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Abstract 

Recommendation systems help users find interesting items and reduce the information 

overflow problem on websites. Much research has been conducted on such systems the last 

decades, and there exist several recommendation approaches with different strengths and 

weaknesses. In this thesis, we investigate which recommendation approach or combination 

of approaches that can recommend the most interesting content for each individual user of 

the sports video application Forzify. 

We use previous research and literature to find the approaches that are best suited for the 

data gathered in Forzify and the features wanted in a new recommendation system. Three 

approaches turn out to be the best suited: item-based collaborative filtering, model-based 

collaborative filtering and content-based filtering. We implement one algorithm from each 

of these approaches and a baseline algorithm. The four algorithms are evaluated in an 

offline evaluation to find out which of the approaches that performs best in terms of 

recommendation accuracy, both for new and old users, and scalability. As Forzify so far 

has gathered limited user interaction data, we have to test the approaches on other datasets. 

To increase the validity, we investigate the accuracy of the algorithms in datasets from 

different domains. This makes it possible to check whether it is consistencies in the 

accuracy of the algorithms across the domains. 

From our evaluation of the accuracy of the algorithms, we can see both differences and 

similarities across the domains. The accuracy of the different algorithms is more even in 

some domains than in others, and some domains generally have higher accuracy, but there 

is a tendency that the algorithms performing well in one domain also do so in the other 

domains. Due to this cross-domain consistency, our results provide a good basis for 

choosing the best approach for Forzify. We conclude that the model-based collaborative 

filtering approach is the best choice for Forzify. It gives accurate recommendations for 

both new and old users across the datasets, and it scales well for larger numbers of users 

and items. 
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1 Introduction 

In everyday life, we often rely on recommendations from other people when we do not have 

enough information about our choices. This could be advice from friends and colleagues, 

recommendation letters, restaurant reviews and travel guides, which all help in decision 

making. Recommendation systems fulfil the same function in a digital context (Resnick and 

Varian 1997). “Recommendation systems”, “recommender systems”, “recommendation 

engines” and “recommendation agents” are all terms used interchangeably to describe systems 

that make recommendations to users about items (Xiao and Benbasat 2007, Ricci, Rokach, 

and Shapira 2015). In this thesis, we will use the term “recommendation system”. The aim of 

this thesis is to investigate which recommendation system approaches that are best suited for 

the sports video application Forzify. 

1.1 Motivation and background   

Websites today often contain a huge amount of information, enough to overwhelm the user. 

The number of items for the user to choose from is so large, that each item cannot be 

reviewed, making it a challenge to find interesting items. This is where recommendation 

systems come in. By recommending items to the user, it becomes easier for the user to 

explore new material, and the problem with information overload is reduced (Ricci, Rokach, 

and Shapira 2015). Recommendation systems are used in a wide range of applications and can 

recommend everything from news, books and videos to more complex items like jobs and 

travels, or as in our case, sports videos. 

The main purpose of a recommendation system is to make easily accessible recommendations 

of high quality for a large user community (Jannach et al. 2010, xiii). Recommendations can 

be either personalized or non-personalized. Personalized recommendations mean that 

different users or user groups get different recommendations based on their preferences, while 

non-personalized recommendations mean that all of the users get the same suggestions (Ricci, 

Rokach, and Shapira 2015). Non-personalized recommendations are much easier to make, and 

may for instance be a list of the ten most bought books or the top 20 rated movies. Even 

though this kind of recommendations can be useful in some situations, they do not reflect the 

individual user’s taste and preferences, and consequently cannot give the same benefits as 
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personalized recommendations. Therefore, they are not typically addressed in research on 

recommendation systems, and they will not be the focus in this thesis either.  

The personalized recommendations give possibilities that would be impossible in the physical 

world. Jeff Bezos, CEO of Amazon, illustrates this: “If I have 3 million customers on the 

Web, I should have 3 million stores on the web” (Schafer, Konstan, and Riedl 2001). By 

giving all users a personalized experience, both the users and the owner of the system benefit. 

It gives better user satisfaction because the user finds relevant and interesting items, it 

increases the number of items sold and it helps the company to sell more diverse items (Ricci, 

Rokach, and Shapira 2015).  

Even though recommendation systems are used in a wide range of domains, few studies have 

examined how the performance of recommendation systems differ across different domains. 

Most research has either examined algorithmic performance, like algorithms’ accuracy and 

scalability, or examined applications in a specific area, like music, movies or web pages (Im 

and Hars 2007).  

New websites or applications that want to make good recommendations to their users often 

have little user data, making it difficult to evaluate the successfulness of their 

recommendations. One option is to wait for the application to gather enough user data before 

developing the recommendation system to make sure the system is built on a suitable 

approach. But then, the system will miss the benefits of recommendations for a period of 

time. Another option is to evaluate the recommendation system on user interaction data from 

other applications. Several datasets consisting of user and item data are published on the 

Internet, making it possible to measure the performance of recommendation systems. 

However, it is not always possible to find a dataset matching the domain of a given 

application. In such cases, it is crucial to investigate whether the recommendation system 

perform consistent across domains. 

Herlocker et al. (2004) point out algorithmic consistency across domains to be a research 

problem particularly worthy of attention in recommendation system research. If no 

differences had existed for algorithms across domains, it would have simplified the evaluation 

process of recommendation systems, since researchers could use datasets with suitable 

properties without doing domain-specific testing when evaluating algorithms. Im and Hars 

(2007) have investigated this problem by comparing the results of two recommendation 
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algorithms in the domain of movies with the results in the domain of books, and found that 

the accuracy was higher for book recommendations than for movie recommendations. This 

implies that the accuracy of recommendation algorithms is not domain independent. Much 

recommendation system research makes generalizations of the performance of algorithms 

based on testing of the algorithms in a single domain (Im and Hars 2007). This gives weak 

external validity, i.e., to which degree the results are generalizable to other situations and user 

groups (Jannach et al. 2010, 168), and can possibly give invalid conclusions. 

In this thesis, we will present the case of Forzify, which is a sports video application where 

users can watch, share and redistribute videos. Forzify does today give recommendations to 

its users, but a new recommendation system is wanted, that can give the users better and more 

accurate recommendations. We will look at which recommendation system approaches that 

are suitable for Forzify and will give the best recommendations for the users. Not much data 

has yet been gathered in the application, so it will be necessary to use other datasets to test the 

performance of the new recommendation system. As we are not aware of any datasets for user 

and item data in the sports video context, we will look at the algorithmic consistency across 

datasets from different domains. 

1.2 Problem statement 

In this thesis, the overall goal is to find out which recommendation approach that can 

recommend the most interesting content for each individual user of the sports video 

application Forzify. To reach this goal, we first want to answer the following research 

question: 

- Q1: According to previous research and literature, which recommendation approaches 

are best suited for the case of Forzify? 

To answer Q1, we will review the main recommendation approaches, compare these both in 

terms of advantages and disadvantages, and data required for each approach. Further, we will 

analyse the case of Forzify, to find appropriate approaches for this case. 

Having identified suitable approaches for the case of Forzify, we want to test which of these 

approaches that produce the best recommendations. A measure for this, is the prediction 

accuracy, which is the most researched property of recommendation systems (Gunawardana 
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and Shani 2015). This measure, which also is called the correctness of the recommendations, 

says to which degree the recommendations are correct for the users, by comparing the 

recommendations given by the recommendation system with real user data (Avazpour et al. 

2014). We therefore want to evaluate the accuracy of the recommendation approaches. In 

addition, we want the recommendation system to scale for larger number of users and items, 

so the users can get instant recommendations. 

Because Forzify at the moment has limited existing data about user interaction, we need to 

test the approaches on other datasets. Therefore, we want to answer the two following 

research questions: 

- Q2: Do the accuracy of recommendation system approaches differ across datasets 

from different domains? 

- Q3: Which recommendation approach or combination of approaches can give the most 

accurate recommendations to both new and old users of Forzify, and at the same time 

give high scalability? 

For Q2 and Q3 to be answered, we will test a set of recommendation algorithms on different 

datasets, to both investigate which recommendation algorithms that have highest accuracy 

overall in the datasets and to see if the accuracy of the individual algorithm differs across the 

datasets. The algorithms that will be tested, will be chosen based on the discussion of suitable 

approaches done for Q1. In addition, we will test a non-personalized baseline algorithm, 

which is useful to compare the personalized algorithms against. Q2 will give valuable 

information about the generalisability of the accuracy of the recommendation approaches 

across domains, which is important when we want to use the results from the tests on the 

other datasets to decide which approach that are best to use in Forzify. We will also measure 

the training and prediction times of the algorithms on datasets to evaluate their scalability. In 

Q3, new users mean users with limited item interaction history, which we define as less than 

10 interactions, while old users mean users with more item interaction history. 

1.3 Limitations 

Ideally, to investigate which recommendation approach that gives the best recommendations 

for the users of Forzify, we would have tested the approaches on Forzify’s data. However, as 
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we explained in the previous sections, this is not possible as Forzify has limited user 

interaction data.  

Recommendation systems is a large research area, consequently we can only cover a small 

part of it. The success of such systems depends on several characteristics, from quantitative 

characteristics as accuracy and scalability, to more qualitative characteristics as the usability 

of the recommendation system. The research problems will be investigated from a user’s 

perspective. This means the recommendation system should be as good as possible for the 

user, giving accurate and fast recommendations. We will limit ourselves to look at the 

recommendation approaches and algorithms, not surrounding factors, like usability, which 

can be more important to look at when the recommendation approaches are decided. We will 

not use the perspective of the owners of the system, where the aim may be to increase profit, 

and thereby recommending the most profitable content. We will neither use a system 

perspective, where the focus is on architecture and how the recommendation system can be 

integrated with the application. 

1.4 Research method 

The design paradigm specified by the ACM Task Force of Computer Science (Comer et al. 

1989) will be used as the research method in this thesis. This paradigm consists of the 

following four steps: 

1. State requirements. 

2. State specifications. 

3. Design and implement the system. 

4. Test the system. 

We look at the data that are collected in Forzify and which features that are wanted in a new 

recommendation system, and use literature to find which approaches that are best suited for 

this case. Based on this, we choose four recommendation algorithms that we implement. We 

test the algorithms by conducting an offline evaluation of the algorithms, using 

recommendation accuracy metrics and scalability metrics, with datasets from three different 

domains.  
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1.5 Main contributions 

Much research on recommendation systems focuses only on one approach, or one kind of 

algorithms inside one approach. We instead investigate a practical problem by using an 

extensive approach where all main recommendation approaches are considered and analysed 

in order to find the most suitable approaches for Forzify. We further implement four 

algorithms from different approaches and an evaluation framework for these algorithms. The 

algorithms are evaluated in this framework on three datasets from the movie, book and song 

domain, in order to see which approaches that perform best in both accuracy and scalability 

measures. We evaluate the accuracy both for new and old users. This gives valuable results 

about how well the different approaches perform in different domains, and in addition, it 

gives an important contribution to the research on algorithms’ consistencies in accuracy 

across domains, which have not been prioritized much in earlier research, as noted by Im and 

Hars (2007). 

An important part of the thesis is the theoretical background that is presented. Based on this, 

we can choose the most suitable approaches, datasets and frameworks. We review the main 

recommendation system approaches and compare them in terms of strengths, weaknesses and 

data needed. We review the most commonly used datasets in recommendation system 

research, and compare them in terms of domain features, inherent features and sample 

features, which are the three levels of dataset features presented by Herlocker et al. (2004). 

Further, we review four popular recommendation frameworks supporting different 

algorithms, and compare these and their properties. All of these reviews and comparisons can 

be useful for other researchers and developers that plan to implement or evaluate a 

recommendation system.  

1.6 Outline 

Chapter 2 lays the theoretical foundation of this thesis, and gives the theoretical background 

for answering which recommendation approaches that are suited for Forzify. In this chapter, 

recommendation systems are presented more in detail, recommendation approaches are 

presented and compared in terms of strengths, weaknesses and data needed, and some 

examples are given of how recommendation systems are used in practice in some well-known 

applications. We also give a review of how recommendation systems are evaluated, and we 



7 

 

present and compare different datasets that can be used for evaluation of recommendation 

systems. 

In Chapter 3, we present the case of Forzify, look at recommendations in this context and 

review which data that are collected in the application and which features that are wanted in a 

new recommendation system. Further, we discuss which recommendation approaches that are 

best suited for the data in Forzify and the wanted features, in order to answer research 

question Q1.  

Chapter 4 describes the implementation of a set of candidate algorithms for Forzify, which are 

chosen based on the discussion of suitable approaches for Forzify. We review 

recommendation system frameworks and compare them in term of their properties, to find out 

which frameworks that are appropriate to use in our case. 

In Chapter 5, we present our evaluation of the implemented algorithms. First, we look at the 

experimental design of the evaluation, which includes which measures and datasets to use, 

how datasets are split and which experimental setting that is used. We further present and 

discuss the results of the evaluation. Based on the results, we discuss if there are consistencies 

or differences in the accuracy across the datasets to answer research question Q2, and we 

discuss which recommendation approaches that most probably will give high accuracy and 

scalability for Forzify, in order to answer research question Q3. 

In Chapter 6, we present our conclusions by answering the research questions. Finally, we 

present the main contributions of the work and suggest future research to further explore the 

main topics of the thesis.  
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2 Recommendation systems 

In this chapter, we lay the theoretical basis of this thesis, and give the theoretical background 

for answering which recommendation approaches that are suited for Forzify. First, we will 

look more in detail at recommendation systems and the problems they try to solve. There will 

be a presentation of different recommendation system approaches, and a comparison of these 

in terms of their strengths, weaknesses and data needed. There will also be given examples of 

how recommendation systems are used in practice by some large companies in their 

applications. Further, there will be a description of how such systems can be evaluated. 

2.1 Recommendation systems explored 

Recommendation systems are information filtering techniques used for either of the two 

different, but related problems of rating prediction and top-n recommendation (Deshpande 

and Karypis 2004). Rating prediction is the task of predicting the rating a given user will give 

for a given item, while the latter task is to find a list of n items likely to be of interest for a 

given user, either the n most interesting items presented in an ordered list or just a set of n 

items expected to be of relevance for the user (Ning, Desrosiers, and Karypis 2015). 

User feedback is essential in most recommendation systems. This information, which can be 

both explicit and implicit user ratings, is typically stored in a rating matrix 𝑅, with ratings 𝑟𝑖,𝑗, 

where 𝑖 ∈ 1 … 𝑛 and 𝑗 ∈ 1 … 𝑚. This matrix stores the ratings of a set of users 𝑈 =

{𝑢1, … , 𝑢𝑛}, for a set of products 𝑃 = {𝑝1, … , 𝑝𝑚}. Figure 1 shows an example of two rating 

matrices that holds data about six users’ ratings for six movies. The first one is a typical 

example of a rating matrix for explicit feedback, where each rating is given on a scale from 

one to five, where low values mean dislike and high values mean that the user likes the item. 

The second one is a rating matrix for unary ratings. Unary ratings are ratings that let the users 

indicate liking for an item, but where it is no mechanism for detecting a dislike (Aggarwal 

2016, 11). This is also called positive only feedback (Gantner et al. 2011). Unary ratings can 

either have binary values as in this case, where 1 indicates a user interaction and no rating 

indicates a lack of such interaction, or it can be arbitrary positive values, indicating for 

example, number of buys or number of views. (Aggarwal 2016, 12). Explicit ratings can be 

unary ratings, e.g., when there is a like-button and no dislike-button, but unary data are in 

most cases implicit ratings, collected from user actions. In both of the rating matrices, the 
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missing values indicate that a preference value are missing. For most recommendation 

systems, most values are missing, i.e., the rating matrix is sparse, because most users will 

only interact with or explicitly rate a small portion of the items (Jannach et al. 2010, 23).  

 

Figure 1: Example of two rating matrices with data about six users’ ratings for movies (Aggarwal 2016, 13)  

In the rating prediction problem, the recommendation system fills in the missing values of the 

rating matrix, by utilizing the given values. For this task, the recommendation system needs 

explicit user ratings for items. This information can, together with implicit ratings, be used to 

predict the rating a user will give to an item. The predicted rating can then be compared with 

the real rating for evaluating the prediction. Explicit user ratings can be numerical, as in 1-5 

stars, ordinal, as in selection of terms like “loved it”, “average” or “hated it”, and binary, as in 

“like”- and “dislike”-buttons (Ning, Desrosiers, and Karypis 2015). Top-n recommendation, 

on the other hand, does not need explicit user ratings. Recommendations in this task can 

instead be based on only implicit ratings, like user clicks, views and purchases, which are 

logged as the user interacts with the application. Also in this task, there could be used explicit 

ratings, but this is not necessary, like in rating prediction.  

Explicit user ratings offer the most precise description of users’ preferences, but give 

challenges to the collection of data because the users must actively rate the items (Schafer et 

al. 2007). Implicit ratings, on the other hand is easier to collect, but gives more uncertainty. 

For example, if a user rates an element with five out of five stars, we can be sure the user 

liked the item, but if a user has watched or bought an item, we only know that the user has 

shown an interest for the item, not that he actually liked it. In the opposite case, lack of item 
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interaction can indicate that the user is not interested in the item or just that she has not 

discovered the item yet. In other situations, implicit ratings can be as good as explicit ratings, 

e.g., when play counts are logged for music or video streaming. Then, a high play count can 

be as indicative for user preference as a rating on a five-star scale.  

Recommendation systems have a large and diverse application area. They are today used in 

areas such as e-commerce, search, Internet music and video, gaming and online dating 

(Amatriain and Basilico 2015). In highly renowned websites like Amazon, Netflix, Facebook 

and YouTube, these kinds of systems play an important role, both for the users and for the 

owners of the systems. How these websites use recommendations will be described more in 

detail in Section 2.3. 

Recommendation systems have in recent years faced a huge increase in interest, not only in 

the industry, but also in science. Dedicated recommendation systems courses are given at 

universities around the world, and conferences and workshops are held for this research area, 

e.g., the annually ACM Recommender Systems (RecSys) conference, which was established 

in 2007 (Ricci, Rokach, and Shapira 2015).  

A major event in the research on recommendation systems was the Netflix Prize, which was 

announced in 2006 (Amatriain and Basilico 2015). This was a competition for rating 

prediction on a dataset given by Netflix, with explicit ratings on a scale from 1 to 5. One 

million dollars were offered to the team that could reduce the root mean squared error 

(RMSE) by 10 % compared to what was obtained by Netflix’ existing system. RMSE is a 

measure for rating accuracy, where a low RMSE value indicates high accuracy. RMSE and 

other evaluation methods will be presented in Section 2.5. The Netflix Prize highlighted the 

importance of personalized recommendations and several new data mining algorithms were 

designed in the competition (Ricci, Rokach, and Shapira 2015). 

Another notable recommendation system competition is the Million Song Dataset Challenge 

which was held in 2012 (McFee et al. 2012). Here, an implicit feedback dataset consisting of 

the full listening history for one million users were given, and half of the listening history for 

another 110 000 users. The task of the competition was to predict the missing half of songs 

for these users, and mean average precision (MAP), which will be described more in detail in 

Section 2.5.3, was used as the evaluation metric. This is a typical example of the top-n 
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recommendation problem, where the goal is to predict the most interesting items, not to give 

each item a predicted rating value as in the Netflix Prize. 

2.2 Recommendation system approaches 

In short, recommendation systems work by predicting the relevance of items for users by 

analysing the users’ behaviour, browsing history, ratings, interaction with items, demography 

or other information that can learn the system about the users and the items. This can be done 

in many different ways, with collaborative filtering and content-based filtering as the two 

main approaches (Bari, Chaouchi, and Jung 2014, 23). Other important approaches are 

demographic-based, knowledge-based, community-based and hybrid approaches (Ricci, 

Rokach, and Shapira 2015). Each of these approaches will be presented here.  

2.2.1 Collaborative filtering 

Collaborative filtering is an approach used to make personalized recommendations that are 

based on patterns of ratings and usage by the users of a system (Koren and Bell 2011). The 

idea behind this approach is that if a group of users share opinion on a set of topics, they may 

also share opinion on another topic (Bari, Chaouchi, and Jung 2014, 23). The system collects 

large amounts of data, and analyses it to find latent factors or similarities between users or 

between items. A major advantage of this approach is that no machine-readable representation 

of the items is needed to generate the recommendations, making the approach work well for 

complex items like music and movies (Burke 2002). As Figure 2 shows, there are two main 

groups of collaborative filtering: neighbourhood-based and model-based. 

Neighbourhood-based 

In the neighbourhood-based approach, the ratings are used directly in the computation to 

predict the relevance of items, by either finding similar items or users, depending on whether 

it is item-based or user-based (Ning, Desrosiers, and Karypis 2015). This approach is a 

generalization of the k-nearest neighbours problem. The main advantage of neighbourhood-

based approaches is their simplicity, which both make them easier to implement and to justify 

the recommendations for the user (Ning, Desrosiers, and Karypis 2015).  
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Figure 2: Hierarchy of collaborative filtering approaches 

In item-based collaborative filtering, recommendations of items are based on the similarity 

between items (Isinkaye, Folajimi, and Ojokoh 2015). The similarity between one item to 

another is dependent on the number of people who interacts with both of the items or the 

similarities of the ratings given to the two items. Two items both watched by a high number 

of persons will be more similar than two items that are rarely watched by the same persons. In 

this way, the system can recommend the items most similar to the items a user previously has 

interacted with. For example, if Martin, who is looking for a good movie, has rated The 

Shawshank Redemption highly, and the users who have rated this movie tend to rate Forest 

Gump similarly, then Martin can be recommended to watch Forest Gump. 

User-based collaborative filtering is an approach that makes recommendations of items that 

are highly rated by users similar to the one receiving the recommendation (Desrosiers and 

Karypis 2011). The similarities between users depend on their resemblance in item interaction 

history, and the recommended items are those with highest average ratings given by the set of 

most similar users. For example, if Martin has rated ten movies with highest score and Anna 

has given the same rating for nine of them, but has not made a rating of the tenth movie, then 

the system can recommend the tenth movie to Anna. Similarities between users or items are 

typically calculated with cosine or correlation measures (Isinkaye, Folajimi, and Ojokoh 

2015).  
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Model-based 

In model-based collaborative filtering, machine learning and data mining are used to make a 

predictive model from the training data (Aggarwal 2016, 9). This training phase is separated 

from the prediction phase. Examples of machine learning techniques that can be used for 

building such a model are decision trees, rule-based models, Bayesian models and latent 

factor models (Aggarwal 2016, 9). One of the main advantages of the model-based 

approaches compared to the neighbourhood-based ones, is that they tend to give better 

prediction accuracy (Ning, Desrosiers, and Karypis 2015). Another advantage is that they also 

are more scalable, both in terms of memory requirements and speed (Aggarwal 2016, 73).   

Latent factor models are some of the most successful and commonly used of the model-based 

approaches. They characterize items and users on latent factors based on user feedback 

(Koren and Bell 2011). For example, if Martin likes to watch biographies and dramas, the 

recommendation system can identify these latent preferences. Martin can then be 

recommended Schindler’s List, which is both biographical and a drama, without the system 

needing to have a definition of these concepts. The system only needs to know that the movie 

has the same latent factors as Martin, which the system can find out by conducting a matrix 

factorization of the rating matrix. 

Strengths and weaknesses 

Collaborative filtering is the most implemented and most mature of the recommendation 

approaches (Isinkaye, Folajimi, and Ojokoh 2015). The strength of this approach is that it can 

recommend items without any domain knowledge and its ability to make cross-genre 

recommendations (Burke 2002). This is possible because it bases its recommendations on 

user data, like views, ratings and likes, so that all kinds of complex items can be 

recommended, also between genres and content. For example, if users who like action movies 

also tend to like rock music, then a user who likes action movies can be recommended rock 

music, even though the items have different content. Collaborative filtering also has the 

advantage of improving its recommendations over time, as more data comes in, and can 

gather information from the users without needing to explicitly ask for it. Another advantage 

is that it is generally more accurate than other recommendation approaches (Koren, Bell, and 

Volinsky 2009). 
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The downside of this approach is that recommendations cannot be made when there is 

insufficient data about a user or an item. This is called the cold start problem, which can 

happen when a new user is registered or a new item is added (Felfernig and Burke 2008). 

