 million, the number of items ranges

from as little as a hundred to over 9 million, while the number of ratings ranges from around a

million to 155 million. All the datasets have more users than items and, not surprisingly, more

ratings than items. Amazon has not only the highest number of users, but also the highest

number of items and ratings. Jester, on the other hand, has both the smallest number of users

and items, while The Book-Crossing dataset has the fewest ratings.

 MovieLens Amazon Book-Crossing Jester Million Song

Users 138 000 21 M 279 000 73 000 1 M

Items 27 000 9.35 M 271 000 100 384 000

Ratings 20 M 144 M 1.15 M 4.1 M 48 M

Avg. ratings

per user

145 7 4.1 56 48

Avg. ratings

per item

740 17 4.4 41 000 125

Overall

density of

ratings (avg.

% of the

items that are

rated per

user)

0,54% 0,000075 % 0,0015% 56% 0,0125%

Table 5: Comparison of sample features of datasets

The differences are also visible in the average number of ratings per user and item, but even

more significantly in the overall density of ratings. This metric is computed as the average

percent of the items that are rated per user. As much as 56 percent of the items are on average

rated by the users of Jester, which can be explained by the small number of items, and that

smaller amount of time and resources are needed to read jokes compared to the items rated in

the other datasets. MovieLens and Million Song also have a high density in the ratings, while

41

Book-Crossing and especially Amazon have a very low density in the ratings. This is natural

because it takes significantly longer time to read a book than to watch a movie or listen to a

song, and a user cannot be expected to buy even a small part of Amazon’s huge item

catalogue.

2.6 Summary

This chapter has given a general description of recommendation systems and the two main

problems concerned with such systems: the rating prediction problem and the top-n

recommendation problem. There has been a presentation and comparison of the most

commonly used recommendation system approaches, namely collaborative filtering, content-

based, demographic-based, knowledge-based, community-based and hybrid approaches. All

of these approaches have different strengths and weaknesses, and they use different data

sources for making the recommendations. Thus, the best recommendation approach in a

particular situation depends on the needs and goals of the system and the available data in the

system. Hybrid approaches are often used to minimize the disadvantages of two or more

approaches while at the same time exploiting the advantages of each approach. This was

observable when we looked at the recommendation systems used in practice by Amazon,

Netflix, Facebook and YouTube.

Recommendation systems can be evaluated in three different experimental settings: offline

experiments, user studies and online evaluation. Offline experiments use pre-collected

datasets and are typically used for testing the accuracy of the recommendations. User studies

and online evaluation, on the other hand, are conducted by interacting with real users, either

in a lab or in a real setting, respectively. These two settings can answer a wider set of

questions than offline experiments, but not without a cost; user studies are expensive to

conduct and online evaluation can result in dissatisfied users if they are exposed for an

unwanted or unsuccessful change in the system.

If the recommendation system aims to solve the rating prediction problem, RMSE or MAE

can be used to predict the accuracy of the rating predictions, by comparing the predictions to

real ratings. Recommendation systems that is concerned with the top-n recommendation

problem on the other hand, can use precision, recall, HR, ARHR and MAP for measuring the

accuracy, as is often the case when the system bases the recommendations on implicit data.

42

When evaluating the accuracy in an offline setting, a dataset with item and user data is

needed. This can be collected from the application the recommendation system is made for. In

other situations, where this is not possible because of small amounts of data or when the

system is not yet released, online existing datasets from other application or synthesized

datasets can be used. We presented five datasets that contain rating information for movies, e-

commerce products, books, jokes and songs. These did not differ only in domain features, but

also in inherent and sample features.

Now that we have gotten a general understanding of how recommendation systems work and

are evaluated, we can start to look at the case of the sports video application Forzify to find

out how recommendation systems can be utilized in this context. This will be the topic of the

next chapter.

43

3 Case: Forzify

In this chapter, we will present the context of the sports video application Forzify, look at

recommendations in this context and present the data sources available in Forzify that could

be used for making recommendations. Further, there will be a description of wanted features

in an improved recommendation system for Forzify and there will be a subsequent discussion

of the suitability of different recommendation approaches in terms of the wanted features and

available data. This discussion will be done in light of the comparison in Section 2.4, and

makes basis for research question Q1, which was specified in Section 1.2.

3.1 Context

Forzify is a system for football events, which aims to give the users an interactive and social

experience (ForzaSys 2016). Forzify builds on the same ideas as DAVVI (Johansen et al.

2009, Johansen et al. 2010, Johansen et al. 2012), which is a prototype of the next generation

multimedia entertainment platform. The new generation of football supporters are not just

watching the games at home or on the stadium. They interact with friends and fellow

supporters on social media, sharing experiences, getting updates on the latest scores and

discussing the newest actions. These new interaction patterns have been taken into account

when making Forzify. The idea is to boost supporter activity on the match day, but also on the

other days of the week.

The system is like a sport version of Spotify, where the users can watch video clips of games,

make video playlists, share and discuss sport events, create their own events, get

recommendations by friends and collect and redistribute their favourite video clips. The

system is today in use by Tromsø IL, Viking FK and Vålerenga IF, three football teams from

Eliteserien, which is the premier division in Norway. Forzify is made both as a website and as

an app for iOS and Android. The version of Forzify used by these three clubs, only include

videos of the given club, but in 2017, one Forzify-version will be released for Eliteserien and

one for Allsvenskan (the top division in Sweden), where videos for all of the teams will be

published, and games will be sent live.

Figure 8 shows a screenshot of the home page of the Forzify-version made for Tromsø IL.

Here, the user is presented to three sets of videos: one for the last game, one for trending

44

videos and one for videos recommended to the user. The user can also browse videos by other

means. There is a search bar where the user can do text searches, with the possibility of

adding tags to the search. The user can choose different categories of videos from the

“videos”-tab, e.g., “most popular videos”, “newest videos” or “matches”, where the user can

choose videos from a particular match.

Figure 8: Screenshot of the home page of Forzify

3.2 Recommendations in Forzify

To give the users of Forzify a good user experience, it is crucial with recommendations of

content that are relevant for the users and which support exploring. This will especially be

important when Forzify is released for Eliteserien and Allsvenskan, where several videos will

be added for the 16 teams each football round. The majority of the users do not have time or

desire to browse through all videos to find new and exciting material. By giving suggestions

of interesting videos, the users can use less time searching, and if the suggestions are

successful, the user satisfaction will increase, which again can result in loyal users and a

higher number of visitors.

Forzify does today present recommendations to its users in two cases. The first is when a user

is on the main page, where a set of videos are recommended based on the user’s history.

These videos can also be watched by clicking on the “Recommended”-tab at the top right

45

corner, as seen in Figure 9. The second case is when a user watches a video, related videos are

presented to the right of the video being played, as seen in Figure 10. For the first case, the

user must be logged in to get recommendations, while in the second case, the user can be

anonymous and still get recommendations, as the related videos are not based on the user’s

preferences. In both cases, 10 recommendations are shown, but the user can choose to watch

the next 10 recommendations by clicking on the next page button. We will in this thesis focus

on the personalized recommendations that are presented in the main page, and we will focus

on the new version of Forzify where videos are available for all teams in a division. The

choice to concentrate on the new Forzify-version and not the club versions, is done because

the new version will include many more videos and consequently it will get huger benefits

from the recommendations.

Figure 9: Recommended videos for a user in Forzify

The existing system uses the open source distributed search engine Elasticsearch (Elastic

2016) both for search and to generate recommendations. The recommendation system uses a

content-based approach as the recommendations are produced on basis of the content of the

items. Recommendations for a user are made by doing a search in Elasticsearch for the text

fields associated with the videos the user has watched, liked or added to playlists, and the

previous searches. Related videos are found by using the text fields stored about a video to

search for videos with similar content. Newer videos are given a higher weight and are thus

more likely to be recommended, while the 20 videos last watched by the user are removed

from the recommendation set.

46

Figure 10: Recommendation of related videos in Forzify

The content-based approach used by Forzify has both advantages and disadvantages, as

presented in table Table 1. The strength is primarily that the system can learn about the users’

preferences and thereby give better recommendations as the users interact with the system.

There are also less cold start problems compared to collaborative filtering. In addition, using a

distributed search engine, like Elasticsearch, gives time-efficient recommendations. On the

other hand, Forzify’s recommendations will be restricted to only recommend the same type of

content as the user has looked at before. This will not provide serendipitous recommendations

that let users explore new types of content. For example, a user who only has watched free

kicks of one team, will only get recommendations of free kicks and videos from that team,

even though she also might be interested in watching other content, as beautiful goals from

other teams. In Figure 9, we can see an illustration of this. The user has watched a few videos

of shots and goals by the player Thomas Lehne Olsen, and are then recommended videos of

this player in eight out of ten recommendations. Content-based filtering does also tend to give

lower accuracy than collaborative filtering. In addition, recommendation systems do generally

benefit from using more than one data source, but in Forzify’s case, only content information

is used for generating the recommendations.

47

3.3 Data in Forzify

There are several data sources in Forzify that can be used for making recommendations. We

will here present these data sources, look at which recommendation approaches that can be

used with this data and review what data that are needed to use the other approaches.

In Forzify, data about users’ item interaction history are recorded, which includes mostly

implicit data, like the videos watched by a user, the number of times each video is watched by

a user, which videos that are added to playlists by a user and the searches performed by a

user. It also includes explicit rating data about which videos a user has liked. This information

can be used to infer the preferences of the user. However, there are no dislike-buttons or scale

ratings, i.e., there are only unary ratings, which means it is not possible to know from the

ratings if a user dislikes any items, as described in Section 2.1. We can then only know if a

user has liked or added a video to a playlist, which indicates a strong preference, or if a user

has interacted with an item, which gives a weaker indication of preference. For example, a

user can watch a video and not enjoy it, but it is not possible to know this negative preference.

This absence of negative preference data, gives certain implications for the design of the

recommendation system. We cannot predict ratings when we have no explicit ratings on a

scale from negative to positive. Instead, we can handle the recommendations as a top-n

recommendation problem, as described in Section 2.1, treating all user-item data as positive

indications for preference and then make recommendations for the items most probably

preferred by the user. Top-n recommendation measures can then be used, as precision, recall,

HR, ARHR and MAP, to evaluate the successfulness of the recommender. Items can be

considered relevant for a user if there exist any preference data for that user-item pair, or

otherwise be treated as non-relevant.

Forzify also has item data. Each video has a title, which tells us about its content, and there is

content data, which tells us about the features of the video. The content data is a set of tags

that can be added to the videos. For example, one video of a football goal can be tagged with

“Goal”, the club name, the name of the goal scorer and the name of the player who had the

assist. This information gives a valuable description of the items, as the items themselves do

not contain any textual content, like in for example a text document. If the content data are

combined with users’ item history, it can be used to infer the users’ preferences in content.

48

Figure 11 shows an example of the content information for a video in Forzify, which are

found under the video. On the top of the figure is the title of the video, which describes the

item. Under the title are three tags: “goal”, “corner” and “heading”. All of these tags contain

additional information that are shown when the user places the mouse over the tag. In the

figure, the mouse is held over “goal”, and metadata for the goal are shown.

Figure 11: Example of tags for a video in Forzify

To make an improved recommendation system for Forzify, it is important to look at which

approaches that can be implemented with the existing data sources, and which data sources

that are needed in order to use the other approaches. If we take a look at Figure 7 again,

Forzify has three of the types of background data that are included in the figure; it has a user

rating database, an item database and meta data about content features of the items. However,

there are no user demographic database or knowledge base. This means that Forzify has not

the existing background data needed for the demographic-based and knowledge-based

approach.

To use the demographic-based approach, user data and demographic data about the users are

needed. While user data are available in Forzify, no demographic information is today

gathered about the users. To get this, the system must explicitly ask the users for this

information when they register as a new user. This can be considered troublesome by the

users, as they do not want to share all information or use time on this, which can lead the user

not to enter all the data or not even register at all.

Forzify has the metadata needed for the knowledge-based approach, but lacks both functional

knowledge about how the items satisfy user needs, and user knowledge about the user and her

need. To get functional knowledge, domain knowledge and time are needed to make a

49

knowledge base, and to gather user needs, information must be gathered from the user. This

can be both time-consuming and expensive.

Figure 7 also shows which data inputs that are needed for each approach. Only user ratings

are collected of these data types in Forzify today, which means the community-based

approach neither is possible to use with existing data sources. This approach needs, in

addition to usage data, data from social relations of the users which must be fetched from a

social network.

Then, we are only left with two approaches if we are going to base the recommendations on

existing data sources. These are collaborative filtering and content-based filtering, which both

utilize user ratings to learn about the preferences of the user. After the system has inferred the

user’s preferences, the collaborative filtering uses the user rating database as background data

to find similarities in usage patterns, while the content-based filtering, on the other hand, uses

the meta data and item database to find content similar to the preferences of the user.

3.4 Features wanted in the recommendation system

Before we can decide which recommendation system approach that suits the needs of Forzify,

we must specify which features that are wanted in the recommendation system. First of all, it

is important that the recommendations have as good quality as possible. In a system like

Forzify, new content will be uploaded continuously, so it is expected that many users will

visit the system repeatedly. Thus, it is beneficial with an approach that uses some kind of

learning of the users’ preferences. In the long run, this will give the best recommendations for

the user. The system can then learn, either through content information or associations in user

data, about which teams and players the user likes and if she likes any special events, like

goals, free kicks or saves.

One important feature of recommendation systems is to help users discover new material. It is

desirable that Forzify’s recommendation system can make recommendations that are

serendipitous. Another important feature, is that the system can recommend as many items as

possible to as many users as possible. Then, it is important to reduce the cold start problem

both for new users and for new items.

50

Another feature wanted in the system is scalability. If the recommendation system uses long

time to generate the recommendations, it makes small differences whether the

recommendations are good or bad, because the users are not interested in waiting for the

content. Therefore, it is important that the system can scale well with large amounts of items

and users, to give time-efficient recommendations.

3.5 Discussion of suitable approaches

In the last section, the features wanted in the new recommendation system were presented.

Now, we will discuss which approaches that best suit these needs and the data sources of

Forzify. Summarized, we want the recommendation system to use some kind of learning,

produce serendipitous recommendations, handle cold start situations and scale well for a large

set of users and items. As Table 1 showed, no approach is perfect and suits all these needs.

Therefore, it is smart to use a combination of approaches in a hybrid solution, which makes it

possible to exploit the advantages and at the same time reduce the disadvantages of each

approach.

All of the presented approaches, except for the knowledge-based, learn about the users as they

interact with the system, and can thereby give improved recommendations over time. Even

though the knowledge-based approach cannot make as good recommendations as the others in

the long run, it has no problem with making recommendations for new users or items. This

lack of cold start problem, makes it an ideal candidate to use together in a hybrid approach

with one of the approaches that use learning. Then, it will be possible to give good

recommendations from the first second the user visits the site and after some time, even better

recommendations since more user data are logged.

Content-based filtering also has less cold start problems than the other approaches. This

approach can make recommendations as soon as a user has visited an item or made a user

profile. It can then find videos similar in content to that video or to the interests expressed in

the user profile. However, it will take some time before the system learns enough about the

user’s preferences for content, to make good recommendations.

Collaborative filtering, demographic-based filtering and community-based filtering can all

make serendipitous recommendations. Content-based filtering is unable to make these kind of

recommendations, while the knowledge-based approaches can do this if a knowledge base is

51

made with rules describing how it should be done. This is the challenge with knowledge-

based recommenders. Domain knowledge is needed to make good recommendations, and a

certain amount of time must be used to manually make rules based on this knowledge. In

cases where little user history is expected, like in a website for selling of cars or apartments,

this can be a suitable approach, because good recommendations can be difficult to make

otherwise. In the case of Forzify, on the other hand, where the users are expected to interact

with several items, it will be better to use other approaches that do not need manual work.

One possible option then, is to use content-based filtering together with collaborative filtering,

demographic-based filtering or community-based filtering. This will handle cold start

situations well because of the content-based approach, and give serendipitous

recommendations that are improved as the user interacts with the system because of the other

approach. Since no demographic and social data now are collected in Forzify, while the

system collects several data about item interaction, it will be best to use collaborative filtering

as the second approach.

Using content-based filtering together with collaborative filtering in a hybrid approach is a

common combination because they complement each other well and they only need easy

accessible data sources. This will be similar to the way Netflix make recommendations, as

described in Section 2.3.2. To ensure that the system scales well, it will be best to use a

model-based or item-based collaborative filtering approach, as the user-based approach does

not scale good for large datasets. Therefore, the best choice for approaches for the data

gathered in Forzify and the features wanted in the system, is the combination of the content-

based approach and either item-based or model-based collaborative filtering.

3.6 Summary

In this chapter, we have presented the sports video app Forzify. Forzify lets users watch

football videos, make playlists and share experiences with fellow supporters and friends. In

such an app, a recommendation system is important for letting users easy find content that are

interesting for them. To find which recommendation approaches that could best suit this

context, we looked at which data sources that could be possible to get from the existing

system, and which characteristics that would be desirable for a recommendation system in this

setting. Today, it is collected both explicit data, in form of likes, and implicit data, such as

52

which videos that are watched or added to playlists by a user. In addition, the system contains

textual content information about videos. As Forzify only contain unary ratings and mostly

implicit data, the recommendation problem must be treated as a top-n recommendation

problem, not a rating-prediction problem. The features wanted in the new recommendation

system are primarily use of learning, serendipitous recommendations, good handling of cold

start situations and good scalability.

Further, we discussed how the different recommendation approaches are suited for the data

and wanted features in Forzify. We found item-based collaborative filtering, model-based

collaborative filtering and content-based filtering as the approaches best suited for Forzify’s

recommendation system. The next step in the process now, is to look at how these approaches

can be implemented, which will be the focus of the next chapter.

