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Abstract

Renewable energy sources, and thus PV are experiencing exponential
growth due to most current energy production still relies on fossil fuels,
and energy demands are steadily increasing. If the performance of PV could
be increased, the result will be more production per installation.

One significant performance loss for PV is soiling on the modules. Re-
search has been done to statistically indicate optimal cleaning intervals.
Some attempts using conventional methods to predict soiling have been con-
ducted as well, suggesting environmental features like wind and humidity
are relevant factors for predicting soiling.

With the increase in popularity and availability of machine learning –
is it possible to use machine learning to predict soiling? If it is possible,
this could lead to quick and precise implementation of algorithms to predict
instantaneous losses due to soiling. This would further lead to an exact op-
timal cleaning schedule, reducing both costs and losses.

With a test site in close proximity to a solar plant in Kalkbult, South-
Africa, and the machine learning approach called artificial neural networks;
this thesis tried to identify if this relationship exists, and if so, to what extent.

The results were encouraging, but not conclusive. There was indications
the two features average humidity and maximum wind speed could relate to
a daily change in performance with R2 scores around 0.1–0.28. However,
more accurate data and designated experiments are needed to reduce
uncertainties for a more conclusive remark.
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Chapter 1

Introduction

World energy demands are currently dominated by fossil fuels. However,
there exist a broad agreement the release of green house gases (GHG)
from fossil fuels are related to the global increase in temperature and
subsequently climatic problems. Simultaneously, the world energy demand
increased steadily by around 1.7% per year the past decade (IEA., 2015a).
This growth is largely due to the continous increase in world population,
which reached 7 billion in 2015. Also, most of the population increase
occurs in areas experiencing economic growth and improvement in living
standards – both boosting energy demand.

In order to mitigate this, the world realizes the need to save energy
and replace fossile electricity production with renewable energy (ipcc-
contributors, 2014). This is reflected by agreements like Kyoto Protocol
and the recent Paris agreement, which influence the world energy outlook:

• Renewables grow rapidly, almost quadrupling by 2035 and supplying a
third of the growth in power generation.(BP, 2016).

• Electricity consumption grows by more than 70% to 2040, but 550
million people still live without any access to electricity at that time.
Renewables overtake coal as the largest source of power generation by the
early 2030s and account for more than half the growth in the Outlook.
By 2040, renewables-based generation reaches 50% in the EU, around
30% in China and Japan, and above 25% in the United States and India.
In contrast, coal is just 13% of electricity supply outside of Asia. (IEA.,
2015b).

Even though the outlooks have different scale (third vs. half) in power
generation, both specify renewable energy sources to be a rapidly increasing
market in both the near and far future.

IEA has stated that The markets for wind power and solar photovoltaics
(PV) are currently the most dynamic, with falling technology costs (in
particular for solar PV), expanding policy support and potential for increased
deployment around the world (IEA., 2015b). The recent outlook provided
numbers that renewables-based power capacity additions set a new record
in 2015, and exceeded all other fuels for the first time, as shown in

1
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Figure 1.1: World energy capacity additions by type and renewables share
of total additions (IEA, nodate). (Note: Other renewables include biomass,
CSP, geothermal and marine)

Figure 1.1. One reason for this is the fact that PV has had an exponential
growth as can be seen in Figure 1.2. This growth is due to PV has
experienced a drastic cost reduction the last few years. This has made
it commercially available to both private households and businesses, or
even as power and utility plants in many countries. This is especially true
for the poor regions along equator and countries south of Sahara where
direct sunlight is abundant and the energy demand is rising rapidly. The
increase in PV-market and especially installment of larger PV-plants have
made research in improving system performance more relevant.

From the reports and figures it becomes clear that it will be more and
more important to improve performance of PV in the future – even a small
increase of 0.1-1% today would increase performance and power production
by 5-50 GW.



1.1. MOTIVATION 3

Figure 1.2: Exponential global cumulative PV installation until 2015
(Fraunhofer-ISE, 2016) (Data: IHS. Graph: PSE AG 2016).

1.1 Motivation

The efficiency of the most commonly used solar cells (Si-based PV) is in
the range 15-17%. Most of the inefficiencies in the PV systems come from
the energy losses within the modules themselves, but a small part are
external losses during operation. Locating the cause of these losses and
finding methods to prevent or reverse them will increase PV performance.
Figure 1.3 shows an example of a simplified diagram of average losses in
PV systems; where the largest losses occur in the PV module. Accordingly
research has been on increasing module effectivity by improving the cell
efficiency. It is still possible to increase this in the order of a few percent,
but the majority of these losses are unavoidable in normal c-Si cells. The
other losses from the figure; pre-photovoltaic (ie. shading, reflection, dirt
or snow) and system losses account for around 20% together – but many are
reversible. This means these losses can be reduced by reversing the incident
that caused the loss. Brief descriptions of some losses shown in Figure 1.3
are presented in Table 1.1. The pre-PV losses are both the most challenging
and significant losses to identify. They are significant because the losses
account for around 8% reversible loss. They are challenging because they
are hard to predict, even while they are happening, ie. dirt accumulating on
the panels or an unknown shadow from a new building or other tall objects.
Even though the system losses make up for about 14%, they are usually easy
to predict or calculate, and are both reversed and improved by changing or
upgrading to more efficient equipment, ie. better inverters, wires, modules
etc. Thus in order to increase system performance, it is neccessary to detect
loss (failure) during operation. This is possible to achieve by monitoring
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a set of parameters and analyzing the system behaviour. Monitoring is
gathering a collection of real-time quantities and their historical values. A
change in system behaviour gives a quantifiable difference between these
values, and analyzing this difference is needed to determine how to reverse
failure, if possible.

Although one of the reversible losses, soiling, has been researched for
over seven decades, it is still not fully understood, nor has it been given
much effort until recently. This is likely due to earlier research was located
in temperate areas with frequent precipiatation, generating insignificant
soiling loss. However, because of the aforementioned increase in use of PV
in Middle-East, Asia, and North and South Africa, these dry and less humid
areas have been observed to be prone to as much soiling in hours, as months
would soil in temperate areas.(Sarver, Al-Qaraghuli, and Kazmerski, 2013),
increasing the need to understand soiling.

This is the main motivation for the work of this thesis, where the
goal is to continue the work of others on soiling of PV, to evaluate the
possibility of using data mining to predict the degree of soiling at a specific
geographic location. To the knowledge of this author, there exists little to
none research in this specialized field. There are several machine learning
studies on predicting PV output or other influencing factors like rain, but
none on soiling prediciton. The motivation to evaluate soiling prediction
is to determine when the optimal time to clean modules will be. Other
studies have concluded with general guidelines about when to manually
clean for various regions, ie. once halfway through summer drought period
in California, USA (Mejia and Kleissl, 2013), or a more comprehensive
and technology specific Optimal days to next cleaning overview from Saudi
Arabia available in the appendix (Jones et al., 2016). Of course these
recommendations depend on the size of the plant, where bigger plants
will more likely be better off with more frequent washes, while smaller
systems may not need to wash at all because of the small gains. Another
problem with guidelines are the risk of washing a clean system, but in
our computer age it should be possible to measure some selected system
features, and determine how soiled the system really is. If this is predicted
in real-time, the system can easily calculate instantaneous losses in both kW
and revenue lost from real-time electricity rates. Comparing the real-time
revenue lost against system-cleaning costs gives a precise optimum-cleaning
schedule – the moment losses are bigger than costs, with no indication of
near-precipitation.

The data used in this study comes from a test site adjacent to Scatec
Solar’s solar park in Kalkbult, Northern Cape, South-Africa (latitude: -
30.2, longitude: 24.1). This site includes regulary cleaned and uncleaned
panels, and its own weatherstation. The thesis will use humidity and
wind (speed/force and possibly direction) as input features against power
output. These features are chosen based upon the conclusions from a study
of the climatological relevances to soiling in Mesa, AZ-USA (Naeem and
Tamizhmani, 2015). On regular days with neither rainfall nor duststorm it
was shown that both wind speed and humidity have influential roles on both
soiling increase and decrease. The relevant key conclusions at that location
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Table 1.1: PV-losses (Energy Yield and Performance Ratio of Photovoltaic
Systems nodate)

Pre-PV Losses

Tolerance of
rated power

Consider that the module does not deliver the power as stated in
the data sheet. Manufacturers provide a tolerance, often up to
5%.

Shadows Shadows may be caused by trees, chimneys etc. Depending on
the stringing of the cells, partial shading may have a significant
effect.

Dirt Losses due to dirt up to 4% in temperate regions with some
frequent rain. Up to 25% in arid regions with only seasonal rain
and dust.

Snow Dependant on location and maintenance effort.

Reflection Reflection losses increase with the angle of incidence. Also, this
effect is less prononuced in locations with a large proportion of
diffuse light, i.e. clouds.

Module Losses
Conversion The nominal efficiency is given by the manufacturer for standard

conditions.

Thermal
losses

With increasing temperatures, conversion losses increase. These
losses depend on irradiance (i.e. location), mounting method (
glass, thermal properties of materials), and wind speeds. A very
rough estimate is 8%.

System Losses

Wiring Any cables have some resistance and therefore more losses.

MPP Ability of the MPP tracker to consistently find the maximum
power point.

Inverter Inverter efficiency.

Mis-sized in-
verter

If the inverter is undersized, power is clipped for high intensity
light. If it is oversized, the inverters’s efficiency will be too low
for low intensity light.

Transformer Transformer losses in case electricity has to be connected to a
high-voltage grid.

Operations
& Mainte-
nance

Downtime Downtime for maintenance is usually very low for photovoltaic
systems.
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Figure 1.3: Illustration of PV-losses (Energy Yield and Performance Ratio of
Photovoltaic Systems nodate) (more details on table 1.1)

were found to be:

• Relative humidity and wind speed are the main climatological factors
relevant to the soiling loss. As relative humidity increases, soiling loss
increases. As wind speed increases, soiling loss decreases, provided that
the wind is not high enough to lift up/carry dust with it.

• The cleaning effect of high winds gets even higher when they stay for
multiple consecutive days.

• It was noticed that the highest daily wind speeds occur when the relative
humidity is at its lowest. Thus, the cleaning potential due to high wind
speeds is higher during such times.

The extraction and selection of periods and parameters will be chosen
based upon other studies within the same project, other articles, and
possibly induced experimental values.
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1.2 Thesis overview

The remainder of this thesis is divided into these chapters.

Background

More detailed background on how monitoring is done, and some of the
common ways to detect and examine what failure that has occurred. It also
includes information on studies done with regards to soiling.

Data Mining and PV

This section provides some introduction to Data mining techniques, and an
overview of some contributions it has done to PV.

Data collection

Description of the data used in this thesis is done in this section. It also
provides information about the PV monitoring system the start of thesis
consisted of. Last it explains the preprocessing that is done before usage
of the data.

ANN implementation

This chapter tries to show how the previous chapters is applied to define
and create and model different setups of the artificial neural network.

Results

First a verification of the neural network and its ability to predict power over
different selected dates is shown - to provide trust in the models. Then the
results from the defined modules are presented and discussed.

Conclusions

This chapter provides some thoughts on what and why the results were.
There are also some suggestions and recommendations on how to improve
the results.

Appendices

• Appendix A: An overview of some problems with the weather data

• Appendix B: UML diagrams of relevant classes for the neural network

• Appendix C: Extra tables and plots of results
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Chapter 2

Background

This chapter provides background for PV monitoring and fault detection.
This is necessary for subection 4.2, and the understanding of the implemen-
tation of data mining techniques. In the following section, state of the art
analytical monitoring principles, and how they can be used to detect faults
are reviewed from a thorough paper on analytical monitoring (Woyte et al.,
2014). After that comes a section on failure detection routine (FDR), before
the last section with more details on soiling of PV.

2.1 State-of-the-art

Although PV monitoring is a relative new research topic, there has been
an International Electrotechnical Comission standard (IEC std.) on PV
performance monitoring since 1998 (TC 82 Solar photovoltaic energy systems
(61724) 1998).

The IEC std. (61724) has a range of requirements for what they call
analytical or detailed monitoring. It defines an automatic dedicated data
acquisition system with a mininum set of parameters to be monitored
(IEC., 1998). The standard is currently under revision, and may
include classification of monitoring system with sensor requirements, new
parameters for measuring, new temperature-corrected performance ratios
and other metrics, among others (Gostein, 2014). Table 2.1 provides an
overview of some core parameters together with their symbol, units and
priority. There are three parameters with priority 1: In-plane irradiance,
ambient temperature and power to utility grid. These three are important
to measure because they are used in order to evaluete how well a system
is performing. The priority 2 parameters are used to detect and determine
faults within the system. Last parameters in priority 3 are used alongside
the other parameters to more precisely identify the actual fault.

The first introduction to guidelines on PV monitoring were originally
developed to establish the main operating characteristics of systems in
demonstration projects without providing any guidance for reducing output
losses over system lifetime. Thus the new monitoring guidelines include the
Failure Detection Routine (FDR). It consists of three different parts; failure
detection system, failure profiling method and footprint method. Basically

9
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Table 2.1: Parameters to be measured in real-time (Woyte et al., 2014)

Parameter Symbol Unit Priority

In-plane Irradiance GI W/m2 1

Ambient temperature Tamb deg C 1

Module temperature Tmod deg C 2

Wind speed Sw m/s 3

PV array output voltage VDC V 3

PV array output current IDC A 3

PV array output power PDC kW 2

Utility grid voltage VAC V 3

Current to utility grid IAC A 3

Power to utility grid PAC kW 1

Durations of system outage toutage s 2
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FDR compares real-time monitored data against simulated data for the same
period. If monitored data diverts from simulated, a failure may have been
detected. A failure profile is then created using correlation between the
monitored data and predefined profiles. This gives a statistical overview
of what failure may have caused the divertion. The footprint method
analyzes patterns in dependecies of three domains: normalized monitored
power, time of day and sun elevation. This method has been developed
and validated with data from the German 1000 roofs program. Another
verified FDR model is the Sophisticated Verification Method, which utilizes
fundamental system specifications and four simple measurable quantities to
detect and classify failure (Kurokawa et al., 1998).

In the end, monitoring of the system and its environment is required
to profile a system and implement a statistical approach on likely and
unlikely cause of change in system behaviour. Considering that many of
the non-module losses are reversible, and early detection prevents further
detoriation, optimizing through monitoring can increase performance by
reducing the average non-module losses.

2.1.1 Analytical monitoring

There are many parameteres to monitor in a system, though not every
parameter on Table 2.1 is required. However, more measurements improve
the likelyhood to detect failures in operation earlier and more precisely.