User-based collaborative filtering suffers from the cold start problem both when there is a 

new user and a new item. This is because user history is needed to find similar users, and an 

item cannot be recommended to similar users if it has not been rated or viewed by a set of 

users. Item-based collaborative filtering, on the other hand, only has this problem when a new 

item is added, since data about the use of an item is needed to find similar items. Model-based 

approaches also have cold start problems, but these are often smaller because they reduce the 

rating matrix to a smaller model and utilizes both similarities among users and items.  

Another problem in collaborative filtering is sparsity (Bari, Chaouchi, and Jung 2014, 31). 

There is often a huge number of items on a website, and each user may only have rated or 

viewed a small amount of these. This can result in sparsity in the user ratings, i.e. few users 

have rated the same items, making it difficult to make recommendations to a user. Model-

based approaches have less problems with sparsity compared to neighbourhood-based ones 

(Su and Khoshgoftaar 2009). Sparsity is particularly a problem in user-based collaborative 

filtering, where similar users are found by searching for overlap in user ratings. It can also be 

a problem in item-based collaborative filtering, but in general each item has a higher 

frequency of interaction than a user has. Sparsity gives challenges in domains where new 

items are frequently added and there is a huge collection of items, like in online newspapers, 

where it is unlikely that users have a large overlap in the ratings, unless there is a huge user 

base (Burke 2002). 

The computation in user-based and item-based collaborative filtering is quadratic in either 

number of users or items respectively. This is because we for each user in user-based, or item 

in item-based, must compute the similarities to all other users or items, dependent on if it is 

user-based or item-based. However, item-based filtering is considered more scalable because 

it allows for precomputation of similarities (Ekstrand, Riedl, and Konstan 2011). This is 

because the similarities between a user and the other users in a user neighbourhood change 

when any of the users in a neighbourhood rates a new item, and consequently user similarities 

must be computed at the time of recommendation in user-based collaborative filtering. The 

item-similarities are not affected in the same way when it comes a new rating because items 

usually have more ratings than users have, and they can therefore be precomputed in item-
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based collaborative filtering. Model-based approaches are usually even more scalable. For 

example, latent factor models can, like alternating least squares, compute a model which 

scales linearly in the number of users and items (Hu, Koren, and Volinsky 2008). 

The problems with cold start and sparsity, do that collaborative filtering works best for 

websites with large historical datasets, without frequent changes in items (Burke 2002). If 

there is not enough user history, the recommendations will be of low quality or it may not 

even be possible to give recommendations. This makes collaborative filtering an ideal 

candidate to use together in a hybrid solution with another approach that has less problems 

with these problems, so that recommendations can be given from the start, but the benefits of 

the collaborative approach can be achieved when more data is generated. 

2.2.2 Content-based filtering 

The main idea in content-based filtering is to recommend items that have the same features 

that a user likes (Ricci, Rokach, and Shapira 2015). A user can explicitly state which features 

he or she likes, or different machine learning techniques can be used to interpret the user’s 

preferences based on former interaction with items (Bari, Chaouchi, and Jung 2014, 32). The 

features are often tagged keywords or the categories of the item (Felfernig and Burke 2008). 

The advantage of this approach, is that recommendations can be made with small amounts of 

data. There are no problems of recommending new items, because the recommendation 

system has access to the features of the items (Felfernig and Burke 2008). New users will get 

recommendations as soon as they have interacted with an item or made a user profile, because 

the system can recommend items similar to that item or to the preferences expressed in the 

user profile. The content-based approach thereby avoids the cold start problem. For example, 

if Martin watches a movie tagged with the keywords “Norwegian” and “thriller”, he can be 

recommended thrillers and Norwegian movies, even if there are no other users in the system. 

However, the recommendations made to a new user will often be of low quality, because the 

system has not learned enough about the users’ preferences. 

Content-based filtering has, like collaborative filtering, the advantage that the 

recommendations improve as the user interacts with more items, because the system learns 

more about which features a user likes (Drachsler, Hummel, and Koper 2008). But content-

based filtering has one large weakness compared to collaborative filtering; it cannot 
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recommend items of different genres or content (Burke 2002). The reason for this, is that the 

recommender only recommends items similar, in terms of features, to the ones liked before. 

This may lead to recommendations that provide nothing new to the user (Bari, Chaouchi, and 

Jung 2014, 33-35). Another negative aspect of this approach is that domain knowledge is 

needed to make the feature tags of the items or to place the items in categories. 

2.2.3 Demographic-based 

Recommendation systems can make recommendations based on demographic information 

about the users. The idea is that users with different demographic features like age, gender, 

language, nationality and education will have different interests, and then should get 

recommendations accordingly. In demographic-based recommendation systems, users are 

categorized in terms of their personal attributes and the recommendations are made based on 

demographic classes (Burke 2002). For example, Martin who is an 18 years old Norwegian 

man, will be categorized in a group of persons with the same characteristics, and the items 

recommended to him will be the items that are most preferred by the other members of the 

group. 

This approach has a resemblance to user-based collaborative filtering, in the way that it finds 

similarities between users and suggests items based on the preferences of these users. The 

difference lies in how the approaches find similarities between users. User-based 

collaborative filtering finds similar users on the basis of interaction patterns, while the 

demographic-based approach finds similar users on the basis of demographic attributes.  

The demographic-based approach is, like collaborative filtering, independent of the domain 

knowledge, but it does not require the same amount of user history (Drachsler, Hummel, and 

Koper 2008). Instead, this approach requires the users to fill in demographic information 

about themselves, so they can get recommendations based on the preferences of users with 

similar demographic attributes. The advantage of this is that there is no learning period where 

the system learns about the preferences to the new user. This makes it possible for the system 

to give recommendations from the first second after registration. Other strengths of this 

approach is that the recommendations improve with time as more data are gathered, and the 

ability to recommend items with different genres and content than the items previously 

interacted with (Burke 2002). 
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One negative aspect of demographic-based recommenders is that the system must gather the 

demographic information from the user. This is done in dialogue with the user and cannot be 

done implicitly, like in collaborative filtering and content-based filtering (Drachsler, Hummel, 

and Koper 2008). This could be time consuming for the user, and some users do not want to 

share personal information. If the users choose not to enter the data or some parts of it, the 

recommendations will suffer (Drachsler, Hummel, and Koper 2008). Another disadvantage of 

this approach is the “grey sheep” problem, which happens when a user does not fit well in any 

of the groups used to classify users (Burke 2002). This leads to recommendations that are not 

based on the user’s preferences. The grey sheep problem is also found in collaborative 

filtering. Demographic-based filtering also has problems with cold start when there are new 

items, because the item must be interacted with by a set of users for the system to being able 

to recommend it. 

2.2.4 Knowledge-based 

Knowledge-based recommendation systems give recommendations based on domain 

knowledge about how different item features meet user needs and how items are useful for the 

user (Ricci, Rokach, and Shapira 2015). They do not try to make any long-term 

generalizations about the users, but instead base the suggestions on an evaluation of the match 

between a user’s need and the options available (Burke 2002). For example, if Martin is going 

to see a movie together with his little sister, who is eight years old, he will look for a different 

type of movie than what he usually likes. Therefore, it is better that the recommendations he 

gets from the system are based on the actual need in this situation, rather than on his usual 

preferences. With a knowledge-based system, Martin can specify together with his sister 

which features they would like the movie to have, e.g., “maximum 1 hour” and “children’s 

movie”, and the system will find the movies that best fits their needs.  

There are two types of knowledge-based recommendation systems: case-based and constraint-

based. These two types are similar in terms of used knowledge, but they use different 

approaches for calculating the recommendations (Felfernig and Burke 2008). While case-

based systems base recommendations on similarity metrics, constraint-based systems use 

explicit rules of how to relate user requirements to items features (Felfernig et al. 2011). 

Knowledge-based recommendation has its advantage compared to other recommendation 

approaches when the items have a low number of ratings, e.g., houses, cars, financial services 
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and computers, and when preferences change significantly over time, such that the user needs 

would not be satisfied by recommendations based on old item-preferences (Felfernig et al. 

2011). 

The knowledge-based approach does not suffer from the problems of cold start and sparsity. 

Instead of learning more about the users as more user data comes in, it uses a knowledge base 

to make recommendations that satisfy a user need. On the one hand, this gives no start-up 

period with recommendations of low quality, but on the other hand, the recommendation 

ability is static, not improving over time as in the learning-based approaches (Burke 2002). 

The approach works better than the others at the start of use, but it cannot compete with the 

other approaches after some time if no learning methods are used to exploit the user log 

(Ricci, Rokach, and Shapira 2015). Hence, it can be used successfully for websites where 

users have few visits and the user data does not make a good fundament for making long time 

generalizations of the users. It can also be used successfully together with an approach that 

suffers from the cold start problem.  

However, the main disadvantage of knowledge-based recommendation systems is that much 

time and work is needed for converting domain expert’s knowledge to formal and executable 

representations (Felfernig et al. 2011). In these systems, three kinds of knowledge are needed: 

catalogue knowledge about the items to recommend, functional knowledge about how items 

satisfy user needs and user knowledge with information of the user and her needs (Burke 

2002). While catalogue knowledge and functional knowledge must be specified by someone 

with domain knowledge, user knowledge must be gathered, either explicitly or implicitly, 

from the user. 

All recommendation approaches that use the log of user’s interactions to make 

recommendations, have the stability versus plasticity problem (Burke 2007). Users tend to 

change preferences over time, but this can be difficult for the system to notice when a user 

profile is made. If the recommendation system makes recommendations based on old ratings, 

it can result in recommendations that does not reflect the current preferences of the user. For 

example, if a person who like hamburgers becomes a vegetarian, recommendations of 

hamburger restaurants will be of low value for the user. The solution to this can be to give a 

lower weight to old reviews or only use data from a limited period, but this can result in loss 

of important information. The knowledge-based approach does not have this problem, 

because it only looks at the user’s needs and the options available. Thus, the approach is more 
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sensitive to changes in the user’s preferences, making this a suitable approach for domains 

where preferences are expected to change frequently. 

2.2.5 Community-based 

Recommendation systems that are community-based gives recommendations based on the 

likings and preferences of a user’s social connections (Ricci, Rokach, and Shapira 2015). This 

builds on people’s tendency to prefer recommendations by friends compared to those from an 

online system (Sinha and Swearingen 2001). The idea is to utilize the ratings from friends to 

make recommendations that are as good as if they were given by friends. This can be done by 

collecting information about the user’s social relations at social networks and then 

recommending items highly rated by the user’s social community (Sahebi and Cohen 2011). 

For example, if a high proportion of Martin’s friends on Facebook like the same movie, he 

can be recommended this movie.   

People usually have more trust in recommendations from friends than from strangers and 

vendors, because of the stable and enduring ties of social relationships (Yang et al. 2014). In 

this approach, the mutual trust between users are exploited to increase the user’s trust in the 

system (Ricci, Rokach, and Shapira 2015). Recommendations in this approach can be both 

cross-genre and novel for the user (Groh and Ehmig 2007). This is because the 

recommendations are based on patterns in user activity of the user’s friends and not on the 

content tags of the items. There is no need for domain knowledge in this approach either.  

The disadvantage of the community-based approach is that data from social networks are 

needed to generate the recommendations. Not all persons are member of such services, and 

will thereby not get any recommendations if the system is purely community-based. 

Sparseness is also a problem because a user has a limited number of friends in online social 

networks. To cope with this, some variants of the community-based approach traverses the 

connections in the social network, using the ratings of friends of friends, their friends again 

and so forth. The ratings provided by users with a nearer connection to the user, are then 

given a higher weight than those provided by the more distant users. However, this can make 

the user’s trust in the recommendations suffer, since the recommendations no longer are 

provided only by first-hand friends. 
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2.2.6 Hybrid 

Each of the presented approaches has advantages and disadvantages. Hybrid recommendation 

systems combine two or more approaches to reduce the drawbacks of each individual 

approach, and by this getting an improved performance (Burke 2002). For example, 

collaborative filtering, which in general has good performance, but suffers from the cold start 

problem, can be combined with an approach that does not have this problem, like the content-

based approach. Several methods can be used to make a hybrid recommendation system. The 

approaches can be implemented separately and combine the results from each, some parts of 

one approach can be utilized in another approach or a unified recommendation system can be 

made by bringing together the different approaches (Isinkaye, Folajimi, and Ojokoh 2015). 

2.3 Recommendation systems in practice 

As shown, there are many different recommendation system approaches and combinations of 

these that can be used. To illustrate how recommendation systems work in real life and the 

diversity of systems, some recommendation systems used by large companies will be 

presented here. Note, however, that companies have business secrets, so the presentation of 

the recommendation systems is based on articles and public information about their 

recommendation systems, and may have changed from the publication of this information. 

2.3.1 Amazon 

The American e-commerce company Amazon (amazon.com) was one of the first companies 

to use recommendations in a commercial setting. They are famous for recommendations like 

“Customers who bought this item also bought…” and “frequently bought together”, as 

illustrated in Figure 3. Amazon bases its recommendations on buying behaviour, explicit 

ratings on a scale from 1 to 5 and browsing behaviour (Aggarwal 2016, 5). 

Linden, Smith, and York (2003) explains how Amazon uses an item-based collaborative 

filtering approach to recommend products to its customers. The algorithm builds a similar-

items table by finding items often bought together. This is done by iterating over all the items 

in the product catalogue, and for each customer who bought it, record that this item is bought 

together with each of the other items bought by this customer. Then, similarity is computed 

between all pairs of items collected, typically done by a cosine measure. This calculation is 
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made offline, so the most similar products from the similar-items table can be presented fast 

to the user.  

 

Figure 3: Example of recommendations when visiting an item at Amazon 

2.3.2 Netflix 

Netflix (netflix.com) is a company that provides streaming of movies and series. It offers its 

customers a personalized interface, where previous views, ratings and items added to the 

user’s list give basis for the titles presented to the user. Netflix typically recommends a set of 

videos in a particular genre or a set of videos based on a user’s interaction with an item, as 

Figure 4 shows. The recommendations are then justified by what the set is based on, as 

“Because you watched …”, “Comedies” or “Top list for you”. Each set is presented as a 

horizontal list of items and the user is presented to several rows of such sets. 

The recommendation algorithm uses a set of factors to make its recommendations. Which 

genres the available movies and series have, the user’s streaming and rating history and all 

ratings made by users with similar tastes, are factors that affect the recommendations a user 

gets (Netflix 2016). This is an example of a hybrid recommendation system, that uses both 
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collaborative filtering – as similar users’ ratings are used to recommend, and content-based 

filtering techniques – as genres are used to recommend. The rating scale in Netflix is, as in 

Amazon, from 1 to 5 stars. 

 

Figure 4: Recommendations of videos in Netflix (Amatriain and Basilico 2015, 393) 

2.3.3 Facebook 

The social networking site Facebook (facebook.com) makes recommendations to its users at 

multiple areas of the website. Recommendation systems are used to suggest new friends, 

choose which posts should be showed at the top of a user’s newsfeed, propose pages for a 

user to like and recommend apps to download. The algorithm used for recommending apps in 

Facebook’s app centre will here be presented to give an understanding of how Facebook 

recommends content to its users.  

The recommendation system used in Facebook’s app centre has three major elements 

(Facebook Code 2012). The first is candidate selection, where a number of promising apps are 

selected. This selection is based on demographic information, social data and the user’s 

history of interaction and liking of items. The second element in the recommendation system 

is scoring and ranking. Explicit features like demographic data and dynamic features like 

number of likes are important when the ranking scores for the apps are calculated, but the 

most important feature is learned latent features. This is features learned from the user’s 

history of interaction with items. The predicted response for a user to an object, is calculated 
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by the dot-product of two vectors, where one is the latent features of the user and the other is 

for the characteristic of the object. The last element of the recommendation system is real 

time updates. With a huge number of users and new apps coming in frequent, the indexes and 

latent features must be updated in real-time to ensure the best possible recommendations. 

This is a good example of a model-based latent factor model that also utilizes the 

demographic- and community-based approach. Figure 5 shows recommendations of games in 

the app centre. Facebook is known for its like-rating, but uses also ratings on a scale from 1 to 

5, as seen in the figure.  

 

Figure 5: Recommendations of games in Facebook 

2.3.4 YouTube 

The world’s most popular online video community, YouTube (youtube.com), gives 

personalized recommendations of videos to its users, with a goal of letting the users be 

entertained by content they find interesting (Davidson et al. 2010). Figure 6 shows an 
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example of recommendations in YouTube. An important part in YouTube’s recommendation 

system is to find the most similar videos for each video. This is done in a similar fashion to 

the item-based approach to collaborative filtering used by Amazon. Two videos are regarded 

as similar if they have a high co-visitation count, i.e., if they are watched together by the same 

user within a given period of time, typically 24 hours. This number is then normalized with a 

function that takes the video’s global popularity into account, to avoid that the most watched 

videos get an advantage over the less popular ones. A mapping is then made between each 

video and its N most similar videos. 

To select the recommendation candidates for a user, a seed set of videos are generated. This is 

all the videos the user has liked explicitly or implicitly. A candidate set of videos are 

generated by taking the union of all videos that are similar to the videos in the seed set. The 

candidate set is then extended with all videos similar to the videos in the set, and this is 

repeated several times to increase the span of the videos. YouTube wants the 

recommendations to help the users to explore new content, and then it is important that not all 

videos are too similar to videos in the seed set. 

 

Figure 6: Recommendations of videos on Youtube (Manoharan, Khan, and Thiagarajan 2017) 
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The videos in the candidate set is then ranked according to video quality and user specificity. 

Video quality is computed by variables independent of the user, like total view count and the 

total number of positive ratings for a video. YouTube has explicit data in form of likes and 

dislikes, and implicit data from for example viewing history, comments and sharing of videos.  

To ensure the relevance of the video for the user, the user specificity reflects if the video is 

closely matched with the user’s unique taste and preferences. In the end, not only the videos 

that are ranked highest are recommended. Videos from different categories are selected to 

increase the diversity of the recommendations.  

2.4 Comparison of approaches 

The approaches will here be compared in terms of their characteristics, strengths and 

weaknesses. One of the most important aspects when comparing the different 

recommendation approaches is what kind of data that are used and how this data is used to 

make recommendations. Figure 7 illustrates the data inputs and background data that are used 

in each of the approaches. 

In demographic-based, community-based and collaborative filtering, the user rating database 

for the whole set of users constitutes the background data for the recommendations. 

Demographic-based filtering uses in addition the demographic information about the users. 

The individual user’s demography, her social connections or her ratings are then used as input 

data, depending on which of these three approaches it is, so that the system can categorize the 

user in a group of users. Recommendations can then be made based on the preferences in this 

group of users. Item-based collaborative filtering, does not use the ratings to find similar 

users, but instead uses them to find items that are similar to the items rated highly by the user. 

In model-based collaborative filtering, ratings are used to make a predictive model, which is 

used to recommend items. 

As Figure 7 shows, content-based filtering uses the user’s ratings or interests as input data. 

The database of items and the associated metadata are used as background data, instead of the 

user ratings, as in collaborative filtering. Based on the user’s ratings and interests, items 

similar in content are found from the item database. The knowledge-based approach is the 

only approach that does not use any data about user ratings to make recommendations. 

Instead it uses a knowledge base to map a user need to an item in the item database. 
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Figure 7: Input and background data used in different recommendation approaches. 

All of the approaches have strengths and weaknesses, which is illustrated in Table 1. With the 

exception of the knowledge-based approach, all the presented approaches use some kind of 

learning. This means that the systems learn more about the users as more data are gathered 

about them and the items, and that the recommendations consequently are improved. As a 

result, the knowledge-based approach is inferior to the other approaches when the system is 

used for an extended period of time. On the other hand, if the system operates in a domain 

where the user is likely to change preferences, the learning can lead to recommendations that 

are not relevant for the user because they are based on the user’s old habits. In cases like this, 

the learning gives a negative impact on the recommendations, and the knowledge-based 

approach could be a better option because it is more sensitive to changes in preferences. But 
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in general, the learning-based approaches will give the best recommendations for a frequent 

user.  

The absence of learning in the knowledge-based approach gives recommendations of the 

same quality for new users as for old users. This means the users can get relevant 

recommendations from the first time they use the system, which is not the case for all of the 

approaches that use learning. Without enough data about the users’ interaction with items, 

these approaches will generate recommendations of low quality.  

             Approach 

Feature 

Collaborative 

filtering 

Content-

based 

Demographic-

based 

Knowledge-

based 

Community-

based 

Improvement over 

time 
+ + +  + 

Sensitive to 

changes 
   +  

Cold start – new 

user 
-   +  

Cold start – new 

item 
-  - + - 

Only needs 

implicit data 
+  -  + 

Needs data from 

social media 
    - 

Increased trust     + 

Needs knowledge 

engineering 
   -  

Needs domain 

knowledge 
 -  -  

Cross-genre and 

cross-feature 
+ - +  + 

Table 1: Advantages and disadvantages of recommendation approaches. “+” indicates an advantage for this 

feature, “-“ indicates a disadvantage for this feature, while no sign indicates neither advantage or disadvantage 
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Collaborative filtering, demographic-based filtering and community-based filtering all have 

the cold start problem. Cold start consists of two different but related problems: the new user 

problem and the new item problem. Item-based collaborative filtering, demographic-based 

filtering and community-based filtering do all have the new item problem, while user-based 

collaborative filtering has problems with both new users and items. Model-based 

collaborative filtering does also have cold start problems, but not to the same extent. 

Content-based filtering does not have the cold start problem because it can explicitly ask for 

the user’s interest, and then recommend items that have content in accordance with these 

interests. If the system does not collect these interests explicitly, or the user chooses not to 

enter her preferences, the recommendations will suffer, but as soon as at least one item is 

interacted with, items with similar content will be recommended. Even if the user is the first 

user of the system, there will be given recommendations because the approach is independent 

of the ratings to users other than the one getting the recommendation. When new items are 

added, they can be recommended from the first second because they have content tags. 

As Table 1 tells us, collaborative filtering and community-based filtering have the advantage 

of only needing implicitly gathered data. Demographic-based filtering, on the other side, must 

explicitly ask the users for demographic information to be able to categorize the users in 

terms of demographic attributes, while content-based filtering needs to explicitly ask for the 

user’s interests to avoid the cold start problem, but can otherwise use implicit data to learn 

content preferences. Knowledge-based filtering can both use explicit and implicit ratings to 

understand the need of the user. 

Despite the fact that community-based filtering only needs implicit ratings, it is dependent on 

social connections from social networks. Without this information, the approach cannot 

provide any recommendations. This will be the case when a user is not a member of social 

networks, or does not want to share this information. However, the strength of using this kind 

of data is that it can increase the users’ trust in the recommendations, by exploiting the trust in 

social relationships. 

One downside of the knowledge-based approach is that knowledge engineering is needed to 

make the knowledge base. This can be a time-consuming process where domain knowledge is 

needed. Content-based filtering also requires domain knowledge because knowledge about 

the items are needed to make the item tags, but this can be added by the owners of the items 
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as they are added. The other approaches, on the other hand, are independent of domain 

knowledge. 

An often-desired feature in recommendation systems is the possibility to make 

recommendations with different content or genres than the items the user has interacted with 

in the past. These recommendations that are relevant for the user, but do not contain 

characteristics that are in the user’s profile, are called serendipitous recommendations. 

Collaborative filtering, demographic-based filtering and community-based filtering can all 

make these because they base the recommendations on similarities in user data, rather than on 

the properties of the items. This gives the advantage of letting the user explore new exciting 

and varying material. This feature is also possible in knowledge-based recommendation 

systems, but then, this must be specified in the knowledge base, and is not done 

automatically. In content-based filtering, it is not possible with serendipitous 

recommendations because the recommendations are made on the basis of preferences in types 

of content. 

2.5 How to evaluate recommendation systems 

When making a recommendation system, it is important to evaluate the qualities of the 

recommender, both for selecting the right approach and to see if the system is successful 

according to its goals. In this section, there will be a presentation of the different experimental 

settings that can be used for testing recommendation systems, a presentation of which 

characteristics that are commonly evaluated and a review of how to measure the accuracy of a 

recommendation system. 