53

4 Implementation of a

recommendation system

To answer research question Q2 and Q3, stated in Section 1.2, we will implement a set of

algorithms from different approaches that can be evaluated, both in terms of accuracy and

scalability. In this chapter, we will therefore look at the implementation of a set of candidate

algorithms that will be chosen based on the discussion in Section 3.5, about which approaches

that are suitable for Forzify according to the literature. First, we will describe and compare a

set of recommendation frameworks that are commonly used for implementation of

recommendation systems. Next, we will present the algorithms that we will implement. These

algorithms are presented in detail, both in terms of implementation details and underlying

calculations needed to make the recommendations.

4.1 Recommendation frameworks and libraries

An important decision when making a recommendation system is if the system should be

implemented completely from scratch or if some existing frameworks, libraries or packages

should be used. There exist several open source recommendation frameworks. Some

commonly used are Apache Mahout, LensKit and MyMediaLite (Said and Bellogín 2014).

Another popular framework is the Apache Spark’s machine learning library MLlib, which has

shown to be highly efficient for producing recommendations on large datasets (Meng et al.

2016). In this section, there will be a presentation and comparison of these frameworks.

Using existing frameworks and libraries can give multiple benefits. Instead of reinventing the

wheel, time can be saved by reusing software libraries and frameworks. Such software is also

generally tested thoroughly, reducing the risk for errors in the program. In the case of

recommendation systems research, frameworks and libraries can make it easier to compare

different algorithm implementations and results. On the other hand, reuse of software can give

constraints in technologies, algorithms and data structures.

4.1.1 Mahout

Apache Mahout is a project that provides Java-based machine learning frameworks and

libraries for making scalable recommendation systems (Apache Mahout 2016). It offers a set

54

of collaborative filtering techniques, including neighbourhood-based approaches, like user-

based and item-based collaborative filtering, and model-based approaches, like SVD++ and

alternating least squares (ALS). The framework can be used to run on a single computer or on

a cluster with the distributed framework Apache Hadoop using the MapReduce paradigm.

Central parts of Mahout are the Java interfaces DataModel, UserSimilarity, ItemSimilarity,

UserNeighborhood and Recommender. The DataModel is used to store information about

user preferences, which can be fetched from a database or another source. UserSimilarity and

ItemSimilarity are used to find similarities between users or items, and UserNeighborhood

defines a mean for determining a neighbourhood of similar users for a user. At the core of the

framework, is the Recommender, which can recommend items for a user or predict a user’s

preference for an item (Schelter and Owen 2012). The interfaces can be used to implement

new algorithms, or they can be used to implement the algorithms contained in the Mahout

library.

4.1.2 LensKit

LensKit is an open source Java-based recommender toolkit (Ekstrand et al. 2011). Its goal is

to give an extensible and robust basis for research in recommendation systems, but the

framework is also usable in real-world situations, primarily for web-applications. LensKit has

implementations of three collaborative filtering approaches: the model-based approach SVD

and the two neighbourhood-based approaches user-based and item-based collaborative

filtering. It provides the interfaces ItemScorer and ItemRecommender, which respectively are

used to predict ratings for a user for an item and to recommend items for a user. Two of the

advantages of LensKit are that different variations of algorithms easily can be configured and

that it offers possibilities for easy implementation of new parts to existing algorithms.

4.1.3 MyMediaLite

MyMediaLite is a recommendation system library written in C# (Gantner et al. 2011). It

offers libraries containing existing algorithms, and a framework for implementing and

evaluating new ones. MyMediaLite is made to be a fast and scalable library for collaborative

filtering and is aimed at both academic and industrial purposes. The tasks of predicting ratings

and predicting interesting items are supported, both with various neighbourhood- and model-

based algorithms.

55

4.1.4 Spark MLlib

Apache Spark is an open source cluster computing framework for large-scale data processing

(Shanahan and Dai 2015). It is well-suited for machine-learning tasks and offers the machine

learning library MLlib, which contains a set of fast and scalable implementations of machine

learning algorithms (Meng et al. 2016). Spark can either be run distributed in a cluster or on a

single machine. MLlib supports two variants of alternating least squares, which is a model-

based collaborative filtering algorithm. The first variant is for explicit data and the other is

adapted for implicit data.

Spark has APIs in Java, Scala and Python. The advantage of Spark is its ability to scale well

for large datasets. Spark has similarities to the MapReduce paradigm, but performs

significantly better on iterative jobs (Zaharia et al. 2010). Therefore, its alternating least

squares algorithm is very efficient on large datasets compared to the one provided by Mahout,

which is based on MapReduce (Meng et al. 2016).

4.1.5 Comparison of frameworks

In this section, there will be a comparison of the four recommendation frameworks presented

above. The differences are summarized in Table 6. The frameworks have several properties in

common, but there also exist some differences between them. While Spark’s MLlib and

Mahout are machine learning frameworks with support for recommendation system

algorithms, LensKit and MyMediaLite are made to support recommendation algorithms only.

All of the frameworks are open source software and are also platform-independent. Except for

MyMediaLite, which only supports C#, all of them have Java APIs. Spark has in addition

Scala and Python APIs.

The only algorithms supported in these frameworks are collaborative filtering algorithms.

This means there is no algorithms for content-based, knowledge-based, demographic-based or

community based recommendations, even though there is support for making new

recommendation algorithms in Mahout, LensKit and MyMediaLite. In Spark’s MLlib, new

algorithms must be made from scratch with Spark’s data structures, as the API does not

support implementation of new recommendation algorithms. Mahout, LensKit and

MyMediaLite have both neighbourhood-based and model-based collaborative filtering

algorithms, while Spark only have model-based ones. All of them have support for evaluation

56

of the recommendation algorithms, but they differ in how this is done. Spark and Mahout

have evaluation classes that makes it possible to evaluate the recommendations inside the

Java program, while LensKit and MyMediaLite have evaluation scripts that can be run from

terminal. When it comes to scalability, Mahout and Spark has an advantage as they can be

distributed over several nodes in a cluster, making it possible to handle large amounts of data.

However, Spark outperforms Mahout on computation time for recommendations on large

datasets, and is therefore a better option in such cases.

Framework

Property

Mahout LensKit MyMediaLite Spark’s MLlib

Machine learning

framework
X X

Dedicated

recommendation

framework

 X X

Platform-independent X X X X

Provides neighbourhood-

based collaborative

filtering

X X X

Provides model-based

collaborative filtering
X X X X

Support for

implementing other

recommendation

algorithms

X X X

Support for evaluation X X X X

Supports distribution in

cluster
X X

Table 6: Comparison of properties of the recommendation frameworks

This comparison has given an overview over the recommendation frameworks and their

properties. We will use this as a basis for choosing one or more frameworks to be used for

implementing our recommendation algorithms.

57

4.2 Algorithms

We will here introduce four candidate algorithms for Forzify’s recommendation system, and

present their implementations. The first three, item-based collaborative filtering, model-based

collaborative filtering and content-based filtering, are chosen based on the conclusion that

they were the best choices for Forzify, which we made in Section 3.5. In addition, we will

implement a non-personalized algorithm that recommends items based on items’ overall

popularity. Such a popularity algorithm is good as a baseline to compare the personalized

algorithms against, but can also be used successfully for recommending items in cold start

situations (Ekstrand, Riedl, and Konstan 2011). Therefore, we have two algorithms that,

according to the literature, should give high accuracy for new users and two algorithms that

should give high accuracy for old users.

As described in Section 3.3, Forzify has only unary data which are mostly implicitly gathered.

Therefore, the algorithms we choose must support unary and implicit data, either given as

binary values or arbitrary positive values. This means that rating prediction algorithms, based

on negative and positive ratings, cannot be used. Instead we must use a top-n approach to the

recommendation problem, as described in Section 2.1, where we want to recommend the n

best items for a user.

As none of the frameworks contain all of these algorithms with support for unary and implicit

data, we choose not to stick to one single framework. For the item-based algorithm we choose

to use LensKit for our implementation, which offer an item-based k-nearest neighbour variant

effective in implicit feedback situations. For the model-based algorithm, we choose Spark’s

alternating least square variant for implicit feedback. This algorithm handles the data type in

Forzify well and because of Spark’s possibility for distribution, it also scales well.

For the content-based algorithm, we choose to use a content-based implementation built in

LensKit (Lin 2013). LensKit has no built-in content-based algorithm, but this content-based

implementation uses LensKit’s data structures and classes, and is publicly available at

GitHub. This implementation is originally made for explicit feedback, but we will adjust it to

better handle implicit feedback. Our baseline algorithm will not be implemented in any

framework. It is a very simple algorithm, only using the popularity of the items, so we find it

more convenient to make it from scratch. All of the code in our implementations will be

written in Java, and are available on GitHub from the link provided in Appendix A.

58

Figure 12 shows the hierarchy of our implemented recommendation algorithms. We have

made one interface Recommender, and one class for each of the algorithms, which all

implement the Recommender-interface. Recommender has four methods: initialize(), update(),

recommend() and close(). They are used to initialize the recommender, train the recommender

based on a rating file, recommend an array of item-ids for one user, and to shut down the

recommender, respectively. By using a single interface, we ensure that all of the

recommendation algorithms have the same functionality, which becomes convenient when we

are going to evaluate the different recommendation algorithms.

Figure 12: Design of the implementation of our recommendation algortihms

We have decided not to recommend items already rated, to avoid that users get recommended

items they already have interacted with. This is the default in LensKit, but in the other two

algorithms we must exclude the items already rated by the users. We do this by storing each

user’s rated items in a hash-map and then removing the recommendations of items that are

contained in the user’s hash-map. The reason for using hash-maps is to ensure that the check

whether items already are rated can be done in constant time.

4.2.1 Item-based collaborative filtering

As explained in Section 2.2.1 the goal for item-based collaborative filtering is to recommend

similar items to the ones the user has interacted with in the past. We will here use an k-nearest

neighbour approach for this, which is the standard method for item-based collaborative

filtering (Aggarwal 2016, 40). In short, a k-nearest neighbours algorithm for item-based

collaborative filtering involves finding the most similar items, also called neighbours, for each

59

item, and then predict each item’s relevance for a user by looking at this item’s k most similar

items that the user also has interacted with. The predicted score for this item is then based on

the user’s rating on these k items and the similarities of these to the given item.

We will implement this approach using the framework Lenskit (version 2.1.1), which is built

as a generic recommender system. The parts of the recommender can easily be specified to

get the recommender approach of choice with the implementation details as needed. The

LenskitConfiguration class is used to configure the recommendation system by binding

together different classes, e.g., binding the ItemScorer to UserUserItemScorer if one plans to

make a user-based recommender, and setting values for different classes, e.g., setting the

NeighborhoodSize to a certain value. Because we are making an item-based algorithm, we set

the ItemScorer to ItemItemScorer to specify that we want to score items using an item-based

collaborative filtering approach, i.e. using similarities between items and not users. In

addition, the input file, which contains the user data, must be bound to the EventDAO class, so

that data can be added to the model.

Item-based filtering consists of two key steps: (1) Computation of similarities between each

item pair and (2) the computation of a prediction score for each item based on the users’

history and the similarities between items (Deshpande and Karypis 2004). The first step then,

which is the training phase of this algorithm, is to compute the item-similarities. Several

similarity functions can be used for this, but the most commonly used are Pearson correlation

coefficient, cosine and adjusted cosine (Sarwar et al. 2001). The two cosine measures are the

most used, as they produce the most accurate results (Jannach et al. 2010, 19). Therefore, we

decide to use one of those.

To compute the similarities between two items, we must look at the ratings for the two items.

Recall the rating matrix presented in Section 2.1, where each column represents an item and

each row represents a user. The similarity between two items are computed based on the

similarities in the ratings in the two corresponding columns. Only ratings from users who

have rated both items are taken into account. Figure 13 illustrates item-similarity computation

for two items 𝑖 and 𝑗. The column representing an item is called the rating vector of that item.

We thereby use a vector space model to find similar items, where each item is represented by

its rating vector in an n-dimensional space. Each dimension in the space is corresponding to

the rating of a user.

60

Figure 13: Similarity computation between items in a rating matrix (Sarwar et al. 2001, 289)

The cosine similarity between two items a and b with rating vectors 𝑎⃗ and 𝑏⃗⃗ are defined as

follows:

sim(𝑎, 𝑏) = 𝑐𝑜𝑠(𝑎⃗, 𝑏⃗⃗) =

𝑎⃗ ∙ 𝑏⃗⃗

| 𝑎⃗⃗⃗ ⃗ | ∗ |𝑏⃗⃗|

(8)

The symbol ∙ means the dot-product of the two vectors, while | 𝑎⃗⃗⃗ ⃗ | means the Euclidean length

of a vector, which is defined as the square root of the sum of the squared values of the vector.

The reason for dividing by the Euclidean lengths is to normalize the vectors, to avoid that

more rated items get higher similarity scores. One drawback with this measure, is that the

rating behaviours of different users are not taken into account in the computation (Sarwar et

al. 2001). For example, one user can rate the majority of items with five out of five stars,

while another user only rate 10 percent of her rated items with 5 stars, which gives a bias to

the similarities. The same can be the case for view counts: some users watch in average more

items than others. To avoid this bias, the adjusted cosine can be used, where the user’s

average rating is subtracted from each corresponding user rating:

sim(𝑎, 𝑏) =

∑ (𝑟𝑢,𝑎 − 𝑟𝑢̅)(𝑟𝑢,𝑏 − 𝑟𝑢̅)𝑢 ∈𝑈

√∑ (𝑟𝑢,𝑎 − 𝑟𝑢̅)
2

𝑢 ∈ 𝑈 √∑ (𝑟𝑢,𝑏 − 𝑟𝑢̅)2
𝑢 ∈ 𝑈

(9)

61

Here, U is the set of all users who have rated both items a and b, 𝑟𝑢,𝑎 is the rating of user u for

item a and 𝑟𝑢̅ is the average rating of user u. This can easily be done by subtracting each

rating in the rating database with the user’s average rating value before calculating the

similarity with a standard cosine measure. When we have explicit ratings on a numerical

scale, this similarity measure is the best choice. On the other hand, when we have unary

implicit feedback, where 1 indicates that the user has visited an item, the measure cannot be

used. This is because the average rating for all users will be 1, and consequently all rating

values will be 0 when we subtract the average rating. Cosine will therefore be used as the

similarity measure in this item-based algorithm, as we want it to support unary implicit

feedback. In Lenskit, this is configurated by binding VectorSimilarity to

CosineVectorSimilarity.

After the similarities are computed, the next step is to predict a score for each item. When the

ratings are given as numerical ratings, a prediction of user u’s rating for item a can be

calculated as a weighted average based on the user’s ratings and the items’ similarities, in the

following way:

𝑝𝑟𝑒𝑑(𝑢, 𝑎) =

∑ 𝑠𝑖𝑚(𝑎, 𝑏) ∗ 𝑟𝑢,𝑏𝑏 ∈ 𝑆

∑ 𝑠𝑖𝑚(𝑎, 𝑏)𝑏 ∈ 𝑆

 (10)

Here, S denotes the set of the k most similar items to the target item a, which also are rated by

user u, and 𝑟𝑢,𝑏 is the rating of user u for item b. This works well with explicit ratings on a

scale, but does not work well with implicit and unary data. If the data are binary unary data

where each rating ru,b have value 1, the equation will always be equal to 1. Also, when there

are implicit ratings with arbitrary values, as play counts or number of buys, this prediction

works poorly. This is because low values, as 1, will be regarded as a negative preference,

while they actually indicate some preference for the item. An option then is to add 0-ratings

for all the items that are not rated by a user, as the user has shown interest in the implicitly

rated items, and not for the others (Aggarwal 2016, 12). However, this will give expensive

computations as we for each user must add ratings for each of the items, and use all of them in

the computation of similarities and prediction values. This is probably the reason why the

addition of 0-ratings is not supported in the positive-only feedback versions of item-based

collaborative filtering in both LensKit and MyMediaLite. In these cases, we can instead

compute pseudo-predictions 𝑝𝑢,𝑎 by summing the similarity scores of the k most similar items

62

in the user’s item interaction history Iu (Ekstrand, Riedl, and Konstan 2011). This can be done

as follows:

 𝑝𝑢,𝑎 = ∑ 𝑠𝑖𝑚(𝑎, 𝑏)

𝑏∈ 𝐼𝑢

 (11)

For our item-based algorithm, we will use this as the prediction scorer, which we specify in

LensKit by binding NeighborhoodScorer to SimilaritySumNeighborhoodScorer. Next, we

must specify the number of similar items, or neighbours, to use. Normally will 20 to 30

neighbours be sufficient (Ekstrand 2014). We therefore set this value to 20, which also is the

default in LensKit. This is done by binding NeighborhoodSize to 20.

An important decision is how to store the rating similarities. One possibility is to make an

item-item similarity matrix where similarities between each item-pair is stored, but this is

ineffective both in memory usage and computation time. This will require 𝑂(𝑛2) space, and

to find the most similar items to an item, it will be necessary to iterate over all n items.

Instead, a better way is to store the m most similar items for each item together with their

similarities in decreasing order of similarity. The number of similar items stored for each

item, is called the model size, and can be specified in LensKit by binding ModelSize to an

integer. We will set the ModelSize to 100 in Lenskit, to reduce problems related to scalability.

The risk of setting the model size too small is that it will not be possible to find k rated

neighbour items for some of the items, which can result in reduced accuracy. To avoid too

small neighbourhoods, we set MinNeighbours to 2 in LensKit, so that items with less than two

neighbour items rated by a given user get no prediction score for that user. The code used for

configuring the item-based recommender is presented in Code snippet 1.

Now that the configuration of the recommender is finished, we have to build the

recommender, as shown in Code snippet 2. Because we want top-n recommendation and not

rating prediction, we make an ItemRecommender-object. This object can be used to give

recommendations by calling its recommend()-method with parameters for number of

recommendations to give and the user to produce recommendations for. This returns an

ordered list of ScoredId-objects, one for each recommended item, with the item-id and the

predicted value for the user.