Various methods and models exists in order to analyze a PV system.
One way is simply visualization of the data recorded, this is referred to as
stamp plots. An example of a stamp plot from a weekly output of some basic
parameters is shown on Figure 2.1. These stamp plots show a monitored
measurement and its relation to time over one week.

Some major faults is possible to detect in a system using stamp plots,
but linear regression using scatter plots is a more effective method. The
linear regression line for a weekly output expects a similar regression line
the next week under normal circumstances. In other words, a gradual
change in the line express a gradual change in the system, while a major
change in the regression line proves some major fault (or action) has taken
place. This linear regression are created with the relationship between
two monitored measurements, instead of one against time. An overview
of some common relationships will be explained in the following sections.
Other relationships and equations to calculate non-monitored data exists
(PV Modeling Collaborative 2016).

PV system performance

Performance of a system is measured as Performance Ratio(PR). PR is the
normalized relation with regards to irradiation between system yield (Yf)
and reference energy yield(Yr). Yf is the final energy produced and measured
by the system, while Yr is the reference production the system is supposed to
produce if under the same conditions with regards to standard test condition
(STC). STC is defined as irradiance of 1kW/m2, Tcell = 25 deg C and air
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Figure 2.1: One week of basic monitoring data over time.

mass (AM) of 1.5. A PR value of as close to 1 is desired - but a PR above
.9 (90 %) is seldom achieved because Yr has low cell temperature under
Standard Testing Conditions (STC). Equation 2.1 can be used to describe
the relation:

PR =
Yf

Yr
(2.1)

where:

PR: is the system performance (pr is the instantaneous performance ratio),

Yf: Measured system yield over a period of time (yf is instantaneous value),

Yr: Simulated reference yield over same period using STC (yr is instantaneous
value)

It is possible to detect changes in system performance by using linear
regression on PR scatter plots. In Figure 2.2 a normal (a) and gradually
dropping (b) regression line is observable. During the normal operation, the
regression lines are fairly atop on each other, however a gradually declining
slope is visible on (b). This was due to increased shadow from vegetation.
Another example is seen on Figure 2.3 where normal operation is on the
left (a) and the inverter failure (b) is seen on the right. Notice here how a
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regression line seems to float, not only between other regression lines but
also between the scatter points. This signifies a sudden change in PR –
inverter failure.

Using periodical linear regression (ie. on each week) indicates the same
ongoing detoriation if the lines have regular changing, or an extensive
failure if the line has shifted significantly from one period to another.
Figure 2.4 shows another example of a floating regression line between both
scatter points on 2.4b, and its before line on 2.4a.

Temperature

One of the most influential parameters on PV is temperature. The
performance ratio (pr) vs. module temperature can be seen as a linear
function that decreases as temperature rises. Notice it is lower case pr which
indicates a shorter interval. The previous defined PR usually indicates
performance ratio of a whole year. A simple model on temperature is system
level pr given by Equation 2.2:

pr = pr0(1 + γ∆T) (2.2)

where:

∆T: Tmod − TSTCthe difference to 25°C under STC,

γ: the temperature coefficient of power over the measured range of irradiance
(usually negative),

pr: the instantaneous performance ratio,

pr0: the model performance ratio at 25°C

The coefficient γ is usually specified in the datasheet of a module,
and pr0 is 1 because it should be perfect pr in STC conditions. If they
are not available, it is possible to determine them by linear regression if
the module temperature is measured, γ should not change throughout a
modules life. This only works well on high irradiance levels, any values
with GI < 600W/m2 should be omitted. If module temperature are not
measured, it can be calculated using Equation 2.3.

Tmod = Tamb + kthyr (2.3)

where:

Tmod: the module temperature,

Tamb: the ambient temperature,

yr: the instantaneous reference yield and,

kth: the equivalent thermal resistance.

The thermal resistance kth is not a strictly thermal resistance but
comprises all mechanisms of heat transfer within the module. It can be
calculated by measuring the other variables for several weeks, because the
kth should not change. When dealing with temperature, another factor to
consider is wind. Larger wind speed effectively cools modules and will
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(a) Not shadowed – June 2012 (b) Shadowed by vegetation – May 2012

Figure 2.2: System yield (yf) versus reference yield (yr) for hourly averages
over weeks in June/May 2012

(a) Normal operation – March 2012 (b) Inverter failure (1/3) – May 2012

Figure 2.3: System yield (yf) versus reference yield (yr) for 15-min averages
in March/May 2012

reduce temperature. The adjusted thermal resistance can thus be calculated
with Equation 2.4:

kth = kth0 e−CthSW (2.4)

where:

kth: the equivalent thermal resistance,

kth0 : the equivalent thermal resistance without wind,

Cth: coefficient for thermal convection and SW:wind speed.

2.1.2 Failure Detection Routine

As mentioned in section 2.1 the failure detection routine (FDR) consists of
the three parts; failure detection, failure profiling and footprint method.
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(a) Normal operation – March 2012 (b) Inverter failure (1/3) – May 2012

Figure 2.4: Performance ratio (pr) versus module temperature (Tmod) for
15-min averages from (samples GI > 600W/m2); different subsequent
weeks in March and May 2012

Failure detection system

The failure detection system is the continued checking of measured actual
values in the system against simulated values from forecast measurements
and expected output. If the actual values are within a given threshold, the
system is considered to be working as expected. If the measured values goes
outside of the threshold however, there is a possible failure deteccted. The
detection system then either alerts the system owner/user (supervised), or
the failure profiler if applicable.

Below is an example of a fault detection (Silvestre, Chouder, and
Karatepe, 2013). The overall power losses are defined by the normalized
total capture losses Lc which can be calculated from Expression 2.5

Lc = Yr(G, TC)−Ya(G, TC) =
Hi

Gref
(G, Tc)−

Edc

Pref
(2.5)

where:

Yr(G, TC): is the reference yield,

Ya(G, TC): is the array yield,

G: real working irradiance,

TC: real module temperature,

Hi: is the total irradiation in array plane,

Gref: is the reference irradiance at standard testing conditions,

Edc: is the energy produced by PV array,

P∗ref: is the maximum power output of PV array

The fault detection calculates the instantaneous capture losses Lc using
measured weather and electrical parameters. While the simulation model
are evaluated with measured weather variables G and TC. This makes it
possible to find an error parameter, ELc,
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ELc = |Lc_meas − Lc_sim| (2.6)

where:

Lc_meas: indicate measured values,

Lc_sim: indicate simulated values

To determine if the error ELc is indeed an error, a deviation threshold
should be established. The standard and mean deviation can be derived
when the system is working fault free. An example found by trial and error
showed a PV system to work fault free with values from Table 2.2 when
a reference error, ELc_ref, is in between the following thresholds (Silvestre,
Chouder, and Karatepe, 2013):

ELc_ref − 2σ(ELc_ref) ≤ ELc ≤ ELc_ref + 2σ(ELc_ref)

The flow diagram on Figure 2.5 the systems follows the Yes arrow
and recalculates ELc infinitely as long as the calculated ELc is within the
established threshold. Once the calculacted ELc is outside the established
threshold, the software follows No and starts a fault diagnosis procedure
(failure profiling).

Failure profiling method

The profiling method is used to create an error profile after a possible failure
has been detected. The profiling can easily exclude the most unlikely faults
using the profile, and give a list of likely faults together with the error profile
values for a footprint method.

Continuing the same example, an automated flow-chart for error
profiling (fault diagnosis) can be seen on Figure 2.6. In the flow example
the indicators are based upon voltage error, Ev and current error, Ei
given by Equations 2.7 and 2.8 using measured and simulated values,
respectively. The values are then evaluated if they exceed thresholds given
by Equations 2.9 and 2.10 using the standard deviations from Table 2.2.

Ev = |Vdc_meas −Vdc_sim| (2.7)

where:

Table 2.2: An example of mean and standard deviation for reference
errors(Silvestre, Chouder, and Karatepe, 2013)

Standard deviation σ Mean value

ELc_ref(Wh/W p/day) 1.55× 10−4 1.8× 10−4

Ei_ref(mA) 108 136

Ev_ref(V) 4.30 4.65
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Figure 2.5: Fault detection procedure (Silvestre, Chouder, and Karatepe,
2013)

Vdc_meas: is the measured voltage,

Vdc_sim: is the simulated voltage

Ei = |Idc_meas − Idc_sim| (2.8)

where:

Idc_meas: is the measured current,

Idc_sim: is the simulated current

Ev_ref − 2σ(Ev) ≤ Ev ≤ Ev_ref + 2σ(Ev) (2.9)

Ei_ref − 2σ(Ei) ≤ Ei ≤ Ei_ref + 2σ(Ei) (2.10)

The flow-chart in Figure 2.6 with the actual voltage and current errors
show the most probable faults in the bottom of the diagram. An example
flow when neither current or voltage is within their standard deviations,
equivalent to No followed by No in the flowchart (No⇒No), could be;
presence of shade, ground fault, line to line fault or others. This is
likely because if neither values are as expected, a significant reduction in
measured against simulated values are expected. On the other hand, a flow
of Yes⇒Yes is a false alarm, because both current and voltage are actually
within their expected values. The other two paths (No⇒Yes and Yes⇒No)
lead to several different possible faults which needs footprint methods in
order to identify the most likely faults.
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Figure 2.6: Fault diagnosis procedure (Silvestre, Chouder, and Karatepe,
2013)

Footprint method

The footprint method is used to identify the exact cause of failure. Example
of difficult failures are shading and inverter failures. The method compares
the current fault profile together with its footprints (data over one or more
different time periods) against predefined faults and their footprints (Lorenz
et al., 2004).

2.2 Soiling measuring

Soiling as a reducing factor in PV have long been studied as mentioned in
the introduction, and in recent years, even more so. This is because the
focus on field performance has increased, together with the fact that soiling
is recoverable. To reduce the impact of soiling, panels needs to be cleaned
either manually or by precipitation. Nature does provide periodically chance
of rain according to the local climate, but is thus not a guarantee. In addition
it is in the dry periods, with little to no precipitation, soiling increases the
most. This is because accumulated soiling effects depend primarily on time
since previous rainfall, and are being modeled as a linear degradation (Mejia
and Kleissl, 2013).
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2.2.1 Wind and humidity

During the normal circumstances of a dry period, the interaction between
windspeed and humidity have different results depending on their values as
explained in the introduction and on Table 2.3 . The two most important
relationships here are; high humidity and low wind speed which increases
soiling the most, and its opposite: low humidity and high wind speed which
decreases soiling. The decrease is likely due to high wind easily moves
particles when they are less dense without the moisture. The soiling increase
is parallel to increased humidity as the particles get heavier, and thus more
affected by gravity to fall down on the panels. Simultaneously the water
in these particles form a bonding force to the surface of the PV module,
effectively sticking the particles to the panel. Later on when humidity
decreases, the cementation process increase particle adhesion so the fallen
particles get strongly bonded to the surface (Naeem and Tamizhmani, 2015;
Guo et al., 2015).

2.2.2 Precipitation (rainfall)

It has been shown that precipitation can both increase and decrease soiling.
Depending on how clean the modules are before the rain, the amount of rain
and the composition of the dust – especially its ability to stick to the panels
(Naeem and Tamizhmani, 2015; Guo et al., 2015). One study has shown
daily rainfall needed to clean panels completely requires 4-5mm (García et
al., 2011), while another show only 1mm is needed (Caron and Littmann,
2013). It is hard to establish a definite limit of how much precipitation
is needed in order to clean the module. What can be established is heavy
rainfall clean solar panels if they are dirty.

2.2.3 Temperature and humidity

It is important to note it is possible to have a partial cleaning event without
rain. This happens when temperature and humidity is able to create dew
on the frontside of the panels. The dew could in these situations act as
a small rain event by moving soil towards the ground. Unless the panels
are horizontally inclined, then the dew will not move anything (Caron and

Table 2.3: The proposed relationship between wind and humidity on soiling
(Naeem and Tamizhmani, 2015).

Low WS High WS

Low RH Low increased
soiling

Decreased soiling

High RH High increased
soiling

Medium in-
creased soiling
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Littmann, 2013). None of the modules at the test site are horizontally
inclined, and thus dew can form and clean the panels. The Magnus-Tetens
Formula given by Eq 2.11 and 2.12 calculates and identify these events
by comparing when module temperature (Tmod) is lower than the dew
temperature (Td): Tmod < Td.

Td =
bγ(T, RH)

α− γ(T, RH)
(2.11)

where:

b: 237.7°,

T: Ambient temperature,

RH: Relative humidity,

α: 17.271

γ(T, RH) =
αT

b + T
+ ln(RH/100) (2.12)

2.2.4 Power reduction

It is widely accepted and proven that soiling decreases the power production
of PV. The problem is that PV performance is affected by a range of different
parameteres, making it hard to quantify loss due to soiling. In addition,
it may not always be a significant daily reduction either. In order to
significantly and notably reduce power output on PV, longer periods of
soiling is needed. This includes the given test site (Øgaard, 2016). The
two main reasons for reduced power production are reduced insolation and
change in incident angle.

Reduced insolation is the most apparent and prominent of the two. The
soiling particles covers a percentage area of the panel, reducing the total
insolation the panel receives, and thus its production (Ramli et al., 2016).

Change in incident angle is due to the soiling particles ability to act as a
intermediate layer between the air and surface of the panels, thus changing
the incident angle of the light. PV panels are produced with best efficiency
at perpendicular incident angle. With the change of this angle due to the
soiling layer, it reduces the efficiency of the panels (Zorrilla-Casanova et al.,
2011).

Assesing performance loss

Yield ratio will be used to evaluate a modules performance, instead of
efficiency. A reduction in yield ratio (based upon a defined reference) could
indicate an erronous module. It has been defined by Eq. 2.13.

YR =
P∗measured/Gt.measured

P∗ref/Gt.ref
(2.13)
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where:

YR: Yield ratio,

P∗measured: The measured temperature corrected power output,

Gt.measured: Measured global tilted irradiance,

P∗ref: The temperature corrected power output at referece date,

Gt.ref: Global tilted irradiance at reference date

For calculating the YR, temperature corrected power (P∗) is required and
defined by Eq. 2.14:

P∗ =
PMPP

1 + γ(Tc − TSTC)
(2.14)

where:

PMPP: maximum power point from IV-curve,

γ: temperature coefficient from module specification,

Tc: estimated cell temperature,

TSTC: temperature at STC conditions (25°c)

And the temperature corrected power requires estimated cell tempera-
ture (Tc) given by Eq. 2.15:

Tc = Tmod +
IL

IL0
∆T (2.15)

where:

Tmod: is the module temperature,

IL: is the irradiation,

IL0: is the irradiation at STC (1000kW/m2)

Cleanness ratio (CR) has been used in other studies (Øgaard, 2016;
Plessis, 2016; Guo et al., 2015) to indicate the soiling level on an unclean
moduled against a reference cleaned model that is regulary cleaned. The
best reason to do this is for eliminating the variance in effiency due to
irradation. In the Kalkbult data we see a correlation between increased
irradiation towards the end of the year, and a drop in yield ratio. By
comparing the modules directly, this relation is eliminated as shown on
Eq. 2.16

ζ =
YRunclean

YRclean

(2.16)

where:

YRunclean
: Yield ratio of the unclean module,

YRclean
: Yield ratio of the clean module



22 CHAPTER 2. BACKGROUND

Soiling rate are the variable this thesis wants to predict. Based upon some
daily footprints, what is the daily soiling rate. Hence equation 2.17 have
been defined to calculate soiling rate Srate. The Srate is the difference in
yield ratio from previous day. A positive value means it was a better yield
yesterday, which could be due to increased soiling level.