2.5.1 Experimental settings 

There are three types of experimental settings that can be used to evaluate recommendation 

systems, namely offline experiments, user studies and online evaluation (Gunawardana and 

Shani 2015). In offline experiments, the experimenter uses a pre-collected dataset consisting 

of ratings or users’ item interactions to simulate the behaviour of users interacting with the 

recommendation system. The advantage of this approach is that no interaction with real users 

are needed, making it easy to evaluate different implementations and compare them to each 

other. On the other hand, this approach can only be used to evaluate a small subset of the 
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features of a recommendation system, typically the accuracy of the predictions. Since this 

approach only simulates how real users interact with the recommender, it is not possible to 

measure the recommendation system’s influence on user behaviour.  

The simulation in offline experiments can be carried out by collecting historical data, leaving 

some of the data out and then comparing recommendations or predictions of ratings with the 

hidden data. The goal of experiments in this setting is therefore often to find the algorithm 

with the best prediction or to see how changes to one algorithm influence the accuracy of the 

recommendations. The data used for training a model is called the training set, while the 

hidden data is called the test set. The reason for using a separate dataset is to avoid overfitting, 

i.e., making incorrect generalizations from random properties of the training data (Manning, 

Raghavan, and Schütze 2008, 271). 

While traditional recommendation system research has focused on algorithms’ accuracy, 

research in this area has in recent years started to emphasize the importance of other aspects 

of recommendation systems, like evaluating recommendation systems from a user experience 

perspective (Konstan and Riedl 2012). To evaluate the user experience of a recommendation 

system, the system must be tested in a lab or in the field with real users (Knijnenburg and 

Willemsen 2015). User studies do the former, while online evaluations do the latter. 

In a user study, a number of test subjects are asked to do a set of tasks that involves 

interaction with the recommendation system, so their behaviour can be observed and 

measured to gain quantitative data (Gunawardana and Shani 2015). In addition, the subjects 

can be asked questions, to provide qualitative data about their opinions when it comes to the 

use of the system. The advantage of user studies is its ability to answer a wide set of questions 

of the qualities of the recommendation system. However, this approach also has a major 

downside. It is an expensive evaluation method because it is time-consuming and a set of 

subjects must volunteer or be paid to participate.  

Online evaluation is conducted by measuring real users doing real tasks (Gunawardana and 

Shani 2015). This type of evaluation is commonly carried out as A/B tests (Knijnenburg and 

Willemsen 2015). An A/B test is done by changing exactly one thing from the original system 

to an alternative system, and then redirecting a small percentage of the users to the alternative 

system (Manning, Raghavan, and Schütze 2008, 170). This makes it possible to measure the 

effects a change in a system makes on the users’ behaviour, like for example, if users in one 
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system follow recommendations more often than in another system. For such an evaluation to 

be successful, it is important that users are randomly redirected to the different systems and 

only one variable are changed between the systems. Online evaluation gives the best evidence 

for the true value of a system, but is not conducted without risks (Gunawardana and Shani 

2015). For example, if a recommendation algorithm with low accuracy is tested on real users, 

it can result in dissatisfied users and decreased user visits and product sale. Because of this, it 

is smart to use this experimental setting after offline evaluation and user studies are carried 

out.    

2.5.2 Dimensions and metrics 

Recommendation systems have several characteristics, both quantitative and qualitative, that 

can be important for determining its quality. Avazpour et al. (2014) list the following 16 

dimensions that are commonly used to evaluate the successfulness of a recommendation 

system: 

- Accuracy, also called correctness, i.e., how close the recommendations are to a set of 

predefined correct recommendations. 

- Coverage, i.e., the proportion of the items and users that can be recommended or 

given recommendations respectively. 

- Diversity, i.e., to which extent the items recommended to the user are not similar to 

each other. 

- Trustworthiness, i.e., the users’ trust in the system. For example, good 

recommendations and explanations of why items are recommended can increase a 

user’s trust in the system, while recommendations of low quality can lead to a user 

losing her trust in the system.  

- Recommender confidence, i.e., the recommendation system’s trust in its 

recommendations and predictions. For example, a system will get a high confidence in 

a prediction if there is a high probability for it to be correct, as when the system has a 

high amount of data about the given user and item. It is desirable that the system have 

a high confidence in the recommendations presented to the user.  
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- Novelty, i.e., the systems’ ability to recommend items the user did not know about. 

- Serendipity, i.e., the systems’ ability to give recommendations that are both surprising 

and interesting for the user. 

- Utility, i.e., the value the recommendations give to a user or to the owner of the 

system. For example, good recommendations will give high utility for the user and 

bad recommendations will give low utility, while an increase in the revenue will give 

high utility for the system owner. 

- Risk, i.e., the risk for a user associated with a recommendation. For example, if a 

recommendation system is used to recommend stocks, it is important that the items 

have a minimal risk, not only a possible high profit. 

- Robustness, i.e., the stability of the system in case of false information, either given by 

accident or on purpose. For example, if an owner of an item want to increase the 

popularity of that item by giving good ratings from fake user profiles, a robust 

recommendation system will be affected to a small extent by these false ratings. 

- Learning rate, i.e., how fast a recommendation system can adapt the recommendations 

to new information and trends. 

- Usability, i.e., how user friendly the interface of the recommendation system is 

regarded by the users. For example, a recommendation system with a chaotic 

presentation of items can be of low value for the users, even though the 

recommendations are accurate. 

- Scalability, i.e., how the system can scale up to large datasets of items and users, both 

with regards to time and space requirements. The scalability of a recommendation 

system is often determined in terms of training time, prediction time and memory 

requirements (Aggarwal 2016, 235). The training time is usually done offline and can 

without problems be up to a few hours, while the test time must be very low as the 

users are not interested in waiting for recommendations. 

- Stability, i.e., how consistent the recommendations are over a period of time. For 

example, systems that change its recommendations rapidly, without the user changing 
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her user habits, can result in confusion for the user and a subsequent decreased trust in 

the system.  

- Privacy, i.e., to which degree the users’ data stay private, not being available to any 

third-party.  

- User preference, i.e., the users’ perception of the recommendation systems. For 

example, users can try several systems, and decide which they prefer. 

Because different recommendation systems have different needs and goals, the developers of 

the system must choose which dimensions that are important to evaluate in order to meet 

these expectations. Some of the dimensions affects each other, either positively or negatively. 

For example, an increase in coverage will often increase the accuracy, while an increase in 

diversity, serendipity or novelty can result in a loss of accuracy.  

2.5.3 Measuring accuracy 

In Section 2.1, the rating prediction and top-n recommendation were presented as the two 

main problems to solve for recommendation systems. In this section, there will be given a 

review of how the accuracy of these two problems can be measured in an offline setting. To 

answer research question Q2 and Q3, we must measure the accuracy of recommendation 

approaches. This is the reason for reviewing the accuracy metric, and not the other metrics 

presented in Section 2.5.2. 

Predicting user ratings 

If the recommendation system’s task is to predict users’ ratings of items, the metrics root-

mean-squared-error (RMSE) and mean-absolute-error (MAE) can be used to measure the 

accuracy of the predictions. Ratings are divided into two independent sets: a training set and a 

test set. The training set is used to learn a function for predicting the ratings, so that the 

recommender can predict the users’ ratings of items in the test set. The predicted rating for 

each item can then be compared to the actual rating in the test set to find the difference, or the 

residual, of the ratings. As stated in Section 2.5.1, it is important that the training and test sets 

are disjoint to avoid overfitting.    



34 

 

RMSE is possibly the most commonly used metric to evaluate the accuracy of rating 

predictions (Gunawardana and Shani 2015). It was used as the metric in the Netflix Prize, 

described in Section 2.1. When calculating RMSE for a test set 𝜏, the residuals of the 

predicted rating 𝑟̂𝑢,𝑖 and the actual rating 𝑟𝑢,𝑖 are squared, the average of these values is 

calculated and the square root is taken on the average: 

 
𝑅𝑀𝑆𝐸 =  √

1

|𝜏|
∑ (𝑟̂𝑢,𝑖 − 𝑟𝑢,𝑖)

2

(𝑢,𝑖)∈𝜏 

 
(1) 

MAE resembles RMSE, but calculates instead the average absolute deviation of the predicted 

ratings from the correct ratings: 

 
𝑀𝐴𝐸 =  

1

|𝜏|
∑ |𝑟̂𝑢,𝑖 − 𝑟𝑢,𝑖|

(𝑢,𝑖)∈𝜏 

 (2) 

In both RMSE and MAE, a low value indicates high prediction accuracy. The main difference 

between the two measures is that RMSE penalizes large differences in ratings more than 

MAE, because it squares the residuals before calculating the average (Avazpour et al. 2014).  

Predicting interesting items 

When the task of the recommender is not to predict ratings, but instead to predict the top n 

items for the user, it is necessary to use other metrics for accuracy than RMSE and MAE. 

Precision and recall are two commonly used metrics for this case. As basis for these measures 

are usually the items that a user has accessed, but it could also be the items that are rated 

positively or are bought by the user. These items are considered as relevant for that user. The 

user data are also in this case split into a training set and a test set. The training set is used to 

learn a function that predicts for each item in the test set if it is relevant or not for the user, or 

to produce a recommendation list where items are sorted based on their predicted relevance 

for the user.  

Each item can be classified as either true positive, false negative, false positive or true 

negative, based on if it is recommended or not and if it is used or not, as Table 2 shows.   
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 Recommended Not recommended 

Used True positive (TP) False negative (FN) 

Not used False positive (FP) True negative (TN) 

Table 2: Confusion matrix for possible classifications of an item 

When all items in the test set are classified, precision and recall can be measured as follow, 

depending on how many items that are classified in each of the classes: 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 (3) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

Precision measures the proportion of the recommended items that are actually used, while 

recall measures the proportion of the used items that are recommended. One weakness of 

these two measures are that items not accessed are assumed not to be interesting, which is not 

necessarily true (Gunawardana and Shani 2015). These items could be interesting for the user; 

they are just not discovered yet. There is a trade-off between precision and recall, in the way 

that an increase in precision often results in a decrease in recall (Avazpour et al. 2014). For 

example, if the number of items in the recommendation list is increased, it will probably 

improve the recall, but worsen the precision. 

When the size of the recommendation list is predefined, it is appropriate to use precision at n, 

which means to compute the precision for n recommendations, ignoring the other items. Then 

we can measure the precision of the n recommendations in the recommendation list. 

Otherwise, it is desirable to measure the precision for various sizes of lists. This can be done 

by plotting the precision versus recall rates in a graph, which is called a precision-recall curve.  

A measure commonly used when the recommendation list is ordered, is mean average 

precision (MAP). MAP emphasizes the top recommendations and was the measure used in 

The Million Song Dataset Challenge (McFee et al. 2012), presented in Section 2.1. This 

measure is often used in implicit feedback situations (Aiolli 2013, Wu et al. 2016, Parra et al. 

2011). Traditionally, this measure takes all recommendations into account. However, as 

recommendation systems only recommend a limited number of items, it is common to use a 
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truncated version of this measure, where only the n first recommendations are taken into 

account (McFee et al. 2012). We will therefore present this version of the measure, and refer 

to this version when saying MAP. For this measure, average precision at n (AP@n) is first 

calculated for each user in the following way: 

 
𝐴𝑃@𝑛 =  ∑ 𝑃(𝑘)/ min(𝑚, 𝑛)

𝑛

𝑘=1

 
(5) 

 

Here, P(k) is the precision at k if the item in position k is considered relevant for the given 

user, or otherwise it equals 0. The symbol m is the number of items the user has interacted 

with and n is the size of the recommendation list. This means we take the average precision at 

each recall point, i.e., each index in the recommendation list with an item considered relevant. 

The MAP is then computed by taking the average of AP@n over all the users, the following 

way, where N equals the number of users and n is the recommendation list size: 

 

𝑀𝐴𝑃 =  ∑ 𝐴𝑃@𝑛𝑖/𝑁

𝑁

𝑖=1

 
(6) 

Other measures often used in implicit feedback situations are Hit-Rate (HR) and Average 

Reciprocal Hit-Rank (ARHR) (Ning and Karypis 2011, Deshpande and Karypis 2004). HR 

measures the partition of users who get at least one correct recommendation in the 

recommendation list (Jannach et al. 2010, 181). ARHR, which is also referred to as mean 

reciprocal rank, does, like HR, measure the proportion of users who get at least one correct 

recommendation, but does in addition take the rank of the correct recommendation into 

account. ARHR is measured the following way:  

 

𝐴𝑅𝐻𝑅 =
1

# 𝑢𝑠𝑒𝑟𝑠
∑

1

𝑝𝑖

# ℎ𝑖𝑡𝑠

𝑖=1

 
(7) 

# Hits denotes the number of users who get a correct recommendation in the recommendation 

list, while 𝑝𝑖 is the position of the first correct recommendation for a user i, that get at least 

one correct recommendation. For all of the metrics for predicting interesting items that are 

presented here, larger values indicate higher prediction accuracy. 
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2.5.4 Datasets 

The dataset used in an offline evaluation should be as similar as possible to the data expected 

when deploying the system online (Gunawardana and Shani 2015). If the system has been 

operational for a certain time and has a large user base, a dataset can be created by logging 

user data. In other situations, this can be problematic, for example when the system is not yet 

operational or it only has small amounts of data. Then, it is possible to use an existing 

available dataset. If no existing dataset matches the domain of the recommendation system, an 

alternative is to use synthesized data that matches the domain, but this does not give accurate 

modeling of real users and real data (Herlocker et al. 2004).   

Several datasets that can be used in recommendation system research are available online with 

real user data. Some of the most commonly used are: 

- MovieLens, which consists of several datasets of movie ratings and metadata, where 

the largest has 20 million ratings by 138 000 users for 27 000 movies, while the 

smallest have 100 000 ratings (Harper and Konstan 2016). 

- Amazon dataset, with 144 million reviews of 9 million items (McAuley et al. 2015). 

- The Book-Crossing Dataset, with both explicit and implicit user data for books 

(Ziegler et al. 2005).  

- The Jester Dataset, with explicit user ratings for 100 jokes (Goldberg et al. 2001). 

- The Million Song Dataset, with 48 million song counts for 380 000 songs and 1.2 

million users, with corresponding metadata (Bertin-Mahieux et al. 2011). 

Comparison of datasets 

When choosing a dataset for evaluation, it is essential to analyze the properties of the datasets 

to see if they model the tasks of the recommendation system under evaluation in a good way. 

Herlocker et al. (2004) divide properties of datasets into three categories: domain features, 

inherent features and sample features. Domain features describe characteristics of the content 

being recommended and rated, inherent features describe features of the ratings and data 

collection practices, and sample features describe distribution properties of the data. The 
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different datasets will here be compared in terms of a subset of the features of these 

properties. 

As Table 3 shows, all of the presented datasets have different product domains, i.e., they 

contain ratings for different types of items. MovieLens operates in the movie domain, 

Amazon is in the e-commerce domain and has a diverse set of products, while Book-crossing, 

Jester and Million Song is in the book, joke and music domains respectively. Different 

domains tend to have different preference heterogeneity, which means they differ in the 

preference pattern of the users (Im and Hars 2007). For example, there is a tendency that 

peoples’ preferences overlap more in the movie domain than in the domain of research papers 

(Im and Hars 2007). This can in turn affect the accuracy of the recommendation algorithms on 

the different domains. 

 MovieLens Amazon Book-Crossing Jester Million Song 

Content Movies Various 

products 

Books Jokes Music 

Context Web Web Web Web Web 

Cost for false 

negative 

Low Low Low Low Low 

Cost for false 

positive 

Low Intermediate Low Low Low 

Benefit High High High Intermediate High 

Table 3: Comparison of domain features of datasets 

However, there are also some similarities for these datasets in the domain features presented 

by Herlocker et al. (2004). The data for all of them are collected from web-settings and the 

main user task supported by each of the recommendation systems is to find good items for the 

user. There are very low costs for false negatives in all of the domains compared to for 

example a recommendation system for juridical documents, where missing recommendations 

of good items could be problematic for a lawyer. False positives do also have low costs in the 

domain of these datasets as incorrect recommendations only could waste small amounts of 

time and money for the users. The only exception here is Amazon, where incorrect 

recommendations of retail items could be both costly and time-consuming for the user. In all 
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of the domains, except in Jester’s case, the recommendations could give huge benefits for 

both the users and the companies by dealing with the information overload problem, as the 

item catalogues are extremely large. Jester does not have this large number of items and are 

thus not facing such a high potential benefit from its recommendations.   

There is also differences in the datasets when it comes to the inherent features, as seen in 

Table 4. MovieLens, Amazon and Jester have gathered explicit user ratings, The Million Song 

dataset has gathered implicit data about play counts, while The Book Crossing dataset 

contains both explicit and implicit data. All of the datasets have only one dimension for the 

ratings, unlike for example TripAdvisor where one user can rate a hotel stay with several 

dimensions, as service, location and cleanliness. MovieLens and Amazon do both have 

ratings on a 1-5 scale, Book-Crossing has a rating scale from 1-10, while Jester has a 

continuous rating scale from -10.0 to 10.0. 

 MovieLens Amazon Book-Crossing Jester Million Song 

Explicit or 

implicit 

Explicit Explicit Both  Explicit  Implicit  

Scale 1-5 1-5 1-10 and 

implicit 

-10.0-10.0 

continuous 

Play counts 

(unary) 

Dimensions 

of ratings 

1 1 1 1 1 

Timestamps Yes Yes No No No 

Demographic 

data collected 

Yes No Yes No No 

Content data 

collected 

Tags Tags Publisher 

information 

Text of jokes 

 

Tags 

Table 4: Comparison of inherent features of datasets 

MovieLens and Amazon are the only ones of the datasets that contain timestamps. This 

information can be useful if a researcher wants to simulate the system at a single test time, 

where all ratings after that time is hidden. Content data and demographic information about 

users are additional data that can be valuable in a dataset. MovieLens, Amazon and Million 

Song have content data in the form of tags, while Jester has its jokes in textual form. The 
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Book-Crossing has publisher information about each book, as year published, title of the book 

and the book’s publisher. Both Book-Crossing and MovieLens have demographic data about 

its users. 

The possibly largest differences of the datasets are found in the sample features. As Table 5 

shows, the number of users ranges from 73 000 to 21 million, the number of items ranges 

from as little as a hundred to over 9 million, while the number of ratings ranges from around a 

million to 155 million. All the datasets have more users than items and, not surprisingly, more 

ratings than items. Amazon has not only the highest number of users, but also the highest 

number of items and ratings. Jester, on the other hand, has both the smallest number of users 

and items, while The Book-Crossing dataset has the fewest ratings. 

 MovieLens Amazon Book-Crossing Jester Million Song 

Users 138 000 21 M 279 000 73 000 1 M 

Items 27 000 9.35 M 271 000 100 384 000 

Ratings 20 M 144 M 1.15 M 4.1 M  48 M 

Avg. ratings 

per user 

145 7 4.1 56 48 

Avg. ratings 

per item 

740 17 4.4 41 000 125 

Overall 

density of 

ratings (avg. 

% of the 

items that are 

rated per 

user) 

0,54% 0,000075 % 0,0015% 56% 0,0125% 

Table 5: Comparison of sample features of datasets 

The differences are also visible in the average number of ratings per user and item, but even 

more significantly in the overall density of ratings. This metric is computed as the average 

percent of the items that are rated per user. As much as 56 percent of the items are on average 

rated by the users of Jester, which can be explained by the small number of items, and that 

smaller amount of time and resources are needed to read jokes compared to the items rated in 

the other datasets. MovieLens and Million Song also have a high density in the ratings, while 
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Book-Crossing and especially Amazon have a very low density in the ratings. This is natural 

because it takes significantly longer time to read a book than to watch a movie or listen to a 

song, and a user cannot be expected to buy even a small part of Amazon’s huge item 

catalogue.  

2.6 Summary 

This chapter has given a general description of recommendation systems and the two main 

problems concerned with such systems: the rating prediction problem and the top-n 

recommendation problem. There has been a presentation and comparison of the most 

commonly used recommendation system approaches, namely collaborative filtering, content-

based, demographic-based, knowledge-based, community-based and hybrid approaches. All 

of these approaches have different strengths and weaknesses, and they use different data 

sources for making the recommendations. Thus, the best recommendation approach in a 

particular situation depends on the needs and goals of the system and the available data in the 

system. Hybrid approaches are often used to minimize the disadvantages of two or more 

approaches while at the same time exploiting the advantages of each approach. This was 

observable when we looked at the recommendation systems used in practice by Amazon, 

Netflix, Facebook and YouTube. 

Recommendation systems can be evaluated in three different experimental settings: offline 

experiments, user studies and online evaluation. Offline experiments use pre-collected 

datasets and are typically used for testing the accuracy of the recommendations. User studies 

and online evaluation, on the other hand, are conducted by interacting with real users, either 

in a lab or in a real setting, respectively. These two settings can answer a wider set of 

questions than offline experiments, but not without a cost; user studies are expensive to 

conduct and online evaluation can result in dissatisfied users if they are exposed for an 

unwanted or unsuccessful change in the system.  

If the recommendation system aims to solve the rating prediction problem, RMSE or MAE 

can be used to predict the accuracy of the rating predictions, by comparing the predictions to 

real ratings. Recommendation systems that is concerned with the top-n recommendation 

problem on the other hand, can use precision, recall, HR, ARHR and MAP for measuring the 

accuracy, as is often the case when the system bases the recommendations on implicit data. 
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When evaluating the accuracy in an offline setting, a dataset with item and user data is 

needed. This can be collected from the application the recommendation system is made for. In 

other situations, where this is not possible because of small amounts of data or when the 

system is not yet released, online existing datasets from other application or synthesized 

datasets can be used. We presented five datasets that contain rating information for movies, e-

commerce products, books, jokes and songs. These did not differ only in domain features, but 

also in inherent and sample features. 

Now that we have gotten a general understanding of how recommendation systems work and 

are evaluated, we can start to look at the case of the sports video application Forzify to find 

out how recommendation systems can be utilized in this context. This will be the topic of the 

next chapter. 
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3 Case: Forzify 

In this chapter, we will present the context of the sports video application Forzify, look at 

recommendations in this context and present the data sources available in Forzify that could 

be used for making recommendations. Further, there will be a description of wanted features 

in an improved recommendation system for Forzify and there will be a subsequent discussion 

of the suitability of different recommendation approaches in terms of the wanted features and 

available data. This discussion will be done in light of the comparison in Section 2.4, and 

makes basis for research question Q1, which was specified in Section 1.2.  

3.1 Context 

Forzify is a system for football events, which aims to give the users an interactive and social 

experience (ForzaSys 2016). Forzify builds on the same ideas as DAVVI (Johansen et al. 

2009, Johansen et al. 2010, Johansen et al. 2012), which is a prototype of the next generation 

multimedia entertainment platform. The new generation of football supporters are not just 

watching the games at home or on the stadium. They interact with friends and fellow 

supporters on social media, sharing experiences, getting updates on the latest scores and 

discussing the newest actions. These new interaction patterns have been taken into account 

when making Forzify. The idea is to boost supporter activity on the match day, but also on the 

other days of the week.  

The system is like a sport version of Spotify, where the users can watch video clips of games, 

make video playlists, share and discuss sport events, create their own events, get 

recommendations by friends and collect and redistribute their favourite video clips. The 

system is today in use by Tromsø IL, Viking FK and Vålerenga IF, three football teams from 

Eliteserien, which is the premier division in Norway. Forzify is made both as a website and as 

an app for iOS and Android. The version of Forzify used by these three clubs, only include 

videos of the given club, but in 2017, one Forzify-version will be released for Eliteserien and 

one for Allsvenskan (the top division in Sweden), where videos for all of the teams will be 

published, and games will be sent live. 

Figure 8 shows a screenshot of the home page of the Forzify-version made for Tromsø IL. 

Here, the user is presented to three sets of videos: one for the last game, one for trending 



44 

 

videos and one for videos recommended to the user. The user can also browse videos by other 

means. There is a search bar where the user can do text searches, with the possibility of 

adding tags to the search. The user can choose different categories of videos from the 

“videos”-tab, e.g., “most popular videos”, “newest videos” or “matches”, where the user can 

choose videos from a particular match.    