63

LenskitConfiguration config;

config = new LenskitConfiguration();

config.bind(ItemScorer.class).to(ItemItemScorer.class);

config.bind(VectorSimilarity.class).

 to(CosineVectorSimilarity.class);
config.bind(NeighborhoodSize.class).to(20);
config.set(MinNeighbors.class).to(2);

config.set(ModelSize.class).to(100);

config.bind(NeighborhoodScorer.class).

 to(SimilaritySumNeighborhoodScorer.class);

String path = "training_data.csv";

String delimiter = ",";

config.bind(EventDAO.class).

 to(new SimpleFileRatingDAO(new File(path), delimiter));

Code snippet 1: Configuration of item-based recommender in LensKit

LenskitRecommender rec = LenskitRecommender.build(config);

ItemRecommender irec = rec.getItemRecommender();

List<ScoredId> recommendations = irec.recommend(id, num);

Code snippet 2: Creating the recommender and getting recommendations in LensKit

4.2.2 Model-based collaborative filtering

We will implement a matrix factorization algorithm as our model-based collaborative filtering

algorithm because matrix factorization models are considered the state-of-the-art in

recommendation systems (Aggarwal 2016, 91). To implement a matrix factorization

algorithm for collaborative filtering, we will use the framework Spark MLlib (version 2.1.0).

This library includes two forms of matrix factorization: one alternating least squares for

explicit feedback and one for implicit feedback, based on an algorithm introduced by Hu,

Koren, and Volinsky (2008). We will use the latter in our implementation because of the data

sources in Forzify, which are positive-only feedback that contain no explicit scale ratings and

mostly are implicitly gathered.

The idea in matrix factorization for recommendation systems is to discover a set of latent

factors from the user ratings and characterize each user and item by vectors of these factors

(Jannach et al. 2010, 27). While user-based collaborative filtering looks for correlations

between users and item-based collaborative filtering looks for correlations between items,

64

matrix factorization methods utilize both correlations among users and items to predict item

preferences, which is one of the reasons why matrix factorization is the state-of-the-art in

collaborative filtering (Aggarwal 2016, 91).

An 𝑚 x 𝑛 ratings matrix R of m users and n items, can be factorized into an m × k matrix U

and an n × k matrix V, where k is the number of latent factors and the symbol T means matrix

transposition, in the following way:

 𝑅 ≈ 𝑈𝑉𝑇 (12)

Each row of U is a user-factor vector 𝑥𝑢, with k entries representing the preference of user u

towards the k latent factors, while each row of V is an item-factor vector 𝑦𝑖 that represents the

association of item i to the k latent factors. The prediction 𝑟̂𝑢,𝑖 of a user’s preference for an

item, is the dot product of the two associated vectors, given as:

 𝑟̂𝑢,𝑖 = 𝑥𝑢
𝑇𝑦𝑖 (13)

Figure 14 illustrates a simple matrix factorization of user ratings, where R is a rating matrix

for 7 users and 6 movies, and the ratings are integers ranging from -1 to 1, where larger

numbers indicate larger preferences. The first three movies are historical movies and the next

three are romantic movies. We can infer from the ratings that users 1-3 like historical movies

and are neutral to romantic movies, that users 5-7 like romantic movies and dislikes historic

movies, while user 4 likes both genres. Matrix R, can then be factorized into two matrices U

and V with rank 2, i.e., two latent factors. The matrix U shows the seven users’ preferences

for the two latent factors, while matrix V shows the six movies’ associations to the two latent

factors. Next, we can imagine the movie “Gladiator” being added to matrix V, with value 1

for “History” and 0 for “Romance”, and we want to predict user 1’s rating for this movie. The

prediction can then be computed by taking the dot-product of the factor-vectors for the given

item and user, which contain the values (1,0) and (1,0), and consequently give the prediction

value 1, which means the user is predicted to like the item. In this example, we knew which

genres the movies were in, but when a recommendation system uses matrix factorization, it

does not know these facts. Instead, the system must find the latent factors to use from the

rating patterns.

65

Figure 14: Example of matrix factorization for a rating matrix (Aggarwal 2016, 95)

Several approaches can be used to solve the matrix factorization problem. The approach

proposed by Hu, Koren, and Volinsky (2008), which we will implement, uses an alternating

least square solution. This algorithm scales linearly for both users and items, and are well-

suited for parallelization. However, it scales cubic with the number of latent factors, but this

number is independent of the input data and typically is very small, usually between 10 and

200.

In explicit feedback situations, the factor vectors can be learnt by minimizing the regularized

squared errors on the set of known ratings (Koren, Bell, and Volinsky 2009). This can be

done the following way:

min
𝑥∗,𝑦∗

∑ (𝑟𝑢,𝑖 − 𝑥𝑢
𝑇𝑦𝑖)

2

𝑟𝑢,𝑖 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛

+ 𝜆 (∑‖𝑥𝑢‖2

𝑢

+ ∑‖𝑦𝑖‖
2

𝑖

)
(14)

Here, the (𝑟𝑢,𝑖 − 𝑥𝑢
𝑇𝑦𝑖)

2
 is the squared difference between the known ratings and the

predicted ratings based on the dot product of the factor vectors 𝑥𝑢 and 𝑦𝑖. The function

thereby tries to find the user factor vectors and item factor vectors that best reduce the RMSE,

which is described in Section 2.5.3. The part 𝜆(∑ ‖𝑥𝑢‖2
𝑢 + ∑ ‖𝑦𝑖‖

2
𝑖) is the regularization

term used to avoid overfitting, which we explained in Section 2.5.1. Larger values of 𝜆 will

increase the regularization.

66

Hu, Koren, and Volinsky (2008) adjusts this model to better handle implicit data. This is done

by taking the different confidence values for a prediction into account and optimizing for all

user-item pairs, not only those that corresponds to observed data. The following cost function

is used as basis for computation of the factors in this approach:

min
𝑥∗,𝑦∗

∑ 𝑐𝑢,𝑖(𝑝𝑢,𝑖 − 𝑥𝑢
𝑇𝑦𝑖)

2

𝑢,𝑖

+ 𝜆 (∑‖𝑥𝑢‖2

𝑢

+ ∑‖𝑦𝑖‖
2

𝑖

)
(15)

In this equation, 𝑝𝑢,𝑖 is a binary variable indicating the preference of a user u towards an item

i. It is set to 1 if user u has interacted with item 𝑖, i.e., rating 𝑟𝑢,𝑖 > 0, and otherwise is set to 0.

The variable 𝑐𝑢,𝑖 is a confidence value which measures the confidence in prediction 𝑝𝑢,𝑖, and

is computed as follows:

 𝑐𝑢,𝑖 = 1 + 𝛼𝑟𝑢,𝑖 (16)

This gives a certain confidence level for every user-item pair, which increases if a user has

interacted several times with an item. The 𝛼 determines how much the confidence should

increase when we have a higher rating value. Confidence values are included in the model

because of the problems of distinguishing positive from negative feedback in implicit

feedback datasets.

A problem of the cost function in Equation (15), is that the computation must be done for

each user-item pair, which easily can become a bottleneck. By differentiation, Hu, Koren, and

Volinsky (2008) therefore find an analytic expression for 𝑥𝑢 and one for 𝑦𝑖 which each

minimizes the cost function in Equation (15). Then we can use an alternating least square

optimization process, alternating between re-computing the user-factors (𝑥𝑢) and item-factors

(𝑦𝑖) in an iterative process until convergence. A typical number of iterations is 10 and typical

number of factors are 10 to 200 (Hu, Koren, and Volinsky 2008). The idea of alternating least

squares is to hold one of the factor matrices constant, while the other one is computed, and

afterwards holding the second matrix constant, computing the first one. The computation of

each of the user factor vectors are independent of the other user factors vectors, making this

approach well-suited for parallelization (Aggarwal 2016, 105). The same is the case for the

computation of each of the item-factors.

67

When implementing this approach in Spark, we must first initialize the Spark configuration,

which is done in Code snippet 3. Here, we name the Spark application, and specify that the

program should be run locally on one machine. If we had wanted to use a cluster, we could

have entered the URL of the master node as a parameter to setMaster(), but in this thesis we

are only going to run the code on a single machine.

SparkConf conf = new SparkConf().

setAppName("Implicit ALS-recommender").

setMaster("local");

JavaSparkContext sc = new JavaSparkContext(conf);

Code snippet 3: Initialization of Spark configuration

The next step, as seen in Code snippet 4, is to read the user data into Rating-objects stored in

a Resilient Distributed Dataset (RDD), which is the parallelizable data structure used by

Spark. This is done by first calling the textFile()-function of the JavaSparkContext-object sc,

which makes an RDD of the strings in the input file. Afterwards, the map function returns an

RDD of Ratings, by passing each String-object from the dataset through a function where

each String is split by a delimiter into a user-id, item-id and rating, which subsequently are

sent as parameters to a new Rating-object.

String path = "training_data.csv";

JavaRDD<String> data = sc.textFile(path);

JavaRDD<Rating> ratings = data.map(

 new Function<String, Rating>() {

 @Override
 public Rating call(String line) {

 String[] parts = line.split(",");

 return new Rating(Integer.parseInt(parts[0]),

 Integer.parseInt(parts[1]),

 Integer.parseInt(parts[2]));

 }

 }

);

Code snippet 4: Reading user data into an RDD in Spark

The implicit feedback alternating least square matrix factorization can then easily be carried

out by calling trainImplicit(), which returns a MatrixFactorizationModel-object that can be

used to get recommendations. The code for this is presented in Code snippet 5. TrainImplcit()

needs a set of parameters to conduct the matrix factorization. First, we must give the ratings

and number of latent factors – which is the rank of the factorization. The number of iterations,

68

the regularization value 𝜆 and the 𝛼-value must also be set. In our implementation, we use the

default values in Spark’s MLlib for these parameters, which are 10 iterations, 10 latent

factors, 0.01 for the regularization value and 1.0 for the 𝛼-value, which ensures a reasonable

trade-off between accuracy and scalability (Apache Spark 2016).

When we call recommendProducts() on the trained model, an array of Rating-objects are

returned. The user-id for the user to get the recommendations for and the number of

recommendations must be given as parameter in this method. The returned ratings are sorted

based on predicted rating values in decreasing order.

MatrixFactorizationModel model = ALS.trainImplicit(
JavaRDD.toRDD(ratings), rank, iterations, lambda, alpha);

Rating[] ratings = model.recommendProducts(id, num);

Code snippet 5: Train an implicit model in Spark and get recommendations

4.2.3 Content-based filtering

Our content-based filtering algorithm relies on a vector space model, where both items and

users are represented by term vectors, which is a standard way of doing content-based

filtering (Lops, De Gemmis, and Semeraro 2011). The algorithm is implemented in the

framework LensKit (version 2.1.0), and is a continuation of the implementation of Lin (2013).

The main idea behind the algorithm is to represent each user and each item with a content

representation, and for each user find the most similar items based on similarities in the

representations of the user and the items.

The first step in content-based algorithms is to make a content representation for each item.

This is the training phase of this algorithm. Each item must be associated with a document,

which typically are content tags or terms gathered from the item itself, e.g., books, or from

descriptions of the item. Each item can then be represented by the terms, also called the

features, of the document. We store these features in a feature vector for each item, where

each feature gets a value based on its frequency in the document. This could simply be a

binary vector where each feature that appears in the document gets value 1, and otherwise

gets value 0, or a vector containing the raw frequencies of the features, but this can give

several biases. We will therefore use normalized term frequency-inverse document frequency

(TF-IDF) values for the features, which ensures that rare terms are not considered less

69

relevant than common terms, that multiple occurrences of a term is considered more relevant

than single occurrences and that long documents are not considered more relevant than

smaller documents (Lops, De Gemmis, and Semeraro 2011).

The TF-IDF value for term 𝑡𝑘 in document 𝑑𝑗 is computed by taking the product of the term

frequency (TF) and the inverse document frequency (IDF):

 𝑇𝐹𝐼𝐷𝐹 = 𝑇𝐹(𝑡𝑘, 𝑑𝑗) ∗ 𝐼𝐷𝐹(𝑡𝑘) (17)

𝑇𝐹(𝑡𝑘, 𝑑𝑗) is the frequency of term 𝑡𝑘 in document 𝑑𝑗, while the IDF for a term is computed

as follows, where 𝑁 is the number of documents, and 𝑛𝑘 is the number of documents which

contain term 𝑡𝑘:

𝐼𝐷𝐹(𝑡𝑘) = log

𝑁

𝑛𝑘
 (18)

The computation of IDF values ensures that rare terms overall in the document collection get

a higher score than more common terms.

Next, we normalize the TF-IDF values in each feature vector, by dividing each TF-IDF value

by the Euclidean length of the feature vector, to ensure that the lengths of the documents do

not affect the similarity. This is done as following, where 𝑛𝑘,𝑗 is the normalized TF-IDF value

for term k in document j, and √∑ 𝑇𝐹𝐼𝐷𝐹
|𝑇|
𝑠=1 (𝑡𝑠, 𝑑𝑗)2 is the euclidean length of the feature

vector:

𝑛𝑘,𝑗 =

𝑇𝐹𝐼𝐷𝐹(𝑡𝑘, 𝑑𝑗)

√∑ 𝑇𝐹𝐼𝐷𝐹
|𝑇|
𝑠=1 (𝑡𝑠, 𝑑𝑗)2

 (19)

Because we want to find items that are similar to the user’s preferences in content, we must

make a feature vector for each user. After each item is represented with a feature vector, a

feature vector is made for each user based on which items the user has interacted with. This

could be done by making a feature vector with the sum of all of the feature vectors a user has

rated. However, we want the tags of highly rated items to count more than the tags of items

rated with low ratings by the user. Therefore, we weight each TF-IDF value for the features in

a rated item by a user u as following, where 𝑤𝑘,𝑗,𝑢 is the weighted TF-IDF value for term k in

70

document j for user u, 𝑛𝑘,𝑗 is the normalized TF-IDF value for term k in document j, and 𝑟𝑢,𝑗

is the rating of user u for document j:

 𝑤𝑘,𝑗,𝑢 = 𝑛𝑘,𝑗 ∗ (1 + log (𝑟𝑢,𝑗 + 1))
(20)

The reason for multiplying with (1 + log(𝑟𝑢,𝑗 + 1)) and not the user’s rating of the document,

is because we want the recommendation system to work for implicit data, where larger ratings

indicate larger preferences, but the differences in ratings do not precisely show differences in

the user’s preferences. For example, an implicit rating, like a play count, of 4 will not

necessarily mean the user likes the item twice as good as another item with rating 2, which is

the case for explicit ratings. Therefore, we want all tags of rated items to count, but the tags of

higher rated items to count a little more, which is achieved by this weighting. We add 1 to the

rating in log (𝑟𝑢,𝑗 + 1) because some of the datasets presented in Section 2.5.4 contains 0-

ratings for implicit data, and the log of 0 is undefined.

After this weighting is done, we can make a feature vector for each user by summing all the

weighted feature vectors of the items the user has rated, the following way, where 𝑎⃗ is the

feature vector of user u, 𝑅𝑢 is the set of rated items by user u, and 𝑡𝑖,𝑢⃗⃗ ⃗⃗ ⃗⃗ is the feature vector for

item 𝑖 weighted for the user u based on his rating for the item:

 𝑎⃗ = ∑ 𝑡𝑖,𝑢⃗⃗ ⃗⃗ ⃗⃗

𝑖 ∈𝑅𝑢

 (21)

Now, we can use a vector space model to find items similar to the users, where each item and

user is represented by its feature vector in an n-dimensional space. Each dimension in the

space corresponds to a term. The next step is to calculate the similarities between users and

items, which means we need a similarity function. The cosine measure is the most commonly

used similarity function and it is well suited for the text domain (Aggarwal 2016, 151). We

will therefore use this measure, as we did in the item-based approach in Section 4.2.1, to

compute similarities. The similarity between user a and item b is then computed by the cosine

of the two feature vectors 𝑎⃗ = (𝑎1 … 𝑎𝑑) and 𝑏⃗⃗ = (𝑏1 … 𝑏𝑑), where the values for the i’th

word are given as 𝑎𝑖 and 𝑏𝑖 . Feature vector 𝑏⃗⃗ for an item, contains the normalized TF-IDF

values as computed in Equation (19), and not the weighted values that were used to compute

the user’s feature vector. The equation for cosine was given in Equation (8), but it will be

repeated here to simplify the reading:

71

sim(𝑎, 𝑏) = 𝑐𝑜𝑠(𝑎⃗, 𝑏⃗⃗) =

𝑎⃗ ∙ 𝑏⃗⃗

| 𝑎⃗⃗⃗ ⃗ | ∗ |𝑏⃗⃗|

(8)

After the similarities between a user and all items are computed, we can recommend the n

items with highest similarity to this user. This algorithm scales linearly in number of users,

items and features, as we for each user must iterate over all features for each item to compute

the similarities between the users and the items.

As this algorithm is implemented with LensKit, the algorithm is configured in a similar way

to how the item-based collaborative filtering algorithm was configured, which was presented

in Section 4.2.1. Again, we use the LenskitConfiguration to bind together the components we

want to use. The ItemSimilarity is bound to TFIDFItemScorer to specify that we want to find

similar items for a user in terms of their TF-IDF values. In addition, we have to set the ratings

file, tag file and title file, so that the feature vectors can be updated with the right values. To

train the recommender and produce recommendations, the exactly same procedure is used as

for the item-based implementation, as shown in Code snippet 2.