Srate = YRi−1 −YRi (2.17)

where:

YRi : The yield ratio on the current (ith) day,

YRi−1 : The previous (ith − 1) day yield ratio



Chapter 3

Data Mining and PV

Data mining is a category within computational science used to detect
knowledge in patterns of datasets, hence it is also known as Knowledge
Discovery in Dataset (KDD). The purpose of data mining is to explore and
discover interesting information in data that are not yet known. Data mining
is the general term used for the process from data preprocessing, through
knowledge discovery in dataset, to post conclusion and consideration. In
order to discover knowledge in datasets, machine learning is an increasingly
popular approach; training models and algorithms of computers to
statistically discover/recognize patterns in the data previously unknown. It
is thus often conflated with data mining, which is the more broad term.

3.1 Data mining in PV

Data mining has received increased populartiy within PV monitoring
the recent years, with several approaches – all achieving positive and
encouraging results:

• Using neuro-fuzzy logic on the IV-curve of a PV-system using the
parameters module temperature, global irradiation on the plane, Impp,
Vmpp, Isc and VOC to detect diode short-circuit fault, lower earth fault,
partial shading condition and upper earth fault with good results
(Bonsignore et al., 2014)

• Another study tried to omit environmental variables to detect faults
using total energy, hours in service, direct current, input voltage,
nominal voltage and insulation resistance to classify state of the system
into one of six categories. This approach showed the importance of
monitoring the irradiation, and the difficulty of detecting (correct)
faults without environmental measurements (Serrano-Luján et al.,
2016).

• A fuzzy logic approach was used on temperature, humidity, dew point,
wind speed, and pressure to predict rainfall intensity with 68.926%
accuracy (Agboola et al., 2013)

23
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• Another attempt used fuzzy logic in order to detect partial shading,
increased series resistance and potential induced degredation using
light I-V measurements (Spataru et al., 2015).

• Artificial neural network proved more accurate than conventional
methods for predicting solar radiation. Sunshine hours and air
temperature were the most important inputs for ANN among other,
with correlation coefficient of 97.65%. (Yadav and Chandel, 2014).

• And the most similar experiment used regression for analysing feature
influence, and artificial neural network to accurately predicting power
output (Pulipaka, Mani, and Kumar, 2016). This study showed
particle composition is an important factor regarding soiling of PV
along with the conclusion that artificial neural network is somewhat
better for predicting than Multivariabel regression.

3.2 Approaches

The two primary approaches in data mining are predictive and descriptive
(Kantardzic, 2011).

Descriptive data mining produce new, nontrivial information based on the
available data set.

Predicitive data mining produces the model of the system described by
the given data set.

The descriptive approaches is typically a classification problem, like
classifying if a image is of a cat or something else. The predictive is as the
name say an attempt to predict what the next value is, given previous values.
Regardless of approach, both require some core steps; preparation of data
for machine learning model into a training set, validation set and testing
set, training (and validating) the model, before finally testing (scoring) the
model.

1. Data preparation:

• The datasets will be built from the observations and measure-
ments.

• Data pre-processing – extraction from database and processing
according to datasets.

• From the dataset, training, validation and testing datasets are
built.
It is good practice to create training and testing with unique
values. Not sharing values strengthens the models scoring on
unseen data. Thus the validation set is often a cross between
training and testing sets. The training data is usually the largest
portion of the total data.
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2. Training step:

• From the training set, the algorithm will modify its weights
according to desired output. After each epoch (a full iteration
over training set), the model is validated against the validation
set if available. If a desired scoring is achieved in validation, the
model is considered trained. If not, another training epoch is
undertaken as long as the maximum number of epochs have not
been reached.

3. Testing step:

• This step is necessary to assess the obtained model. The model is
better if accuracy is higher. More information in Subsection 3.3.3

3.3 Artificial Neural Network (ANN)

The neural network machine learning approach thinks of the ’task’ as a
neural network, where different input nodes affect the output with various
weights (w), using one or more hidden layer(s) between the input and output
layers. An example of a neural network with one input, hidden and output
layer are shown on Figure 3.1.

3.3.1 ANN Architecture

The way a neuron works in a neural network is by summing up all the
inputs x multiplied by their weights w together with a possible bias b as
shown by Eq. 3.1 and passing the result (net) through an activation function
f as shown by Eq. 3.2, before the functions result is passed to the next layer.

netk =
n

∑
i=0

(xiwki) + bk (3.1)

where:

netk: Is the summation of k’th neuron,

xi: Is the i’th input,

wki: Is the k’th neurons i’th weight,

bk: Is the k’th neurons bias value

yk = f (netk) (3.2)

where:

yk: Is the neurons output to the next layer,

f : Is the activation function

Figure 3.2 shows an example of a neuron with multiple inputs and a
single output, which is typical for the output layer in regressional predicting
neural networks when only one value is desired output.
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Figure 3.1: An example of a neural network with 1 hidden layer.

Activation functions

There are several different activation functions, as seen in Table 3.1. The
most know is the sigmoid function, but tanh and hard limit are also popular
depending on both the networks purpose and the layer it is in. Lately,
when training deep networks, the Reactified Linear Units (RELU) has shown
promise (Heaton, 2015). Deep learning is a category within artificial neural
network when there are more than 2 hidden layers, hence deep.

The most important difference to note is the non-linear activation
functions positive and negative limits, and their outputs thereby constrained
to {0, . . . , 1} or {−1, . . . , 1} in contrast to linear functions. This means that
regardless of input, a non-linear activation function would limit its output

x1

x2

xn

Σ

bk

f (netk)

.

.

.

.

wk1

wk2

wkn

net yk

kth artificial neuron

Figure 3.2: Model of an artificial neuron.
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to the applicant range. While a linear function are more likely to pass on
the actual value, depending on the function properties.

Bias nodes

The role of a bias node is only to shift the output, especially when the
input value is 0. The best way to describe this is using illustrations of
sigmoid weight function f (x, w, b) = 1

1+e−(wx+b) (Heaton, 2015). First only
the weights are adjusted and calculated, and it is clear only the slope is
affected on 3.3a. Next the weight is constant but the bias is changed, and
now gives different values for x = 0, as shown in 3.3.

Typical architectures

There are two typical architectures for ANNs; feedforward and recurrent
interconnected neural network. The feedforward architecture consists of
data being forwarded through the neurons, with no connections or loops
backwards. Thus there are no connections between nodes in the same
layer, or to previous layers. When there are a feedback link (usually with
a delay) forming a loop, the network is recurrent. Multilayer feedforward
with backpropagation-learning mechanism is probably used in over 90% of
the industrial and commercial applications (Kantardzic, 2011). A simple
and good illustration of why multilayers is common can be shown by the
exclusive-OR (XOR) problem. A binary XOR function with two binary inputs
f (x1, x2) is classified to class 0 if both inputs are equal, else class 1. This
can be depicted as classes shown on Figure 3.4. The dotted lines on the
same figure proves there are no possible ways to create one straight line to
separate the classes. This example show single layer ANNs are convenient
for simple problems based on linear models. However, most real world
problems are highly nonlinear, and thus require multilayered ANNs.

3.3.2 Learning

The purpose of machine learning is of course for an algorithm to learn the
environment it is trying to represent. For this to happen, a fundamental
difference between classical information processing and ANN must be
explained. The classically approach is to gather information, and then
build a model to represent the gathered information. However, in machine
learning the model is built by the data given to it.

Teaching

The most agreed upon aproach to teach an ANN is to adjust weights for
the neurons by minimizing an error-cost function. This can be explained
by using the earlier Figure 3.2 having n inputs with corresponding weights,
and one output (Kantardzic, 2011). The bias is never changed. Output of
this neuron given input X(m) is denoted by y(m):
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(a) The weight adjusted functions.
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(b) The bias adjusted functions.

Figure 3.3: The weight and bias adjusted functions, showing weight
adjustment controls steepness and bias adjustments controls position of the
function.
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x10 1
0

1

- class 1

- class 2

Figure 3.4: Illustration of the XOR problem (Kantardzic, 2011).

y = f

(
n

∑
i=1

xiwi

)
When given the input, an error in the estimation is by definition

e(m) = d(m)− y(m)

With the error value, it is now possible to make corrective adjustments
to the weights of the neuron. These adjustments are designed to make
the estimated outcome y(m) come closer to the desired outcome d(m).
This objective is achieved by minimizing error-cost function e(m) by using
gradient descent. Consider Figure 3.5 showing an example of an error-cost
e(w) for all w, and a single gradient at given point. What the neural network
is trying to achieve is finding the global minimum of this function. This is
done by calculating the gradient, and increasing the weight if the gradient
is negative or decreasing the weight if it is positive. If the gradient is zero, it
means a minima has been found – although this could be local and not the
desired global minima.
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Figure 3.5: Gradient (in red) of a weight and its error-function (blue).

The steps involved of calculating the gradient for each weight can be
summarized to (Heaton, 2015):

• Calculate the error, based on the ideal of the training set.

• Calculate the node (neuron) delta for the output neurons.

• Calculate the node delta for the interior neurons.

• Calculate individual gradients.

Error estimation

The error of a regression neural network is calculated using the common
mean square error (MSE) function represented by Eq. 3.3.

Em =
1
m

m

∑
k=1

(tk − yk)
2 (3.3)

where:

tk: target value,

yk: neural network output

Each weight is updated by an amount proportional to the partial
derivative (gradient) of the error function. The partial derivative with
respect to wik for MSE is:

δEm

δwik
= σ(yk − tk)yk(1− yk)zi
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When the output node delta has been calculated, the remaining node
deltas for the interior nodes can be calculated by Eq. 3.4:

δi = φ′i ∑
k

wkiδk (3.4)

where:

φ′i : the derivative of the activation function

Earlier the activation functions was depicted in Table 3.1, for the weight
update their derivatives are needed and the most common are shown on
Table 3.2.

Backpropagation

Backpropagation in order to train the weights are done in one out of
two ways; batch or online. Usually there are a large amount of training
elements, and thus the gradients must be calculated an equal amount of
times for each training element (and for each weight). This process is
called online training, because the weights are updated for each training
element, and is not done until all elements have been iterated over – in
which an epoch has been completed. The other method, batch training does
not update the weights for each element, but after a batch of elements have
been iterated over. Instead it sums up the gradients before updating. The
most used and original propagation is the online training, as it is logical to
update the weights for each error calculated, instead of waiting. However,
if training speed is desired - not updating the weights for each element can
be advantageous.

An extended functionality is random selection of batches for training the
network, before updating (either online or after batch). This continues until
the validation of the model reaches a desired level. Random training sets
will usually converge faster than looping through the entire training set for
each iteration (Heaton, 2015).

The explained way of training by gradient descent is known as Stochastic
Gradient Descent (SGD), which can be used in either online or batch fashion.
It originated in 1960 and is today known as ADALINE (Adaptive Linear
Neuron).

Backpropagation weight update is done by Eq. 3.5. Two new important
variables here are learning rate and momentum. The learning rate is how
hard the learning for each update should be, and are usually a value around
0.02. Momentum is used to help the algorithm skip through a local minima,
by pushing with the previous weight update. Both of these values are
important with regard to performance of the neural network.

∆w(t) = −η
δE

δw(t) + α∆w(t−1)
(3.5)

where:
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η: the learning rate constant,

α: the momentum constant

Nesterov momentum was invented by Yu Nesterov in 1983 and updated
in 2003. It is defined by Eq. 3.6. In the equation, the current iteration
is given by t with the previous iteration being t − 1. This partial weight
update is called n and it starts out at 0. As before, the partial derivative is
the gradient of the error function at the current weight. In addition, Eq. 3.7
shows Nesterov update which replaces the standard backpropagation weight
update in Eq. 3.5. This update equation is calculated as an amplification of
the partial weight change from the momentum. Using Nesterov momentun
with SDG is one of the most effective training algorithms for deep learning
(Heaton, 2015).

n0 = 0, nt = αnt−1 + η
δE
δwt

(3.6)

where:

η: is the learning rate constant,

α: is the momentum constant

∆wt = αnt−1 − (1 + α)nt (3.7)

where:

α: is the momentum constant

Other update techniques

The above explained update and training is the core idea behind machine
learning in ANN. In the years since machine learnings birth, several other
techniques have been proposed.

RMSProp (for Root Mean Square Propagation) is an extended variant of
SGD with nesterov momentum and the idea to divide learning by a running
average of the previous recent gradients. The running average is given by:

v(w, t) = γv(w, t− 1) + (1− γ)(∇Qi(w))2

and the weight is updated by:

w = w− η√
v(w, t)

∇Qi(w)

AdaGrad is termed from adaptive gradient algorithm, and seeks to update
by taking notice of the data it is updating from (Duchi, Hazan, and Singer,
2011). This is done by modifying the general learning rate to do larger
updates for frequent inputs, and smaller updates for infrequent inputs.
The biggest benefit AdaGrad thus gives is elminination of the need to tune
learning rate.
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Adam (short for Adaptive Moment Estimation) is a combination of
RMSProp and AdaGrad functions. The extension is the use of running
averages from both the gradients and second moments of the gradients.
It was concluded to work well with high-dimensional parameter spaces
(Kingma and Ba, 2014). The parameter update is given by Eq. 3.8:

w(t+1) ← w(t) − η
m̂w√

v̂w + ε
(3.8)

where:

ε: is a small number used to prevent divison by 0,

β1: are forgetting factor for gradients,

β2: are forgetting factor for second moment of gradients

m̂w =
m(t+1)

w

1− βt
1

v̂w =
v(t+1)

w

1− βt
2

m(t+1) = β1m(t)
w + (1− β1)∇wL(t)

v(t+1) = β2v(t)w + (1− β2)
(
∇wL(t)

)2

Node count in one fully connected ANN layer is proposed calculated by
Eq. 3.9(Yadav and Chandel, 2017), before assessing ±5 nodes what is most
likely the best value.