 

Figure 8: Screenshot of the home page of Forzify 

3.2 Recommendations in Forzify 

To give the users of Forzify a good user experience, it is crucial with recommendations of 

content that are relevant for the users and which support exploring. This will especially be 

important when Forzify is released for Eliteserien and Allsvenskan, where several videos will 

be added for the 16 teams each football round. The majority of the users do not have time or 

desire to browse through all videos to find new and exciting material. By giving suggestions 

of interesting videos, the users can use less time searching, and if the suggestions are 

successful, the user satisfaction will increase, which again can result in loyal users and a 

higher number of visitors. 

Forzify does today present recommendations to its users in two cases. The first is when a user 

is on the main page, where a set of videos are recommended based on the user’s history. 

These videos can also be watched by clicking on the “Recommended”-tab at the top right 
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corner, as seen in Figure 9. The second case is when a user watches a video, related videos are 

presented to the right of the video being played, as seen in Figure 10. For the first case, the 

user must be logged in to get recommendations, while in the second case, the user can be 

anonymous and still get recommendations, as the related videos are not based on the user’s 

preferences. In both cases, 10 recommendations are shown, but the user can choose to watch 

the next 10 recommendations by clicking on the next page button. We will in this thesis focus 

on the personalized recommendations that are presented in the main page, and we will focus 

on the new version of Forzify where videos are available for all teams in a division. The 

choice to concentrate on the new Forzify-version and not the club versions, is done because 

the new version will include many more videos and consequently it will get huger benefits 

from the recommendations. 

 

Figure 9: Recommended videos for a user in Forzify 

The existing system uses the open source distributed search engine Elasticsearch (Elastic 

2016) both for search and to generate recommendations. The recommendation system uses a 

content-based approach as the recommendations are produced on basis of the content of the 

items. Recommendations for a user are made by doing a search in Elasticsearch for the text 

fields associated with the videos the user has watched, liked or added to playlists, and the 

previous searches. Related videos are found by using the text fields stored about a video to 

search for videos with similar content. Newer videos are given a higher weight and are thus 

more likely to be recommended, while the 20 videos last watched by the user are removed 

from the recommendation set. 
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Figure 10: Recommendation of related videos in Forzify 

The content-based approach used by Forzify has both advantages and disadvantages, as 

presented in table Table 1. The strength is primarily that the system can learn about the users’ 

preferences and thereby give better recommendations as the users interact with the system. 

There are also less cold start problems compared to collaborative filtering. In addition, using a 

distributed search engine, like Elasticsearch, gives time-efficient recommendations. On the 

other hand, Forzify’s recommendations will be restricted to only recommend the same type of 

content as the user has looked at before. This will not provide serendipitous recommendations 

that let users explore new types of content. For example, a user who only has watched free 

kicks of one team, will only get recommendations of free kicks and videos from that team, 

even though she also might be interested in watching other content, as beautiful goals from 

other teams. In Figure 9, we can see an illustration of this. The user has watched a few videos 

of shots and goals by the player Thomas Lehne Olsen, and are then recommended videos of 

this player in eight out of ten recommendations. Content-based filtering does also tend to give 

lower accuracy than collaborative filtering. In addition, recommendation systems do generally 

benefit from using more than one data source, but in Forzify’s case, only content information 

is used for generating the recommendations. 
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3.3 Data in Forzify 

There are several data sources in Forzify that can be used for making recommendations. We 

will here present these data sources, look at which recommendation approaches that can be 

used with this data and review what data that are needed to use the other approaches.  

In Forzify, data about users’ item interaction history are recorded, which includes mostly 

implicit data, like the videos watched by a user, the number of times each video is watched by 

a user, which videos that are added to playlists by a user and the searches performed by a 

user. It also includes explicit rating data about which videos a user has liked. This information 

can be used to infer the preferences of the user. However, there are no dislike-buttons or scale 

ratings, i.e., there are only unary ratings, which means it is not possible to know from the 

ratings if a user dislikes any items, as described in Section 2.1. We can then only know if a 

user has liked or added a video to a playlist, which indicates a strong preference, or if a user 

has interacted with an item, which gives a weaker indication of preference. For example, a 

user can watch a video and not enjoy it, but it is not possible to know this negative preference.   

This absence of negative preference data, gives certain implications for the design of the 

recommendation system. We cannot predict ratings when we have no explicit ratings on a 

scale from negative to positive. Instead, we can handle the recommendations as a top-n 

recommendation problem, as described in Section 2.1, treating all user-item data as positive 

indications for preference and then make recommendations for the items most probably 

preferred by the user. Top-n recommendation measures can then be used, as precision, recall, 

HR, ARHR and MAP, to evaluate the successfulness of the recommender. Items can be 

considered relevant for a user if there exist any preference data for that user-item pair, or 

otherwise be treated as non-relevant.  

Forzify also has item data. Each video has a title, which tells us about its content, and there is 

content data, which tells us about the features of the video. The content data is a set of tags 

that can be added to the videos. For example, one video of a football goal can be tagged with 

“Goal”, the club name, the name of the goal scorer and the name of the player who had the 

assist. This information gives a valuable description of the items, as the items themselves do 

not contain any textual content, like in for example a text document. If the content data are 

combined with users’ item history, it can be used to infer the users’ preferences in content. 
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Figure 11 shows an example of the content information for a video in Forzify, which are 

found under the video. On the top of the figure is the title of the video, which describes the 

item. Under the title are three tags: “goal”, “corner” and “heading”. All of these tags contain 

additional information that are shown when the user places the mouse over the tag. In the 

figure, the mouse is held over “goal”, and metadata for the goal are shown.    

 

Figure 11: Example of tags for a video in Forzify 

To make an improved recommendation system for Forzify, it is important to look at which 

approaches that can be implemented with the existing data sources, and which data sources 

that are needed in order to use the other approaches. If we take a look at Figure 7 again, 

Forzify has three of the types of background data that are included in the figure; it has a user 

rating database, an item database and meta data about content features of the items. However, 

there are no user demographic database or knowledge base. This means that Forzify has not 

the existing background data needed for the demographic-based and knowledge-based 

approach. 

To use the demographic-based approach, user data and demographic data about the users are 

needed. While user data are available in Forzify, no demographic information is today 

gathered about the users. To get this, the system must explicitly ask the users for this 

information when they register as a new user. This can be considered troublesome by the 

users, as they do not want to share all information or use time on this, which can lead the user 

not to enter all the data or not even register at all.  

Forzify has the metadata needed for the knowledge-based approach, but lacks both functional 

knowledge about how the items satisfy user needs, and user knowledge about the user and her 

need. To get functional knowledge, domain knowledge and time are needed to make a 
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knowledge base, and to gather user needs, information must be gathered from the user. This 

can be both time-consuming and expensive. 

Figure 7 also shows which data inputs that are needed for each approach. Only user ratings 

are collected of these data types in Forzify today, which means the community-based 

approach neither is possible to use with existing data sources. This approach needs, in 

addition to usage data, data from social relations of the users which must be fetched from a 

social network.  

Then, we are only left with two approaches if we are going to base the recommendations on 

existing data sources. These are collaborative filtering and content-based filtering, which both 

utilize user ratings to learn about the preferences of the user. After the system has inferred the 

user’s preferences, the collaborative filtering uses the user rating database as background data 

to find similarities in usage patterns, while the content-based filtering, on the other hand, uses 

the meta data and item database to find content similar to the preferences of the user.    

3.4 Features wanted in the recommendation system 

Before we can decide which recommendation system approach that suits the needs of Forzify, 

we must specify which features that are wanted in the recommendation system. First of all, it 

is important that the recommendations have as good quality as possible. In a system like 

Forzify, new content will be uploaded continuously, so it is expected that many users will 

visit the system repeatedly. Thus, it is beneficial with an approach that uses some kind of 

learning of the users’ preferences. In the long run, this will give the best recommendations for 

the user. The system can then learn, either through content information or associations in user 

data, about which teams and players the user likes and if she likes any special events, like 

goals, free kicks or saves.  

One important feature of recommendation systems is to help users discover new material. It is 

desirable that Forzify’s recommendation system can make recommendations that are 

serendipitous. Another important feature, is that the system can recommend as many items as 

possible to as many users as possible. Then, it is important to reduce the cold start problem 

both for new users and for new items.  
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Another feature wanted in the system is scalability. If the recommendation system uses long 

time to generate the recommendations, it makes small differences whether the 

recommendations are good or bad, because the users are not interested in waiting for the 

content. Therefore, it is important that the system can scale well with large amounts of items 

and users, to give time-efficient recommendations.   

3.5 Discussion of suitable approaches 

In the last section, the features wanted in the new recommendation system were presented. 

Now, we will discuss which approaches that best suit these needs and the data sources of 

Forzify. Summarized, we want the recommendation system to use some kind of learning, 

produce serendipitous recommendations, handle cold start situations and scale well for a large 

set of users and items. As Table 1 showed, no approach is perfect and suits all these needs. 

Therefore, it is smart to use a combination of approaches in a hybrid solution, which makes it 

possible to exploit the advantages and at the same time reduce the disadvantages of each 

approach. 

All of the presented approaches, except for the knowledge-based, learn about the users as they 

interact with the system, and can thereby give improved recommendations over time. Even 

though the knowledge-based approach cannot make as good recommendations as the others in 

the long run, it has no problem with making recommendations for new users or items. This 

lack of cold start problem, makes it an ideal candidate to use together in a hybrid approach 

with one of the approaches that use learning. Then, it will be possible to give good 

recommendations from the first second the user visits the site and after some time, even better 

recommendations since more user data are logged.  

Content-based filtering also has less cold start problems than the other approaches. This 

approach can make recommendations as soon as a user has visited an item or made a user 

profile. It can then find videos similar in content to that video or to the interests expressed in 

the user profile. However, it will take some time before the system learns enough about the 

user’s preferences for content, to make good recommendations.  

Collaborative filtering, demographic-based filtering and community-based filtering can all 

make serendipitous recommendations. Content-based filtering is unable to make these kind of 

recommendations, while the knowledge-based approaches can do this if a knowledge base is 
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made with rules describing how it should be done. This is the challenge with knowledge-

based recommenders. Domain knowledge is needed to make good recommendations, and a 

certain amount of time must be used to manually make rules based on this knowledge. In 

cases where little user history is expected, like in a website for selling of cars or apartments, 

this can be a suitable approach, because good recommendations can be difficult to make 

otherwise. In the case of Forzify, on the other hand, where the users are expected to interact 

with several items, it will be better to use other approaches that do not need manual work.   

One possible option then, is to use content-based filtering together with collaborative filtering, 

demographic-based filtering or community-based filtering. This will handle cold start 

situations well because of the content-based approach, and give serendipitous 

recommendations that are improved as the user interacts with the system because of the other 

approach. Since no demographic and social data now are collected in Forzify, while the 

system collects several data about item interaction, it will be best to use collaborative filtering 

as the second approach.  

Using content-based filtering together with collaborative filtering in a hybrid approach is a 

common combination because they complement each other well and they only need easy 

accessible data sources. This will be similar to the way Netflix make recommendations, as 

described in Section 2.3.2. To ensure that the system scales well, it will be best to use a 

model-based or item-based collaborative filtering approach, as the user-based approach does 

not scale good for large datasets. Therefore, the best choice for approaches for the data 

gathered in Forzify and the features wanted in the system, is the combination of the content-

based approach and either item-based or model-based collaborative filtering.  

3.6 Summary 

In this chapter, we have presented the sports video app Forzify. Forzify lets users watch 

football videos, make playlists and share experiences with fellow supporters and friends. In 

such an app, a recommendation system is important for letting users easy find content that are 

interesting for them. To find which recommendation approaches that could best suit this 

context, we looked at which data sources that could be possible to get from the existing 

system, and which characteristics that would be desirable for a recommendation system in this 

setting. Today, it is collected both explicit data, in form of likes, and implicit data, such as 
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which videos that are watched or added to playlists by a user. In addition, the system contains 

textual content information about videos. As Forzify only contain unary ratings and mostly 

implicit data, the recommendation problem must be treated as a top-n recommendation 

problem, not a rating-prediction problem. The features wanted in the new recommendation 

system are primarily use of learning, serendipitous recommendations, good handling of cold 

start situations and good scalability.  

Further, we discussed how the different recommendation approaches are suited for the data 

and wanted features in Forzify. We found item-based collaborative filtering, model-based 

collaborative filtering and content-based filtering as the approaches best suited for Forzify’s 

recommendation system. The next step in the process now, is to look at how these approaches 

can be implemented, which will be the focus of the next chapter. 
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4 Implementation of a 

recommendation system 

To answer research question Q2 and Q3, stated in Section 1.2, we will implement a set of 

algorithms from different approaches that can be evaluated, both in terms of accuracy and 

scalability. In this chapter, we will therefore look at the implementation of a set of candidate 

algorithms that will be chosen based on the discussion in Section 3.5, about which approaches 

that are suitable for Forzify according to the literature. First, we will describe and compare a 

set of recommendation frameworks that are commonly used for implementation of 

recommendation systems. Next, we will present the algorithms that we will implement. These 

algorithms are presented in detail, both in terms of implementation details and underlying 

calculations needed to make the recommendations. 

4.1 Recommendation frameworks and libraries 

An important decision when making a recommendation system is if the system should be 

implemented completely from scratch or if some existing frameworks, libraries or packages 

should be used. There exist several open source recommendation frameworks. Some 

commonly used are Apache Mahout, LensKit and MyMediaLite (Said and Bellogín 2014). 

Another popular framework is the Apache Spark’s machine learning library MLlib, which has 

shown to be highly efficient for producing recommendations on large datasets (Meng et al. 

2016). In this section, there will be a presentation and comparison of these frameworks. 

Using existing frameworks and libraries can give multiple benefits. Instead of reinventing the 

wheel, time can be saved by reusing software libraries and frameworks. Such software is also 

generally tested thoroughly, reducing the risk for errors in the program. In the case of 

recommendation systems research, frameworks and libraries can make it easier to compare 

different algorithm implementations and results. On the other hand, reuse of software can give 

constraints in technologies, algorithms and data structures.  

4.1.1 Mahout 

Apache Mahout is a project that provides Java-based machine learning frameworks and 

libraries for making scalable recommendation systems (Apache Mahout 2016). It offers a set 
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of collaborative filtering techniques, including neighbourhood-based approaches, like user-

based and item-based collaborative filtering, and model-based approaches, like SVD++ and 

alternating least squares (ALS). The framework can be used to run on a single computer or on 

a cluster with the distributed framework Apache Hadoop using the MapReduce paradigm. 

Central parts of Mahout are the Java interfaces DataModel, UserSimilarity, ItemSimilarity, 

UserNeighborhood and Recommender. The DataModel is used to store information about 

user preferences, which can be fetched from a database or another source. UserSimilarity and 

ItemSimilarity are used to find similarities between users or items, and UserNeighborhood 

defines a mean for determining a neighbourhood of similar users for a user. At the core of the 

framework, is the Recommender, which can recommend items for a user or predict a user’s 

preference for an item (Schelter and Owen 2012). The interfaces can be used to implement 

new algorithms, or they can be used to implement the algorithms contained in the Mahout 

library. 

4.1.2 LensKit 

LensKit is an open source Java-based recommender toolkit (Ekstrand et al. 2011). Its goal is 

to give an extensible and robust basis for research in recommendation systems, but the 

framework is also usable in real-world situations, primarily for web-applications. LensKit has 

implementations of three collaborative filtering approaches: the model-based approach SVD 

and the two neighbourhood-based approaches user-based and item-based collaborative 

filtering. It provides the interfaces ItemScorer and ItemRecommender, which respectively are 

used to predict ratings for a user for an item and to recommend items for a user. Two of the 

advantages of LensKit are that different variations of algorithms easily can be configured and 

that it offers possibilities for easy implementation of new parts to existing algorithms. 

4.1.3 MyMediaLite 

MyMediaLite is a recommendation system library written in C# (Gantner et al. 2011). It 

offers libraries containing existing algorithms, and a framework for implementing and 

evaluating new ones. MyMediaLite is made to be a fast and scalable library for collaborative 

filtering and is aimed at both academic and industrial purposes. The tasks of predicting ratings 

and predicting interesting items are supported, both with various neighbourhood- and model-

based algorithms.  
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4.1.4 Spark MLlib 

Apache Spark is an open source cluster computing framework for large-scale data processing 

(Shanahan and Dai 2015). It is well-suited for machine-learning tasks and offers the machine 

learning library MLlib, which contains a set of fast and scalable implementations of machine 

learning algorithms (Meng et al. 2016). Spark can either be run distributed in a cluster or on a 

single machine. MLlib supports two variants of alternating least squares, which is a model-

based collaborative filtering algorithm. The first variant is for explicit data and the other is 

adapted for implicit data.  

Spark has APIs in Java, Scala and Python. The advantage of Spark is its ability to scale well 

for large datasets. Spark has similarities to the MapReduce paradigm, but performs 

significantly better on iterative jobs (Zaharia et al. 2010). Therefore, its alternating least 

squares algorithm is very efficient on large datasets compared to the one provided by Mahout, 

which is based on MapReduce (Meng et al. 2016).  

4.1.5 Comparison of frameworks 

In this section, there will be a comparison of the four recommendation frameworks presented 

above. The differences are summarized in Table 6. The frameworks have several properties in 

common, but there also exist some differences between them. While Spark’s MLlib and 

Mahout are machine learning frameworks with support for recommendation system 

algorithms, LensKit and MyMediaLite are made to support recommendation algorithms only. 

All of the frameworks are open source software and are also platform-independent. Except for 

MyMediaLite, which only supports C#, all of them have Java APIs. Spark has in addition 

Scala and Python APIs. 

The only algorithms supported in these frameworks are collaborative filtering algorithms. 

This means there is no algorithms for content-based, knowledge-based, demographic-based or 

community based recommendations, even though there is support for making new 

recommendation algorithms in Mahout, LensKit and MyMediaLite. In Spark’s MLlib, new 

algorithms must be made from scratch with Spark’s data structures, as the API does not 

support implementation of new recommendation algorithms. Mahout, LensKit and 

MyMediaLite have both neighbourhood-based and model-based collaborative filtering 

algorithms, while Spark only have model-based ones. All of them have support for evaluation 
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of the recommendation algorithms, but they differ in how this is done. Spark and Mahout 

have evaluation classes that makes it possible to evaluate the recommendations inside the 

Java program, while LensKit and MyMediaLite have evaluation scripts that can be run from 

terminal. When it comes to scalability, Mahout and Spark has an advantage as they can be 

distributed over several nodes in a cluster, making it possible to handle large amounts of data. 

However, Spark outperforms Mahout on computation time for recommendations on large 

datasets, and is therefore a better option in such cases.  

Framework 

Property 

Mahout LensKit MyMediaLite Spark’s MLlib 

Machine learning 

framework 
X   X 

Dedicated 

recommendation 

framework 

 X X  

Platform-independent X X X X 

Provides neighbourhood-

based collaborative 

filtering 

X X X  

Provides model-based 

collaborative filtering 
X X X X 

Support for 

implementing other 

recommendation 

algorithms 

X X X  

Support for evaluation X X X X 

Supports distribution in 

cluster 
X   X 

Table 6: Comparison of properties of the recommendation frameworks 

This comparison has given an overview over the recommendation frameworks and their 

properties. We will use this as a basis for choosing one or more frameworks to be used for 

implementing our recommendation algorithms. 
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4.2 Algorithms 

We will here introduce four candidate algorithms for Forzify’s recommendation system, and 

present their implementations. The first three, item-based collaborative filtering, model-based 

collaborative filtering and content-based filtering, are chosen based on the conclusion that 

they were the best choices for Forzify, which we made in Section 3.5. In addition, we will 

implement a non-personalized algorithm that recommends items based on items’ overall 

popularity. Such a popularity algorithm is good as a baseline to compare the personalized 

algorithms against, but can also be used successfully for recommending items in cold start 

situations (Ekstrand, Riedl, and Konstan 2011). Therefore, we have two algorithms that, 

according to the literature, should give high accuracy for new users and two algorithms that 

should give high accuracy for old users. 

As described in Section 3.3, Forzify has only unary data which are mostly implicitly gathered. 

Therefore, the algorithms we choose must support unary and implicit data, either given as 

binary values or arbitrary positive values. This means that rating prediction algorithms, based 

on negative and positive ratings, cannot be used. Instead we must use a top-n approach to the 

recommendation problem, as described in Section 2.1, where we want to recommend the n 

best items for a user.  

As none of the frameworks contain all of these algorithms with support for unary and implicit 

data, we choose not to stick to one single framework. For the item-based algorithm we choose 

to use LensKit for our implementation, which offer an item-based k-nearest neighbour variant 

effective in implicit feedback situations. For the model-based algorithm, we choose Spark’s 

alternating least square variant for implicit feedback. This algorithm handles the data type in 

Forzify well and because of Spark’s possibility for distribution, it also scales well.  

For the content-based algorithm, we choose to use a content-based implementation built in 

LensKit (Lin 2013). LensKit has no built-in content-based algorithm, but this content-based 

implementation uses LensKit’s data structures and classes, and is publicly available at 

GitHub. This implementation is originally made for explicit feedback, but we will adjust it to 

better handle implicit feedback. Our baseline algorithm will not be implemented in any 

framework. It is a very simple algorithm, only using the popularity of the items, so we find it 

more convenient to make it from scratch. All of the code in our implementations will be 

written in Java, and are available on GitHub from the link provided in Appendix A. 
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Figure 12 shows the hierarchy of our implemented recommendation algorithms. We have 

made one interface Recommender, and one class for each of the algorithms, which all 

implement the Recommender-interface. Recommender has four methods: initialize(), update(), 

recommend() and close(). They are used to initialize the recommender, train the recommender 

based on a rating file, recommend an array of item-ids for one user, and to shut down the 

recommender, respectively. By using a single interface, we ensure that all of the 

recommendation algorithms have the same functionality, which becomes convenient when we 

are going to evaluate the different recommendation algorithms.  

 

Figure 12: Design of the implementation of our recommendation algortihms  

We have decided not to recommend items already rated, to avoid that users get recommended 

items they already have interacted with. This is the default in LensKit, but in the other two 

algorithms we must exclude the items already rated by the users. We do this by storing each 

user’s rated items in a hash-map and then removing the recommendations of items that are 

contained in the user’s hash-map. The reason for using hash-maps is to ensure that the check 

whether items already are rated can be done in constant time. 

4.2.1 Item-based collaborative filtering 

As explained in Section 2.2.1 the goal for item-based collaborative filtering is to recommend 

similar items to the ones the user has interacted with in the past. We will here use an k-nearest 

neighbour approach for this, which is the standard method for item-based collaborative 

filtering (Aggarwal 2016, 40). In short, a k-nearest neighbours algorithm for item-based 

collaborative filtering involves finding the most similar items, also called neighbours, for each 
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item, and then predict each item’s relevance for a user by looking at this item’s k most similar 

items that the user also has interacted with. The predicted score for this item is then based on 

the user’s rating on these k items and the similarities of these to the given item. 

We will implement this approach using the framework Lenskit (version 2.1.1), which is built 

as a generic recommender system. The parts of the recommender can easily be specified to 

get the recommender approach of choice with the implementation details as needed. The 

LenskitConfiguration class is used to configure the recommendation system by binding 

together different classes, e.g., binding the ItemScorer to UserUserItemScorer if one plans to 

make a user-based recommender, and setting values for different classes, e.g., setting the 

NeighborhoodSize to a certain value. Because we are making an item-based algorithm, we set 

the ItemScorer to ItemItemScorer to specify that we want to score items using an item-based 

collaborative filtering approach, i.e. using similarities between items and not users. In 

addition, the input file, which contains the user data, must be bound to the EventDAO class, so 

that data can be added to the model. 