4.2.4 Popularity baseline

The last algorithm we will implement, is a non-personalized baseline algorithm. This type of

algorithm does not depend on the individual user’s ratings. It can therefore be used to

recommend items for new users and is useful as a baseline that the personalized algorithms

can be compared to (Ekstrand, Riedl, and Konstan 2011). We will use the popularity of the

items as basis for our baseline algorithm. The baseline score 𝑏𝑖 for item 𝑖 will be calculated by

counting the number of ratings for item 𝑖 for the whole set of users 𝑈. This is done as follows:

 𝑏𝑖 = ∑ 𝑝𝑢,𝑖

𝑢 ∈ 𝑈

 (22)

Where 𝑝𝑢,𝑖 is defined as follows:

𝑝𝑢,𝑖 {

 1 𝑟𝑢,𝑖 > 0

 0 𝑟𝑢,𝑖 = 0
 (23)

Here, 𝑟𝑢,𝑖 is the rating of user u for item i, and a rating value of 0 indicates that there is no

rating for this user-item pair. In situations where the user data are explicit ratings on a scale, a

72

better baseline can be to use the average rating of an item, because we then get both positive

and negative ratings for the items. However, as we want the baseline to work for implicit

unary data where no negative ratings are collected, it is better to use the number of ratings for

each item to measure the items’ popularity. For example, one video played by 1000 users will

be more popular than a second video played by 5 users, even though the second video has a

higher average number of plays.

In our implementation, we represent users, items, and predicted relevance of an item with

User, Item and Prediction classes, respectively. Item only contains a parameter for the item id,

while User contains a parameter for user id and a hash map of Item-objects the user has rated.

Prediction contain an Item-object and a frequency for how many users who have rated the

item. All Prediction-objects are stored in a hash map, predictions, in the

BaselineRecommender class. To train the recommender, a Prediction-object is added for each

item, and for each rating of an item, the frequency in the Prediction-object associated to that

item is increased. In the end, all Prediction-objects are sorted in a list, with descending order

of frequencies, so that the items with highest frequencies are found first in the list. To

recommend the best n items, the item ids belonging to the first n Prediction-objects in the list

can be recommended.

4.3 Summary

In this chapter, the focus has been on implementation of recommendation system algorithms

suited for Forzify. We started by looking at some of the most commonly used

recommendation frameworks: Mahout, LensKit, MyMediaLite and Spark’s MLlib. These

have both some similarities and some differences. LensKit and MyMediaLite are dedicated

recommendation frameworks, while Spark and Mahout are machine learning frameworks

with support for distribution.

We implemented the following algorithms: item-based collaborative filtering, model-based

collaborative filtering, content-based filtering and a non-personalized baseline. The three first

algorithms were chosen based on the discussion of approaches suited for Forzify in Section

3.5, while the last was chosen because it is good to compare the other algorithms against and

can give good recommendations for new users. All the algorithms had to support unary

implicit data, as Forzify has no mechanism to detect users’ dislikes of items. Because none of

73

the reviewed frameworks supports all these algorithms for this kind of data, we decided not to

stick to only one framework. The item-based and the content-based algorithm was

implemented in LensKit, the model-based in Spark, while the popularity baseline algorithm

was implemented from scratch. The item-based algorithm uses a k-nearest neighbours

approach, where similar items are computed by cosine. The content-based algorithm also uses

cosine to find similarities, but in this algorithm, the similarities are computed between users

and items. The model-based algorithm uses an alternating least square approach for matrix

factorization, and the baseline algorithm bases its recommendations on the items’ overall

popularity.

We now have implemented four candidate algorithms for Forzify, but we do not know how

well they work on real data. In the next chapter, we want to test these algorithms on different

datasets to see which have the best scalability and accuracy, and if the performances differ

from domain to domain.

74

5 Evaluation

In this chapter, we will evaluate the algorithms presented in Section 4.2. We will present the

design of the evaluation, which includes the datasets, methodology, and metrics that will be

used. Then, there will be a presentation and discussion of the results of the evaluation, and

finally, there will be a discussion concerning the research questions Q2 and Q3, which were

specified in Section 1.2.

5.1 Experimental design

The aim of this evaluation is to investigate how accurate the algorithms we have implemented

are for top-n recommendation both for new users and users with more item interaction

history. As stated in the problem statement in Section 1.2, we will evaluate the

recommendation algorithms on different datasets, and not on Forzify’s own dataset, because

Forzify has limited amount of existing data. We want to find out which of the algorithms that

gives best accuracy across the datasets, and to investigate if the accuracy is consistent across

the datasets. If one algorithm performs better for all the datasets, this algorithm will most

probably be the best option also in Forzify’s case, but if the algorithms vary in the

performances on the datasets, it will be more difficult to choose the best approach.

Additionally, we want to investigate the scalability of the algorithms, as a recommendation

system must give its recommendations to users in real-time and must be able to handle large

amounts of data.

In this section, we will first present the experimental setting and metrics that will be used in

the evaluation. There will be a part about the datasets we will use, where we first compare the

features of Forzify’s dataset to the other presented datasets, in order to find the best suited

datasets for our evaluation. Next, there will be a description of how we will treat the data and

we will present the characteristics of the sampled datasets. Then, we will describe how the

evaluation is implemented.

5.1.1 Experimental setting and metrics

The experimental setting used for this evaluation, will be offline evaluation, which was

described in Section 2.5.1. This setting is well-suited for measuring accuracy and scalability,

75

and is more time- and cost-efficient than user studies. Online evaluation was not an option

because the version of Forzify, made for all clubs of a division, which we are making the

recommendation system for, are not yet released. Online evaluation is not a good option for

testing new algorithms either, because they can introduce risks when the algorithms are not

effective or contain errors. Therefore, offline evaluation is the best option for our evaluation,

which also is the most common method used in recommendation system research (Jannach et

al. 2010, 175).

Offline evaluations use pre-collected datasets of users’ ratings of items. The datasets we will

use, will be presented in Section 5.1.2. An important decision when measuring accuracy in an

offline evaluation, is how the dataset should be divided into separate training and test sets,

which only are used for either training or testing of the recommendation system. If a

parameter tuning of the model is required, there is also necessary to make a separate tuning

set. This set can be used for training after the tuning, but cannot be used for testing, as it can

lead to overfitting (Aggarwal 2016, 236). Figure 15 shows a typical example of a partitioning

of a dataset, where half of the ratings are placed in the training set, a quarter of the ratings are

placed in the validation set, and the last quarter are used as test set. This is a common division

of ratings, but if the dataset is large, the test and validation sets can be reduced to a smaller

proportion of the ratings (Aggarwal 2016, 236). This was the case in the Netflix Prize, which

had 100 million ratings, as shown in Figure 16.

Figure 15: Typical partitioning of ratings for recommendation evaluation (Aggarwal 2016, 237).

76

Figure 16: Netflix Prize partitioning of ratings (Aggarwal 2016, 237)

To avoid bias from the users in the test set, N-fold cross validation will be used as selection

technique in the evaluation. This is a stratified random selection method often used in

recommendation system research (Jannach et al. 2010, 177). In this technique, the users are

randomly assigned to N different user partitions of size
1

𝑁
. Each of these partitions is then

selected for testing once, while the remaining partitions are used for the training of the model.

This means the testing are done N times, and the results are consequently averaged from the

results of all N repetitions. We will use 5-fold cross validation, which means we divide all the

users in 5 partitions of equal sizes. For each fold or repetition, one of the partitions are used

for testing and the others are used for training, and this is repeated 5 times, so that each user is

used once for testing and four times for model training. Our partitioning of users and use of

folds are illustrated in Figure 17.

Figure 17: The 5-fold cross validation method used in our evaluation

77

Because all of the presented recommendation algorithms, except for the baseline algorithm,

base their recommendations on users’ previous history, it is necessary to include some of the

test users’ ratings in the dataset used for training. There are two methods commonly used for

this: given-N and all-but-N (Jannach et al. 2010). The given-N method assigns N random

ratings to the training set for each evaluated user, and assigns the rest of the ratings to the test

set. All-but-N, on the other hand, assigns N random ratings for the evaluated user to the test

set, while all the others of the user’s ratings are assigned to the training set. These methods

have different advantages and can therefore be used for different purposes. Given-N has the

advantage that we get the same background information for each of the tested users, while all-

but-N ensures equal conditions when using classification metrics (Jannach et al. 2010), such

as top-n metrics, where the top n recommendations are classified as relevant or not. Another

strength of all-but-N, which is desirable when evaluating the general accuracy of the

recommender, is that we get different number of ratings as background information for the

different users, which best models a real recommendation system.

Because given-N and all-but-N have different purposes, we will use both methods, but to

investigate different problems. In the problem statement in section 1.2, we stated that we will

find out which recommendation approaches that give best accuracy for both new and old

users. Therefore, we will use given-N, with different sizes of N, to evaluate the accuracy for

users with limited item interaction history, and all-but-N to evaluate the general accuracy of

the recommendation system. All-but-N gives the best opportunity to examine how the top-n

accuracy differs across the datasets, as it gives equal numbers of correct recommendations for

each user. If we had used a rating prediction problem, the number of ratings in the test set

would not have been important, because the accuracy in such cases measure the variations in

predicted scores from the original ratings, not if the top n recommendations are considered

correct. But, as stated in Section 3.3, Forzify only contain unary data, which mean we must

treat the recommendation problem as a top-n recommendation problem, and consequently use

top-n metrics.

We will measure the general accuracy by using all-but-10, i.e., for each test user we will hide

10 ratings in the test set. These items are considered relevant, and the rest of the ratings are

used as training data. The choice of 10 is made of various reasons. Forzify presents its

recommendation in lists of 10 items, and we will therefore evaluate the recommendation

algorithms with a recommendation list size of 10. By using all-but-10, it will then be possible

78

to make a perfect recommendation list, by recommending all the 10 relevant items. As we

will come back to in Section 5.1.2, we will only choose users with 20 to 200 ratings, to ensure

equal conditions for the different datasets in the accuracy measurement. By choosing all-but-

10, we ensure all users have at least 10 given ratings, and mostly 190. For the evaluation of

accuracy of recommendations for new users, we will use given-2, given-5 and given-8,

because we then can see how the accuracy changes when more information about the user is

known.

In Section 2.5.3, we presented top-n measures for recommendation systems. We will use

MAP as the main metric in the evaluation of the accuracy of the algorithms. MAP is

commonly used in research on recommendation systems which use unary data and implicit

feedback, and it was used as the metric in the most famous recommendation system challenge

for top-n recommendations: The Million Song Dataset Challenge, as we presented in Section

2.1. The strength of this measure is that it both takes into account the number and positions of

the correct recommendations among the top n recommendations, not only the position of the

first correct recommendation (as ARHR), the number of users who get at least one correct

recommendation (as HR), the proportion of correct recommendations in the recommendation

list (as precision) or the proportion of the correct items that are recommended (as recall). To

get reliable data about accuracy, we will include HR, ARHR and precision, to ensure that the

results are not biased by the metric. The reason for including precision and not recall, is that

we mean precision gives a better measure for top-n recommendations, as it considers the

number of recommendations in the list, not the total number of possible correct

recommendations. We could have included both, but we expect them to give much the same

scores in our case. This is because all-but-10 gives 10 relevant items, and the recommendation

list size will, as we come back to later, mainly be set to 10. Precision and recall are, as stated

in Section 2.5.3, found by dividing the number of correct recommendations on the

recommendation list size or the number of relevant items in total, for precision and recall

respectively.

All the items that a user has interacted with, will be regarded as relevant for that user because

we want to simulate implicit feedback recommendations, similarly to The Million Song

Dataset Challenge. This is because Forzify mostly gathers implicit feedback, this kind of data

is easiest to collect, and all datasets can be transformed to implicit feedback datasets, which

means it makes it easier to compare accuracy results across datasets. As Forzify presents the

79

recommendations in a set of 10 items, we will measure the MAP for the 10 best

recommendations for each evaluated user, i.e., we have a top-10 recommendation problem,

where we try to predict which items a user will interact with. In addition, we will include

results for recommendation list sizes of 20 when we evaluate the general accuracy, to see how

this affects the accuracy.

To measure the scalability of the recommendation algorithms, we will for each dataset and for

each recommendation algorithm, measure the average time used for training the recommender

and the average time used for producing recommendations to a user. In addition, we will test

the training time and time used for making recommendations for three different subsets, with

varying sizes, of the MovieLens dataset, to show how the recommendation algorithms scale

up to larger ratings sizes. Our experimental setting is summarized in Table 7, and more details

about the datasets will be presented in the next section.

Dependent

variable

Technique Variation Dataset Measures

General

accuracy

5-fold cross

validation, all-

but-10

10/20

recommendations

Datasets from

different domains,

using original /

binarized ratings

MAP, ARHR,

HR, precision

Accuracy for

new users

5-fold cross

validation, given-

2/5/8

10

recommendations

Datasets from

different domains,

using binarized

ratings

MAP, ARHR,

HR, precision

Scalability 5-fold cross

validation, all-

but-10

Training

recommender /

predicting

recommendations

Datasets from

different domains

Average time

used

Scalability Use whole dataset

as training data,

produce

recommendations

for 100 users,

repeat all 5 times

Training

recommender /

predicting

recommendations

Subsets of one

dataset in 3 varying

sizes

Average time

used

Table 7: Summary of our experimental design

80

5.1.2 Datasets

To decide which datasets that are best suited for our evaluation, we will compare Forzify’s

data to the datasets presented in Section 2.5.4. Further, there will be a description of how we

will make the selected datasets ready for evaluation, and we will present the properties of

these datasets.

Selection of datasets

In Section 2.5.4, we presented 5 datasets from different domains that are commonly used for

recommendation system evaluation, namely Book-Crossing, MovieLens, Amazon, Million

Song and Jester. These vary not only in domain features, but also in inherent features and

sample features. In this section, we will compare Forziy’s data to the other datasets when it

comes to these features, so the datasets that are best suited for the evaluation can be selected.

We want to use the datasets that are most similar to Forzify, even though the item types

recommended in each dataset naturally differ from the one in Forzify.

When it comes to domain features, Forzify has both resemblances and differences to the other

presented datasets. The domain features of Forzify are shown in Table 8, and the domain

features of the other datasets are summarized in Table 3. The context is, as in the other

datasets, a web setting, but the content type is different from the others. Forzify recommends

sports videos, while each of the other datasets contains data about one of the following:

books, songs, movies, jokes and e-commerce products. Forzify’s content type can be seen as

most similar to MovieLens’ content, i.e., movies. Both Forzify and MovieLens recommend

videos, but on the other hand, the videos differ in content and duration, as most movies are

not about sport and are 90 to 120 minutes long, while sports videos typically last for a few

minutes. In this perspective, the items are more similar to the ones in Million Song, because a

song usually is a few minutes long.

Forzify has low costs for both false negatives and for false positives, because

recommendations of low quality or missing recommendations of relevant items do not

introduce any risks to the users, as can be the case in other domains. On the other hand,

successful recommendations can give a high potential benefit for the users and the owners of

the system, as it simplifies the browsing and information filtering process. This is similar to

81

all datasets except for Amazon, which has higher costs for false negatives, and Jester, which

have smaller potential benefits of recommendations, as the item catalogue is very small.

Content Context Cost false

negatives

Cost false

positives

Benefit

Sports videos Web Low Low High

Table 8: Domain features of Forzify’s data

The inherent features of Forzify are summarized in Table 9, while these features for the other

datasets are summarized in Table 4. Forzify has both explicit and implicit data, similar to

Book-Crossing. However, there is unary data only, in the form of presence of user actions and

play counts. The scale of ratings is therefore most similar to Million Song, where only

number of plays are recorded. However, all of the datasets can be used because explicit user

data can be transformed to unary data. This can for example be done by substituting all

ratings with 1-values - indicating an item interaction, substituting high ratings with 1-values

and removing the other ratings - indicating likes, or by treating the explicit ratings as arbitrary

unary ratings, where all ratings indicate preference, but higher values indicate larger

preference, as in playcounts. This can be done because explicit data are richer data than

implicit data, and it is not possible to transform the data the other way, i.e., from implicit to

explicit.

Like all of the other datasets, Forzify has only one dimension of ratings, because the ratings

are not related to special qualities or characteristics of the videos, as video quality or sound

quality. There is not collected any demographic information, but each item has associated

tags, which is also the case in MovieLens, Million Song and Amazon. In Book-Crossing and

Jester, on the other hand, publisher information and the text of the jokes are collected

respectively as content data.

Explicit or

implicit

Scale Dimensions Demographic

data

Content

Both Presence of user

actions and play

counts

1 No Tags

Table 9: Inherent features of Forzify’s data

82

Forzify has today only gathered data from the three individual club versions of Forzify, which

are not representative for the new versions that will be released for Eliteserien and

Allsvenskan for the 2017-season. We will therefore discuss the sample features of Forzify in

terms of how these are expected to be for the new version, where all clubs in a league are

included. These will be compared to the sample features of the other datasets, which were

summarized in Table 5.

Several hundred thousand persons watch Eliteserien each match day, either live at the stadium

or on TV (Sponsor Insight 2016). All of these are potential users of the new Forzify version

for Eliteserien. If only a small percentage of these starts to use Forzify, the application will

get several thousand users. Consequently, the number of users will be more similar to

MovieLens, Book-Crossing and Jester, which have between 73 000 and 279 000 users, than to

Amazon and Million Song, which have 1 M and 21 M users, respectively.

Because both explicit and implicit data are gathered, and videos typically are short, several

ratings can be expected from each user. It will probably be more ratings per user than in

Book-Crossing and Amazon, as it is more time-consuming to read a book than to watch a

sports video, and users typically do not buy as much items online as they watch online videos.

Ratings per user will therefore be more similar to Jester, MovieLens and Million Song.

However, users will only be expected to interact with a small fraction of the items. In both

Tippeligaen and Allsvenskan, there are 8 matches each match day, and there are 30 rounds in

one season. For each match, typically 30-50 videos are added, which means it most likely will

be uploaded around 10 000 videos for each league in a season. Forzify’s dataset will therefore

be most similar to MovieLens, Million Song and Book-Crossing in number of items and

percentage of items rated per user, as Jester and Amazon have an extremely small and large

number of items, respectively.