Hn =
in + on

2
+
√

sn (3.9)

where:

Hn: the number of hidden neurons,

in: the number of input nodes,

on: the number of output nodes,

sn: numer of data-samples

Normalizing

It is common practice to normalize data within machine learning. The two
standard procedures are range normalizing and z-score normalization. The
first transforms the data values into a predefined range, usually −1-1 or 0-
1. Z-score normalization transforms the data into a balanced distribution
defined by the data it is transforming using mean and standard deviation.
This gives a score from mean in units of standard deviation. The range
normalization is thus better for scaling all the input features into the same
range, and is given by Eq. 3.10 for downscaling and Eq. 3.11 for upscaling.



3.3. ARTIFICIAL NEURAL NETWORK (ANN) 33

xN =
(x− dL)(nH − nL)

dH − dL
(3.10)

where:

xN: Is the normalized value,

x: Is the value to be normalized,

dL: Is the lowest possible value for that key,

dH: Is the highest possible value for that key,

nL: Is lowest normalized range (default -1),

nH: Is highest normalized range (default 1)

x =
xN(dL − dH)− (nHdL) + (dHnL)

nL − nH
(3.11)

where:

xN: Is the normalized value,

x: Is the original value,

dL: Is the lowest possible value for that key,

dH: Is the highest possible value for that key,

nL: Is lowest normalized range (default -1),

nH: Is highest normalized range (default 1)

3.3.3 Model scoring and error estimation

For some statistics on how well a model function maps inputs to outputs,
several approaches is used.

Mean squared error

Mean squared error is a common way of assessing the quality a mapping of
inputs to outputs. It is defined by Eq. 3.12:

MSE =
1
n

n

∑
i=1

(Ŷi −Yi)
2 (3.12)

where:

Ŷ: Vector of n predictions,

Y: Vector of n observed values

Root mean squared error (RMSE), also known as Root Mean Square
Deviation (RMSD) is the root of MSE. It is a good indication for accuracy
when comparing models of same variable. It is given by Eq. 3.13

RMSE =
√

MSE =

√
∑n

i=1 (Ŷi −Yi)2

n
(3.13)
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Mean absolute percentage error

The mean absolute percentage error is given by Eq. 3.14 and indicates the
accuracy of estimated output.

MAPE =

(
1
n

n

∑
i=1

∣∣∣∣∣ Ŷi −Yi

Yi

∣∣∣∣∣
)
× 100 (3.14)

where:

Ŷ: Vector of n predictions,

Y: Vector of n observed values

R2 scoring

The R2 score, coefficient of determination, is a measure of how well future
samples are likely to be predicted by a predicting model. Values indicating
prediction are in range (0, 1], where 1.0 is the best possible score and 0.0 is
a overfit model always giving the expected value of Yi regardless of input.
The score is given by Eq. 3.15

R2(Ŷ, Y) = 1− ∑n
i=1
(
Ŷi −Yi

)
∑n

i=1
(
Ŷi −Y

) (3.15)

where:

Y: is 1
n ∑n

i=1 Yi,

the mean of the observed data

Convolutional Neural Network (CNN)

CNN is a common technique used to identify features in images. The layers
most associated with neural networks are dense layers, where each node
from one layer is fully connected to all nodes in the next layer. CNN utilizes
the spatial of input to detect some frequent behaviour of a less connected
neural network. The two layers used for this is the convolutional layer and
a pooling layer. The convolution layer moves a rectangular window over
the n-dimensional data and dot-multiplies the values for a new value, which
represents a new dimensional feature-map. The pooling layer is simply a
downsizing layer, usually maxpool, selecting the highest value within its
window. A representation of the most known CNN, LeNet-5, is shown on
Figure 3.6, where the convolution layers are examplified with a window
calculating a new value for the next layer, and the pooling table downsizes
its received input.

Fuzzy logic

Fuzzy logic is a machine learning approach where the data are given
linguistic annotations to represent degrees, ie. low wind speed or high
humidity. These are defined by membership-functions µ to determine in what
range the value is within. An example can be seen in Figure 3.7.
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Figure 3.6: A known CNN called LeNet5 (LeCun et al., 1998), showing layer
types (starting with convolution, then subsampling, convolution again etc.)
and what the layer sees from the input throughtout the network.

Figure 3.7: A quick example of the membership functions and their
triangles.
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Table 3.1: A selection of neuron’s activation functions.

Activation
Function

Input/Output relation Graph

Hard limit y =

{
1 if net ≥ 0
0 if net < 0

Symmtrical
hard limit

y =

{
1 if net ≥ 0
−1 if net < 0

Linear y = net

Saturating
linear

y =


1 if net > 1
net if 0 ≤ net ≤ 1
0 if net < 0

Symmetric
saturating

linear
y =


1 if net > 1
net if − 1 ≤ net ≤ 1
0 if net < −1

Log-sigmoid
(sigmoid)

y = 1
1+e−net

Hyperbolic
tangent
sigmoid
(tanh)

y = enet−e−net

enet+e−net

Reactified
Linear Unit

(RELU)
y =

{
net if net > 0
0 if net ≤ 0
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Table 3.2: A selection of neuron’s activation functions derivatives.

Activation
Function

Input/Output relation Graph

Linear φ′(x) = 1

Log-sigmoid
(sigmoid)

φ′(x) = φ(x)(1− φ(x))

Hyperbolic
tangent
sigmoid
(tanh)

φ′(x) = 1.0− φ2(x)

Reactified
Linear Unit

(RELU)

δy
δx φ(x) =

{
1 x > 0
0 x ≤ 0
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Chapter 4

Data collection

The three sections of this chapter covers information about the data, a
software created to monitor and filter PV data, which is partly used before
the last section about data preparation and what ends up being used.

4.1 About the data

The testing site is located at Kalkbult, Northern Cape, South-Africa (latitude:
-30.2, longitude: 24.1). It consists of 16 255W Virtus II Modules from Rene
Sola (polycrystalline silicon) and 8 100W First Solar Cadmium-Telluride
(CdTe) modules. Half of the CdTe are FS-4100A with anti-reflective coating,
the other half are FS-4100 without coating, both from First Solar. All
modules have tilt angle of 30° towards north, and are grouped in rows of
eight, as seen in Figure 4.1 with the exception of single-axis tracking (SAT)
modules which are 4 modules pairwise tracking west to east.

Table 4.1 provides an overview of eight different cleaning strategies
applied on the modules shown on Figure 4.2. The figure also shows four
polycrystalline modules installed on single-axis sun-tracker, with anti-soiling
coating applied diagonally on module.. From both of these the important
note is that modules on strategy A, B, C and D are not cleaned, while
modules on strategy E, F, G and H are cleaned every second week. For
the period in question, C and D are equivalent to A and B respectively.

This is chosen to determine the best cleaning strategy for lager scale PV
plant, and have been studied in other thesies but will not be in the scope of
this thesis. They are included for the reader to know. The site also has its
own weather station for local enviromental measurements.

Previous experiments within the project have indicated that the anti-
soiling coating is in fact working against its purpose (Plessis, 2016). Thus
modules with coating may provide the best data to work with.

4.1.1 Module data

All modules store one row of data into their respective SQL-table every tenth
minute, where the row consists of the data shown in Table 4.2.

39
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Figure 4.1: Overview of all modules and other devices on site (Plessis, 2016)
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Table 4.1: Cleaning strategy for both polycrystalline and thinfilm modules
(Weldemariam, 2016). Strategy C and D can be represented by A and B
respectively.

Strategy Treatment Duration

A Cleaned with distilled water and
treated with anti-soiling(AS) product.

Left for long term. After 12-18
months, apply the AS product again.

B Cleaned with distilled water only. Left for long term (indefinitely)

C (A) Cleaned with distilled water and
treated with AS product. Then af-
terward only dry-cleaned for the re-
mained of the testing phase.

Dry clean after a long-term exposure
(6 months). After 12-18 months
apply the AS product again.

D (B) Cleaned with distilled water. Then
afterward only dry cleaned for the
remained of the testing phase.

Dry clean after a long-term exposure
(6 months).

E Cleaned with distilled water and
treated with the AS product. Then
cleaned with distilled water only.

Cleaned again with distilled water
after short-term exposure (once every
two weeks). After 12-18 months,
apply the AS product again.

F Cleaned with distilled water only. Cleaned again with distilled water
on a regular basis (once every two
weeks).

G Cleaned with distilled water and
treated with the AS product. Then af-
terward only dry cleaned for the re-
mained of the testing phase.

Dry-cleaned again on a regular basis
(once every two weeks). After 12-18
months apply the AS product again.

H Cleaned with distilled water. Then
afterward only dry-cleaned for the
remainder of the testing phase.

Dry.-cleaned again on a regular basis
(once every two weeks).
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Figure 4.2: Cleaning strategy of the stationary PV modules at the test site
(Øgaard, 2016)

It also shows the thinfilm rows are slightly different from the polycrys-
talline, because thinfilm modules are connected pairwise to the same active
load, and thus needs separate identifiers for temperature and current. The
20 IV-pairs are measured within two seconds for every module with the help
of device called ActiveLoad (Ndapuka, 2015).

4.1.2 Weather data

The on-site weather station is a Met StationOne provided by Met One
Instruments, and measures wind speed including direction, ambient
temperature, pressure, relative humidity, and amount of precipitation. How
these values are stored can be seen in Table 4.3. The table is compressed
with {prefix(es)}{suffix(es)} in order shorten the list of all 80 values.
Other studies indicate the most important variables with regards to to soiling
in the table are wind speed and humidity, and in a small way temperature
because of dew formation.
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Table 4.2: Attributes for one row of data from the modules every ten
minutes.

(a) Shared attributes (b) Polycrystalline (c) Thinfilm

ID TEMPERATURE TEMPERATURE1

FIFOSPACE CURRENT0 TEMPERATURE2

YEAR CURRENT1 CURRENT10

MONTH CURRENT2 CURRENT20

DATE CURRENT(3,...,18) CURRENT11

HOUR CURRENT19 CURRENT21

MINUTE CURRENT12

SECOND CURRENT22

VOLTAGE0 CURRENT1(3,...,18)

VOLTAGE1 CURRENT2(3,...,18)

VOLTAGE2 CURRENT119

VOLTAGE(3,...,18) CURRENT219

VOLTAGE19

Table 4.3: Attributes for one row of data from the weather station every
minute.

ID, FIFOSPACE, YEAR, MONTH, DATE, HOUR, MINUTE, SECOND, {Avg_, Max_,
Min_}{Wind_Spd, Temp, Humidity, Pres, GHI1, GHI2, GHI3, Temp_Pyrano1,
Temp_Pyrano2, Temp_Pyrano3, DNI, Temp_Pyrhelio}, Interval_Rain, Avg_V_WS,
Total_Rain_Today, {WinDir_}{N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW,
SW, WSW, W, WNW, NW, NNW}, Saxis_Angle1, Saxis1_Mode, Saxis_Angle2,
Saxis2_Mode, Saxis_Angle3, Saxis3_Mode, Daxis_Azimuth, Daxis_Beta,
Failed_WS, Failed_Pyrano1, Failed_Pyrano2, Failed_Pyrano3, Failed_Pyrhelio,
Failed_Saxis1, Failed_Saxis2, Failed_Saxis3, Failed_Daxis
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4.2 Monitoring and Filtering of PV data

In the beginning of the thesis, a system to gather and monitor data from
the Kalkbult plant, or any SQL server, was implemented. For this system
some requirements specification were set up – and the ’Database’-module
created were used and extended for data collection to the neural network
Python-modules. The only related part of this section to the ANN part of the
thesis is subsection 4.2.7, where some attributes of the ’Database’-module
are described.

4.2.1 Requirements Specification

A software requirements specification (SRS) is created to ensure the
software works as desired by the end-users and with a quality required by
the developer. The following subsections are inspired by (Japenga, 2016)

4.2.2 Functionality

The software must be able to

• be used with command based user interface through terminal.

• connect to external database.

• be updated with new filters/analyses.

• have existing filters/analyses edited.

• delete existing filters/analyses.

• run filter/analysis on a database.

• have filter/analysis that can warn user if a (un)desired condition is
met.

• show textual outcome on terminal or to screen.

• store textual outcome to files.

• keep records of data in its own database.

• copy an existing external database into its database.

• update its database from the same database it copied.

• activate a monitoring of external database, which includes:

– Continous update of local database.

– Enable or disable predefined filters/analyses on the continous
data in combination with local database.

– Warn user if filter/analysis with warning is enabled and the
conditions are met.

• disable an activated monitoring.
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The software should be able to

• be used through a graphical user interface.

• show graphical outcome of filters/analyses on screen as graphs.

• store graphical outcome as graphs to files.

• backup the database, in order to manipulate database and revert
unwanted changes.

• connect to several databases.

• do a cross-filtering and updating on several databases.

4.2.3 Interfaces

Interfaces are how the software will interact with users and/or applications.
This includes external interfaces like the external database. The users and its
interface is described on Table 4.4, where the most important note are filters
and analyses that can be written in either Python, MatLab or SQL. The rest
is more descriptive how the functional requirements will be implemented.

4.2.4 Performance

In order to optimize speed, the software should attempt to utilize low-level
programming if a filter/analysis is taking a long time. To encourage this, a
timing implementation should be implemented to warn user of low quality
filters. On Table 4.5 there are an overview of the most important time
schedules or limits the software must be aware of.

4.2.5 Attributes

Concerns that needs addressing:

• The user must be allowed by the external database to both read and
also store read content on local machine.

• Should the data be encrypted on local end-point to secure it from
external attacks.

• All database queries are to be implemented in such a fashion that SQL-
injection cannot occur.

4.2.6 Design constraints

• When error occurs, all columns on Kalkbult database are 0.0 values,
including time and date specific columns, with row-ID as the sole
exception.
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Table 4.4: An overview of the software users (entities) and their interfaces

Entity Interaction

Users Through a terminal with string input commands, or if
possible through a graphical user interface (GUI), with
buttons and possibility of enabling advanced options.

Administrators Initially all users will be administrators (access to all
features). This might change later during develop-
ment, and thus needs some level of generalization to
easier implement restrictions at a later date.

MatLab The Python language enables MatLab scripts to be
executed through MatLabPython (MATLAB Engine API
for Python 2016). Many users would desire such a
possibilty when writing filters and algorithms on data.

Filters/Analyses The filters can be written in either MatLab, Python
or SQL, whichever fits the users experience in the
language and preferably its task.