Item-based filtering consists of two key steps: (1) Computation of similarities between each 

item pair and (2) the computation of a prediction score for each item based on the users’ 

history and the similarities between items (Deshpande and Karypis 2004). The first step then, 

which is the training phase of this algorithm, is to compute the item-similarities. Several 

similarity functions can be used for this, but the most commonly used are Pearson correlation 

coefficient, cosine and adjusted cosine (Sarwar et al. 2001). The two cosine measures are the 

most used, as they produce the most accurate results (Jannach et al. 2010, 19). Therefore, we 

decide to use one of those.  

To compute the similarities between two items, we must look at the ratings for the two items. 

Recall the rating matrix presented in Section 2.1, where each column represents an item and 

each row represents a user. The similarity between two items are computed based on the 

similarities in the ratings in the two corresponding columns. Only ratings from users who 

have rated both items are taken into account. Figure 13 illustrates item-similarity computation 

for two items 𝑖 and 𝑗. The column representing an item is called the rating vector of that item. 

We thereby use a vector space model to find similar items, where each item is represented by 

its rating vector in an n-dimensional space. Each dimension in the space is corresponding to 

the rating of a user.  
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Figure 13: Similarity computation between items in a rating matrix (Sarwar et al. 2001, 289) 

The cosine similarity between two items a and b with rating vectors 𝑎⃗ and 𝑏⃗⃗ are defined as 

follows: 

 
sim(𝑎, 𝑏) = 𝑐𝑜𝑠(𝑎⃗, 𝑏⃗⃗) =  

𝑎⃗  ∙ 𝑏⃗⃗

| 𝑎⃗⃗⃗ ⃗ | ∗  |𝑏⃗⃗|
 

(8) 

The symbol ∙ means the dot-product of the two vectors, while | 𝑎⃗⃗⃗ ⃗ | means the Euclidean length 

of a vector, which is defined as the square root of the sum of the squared values of the vector. 

The reason for dividing by the Euclidean lengths is to normalize the vectors, to avoid that 

more rated items get higher similarity scores. One drawback with this measure, is that the 

rating behaviours of different users are not taken into account in the computation (Sarwar et 

al. 2001). For example, one user can rate the majority of items with five out of five stars, 

while another user only rate 10 percent of her rated items with 5 stars, which gives a bias to 

the similarities. The same can be the case for view counts: some users watch in average more 

items than others. To avoid this bias, the adjusted cosine can be used, where the user’s 

average rating is subtracted from each corresponding user rating: 

 

sim(𝑎, 𝑏) =  

 
∑ (𝑟𝑢,𝑎 − 𝑟𝑢̅)(𝑟𝑢,𝑏 − 𝑟𝑢̅)𝑢 ∈𝑈

√∑ (𝑟𝑢,𝑎 − 𝑟𝑢̅)
2

𝑢 ∈ 𝑈 √∑ (𝑟𝑢,𝑏 − 𝑟𝑢̅)2
𝑢 ∈ 𝑈

 
(9) 



61 

 

Here, U is the set of all users who have rated both items a and b, 𝑟𝑢,𝑎 is the rating of user u for 

item a and 𝑟𝑢̅ is the average rating of user u. This can easily be done by subtracting each 

rating in the rating database with the user’s average rating value before calculating the 

similarity with a standard cosine measure. When we have explicit ratings on a numerical 

scale, this similarity measure is the best choice. On the other hand, when we have unary 

implicit feedback, where 1 indicates that the user has visited an item, the measure cannot be 

used. This is because the average rating for all users will be 1, and consequently all rating 

values will be 0 when we subtract the average rating. Cosine will therefore be used as the 

similarity measure in this item-based algorithm, as we want it to support unary implicit 

feedback. In Lenskit, this is configurated by binding VectorSimilarity to 

CosineVectorSimilarity.   

After the similarities are computed, the next step is to predict a score for each item. When the 

ratings are given as numerical ratings, a prediction of user u’s rating for item a can be 

calculated as a weighted average based on the user’s ratings and the items’ similarities, in the 

following way: 

 
𝑝𝑟𝑒𝑑(𝑢, 𝑎) =

∑ 𝑠𝑖𝑚(𝑎, 𝑏) ∗ 𝑟𝑢,𝑏𝑏 ∈ 𝑆

∑ 𝑠𝑖𝑚(𝑎, 𝑏)𝑏 ∈ 𝑆

 (10) 

Here, S denotes the set of the k most similar items to the target item a, which also are rated by 

user u, and 𝑟𝑢,𝑏 is the rating of user u for item b. This works well with explicit ratings on a 

scale, but does not work well with implicit and unary data. If the data are binary unary data 

where each rating ru,b have value 1, the equation will always be equal to 1. Also, when there 

are implicit ratings with arbitrary values, as play counts or number of buys, this prediction 

works poorly. This is because low values, as 1, will be regarded as a negative preference, 

while they actually indicate some preference for the item. An option then is to add 0-ratings 

for all the items that are not rated by a user, as the user has shown interest in the implicitly 

rated items, and not for the others (Aggarwal 2016, 12). However, this will give expensive 

computations as we for each user must add ratings for each of the items, and use all of them in 

the computation of similarities and prediction values. This is probably the reason why the 

addition of 0-ratings is not supported in the positive-only feedback versions of item-based 

collaborative filtering in both LensKit and MyMediaLite. In these cases, we can instead 

compute pseudo-predictions 𝑝𝑢,𝑎 by summing the similarity scores of the k most similar items 
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in the user’s item interaction history Iu (Ekstrand, Riedl, and Konstan 2011). This can be done 

as follows: 

 𝑝𝑢,𝑎 =  ∑ 𝑠𝑖𝑚(𝑎, 𝑏)

𝑏∈ 𝐼𝑢

 (11) 

For our item-based algorithm, we will use this as the prediction scorer, which we specify in 

LensKit by binding NeighborhoodScorer to SimilaritySumNeighborhoodScorer. Next, we 

must specify the number of similar items, or neighbours, to use. Normally will 20 to 30 

neighbours be sufficient (Ekstrand 2014). We therefore set this value to 20, which also is the 

default in LensKit. This is done by binding NeighborhoodSize to 20.  

An important decision is how to store the rating similarities. One possibility is to make an 

item-item similarity matrix where similarities between each item-pair is stored, but this is 

ineffective both in memory usage and computation time. This will require 𝑂(𝑛2) space, and 

to find the most similar items to an item, it will be necessary to iterate over all n items. 

Instead, a better way is to store the m most similar items for each item together with their 

similarities in decreasing order of similarity. The number of similar items stored for each 

item, is called the model size, and can be specified in LensKit by binding ModelSize to an 

integer. We will set the ModelSize to 100 in Lenskit, to reduce problems related to scalability. 

The risk of setting the model size too small is that it will not be possible to find k rated 

neighbour items for some of the items, which can result in reduced accuracy. To avoid too 

small neighbourhoods, we set MinNeighbours to 2 in LensKit, so that items with less than two 

neighbour items rated by a given user get no prediction score for that user. The code used for 

configuring the item-based recommender is presented in Code snippet 1. 

Now that the configuration of the recommender is finished, we have to build the 

recommender, as shown in Code snippet 2. Because we want top-n recommendation and not 

rating prediction, we make an ItemRecommender-object. This object can be used to give 

recommendations by calling its recommend()-method with parameters for number of 

recommendations to give and the user to produce recommendations for. This returns an 

ordered list of ScoredId-objects, one for each recommended item, with the item-id and the 

predicted value for the user.  
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LenskitConfiguration config; 

config = new LenskitConfiguration(); 

config.bind(ItemScorer.class).to(ItemItemScorer.class); 

 
config.bind(VectorSimilarity.class). 

        to(CosineVectorSimilarity.class); 
config.bind(NeighborhoodSize.class).to(20); 
config.set(MinNeighbors.class).to(2); 

config.set(ModelSize.class).to(100); 

config.bind(NeighborhoodScorer.class). 

        to(SimilaritySumNeighborhoodScorer.class); 

 
String path = "training_data.csv"; 

String delimiter = ","; 

config.bind(EventDAO.class). 

        to(new SimpleFileRatingDAO(new File(path), delimiter)); 

 
 

Code snippet 1: Configuration of item-based recommender in LensKit 

LenskitRecommender rec = LenskitRecommender.build(config); 

ItemRecommender irec = rec.getItemRecommender(); 

List<ScoredId> recommendations = irec.recommend(id, num); 

  

Code snippet 2: Creating the recommender and getting recommendations in LensKit 

4.2.2 Model-based collaborative filtering 

We will implement a matrix factorization algorithm as our model-based collaborative filtering 

algorithm because matrix factorization models are considered the state-of-the-art in 

recommendation systems (Aggarwal 2016, 91). To implement a matrix factorization 

algorithm for collaborative filtering, we will use the framework Spark MLlib (version 2.1.0). 

This library includes two forms of matrix factorization: one alternating least squares for 

explicit feedback and one for implicit feedback, based on an algorithm introduced by Hu, 

Koren, and Volinsky (2008). We will use the latter in our implementation because of the data 

sources in Forzify, which are positive-only feedback that contain no explicit scale ratings and 

mostly are implicitly gathered. 

The idea in matrix factorization for recommendation systems is to discover a set of latent 

factors from the user ratings and characterize each user and item by vectors of these factors 

(Jannach et al. 2010, 27). While user-based collaborative filtering looks for correlations 

between users and item-based collaborative filtering looks for correlations between items, 
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matrix factorization methods utilize both correlations among users and items to predict item 

preferences, which is one of the reasons why matrix factorization is the state-of-the-art in 

collaborative filtering (Aggarwal 2016, 91).  

An 𝑚 x 𝑛 ratings matrix R of m users and n items, can be factorized into an m × k matrix U 

and an n × k matrix V, where k is the number of latent factors and the symbol T means matrix 

transposition, in the following way: 

 𝑅 ≈ 𝑈𝑉𝑇 (12) 

Each row of U is a user-factor vector 𝑥𝑢, with k entries representing the preference of user u 

towards the k latent factors, while each row of V is an item-factor vector 𝑦𝑖 that represents the 

association of item i to the k latent factors. The prediction 𝑟̂𝑢,𝑖 of a user’s preference for an 

item, is the dot product of the two associated vectors, given as: 

 𝑟̂𝑢,𝑖 = 𝑥𝑢
𝑇𝑦𝑖 (13) 

Figure 14 illustrates a simple matrix factorization of user ratings, where R is a rating matrix 

for 7 users and 6 movies, and the ratings are integers ranging from -1 to 1, where larger 

numbers indicate larger preferences. The first three movies are historical movies and the next 

three are romantic movies. We can infer from the ratings that users 1-3 like historical movies 

and are neutral to romantic movies, that users 5-7 like romantic movies and dislikes historic 

movies, while user 4 likes both genres. Matrix R, can then be factorized into two matrices U 

and V with rank 2, i.e., two latent factors. The matrix U shows the seven users’ preferences 

for the two latent factors, while matrix V shows the six movies’ associations to the two latent 

factors. Next, we can imagine the movie “Gladiator” being added to matrix V, with value 1 

for “History” and 0 for “Romance”, and we want to predict user 1’s rating for this movie. The 

prediction can then be computed by taking the dot-product of the factor-vectors for the given 

item and user, which contain the values (1,0) and (1,0), and consequently give the prediction 

value 1, which means the user is predicted to like the item. In this example, we knew which 

genres the movies were in, but when a recommendation system uses matrix factorization, it 

does not know these facts. Instead, the system must find the latent factors to use from the 

rating patterns.   
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Figure 14: Example of matrix factorization for a rating matrix (Aggarwal 2016, 95) 

Several approaches can be used to solve the matrix factorization problem. The approach 

proposed by Hu, Koren, and Volinsky (2008), which we will implement, uses an alternating 

least square solution. This algorithm scales linearly for both users and items, and are well-

suited for parallelization. However, it scales cubic with the number of latent factors, but this 

number is independent of the input data and typically is very small, usually between 10 and 

200. 

In explicit feedback situations, the factor vectors can be learnt by minimizing the regularized 

squared errors on the set of known ratings (Koren, Bell, and Volinsky 2009). This can be 

done the following way: 

 
min
𝑥∗,𝑦∗

∑ (𝑟𝑢,𝑖 − 𝑥𝑢
𝑇𝑦𝑖)

2

𝑟𝑢,𝑖 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛

+ 𝜆 (∑‖𝑥𝑢‖2

𝑢

+ ∑‖𝑦𝑖‖
2

𝑖

) 
(14) 

Here, the (𝑟𝑢,𝑖 − 𝑥𝑢
𝑇𝑦𝑖)

2
 is the squared difference between the known ratings and the 

predicted ratings based on the dot product of the factor vectors 𝑥𝑢 and 𝑦𝑖. The function 

thereby tries to find the user factor vectors and item factor vectors that best reduce the RMSE, 

which is described in Section 2.5.3. The part 𝜆(∑ ‖𝑥𝑢‖2
𝑢 + ∑ ‖𝑦𝑖‖

2
𝑖 ) is the regularization 

term used to avoid overfitting, which we explained in Section 2.5.1. Larger values of 𝜆 will 

increase the regularization. 
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Hu, Koren, and Volinsky (2008) adjusts this model to better handle implicit data. This is done 

by taking the different confidence values for a prediction into account and optimizing for all 

user-item pairs, not only those that corresponds to observed data. The following cost function 

is used as basis for computation of the factors in this approach:  

 
min
𝑥∗,𝑦∗

∑ 𝑐𝑢,𝑖(𝑝𝑢,𝑖 − 𝑥𝑢
𝑇𝑦𝑖)

2

𝑢,𝑖

+ 𝜆 (∑‖𝑥𝑢‖2

𝑢

+ ∑‖𝑦𝑖‖
2

𝑖

) 
(15) 

 

In this equation, 𝑝𝑢,𝑖 is a binary variable indicating the preference of a user u towards an item 

i. It is set to 1 if user u has interacted with item 𝑖, i.e., rating 𝑟𝑢,𝑖 > 0, and otherwise is set to 0. 

The variable 𝑐𝑢,𝑖 is a confidence value which measures the confidence in prediction 𝑝𝑢,𝑖, and 

is computed as follows: 

 𝑐𝑢,𝑖 = 1 + 𝛼𝑟𝑢,𝑖 (16) 

This gives a certain confidence level for every user-item pair, which increases if a user has 

interacted several times with an item. The 𝛼 determines how much the confidence should 

increase when we have a higher rating value. Confidence values are included in the model 

because of the problems of distinguishing positive from negative feedback in implicit 

feedback datasets.  

A problem of the cost function in Equation (15), is that the computation must be done for 

each user-item pair, which easily can become a bottleneck. By differentiation, Hu, Koren, and 

Volinsky (2008) therefore find an analytic expression for 𝑥𝑢 and one for 𝑦𝑖 which each 

minimizes the cost function in Equation (15). Then we can use an alternating least square 

optimization process, alternating between re-computing the user-factors (𝑥𝑢) and item-factors 

(𝑦𝑖) in an iterative process until convergence. A typical number of iterations is 10 and typical 

number of factors are 10 to 200 (Hu, Koren, and Volinsky 2008). The idea of alternating least 

squares is to hold one of the factor matrices constant, while the other one is computed, and 

afterwards holding the second matrix constant, computing the first one. The computation of 

each of the user factor vectors are independent of the other user factors vectors, making this 

approach well-suited for parallelization (Aggarwal 2016, 105). The same is the case for the 

computation of each of the item-factors.  
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When implementing this approach in Spark, we must first initialize the Spark configuration, 

which is done in Code snippet 3. Here, we name the Spark application, and specify that the 

program should be run locally on one machine. If we had wanted to use a cluster, we could 

have entered the URL of the master node as a parameter to setMaster(), but in this thesis we 

are only going to run the code on a single machine.  

SparkConf conf = new SparkConf(). 

setAppName("Implicit ALS-recommender"). 

setMaster("local"); 

JavaSparkContext sc = new JavaSparkContext(conf); 

 

 

Code snippet 3: Initialization of Spark configuration 

The next step, as seen in Code snippet 4, is to read the user data into Rating-objects stored in 

a Resilient Distributed Dataset (RDD), which is the parallelizable data structure used by 

Spark. This is done by first calling the textFile()-function of the JavaSparkContext-object sc, 

which makes an RDD of the strings in the input file. Afterwards, the map function returns an 

RDD of Ratings, by passing each String-object from the dataset through a function where 

each String is split by a delimiter into a user-id, item-id and rating, which subsequently are 

sent as parameters to a new Rating-object.  

String path = "training_data.csv"; 

JavaRDD<String> data = sc.textFile(path); 

JavaRDD<Rating> ratings = data.map( 

        new Function<String, Rating>() { 

            @Override 
            public Rating call(String line) { 

                String[] parts = line.split(","); 

                return new Rating(Integer.parseInt(parts[0]), 

                    Integer.parseInt(parts[1]), 

                    Integer.parseInt(parts[2])); 

            } 

        } 

); 

 
 

Code snippet 4: Reading user data into an RDD in Spark 

The implicit feedback alternating least square matrix factorization can then easily be carried 

out by calling trainImplicit(), which returns a MatrixFactorizationModel-object that can be 

used to get recommendations. The code for this is presented in Code snippet 5. TrainImplcit() 

needs a set of parameters to conduct the matrix factorization. First, we must give the ratings 

and number of latent factors – which is the rank of the factorization. The number of iterations, 



68 

 

the regularization value 𝜆 and the 𝛼-value must also be set. In our implementation, we use the 

default values in Spark’s MLlib for these parameters, which are 10 iterations, 10 latent 

factors, 0.01 for the regularization value and 1.0 for the 𝛼-value, which ensures a reasonable 

trade-off between accuracy and scalability (Apache Spark 2016).  

When we call recommendProducts() on the trained model, an array of Rating-objects are 

returned. The user-id for the user to get the recommendations for and the number of 

recommendations must be given as parameter in this method. The returned ratings are sorted 

based on predicted rating values in decreasing order.    

MatrixFactorizationModel model = ALS.trainImplicit( 
JavaRDD.toRDD(ratings), rank, iterations, lambda, alpha); 

Rating[] ratings = model.recommendProducts(id, num); 

 

Code snippet 5: Train an implicit model in Spark and get recommendations 

4.2.3 Content-based filtering 

Our content-based filtering algorithm relies on a vector space model, where both items and 

users are represented by term vectors, which is a standard way of doing content-based 

filtering (Lops, De Gemmis, and Semeraro 2011). The algorithm is implemented in the 

framework LensKit (version 2.1.0), and is a continuation of the implementation of Lin (2013). 

The main idea behind the algorithm is to represent each user and each item with a content 

representation, and for each user find the most similar items based on similarities in the 

representations of the user and the items.  

The first step in content-based algorithms is to make a content representation for each item. 

This is the training phase of this algorithm. Each item must be associated with a document, 

which typically are content tags or terms gathered from the item itself, e.g., books, or from 

descriptions of the item. Each item can then be represented by the terms, also called the 

features, of the document. We store these features in a feature vector for each item, where 

each feature gets a value based on its frequency in the document. This could simply be a 

binary vector where each feature that appears in the document gets value 1, and otherwise 

gets value 0, or a vector containing the raw frequencies of the features, but this can give 

several biases. We will therefore use normalized term frequency-inverse document frequency 

(TF-IDF) values for the features, which ensures that rare terms are not considered less 
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relevant than common terms, that multiple occurrences of a term is considered more relevant 

than single occurrences and that long documents are not considered more relevant than 

smaller documents (Lops, De Gemmis, and Semeraro 2011).  

The TF-IDF value for term 𝑡𝑘 in document 𝑑𝑗 is computed by taking the product of the term 

frequency (TF) and the inverse document frequency (IDF): 

 𝑇𝐹𝐼𝐷𝐹 = 𝑇𝐹(𝑡𝑘, 𝑑𝑗) ∗ 𝐼𝐷𝐹(𝑡𝑘) (17) 

𝑇𝐹(𝑡𝑘, 𝑑𝑗) is the frequency of term 𝑡𝑘 in document 𝑑𝑗, while the IDF for a term is computed 

as follows, where 𝑁 is the number of documents, and 𝑛𝑘 is the number of documents which 

contain term 𝑡𝑘: 

 
𝐼𝐷𝐹(𝑡𝑘) = log

𝑁

𝑛𝑘
  (18) 

The computation of IDF values ensures that rare terms overall in the document collection get 

a higher score than more common terms. 

Next, we normalize the TF-IDF values in each feature vector, by dividing each TF-IDF value 

by the Euclidean length of the feature vector, to ensure that the lengths of the documents do 

not affect the similarity. This is done as following, where 𝑛𝑘,𝑗 is the normalized TF-IDF value 

for term k in document j, and √∑ 𝑇𝐹𝐼𝐷𝐹
|𝑇|
𝑠=1 (𝑡𝑠, 𝑑𝑗)2 is the euclidean length of the feature 

vector:  

 
𝑛𝑘,𝑗 =

𝑇𝐹𝐼𝐷𝐹(𝑡𝑘, 𝑑𝑗)

√∑ 𝑇𝐹𝐼𝐷𝐹
|𝑇|
𝑠=1 (𝑡𝑠, 𝑑𝑗)2

 (19) 

Because we want to find items that are similar to the user’s preferences in content, we must 

make a feature vector for each user. After each item is represented with a feature vector, a 

feature vector is made for each user based on which items the user has interacted with. This 

could be done by making a feature vector with the sum of all of the feature vectors a user has 

rated. However, we want the tags of highly rated items to count more than the tags of items 

rated with low ratings by the user. Therefore, we weight each TF-IDF value for the features in 

a rated item by a user u as following, where 𝑤𝑘,𝑗,𝑢 is the weighted TF-IDF value for term k in 
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document j for user u, 𝑛𝑘,𝑗 is the normalized TF-IDF value for term k in document j, and 𝑟𝑢,𝑗 

is the rating of user u for document j: 

 𝑤𝑘,𝑗,𝑢 =  𝑛𝑘,𝑗 ∗ (1 + log ( 𝑟𝑢,𝑗 + 1)) 
(20) 

The reason for multiplying with (1 + log(𝑟𝑢,𝑗 + 1)) and not the user’s rating of the document, 

is because we want the recommendation system to work for implicit data, where larger ratings 

indicate larger preferences, but the differences in ratings do not precisely show differences in 

the user’s preferences. For example, an implicit rating, like a play count, of 4 will not 

necessarily mean the user likes the item twice as good as another item with rating 2, which is 

the case for explicit ratings. Therefore, we want all tags of rated items to count, but the tags of 

higher rated items to count a little more, which is achieved by this weighting. We add 1 to the 

rating in log ( 𝑟𝑢,𝑗 + 1) because some of the datasets presented in Section 2.5.4 contains 0-

ratings for implicit data, and the log of 0 is undefined. 

After this weighting is done, we can make a feature vector for each user by summing all the 

weighted feature vectors of the items the user has rated, the following way, where 𝑎⃗ is the 

feature vector of user u, 𝑅𝑢 is the set of rated items by user u, and 𝑡𝑖,𝑢⃗⃗ ⃗⃗ ⃗⃗   is the feature vector for 

item 𝑖 weighted for the user u based on his rating for the item:  

 𝑎⃗ =  ∑ 𝑡𝑖,𝑢⃗⃗ ⃗⃗ ⃗⃗

𝑖 ∈𝑅𝑢

 (21) 

Now, we can use a vector space model to find items similar to the users, where each item and 

user is represented by its feature vector in an n-dimensional space. Each dimension in the 

space corresponds to a term. The next step is to calculate the similarities between users and 

items, which means we need a similarity function. The cosine measure is the most commonly 

used similarity function and it is well suited for the text domain (Aggarwal 2016, 151). We 

will therefore use this measure, as we did in the item-based approach in Section 4.2.1, to 

compute similarities. The similarity between user a and item b is then computed by the cosine 

of the two feature vectors 𝑎⃗ = (𝑎1 … 𝑎𝑑) and 𝑏⃗⃗ = (𝑏1 … 𝑏𝑑), where the values for the i’th 

word are given as 𝑎𝑖 and 𝑏𝑖 . Feature vector 𝑏⃗⃗ for an item, contains the normalized TF-IDF 

values as computed in Equation (19), and not the weighted values that were used to compute 

the user’s feature vector. The equation for cosine was given in Equation (8), but it will be 

repeated here to simplify the reading: 
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sim(𝑎, 𝑏) = 𝑐𝑜𝑠(𝑎⃗, 𝑏⃗⃗) =  

𝑎⃗  ∙ 𝑏⃗⃗

| 𝑎⃗⃗⃗ ⃗ | ∗  |𝑏⃗⃗|
 

(8) 

After the similarities between a user and all items are computed, we can recommend the n 

items with highest similarity to this user. This algorithm scales linearly in number of users, 

items and features, as we for each user must iterate over all features for each item to compute 

the similarities between the users and the items. 