Summarized, Forzify has both similarities and differences to all of the other datasets. We

choose to use MovieLens, Book-Crossing and Million Song as datasets for this evaluation,

because they have the highest similarities to Forzify in sample features, as number of items

and items rated per user, and they are most similar to Forzify in domain features, although the

type of content varies in all of them. The inherent features of these three datasets are all

suitable for Forzify’s case, as they all contain content data and have ratings that can be

transformed to unary data, like the data in Forzify. Jester and Amazon could both have been

used also, but we rather want to go into the depth of the results for a few datasets, than to look

83

at the results for all of the datasets. The main reason for not choosing these two datasets, are

the number of items and the consequential density of ratings. Jester has an extremely dense

dataset, where most users have rated nearly all of the items, while Amazon has an extremely

sparse dataset, where most users only have rated an extremely small fraction of the items.

Sampled datasets

Here, we will describe how we make the datasets ready for the evaluation, and present the

characteristics of the sampled datasets. We will sample one subset of 6000 random users with

20 to 200 ratings for each of the datasets. This is because we want to make the evaluation

setting as similar as possible for all of the datasets, so the number of users or previous ratings

do not affect the recommendation accuracy. This is important to get reliable data about the

differences in accuracy across the datasets. In addition, carrying out simulation of

recommendations for up to a million of users can take unreasonable amounts of time when we

are using 5-fold cross-validation and running repeated tests. The choice of 6000 users are

made because previous studies have shown that this number of users is sufficiently large and

lets the simulation being done in reasonable time (Im and Hars 2007).

The datasets differ in rating scales and type of ratings. MovieLens contains only explicit

feedback, Million Song Dataset contains only implicit unary feedback, while Book-Crossing

contains both explicit and implicit feedback. Because Forzify only contain unary ratings and

because we want to compare the accuracy across the datasets, we will transform the data to

implicit unary ratings. By doing this, the type of ratings will not affect the accuracy in the

different datasets. We will do this by substituting all rating values by 1-values, so that each

rating indicates an equal implicit preference. In addition, we will run one test with the

unmodified ratings, to examine if we get higher accuracy with the original data. Then, the

ratings will be treated as arbitrary value unary ratings, where a 1-value indicates a small

preference and larger values indicates larger preferences, so that the ratings are as similar as

possible to the play counts collected in Forzify. This can give valuable information about

which ratings that are best to use in the new recommendation system for Forzify.

The characteristics of the users, items and ratings for the sampled datasets are presented in

Table 10, where we can see that the number of items varies to a great extent across the

datasets. In the Million Song Dataset, there are more than ten times as many items as in

MovieLens, while Book-Crossing nearly has twice as many items as Million Song. We can

84

expect this to give a higher accuracy for the recommendations in MovieLens, because the

recommendation system solves a top-n recommendation problem, where the items are

classified as relevant or not for a user based on the previous user-item interactions, and the

accuracy is calculated on the basis of how many of the recommended items that are classified

as relevant and their positions in the list. For example, it is easier to get a high number of

relevant recommendations when recommending 10 items out of 100 items, compared to

recommending 10 items out of 10 000 items when the number of relevant items remains the

same.

 # Users # Items # Ratings Avg. ratings

per user

Avg. ratings

per item

Book-

Crossing

6000 150 771 336 051 56.00 2.23

Million Song

Dataset

6000 87 957 337 867 56.30 3.84

MovieLens 6000 7 359 407 571 67.92 55.38

Table 10: Statistics about ratings, items and users for the sampled datasets

We sampled users with number of ratings in the range of 20 to 200, however we can see a

difference in the number of ratings and average ratings between MovieLens and the two other

sampled datasets. Book-Crossing and Million Song have nearly the same number of ratings,

while MovieLens has a larger number. The high number of ratings and low numbers of items,

gives a much higher average of ratings per item in MovieLens than in the two other datasets.

Book-Crossing and Million Song can therefore give valuable information about the accuracy

for items with low number of ratings.

As can be seen in Table 11, there are large differences in the content information in the

sampled datasets. MovieLens has a default set of tags, while the tagging in Million Song are

user specified. The tags in Book-Crossing is taken from the publisher information. This

results in a much larger tag set for both Book-Crossing and Million Song. To reduce the

number of tags in these two datasets, we have removed all tags with a frequency of 1 and in

the Million Song Dataset, we have removed tags for items where the tag values are lower than

30 for the item-tag combination (the tags have values from 0-100 indicating the relation

between item and tag, where larger values indicates stronger association). In addition, we

85

have removed stop-words, which are commonly used words that give little information, as

“a”, “the” and “on” (Jannach et al. 2010, 56). The numbers in Table 11, show the properties

of the datasets after these removals. MovieLens has only 19 different tags, while Million Song

Dataset has 52 291 tags and Book-Crossing has a total of 47 921 different tags. Book-

Crossing has the highest number of tags associated to items, both in total and in average per

item, but Million Song has also a considerably larger number of tags than MovieLens.

 # Distinct tags # <Item, tag>-

pairs

Items with

tags

Avg. tags per

item

Book-Crossing 47 921 872 117 124 626 7.00

Million Song

Dataset

52 291 365 191 70 095 5.21

MovieLens 19 15 468 7 359 2.10

Table 11: Statistics about the content information for the sampled datasets

For the evaluation of scalability, we will also test the algorithms on three different subsets of

MovieLens, one with 100 000 ratings, one with 1 M ratings and one with 5 M ratings. The

properties of these subsets are shown in Table 12.

 MovieLens 100 K MovieLens 1 M MovieLens 5 M

Users 730 7 316 35 029

Items 6 373 9 626 10 527

Tags 19 19 20

<Item,tag>-pairs 13 678 19 740 21 291

Table 12: Properties of the MovieLens subsets used for scalability testing

5.1.3 Implementation of an evaluation framework

All of the presented frameworks in Section 4.1 have built-in support for evaluating

recommendation algorithms. However, none of them support evaluation of external

algorithms. We have made one algorithm from scratch and used two recommendation

frameworks for our implementations, so it was not possible to evaluate all the algorithms in

one framework. We decided to make our own tests in Java because it is important to use

86

exactly the same evaluation procedure for each algorithm in order to get reliable data. The

program code used to prepare and conduct the evaluation can be obtained from GitHub, see

link in Appendix A. The splitting of ratings into training and test sets is done in the

DataSplitter-class, while the evaluation itself is carried out in the Evaluator-class.

5.2 Results

In this section, we will present and discuss the results of the evaluation. First, we will look at

the results necessary to examine how accurate the recommendation algorithms are in general

for the different datasets. This is done with an all-but-10-approach. Next, we will look at the

results of accuracy measures with given-2, given-5 and given-8 for the different datasets, to

investigate how accurate the recommendations are for users with limited item interaction

history. Further, we will look at the time used for training the recommendation model and for

producing the recommendations, which tells us about the scalability of the different

algorithms.

All tests were performed on the same computer, at a Linux-based operating system with 2.30

GHz (Intel Core i5-6200U) and 6GB memory. The algorithms will use parameters as

specified in Section 4.2. To get the best possible accuracy for these algorithms, we could have

done parameter tuning on every dataset, where different parameters are tested for the

algorithms on a validation set. However, as we want to test the suitability of the same

algorithms across datasets, we have chosen not to do this.

5.2.1 General accuracy

Here, we will present and discuss the results important for investigating the general accuracy

of the recommendation algorithms. By general accuracy, we mean the accuracy for users with

some item interaction history, as opposed to the accuracy for new users, which will be the

focus of the next section. The results are presented for the three selected datasets, i.e.,

MovieLens, Million Song and Book-Crossing, and can therefore give us valuable information

about how the accuracy differs across different domains. All the results in this section are

obtained by using an all-but-10 approach, which means 10 ratings are assigned to the test set

and between 10 and 190 ratings are assigned to the training set for each user, as we only

included users with between 20 and 200 ratings. As we solve a top-n recommendation

87

problem, the accuracy is determined by how many of the items placed in the test set for a user

we are able to recommend in the recommendation list for that user, and their position in the

recommendation list. These items are considered relevant for that user.

First, we will present the accuracy obtained by using binarized data and the accuracy obtained

by using the original arbitrary value ratings, to see which difference this makes for the

accuracy. In Figures 18-20, the MAP, which was described in Section 2.5.3, is shown for both

original ratings and binarized ratings, for all of the three datasets. The number of

recommendations used are 10. Higher MAP-values indicate higher accuracy. Overall, there

are small differences between the accuracy when comparing the values obtained using

original ratings with the ones obtained using binarized ratings. However, in three situations,

the accuracy is considerably higher for binarized ratings than for the original ratings. This is

the case two times for the item-based algorithm, in Million Song and Book-Crossing, and one

time for the model-based, in the Book-Crossing. This implies that binary ratings give at least

as good accuracy as arbitrary valued ratings for top-n recommendations for the three datasets.

The rest of the results in the evaluation is gathered from binary ratings, as was stated and

justified in Section 5.1.2.

Figure 18: MAP for our algorithms performed on MovieLens

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Model-based

Item-based

Content-based

Baseline

MAP scores

MovieLens - MAP - 10 recommendations

Original ratings Binarized ratings

88

Figure 19: MAP for our algorithms performed on Million Song Dataset

Figure 20: MAP for our algorithms performed on Book-Crossing

To get an idea of what the MAP scores mean, a MAP value of 1.0 indicates that all users

either are recommended only relevant items or are recommended all the relevant items (if the

number of relevant items is less than the number of items in the recommendation list). A

MAP value of 0, on the other hand, means that none of the relevant items are recommended.

However, it is not easy to see what each individual MAP score tells about how good a

recommendation algorithm is, as the metric both takes into account the number of correct

recommendations and the index of the correct recommendations in the recommendations list.

There is no universal defined range of good values, as the values depend on number of hidden

items in the test set and items in total. Therefore, to get an indication of how good an

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Model-based

Item-based

Content-based

Baseline

MAP scores

Million Song Dataset - MAP - 10 recommendations

Original ratings Binarized ratings

0 0.002 0.004 0.006 0.008 0.01 0.012

Model-based

Item-based

Content-based

Baseline

MAP scores

Book-Crossing - MAP - 10 recommendations

Original ratings Binarized ratings

89

algorithm performs, one can compare the algorithm with a popularity baseline algorithm

(Ekstrand, Riedl, and Konstan 2011), which commonly is done in evaluation of

recommendation algorithms (Deshpande and Karypis 2004, Rendle et al. 2009, Hu, Koren,

and Volinsky 2008). A successful recommendation algorithm gives a certain improvement in

accuracy from what is achieved by the baseline. By using this comparison, we can see in

Figures 18-20 that the content-based algorithm performs weak in the MovieLens and Million

Song dataset, while it gives a good accuracy in Book-Crossing. In all of the binarized

datasets, the item-based and model-based give a considerably better accuracy than the

baseline, which mean they have a good performance in all of these datasets.

In Figures 21 and 22, we can see how the MAP varies for the recommendation algorithms and

for the datasets. In the first of the two, the results are gathered with a recommendation list size

of 10, while in the second, the number of recommendations used for testing is 20. First of all,

it is clearly visible that the accuracy follow the same pattern, regardless of the

recommendation size. The only notable difference between the results for the different

recommendation sizes, is that the accuracy is slightly higher for 20 recommendations than for

10.

There are large differences between the accuracy across the three domains. The algorithm

with largest accuracy in the MovieLens dataset, have more than three times as high accuracy

as the best scoring algorithm for Million Song, and around 14 times higher accuracy than the

best scoring algorithm for Book-Crossing. There are also differences across the datasets in

how evenly the algorithms perform in each domain. In Book-Crossing, the algorithms

perform evenly, while in Million Song, there are larger differences between the different

algorithms. The largest differences inside a domain, however, are found in MovieLens.

There is also some consistency in the accuracy across the domains. The two collaborative

filtering algorithms perform best in all three domains. Especially in MovieLens, but also in

Million Song, they perform clearly superior to the two other algorithms. The model-based

algorithm is the one with the best accuracy in MovieLens, while the item-based is the best-

performing one in Million Song. In Book-Crossing, their accuracy is quite even, although the

item-based performs slightly better. Therefore, these two algorithms seem to be the most

accurate approaches across the domains when using MAP as accuracy measure, but it is not

easy to decide which of them that is the most accurate.

90

Figure 21: MAP for our algorithms for the different datasets, with recommendation list size = 10

Figure 22: MAP for our algorithms for the different datasets, with recommendation list size = 20

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

MovieLens Million Song Dataset Book-Crossing

M
A

P
 s

co
re

s
MAP across datasets - 10 recommendations

Model-based Item-based Content-based Baseline

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

MovieLens Million Song Dataset Book-Crossing

M
A

P
 s

co
re

s

MAP across datasets - 20 recommendations - all-but-10

Model-based Item-based Content-based Baseline

91

For both MovieLens and Million Song, the content-based algorithm scores very low, while

the baseline algorithm’s accuracy lies between the ones of the two collaborative filtering

algorithms and the content based algorithm. In the Book-Crossing dataset, the accuracy of the

algorithms is more even, although the two collaborative filtering algorithms score best, once

again. In this domain, the content-based algorithm performs better than the baseline

algorithm, unlike the results in the two other domains. The content-based algorithm performs

better in Book-Crossing than it does for the two other datasets. All the other algorithms tend

to perform better in Million Song, and even better in MovieLens.

To avoid possible biases from the MAP measure, we will also present the results of ARHR,

HR and precision, which were explained in Section 2.5.3, for the algorithms on the different

datasets. This enhances the validity of the data for accuracy. A value of 1.0 for HR means that

all users get at least one correct recommendation, a value of 1.0 on ARHR means every user

get a correct recommendation on the first index in the recommendation list, and a 1.0 score in

precision means all of the recommended items are correct, i.e., the items are in the users’ test

sets. A 0-score, on the other hand, means for all of the metrics that none of the users get any

correct recommendations. Again, as with MAP, the best indication of an algorithm’s

successfulness is found by comparing its accuracy with the baseline accuracy.

In Figures 23-28, the results for these measures are presented for all combinations of

algorithms and datasets that are presented, for both 10 and 20 recommendations. Also for

these measures, there are little differences in the accuracy when the recommendation sizes

differ. The patterns are the same for the algorithms, regardless if it is 10 or 20

recommendations, on all of the datasets. The only notable differences, are that HR and ARHR

tend to increase with more recommendations, and the precision tends to decrease when more

recommendations are given. This is a consequence of how the different metrics measure the

accuracy. Precision is found by dividing the number of relevant recommendations to the

number of recommended items, and therefore tends to decrease its score when more

recommendations are given. HR and ARHR sum up values based on the number of hits, i.e.,

the first relevant recommendation for a user, and the hits’ positions (only in ARHR), and

ignores items outside the recommendation list. Therefore, it is as expected that the accuracy

increases for these two measures when more recommendations are given.

For the MovieLens dataset, the metrics in Figures 23 and 24 show the same tendency as for

the MAP, as shown in Figures 21 and 22, with the collaborative filtering approaches as the

92

most accurate. However, the difference in accuracy seems to be smaller between item-based

and model-based for HR, ARHR and precision than for MAP. Figures 25 and 26 show that all

of HR, ARHR and precision give the same accuracy pattern as for MAP when it comes to the

Million Song dataset: The item-based is the most accurate, and model-based the second most

accurate.

In the Book-Crossing dataset, there are larger differences between the results of the different

metrics, as can be seen in Figures 27 and 28. Content-based scores best for HR, with model-

based second, and item-based and baseline last. The same tendency is present for the

precision. This is different from the MAP for the same dataset, shown in Figures 21 and 22,

where the order from best to worst was: item-based, model-based, content-based and baseline.

The results of ARHR, on the other hand, show more similarity to MAP, with model-based and

item-based performing best. A possible reason for this, is that these two metrics take into

account the positions of the correct recommendations in the recommendation list when

computing the scores. Overall, this implies that the algorithms have more similar accuracy in

this domain. It is not clear which algorithm that performs best: this depends on the metric

used. However, item-based, model-based and content-based seem to give the best overall

scores among the metrics.

Figure 23: Various accuracy measures for algorithms

on MovieLens, tested with 10 recommendations

Figure 24: Various accuracy measures for algorithms

on MovieLens, tested with 20 recommendations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ARHR HR Precision

Sc
o

re
s

MovieLens - 10
recommendations

Model-based Item-based

Content-based Baseline

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ARHR HR Precision

Sc
o

re
s

MovieLens - 20
recommendations

Model-based Item-based

Content-based Baseline

93

Figure 25: Various accuracy measures for algorithms

on Million Song, tested with 10 recommendations

Figure 26: Various accuracy measures for algorithms

on Million Song, tested with 20 recommendations

Figure 27: Various accuracy measures for algorithms

on Book-Crossing; tested with 10 recommendations

Figure 28: Various accuracy measures for algorithms

on Book-Crossing, tested with 20 recommendations

If we take all metrics into account and look at which algorithms that are most accurate overall

in the datasets, it is clear that the two collaborative filtering approaches, i.e., model-based and

item-based, give the highest accuracy. In MovieLens and Million Song, they perform

0

0.1

0.2

0.3

0.4

0.5

0.6

ARHR HR Precision

Sc
o

re
s

Million Song - 10
recommendations

Model-based Item-based

Content-based Baseline

0

0.1

0.2

0.3

0.4

0.5

0.6

ARHR HR Precision

Sc
o

re
s

Million Song - 20
recommendations

Model-based Item-based

Content-based Baseline

0

0.05

0.1

0.15

0.2

0.25

0.3

ARHR HR Precision

Sc
o

re
s

Book-Crossing - 10
recommendations

Model-based Item-based

Content-based Baseline

0

0.05

0.1

0.15

0.2

0.25

0.3

ARHR HR Precision

Sc
o

re
s

Book-Crossing - 20
recommendations

Model-based Item-based

Content-based Baseline

94

considerably better than the two other algorithms, while they in Book-Crossing perform best

together with the content-based algorithm. When it comes to which of them that is the most

accurate, it is quite even. Model-based is the best performing algorithm in MovieLens, item-

based is the best-performing in Million Song, while they perform similarly in Book-Crossing.