Database The softwares database will be implemented using
SQLite and SQLAlchemy. SQLite does not need a local
server, and can be executed on a database file and in
memory. SQLAlchemy is chosen for its broad features
to integrate several SQL database types, continuous
update and well documented API (Bayer, 2016).

• The local database might not have consistent data (ie. the 0.0 values
on all columns except ID), it needs to be edited. Since the invalid value
rows are stored on the external database, only without values, the
local database can update those rows with interpolated values locally.

• In order to reduce risk of loosing database integrity, the external
database will always be read-only. The local database will be read-
only unless software is told otherwise. Some filters and custom SQL
statements may override this.

• Software will be used on several machines, thus it requires portability
and the possibility to be run on different operating systems (OS),
specifically Windows, Linux and MacOS.

• The software should be modulable, to increase usability on later stages
and different systems, not just on the project it is designed for initially.
However, testing on other systems are of no priority.
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Table 4.5: The schedule of some time variables the software needs to design
around

Description of action Time variable/description

Attempts to connect to external database
before timeout

5

Time to wait before updating local
database during monitoring

30 minutes

Designated weekday start and end Monday-Sunday

Kalkbult test plant specifics

Update of weather data on table
’MasterController25’

every minute

Update of modules system data on
tables ’Polycrystalline{1,...,16}’,
’ThinFilm{17,...,20}’ and
’STracker{21,...,24}’

every 10 minutes

4.2.7 Prototyping

All entries in the software must list will be a part of the prototype. The
prototype will be used for demonstration on the Kalkbult database in order
to prove purpose of software.

Diagrams and charts of design

On Figure 4.3 is a chart of the main menu, and its current submenus
that are available. The temporary name of software is Faultication and
has the three menus; Monitor, Filters and analyses and Manage Database.
The Monitor menu is used to start and stop continous monitor of external
database to update local database, and enable or disable filters/analyses
that are to be run during monitoring. The Filters and analyses menu is
used to manage filters/analyses by creating new, update/edit exisisting,
deleting, or applying them to the local database. Filters are either used to
extract simple information from the database, or edit it in order to increase
consistency. Analyses are used to analyze the data from filters (or extracted
themselves) using scientific algorithms. The last menu, Manage database,
is used to work with the local database more directly. In this menu the
external database is set up for monitoring/updating local database. It will
also include the possibility to write custom SQL statements for those with
experience and knowledge in the field. For others there will be a view option
with predefined SQL statements to show the current state of the databases
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(simple extraction filters). This is also the menu that has the option to do a
single update of the local database from the external databases.

To achieve the desired menu, a entity relation diagram is shown on
Figure 4.4. This shows that Faultication needs one local database, one
analysis manager and one filter manager to function, and an optional
monitor for monitoring.

On Figure 4.5 is a flow diagram on how the software will behave while
monitoring. The software must have the possibility to run several filters
and/or analyses in a specified order on the updated values. This is reflected
by fetching a filter/analysis while there are some assigned that has not yet
been applied to the updated values. Also, if a filter fails, it must have a
procedure on what to do when the filter does not return OK. This could
be a range of different things, including sending an e-mail with warning,
update data with new values, or nothing at all. The filter must also have a
continue/stop attribute in order for the monitoring to know how to proceed
after a filter have failed. A stop in this sense is stop filter/analysis fetching,
and not stop monitoring. Later updates might include the data necessary
to fix the previous failure, and thus monitoring is only stopped when user
disables it. Analyses on the other hand do not require a continue/stop
attribute, as they expect the data to be correct when applied, and thus cannot
fail as they only acquire/compute results.

Database

The Database-module contains a ’Database’ class which connects to the
Kalkbult SQL server by default through the ’sqlalchemy-module’. It also
contains its own ’command-loop’ in order to do some predefined executions
or a ’SELECT’ statement if the user desire. Most of the system requirements
are ensured in this class, like updating database (or one table), applying
filters, extract predefined data collections and more. Some of the predfined
functions for collecting data from a ’Database’-instance are:

• ’select(query, external=False)’
This function executes the ’query’ on the local database, and returns
the result. If ’external=True’, the query is executed on the external
connection, if any.

• ’select_from_until(table, start, end)’
This function collects all data from table, within the range [start,end).
Notice how it is until not including the end. The ’start’ and ’end’
variables may either be ’datetime’ or integers. If they are ’datetime’,
the database tries to find the row containing the desired datetime. If
they are integers, they are handled as ’ID”s, and the row with same
value are chosen as ’start’ or ’end’. The returned value is a ’list’
where each entry is a returned ’sqlalchemy.RowProxy’. Those classes
operates similar to a read-only ’OrderedDict’ Python-class.

• ’select_peak(date)’
This function returns an ordered list (biggest to smallest) with
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Figure 4.3: An overview of the main menu and their submenus

irradiation values between 800 − 1200 from key ’Avg_GHI1’ in the
’MasterController25’ table for the date in ’date’ variable. The ’date’
value should be either a ’date’ or ’datetime’ instance.

• ’select_production_and_weather(modules, dates)’
This function selects production together with irradiation and ambient
temperature for the given ’modules’ from the given ’dates’ (which
must be tuples of ’(start, end)’ within that day). The returned value
is a nested ’OrderedDict’ with weather and module data for each
timerange in ’dates’. The first level is a ’startdate: OrderedDict’,
where ’startdate’ is the key, and the ’OrderedDict’ contains a list for
each key {’Iavg, Tavg’} and each of the ’modules’.

Analysis and Filter manager

For the prototype, three filters were subclassed from the ’Superfilter’-
module to show examples of implementation. For each filter, they are
applied to either one row or an entire rowset. The superfilter ensures all
filters have some default behaviour when applying filters like saving last
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Figure 4.4: An entity relation diagram of entities in Faultication

applied row, building error messages or reseting filters. The subclassed
filters created are:

Nullvalue Filter which checks if all values are 0’s in a row, except ID and
FIFOSPACE columns. This is because those columns requires unique keys,
and a row is always inserted into the used SQL server. That is why these
two columns must have valid values, and if all other values are 0, it means
there was an error during save of that row on-site, and an error message
warning about this is built.

IV Curve Filter is a simple IV-curve checking filter. If a row contains
the applicable columns, all ’Voltage’ columns are checked for continous
increase, and all ’Current’ columns are checked for continous decrease. To
ensure non-erronous messages because of small change in a value to the
next, an ε = 0.2 are default parametervalue when creating the filter.

Continual date Filter is used to ensure that the previous row is within a
specified timeframe to the current row. For the Kalkbult plant a value of
’minutes=15’ is default, because the PV-modules saves measurements every
10 minutes. With a timeframe of 15 minutes, it has some leeway before
announcing filter failed.

Monitor

The Monitor module needs a ’Database’-instance to monitor, or update. Any
filters enabled in monitoring are only applied to the rows received during
monitoring – not the exisiting rows in the local ’Database’. The monitor
module also allows for e-mail messages if a filter does not succeed. For each
SQL-table an error occurs on, an e-mail will be sent (once). However, the
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Figure 4.5: Flowchart showing how software will enable and run monitor-
ing, or disable it

monitor will still receive data and insert it into the local database for the
erronous tables. This is because the user has been warned on email when
data failed – and can manually run desired filters on the database in the
timespan from when the filter failed.

4.3 Data preparation

In contrast with many other studies, data during the night (when there is no
irradiation) could prove valuable, in order to catch the whole environmental
daily footprints. However, it is impossible to know how each minute
of values affect the soiling because it is hard to quantify soiling at that
frequency. Also even if it was quantifiable, it would require continous-
manual observation or YR calculation – either nearly impossible. Previous
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research and their findings will thus be used in order to choose what
approaches to use in preparation of the dataset.

4.3.1 Variance in irradiance

There are two periods without precipitation at the test site, leading to the
most likely indications to presence of soiling (Øgaard, 2016): 14.05.2016 -
26.07.2016 and 18.09.2016 - 04.11.2016.

The biggest issue is the impossibility of measuring instantaneous soiling
at every possible data-row moment. Primarily because the soiling per
minute is not easily measureable, or even that much at the testsite (Øgaard,
2016). In order to mitigate this and be aligned to the other thesises from
the same testsite, each input/ouptut will be daily values.

Using the yield ratio against a reference yield ratio raises another issue.
The yield ratio of any PV module is dependent on a range of parameters,
with irradiance being the most significant. However, other studies at the
testsite indicates higher irradiance seem to lower efficiency, and lower
irradiance above a limit seem to increase efficiency. This is noticable on
Figure 4.6. Two ways are proposed to counter this;

Using other module(s) for reference, because all modules should be
almost equally affected by the varying light intensity, ie. the proposed
Cleanness Ratio CR (Plessis, 2016). Or,

Account for the error by using either datasheet for the modules in
order to correct the error at varying light intensities or by using statistical
measured values from the dataset.

4.3.2 The dataset

The raw dataset to extract inputs from will include the following measured
values; date in isoformat(ISO8601, 2000), the average, minimum and
maximum; wind speed, relative humidity, irradiation throughout the day
(including nighttime), ambient temperature and wind directions, along with
module temperature, irradiation and power output at a specific timeframe
of the day for yield ratio calculation. The dataset will also include days since
clean (which includes rain).

Defining yield ratio reference

The date for defining a reference value close to STC with low wind speed, and
after rainfall cleaning all modules was found on 11.05.2016 (Øgaard, 2016;
Plessis, 2016). Key weather parameters between 12.00-12.50 are displayed
on Table 4.6 and each applicable modules’ YR is shown on Table 4.7.
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Figure 4.6: The yield ratios and average irradiation on dates with
calculatable points shows yield ratio often follows irradiation.

Handling errors in the dataset

The dataset is not complete, and measurements are sometimes not stored.
These events ranges from a minute to hours. When this occurs, all values
in a row will be 0’s (null fields), including the dates. However, the rows
are still inserted indicating how many minutes were lost. These rows are
dropped from the dataset, and the applicable day is set as invalid.

The range of values will be from May 12th (reference day + 1) until
and including November 30th. One day is defined as all measurements
from 12.31 on day 1 until and including 12.30 on day 2. The total number
of days in the period is 203. For polycrystalline modules, a valid day in
this range is a day where 4/7GHI values are within 800-1200 and no less
than 150GHI from the middle value, together with valid production data
generated from single diode equation defined by another study within the
same project (Plessis, 2016). It was found to be a valid day on 168 of the
203 days for all modules except #1 and #5 which had 2 and 1 respectively
less valid days. This reduces the valid module days to 165.

A valid weather day is a day with the complete 1440 rows of minute-
values from day 1 until day 2. Out of 165 valid module days, 29 days did
not have the complete number of rows. 7 of these days had at least 1397
rows. An interpolation will thus increase the number of valid dates for better
training. It is after all minutely intervals, so an interpolation between a
few minutes should not create too much deviation in the relevant measured
features. The invalid and fixable dates and their row count are found on
Table A.1 in the Appendix.

4.3.3 Preprocessing

Two Python-modules have been created in order to deal with the weather
data and module data. Earlier a Database module has been created for the
general system, and has been used and expanded in order to easily get the
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Table 4.6: The key weather parameters on the reference day used to indicate
yield ratio during analysis period. The back surface module temperature for
both types of modules given as the midday (12:00 – 12:50) average on
11.05.2016. The given back surface module temperature are the average
for all the modules of the same type.

Date Gt[W/m2] WS[m/s] RH[%] Tamb[°C] Tpoly[°C] Ttf[°C]

11.05 983.8 1.7 56.2 17.0 48 41

Table 4.7: Each module with their reference yield on the designated date,
calculated from Eq. 2.13 with (P∗/Gt)re f = 1

1 2 3 4 5 6 7 8

0.239 – 0.243 0.236 0.243 0.241 0.206 0.243

9 10 11 12 13 14 15 16

0.241 0.245 0.243 0.242 0.241 0.241 0.240 0.241

desired data based upon dates or other features. And a last module dataprep
deals with preparation of output data.

Weather data

Because the environmental data is from Kalkbult, the Python-module
is named ’kalkbult_weather.py’. This Python-module contains con-
stants regarding the database and two primary functions among others;
’create_input_intervals’ and ’get_all_weather_data’. The first function
takes weather data one day (1440 rows of values), and creates a new array
consisting of n-intervals with min, max, average or incremented values –
based upon the value keys. The different keys and their desired function
for intervals are shown on Table 4.8, and each prepared interval row only
contain these keys with values in the returned array. The rest of the data
are discarded.

The other function requires a Database-instance and an array of end-
datetimes. These dates are used to gather all data from the 24 hours before
that point in time, ie. If ’[datetime(2016, 5, 14, 12, 31)]’ (a single
datetime element) is provided, all weather-data from 2016-5-13 12:31
until 2016-5-14 12:30 is returned. By default it also prepares all the date-
sets using the first mentioned function ’create_input_intervals’ function
with 12 intervals. However, this interval can set explicitly in the call, or
ignored all together by using a ’pure=True’ parameter – returning the raw
sql-rows gathered for each date mapped to its date in a key:value using the
Python-class OrderedDictionary. This is recommended when the need to
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Function Key(s)

increment Raininterval

average Tavg, RHavg, WSavg, Iavg

max RHmax, WSmax, Imax

min RHmin, WSmin, Imin

wind directions WSN, WSNNE, WSNE, WSENE, WSE, WSESE, WSSE, WSSSE,
WSS, WSSSW, WSSW, WSWSW, WSW, WSWNW, WSNW,
WSNNW

Table 4.8: An overview of the valid keys, and their function when calculating
interval value

process the data manually or in several intervals. For example when creating
the different models.

A third function gets the peak values at given dates. This is used by
the PV Python-module in order to get the most valid data to work on for
each day when creating daily yield ratio, and thus also soiling rate using
equations (2.13) and (2.17).

The last function is ’extract_inputs_from_keys’ that is used by the
machine learning model instances to prepare weather data into correct
shape of numpy-arrays. This function requires keys and the weather data as
parameters, in order to only gather value from the desired keys (features)
by the models. For exampled Model A has WSavg as its parameter, and thus
the only key will be ’[AVG_WS]’. The function also normalizes the values
according to Eq. 3.10 into values between −1-1 using the values from
Table 4.9 as dL and dH depending on the key. This is because the most
common activation function sigmoid outputs values from 0− 1, and is more
dynamic when influenced by smaller values within that range.

Finally, the valid dates to use as Srate as target values for the ANN are
the dates with a calculated previous day. This is because Srate needs to
have yield ratio for a valid previous day. If the last valid day are longer
timespan than a day, it will not be one day difference, but a change from a
longer timeframe. An overview of dates with valid yield ratios are shown on
Table 4.10, where transparent days are invalid, striked out dates are used to
calculate Srate target days, and the solid days are valid target days. This is
because striked out days have more than one day since last valid YR.