As this algorithm is implemented with LensKit, the algorithm is configured in a similar way 

to how the item-based collaborative filtering algorithm was configured, which was presented 

in Section 4.2.1. Again, we use the LenskitConfiguration to bind together the components we 

want to use. The ItemSimilarity is bound to TFIDFItemScorer to specify that we want to find 

similar items for a user in terms of their TF-IDF values. In addition, we have to set the ratings 

file, tag file and title file, so that the feature vectors can be updated with the right values. To 

train the recommender and produce recommendations, the exactly same procedure is used as 

for the item-based implementation, as shown in Code snippet 2. 

4.2.4 Popularity baseline 

The last algorithm we will implement, is a non-personalized baseline algorithm. This type of 

algorithm does not depend on the individual user’s ratings. It can therefore be used to 

recommend items for new users and is useful as a baseline that the personalized algorithms 

can be compared to (Ekstrand, Riedl, and Konstan 2011). We will use the popularity of the 

items as basis for our baseline algorithm. The baseline score 𝑏𝑖 for item 𝑖 will be calculated by 

counting the number of ratings for item 𝑖 for the whole set of users 𝑈. This is done as follows:  

 𝑏𝑖 = ∑ 𝑝𝑢,𝑖

𝑢 ∈  𝑈

  (22) 

Where 𝑝𝑢,𝑖 is defined as follows: 

 
𝑝𝑢,𝑖 {

 1   𝑟𝑢,𝑖 > 0

  0   𝑟𝑢,𝑖 = 0 
 (23) 

Here, 𝑟𝑢,𝑖 is the rating of user u for item i, and a rating value of 0 indicates that there is no 

rating for this user-item pair. In situations where the user data are explicit ratings on a scale, a 
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better baseline can be to use the average rating of an item, because we then get both positive 

and negative ratings for the items. However, as we want the baseline to work for implicit 

unary data where no negative ratings are collected, it is better to use the number of ratings for 

each item to measure the items’ popularity. For example, one video played by 1000 users will 

be more popular than a second video played by 5 users, even though the second video has a 

higher average number of plays. 

In our implementation, we represent users, items, and predicted relevance of an item with 

User, Item and Prediction classes, respectively. Item only contains a parameter for the item id, 

while User contains a parameter for user id and a hash map of Item-objects the user has rated. 

Prediction contain an Item-object and a frequency for how many users who have rated the 

item. All Prediction-objects are stored in a hash map, predictions, in the 

BaselineRecommender class. To train the recommender, a Prediction-object is added for each 

item, and for each rating of an item, the frequency in the Prediction-object associated to that 

item is increased. In the end, all Prediction-objects are sorted in a list, with descending order 

of frequencies, so that the items with highest frequencies are found first in the list. To 

recommend the best n items, the item ids belonging to the first n Prediction-objects in the list 

can be recommended.  

4.3 Summary 

In this chapter, the focus has been on implementation of recommendation system algorithms 

suited for Forzify. We started by looking at some of the most commonly used 

recommendation frameworks: Mahout, LensKit, MyMediaLite and Spark’s MLlib. These 

have both some similarities and some differences. LensKit and MyMediaLite are dedicated 

recommendation frameworks, while Spark and Mahout are machine learning frameworks 

with support for distribution. 

We implemented the following algorithms: item-based collaborative filtering, model-based 

collaborative filtering, content-based filtering and a non-personalized baseline. The three first 

algorithms were chosen based on the discussion of approaches suited for Forzify in Section 

3.5, while the last was chosen because it is good to compare the other algorithms against and 

can give good recommendations for new users. All the algorithms had to support unary 

implicit data, as Forzify has no mechanism to detect users’ dislikes of items. Because none of 
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the reviewed frameworks supports all these algorithms for this kind of data, we decided not to 

stick to only one framework. The item-based and the content-based algorithm was 

implemented in LensKit, the model-based in Spark, while the popularity baseline algorithm 

was implemented from scratch. The item-based algorithm uses a k-nearest neighbours 

approach, where similar items are computed by cosine. The content-based algorithm also uses 

cosine to find similarities, but in this algorithm, the similarities are computed between users 

and items. The model-based algorithm uses an alternating least square approach for matrix 

factorization, and the baseline algorithm bases its recommendations on the items’ overall 

popularity. 

We now have implemented four candidate algorithms for Forzify, but we do not know how 

well they work on real data. In the next chapter, we want to test these algorithms on different 

datasets to see which have the best scalability and accuracy, and if the performances differ 

from domain to domain. 
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5 Evaluation 

In this chapter, we will evaluate the algorithms presented in Section 4.2. We will present the 

design of the evaluation, which includes the datasets, methodology, and metrics that will be 

used. Then, there will be a presentation and discussion of the results of the evaluation, and 

finally, there will be a discussion concerning the research questions Q2 and Q3, which were 

specified in Section 1.2. 

5.1 Experimental design 

The aim of this evaluation is to investigate how accurate the algorithms we have implemented 

are for top-n recommendation both for new users and users with more item interaction 

history. As stated in the problem statement in Section 1.2, we will evaluate the 

recommendation algorithms on different datasets, and not on Forzify’s own dataset, because 

Forzify has limited amount of existing data. We want to find out which of the algorithms that 

gives best accuracy across the datasets, and to investigate if the accuracy is consistent across 

the datasets. If one algorithm performs better for all the datasets, this algorithm will most 

probably be the best option also in Forzify’s case, but if the algorithms vary in the 

performances on the datasets, it will be more difficult to choose the best approach. 

Additionally, we want to investigate the scalability of the algorithms, as a recommendation 

system must give its recommendations to users in real-time and must be able to handle large 

amounts of data. 

In this section, we will first present the experimental setting and metrics that will be used in 

the evaluation. There will be a part about the datasets we will use, where we first compare the 

features of Forzify’s dataset to the other presented datasets, in order to find the best suited 

datasets for our evaluation. Next, there will be a description of how we will treat the data and 

we will present the characteristics of the sampled datasets. Then, we will describe how the 

evaluation is implemented. 

5.1.1 Experimental setting and metrics 

The experimental setting used for this evaluation, will be offline evaluation, which was 

described in Section 2.5.1. This setting is well-suited for measuring accuracy and scalability, 
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and is more time- and cost-efficient than user studies. Online evaluation was not an option 

because the version of Forzify, made for all clubs of a division, which we are making the 

recommendation system for, are not yet released. Online evaluation is not a good option for 

testing new algorithms either, because they can introduce risks when the algorithms are not 

effective or contain errors. Therefore, offline evaluation is the best option for our evaluation, 

which also is the most common method used in recommendation system research (Jannach et 

al. 2010, 175).  

Offline evaluations use pre-collected datasets of users’ ratings of items. The datasets we will 

use, will be presented in Section 5.1.2. An important decision when measuring accuracy in an 

offline evaluation, is how the dataset should be divided into separate training and test sets, 

which only are used for either training or testing of the recommendation system. If a 

parameter tuning of the model is required, there is also necessary to make a separate tuning 

set. This set can be used for training after the tuning, but cannot be used for testing, as it can 

lead to overfitting (Aggarwal 2016, 236). Figure 15 shows a typical example of a partitioning 

of a dataset, where half of the ratings are placed in the training set, a quarter of the ratings are 

placed in the validation set, and the last quarter are used as test set. This is a common division 

of ratings, but if the dataset is large, the test and validation sets can be reduced to a smaller 

proportion of the ratings (Aggarwal 2016, 236). This was the case in the Netflix Prize, which 

had 100 million ratings, as shown in Figure 16.  

 

Figure 15: Typical partitioning of ratings for recommendation evaluation (Aggarwal 2016, 237).   
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Figure 16: Netflix Prize partitioning of ratings (Aggarwal 2016, 237) 

To avoid bias from the users in the test set, N-fold cross validation will be used as selection 

technique in the evaluation. This is a stratified random selection method often used in 

recommendation system research (Jannach et al. 2010, 177). In this technique, the users are 

randomly assigned to N different user partitions of size 
1

𝑁
. Each of these partitions is then 

selected for testing once, while the remaining partitions are used for the training of the model. 

This means the testing are done N times, and the results are consequently averaged from the 

results of all N repetitions. We will use 5-fold cross validation, which means we divide all the 

users in 5 partitions of equal sizes. For each fold or repetition, one of the partitions are used 

for testing and the others are used for training, and this is repeated 5 times, so that each user is 

used once for testing and four times for model training. Our partitioning of users and use of 

folds are illustrated in Figure 17.              

 

Figure 17: The 5-fold cross validation method used in our evaluation 
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Because all of the presented recommendation algorithms, except for the baseline algorithm, 

base their recommendations on users’ previous history, it is necessary to include some of the 

test users’ ratings in the dataset used for training. There are two methods commonly used for 

this: given-N and all-but-N (Jannach et al. 2010). The given-N method assigns N random 

ratings to the training set for each evaluated user, and assigns the rest of the ratings to the test 

set. All-but-N, on the other hand, assigns N random ratings for the evaluated user to the test 

set, while all the others of the user’s ratings are assigned to the training set. These methods 

have different advantages and can therefore be used for different purposes. Given-N has the 

advantage that we get the same background information for each of the tested users, while all-

but-N ensures equal conditions when using classification metrics (Jannach et al. 2010), such 

as top-n metrics, where the top n recommendations are classified as relevant or not. Another 

strength of all-but-N, which is desirable when evaluating the general accuracy of the 

recommender, is that we get different number of ratings as background information for the 

different users, which best models a real recommendation system.  

Because given-N and all-but-N have different purposes, we will use both methods, but to 

investigate different problems. In the problem statement in section 1.2, we stated that we will 

find out which recommendation approaches that give best accuracy for both new and old 

users. Therefore, we will use given-N, with different sizes of N, to evaluate the accuracy for 

users with limited item interaction history, and all-but-N to evaluate the general accuracy of 

the recommendation system. All-but-N gives the best opportunity to examine how the top-n 

accuracy differs across the datasets, as it gives equal numbers of correct recommendations for 

each user. If we had used a rating prediction problem, the number of ratings in the test set 

would not have been important, because the accuracy in such cases measure the variations in 

predicted scores from the original ratings, not if the top n recommendations are considered 

correct. But, as stated in Section 3.3, Forzify only contain unary data, which mean we must 

treat the recommendation problem as a top-n recommendation problem, and consequently use 

top-n metrics. 

We will measure the general accuracy by using all-but-10, i.e., for each test user we will hide 

10 ratings in the test set. These items are considered relevant, and the rest of the ratings are 

used as training data. The choice of 10 is made of various reasons. Forzify presents its 

recommendation in lists of 10 items, and we will therefore evaluate the recommendation 

algorithms with a recommendation list size of 10. By using all-but-10, it will then be possible 
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to make a perfect recommendation list, by recommending all the 10 relevant items. As we 

will come back to in Section 5.1.2, we will only choose users with 20 to 200 ratings, to ensure 

equal conditions for the different datasets in the accuracy measurement. By choosing all-but-

10, we ensure all users have at least 10 given ratings, and mostly 190. For the evaluation of 

accuracy of recommendations for new users, we will use given-2, given-5 and given-8, 

because we then can see how the accuracy changes when more information about the user is 

known. 

In Section 2.5.3, we presented top-n measures for recommendation systems. We will use 

MAP as the main metric in the evaluation of the accuracy of the algorithms. MAP is 

commonly used in research on recommendation systems which use unary data and implicit 

feedback, and it was used as the metric in the most famous recommendation system challenge 

for top-n recommendations: The Million Song Dataset Challenge, as we presented in Section 

2.1. The strength of this measure is that it both takes into account the number and positions of 

the correct recommendations among the top n recommendations, not only the position of the 

first correct recommendation (as ARHR), the number of users who get at least one correct 

recommendation (as HR), the proportion of correct recommendations in the recommendation 

list (as precision) or the proportion of the correct items that are recommended (as recall). To 

get reliable data about accuracy, we will include HR, ARHR and precision, to ensure that the 

results are not biased by the metric. The reason for including precision and not recall, is that 

we mean precision gives a better measure for top-n recommendations, as it considers the 

number of recommendations in the list, not the total number of possible correct 

recommendations. We could have included both, but we expect them to give much the same 

scores in our case. This is because all-but-10 gives 10 relevant items, and the recommendation 

list size will, as we come back to later, mainly be set to 10. Precision and recall are, as stated 

in Section 2.5.3, found by dividing the number of correct recommendations on the 

recommendation list size or the number of relevant items in total, for precision and recall 

respectively. 

All the items that a user has interacted with, will be regarded as relevant for that user because 

we want to simulate implicit feedback recommendations, similarly to The Million Song 

Dataset Challenge. This is because Forzify mostly gathers implicit feedback, this kind of data 

is easiest to collect, and all datasets can be transformed to implicit feedback datasets, which 

means it makes it easier to compare accuracy results across datasets. As Forzify presents the 
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recommendations in a set of 10 items, we will measure the MAP for the 10 best 

recommendations for each evaluated user, i.e., we have a top-10 recommendation problem, 

where we try to predict which items a user will interact with. In addition, we will include 

results for recommendation list sizes of 20 when we evaluate the general accuracy, to see how 

this affects the accuracy.   

To measure the scalability of the recommendation algorithms, we will for each dataset and for 

each recommendation algorithm, measure the average time used for training the recommender 

and the average time used for producing recommendations to a user. In addition, we will test 

the training time and time used for making recommendations for three different subsets, with 

varying sizes, of the MovieLens dataset, to show how the recommendation algorithms scale 

up to larger ratings sizes. Our experimental setting is summarized in Table 7, and more details 

about the datasets will be presented in the next section. 

Dependent 

variable 

Technique Variation Dataset Measures 

General 

accuracy 

5-fold cross 

validation, all-

but-10 

10/20 

recommendations 

Datasets from 

different domains, 

using original / 

binarized ratings 

MAP, ARHR, 

HR, precision 

Accuracy for 

new users 

5-fold cross 

validation, given-

2/5/8 

10 

recommendations 

Datasets from 

different domains, 

using binarized 

ratings 

MAP, ARHR, 

HR, precision 

Scalability 5-fold cross 

validation, all-

but-10 

Training 

recommender / 

predicting 

recommendations 

Datasets from 

different domains 

Average time 

used  

Scalability Use whole dataset 

as training data, 

produce 

recommendations 

for 100 users, 

repeat all 5 times 

Training 

recommender / 

predicting 

recommendations 

Subsets of one 

dataset in 3 varying 

sizes 

Average time 

used 

Table 7: Summary of our experimental design 
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5.1.2 Datasets 

To decide which datasets that are best suited for our evaluation, we will compare Forzify’s 

data to the datasets presented in Section 2.5.4. Further, there will be a description of how we 

will make the selected datasets ready for evaluation, and we will present the properties of 

these datasets. 

Selection of datasets 

In Section 2.5.4, we presented 5 datasets from different domains that are commonly used for 

recommendation system evaluation, namely Book-Crossing, MovieLens, Amazon, Million 

Song and Jester. These vary not only in domain features, but also in inherent features and 

sample features. In this section, we will compare Forziy’s data to the other datasets when it 

comes to these features, so the datasets that are best suited for the evaluation can be selected. 

We want to use the datasets that are most similar to Forzify, even though the item types 

recommended in each dataset naturally differ from the one in Forzify. 

When it comes to domain features, Forzify has both resemblances and differences to the other 

presented datasets. The domain features of Forzify are shown in Table 8, and the domain 

features of the other datasets are summarized in Table 3. The context is, as in the other 

datasets, a web setting, but the content type is different from the others. Forzify recommends 

sports videos, while each of the other datasets contains data about one of the following: 

books, songs, movies, jokes and e-commerce products. Forzify’s content type can be seen as 

most similar to MovieLens’ content, i.e., movies. Both Forzify and MovieLens recommend 

videos, but on the other hand, the videos differ in content and duration, as most movies are 

not about sport and are 90 to 120 minutes long, while sports videos typically last for a few 

minutes. In this perspective, the items are more similar to the ones in Million Song, because a 

song usually is a few minutes long.  

Forzify has low costs for both false negatives and for false positives, because 

recommendations of low quality or missing recommendations of relevant items do not 

introduce any risks to the users, as can be the case in other domains. On the other hand, 

successful recommendations can give a high potential benefit for the users and the owners of 

the system, as it simplifies the browsing and information filtering process. This is similar to 
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all datasets except for Amazon, which has higher costs for false negatives, and Jester, which 

have smaller potential benefits of recommendations, as the item catalogue is very small. 

Content Context Cost false 

negatives 

Cost false 

positives 

Benefit 

Sports videos Web Low Low High 

Table 8: Domain features of Forzify’s data 

The inherent features of Forzify are summarized in Table 9, while these features for the other 

datasets are summarized in Table 4. Forzify has both explicit and implicit data, similar to 

Book-Crossing. However, there is unary data only, in the form of presence of user actions and 

play counts. The scale of ratings is therefore most similar to Million Song, where only 

number of plays are recorded. However, all of the datasets can be used because explicit user 

data can be transformed to unary data. This can for example be done by substituting all 

ratings with 1-values - indicating an item interaction, substituting high ratings with 1-values 

and removing the other ratings - indicating likes, or by treating the explicit ratings as arbitrary 

unary ratings, where all ratings indicate preference, but higher values indicate larger 

preference, as in playcounts. This can be done because explicit data are richer data than 

implicit data, and it is not possible to transform the data the other way, i.e., from implicit to 

explicit. 

Like all of the other datasets, Forzify has only one dimension of ratings, because the ratings 

are not related to special qualities or characteristics of the videos, as video quality or sound 

quality. There is not collected any demographic information, but each item has associated 

tags, which is also the case in MovieLens, Million Song and Amazon. In Book-Crossing and 

Jester, on the other hand, publisher information and the text of the jokes are collected 

respectively as content data.    

Explicit or 

implicit 

Scale Dimensions Demographic 

data 

Content 

Both Presence of user 

actions and play 

counts 

1 No Tags 

Table 9: Inherent features of Forzify’s data 
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Forzify has today only gathered data from the three individual club versions of Forzify, which 

are not representative for the new versions that will be released for Eliteserien and 

Allsvenskan for the 2017-season. We will therefore discuss the sample features of Forzify in 

terms of how these are expected to be for the new version, where all clubs in a league are 

included. These will be compared to the sample features of the other datasets, which were 

summarized in Table 5.  

Several hundred thousand persons watch Eliteserien each match day, either live at the stadium 

or on TV (Sponsor Insight 2016). All of these are potential users of the new Forzify version 

for Eliteserien. If only a small percentage of these starts to use Forzify, the application will 

get several thousand users. Consequently, the number of users will be more similar to 

MovieLens, Book-Crossing and Jester, which have between 73 000 and 279 000 users, than to 

Amazon and Million Song, which have 1 M and 21 M users, respectively. 

Because both explicit and implicit data are gathered, and videos typically are short, several 

ratings can be expected from each user. It will probably be more ratings per user than in 

Book-Crossing and Amazon, as it is more time-consuming to read a book than to watch a 

sports video, and users typically do not buy as much items online as they watch online videos. 

Ratings per user will therefore be more similar to Jester, MovieLens and Million Song. 

However, users will only be expected to interact with a small fraction of the items. In both 

Tippeligaen and Allsvenskan, there are 8 matches each match day, and there are 30 rounds in 

one season. For each match, typically 30-50 videos are added, which means it most likely will 

be uploaded around 10 000 videos for each league in a season. Forzify’s dataset will therefore 

be most similar to MovieLens, Million Song and Book-Crossing in number of items and 

percentage of items rated per user, as Jester and Amazon have an extremely small and large 

number of items, respectively.  

Summarized, Forzify has both similarities and differences to all of the other datasets. We 

choose to use MovieLens, Book-Crossing and Million Song as datasets for this evaluation, 

because they have the highest similarities to Forzify in sample features, as number of items 

and items rated per user, and they are most similar to Forzify in domain features, although the 

type of content varies in all of them. The inherent features of these three datasets are all 

suitable for Forzify’s case, as they all contain content data and have ratings that can be 

transformed to unary data, like the data in Forzify. Jester and Amazon could both have been 

used also, but we rather want to go into the depth of the results for a few datasets, than to look 
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at the results for all of the datasets. The main reason for not choosing these two datasets, are 

the number of items and the consequential density of ratings. Jester has an extremely dense 

dataset, where most users have rated nearly all of the items, while Amazon has an extremely 

sparse dataset, where most users only have rated an extremely small fraction of the items.  

Sampled datasets     

Here, we will describe how we make the datasets ready for the evaluation, and present the 

characteristics of the sampled datasets. We will sample one subset of 6000 random users with 

20 to 200 ratings for each of the datasets. This is because we want to make the evaluation 

setting as similar as possible for all of the datasets, so the number of users or previous ratings 

do not affect the recommendation accuracy. This is important to get reliable data about the 

differences in accuracy across the datasets. In addition, carrying out simulation of 

recommendations for up to a million of users can take unreasonable amounts of time when we 

are using 5-fold cross-validation and running repeated tests. The choice of 6000 users are 

made because previous studies have shown that this number of users is sufficiently large and 

lets the simulation being done in reasonable time (Im and Hars 2007). 

The datasets differ in rating scales and type of ratings. MovieLens contains only explicit 

feedback, Million Song Dataset contains only implicit unary feedback, while Book-Crossing 

contains both explicit and implicit feedback. Because Forzify only contain unary ratings and 

because we want to compare the accuracy across the datasets, we will transform the data to 

implicit unary ratings. By doing this, the type of ratings will not affect the accuracy in the 

different datasets. We will do this by substituting all rating values by 1-values, so that each 

rating indicates an equal implicit preference. In addition, we will run one test with the 

unmodified ratings, to examine if we get higher accuracy with the original data. Then, the 

ratings will be treated as arbitrary value unary ratings, where a 1-value indicates a small 

preference and larger values indicates larger preferences, so that the ratings are as similar as 

possible to the play counts collected in Forzify. This can give valuable information about 

which ratings that are best to use in the new recommendation system for Forzify. 

The characteristics of the users, items and ratings for the sampled datasets are presented in 

Table 10, where we can see that the number of items varies to a great extent across the 

datasets. In the Million Song Dataset, there are more than ten times as many items as in 

MovieLens, while Book-Crossing nearly has twice as many items as Million Song. We can 
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expect this to give a higher accuracy for the recommendations in MovieLens, because the 

recommendation system solves a top-n recommendation problem, where the items are 

classified as relevant or not for a user based on the previous user-item interactions, and the 

accuracy is calculated on the basis of how many of the recommended items that are classified 

as relevant and their positions in the list. For example, it is easier to get a high number of 

relevant recommendations when recommending 10 items out of 100 items, compared to 

recommending 10 items out of 10 000 items when the number of relevant items remains the 

same.  

 # Users # Items # Ratings Avg. ratings 

per user 

Avg. ratings 

per item 

Book-

Crossing 

6000 150 771 336 051 56.00 2.23 

Million Song 

Dataset 

6000 87 957 337 867 56.30 3.84 

MovieLens 6000 7 359 407 571 67.92 55.38 

Table 10: Statistics about ratings, items and users for the sampled datasets 

We sampled users with number of ratings in the range of 20 to 200, however we can see a 

difference in the number of ratings and average ratings between MovieLens and the two other 

sampled datasets. Book-Crossing and Million Song have nearly the same number of ratings, 

while MovieLens has a larger number. The high number of ratings and low numbers of items, 

gives a much higher average of ratings per item in MovieLens than in the two other datasets. 

Book-Crossing and Million Song can therefore give valuable information about the accuracy 

for items with low number of ratings. 