Content-based is performing as good as the collaborative filtering algorithms in Book-

Crossing, but shows very weak accuracy for the two other domains, which can be caused by

differences in the tags for the different datasets or other domain differences. The baseline is

not giving the best accuracy in any of the domains, but gives some accuracy for all three

domains, which is understandable as it always recommends the most popular content, not

personalizing its recommendations.

To summarize, the two collaborative filtering algorithms – item-based and model-based – are

the most accurate algorithms, but it is not easy to decide which of them that gives the best

accuracy all in all. Therefore, using one of these algorithms, will be a good option to give the

long-time users recommendations with high accuracy. This is as expected since collaborative

filtering algorithms are known as the most mature and most implemented recommendation

approaches, and are known to give recommendations of high accuracy, as stated in Section

2.2.1.

5.2.2 Accuracy for new users

Here, we will present and discuss the results necessary to find out which of the

recommendation algorithms that give best accuracy for new users, i.e., users with little item

interaction-history. This is simulated by using a given-n approach. We will use given-2,

given-5 and given-8, which means we will use either 2, 5 or 8 ratings for each test user as

training data, while the rest of the test users’ ratings will be used as test data. All of the results

are obtained by using a recommendation list size of 10 and using binarized ratings. The

metrics HR, ARHR and precision will not be included in this section, as we found that they

overall give the same results as MAP for the given-n approach.

In Figure 29, the MAP for our algorithms are shown for the different datasets with a given-2

approach. For MovieLens, the best accuracy is obtained by the model-based algorithm, with

baseline and item-based not far behind. In both Million Song and Book-Crossing, the model-

based and the baseline algorithm give the highest values of MAP. Content-based is the least

95

performing in both MovieLens and Million Song, but has higher accuracy than item-based in

Book-Crossing. Model-based therefore seems to give the best results for users with 2 known

ratings, but also the baseline algorithm performs good at this task.

Figure 29: MAP for our algorithms on datasets with a given-2 approach

In Figure 30, we can see how the accuracy of the algorithms differs for the datasets when 5

ratings are known for each test user. Again, as in given-2, the model-based algorithm

performs best for MovieLens, but this time with item-based right behind. Item-based also

performs well in Million Song, together with model-based and baseline, but performs poorest

of the algorithms in Book-Crossing. In this dataset, the model-based and the baseline perform

best, right in front of content-based filtering. Model-based and baseline therefore seem to be

the most accurate algorithms across the datasets for the given-5 approach, as also was the case

for given-2, but now with item-based performing good for two of the datasets.

The accuracy of the algorithms with the given-8 approach, shown in Figure 31, shows much

of the same tendencies as the accuracy for given-5, as seen in Figure 30. In short, the two

collaborative filtering algorithms give best accuracy for MovieLens and Million Song, while

model-based and baseline give best accuracy for Book-Crossing. The most notable difference

between given-5 and given-8 is that the item-based is the best performing algorithm for the

Million Song with given-8, when it in given-5 performed similar to the model-based and

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

MovieLens Million Song Book-Crossing

M
A

P
 s

co
re

s

MAP - given 2 - 10 recommendations

Model-based Item-based Content-based Baseline

96

baseline algorithm. Overall, the model-based seems to be most accurate for given-8. The

baseline performs quite good in all of the domains, while the item-based performs well in two

of the domains and weak in the last.

Figure 30: MAP for our algorithms on datasets with a given-5 approach

Figure 31: MAP for our algorithms on datasets with a given-8 approach

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

MovieLens Million Song Book-Crossing

M
A

P
 s

co
re

s

MAP - given-5 - 10 recommendations

Model-based Item-based Content-based Baseline

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

MovieLens Million Song Book-Crossing

M
A

P
 s

co
re

s

MAP - given-8 - 10 recommendations

Model-based Item-based Content-based Baseline

97

The results of accuracy for users with limited rating history show the overall same tendencies

as for the general accuracy, with two main differences: (1) the item-based algorithm does not

perform as good for new users as it does for old users when compared to the other algorithms,

and (2) the baseline performs better for new users. For both users with 2 and 5 ratings, the

model-based and the baseline give the best accuracy across the datasets. Therefore, these two

algorithms seem to be the best options in order to give high accuracy for new users.

This is as expected as the baseline does not need any previous ratings for the user the

recommendations are made for. It only needs to know which items that are most popular

among all the users, and can therefore recommend items to new users as accurate as to users

with more item interaction history. The model-based approach is also known to be better for

cold start situations than the item-based because it can reduce the rating matrix to a smaller

model and utilize both similarities among users and items, as stated in Section 2.2.1.

Therefore, the fact that this algorithm performed well was not a surprise either.

The most surprising with the results of the accuracy for new users, however, was the weak

performance of the content-based filtering. The content-based filtering is in recommendation

system literature often mentioned as the best approach for cold start situations for both new

users and new items (Koren, Bell, and Volinsky 2009, Bari, Chaouchi, and Jung 2014, 36),

but this was absolutely not the case in our experiments. This algorithm performed clearly

poorest of the algorithms for new users in two of the datasets, and third best, out of four, in

the Book-Crossing dataset. One reason for this, may be that the datasets do not contain

enough content information for the content-based algorithm to work properly. For both

MovieLens and Million Song, genre tags were used as content information, while for Book-

Crossing, publisher information was used as content data. The accuracy in Book-Crossing

was better than in the two other datasets, which can indicate that this kind of content

information is better suited for content-based filtering. However, the differences may come

from differences in the domains; maybe this algorithm only is better suited for the book

domain than for the movie and song domain. One could also wonder if there were any errors

in the algorithm, causing the weak results, but when choosing the algorithms, we also tested

an alternative content-based filtering implementation, which used a k-nearest neighbours

approach – where similarities were computed between items based on their tags, and

predictions were computed based on the k most similar items to the ones the user has rated

before, and this gave even worse accuracy.

98

To give an overview of how the accuracy changes for different levels of known ratings,

Figures 32-34 show for each of the datasets how the MAP changes from given-2, 5 and 8.

“g2”, “g5” and “g8” in the figures mean given-2, 5 and 8 respectively. The accuracy for the

model-based and the item-based algorithm increase from given-2 to given-5 and increase

further to given-8 for all of the three datasets. The content-based, on the other hand, performs

on the same level when more items are given for MovieLens and Million Song, while it in

Book-Crossing has a positive change in accuracy from given-2 to given-8. In all three

datasets, the baseline algorithm has a small decrease in accuracy when more ratings are

known. This is probably due to the fact that when more ratings are given in the training set,

the number of items in the test set is reduced.

For MovieLens, the best accuracy for new users is obtained by model-based collaborative

filtering. When more ratings are given, the item-based algorithm’s accuracy increases and is

almost on the same level as the model-based. In both Million Song and Book-Crossing, the

model-based and the baseline algorithm perform best for new users. With some more ratings,

the item-based performs best in Million Song, while the model-based and baseline continues

to perform best in Book-Crossing.

Figure 32: MAP for MovieLens for different rating

splitting conditions

Figure 33: MAP for Million Song for different rating

splitting conditions

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

g2 g5 g8

M
A

P
 s

co
re

s

MAP - MovieLens

Model-based Item-based

Content-based Baseline

0

0.02

0.04

0.06

0.08

0.1

0.12

g2 g5 g8

M
A

P
 s

co
re

s

MAP - Million Song

Model-based Item-based

Content-based Baseline

99

Figure 34: MAP for Book-Crossing for different rating splitting conditions

These results show that when more ratings are given for each user, the accuracy evolves

different for the different algorithms in our experiments. Both item-based and model-based

perform better when the number of given ratings is increased from 2 to 8, but the increase is

clearly larger for the item-based algorithm. The baseline, on the other hand, shows no

improvements with more ratings, which is as expected as the recommendations are

independent of the user’s ratings. The content-based algorithm shows improvements with

more known ratings for the Book-Crossing dataset, but performs steadily in the two other

domains with more known ratings.

In our experiments, all algorithms show lower accuracy for all-but-10 than for given-8, even

though more ratings are given for all-but-10. The reason for this comes most probably from

how the accuracy is measured for top-n recommendations. In all-but-10, fewer items are

hidden and it becomes harder to recommend the hidden items. Therefore, we shall be careful

comparing the accuracy across the different number of known and hidden ratings. A better

measure for this, would be a rating prediction measure, as RMSE or MAE, which is not

affected by number of hidden ratings. Another limitation of our evaluation of algorithms’

accuracy for new users, is that we evaluated only three different levels of given-n. Ideally, we

would have measured the accuracy for more values of n. This would have given a more

complete picture of the change of accuracy when more user interaction data are available.

0

0.005

0.01

0.015

0.02

0.025

0.03

g2 g5 g8

M
A

P
 s

co
re

s

MAP - Book-Crossing

Model-based Item-based

Content-based Baseline

100

However, there is no reason to believe that this would change the clear tendencies in the

results.

To summarize this section, the best accuracy for new users is obtained by the model-based

and the baseline algorithm. The algorithms differ in how their accuracy changes with more

ratings.

5.2.3 Scalability

In this part, we will look at the scalability of the recommendation algorithms. We will use the

training time and prediction time of the algorithms to determine their scalability. Training

time is the time used for training the model, so that recommendations can be made, while the

prediction time is the average time used for producing a list of recommendations for one user.

We will first look at the training and prediction times for the three datasets used for testing of

accuracy in Sections 5.2.1 and 5.2.2, and afterwards, we will look at the same measures for

three subsets of MovieLens with different sizes.

In Figure 35, the training time for the presented algorithms are shown for the sampled subsets

of MovieLens, Million Song and Book-Crossing. There are large differences for the

algorithms in the time used for training the recommender. The baseline algorithm uses less

than 1 second for training in all three datasets, while the model-based uses around 10 seconds

for all three. The item-based varies more. It uses 13 seconds on MovieLens, 46 seconds on

Million Song and 69 seconds on Book-Crossing. The largest differences, however, are found

for the content-based algorithm. This algorithm uses from under 1 second on MovieLens to

around 600 seconds on the two other datasets.

Also in prediction time, there are large differences for the algorithms on the three datasets.

This can be seen in Figure 36. The results of the algorithms in prediction time show the same

tendency as for the training time. The baseline algorithm does again use the least amount of

time, from 0.0006 to 0.0039 milliseconds, while the model-based overall is the second fastest,

using around 50 milliseconds for all three datasets. The item-based varies from 17

milliseconds on MovieLens to between 200 and 300 milliseconds for Million Song and Book-

Crossing. Also, this time does the content-based algorithm vary the most, from around 5

milliseconds for MovieLens to 1778 milliseconds (1.778 seconds) for Million Song and 4497

milliseconds (4.497 seconds) for Book-Crossing.

101

Figure 35: Training time for our algorithms on the different datasets

Figure 36: Prediction time for our algorithms on the different datasets

0 100 200 300 400 500 600 700

Model-based

Item-based

Content-based

Baseline

Seconds used

Model-based Item-based Content-based Baseline

BX6K 11.62 69.16 624.15 0.39

MSD6K 10.82 45.88 549.73 0.48

ML6K 9.83 13.28 0.43 0.54

Training time

BX6K MSD6K ML6K

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Model-based

Item-based

Content-based

Baseline

Milliseconds used

Model-based Item-based Content-based Baseline

BX6K 54.76 272.16 4497.21 0.0006

MSD6K 47.53 201.50 1777.62 0.0027

ML6K 49.80 17.97 4.78 0.0039

Prediction time

BX6K MSD6K ML6K

102

In these results, we can see large differences both between the algorithms and between the

domains when it comes to training and prediction times. The most notable from the results, is

how much time the content-based algorithm uses for both training and prediction in Million

Song and Book-Crossing. This algorithm is several times slower on these datasets than the

algorithm that uses second most time. However, the content-based algorithm is among the

fastest in the MovieLens dataset, both for training and prediction. The reason for this is most

probably the number of tags in the datasets, which varies from 19 distinct ones in MovieLens

to around 50 000 ones both in Million Song and Book-Crossing. This algorithm’s

computation has a linear time complexity in number of items and tags, because each user and

item is represented by feature vectors, and similar items to a user are found by computing the

dot-product of the user’s feature vector and all items’ feature vectors, as mentioned in Section

4.2.3. However, when both number of items and tags get larger, as in Million Song and Book-

Crossing, this algorithm gets very time-consuming.

A possible solution to increase the efficiency of the content-based algorithm, is to use feature

selection, which means to keep only a subset of the tags (Jannach et al. 2010, 72). Then,

statistical techniques can be used to select the most informative words to keep, usually around

100. This does not only reduce the computation time needed for the content-based algorithm,

but also decreases overfitting, which was explained in Section 2.5.1. However, using this

strategy can remove important information describing items, and therefore reduce the number

of items that contain metadata and consequently decrease the number of possible items to

recommend.

The results also show that the baseline algorithm is the fastest algorithm for both training and

prediction in all of the datasets. This is as expected as it only counts items’ user interaction

frequencies to find out which items that are the most popular. The model-based algorithm

gives the second best results overall, performing better than the item-based in both Million

Song and Book-Crossing. However, it performs not as good as the item-based for MovieLens.

Item-based has a quadratic complexity in terms of items, as stated in Section 2.2.1, because it

for each item must compare the item to all other items to find similarities among items. The

model-based algorithm, on the other hand, has a linear time complexity in both number of

items and users, but scales cubic with number of latent factors, as stated in Section 4.2.2, but

the number of latent factors is usually a small number, set to 10 in our implementation. The

item-based algorithm’s quadratic complexity for number of items can explain why it performs

103

weakly for Million Song and Book-Crossing, which have the largest number of items, but

performs better on the MovieLens dataset, which has a smaller number of items. The model-

based algorithm’s cubic complexity in number of latent factors, does not make it the fastest

algorithm with smaller number of users and items, but its linear complexity in number of

items and users makes it perform more steadily across the datasets.

In Figure 37, the training times for the algorithms are shown for three subsets of MovieLens

of different sizes. The content-based and the baseline algorithm shows only very small

differences in the training time when the number of ratings increase. The model-based

algorithm and especially the item-based increase more in training time when the dataset

contains more ratings.

Figure 37: Training time used by our algorithms on different subsets of MovieLens

Figure 38 shows the prediction times of the algorithms on the three same subsets of

MovieLens. Again, baseline uses the least amount of time for producing recommendations.

The largest growth in prediction time is seen for the item-based algorithm, but also the

content-based algorithm shows some increase when the number of ratings increase. Model-

based, on the other hand, is the slowest on the smallest subset, but performs almost stable

over the three rating sizes.

0

50

100

150

200

250

300

100 K 1 M 5 M

Se
co

n
d

s

Number of ratings

MovieLens training times

Model-based Item-based Content-based Baseline

104

Figure 38: Prediction time used by our algorithms on different subsets of MovieLens

The results from the three different subsets of MovieLens, show that the baseline algorithm is

the fastest overall for training and prediction, showing little signs of increase in time-usage

when the number of ratings increases. Content-based scales well for training time, while

model-based and especially item-based show a large increase in time spent with more ratings.

The prediction time also increases fast along the number of ratings for the item-based

algorithm. The model-based, on the other hand, performs more steadily across the rating sizes

for this, while content-based shows a small increase. The largest difference between the

results for the three subsets of MovieLens and those from the three different domains, is that

the content-based performs much better in the three subsets of MovieLens, which most

probably is caused by the small number of tags in the MovieLens dataset.

Overall, taking all results into account, the baseline algorithm seems to be the most scalable

algorithm, both in training and prediction time, which is unsurprising as it only counts the

frequencies of the items. The model-based algorithm seems to give the second best

scalability. In the training time, it shows some increase, but in the prediction time it performs

steadily with more users and items, which is the most important to give users fast

recommendations. The training time can be done offline in the background, and are therefore

not as important as the prediction time as long as it is within a reasonable time frame. The

content-based algorithm scales rather good with the number of items and users, as long as the

0

20

40

60

80

100

120

100 K 1 M 5 M

M
Ill

is
ec

o
n

d
s

Number of ratings

MovieLens prediction times

Model-based Item-based Content-based Baseline

105

number of tags is kept to a small number. If the number of tags gets large, however, this

algorithm gets very slow. This algorithm performs steadily in training time when more ratings

are given, but shows a certain increase in prediction time with more ratings. Therefore, this

algorithm does not seem to be as good as the baseline and the model-based when it comes to

giving fast recommendations to a large user base. The item-based algorithm scales poor for

larger numbers of items both for training and prediction, and therefore seems to be the least

scalable of the implemented algorithms in terms of number of users and items.

All of the training and prediction times for the MovieLens subsets are in an acceptable time

frame for all of the algorithms. The highest training time for the largest subset, with 5 million

ratings, is just below 300 seconds, which is for the item-based algorithm. As the training can

be done offline and not in real-time for each user, this number is tolerable. The prediction

time, on the other hand, is more important for giving the users fast recommendations and a

good user experience. The highest prediction time for the 5 million ratings subset, is also

found for the item-based algorithm and are just over 100 milliseconds. This means all of the

algorithms can produce recommendations for such a number of ratings in a reasonable

amount of time, where the user does not need to wait for the recommendations to appear.

However, if the number of ratings or tags increase, both the item-based and content-based will

have problems with recommending items in a reasonable time frame, as they do not scale well

for number of items and tags, respectively.