PV data

In the ’ProductionData’ module, the function ’fetch_raw_output(dates)’
finds all valid dates, and creates an averaged production and yield ratio
value for each day. This is done in a step-like manner:

• For each date in period, find the largest irradiation (800 < Gt < 1200)
value from database using ’get_peak_data’. This will return 7 values,
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Table 4.9: The ranges are found by using the smallest and largest value
found in the dataset within period of study for each measured variabel.
Except Power, which has dH given by specification as peak output for the
Polycrystalline modules.

Keys dL dH

Tenv.avg -6.1 40.0

Tmod.avg -16 77.875

RHmin, RHavg, RHmax 0.0 100

WSmin, WSavg, WSmax 0.0 20.5

Imin, Iavg, Imax 0 1600

Raininterval 0 3

Wind directions 0 12

Srate -0.3 0.3

Power 0kW 255kW

3 values before and after the peak and the peak itself.

• For each module:

– For each date in period

* If date was invalid from peak values, skip, else:

* Get production values from database given timeunits from
the 7 peak units.

* Ensure there are production data to work on (ensuring there
was production data for the given time).

* Average the valid production data. It is valid if at least 4/7
have both valid irradiation (Gt > 800) and production larger
than 0. Only the valid points are used.

To create the production values, the gathered IV-curve values are sent
through a nested function hierarchy:

• ’poly_yield_ratio’ in Python-module ’pv_module’calculates the
yield_ratio against the reference value using Eq. 2.13 on the row data
and irradiance at the specified time

• The production is calculated by finding the MPP using ’iv_fit’ in
Python-module ’pv_module’. This function returns the
’Perform_SingleDiode_Adjustment’ (Plessis, 2016). If the calculation
of MPP fails, a value of -1 is returned to indicate erronous values
and IV-curve calculation. If the iv-fit returned value larger than
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Table 4.10: An overview of the dates with valid data. The circled date is
reference day, transparent days are invalid, and striked out days are used
for calculating soil rate for the following day. Striked out dates are thus
invalid as target dates.

May

1
2 3 4 5 6 7 8
9 10 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

June

1 2 3 4 5
6 7 8 9 10 11 12

13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

July

1 2 3
4 5 6 7 8 9 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

August

1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

September

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30

October

1 2
3 4 5 6 7 8 9

10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

November

1 2 3 4 5 6
7 8 9 10 11 12 13

14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30
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0, a temperature correction is done using Eq. 2.14, else the power
production is returned as 0 for the given data.

After all the modules have prepared production data, an instance of the
’Dataprep’ class is created to store yield ratios, and create soil rates and soil
ratios from the valid production data. These values are stored in a dictionary
for each module instance. These arrays are ready to use as target values for
the neural network.

4.4 Use of data

Some notes on selection of data, and what modules to use.

4.4.1 Irradiance variance

As mentioned in previous sections on the other studies performed on the
same data from Kalkbult, it is hard to quantify how much soiling occurs.
The same problem has thus affected this thesis’ calculations and how the
data performed. On Figure 4.6 is the display of soiling ratio for each (valid)
day from May 12th until September 12th, along with average irradiation
used in calculating the average yield ratios. If looking closely each change
in irradiance most often resulted in equivalent change in ratio the next day,
ie. increase in irradiance increased soiling the next day, and opposite.

The other studies within the project used a cleanness index to compare
a clean and unclean module against each other for a clean-ratio. This thesis
is trying to identify soiling rate from day to day, making the same approach
not applicable. This is because the clean modules are only cleaned every 14
days. This means it should not be a considerable difference between clean
and unclean until at least 14 days has passed. The other approach was to
account for the error. However, this approach was studied and found too
uncertain because of large deviance from another study within the same
project (Øgaard, 2016).

That is why the proposed YR leading to Srate from Eq. 2.13 and 2.17
respectively will be used, even though it is most likely influenced by
irradiation and/or other factors. This is still done because there are small
noticeable tendencies for decreasing yield ratio between cleaning events,
as seen on Figure 4.7. This figure shows the YR and Srate of modules
Polycrystalline1 and Polycrystalline3, where there are areas where both
modules seem to drop a little on the day-to-day yield ratio – indicating the
defined YR and Srate can indicate soiling of modules despite being influenced
by irradiation and possibly other values.

4.4.2 Choosing data from modules

There are an overview of Srate for the modules without problems and that
had valid creation of YR on Figure 4.8. From this graph, it is possible to see
Polycrystalline1 and to some extent Polycrystalline3 are without the largest
spikes in Srate. In other studies within the same project, Polycrystalline1
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Figure 4.7: Shows the average yield ratios for modules 1, 3, 6, 8, 9, 10, 11,
12, 14 and 16 are somewhat restored after rain events.

was indicated to be the modules with most soiling. From the figure it is
also the module which is seldom away from the majority of modules. This
indicates Polycrystalline1 is least affected by other factors, unlike the other
modules. Together with the fact that Polycrystalline1 is never cleaned and
coated with anti-soiling (which was proposed to work against its purpose),
Polycrystalline1 seems like the best data to use for target values.

Looking closer at the yield ratio (YR) of Polycrystalline1 in Figure 4.9,
it looks like recovery after the rainfalls. Although, there are recoveries at
other times as well.

The target values for the neural network will thus be the Srate of
Polycrystalline1 as shown in Figure 4.10.

4.4.3 Fuzzyfication (sorting) of the inputs features

Fuzzification is the process of preparing the data for a fuzzy inference.
Although the direct use of this will not be utilized – the principles of it
may be. If each of the feature values were given inputnode based upon
the time it occurred – it gives some meaning to that time. However, the
interesting part is the values and their interactions. This may be achieved
by sorting each feature inputs; this causes the lowest value of a feature to
always come to the same input node, next lowest to the same node etc.
Capturing the footprint of a day having similar values at different hours
of the day is possible by using this sorted approach. An example of two
different days with and without sorted features are shown on Figure 4.11 &
4.12 respectively.
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Figure 4.8: An overview of Srate for the applicable modules and dates. It is
hard to see on paper, but Polycrystalline1 are least fluctuating module, and
most aligned with the majority of other modules.
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Figure 4.9: The yield ratio of Polycrystalline1, where it looks like the YR of
Polycrystalline1 is somewhat restored after rain has occurred.
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Figure 4.10: The Srate values of Polycrystalline1, which will be the target
values to predict.
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(a) Sorted inputs for July 16th.
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(b) Sorted inputs for September 16th.

Figure 4.11: Overview of how 24 sorted inputs looks like on two different
days. Higher values now occur closer to eachother, reducing the dependency
for a value to happen on the same hour for two different days.
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(a) Unsorted inputs for July 16th.
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(b) Unsorted inputs for September 16th.

Figure 4.12: Overview of how 24 unsorted inputs looks like on two different
days. This shows ie. the highest wind speed (WSavg) does not occur on the
input node i for both days.
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Chapter 5

ANN implementation

Every model will be used to predict only one output value; soiling rate
(Srate). However, to ensure that the library and data preparation has been
done correctly, a model verification will be done on prediction of power
output for every ten minutes over several different days.

5.1 Models

It is necessary to start with a simple model in order to evaluate how much
information is needed in order to get some valuable output. Then expand
the model with more varied and increased inputs. In the models with more
than one input, ordering of the input values may be done as explained in the
fuzzification paragraph in subsubsection 4.4.3. Again, the reason for this is
to dismiss a significance to the hour a value occurred on. As it is the values
and their interaction which is interesting, and not the hour it happened in.
To elaborate, the scope of this thesis is to predict daily soiling rate, so the
daily values which occurred at any point during the day is the important
information – not when it happened.

Eg. if a model uses hourly average wind speeds throughout the day,
totaling to 24 values as input, not sorting them would imply the hour a
value happened on is important. It is the position of an input which is
significant. By sorting these averages from lowest to highest, the values are
more likely to occur on a similar position, which increases the likelyhood to
catch interaction between certain input values following each other instead
of certain hourly values following each other.

The basic setup of each model will have hidden nodes given by Eq. 3.9
as the size of the first (fully connected) layer. An overview of all starting
models, their interval and inputs, and the coorresponding name can be seen
on Table 5.2.

Model A will use only the average wind speed, as this has been proposed
to have a minor influencing feature for soiling rate.

Model B is maximum wind speed and average wind speed. This is chosen
because gusts of wind provide more force to move heavier particles upon
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the panels, or even push them off. An average might not catch these gusts,
but the maximum may do that.

Model C is the average wind speed along with the 12 wind directions
inputs. Because the solar panels are inclined, the direction of the
wind is more likely to play a more influencing role in the soiling rate.
Simultaneously, at the given test site there is a road due west. Traffic on
this road together with east oriented winds are expected to increase soiling.

Model D is only the average relative humidity. Partitioning up all features
may help distinguishing the influencing parameters more easily, especially
when combining features on the other models.

Model E is average humidity together with ambient and module temper-
ature. The reason for adding both ambient and module temperature is be-
cause of possibility of dew formation. Table 5.1 shows dew formation could
occur on around 11-13% of the time using Eq. 2.11 all data in the selected
period. Other studies have shown dew formation may lead to a minor clean-
ing event. Minor cleaning can lead to a decrease in soiling, or reduce the
increase in soiling.

These conclude the basic models. The following models are combined
versions of the previous core models.

Model F is the model having both average wind speed and humidity (com-
bined A and D). Other studies have proposed these are the most influencial
parameters with respect to soiling.

Model G is models B and D, maximum wind speed with the average wind
speed and humidity.

Model H is models C and D, average wind speed and humidity together
with the wind directions.

Model I is models A and E, temperature variables together with average
wind speed and humidity.

Model J is models C and E, wind directions with average wind speed,
humidity and temperatures.

Model K is models B and E, average and maximum wind speed, average
humidity and temperatures.
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Table 5.1: Output from selected modules and the rows dew are possible to
occur. Note: this is all available data, not just the dates used in training the
neural network.

Module name dew-formation rows all-rows percentage

Polycrystalline1 3038 26062 11.66

Polycrystalline3 3327 26398 12.60

Polycrystalline6 3381 26392 12.81

Polycrystalline8 3355 26228 12.79

Polycrystalline9 3239 26402 12.27

Polycrystalline10 3358 26402 12.72

Polycrystalline11 3381 26402 12.81

Polycrystalline12 3307 26401 12.53

Polycrystalline14 3247 26364 12.32

Polycrystalline16 3389 26402 12.84

Model L is all features mentioned, average and maximum wind speed with
directions, and average humidity, and temperatures.

Irradiation is not included as a feature because it is not expected to affect
the soiling rate significantly. It was discussed whether irradiation could
impact through heating by drying of particles, effectively sticking them to
the module/panel. However, for this to occur, the particles must arrive there
(by wind) initially. This makes it somewhat possible to detect the suggested
effect from selected features. Also the heat and dry effect are not expected
to have significant impact on the low soiling rates.

5.1.1 Intervals

The chosen intervals are a combination of both a measure of how long an
interval can an be, and what is most likely measurement intervals. At the
test site, IV-curves are calculated every 10 minutes - and are thus the shortest
interval. Another study proposed 15 minutes to be a good choice, and will
also be included. The longest interval in these models is 1 day, because the
soiling rate is calculated from day to day. The three other interavls, 1, 6 and
12 hours are chosen because of their hourly relevance of a partitioned day;
1

24 , 1
4 , 1

2 respectively.
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Table 5.2: An overview of the model inputs, the interval ranges and each
model denotation.

Model:Inputs Interval count (length per interval)

1 (1
day)

2
(12h)

4 (6h) 24
(1h)

96
(15m)

144
(10m)

A: WSavg A0 A1 A2 A3 A4 A5

B: WSavg, WSmax B0 B1 B2 B3 B4 B5

C: WSavgwith wind direc-
tions

C0 C1 C2 C3 C4 C5

D: RHavg D0 D1 D2 D3 D4 D5

E: RHavg, Tenv.avg, Tmod.avg E0 E1 E2 E3 E4 E5

F: WSavg, RHavg F0 F1 F2 F3 F4 F5

G: WSavg, WSmax, RHavg G0 G1 G2 G3 G4 G5

H: WSavg, RHavgwith wind
directions

H0 H1 H2 H3 H4 H5

I: WSavg, RHavg, Tenv.avg,
Tmod.avg

I0 I1 I2 I3 I4 I5

J: WSavg, RHavg, Tenv.avg,
Tmod.avgwith wind direc-
tions

J0 J1 J2 J3 J4 J5

K: WSavg, WSmax, RHavg,
Tenv.avg, Tmod.avg

K0 K1 K2 K3 K4 K5

L: WSavg, WSmax, RHavg,
Tenv.avg, Tmod.avgwith wind
directions

L0 L1 L2 L3 L4 L5
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Example of the neural network using one day as interval length gives 10
number of hidden nodes from Eq. 3.9 with 71 samples. With one hidden
layer the ANN can be illustrated by Figure 5.1.

Another example, the maximum number of inputs will be L5. This is
10-minute averages and give a total of 144 values for each feature. These
features are maximum wind speed, average wind speed and humidity, ambient
temperature and module temperature, and the 12 wind directions. The model
requires 144 ∗ (5 + 12) = 2448 inputs.
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Figure 5.1: Showing the nodes and weight annotations for model F0
(combination of B0 and D0), where i = {2, . . . , n − 1} and n = 10. Each
hidden node also has a bias node, in order to shift all values of the activation
function output.

5.2 Neural net implementation

In ANN, important parameters are the update function and update learning
rate, as these two create the foundation for how a neural network will
learn from the training. During experiments on the neural network,
update function ADAM (3.8) proved to provide quick and accurate training,
requiring less than 100 epochs for the same training result SGD (3.5) alone
needed more than 10k for. The standard learning rate of 0.02 has also been
chosen as update learning rate, as it had the same performance overall.

Another important feature of an ANN are the layers. The input layer will
always have one node per input multiplied by interval count, ie. Models
A0 (1 daily WSavg) and B0 (1 daily WSavg and WSmax) will have 1 and 2
nodes respectively in the input layer. While A5 and B5 will have 144 and
288 input nodes respectively, because there are 144 10m values for each
input feature. The output layer is one single output node, the soil rate (Srate
from Eq. 2.17), for all models. The hidden layer have nodes calculated from
Eq. 3.9 initially, and will be tested with ±5 nodes. It has been stated more
hidden layers are required for non-linear discoveries. Each model are thus
available to be created with deep learning capabilities. It will be two hidden
layers for deep learning on models with a single input feature, and three
hidden layers for all other models.
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5.2.1 Programming tools and libraries

To implement the neural network models, some external Python libraries
are used:

• numpy is a well known library for numerical computation (Walt,
Colbert, and Varoquaux, 2011).