As can be seen in Table 11, there are large differences in the content information in the 

sampled datasets. MovieLens has a default set of tags, while the tagging in Million Song are 

user specified. The tags in Book-Crossing is taken from the publisher information. This 

results in a much larger tag set for both Book-Crossing and Million Song. To reduce the 

number of tags in these two datasets, we have removed all tags with a frequency of 1 and in 

the Million Song Dataset, we have removed tags for items where the tag values are lower than 

30 for the item-tag combination (the tags have values from 0-100 indicating the relation 

between item and tag, where larger values indicates stronger association). In addition, we 
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have removed stop-words, which are commonly used words that give little information, as 

“a”, “the” and “on” (Jannach et al. 2010, 56). The numbers in Table 11, show the properties 

of the datasets after these removals. MovieLens has only 19 different tags, while Million Song 

Dataset has 52 291 tags and Book-Crossing has a total of 47 921 different tags. Book-

Crossing has the highest number of tags associated to items, both in total and in average per 

item, but Million Song has also a considerably larger number of tags than MovieLens. 

 # Distinct tags # <Item, tag>-

pairs 

# Items with 

tags 

Avg. tags per 

item 

Book-Crossing 47 921 872 117 124 626 7.00 

Million Song 

Dataset 

52 291 365 191 70 095 5.21 

MovieLens 19 15 468 7 359 2.10 

Table 11: Statistics about the content information for the sampled datasets 

For the evaluation of scalability, we will also test the algorithms on three different subsets of 

MovieLens, one with 100 000 ratings, one with 1 M ratings and one with 5 M ratings. The 

properties of these subsets are shown in Table 12. 

 MovieLens 100 K MovieLens 1 M MovieLens 5 M 

# Users 730 7 316 35 029 

# Items 6 373 9 626 10 527 

# Tags 19 19 20 

# <Item,tag>-pairs 13 678 19 740 21 291 

Table 12: Properties of the MovieLens subsets used for scalability testing 

5.1.3 Implementation of an evaluation framework 

All of the presented frameworks in Section 4.1 have built-in support for evaluating 

recommendation algorithms. However, none of them support evaluation of external 

algorithms. We have made one algorithm from scratch and used two recommendation 

frameworks for our implementations, so it was not possible to evaluate all the algorithms in 

one framework. We decided to make our own tests in Java because it is important to use 
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exactly the same evaluation procedure for each algorithm in order to get reliable data. The 

program code used to prepare and conduct the evaluation can be obtained from GitHub, see 

link in Appendix A. The splitting of ratings into training and test sets is done in the 

DataSplitter-class, while the evaluation itself is carried out in the Evaluator-class.  

5.2 Results 

In this section, we will present and discuss the results of the evaluation. First, we will look at 

the results necessary to examine how accurate the recommendation algorithms are in general 

for the different datasets. This is done with an all-but-10-approach. Next, we will look at the 

results of accuracy measures with given-2, given-5 and given-8 for the different datasets, to 

investigate how accurate the recommendations are for users with limited item interaction 

history. Further, we will look at the time used for training the recommendation model and for 

producing the recommendations, which tells us about the scalability of the different 

algorithms. 

All tests were performed on the same computer, at a Linux-based operating system with 2.30 

GHz (Intel Core i5-6200U) and 6GB memory. The algorithms will use parameters as 

specified in Section 4.2. To get the best possible accuracy for these algorithms, we could have 

done parameter tuning on every dataset, where different parameters are tested for the 

algorithms on a validation set. However, as we want to test the suitability of the same 

algorithms across datasets, we have chosen not to do this.  

5.2.1 General accuracy 

Here, we will present and discuss the results important for investigating the general accuracy 

of the recommendation algorithms. By general accuracy, we mean the accuracy for users with 

some item interaction history, as opposed to the accuracy for new users, which will be the 

focus of the next section. The results are presented for the three selected datasets, i.e., 

MovieLens, Million Song and Book-Crossing, and can therefore give us valuable information 

about how the accuracy differs across different domains. All the results in this section are 

obtained by using an all-but-10 approach, which means 10 ratings are assigned to the test set 

and between 10 and 190 ratings are assigned to the training set for each user, as we only 

included users with between 20 and 200 ratings. As we solve a top-n recommendation 
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problem, the accuracy is determined by how many of the items placed in the test set for a user 

we are able to recommend in the recommendation list for that user, and their position in the 

recommendation list. These items are considered relevant for that user.    

First, we will present the accuracy obtained by using binarized data and the accuracy obtained 

by using the original arbitrary value ratings, to see which difference this makes for the 

accuracy. In Figures 18-20, the MAP, which was described in Section 2.5.3, is shown for both 

original ratings and binarized ratings, for all of the three datasets. The number of 

recommendations used are 10. Higher MAP-values indicate higher accuracy. Overall, there 

are small differences between the accuracy when comparing the values obtained using 

original ratings with the ones obtained using binarized ratings. However, in three situations, 

the accuracy is considerably higher for binarized ratings than for the original ratings. This is 

the case two times for the item-based algorithm, in Million Song and Book-Crossing, and one 

time for the model-based, in the Book-Crossing. This implies that binary ratings give at least 

as good accuracy as arbitrary valued ratings for top-n recommendations for the three datasets. 

The rest of the results in the evaluation is gathered from binary ratings, as was stated and 

justified in Section 5.1.2.    

 

Figure 18: MAP for our algorithms performed on MovieLens 
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Figure 19: MAP for our algorithms performed on Million Song Dataset 

 

Figure 20: MAP for our algorithms performed on Book-Crossing 
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algorithm performs, one can compare the algorithm with a popularity baseline algorithm 

(Ekstrand, Riedl, and Konstan 2011), which commonly is done in evaluation of 

recommendation algorithms (Deshpande and Karypis 2004, Rendle et al. 2009, Hu, Koren, 

and Volinsky 2008). A successful recommendation algorithm gives a certain improvement in 

accuracy from what is achieved by the baseline. By using this comparison, we can see in 

Figures 18-20 that the content-based algorithm performs weak in the MovieLens and Million 

Song dataset, while it gives a good accuracy in Book-Crossing. In all of the binarized 

datasets, the item-based and model-based give a considerably better accuracy than the 

baseline, which mean they have a good performance in all of these datasets. 

In Figures 21 and 22, we can see how the MAP varies for the recommendation algorithms and 

for the datasets. In the first of the two, the results are gathered with a recommendation list size 

of 10, while in the second, the number of recommendations used for testing is 20. First of all, 

it is clearly visible that the accuracy follow the same pattern, regardless of the 

recommendation size. The only notable difference between the results for the different 

recommendation sizes, is that the accuracy is slightly higher for 20 recommendations than for 

10.  

There are large differences between the accuracy across the three domains. The algorithm 

with largest accuracy in the MovieLens dataset, have more than three times as high accuracy 

as the best scoring algorithm for Million Song, and around 14 times higher accuracy than the 

best scoring algorithm for Book-Crossing. There are also differences across the datasets in 

how evenly the algorithms perform in each domain. In Book-Crossing, the algorithms 

perform evenly, while in Million Song, there are larger differences between the different 

algorithms. The largest differences inside a domain, however, are found in MovieLens.  

There is also some consistency in the accuracy across the domains. The two collaborative 

filtering algorithms perform best in all three domains. Especially in MovieLens, but also in 

Million Song, they perform clearly superior to the two other algorithms. The model-based 

algorithm is the one with the best accuracy in MovieLens, while the item-based is the best-

performing one in Million Song. In Book-Crossing, their accuracy is quite even, although the 

item-based performs slightly better. Therefore, these two algorithms seem to be the most 

accurate approaches across the domains when using MAP as accuracy measure, but it is not 

easy to decide which of them that is the most accurate. 
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Figure 21: MAP for our algorithms for the different datasets, with recommendation list size = 10 

 

Figure 22: MAP for our algorithms for the different datasets, with recommendation list size = 20 
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For both MovieLens and Million Song, the content-based algorithm scores very low, while 

the baseline algorithm’s accuracy lies between the ones of the two collaborative filtering 

algorithms and the content based algorithm. In the Book-Crossing dataset, the accuracy of the 

algorithms is more even, although the two collaborative filtering algorithms score best, once 

again. In this domain, the content-based algorithm performs better than the baseline 

algorithm, unlike the results in the two other domains. The content-based algorithm performs 

better in Book-Crossing than it does for the two other datasets. All the other algorithms tend 

to perform better in Million Song, and even better in MovieLens. 

To avoid possible biases from the MAP measure, we will also present the results of ARHR, 

HR and precision, which were explained in Section 2.5.3, for the algorithms on the different 

datasets. This enhances the validity of the data for accuracy. A value of 1.0 for HR means that 

all users get at least one correct recommendation, a value of 1.0 on ARHR means every user 

get a correct recommendation on the first index in the recommendation list, and a 1.0 score in 

precision means all of the recommended items are correct, i.e., the items are in the users’ test 

sets. A 0-score, on the other hand, means for all of the metrics that none of the users get any 

correct recommendations. Again, as with MAP, the best indication of an algorithm’s 

successfulness is found by comparing its accuracy with the baseline accuracy. 

In Figures 23-28, the results for these measures are presented for all combinations of 

algorithms and datasets that are presented, for both 10 and 20 recommendations. Also for 

these measures, there are little differences in the accuracy when the recommendation sizes 

differ. The patterns are the same for the algorithms, regardless if it is 10 or 20 

recommendations, on all of the datasets. The only notable differences, are that HR and ARHR 

tend to increase with more recommendations, and the precision tends to decrease when more 

recommendations are given. This is a consequence of how the different metrics measure the 

accuracy. Precision is found by dividing the number of relevant recommendations to the 

number of recommended items, and therefore tends to decrease its score when more 

recommendations are given. HR and ARHR sum up values based on the number of hits, i.e., 

the first relevant recommendation for a user, and the hits’ positions (only in ARHR), and 

ignores items outside the recommendation list. Therefore, it is as expected that the accuracy 

increases for these two measures when more recommendations are given.   

For the MovieLens dataset, the metrics in Figures 23 and 24 show the same tendency as for 

the MAP, as shown in Figures 21 and 22, with the collaborative filtering approaches as the 
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most accurate. However, the difference in accuracy seems to be smaller between item-based 

and model-based for HR, ARHR and precision than for MAP. Figures 25 and 26 show that all 

of HR, ARHR and precision give the same accuracy pattern as for MAP when it comes to the 

Million Song dataset: The item-based is the most accurate, and model-based the second most 

accurate.  

In the Book-Crossing dataset, there are larger differences between the results of the different 

metrics, as can be seen in Figures 27 and 28. Content-based scores best for HR, with model-

based second, and item-based and baseline last. The same tendency is present for the 

precision. This is different from the MAP for the same dataset, shown in Figures 21 and 22, 

where the order from best to worst was: item-based, model-based, content-based and baseline. 

The results of ARHR, on the other hand, show more similarity to MAP, with model-based and 

item-based performing best. A possible reason for this, is that these two metrics take into 

account the positions of the correct recommendations in the recommendation list when 

computing the scores. Overall, this implies that the algorithms have more similar accuracy in 

this domain. It is not clear which algorithm that performs best: this depends on the metric 

used. However, item-based, model-based and content-based seem to give the best overall 

scores among the metrics.  

   

Figure 23: Various accuracy measures for algorithms 

on MovieLens, tested with 10 recommendations 

Figure 24: Various accuracy measures for algorithms 

on MovieLens, tested with 20 recommendations 
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Figure 25: Various accuracy measures for algorithms 

on Million Song, tested with 10 recommendations 

Figure 26: Various accuracy measures for algorithms 

on Million Song, tested with 20 recommendations 

   

Figure 27: Various accuracy measures for algorithms 

on Book-Crossing; tested with 10 recommendations 

Figure 28: Various accuracy measures for algorithms 

on Book-Crossing, tested with 20 recommendations 
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considerably better than the two other algorithms, while they in Book-Crossing perform best 

together with the content-based algorithm. When it comes to which of them that is the most 

accurate, it is quite even. Model-based is the best performing algorithm in MovieLens, item-

based is the best-performing in Million Song, while they perform similarly in Book-Crossing.  

Content-based is performing as good as the collaborative filtering algorithms in Book-

Crossing, but shows very weak accuracy for the two other domains, which can be caused by 

differences in the tags for the different datasets or other domain differences. The baseline is 

not giving the best accuracy in any of the domains, but gives some accuracy for all three 

domains, which is understandable as it always recommends the most popular content, not 

personalizing its recommendations.  

To summarize, the two collaborative filtering algorithms – item-based and model-based – are 

the most accurate algorithms, but it is not easy to decide which of them that gives the best 

accuracy all in all. Therefore, using one of these algorithms, will be a good option to give the 

long-time users recommendations with high accuracy. This is as expected since collaborative 

filtering algorithms are known as the most mature and most implemented recommendation 

approaches, and are known to give recommendations of high accuracy, as stated in Section 

2.2.1. 

5.2.2 Accuracy for new users 

Here, we will present and discuss the results necessary to find out which of the 

recommendation algorithms that give best accuracy for new users, i.e., users with little item 

interaction-history. This is simulated by using a given-n approach. We will use given-2, 

given-5 and given-8, which means we will use either 2, 5 or 8 ratings for each test user as 

training data, while the rest of the test users’ ratings will be used as test data. All of the results 

are obtained by using a recommendation list size of 10 and using binarized ratings. The 

metrics HR, ARHR and precision will not be included in this section, as we found that they 

overall give the same results as MAP for the given-n approach.  

In Figure 29, the MAP for our algorithms are shown for the different datasets with a given-2 

approach. For MovieLens, the best accuracy is obtained by the model-based algorithm, with 

baseline and item-based not far behind. In both Million Song and Book-Crossing, the model-

based and the baseline algorithm give the highest values of MAP. Content-based is the least 
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performing in both MovieLens and Million Song, but has higher accuracy than item-based in 

Book-Crossing. Model-based therefore seems to give the best results for users with 2 known 

ratings, but also the baseline algorithm performs good at this task.  

 

Figure 29: MAP for our algorithms on datasets with a given-2 approach  
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baseline algorithm. Overall, the model-based seems to be most accurate for given-8. The 

baseline performs quite good in all of the domains, while the item-based performs well in two 

of the domains and weak in the last.  

 

Figure 30: MAP for our algorithms on datasets with a given-5 approach 

 

Figure 31: MAP for our algorithms on datasets with a given-8 approach 
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The results of accuracy for users with limited rating history show the overall same tendencies 

as for the general accuracy, with two main differences: (1) the item-based algorithm does not 

perform as good for new users as it does for old users when compared to the other algorithms, 

and (2) the baseline performs better for new users. For both users with 2 and 5 ratings, the 

model-based and the baseline give the best accuracy across the datasets. Therefore, these two 

algorithms seem to be the best options in order to give high accuracy for new users. 

This is as expected as the baseline does not need any previous ratings for the user the 

recommendations are made for. It only needs to know which items that are most popular 

among all the users, and can therefore recommend items to new users as accurate as to users 

with more item interaction history. The model-based approach is also known to be better for 

cold start situations than the item-based because it can reduce the rating matrix to a smaller 

model and utilize both similarities among users and items, as stated in Section 2.2.1. 

Therefore, the fact that this algorithm performed well was not a surprise either. 

The most surprising with the results of the accuracy for new users, however, was the weak 

performance of the content-based filtering. The content-based filtering is in recommendation 

system literature often mentioned as the best approach for cold start situations for both new 

users and new items (Koren, Bell, and Volinsky 2009, Bari, Chaouchi, and Jung 2014, 36), 

but this was absolutely not the case in our experiments. This algorithm performed clearly 

poorest of the algorithms for new users in two of the datasets, and third best, out of four, in 

the Book-Crossing dataset. One reason for this, may be that the datasets do not contain 

enough content information for the content-based algorithm to work properly. For both 

MovieLens and Million Song, genre tags were used as content information, while for Book-

Crossing, publisher information was used as content data. The accuracy in Book-Crossing 

was better than in the two other datasets, which can indicate that this kind of content 

information is better suited for content-based filtering. However, the differences may come 

from differences in the domains; maybe this algorithm only is better suited for the book 

domain than for the movie and song domain. One could also wonder if there were any errors 

in the algorithm, causing the weak results, but when choosing the algorithms, we also tested 

an alternative content-based filtering implementation, which used a k-nearest neighbours 

approach – where similarities were computed between items based on their tags, and 

predictions were computed based on the k most similar items to the ones the user has rated 

before, and this gave even worse accuracy. 



98 

 

To give an overview of how the accuracy changes for different levels of known ratings, 

Figures 32-34 show for each of the datasets how the MAP changes from given-2, 5 and 8. 

“g2”, “g5” and “g8” in the figures mean given-2, 5 and 8 respectively. The accuracy for the 

model-based and the item-based algorithm increase from given-2 to given-5 and increase 

further to given-8 for all of the three datasets. The content-based, on the other hand, performs 

on the same level when more items are given for MovieLens and Million Song, while it in 

Book-Crossing has a positive change in accuracy from given-2 to given-8. In all three 

datasets, the baseline algorithm has a small decrease in accuracy when more ratings are 

known. This is probably due to the fact that when more ratings are given in the training set, 

the number of items in the test set is reduced. 

For MovieLens, the best accuracy for new users is obtained by model-based collaborative 

filtering. When more ratings are given, the item-based algorithm’s accuracy increases and is 

almost on the same level as the model-based. In both Million Song and Book-Crossing, the 

model-based and the baseline algorithm perform best for new users. With some more ratings, 

the item-based performs best in Million Song, while the model-based and baseline continues 

to perform best in Book-Crossing. 

   

Figure 32: MAP for MovieLens for different rating 

splitting conditions 

Figure 33: MAP for Million Song for different rating 

splitting conditions 
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Figure 34: MAP for Book-Crossing for different rating splitting conditions 
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However, there is no reason to believe that this would change the clear tendencies in the 

results.  

To summarize this section, the best accuracy for new users is obtained by the model-based 

and the baseline algorithm. The algorithms differ in how their accuracy changes with more 

ratings.  

5.2.3 Scalability  

In this part, we will look at the scalability of the recommendation algorithms. We will use the 

training time and prediction time of the algorithms to determine their scalability. Training 

time is the time used for training the model, so that recommendations can be made, while the 

prediction time is the average time used for producing a list of recommendations for one user. 

We will first look at the training and prediction times for the three datasets used for testing of 

accuracy in Sections 5.2.1 and 5.2.2, and afterwards, we will look at the same measures for 

three subsets of MovieLens with different sizes. 

In Figure 35, the training time for the presented algorithms are shown for the sampled subsets 

of MovieLens, Million Song and Book-Crossing. There are large differences for the 

algorithms in the time used for training the recommender. The baseline algorithm uses less 

than 1 second for training in all three datasets, while the model-based uses around 10 seconds 

for all three. The item-based varies more. It uses 13 seconds on MovieLens, 46 seconds on 

Million Song and 69 seconds on Book-Crossing. The largest differences, however, are found 

for the content-based algorithm. This algorithm uses from under 1 second on MovieLens to 

around 600 seconds on the two other datasets.    

Also in prediction time, there are large differences for the algorithms on the three datasets. 

This can be seen in Figure 36. The results of the algorithms in prediction time show the same 

tendency as for the training time. The baseline algorithm does again use the least amount of 

time, from 0.0006 to 0.0039 milliseconds, while the model-based overall is the second fastest, 

using around 50 milliseconds for all three datasets. The item-based varies from 17 

milliseconds on MovieLens to between 200 and 300 milliseconds for Million Song and Book-

Crossing. Also, this time does the content-based algorithm vary the most, from around 5 

milliseconds for MovieLens to 1778 milliseconds (1.778 seconds) for Million Song and 4497 

milliseconds (4.497 seconds) for Book-Crossing. 
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Figure 35: Training time for our algorithms on the different datasets  

 

Figure 36: Prediction time for our algorithms on the different datasets 
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In these results, we can see large differences both between the algorithms and between the 

domains when it comes to training and prediction times. The most notable from the results, is 

how much time the content-based algorithm uses for both training and prediction in Million 

Song and Book-Crossing. This algorithm is several times slower on these datasets than the 

algorithm that uses second most time. However, the content-based algorithm is among the 

fastest in the MovieLens dataset, both for training and prediction. The reason for this is most 

probably the number of tags in the datasets, which varies from 19 distinct ones in MovieLens 

to around 50 000 ones both in Million Song and Book-Crossing. This algorithm’s 

computation has a linear time complexity in number of items and tags, because each user and 

item is represented by feature vectors, and similar items to a user are found by computing the 

dot-product of the user’s feature vector and all items’ feature vectors, as mentioned in Section 

4.2.3. However, when both number of items and tags get larger, as in Million Song and Book-

Crossing, this algorithm gets very time-consuming.   

A possible solution to increase the efficiency of the content-based algorithm, is to use feature 

selection, which means to keep only a subset of the tags (Jannach et al. 2010, 72). Then, 

statistical techniques can be used to select the most informative words to keep, usually around 

100. This does not only reduce the computation time needed for the content-based algorithm, 

but also decreases overfitting, which was explained in Section 2.5.1. However, using this 

strategy can remove important information describing items, and therefore reduce the number 

of items that contain metadata and consequently decrease the number of possible items to 

recommend. 

The results also show that the baseline algorithm is the fastest algorithm for both training and 

prediction in all of the datasets. This is as expected as it only counts items’ user interaction 

frequencies to find out which items that are the most popular. The model-based algorithm 

gives the second best results overall, performing better than the item-based in both Million 

Song and Book-Crossing. However, it performs not as good as the item-based for MovieLens. 

Item-based has a quadratic complexity in terms of items, as stated in Section 2.2.1, because it 

for each item must compare the item to all other items to find similarities among items. The 

model-based algorithm, on the other hand, has a linear time complexity in both number of 

items and users, but scales cubic with number of latent factors, as stated in Section 4.2.2, but 

the number of latent factors is usually a small number, set to 10 in our implementation. The 

item-based algorithm’s quadratic complexity for number of items can explain why it performs 
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weakly for Million Song and Book-Crossing, which have the largest number of items, but 

performs better on the MovieLens dataset, which has a smaller number of items. The model-

based algorithm’s cubic complexity in number of latent factors, does not make it the fastest 

algorithm with smaller number of users and items, but its linear complexity in number of 

items and users makes it perform more steadily across the datasets. 

In Figure 37, the training times for the algorithms are shown for three subsets of MovieLens 

of different sizes. The content-based and the baseline algorithm shows only very small 

differences in the training time when the number of ratings increase. The model-based 

algorithm and especially the item-based increase more in training time when the dataset 

contains more ratings.  

 

Figure 37: Training time used by our algorithms on different subsets of MovieLens 

Figure 38 shows the prediction times of the algorithms on the three same subsets of 

MovieLens. Again, baseline uses the least amount of time for producing recommendations. 

The largest growth in prediction time is seen for the item-based algorithm, but also the 

content-based algorithm shows some increase when the number of ratings increase. Model-

based, on the other hand, is the slowest on the smallest subset, but performs almost stable 

over the three rating sizes.  
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Figure 38: Prediction time used by our algorithms on different subsets of MovieLens 

The results from the three different subsets of MovieLens, show that the baseline algorithm is 

the fastest overall for training and prediction, showing little signs of increase in time-usage 

when the number of ratings increases. Content-based scales well for training time, while 

model-based and especially item-based show a large increase in time spent with more ratings. 

The prediction time also increases fast along the number of ratings for the item-based 

algorithm. The model-based, on the other hand, performs more steadily across the rating sizes 

for this, while content-based shows a small increase. The largest difference between the 

results for the three subsets of MovieLens and those from the three different domains, is that 

the content-based performs much better in the three subsets of MovieLens, which most 

probably is caused by the small number of tags in the MovieLens dataset.  