To get even better data about the scalability of the algorithms, we could have tested the

algorithms with even larger datasets, and also with varying sizes of users, items and tags. This

has not been conducted because of time limits in the thesis, but can be interesting for further

research. However, our evaluation of the scalability, has given an overall picture of how our

algorithms scale, and given good indications of which algorithms that scale best and worst.

To summarize, the baseline and the model-based algorithm show the best scalability, while

the item-based seems to be the least scalable. The content-based can scale rather good if

feature selection is done or the number of tags are kept to a small number.

5.3 Discussion of cross-domain accuracy

In this section, we will discuss which differences and similarities that are found in the general

accuracy of our implemented algorithms across the datasets. We want to find out if there are

106

any consistencies in the accuracy across the domains. This is important for answering

research question Q2, and for the findings to be generalizable to Forzify’s case. If no

consistencies exist, we cannot generalize to Forzify’s case, but if the algorithms perform

consistent across the different domains, we get good indications of what can be the best

choice for Forzify.

It is clear in our results that the accuracy in the different domains differs to a large extent.

Overall, the algorithms perform much better in MovieLens than in Million Song, and they

perform clearly the poorest in Book-Crossing. The only exception here, is the content-based

algorithm which performs better in Book-Crossing than in the other datasets. There could be

various reasons for these differences. First of all, it could be domain differences that make the

algorithms work better or worse. For example, as Im and Hars (2007) point out, different

domains have varying preference heterogeneity, i.e., the tendency for peoples’ preferences to

overlap varies from domain to domain. This can make the algorithms perform better in one

domain than in another. The differences in preference heterogeneity of the sampled datasets is

visible in Table 10, where the characteristics of the sampled datasets are presented. For each

dataset, we randomly chose 6000 users which all have rated between 20 and 200 items, so the

average number of ratings per user are quite similar for the sampled datasets. The number of

different items rated in total, however, differ to a large extent in the sampled datasets: from

7 359 in MovieLens to 87 957 and 150 771 in Million Song and Book-Crossing respectively.

This shows there is larger preference homogeneity in MovieLens than in the two other

domains, which can be one reason for the higher accuracy in this domain. The differences in

the content-based algorithm’s results across domains may in addition be explained by

differences in the type of tags across the datasets.

The differences in accuracy can also be a result of the measures used. We used top-n

measures for measuring the accuracy because this type of measure is the only one that can be

used for unary ratings. This kind of measures is affected by the item catalogue sizes, in the

way that it is easier to recommend relevant items from a small item catalogue than from a

large one, when the number of relevant items to predict remains the same. Therefore, a better

measure for detecting domain differences in accuracy can be rating prediction metrics, such as

RMSE and MAE, where the number of items in the item catalogue does not affect the

accuracy. However, this was not an option in our case, as we were interested in measuring

107

accuracy across datasets with unary ratings, to get results from data as similar as possible to

the data gathered in Forzify.

Also, inside each domain, we found large differences in accuracy. The differences among the

algorithms were largest in the MovieLens dataset, while they also were considerable in the

Million Song dataset, even though not to the same extent. In Book-Crossing, the algorithms

performed much more evenly. This also points towards that the accuracy of the algorithms is

domain dependent which supports the research of Im and Hars (2007). On the other hand,

there are some clear tendencies in the accuracy of the algorithms that can be seen across the

datasets. The two collaborative filtering algorithms tend to perform better than the two other

algorithms for users in general. This tendency is strong in MovieLens and Million Song,

where these algorithms are superior to the others, but also in Book-Crossing, where these

algorithms perform best together with the content-based algorithm. This is consistent with

recommendation system literature stating that collaborative filtering gives better accuracy

than content-based filtering (Koren, Bell, and Volinsky 2009). This also indicate a cross-

domain consistency in accuracy, which is advantageous as we want to use these results to find

the algorithm that will be best for Forzify.

5.4 Discussion of best algorithms for Forzify

Here, we will discuss which algorithm or combination of algorithms that are best for Forzify

based on the general accuracy, the accuracy for new users and the scalability of the algorithms

for the different datasets. This will lay the fundament for answering research question Q3,

stated in Section 1.2. In Table 13, we summarize how the implemented algorithms performed

in our tests when it comes to scalability and accuracy, both in general and for new users.

When it comes to the general accuracy, the two collaborative filtering algorithms showed that

they overall are superior to the other algorithms across the three domains we tested in. This

does not necessarily mean that they will give the best accuracy for Forzify, but it is reason to

believe that they also will perform good in Forzify’s case, as the datasets used for testing have

several similarities to Forzify’s data and these algorithms perform better than the other

algorithms in two of the datasets and among the best in the third. This means they both

perform well and consistent across the datasets. Therefore, either of the item-based or the

108

model-based collaborative filtering algorithms will most probably be the best algorithm for

giving accurate recommendations for users with some interaction history on Forzify.

 Item-based Model-based Content-based Baseline

General

accuracy
+ + - -

Accuracy for

new users
 + - +

Scalability - +

Table 13: Summary of findings relevant for choosing recommendation approach. “+” indicates good

performance, “-“ indicates low performance, while no sign indicates medium performance

The model-based and the baseline algorithm gave the best accuracy for new users in our

evaluation, and also performed more consistent across the datasets than the other two

algorithms. The item-based algorithm needed more ratings to achieve the same accuracy,

while the content-based algorithm never was able to get the same level of accuracy.

Therefore, the best algorithms to use for new users of Forzify are the model-based or the

baseline algorithm. One option is then to use the item-based algorithm for old users, and the

baseline for new users. Another option is to use the model-based algorithm both for new and

old users, as it handles both situations well.

After looking at the general accuracy and the accuracy for new users, we are left with two

options. Therefore, we will look at the scalability of the two options, to decide which is the

best choice for Forzify. In the first option, the baseline is used for new users, while the item-

based is used for old users. From our evaluation, the baseline was the definitely most scalable

of the presented algorithms, while the item-based algorithm did not scale well for larger

number of items. In the second option, we stick only to the model-based algorithm. This

algorithm did not scale as good as the baseline, but seems to scale better than the item-based

algorithm. Therefore, from our evaluation, the best option for Forzify is to use the model-

based algorithm for both new and old users. This ensures that the recommendation system

scales well and at the same time can give good accuracy, both in general and for users with

limited item interaction history.

109

In Section 3.5, we discussed which of the approaches that were best for Forzify’s case

according to previous research and literature, and concluded it would be best with a

combination of approaches. Our conclusion based on our evaluation, however, tells the

opposite: The model-based seems to perform better than a combination of approaches, both in

terms of scalability and accuracy for new and old users. The main reason for this, is the low

accuracy of the content-based algorithm, which was expected to perform best for new users.

This algorithm only performed well in the Book-Crossing dataset. It is not easy to say why

this algorithm performs weaker than expected, but it can be differences in the tags across the

domains that makes this algorithm’s performance more domain dependent. Another possible

explanation is that this algorithm do not perform as well on top-N recommendation as for

rating prediction, which has been the recommendation problem studied most in

recommendation system research.

By using only the model-based approach, we do not utilize the content-based information that

are available in Forzify. One option to get advantage from this data, without using the

content-based approach that gave low accuracy, is to make different set of recommendations

that are grouped together based on one or more characteristics of the items, which is similar to

what Netflix does, as mentioned in Section 2.3.2. The user can then see recommendations in

different categories based on the tags that most often are present in the videos the user has

watched. In Forzify’s case, this can mean to make one set of recommendations based on the

team that has been most watched, one set for the player that are most watched and one set for

the overall best recommendations for the user. These set of recommendations can then easily

be explained by texts like “because of your interest in Tromsø IL”, “goals by Thomas Lehne

Olsen” and “top recommendations for you”.

Lastly, it is important to note that our selection of algorithm for Forzify is not guaranteed to

give good accuracy. When more data is gathered in Forzify, the algorithms must be tested

again on this data to show how they actually perform in Forzify’s case. However, as we

pointed out in Section 5.3, there are consistencies in which algorithms that perform best

across the domains in our results. Therefore, our evaluation has given a good indication of

which algorithm that will perform best until an evaluation on Forzify’s data can be carried

out.

110

5.5 Summary

In this chapter, we have evaluated the four candidate algorithms presented in Section 4.2. The

focus has been to investigate the accuracy of the algorithms, both for new and old users, and

to find out which algorithms that scale best for larger datasets. We chose to use an offline

evaluation, as this is a well-suited approach for measuring accuracy and scalability, and at the

same time is a time- and cost-effective approach. Because Forzify has limited existing data,

we had to test the algorithms on other datasets. Therefore, we wanted to find out if the

accuracy differs across different datasets. If they perform the same way in different domains,

it is reason to believe that they will give good accuracy also in Forzify’s case.

We compared all of the datasets presented in Section 2.5.4 to the data in Forzify, and found

the MovieLens, Million Song and Book-Crossing datasets to be the most similar to the data in

Forzify. These datasets were therefore chosen to be used for the evaluation. We sampled one

subset of 6000 random users, who each had rated between 20 and 200 items, for each of the

selected datasets to ensure equal conditions for the datasets when conducting the evaluation

and to make sure the evaluation could be done in a reasonable time frame. In addition, we

sampled three subsets of different sizes from the MovieLens dataset, in order to test how the

algorithms scale to different sized datasets.

Because Forzify only has unary data, the recommendation algorithms presented solves a top-n

recommendation problem. Therefore, we had to choose a top-n recommendation metric to

measure the accuracy. We selected MAP as the main measure as it both takes into account the

number of correct recommendations and their positions in the recommendation list. Also, we

chose to use HR, ARHR and precision to the enhance the validity of the data for accuracy.

The measures for scalability was chosen to be the training and prediction times of the

recommendation algorithms.

An important decision in offline evaluation, is how the datasets are split into training and test

sets. To avoid bias from the users assigned to the test set, the dataset splitting was conducted

with 5-fold-cross-validation, which means the evaluation is repeated 5 times, where all users

are used for testing once and for training four times. As we wanted to investigate the accuracy

both for new users and for old users, we decided to use two different techniques for splitting

the data of the test users: all-but-n and given-n. All-but-10 was chosen for testing the general

accuracy, because it gives equal number of correct recommendations for each user, and at the

111

same time varies the number of known ratings for the user, which best models the users of a

real recommendation system. To evaluate the accuracy for new users, we decided to use

given-2, 5 and 8, to see how well the algorithms work for three different levels of limited

user-history.

The evaluation gave us several valuable findings relevant for our research questions. There

were both similarities and differences in the accuracy for the recommendations algorithms

across the datasets. First of all, the accuracy varied to a large extent between the different

datasets, which can be caused by domain differences, such as preference heterogeneity, but

also the measures used, which are affected by the number of items in the datasets. Secondly,

there were some differences in the patterns across the datasets: In MovieLens and Million

Song, there were large differences between the algorithms, while in Book-Crossing, the

algorithms performed much more even. However, there was a clear tendency that the

algorithms performing well in one domain also do so in the other domains. Therefore, the

accuracy measured of the algorithms in the three datasets, gives valuable indications of what

will be the best choice of algorithms for Forzify.

For users with some item interaction history, the item-based and the model-based algorithm

gave the best accuracy overall in the datasets, while the baseline and model-based gave the

best accuracy for users with less item interaction history. When it comes to scalability, the

baseline seems to be the most scalable of the algorithms, both for training and prediction time.

The content-based algorithm does not scale well with large number of tags, but if feature

selection is used or the number of tags are kept to a small number, it scales better. The model-

based algorithm scales well for prediction time, while it shows a certain increase in training

time when the number of items increase. However, the poorest scalability is found for the

item-based algorithm which shows a large increase in both training and prediction times when

number of ratings increases. In the end of the chapter, we discussed which algorithm or

combination of algorithms that would be the best choice for Forzify. We concluded that the

best choice, based on our evaluation, is to use only the model-based algorithm. It ensures

good recommendations for both new and old users, and scales well for larger datasets.

To summarize our main findings, we list them here:

- Binarized ratings give at least as good results as arbitrary valued ratings.

112

- Using recommendation list sizes of 10 and 20 give small differences in accuracy, and

the same patterns are present in both.

- There is both similarities and differences in the algorithms’ accuracy across domains:

There is higher accuracy in some domains than others, the accuracy of the algorithms

is more even in some domains than others, and there is a tendency that the same

algorithms perform best across the datasets.

- MAP, precison, HR and ARHR give the same tendencies for the algorithms’ accuracy

in all of the datasets, except for the general accuracy in the Book-Crossing dataset. In

this dataset, it differs from metric to metric which algorithms that perform best.

- The accuracy of the algorithms evolves differently when more ratings are known. The

highest increase is found for the item-based algorithm. The model-based shows a

small increase, while the baseline does not show any increase with more ratings. The

content-based shows an increase in the Book-Crossing dataset, but performs steadily

in the two other datasets when more ratings are given.

- The two collaborative filtering algorithms give best accuracy for users in general.

- The model-based and baseline algorithm give best accuracy for new users.

- The baseline algorithm is the most scalable algorithm, while the model-based also

scales well. The content-based scales well if the number of tags is small, while the

item-based seems to be the least scalable of the algorithms.

113

6 Conclusion

In this chapter, we will present our conclusions by answering the research questions of the

thesis. Then, we will explicitly state the main contributions of the work and address possible

future research to further explore the main topics of the thesis.

6.1 Research questions

In the problem statement in Section 1.2, we formulated the following three research

questions:

- Q1: According to previous research and literature, which recommendation approaches

are best suited for the case of Forzify?

- Q2: Do the accuracy of recommendation system approaches differ across datasets

from different domains?

- Q3: Which recommendation approach or combination of approaches can give the most

accurate recommendations to both new and old users of Forzify, and at the same time

give high scalability?

We will here answer these questions based on the work that has been done in this thesis.

6.1.1 Q1: Approaches suited for Forzify according to literature

To answer research question Q1, we presented the main recommendation approaches and

compared them in strengths, weaknesses and in needed data. We presented the case of

Forzify, and discussed which of the approaches that best suit Forzify’s data and wanted

features. Forzify gathers data about users’ interaction with items, both explicitly and

implicitly. In addition, there is content information about the videos. Our review of

approaches showed that only the collaborative filtering and content-based filtering can be

used with these data sources. It was wanted that the system should learn about users’

preferences, produce serendipitous recommendations, handle cold start situations and scale

well for a large set of users and items. We concluded that no single approach support all these

features. Therefore, according to the literature, it is beneficial to use a combination of

approaches, so that the advantages of one approach could reduce the disadvantages of another.

114

Based on these wanted characteristics and the data gathered in the application, the best

choices of approaches would be collaborative filtering and content-based filtering. Both of

these approaches learn about the users as they interact with the system. The collaborative

filtering can produce serendipitous recommendations, while the content-based filtering can

handle cold start problems in a good way. Among the collaborative filtering approaches, the

item-based and model-based seemed to be the best choices, as they scale better than the user-

based one.

6.1.2 Q2: Differences in accuracy across domains

To investigate research question Q2, we implemented four algorithms from different

approaches: one item-based, one model-based, one content-based and one non-personalized

baseline. We studied the accuracy of these four algorithms on the MovieLens, Million Song

and Book-Crossing datasets. The first three algorithms were chosen based on the conclusion

of the first research question. The non-personalized algorithm was primarily chosen as a

baseline to compare the performance of the other algorithms against, but it is also of interest

because it does not require any user data to produce recommendations. As Forzify only has

unary data, the algorithms solved a top-n recommendation problem, and we consequently

used the top-n recommendation accuracy metrics MAP, HR, ARHR and precision.

The results showed that there are both differences and similarities in the accuracy of the

algorithms across the datasets from the different domains. On the one hand, the accuracy was

generally higher in some domains than in others. In addition, the variation in the accuracy of

the algorithms inside a domain was higher in some domains than in others. This supports

earlier research by Im and Hars (2007) that states that the accuracy of algorithms is domain

dependent. On the other hand, the two algorithms with best accuracy for general users were

the same in all three datasets. This indicates that the accuracy from these datasets also will

give a good basis to choose which recommendation approaches that will give good accuracy

in Forzify’s case.

6.1.3 Q3: Best approach for Forzify according to evaluation

To answer research question Q3, we measured the accuracy of our four algorithms on the

same three datasets as in the previous section. We used an all-but-10 approach and a given 2,

5 and 8 approach, in order to simulate recommendations for users with different levels of

115

previous interaction with items. The results showed that the item-based and model-based gave

highest accuracy for users in general, while model-based and baseline gave highest accuracy

for users with less item interaction history.

We also tested the training time and prediction time for these three datasets and for three

different subsets with varying sizes of the MovieLens dataset. The baseline algorithm showed

the best scalability, the model-based algorithm showed good scalability, while the item-based

algorithm showed the poorest scalability for number of users and items. The content-based

algorithm scaled well for larger number of items and users, but did not scale well for higher

number of tags.

Based on these results, the best choice of recommendation approach for Forzify, is the model-

based, because the algorithm from this approach gave good accuracy both for new and old

users across the datasets, and at the same time scaled well for larger number of users and

items. The other possible choice of approaches that could give high accuracy for both new

and old users based on our results, was a combination of the baseline and the item-based

approach. However, due to the poor scalability of the item-based approach, this combination

will not scale as good as the model-based. Therefore, our results are contrary to the literature,

as one approach seems to be a better choice than a combination of approaches.

6.2 Main Contributions

In this thesis, we have both used a theoretical and practical approach to find the best suited

approach for Forzify – an application with limited existing user data. We have reviewed and

compared the main recommendation approaches in terms of strengths, weaknesses and data

needed, to find out which recommendation approaches that are suited for Forzify’s case. We

have reviewed and compared datasets from different domains in terms of domain, sample and

inherent features, so we could choose the datasets that are most similar to Forzify’s data for

our evaluation. Further, we have looked at a set of commonly used recommendation

frameworks, and made a comparison of these based on their properties, to let us choose the

ones that are best suited for the approaches we decided to implement. These reviews and

comparisons have therefore given a theoretical background for our choices in the

implementation and evaluation process, but these can also give valuable contributions to other

116

researchers or developers that plan to build or evaluate a recommendation system, especially

in cases where limited user data have been gathered and other datasets are needed for testing.