• Theano is a library for efficiently use of known mathematical
expressions, integratable with numpy (Al-Rfou et al., 2016).

• Lasagne is a lightweight library for building and training neural
networks using Theano (Dieleman et al., 2015). Example of usage
from lasagne are update functions and layers classes:

– from lasagne.updates import adam
– from lasagne.layers import InputLayer, DenseLayer

• NoLearn is a library built upon lasagne, which enables quick imple-
mentation of neural networks upon the other libraries (Nouri, 2014).
From this library, the ’NeuralNet’ class is imported for quick cre-
ation of a neural net using Python-modules from Lasagne: ’from
nolearn.lasagne import NeuralNet’ and its use in this thesis ’Model’
class.

def create_net(self,
module,
epochs=1,
update=adam,
update_learning_rate=0.02,
verbose=False):

"""
Creates a neural net with given parameters, and
stores it in the local OrderedDict ’nets’ on its
’module’ key.
:param module: The module name, ie. ’Polycrystalline1’
:param epochs: The number of epochs for each training/fiting session
:param update: The update function, ie. ’sgd’, ’rmsprop’, ’adam’ oo.
:param update_learning_rate: The learning rate, usually 0.01 - 0.02
:param verbose: If the NeuralNet is supposed to be verbose or not
"""
self.nets[module] = NeuralNet(

layers=self.layers,
max_epochs=epochs,
update=update,
objective_loss_function=squared_error,
update_learning_rate=update_learning_rate,
regression=True,
verbose=verbose

)
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5.2.2 Designed classes and functions

Python-module ’learning’ has been created to define the neural net model
class hierarchy available in the appendix. The most important classes are
the ’Model’ and ’ANN’-classes. The ’Model’ is the superclass of all models,
having most of the core functionality like creation of the neural net, fitting
training data and predicting test data. The ’ANN’-classes define the layers
with single hidden layer (’ANN_Basic’) or multiple layers (’ANN_Advanced’).
When initializing either subclassed model, it prepares the input values
values based upon what ’input_keys’ (feature types) are provided using
the ’extract_inputs_from_keys’ defined.

Each earlier described model has been implemented to automatically
pass the relevant feature keys upward in the class-hierarchy. Thus, the
parameters needed for creation of a module are the valid dates, weather
data (mapping of dates with mapping to all features for each date), the
’ProductionData’-module containing production values, and the number of
intervals.



Chapter 6

Results & discussion

This chapter consists of three sections. First a model verification in order to
prove the implementation are able to predict known relations. The second
section is model training with a single hidden layer approach. The last
section is an attempt at deep learning with 2 and 3 hidden layers.

6.1 Model verification

In order to establish confidence that the suggested models can discover a
pattern in the data if it exists, a verification using the same principles as
another study (Yadav and Chandel, 2017) were performed. The reference
study showed the method with best prediction (least MAPE and RMS) on
power output through the day of study occurred when only using irradiation
and temperature as inputs for every minute.

Hence an ANN model was built using the same principles as the
reference study, using this thesis’ described models to accommodate the two
inputs Iavg and Tenv.avg. There will be one hidden layer with 13 nodes, equal
to the model with best results in the reference study. The most notable
difference to the reference study and this dataset is frequency in production
values. The Kalkbult data stores production value every 10 minutes, instead
of every minute as was done in the reference study. Due to low irradiance
in the morning and evening, values chosen were all 10-minute values from
7.30 until and including 17.00, for a total of 58 values for one day.

Three days were chosen for verification; the referance day 11th of May,
16th of July, and 16th of September. The first date was used for training, and
the other two for testing. The dates were chosen because it is approximately
the same length (2 months) between each date. This increases confidence
the model can discover pattern throughout the period of study. In addition,
the first two dates are close to clear sky dates, which is shown by a near
perfect circular curve on Figure 6.1a & 6.1b. The last day is a cloudy day,
which is indicated by the many dips in the curve on Figure 6.1c. Because
cloudy days are significantly different from clear sky dates, it is a good
verification of the neural network to predict input very different from the
training dataset.

After training the verification model (hereby known as model) with
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Figure 6.1: These plots show the irradiation and temperature inputs of the
three verification dates, along with production, which is output. Note: All
input values are normalized in range −1 to 1, and output is normalized in
range 0 to 1 according to Table 4.9.
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6 epochs as the reference study suggested, the model did not converge
or score equally well. This may be due to the datasets were different.
However this is not likely, as the data in the reference study were similar
to the data chosen in this study. A more likely cause was the different
approaches in training the neural networks. The reference study used
Levenberg–Marquardt (LM) for training, while this thesis used the stochastic
gradient descent (SGD) technique ADAM (Eq.3.8). LM is an approxmation
to the Newton method, and has the benefit of being faster to find a solution
than SGD. However, LM needs to be closer to the global minima because
it does not include momentum which helps ADAM escape a local minima.
Beacause of this, additional epochs of training were done on the verification
model to a total of 40 epochs. At that point, the verification model had a
very good prediction on both the clear and unclear sky days with R2 scores
of 0.963 and 0.845 as shown on Figure 6.2 & 6.3 respectively.
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Figure 6.2: The production in black and predicted data in red on 16th July
with R2 = 0.963.
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Figure 6.3: The production in black and predicted data in red on 16th
September with R2 = 0.845.
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6.2 Single hidden layer (SHL)

Because the verification model showed 40 epochs of training were necessary
on a dataset with known relation between input and output, each model
from Table 5.2 were trained and scored with R2 150 epochs (an entire run
through the training data with weight updates for each run accordingly).
The increase in training epochs were because it is not known how related
the features are with soiling, if at all. Also, exploring if this relation exist is
the goal of this thesis.

It is also important to remember the defined soil rate (Srate) is a result
of the change in yield ratio as defined by Eq. 2.17. However, the yield
ratio is probably influenced by features besides soiling. This means it is
not guaranteed the target values are only because of soiling. This is also
indicated on the targets having negative Srate in Figure 6.4 (all values below
the horizontal 0.5 line). A negative Srate implies a reduction in soiling (an
improvement in performance) since the day before. Significant improvement
is usually related to cleaning or rain events. Although some studies suggest
a minor cleaning event from dew formation can improve performance, and
also powerful wind speeds. That is why the targets are used despite the
uncertainty. Additionally, if there is a relationship between a feature and
soiling, they were expected to reduce the magnitude of negative Srate.

6.2.1 Model scores with unsorted inputs

All models were trained and scored with 150 epochs for the 11 different
node setups in a single hidden layer. The initial hidden nodes were
calculated from Eq. 3.9, and varied with ±5. For each model, the highest
values of R2 and lowest values for MAPE and RMSE encountered during
training of all node setups were stored along with that models scoring
history. After training and scoring of each node setup, the best R2 values
encountered were from scoring R2 on the test data (R2

test), while the R2

on whole dataset (R2
all) set and training data (R2

train) scores did not show
similar promise. Additionally the best (lowest) MAPE and RMSE values had
very poor R2 values.

R2 on the test data

Both the overall and singular best R2 values found were from scoring R2 on
the test data. The best value was ModelD3 with R2

test = 0.225, as shown on
Table 6.2.

Model D3 is among the few models with all R2
train, R2

test and R2
all values

being positive. The other models with all positive R2 scores are the other D
models; D4 and D5. This may be due to their positive, albeit low, score
on R2

train. It was thus not surprising these models held 3/4 top scores.
What was surprising is Model D only has RHavg as its sole input feature.
Additionally, 8/10 top models had RHavg as one of the input features. Two
other notable inputs were WSavg which is in all models other than D, and
WSmax which were in models B, G and K. Comparing the models G2,G3 and
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Table 6.1: A recap on the overview of features and its models with interval
denotation.

Model:Inputs Length per interval (number of inputs per feature)

1 day
(1)

12h
(2)

6h (4) 1h
(24)

15m
(96)

10m
(144)

A: WSavg A0 A1 A2 A3 A4 A5

B: WSavg, WSmax B0 B1 B2 B3 B4 B5

C: WSavgwith wind direc-
tions

C0 C1 C2 C3 C4 C5

D: RHavg D0 D1 D2 D3 D4 D5

E: RHavg, Tenv.avg, Tmod.avg E0 E1 E2 E3 E4 E5

F: WSavg, RHavg F0 F1 F2 F3 F4 F5

G: WSavg, WSmax, RHavg G0 G1 G2 G3 G4 G5

H: WSavg, RHavgwith wind
directions

H0 H1 H2 H3 H4 H5

I: WSavg, RHavg, Tenv.avg,
Tmod.avg

I0 I1 I2 I3 I4 I5

J: WSavg, RHavg, Tenv.avg,
Tmod.avgwith wind direc-
tions

J0 J1 J2 J3 J4 J5

K: WSavg, WSmax, RHavg,
Tenv.avg, Tmod.avg

K0 K1 K2 K3 K4 K5

L: WSavg, WSmax, RHavg,
Tenv.avg, Tmod.avgwith wind
directions

L0 L1 L2 L3 L4 L5
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Figure 6.4: The target values with dates and distance from the horizontal
0.5 normalized soiling rate implying Srate = 0. Positive values are increase
in soiling, and negative values a decrease in soiling (improvement in
performance since last day).

F2 may explain the importance of WSmax and interval lengths. Model G2
on rank #8 with all three features are somewhat lower than the similar F2
with only WSavg and RHavg on rank #5. The reason for this may be the
interval length and its affect on the feature footprints. Interval-2 is 4 hour
intervals, which may not be enough to capture the effect of WSmax in the
interval. Removing the feature could give F2 an advantage over G2 because
of this. By shortening interval length, model G3 on rank #3 with hourly
values (from interval-3) were more likely to catch the effects of WSmax, and
is thus the best of the three. Although model B on #6 and #7 consisting of
only WSavg and WSmax does not support this interval theory, with B1 having
higher rank than B2. It is worth noting model B is the only model in top
10 without RHavg. This could indicate it is better with short intervals when
having both RHavg and WSmax as features, but longer intervals are good
enough when only WSavg and WSmax are inputs.

Summarized, these observations indicate the most important feature
is humidity (RHavg), along with maximum wind speed (WSmax), and
somewhat average wind speed (WSavg). This is due to humidity being
in almost all models, while average wind speed alone is not among the
top scores. The maximum wind speed seems to be better with decreasing
interval length, but even this value may create noise on the humidity
models. Without humidity, maximum wind speed had better scores on
the longer intervals (B and F in the table). None of the top ten models
have wind directions among their inputs at all, indicating these features
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create more noise than they contribute valuable data. Only model K2 on
rank #10 had temperatures as input features. Indicating also these features
provide more noise than valuable data, although not as bad as the wind
directions. The best models usually had hourly intervals (interval-3) on each
input, with the exception of B and F having best results on 12 (interval-
1) and 4 (interval-2) hour intervals respectively. A possible reason for
good scores despite having longer intervals may be the low number of total
inputs. D3 has 1 feature with 24 values to the neural network. By contrast
D4 and D5 has 4 and 6 times as many values, 96 and 144 values total
respectively. These numbers are even higher for the more complex models
with more than one feature. Because the rate of soiling is likely a non-linear
relationship between humidity, wind, and other features, the relationship
is best captured with lesser values rather than more. Many inputs to the
neural network are more likely to contribute noise instead of valuable input
to output relation.

Model D3 prediction

The prediction values on the test data from model D3 at epoch 18, when R2

had best score, is visible on Figure 6.5.
The predicted test values (green) against their targets reveal several

of the values are spot on and others really close to their target value.
Considering all values are part of the test dataset, and not the training
dataset, the model has never encountered these inputs and targets. Also
over half of the points (21/39) are on the correct side of the no-soiling line as
their targets. Although there is no clear pattern if the magnitude increase or
decrease. Looking at the whole dataset in Figure 6.6, the (orange) training
predictions does not align good with the (black) measured target values.
However, this is not important because it is the unseen values the neural
network is interested in predicting – the test data in this case.

Considering the low RMSE of 0.042 and MAPE of 6.150 together with
some points spot on their targets and the overall good scores of humidity on
Table 6.2 indicates there may be some correlation between hourly or shorter
RHavg values and the defined Srate.

An observable difference compared to the verification model is the low
number of epochs, with the best score encountered at 18 epochs. This was
the best, because it did not encounter a better R2

test in the remaining 132
epochs. An explanation for this is the model most overfitted on the training
data. This is indeed indicated by looking how R2

test are better than R2
train only

early epochs in Figure 6.7, and also by R2
train having its best score on epoch

44, much later than 18. The figure stops around 50 epochs, as both scores
gradually worsens and never recover (within the 150 training epochs) as
shown in Figure 6.8.

Also, it is important not to let the spike for best R2
test value go by

unnoticed. The best score is reached after training from a R2
test ≈ 0.01 with

an upward trend to R2
test = 0.225. This could indicate among other things

a random hit or too hard learning rate and/or momentum. First, if it were
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Figure 6.5: The predictions against their target values for test data using
SHL on unsorted inputs. The black line on 0.5 implies Srate = 0. Several
values are spot on, with good R2

test score and low RMSE and MAPE errors.

random – this model and other D models should not hit good on different
node setups, which also happens on later results. So it is unlikely the inputs
and weights happened to hit somewhat good, but it is possible. The more
likely cause is learningrate η = 0.02 and/or momentum α = 0.9 were too
powerful, effectively pushing the network away from from the good weights
unable to recover.

An explanation of the fluctuance in the R2 scores may be the update
function or the uncertainties in the target values. The update function used
is ADAM (Eq. 3.8), which includes momentum. This momentum is in place
to push the weight-error function past a local minima. Although on this
data it looks like it keeps pushing it away from the best minima. This might
be the result of too strong learning rate or momentum, or the minimas are
not significantly lower than the error function. The uncertainties in target
values could lead to inputs with similar footprints having opposite values. If
such values exist, the training of weights may be shifted back and forth for
each epoch (or weight update).

R2 from all data and R2 from training data

The scores encountered on R2
all and R2

train are available in the Appendix
on Table C.1 & C.2 respectively were not as good as on R2

test, but there
are some elements to look at here as well. However, the primary reason
these scores are poor is the epoch they mostly occur on is 0. Since the
best scores achieved are encountered after one epoch of training, chance are
the catched relation is more of a coincidence than an actual model of the
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Figure 6.6: All predictions against their targets. Predictions on training
data in orange, and test data in green. The test data consists of 39 points,
approximately 33% of all targets. The black line on 0.5 implies Srate = 0.
As indicated, the test data performs vastly better than the training data for
prediction.

input/output relation. However, because the models hit something with the
initial training, there could be just this amount of relation available with the
given uncertainties. Another reason to evaluate some of the scores are the
models which occurred on all the top 10 scores (including R2

test); models D3,
D4 and D5. These models are always among the top 6 scores, and few from
the same setup (same number of hidden nodes). This indicates different
neural networks setups and weights achieved similar conclusions during
training of the D models. Although two of the scores occur at epoch 0, the
rest is a result of extended training. This strengthens previously indication
of a relationship between RHavg and the defined Srate.