Overall, taking all results into account, the baseline algorithm seems to be the most scalable 

algorithm, both in training and prediction time, which is unsurprising as it only counts the 

frequencies of the items. The model-based algorithm seems to give the second best 

scalability. In the training time, it shows some increase, but in the prediction time it performs 

steadily with more users and items, which is the most important to give users fast 

recommendations. The training time can be done offline in the background, and are therefore 

not as important as the prediction time as long as it is within a reasonable time frame. The 

content-based algorithm scales rather good with the number of items and users, as long as the 
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number of tags is kept to a small number. If the number of tags gets large, however, this 

algorithm gets very slow. This algorithm performs steadily in training time when more ratings 

are given, but shows a certain increase in prediction time with more ratings. Therefore, this 

algorithm does not seem to be as good as the baseline and the model-based when it comes to 

giving fast recommendations to a large user base. The item-based algorithm scales poor for 

larger numbers of items both for training and prediction, and therefore seems to be the least 

scalable of the implemented algorithms in terms of number of users and items. 

All of the training and prediction times for the MovieLens subsets are in an acceptable time 

frame for all of the algorithms. The highest training time for the largest subset, with 5 million 

ratings, is just below 300 seconds, which is for the item-based algorithm. As the training can 

be done offline and not in real-time for each user, this number is tolerable. The prediction 

time, on the other hand, is more important for giving the users fast recommendations and a 

good user experience. The highest prediction time for the 5 million ratings subset, is also 

found for the item-based algorithm and are just over 100 milliseconds. This means all of the 

algorithms can produce recommendations for such a number of ratings in a reasonable 

amount of time, where the user does not need to wait for the recommendations to appear. 

However, if the number of ratings or tags increase, both the item-based and content-based will 

have problems with recommending items in a reasonable time frame, as they do not scale well 

for number of items and tags, respectively. 

To get even better data about the scalability of the algorithms, we could have tested the 

algorithms with even larger datasets, and also with varying sizes of users, items and tags. This 

has not been conducted because of time limits in the thesis, but can be interesting for further 

research. However, our evaluation of the scalability, has given an overall picture of how our 

algorithms scale, and given good indications of which algorithms that scale best and worst. 

To summarize, the baseline and the model-based algorithm show the best scalability, while 

the item-based seems to be the least scalable. The content-based can scale rather good if 

feature selection is done or the number of tags are kept to a small number.   

5.3 Discussion of cross-domain accuracy 

In this section, we will discuss which differences and similarities that are found in the general 

accuracy of our implemented algorithms across the datasets. We want to find out if there are 
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any consistencies in the accuracy across the domains. This is important for answering 

research question Q2, and for the findings to be generalizable to Forzify’s case. If no 

consistencies exist, we cannot generalize to Forzify’s case, but if the algorithms perform 

consistent across the different domains, we get good indications of what can be the best 

choice for Forzify. 

It is clear in our results that the accuracy in the different domains differs to a large extent. 

Overall, the algorithms perform much better in MovieLens than in Million Song, and they 

perform clearly the poorest in Book-Crossing. The only exception here, is the content-based 

algorithm which performs better in Book-Crossing than in the other datasets. There could be 

various reasons for these differences. First of all, it could be domain differences that make the 

algorithms work better or worse. For example, as Im and Hars (2007) point out, different 

domains have varying preference heterogeneity, i.e., the tendency for peoples’ preferences to 

overlap varies from domain to domain. This can make the algorithms perform better in one 

domain than in another. The differences in preference heterogeneity of the sampled datasets is 

visible in Table 10, where the characteristics of the sampled datasets are presented. For each 

dataset, we randomly chose 6000 users which all have rated between 20 and 200 items, so the 

average number of ratings per user are quite similar for the sampled datasets. The number of 

different items rated in total, however, differ to a large extent in the sampled datasets: from 

7 359 in MovieLens to 87 957 and 150 771 in Million Song and Book-Crossing respectively. 

This shows there is larger preference homogeneity in MovieLens than in the two other 

domains, which can be one reason for the higher accuracy in this domain. The differences in 

the content-based algorithm’s results across domains may in addition be explained by 

differences in the type of tags across the datasets. 

The differences in accuracy can also be a result of the measures used. We used top-n 

measures for measuring the accuracy because this type of measure is the only one that can be 

used for unary ratings. This kind of measures is affected by the item catalogue sizes, in the 

way that it is easier to recommend relevant items from a small item catalogue than from a 

large one, when the number of relevant items to predict remains the same. Therefore, a better 

measure for detecting domain differences in accuracy can be rating prediction metrics, such as 

RMSE and MAE, where the number of items in the item catalogue does not affect the 

accuracy. However, this was not an option in our case, as we were interested in measuring 
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accuracy across datasets with unary ratings, to get results from data as similar as possible to 

the data gathered in Forzify.  

Also, inside each domain, we found large differences in accuracy. The differences among the 

algorithms were largest in the MovieLens dataset, while they also were considerable in the 

Million Song dataset, even though not to the same extent. In Book-Crossing, the algorithms 

performed much more evenly. This also points towards that the accuracy of the algorithms is 

domain dependent which supports the research of Im and Hars (2007). On the other hand, 

there are some clear tendencies in the accuracy of the algorithms that can be seen across the 

datasets. The two collaborative filtering algorithms tend to perform better than the two other 

algorithms for users in general. This tendency is strong in MovieLens and Million Song, 

where these algorithms are superior to the others, but also in Book-Crossing, where these 

algorithms perform best together with the content-based algorithm. This is consistent with 

recommendation system literature stating that collaborative filtering gives better accuracy 

than content-based filtering (Koren, Bell, and Volinsky 2009). This also indicate a cross-

domain consistency in accuracy, which is advantageous as we want to use these results to find 

the algorithm that will be best for Forzify. 

5.4 Discussion of best algorithms for Forzify 

Here, we will discuss which algorithm or combination of algorithms that are best for Forzify 

based on the general accuracy, the accuracy for new users and the scalability of the algorithms 

for the different datasets. This will lay the fundament for answering research question Q3, 

stated in Section 1.2. In Table 13, we summarize how the implemented algorithms performed 

in our tests when it comes to scalability and accuracy, both in general and for new users. 

When it comes to the general accuracy, the two collaborative filtering algorithms showed that 

they overall are superior to the other algorithms across the three domains we tested in. This 

does not necessarily mean that they will give the best accuracy for Forzify, but it is reason to 

believe that they also will perform good in Forzify’s case, as the datasets used for testing have 

several similarities to Forzify’s data and these algorithms perform better than the other 

algorithms in two of the datasets and among the best in the third. This means they both 

perform well and consistent across the datasets. Therefore, either of the item-based or the 
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model-based collaborative filtering algorithms will most probably be the best algorithm for 

giving accurate recommendations for users with some interaction history on Forzify. 

 Item-based Model-based Content-based Baseline 

General 

accuracy 
+ + - - 

Accuracy for 

new users 
 + - + 

Scalability -   + 

Table 13: Summary of findings relevant for choosing recommendation approach. “+” indicates good 

performance, “-“ indicates low performance, while no sign indicates medium performance 

The model-based and the baseline algorithm gave the best accuracy for new users in our 

evaluation, and also performed more consistent across the datasets than the other two 

algorithms. The item-based algorithm needed more ratings to achieve the same accuracy, 

while the content-based algorithm never was able to get the same level of accuracy. 

Therefore, the best algorithms to use for new users of Forzify are the model-based or the 

baseline algorithm. One option is then to use the item-based algorithm for old users, and the 

baseline for new users. Another option is to use the model-based algorithm both for new and 

old users, as it handles both situations well. 

After looking at the general accuracy and the accuracy for new users, we are left with two 

options. Therefore, we will look at the scalability of the two options, to decide which is the 

best choice for Forzify. In the first option, the baseline is used for new users, while the item-

based is used for old users. From our evaluation, the baseline was the definitely most scalable 

of the presented algorithms, while the item-based algorithm did not scale well for larger 

number of items. In the second option, we stick only to the model-based algorithm. This 

algorithm did not scale as good as the baseline, but seems to scale better than the item-based 

algorithm. Therefore, from our evaluation, the best option for Forzify is to use the model-

based algorithm for both new and old users. This ensures that the recommendation system 

scales well and at the same time can give good accuracy, both in general and for users with 

limited item interaction history.  
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In Section 3.5, we discussed which of the approaches that were best for Forzify’s case 

according to previous research and literature, and concluded it would be best with a 

combination of approaches. Our conclusion based on our evaluation, however, tells the 

opposite: The model-based seems to perform better than a combination of approaches, both in 

terms of scalability and accuracy for new and old users. The main reason for this, is the low 

accuracy of the content-based algorithm, which was expected to perform best for new users. 

This algorithm only performed well in the Book-Crossing dataset. It is not easy to say why 

this algorithm performs weaker than expected, but it can be differences in the tags across the 

domains that makes this algorithm’s performance more domain dependent. Another possible 

explanation is that this algorithm do not perform as well on top-N recommendation as for 

rating prediction, which has been the recommendation problem studied most in 

recommendation system research. 

By using only the model-based approach, we do not utilize the content-based information that 

are available in Forzify. One option to get advantage from this data, without using the 

content-based approach that gave low accuracy, is to make different set of recommendations 

that are grouped together based on one or more characteristics of the items, which is similar to 

what Netflix does, as mentioned in Section 2.3.2. The user can then see recommendations in 

different categories based on the tags that most often are present in the videos the user has 

watched. In Forzify’s case, this can mean to make one set of recommendations based on the 

team that has been most watched, one set for the player that are most watched and one set for 

the overall best recommendations for the user. These set of recommendations can then easily 

be explained by texts like “because of your interest in Tromsø IL”, “goals by Thomas Lehne 

Olsen” and “top recommendations for you”. 

Lastly, it is important to note that our selection of algorithm for Forzify is not guaranteed to 

give good accuracy. When more data is gathered in Forzify, the algorithms must be tested 

again on this data to show how they actually perform in Forzify’s case. However, as we 

pointed out in Section 5.3, there are consistencies in which algorithms that perform best 

across the domains in our results. Therefore, our evaluation has given a good indication of 

which algorithm that will perform best until an evaluation on Forzify’s data can be carried 

out. 
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5.5 Summary 

In this chapter, we have evaluated the four candidate algorithms presented in Section 4.2. The 

focus has been to investigate the accuracy of the algorithms, both for new and old users, and 

to find out which algorithms that scale best for larger datasets. We chose to use an offline 

evaluation, as this is a well-suited approach for measuring accuracy and scalability, and at the 

same time is a time- and cost-effective approach. Because Forzify has limited existing data, 

we had to test the algorithms on other datasets. Therefore, we wanted to find out if the 

accuracy differs across different datasets. If they perform the same way in different domains, 

it is reason to believe that they will give good accuracy also in Forzify’s case.  

We compared all of the datasets presented in Section 2.5.4 to the data in Forzify, and found 

the MovieLens, Million Song and Book-Crossing datasets to be the most similar to the data in 

Forzify. These datasets were therefore chosen to be used for the evaluation. We sampled one 

subset of 6000 random users, who each had rated between 20 and 200 items, for each of the 

selected datasets to ensure equal conditions for the datasets when conducting the evaluation 

and to make sure the evaluation could be done in a reasonable time frame. In addition, we 

sampled three subsets of different sizes from the MovieLens dataset, in order to test how the 

algorithms scale to different sized datasets. 

Because Forzify only has unary data, the recommendation algorithms presented solves a top-n 

recommendation problem. Therefore, we had to choose a top-n recommendation metric to 

measure the accuracy. We selected MAP as the main measure as it both takes into account the 

number of correct recommendations and their positions in the recommendation list. Also, we 

chose to use HR, ARHR and precision to the enhance the validity of the data for accuracy. 

The measures for scalability was chosen to be the training and prediction times of the 

recommendation algorithms. 

An important decision in offline evaluation, is how the datasets are split into training and test 

sets. To avoid bias from the users assigned to the test set, the dataset splitting was conducted 

with 5-fold-cross-validation, which means the evaluation is repeated 5 times, where all users 

are used for testing once and for training four times. As we wanted to investigate the accuracy 

both for new users and for old users, we decided to use two different techniques for splitting 

the data of the test users: all-but-n and given-n. All-but-10 was chosen for testing the general 

accuracy, because it gives equal number of correct recommendations for each user, and at the 
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same time varies the number of known ratings for the user, which best models the users of a 

real recommendation system. To evaluate the accuracy for new users, we decided to use 

given-2, 5 and 8, to see how well the algorithms work for three different levels of limited 

user-history.  

The evaluation gave us several valuable findings relevant for our research questions. There 

were both similarities and differences in the accuracy for the recommendations algorithms 

across the datasets. First of all, the accuracy varied to a large extent between the different 

datasets, which can be caused by domain differences, such as preference heterogeneity, but 

also the measures used, which are affected by the number of items in the datasets. Secondly, 

there were some differences in the patterns across the datasets: In MovieLens and Million 

Song, there were large differences between the algorithms, while in Book-Crossing, the 

algorithms performed much more even. However, there was a clear tendency that the 

algorithms performing well in one domain also do so in the other domains. Therefore, the 

accuracy measured of the algorithms in the three datasets, gives valuable indications of what 

will be the best choice of algorithms for Forzify. 

For users with some item interaction history, the item-based and the model-based algorithm 

gave the best accuracy overall in the datasets, while the baseline and model-based gave the 

best accuracy for users with less item interaction history. When it comes to scalability, the 

baseline seems to be the most scalable of the algorithms, both for training and prediction time. 

The content-based algorithm does not scale well with large number of tags, but if feature 

selection is used or the number of tags are kept to a small number, it scales better. The model-

based algorithm scales well for prediction time, while it shows a certain increase in training 

time when the number of items increase. However, the poorest scalability is found for the 

item-based algorithm which shows a large increase in both training and prediction times when 

number of ratings increases. In the end of the chapter, we discussed which algorithm or 

combination of algorithms that would be the best choice for Forzify. We concluded that the 

best choice, based on our evaluation, is to use only the model-based algorithm. It ensures 

good recommendations for both new and old users, and scales well for larger datasets. 

To summarize our main findings, we list them here: 

- Binarized ratings give at least as good results as arbitrary valued ratings. 
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- Using recommendation list sizes of 10 and 20 give small differences in accuracy, and 

the same patterns are present in both. 

- There is both similarities and differences in the algorithms’ accuracy across domains: 

There is higher accuracy in some domains than others, the accuracy of the algorithms 

is more even in some domains than others, and there is a tendency that the same 

algorithms perform best across the datasets. 

- MAP, precison, HR and ARHR give the same tendencies for the algorithms’ accuracy 

in all of the datasets, except for the general accuracy in the Book-Crossing dataset. In 

this dataset, it differs from metric to metric which algorithms that perform best. 

- The accuracy of the algorithms evolves differently when more ratings are known. The 

highest increase is found for the item-based algorithm. The model-based shows a 

small increase, while the baseline does not show any increase with more ratings. The 

content-based shows an increase in the Book-Crossing dataset, but performs steadily 

in the two other datasets when more ratings are given. 

- The two collaborative filtering algorithms give best accuracy for users in general. 

- The model-based and baseline algorithm give best accuracy for new users. 

- The baseline algorithm is the most scalable algorithm, while the model-based also 

scales well. The content-based scales well if the number of tags is small, while the 

item-based seems to be the least scalable of the algorithms. 
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6 Conclusion 

In this chapter, we will present our conclusions by answering the research questions of the 

thesis. Then, we will explicitly state the main contributions of the work and address possible 

future research to further explore the main topics of the thesis. 

6.1 Research questions 

In the problem statement in Section 1.2, we formulated the following three research 

questions: 

- Q1: According to previous research and literature, which recommendation approaches 

are best suited for the case of Forzify? 

- Q2: Do the accuracy of recommendation system approaches differ across datasets 

from different domains? 

- Q3: Which recommendation approach or combination of approaches can give the most 

accurate recommendations to both new and old users of Forzify, and at the same time 

give high scalability? 

We will here answer these questions based on the work that has been done in this thesis. 

6.1.1 Q1: Approaches suited for Forzify according to literature 

To answer research question Q1, we presented the main recommendation approaches and 

compared them in strengths, weaknesses and in needed data. We presented the case of 

Forzify, and discussed which of the approaches that best suit Forzify’s data and wanted 

features. Forzify gathers data about users’ interaction with items, both explicitly and 

implicitly. In addition, there is content information about the videos. Our review of 

approaches showed that only the collaborative filtering and content-based filtering can be 

used with these data sources. It was wanted that the system should learn about users’ 

preferences, produce serendipitous recommendations, handle cold start situations and scale 

well for a large set of users and items. We concluded that no single approach support all these 

features. Therefore, according to the literature, it is beneficial to use a combination of 

approaches, so that the advantages of one approach could reduce the disadvantages of another. 
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Based on these wanted characteristics and the data gathered in the application, the best 

choices of approaches would be collaborative filtering and content-based filtering. Both of 

these approaches learn about the users as they interact with the system. The collaborative 

filtering can produce serendipitous recommendations, while the content-based filtering can 

handle cold start problems in a good way. Among the collaborative filtering approaches, the 

item-based and model-based seemed to be the best choices, as they scale better than the user-

based one. 

6.1.2 Q2: Differences in accuracy across domains 

To investigate research question Q2, we implemented four algorithms from different 

approaches: one item-based, one model-based, one content-based and one non-personalized 

baseline. We studied the accuracy of these four algorithms on the MovieLens, Million Song 

and Book-Crossing datasets. The first three algorithms were chosen based on the conclusion 

of the first research question. The non-personalized algorithm was primarily chosen as a 

baseline to compare the performance of the other algorithms against, but it is also of interest 

because it does not require any user data to produce recommendations. As Forzify only has 

unary data, the algorithms solved a top-n recommendation problem, and we consequently 

used the top-n recommendation accuracy metrics MAP, HR, ARHR and precision. 

The results showed that there are both differences and similarities in the accuracy of the 

algorithms across the datasets from the different domains. On the one hand, the accuracy was 

generally higher in some domains than in others. In addition, the variation in the accuracy of 

the algorithms inside a domain was higher in some domains than in others. This supports 

earlier research by Im and Hars (2007) that states that the accuracy of algorithms is domain 

dependent. On the other hand, the two algorithms with best accuracy for general users were 

the same in all three datasets. This indicates that the accuracy from these datasets also will 

give a good basis to choose which recommendation approaches that will give good accuracy 

in Forzify’s case. 

6.1.3 Q3: Best approach for Forzify according to evaluation 

To answer research question Q3, we measured the accuracy of our four algorithms on the 

same three datasets as in the previous section. We used an all-but-10 approach and a given 2, 

5 and 8 approach, in order to simulate recommendations for users with different levels of 
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previous interaction with items. The results showed that the item-based and model-based gave 

highest accuracy for users in general, while model-based and baseline gave highest accuracy 

for users with less item interaction history.  

We also tested the training time and prediction time for these three datasets and for three 

different subsets with varying sizes of the MovieLens dataset. The baseline algorithm showed 

the best scalability, the model-based algorithm showed good scalability, while the item-based 

algorithm showed the poorest scalability for number of users and items. The content-based 

algorithm scaled well for larger number of items and users, but did not scale well for higher 

number of tags. 

Based on these results, the best choice of recommendation approach for Forzify, is the model-

based, because the algorithm from this approach gave good accuracy both for new and old 

users across the datasets, and at the same time scaled well for larger number of users and 

items. The other possible choice of approaches that could give high accuracy for both new 

and old users based on our results, was a combination of the baseline and the item-based 

approach. However, due to the poor scalability of the item-based approach, this combination 

will not scale as good as the model-based. Therefore, our results are contrary to the literature, 

as one approach seems to be a better choice than a combination of approaches.   

6.2 Main Contributions 

In this thesis, we have both used a theoretical and practical approach to find the best suited 

approach for Forzify – an application with limited existing user data. We have reviewed and 

compared the main recommendation approaches in terms of strengths, weaknesses and data 

needed, to find out which recommendation approaches that are suited for Forzify’s case. We 

have reviewed and compared datasets from different domains in terms of domain, sample and 

inherent features, so we could choose the datasets that are most similar to Forzify’s data for 

our evaluation. Further, we have looked at a set of commonly used recommendation 

frameworks, and made a comparison of these based on their properties, to let us choose the 

ones that are best suited for the approaches we decided to implement. These reviews and 

comparisons have therefore given a theoretical background for our choices in the 

implementation and evaluation process, but these can also give valuable contributions to other 
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researchers or developers that plan to build or evaluate a recommendation system, especially 

in cases where limited user data have been gathered and other datasets are needed for testing. 

We have implemented four recommendation algorithms from different approaches that are 

suited for the wanted features and data collected in Forzify. The first is a k-nearest neighbours 

item-based collaborative filtering algorithm implemented with Lenskit, the second is an 

alternating least squares model-based collaborative filtering algorithm implemented in Spark, 

the third is a content-based algorithm implemented with LensKit and the fourth is a popularity 

baseline algorithm made from scratch.  

We have made an evaluation framework to evaluate the scalability and the accuracy, both for 

new and old users, of our implemented recommendation algorithms. The accuracy is 

measured by the top-n recommendation metrics MAP, precision, HR and ARHR. The 

scalability is measured by the training and prediction times of the recommendation 

algorithms. Our evaluation framework is also used to make the datasets and content 

information ready for evaluation, which includes dataset splitting and reformatting of data. 

The source code of the recommendation algorithms and the evaluation framework is available 

online, see link in Appendix A. 

We have tested all of the implemented algorithms on datasets from three different domains 

with this evaluation framework. This has given an overview of the performance of the 

different algorithms and contributed to the research on how the accuracy of recommendation 

algorithms is affected by the domain they are evaluated in. The results showed that the model-

based and the item-based algorithm give the best accuracy for users in general, while the 

model-based and baseline give the best accuracy for new users. When it comes to scalability, 

the baseline is the clearly most scalable algorithm, but also the model-based algorithm scales 

well. The content-based does not scale well for larger number of tags, while the item-based 

seems to be the least scalable for larger number of items and users.  Our results show that the 

accuracy of recommendation algorithms is domain dependent. However, the two algorithms 

performing best, did so in all datasets. 

Based on the testing, we have concluded with the model-based approach as the best choice for 

Forzify, as it gives accurate recommendations both for new and old users across different 

domains, as well as it can scale to larger sizes of users and items. As this approach performed 

among the best in terms of accuracy in all of the domains, it is likely that it will perform well 
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also in the domain of Forzify. A combination of the other approaches seemed not to be a 

better choice according to our tests, which is contrary to what most recommendation literature 

state. Another unexpected finding from our tests was that the content-based approach did not 

perform well in accuracy for new users. 

6.3 Future Work 

In this thesis, we have found out which recommendation approaches that are best suited for 

the case of Forzify, and we have investigated the differences in accuracy for recommendation 

approaches across different domains. There is more research that can be done to further 

explore both of these topics. 

First of all, the best way to find the most suitable approach for Forzify is to test the 

approaches on Forzify’s own data, when sufficiently data are gathered. This can be done both 

as an offline experiment, as we have done in this thesis, but the best data will be obtained by 

doing an online experiment with real users. Comparing the accuracy of the algorithms on 

Forzify’s data with our test results can give us valuable information regarding how successful 

our choice of approach was. In our tests, we have focused on accuracy and scalability, but as 

we saw in Section 2.5.2, there are several other dimensions relevant for evaluation of 

recommendation systems. Testing the approaches on more of these dimensions will give 

additional valuable data about the successfulness of the approaches.   

Our implementations and testing were limited by time and space. To further investigate the 

research topics in this thesis, it could be interesting to conduct more thorough testing, e.g., test 

more algorithms from each approach, test on larger datasets and more datasets, do parameter 

tuning to find the best possible accuracy for each algorithm in each domain or test with more 

variations of n in given-n to get an even better understanding of how the accuracy evolves 

with more ratings. 

To further investigate the algorithmic consistencies in accuracy across domains, it would be 

interesting to test with even more algorithms and on more datasets from different domains, 

and look if the same tendencies can be seen. We have only tested the accuracy with top-n 

recommendation measures and algorithms. To get a better understanding of the differences 

across the domains in general, we could use a rating-prediction problem and see if this gives 

the same patterns. Using rating prediction algorithms and metrics can be a better way to 
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investigate domain differences in accuracy, because these measures are not affected by the 

number of hidden items, as the top-n recommendation measures. 
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Appendix A – Source code 

The source code used for our recommendation system algorithms and our evaluation 

framework is accessible on GitHub: 

https://github.com/simenrod/recsys_simenrod  
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