We have implemented four recommendation algorithms from different approaches that are

suited for the wanted features and data collected in Forzify. The first is a k-nearest neighbours

item-based collaborative filtering algorithm implemented with Lenskit, the second is an

alternating least squares model-based collaborative filtering algorithm implemented in Spark,

the third is a content-based algorithm implemented with LensKit and the fourth is a popularity

baseline algorithm made from scratch.

We have made an evaluation framework to evaluate the scalability and the accuracy, both for

new and old users, of our implemented recommendation algorithms. The accuracy is

measured by the top-n recommendation metrics MAP, precision, HR and ARHR. The

scalability is measured by the training and prediction times of the recommendation

algorithms. Our evaluation framework is also used to make the datasets and content

information ready for evaluation, which includes dataset splitting and reformatting of data.

The source code of the recommendation algorithms and the evaluation framework is available

online, see link in Appendix A.

We have tested all of the implemented algorithms on datasets from three different domains

with this evaluation framework. This has given an overview of the performance of the

different algorithms and contributed to the research on how the accuracy of recommendation

algorithms is affected by the domain they are evaluated in. The results showed that the model-

based and the item-based algorithm give the best accuracy for users in general, while the

model-based and baseline give the best accuracy for new users. When it comes to scalability,

the baseline is the clearly most scalable algorithm, but also the model-based algorithm scales

well. The content-based does not scale well for larger number of tags, while the item-based

seems to be the least scalable for larger number of items and users. Our results show that the

accuracy of recommendation algorithms is domain dependent. However, the two algorithms

performing best, did so in all datasets.

Based on the testing, we have concluded with the model-based approach as the best choice for

Forzify, as it gives accurate recommendations both for new and old users across different

domains, as well as it can scale to larger sizes of users and items. As this approach performed

among the best in terms of accuracy in all of the domains, it is likely that it will perform well

117

also in the domain of Forzify. A combination of the other approaches seemed not to be a

better choice according to our tests, which is contrary to what most recommendation literature

state. Another unexpected finding from our tests was that the content-based approach did not

perform well in accuracy for new users.

6.3 Future Work

In this thesis, we have found out which recommendation approaches that are best suited for

the case of Forzify, and we have investigated the differences in accuracy for recommendation

approaches across different domains. There is more research that can be done to further

explore both of these topics.

First of all, the best way to find the most suitable approach for Forzify is to test the

approaches on Forzify’s own data, when sufficiently data are gathered. This can be done both

as an offline experiment, as we have done in this thesis, but the best data will be obtained by

doing an online experiment with real users. Comparing the accuracy of the algorithms on

Forzify’s data with our test results can give us valuable information regarding how successful

our choice of approach was. In our tests, we have focused on accuracy and scalability, but as

we saw in Section 2.5.2, there are several other dimensions relevant for evaluation of

recommendation systems. Testing the approaches on more of these dimensions will give

additional valuable data about the successfulness of the approaches.

Our implementations and testing were limited by time and space. To further investigate the

research topics in this thesis, it could be interesting to conduct more thorough testing, e.g., test

more algorithms from each approach, test on larger datasets and more datasets, do parameter

tuning to find the best possible accuracy for each algorithm in each domain or test with more

variations of n in given-n to get an even better understanding of how the accuracy evolves

with more ratings.

To further investigate the algorithmic consistencies in accuracy across domains, it would be

interesting to test with even more algorithms and on more datasets from different domains,

and look if the same tendencies can be seen. We have only tested the accuracy with top-n

recommendation measures and algorithms. To get a better understanding of the differences

across the domains in general, we could use a rating-prediction problem and see if this gives

the same patterns. Using rating prediction algorithms and metrics can be a better way to

118

investigate domain differences in accuracy, because these measures are not affected by the

number of hidden items, as the top-n recommendation measures.

119

References

Aggarwal, Charu C. 2016. Recommender Systems: The Textbook: Springer.

Aiolli, Fabio. 2013. "Efficient top-n recommendation for very large scale binary rated

datasets." Proceedings of the 7th ACM conference on Recommender systems.

Amatriain, Xavier, and Justin Basilico. 2015. "Recommender Systems in Industry: A Netflix

Case Study." In Recommender Systems Handbook, 385-419. Springer.

Apache Mahout. 2016. "Apache Mahout: Scalable machine learning and data mining."

accessed November 23, 2016. https://mahout.apache.org/.

Apache Spark. 2016. "Collaborative Filtering." accessed April 3, 2017.

https://spark.apache.org/docs/2.1.0/ml-collaborative-filtering.html.

Avazpour, Iman, Teerat Pitakrat, Lars Grunske, and John Grundy. 2014. "Dimensions and

metrics for evaluating recommendation systems." In Recommendation systems in

software engineering, 245-273. Springer.

Bari, Anasse, Mohamed Chaouchi, and Tommy Jung. 2014. Predictive Analytics For

Dummies. New Jersey: John Wiley & Sons.

Bertin-Mahieux, Thierry, Daniel PW Ellis, Brian Whitman, and Paul Lamere. 2011. "The

million song dataset." Proceedings of the 12th International Society for Music

Information Retrieval (ISMIR) Conference.

Burke, Robin. 2002. "Hybrid recommender systems: Survey and experiments." User

modeling and user-adapted interaction 12 (4):331-370.

Burke, Robin. 2007. "Hybrid web recommender systems." In The adaptive web, 377-408.

Springer.

Comer, Douglas E, David Gries, Michael C Mulder, Allen Tucker, A Joe Turner, Paul R

Young, and Peter J Denning. 1989. "Computing as a discipline." Communications of

the ACM 32 (1):9-23.

Davidson, James, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas

Gargi, Sujoy Gupta, Yu He, Mike Lambert, and Blake Livingston. 2010. "The

YouTube video recommendation system." Proceedings of the fourth ACM conference

on Recommender systems.

Deshpande, Mukund, and George Karypis. 2004. "Item-based top-n recommendation

algorithms." ACM Transactions on Information Systems (TOIS) 22 (1):143-177.

Desrosiers, Christian, and George Karypis. 2011. "A comprehensive survey of neighborhood-

based recommendation methods." In Recommender systems handbook, 107-144.

Springer.

Drachsler, Hendrik, Hans GK Hummel, and Rob Koper. 2008. "Personal recommender

systems for learners in lifelong learning networks: the requirements, techniques and

model." International Journal of Learning Technology 3 (4):404-423.

Ekstrand, Michael D. 2014. "Towards recommender engineering tools and experiments for

identifying recommender differences." Doctoral dissertation, University Of

Minnesota.

Ekstrand, Michael D, Michael Ludwig, Joseph A Konstan, and John T Riedl. 2011.

"Rethinking the recommender research ecosystem: reproducibility, openness, and

LensKit." Proceedings of the fifth ACM conference on Recommender systems.

Ekstrand, Michael D, John T Riedl, and Joseph A Konstan. 2011. "Collaborative filtering

recommender systems." Foundations and Trends® in Human–Computer Interaction

4 (2):81-173.

Elastic. 2016. "Elasticsearch: RESTful, Distributed Search & Analytics | Elastic." accessed

March 24, 2017. https://www.elastic.co/products/elasticsearch.

https://mahout.apache.org/
https://spark.apache.org/docs/2.1.0/ml-collaborative-filtering.html
https://www.elastic.co/products/elasticsearch

120

Facebook Code. 2012. "Under the Hood: Building the App Center recommendation engine."

accessed September 19, 2016. https://code.facebook.com/posts/205769259584081/

under-the-hood-building-the-app-center-recommendation-engine/.

Felfernig, Alexander, and Robin Burke. 2008. "Constraint-based recommender systems:

technologies and research issues." Proceedings of the 10th international conference on

Electronic commerce.

Felfernig, Alexander, Gerhard Friedrich, Dietmar Jannach, and Markus Zanker. 2011.

"Developing constraint-based recommenders." In Recommender systems handbook,

187-215. Springer.

ForzaSys. 2016. "Forzify." accessed September 19, 2016. http://home.forzasys.com/

products/forzify/.

Gantner, Zeno, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2011.

"MyMediaLite: a free recommender system library." Proceedings of the fifth ACM

conference on Recommender systems.

Goldberg, Ken, Theresa Roeder, Dhruv Gupta, and Chris Perkins. 2001. "Eigentaste: A

constant time collaborative filtering algorithm." Information Retrieval 4 (2):133-151.

Groh, Georg, and Christian Ehmig. 2007. "Recommendations in taste related domains:

collaborative filtering vs. social filtering." Proceedings of the 2007 international ACM

conference on Supporting group work.

Gunawardana, Asela, and Guy Shani. 2015. "Evaluating Recommender Systems." In

Recommender Systems Handbook, 265-308. Springer.

Harper, F Maxwell, and Joseph A Konstan. 2016. "The movielens datasets: History and

context." ACM Transactions on Interactive Intelligent Systems (TiiS) 5 (4):19.

Herlocker, Jonathan L, Joseph A Konstan, Loren G Terveen, and John T Riedl. 2004.

"Evaluating collaborative filtering recommender systems." ACM Transactions on

Information Systems (TOIS) 22 (1):5-53.

Hu, Yifan, Yehuda Koren, and Chris Volinsky. 2008. "Collaborative filtering for implicit

feedback datasets." Data Mining, 2008. ICDM'08. Eighth IEEE International

Conference on Data Mining.

Im, Il, and Alexander Hars. 2007. "Does a one-size recommendation system fit all? the

effectiveness of collaborative filtering based recommendation systems across different

domains and search modes." ACM Transactions on Information Systems (TOIS) 26

(1):4.

Isinkaye, FO, YO Folajimi, and BA Ojokoh. 2015. "Recommendation systems: Principles,

methods and evaluation." Egyptian Informatics Journal 16 (3):261-273.

Jannach, Dietmar, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich. 2010.

Recommender systems: an introduction: Cambridge University Press.

Johansen, Dag, Pål Halvorsen, Håvard Johansen, Håkon Riiser, Cathal Gurrin, Bjørn Olstad,

Carsten Griwodz, Åge Kvalnes, Joseph Hurley, and Tomas Kupka. 2012. "Search-

based composition, streaming and playback of video archive content." Multimedia

Tools and Applications 61 (2):419-445.

Johansen, Dag, Håvard Johansen, Tjalve Aarflot, Joseph Hurley, Åge Kvalnes, Cathal Gurrin,

Sorin Zav, Bjørn Olstad, Erik Aaberg, and Tore Endestad. 2009. "DAVVI: A

prototype for the next generation multimedia entertainment platform." Proceedings of

the 17th ACM international conference on Multimedia.

Johansen, Dag, Håvard Johansen, Pål Halvorsen, Cathal Gurrin, and Carsten Griwodz. 2010.

"Composing personalized video playouts using search." Multimedia and Expo

(ICME), 2010 IEEE International Conference on.

Knijnenburg, Bart P, and Martijn C Willemsen. 2015. "Evaluating recommender systems with

user experiments." In Recommender Systems Handbook, 309-352. Springer.

https://code.facebook.com/posts/205769259584081/under-the-hood-building-the-app-center-recommendation-engine/
https://code.facebook.com/posts/205769259584081/under-the-hood-building-the-app-center-recommendation-engine/
http://home.forzasys.com/products/forzify/
http://home.forzasys.com/products/forzify/

121

Konstan, Joseph A, and John Riedl. 2012. "Recommender systems: from algorithms to user

experience." User Modeling and User-Adapted Interaction 22 (1-2):101-123.

Koren, Yehuda, and Robert Bell. 2011. "Advances in collaborative filtering." In

Recommender systems handbook, 145-186. Springer.

Koren, Yehuda, Robert Bell, and Chris Volinsky. 2009. "Matrix factorization techniques for

recommender systems." Computer 42 (8).

Lin, Eugene. 2013. "Content Based Recommendation System." accessed March 15, 2017.

http://eugenelin89.github.io/recommender_content_based/.

Linden, Greg, Brent Smith, and Jeremy York. 2003. "Amazon. com recommendations: Item-

to-item collaborative filtering." IEEE Internet computing 7 (1):76-80.

Lops, Pasquale, Marco De Gemmis, and Giovanni Semeraro. 2011. "Content-based

recommender systems: State of the art and trends." In Recommender systems

handbook, 73-105. Springer.

Manning, Christopher D. , Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to

Information Retrieval: Cambridge University Press.

Manoharan, Keerthana, Hani; Perez Khan, Rocio, and Roshini Thiagarajan. 2017. "Analyzing

Youtube’s Personalized Recommendations." accessed March 7, 2017.

http://keerthanamanoharan.net/youtube/.

McAuley, Julian, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. 2015.

"Image-based recommendations on styles and substitutes." Proceedings of the 38th

International ACM SIGIR Conference on Research and Development in Information

Retrieval.

McFee, Brian, Thierry Bertin-Mahieux, Daniel PW Ellis, and Gert RG Lanckriet. 2012. "The

million song dataset challenge." Proceedings of the 21st International Conference on

World Wide Web.

Meng, Xiangrui, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman,

Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, and Sean Owen. 2016. "Mllib:

Machine learning in apache spark." Journal of Machine Learning Research 17 (34):1-

7.

Netflix. 2016. "Netflix Ratings & Recommendations." accessed September 20, 2016.

https://help.netflix.com/en/node/9898.

Ning, Xia, Christian Desrosiers, and George Karypis. 2015. "A comprehensive survey of

neighborhood-based recommendation methods." In Recommender systems handbook,

37-76. Springer.

Ning, Xia, and George Karypis. 2011. "Slim: Sparse linear methods for top-n recommender

systems." Data Mining (ICDM), 2011 IEEE 11th International Conference on Data

Mining.

Parra, Denis, Alexandros Karatzoglou, Xavier Amatriain, and Idil Yavuz. 2011. "Implicit

feedback recommendation via implicit-to-explicit ordinal logistic regression

mapping." Proceedings of the CARS-2011.

Rendle, Steffen, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009.

"BPR: Bayesian personalized ranking from implicit feedback." Proceedings of the

twenty-fifth conference on uncertainty in artificial intelligence.

Resnick, Paul, and Hal R Varian. 1997. "Recommender systems." Communications of the

ACM 40 (3):56-58.

Ricci, Francesco, Lior Rokach, and Bracha Shapira. 2015. "Recommender systems:

introduction and challenges." In Recommender Systems Handbook, 1-34. Springer.

Sahebi, Shaghayegh, and William W Cohen. 2011. "Community-based recommendations: a

solution to the cold start problem." Proceedings of the 3rd ACM RecSys'10 Workshop

on Recommender Systems and the Social Web.

http://eugenelin89.github.io/recommender_content_based/
http://keerthanamanoharan.net/youtube/
https://help.netflix.com/en/node/9898

122

Said, Alan, and Alejandro Bellogín. 2014. "Comparative recommender system evaluation:

benchmarking recommendation frameworks." Proceedings of the 8th ACM

Conference on Recommender systems.

Sarwar, Badrul, George Karypis, Joseph Konstan, and John Riedl. 2001. "Item-based

collaborative filtering recommendation algorithms." Proceedings of the 10th

international conference on World Wide Web.

Schafer, J Ben, Dan Frankowski, Jon Herlocker, and Shilad Sen. 2007. "Collaborative

filtering recommender systems." In The adaptive web, 291-324. Springer.

Schafer, J Ben, Joseph A Konstan, and John Riedl. 2001. "E-commerce recommendation

applications." In Applications of Data Mining to Electronic Commerce, 115-153.

Springer.

Schelter, Sebastian, and Sean Owen. 2012. "Collaborative filtering with apache mahout."

Proc. of ACM RecSys Challenge.

Shanahan, James G, and Laing Dai. 2015. "Large scale distributed data science using apache

spark." Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining.

Sinha, Rashmi R, and Kirsten Swearingen. 2001. "Comparing Recommendations Made by

Online Systems and Friends." Proc. of DELOS workshop: personalisation and

recommender systems in digital libraries.

Sponsor Insight. 2016. "Medie- og omdømmetracker Tippeligaen: Oppsummering januar -

mars 2016." accessed April 2, 2017. https://www.sponsorinsight.no/nyhetsbrev2/

medie-ogomdmmetippeligaen.

Su, Xiaoyuan, and Taghi M Khoshgoftaar. 2009. "A survey of collaborative filtering

techniques." Advances in artificial intelligence 2009:4.

Wu, Bu-Xiao, Jing Xiao, Jia Zhu, and Chen Ding. 2016. "An Adaptive kNN Using Listwise

Approach for Implicit Feedback." Asia-Pacific Web Conference.

Xiao, Bo, and Izak Benbasat. 2007. "E-commerce product recommendation agents: Use,

characteristics, and impact." Mis Quarterly 31 (1):137-209.

Yang, Xiwang, Yang Guo, Yong Liu, and Harald Steck. 2014. "A survey of collaborative

filtering based social recommender systems." Computer Communications 41:1-10.

Zaharia, Matei, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.

2010. "Spark: Cluster Computing with Working Sets." HotCloud 10 (10-10):95.

Ziegler, Cai-Nicolas, Sean M McNee, Joseph A Konstan, and Georg Lausen. 2005.

"Improving recommendation lists through topic diversification." Proceedings of the

14th international conference on World Wide Web.

https://www.sponsorinsight.no/nyhetsbrev2/medie-ogomdmmetippeligaen
https://www.sponsorinsight.no/nyhetsbrev2/medie-ogomdmmetippeligaen

123

Appendix A – Source code

The source code used for our recommendation system algorithms and our evaluation

framework is accessible on GitHub:

https://github.com/simenrod/recsys_simenrod

https://github.com/simenrod/recsys_simenrod