6.2.2 Model scores with sorted inputs

The following scores were created from training and testing the models 150
times on SHL with the 11 node setups and using sorted inputs defined in
subsubsection 4.4.3.

R2 scores on test data

As with unsorted inputs, the best R2 scores were achieved on the R2
test as

seen on Table 6.3. Unlike the unsorted best R2
test, the best score and overall

scores were not as good, and with other models among the top10.
The best was model D2 with R2

test = 0.183 and the test-predictions in
Figure 6.9 look somewhat good. Around 16 of the 39 points are on the
same side of the middle line as their targets.

More surprisingly were Model E5 on #2 with R2
test = 0.168. Earlier,

E5 only appeared on the R2
all, and not on the R2

test. However, looking at
the predicted values on Figure 6.10a reveals the predictions were much
the same regardless of input. This proves the R2 score are indicators, and
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Table 6.2: The top 10 best R2 values encountered on the test data with SHL
on unsorted inputs.

# Model Hidden
nodes

epoch R2
train R2

test R2 RMSE MAPE

1 ModelD3 14(+2) 18 0.016 0.225 0.013 0.042 6.150

2 ModelD5 7(-5) 20 0.002 0.198 0.026 0.066 10.578

3 ModelG3 18(+5) 4 -0.150 0.195 -0.035 0.051 8.994

4 ModelD4 17(+5) 12 0.010 0.147 0.008 0.072 11.939

5 ModelF2 10(-3) 6 -0.343 0.145 -0.182 0.033 5.108

6 ModelB1 8(-5) 5 -0.147 0.137 -0.054 0.048 7.387

7 ModelB3 8(-5) 16 -0.136 0.126 -0.043 0.055 9.374

8 ModelG2 14(+1) 4 -0.053 0.118 0.009 0.075 12.779

9 ModelG1 12(-1) 0 -0.064 0.097 -0.005 0.080 12.404

10 ModelK2 17(+3) 29 -0.027 0.093 0.020 0.065 10.878

Table 6.3: The top 10 best R2 values encountered using SHL on the test data
with sorted inputs have a little lower values than the unsorted scores on test
data.

# Model Hidden
nodes

epoch R2
train R2

test R2 RMSE MAPE

1 ModelD2 7(-5) 14 0.004 0.183 -0.004 0.042 6.545

2 ModelE5 10(-3) 16 -0.010 0.168 -0.023 0.038 5.610

3 ModelF2 9(-4) 10 0.001 0.160 -0.010 0.042 7.064

4 ModelG3 13 8 -0.024 0.132 0.032 0.070 11.207

5 ModelE4 11(-2) 18 -0.010 0.130 -0.018 0.066 11.753

6 ModelD4 15(+3) 11 0.004 0.129 0.000 0.069 11.464

7 ModelG4 10(-3) 18 -0.007 0.122 -0.020 0.044 7.465

8 ModelI5 19(+5) 8 -0.008 0.118 -0.021 0.045 7.534

9 ModelF5 13 16 0.003 0.115 -0.001 0.065 10.987

10 ModelI2 13(-1) 12 -0.070 0.094 -0.031 0.033 5.436
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Figure 6.7: The scores of Model D3, with the maximum points annotated.

prediction plots are needed for confirmation. Although the two lowest target
values received yet again indication of prediction. From other prediction
plots, both values, with the last especially, are often well predicted. Because
the R2 only can be used as indication, the rest of top 10 R2

test prediction plots
are included in the Appendix in subsection C.1.

From all the prediction plots for the sorted input scores, both E4 and
E5, together with I5, show poor predictions contrary to their R2

test scores.
These models similarities are their temperature features (Tenv.avg, Tmod.avg)
and the short intervals of 10 and 15 minutes. Only model I2 on #10 includes
temperatures as feature, but this model has 6 hour intervals. It is thus
suspected the sorted temperatures contribute more noise than valuable data
for shorter intervals. A last interesting observation from the R2

test values are
RHavg is a feature in every model.

R2 scores on train and all data

The R2
all scores on Table C.4 looks more poor than the R2

all scores from the
unsorted input, both top score and in general. Still, some interesting trends
continues with Model D3, D4 and D5 again among the top 10, together
with F3 and G3. The most notable difference is model I2 and I3 are present
on the sorted input scores. Model I were not among top 10 on any of the
unsorted runs. It may seem that sorting the temperature features on the
longer intervals provide new models some valuable data, but in general the
sorting of input features lowers scoring on the previously well performing
models.
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Figure 6.8: The unzoomed scores of Model D3, with the maximum points
annotated.

Finally, the R2
train scores on Table C.5 in the appendix continues R2

all
observation with most models the same as in the unsorted score. One
surprise is the addition of I5 on the top spot. However, the score of R2

train is
again not representative for prediction when looking at the poor predictions
in Figure 6.11.
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Figure 6.9: The test predictions values against their target values for Model
D2 with SHL and sorted input features. There are a few predictions spot on
their targets, but most is opposite of their measured value.
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(a) The test predictions values against their target values for Model D2 with SHL
and sorted input features.
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(b) All predictions against their targets for E5 with sorted input features and SHL.
Again, predictions on training data are poor compared to the predictions on test
data.

Figure 6.10: The best predictions for Model E5 for whole data and test data
using sorted input features and SHL.
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Figure 6.11: The predictions values against all targets on ModelI5 from
the best R2

train scores. However, it does not show much variance in output
targets.
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6.3 Deep learning models

The deep learning (DL) models were trained and scored similar to the single
layer models, 150 times for 11 different node setups. The only difference is
the hidden layers consists of either 2 or 3 layers, depending on the number
of inputs to the models. For each change in node count, all layers are
changed. This means all the hidden layers have the same number of nodes
at all times.

6.3.1 Model scores with unsorted input features

The R2 scores encountered during training and scoring the deep ANNs are
much alike the single layered setups on R2

test values. Additionally, the deep
learning setups encountered better R2

train scores.
The most exciting result from deep learning was model D again

achieving the best score on both R2
train and R2

test. Again indicating the
influence humidity has on the Srate. One difference from the single hidden
layer scores were the setups hitting top spots were models with more
(and thus shorter) intervals; D4 and D5 with 10 and 15 minute intervals
respectively. Except on R2

all, which is held by E5 (1st), E3 (2nd) and E4
(3rd). Model E consists of humidity (RHavg) and the average temperatures
(Tenv.avg and Tmod.avg). This confirms deep learning is better to identify
the non-linear relationships between features. As such, better results from
models with more input features are expected by using deep learning. This
includes shorter intervals, as the increase in inputs from the intervals can
resemble non-linear interfeature relationships. The most surprising score is
B1 on #5 with R2

test = 0.106. B1 has 4 inputs, WSavg and WSmax averaged
and maxed over 12 hours. Model B had decent scores on both single hidden
layer and deep learning, and both times with few (long) interval counts.
This indicates the WSmax is the most important feature – as this value is
not averaged, but the maximum value within the period. If WSavg were
the significant feature, more shorter intervals would be expected to perform
better with deep learning. However, the longer and few intervals were best
on both approaches – indicating WSmax are the important feature of the two.

Predictions

Looking at the predicted values for D5 (best on R2
test) and E5 (best on R2

all)
in Figures 6.12 & 6.13, it seems like E5 is better suited to become a more
general model than D5, despite D5’s better R2 score.

Other interesting predictions from the deep learning score tables are the
better results from Model K5. K5 is the combination of nearly all features
(RHavg, WSavg, WSmax, Tenv.avg, Tmod.avg), and has rank #4 on R2

test and #9
on R2

all. The predictions on (unseen) test data for K5 in Figure 6.14 from
R2

test shows similar promise as the other models visually prediction plots. It
is also worth noting K5 has both lowest RMSE and MAPE of all the top 10
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Table 6.4: The top 10 best R2 values encountered on the train data of deep
learning models with unsorted input features had better scores than the SHL
setup.

# Model Hidden
nodes

epoch R2
train R2

test R2 RMSE MAPE

1 ModelD4 16(+4) 54 0.179 -1.516 -0.357 0.047 6.113

2 ModelD5 16(+4) 149 0.115 -0.584 0.023 0.050 8.057

3 ModelE5 16(+3) 45 0.077 -0.014 0.042 0.090 13.467

4 ModelE4 8(-5) 46 0.065 -0.062 0.030 0.093 16.097

5 ModelE3 16(+3) 2 0.042 0.009 0.042 0.131 22.301

6 ModelG4 12(-1) 13 0.042 -0.170 -0.031 0.074 12.582

7 ModelG1 9(-4) 5 0.033 -0.031 -0.016 0.166 32.753

8 ModelI5 14 10 0.029 -0.007 0.009 0.524 94.163

9 ModelD3 10(-2) 13 0.029 -0.004 0.004 0.120 22.740

10 ModelF4 12(-1) 5 0.024 -0.015 -0.012 0.246 46.221

Table 6.5: The top 10 best R2 values encountered on the test data of deep
learning models with unsorted feature inputs had somewhat similar scores
as the SHL.

# Model Hidden
nodes

epoch R2
train R2

test R2 RMSE MAPE

1 ModelD5 15(+3) 7 -0.025 0.243 -0.013 0.069 11.494

2 ModelD4 11(-1) 7 -0.044 0.217 -0.006 0.057 10.164

3 ModelF4 11(-2) 4 -0.058 0.112 -0.018 0.090 15.313

4 ModelK5 13(-1) 9 -0.002 0.107 0.009 0.049 7.877

5 ModelB1 10(-3) 6 -0.190 0.106 -0.054 0.064 10.176

6 ModelG4 13 24 -0.020 0.103 0.000 0.068 10.520

7 ModelE4 17(+4) 3 0.004 0.080 -0.000 0.066 10.609

8 ModelG5 12(-1) 7 0.007 0.080 0.026 0.136 20.752

9 ModelD2 13(+1) 3 0.001 0.074 -0.001 0.072 11.828

10 ModelA4 7(-5) 1 -0.035 0.068 0.000 0.148 25.637
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Figure 6.12: The predicted values against their targets for Model D5 using
deep layer and unsorted input features. This was best R2

test score of the
unsorted deep learning models.

models from R2
test scores on Table 6.5. This indicates the values are closest

to the mean of the targets.
Lastly, the predictions from the model B1 on Figure 6.15 have nearly the

same values and scores as K5, with a slight tendency to align to the middle
score of 0.5.

6.3.2 Model scores with sorted input features

The sorted models were run with the same 11 different node setups with
150 epochs and 2 or 3 layers, with 1 or more feature types respectively.
Again the best R2 score encountered where overall and best from R2

testas
seen on Table 6.6.

However, unlike the poor results from sorted input features with SHL,
these scores included the best score encountered of all tables with Model D4
having R2

test = 0.267. Which is around 10% better than D5’s R2
test = 0.243

from the unsorted input features with deep learning. In addition, the other
scores from top 10 where somewhat better than the R2

test scores for the
unsorted input features. A similar observation on both sorted and unsorted
runs are the low presence of the most complex models. K5 were the only
one in both top 10 R2

test scores, and has the shortest intervals and all features
except wind directions with 576 input nodes. However, the best scores using
sorted input features had generally shorter (and thus more) intervals.

From these observations, it may indicate the sorting of input features
are more important in non-linear relationships. As deep learning is better on
non-linear relationships, and the sorted input features had both general best
and highest score. This was also the reason for sorting the input features
– to capture the interaction between features regardless of time of day they
happened.
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Figure 6.13: The predicted values against their targets for Model E5 using
deep layer and unsorted input features. It had the best R2

all score of the deep
learning models.

Prediction plots

Looking at the prediction plots for the top three models from Table 6.6, D4,
F4 and D3 in Figures 6.16, 6.17 & 6.18 respectively, the R2

test score indication
corresponds with the prediction values. Both D3 and D4 has RHavg as its
only input feature, whereas F4 also includes WSavg together with RHavg. It
is difficult to be conclusive, but with 26 targets on the same side of Srate = 0
as their targets, F4 may be more aligned its targets than D3 and D4. All
three have some points spot on, although, not the same targets. This is
expected between model types, but D3 and D4 should be more aligned.
An explanation might lie in the neuron weights and the minima they start
out from and end up with are different because of the interval lengths and
inputs.
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Figure 6.14: The predicted values against their targets for K5, the most
complex model in the top 10 R2

test scores.
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Figure 6.15: The predicted values against their targets for B1, the simplest
model in the top 10 R2

test show better potential than K5, even with only 8
input nodes.
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Table 6.6: The top 10 best R2 values encountered on the test data of deep
learning models with sorted input features encountered generally higher
scores, including the highest before the last run available in appendix..

# Model Hidden
nodes

epoch R2
train R2

test R2 RMSE MAPE

1 ModelD4 17(+5) 3 -0.015 0.267 -0.004 0.065 10.398

2 ModelF4 11(-2) 21 -0.123 0.214 0.012 0.068 11.045

3 ModelD3 14(+2) 5 0.009 0.202 0.002 0.040 6.377

4 ModelF5 8(-5) 55 -0.046 0.141 0.016 0.061 9.914

5 ModelB3 8(-5) 149 -2.121 0.139 -0.180 0.037 5.022

6 ModelK5 13(-1) 2 -0.013 0.127 -0.023 0.042 6.704

7 ModelD5 10(-2) 23 -0.018 0.126 -0.028 0.054 7.765

8 ModelB4 13 13 -0.080 0.125 0.009 0.070 9.849

9 ModelE5 9(-4) 3 -0.069 0.125 -0.044 0.075 11.459

10 ModelG4 16(+3) 33 -0.019 0.094 0.014 0.064 10.556
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Figure 6.16: Prediction values against their test targets for the best
encountered model, D4, with deep learning and sorted input features.
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Figure 6.17: The prediction values against their targets for Model F4, the
next best encountered model with deep learning and sorted input features.
The values are more spread than the best model.
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Figure 6.18: The predicted values against their targets for Model D3, the
third best encountered score with deep learning and sorted input features.
Although some values are spot on, most seem to go too high, suggesting
poor predictability.
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Chapter 7

Conclusion &
recommendations

This chapter try to give som conclusive remarks regarding the results, and
suggests recommendations for future work.

7.1 Feature relationship

The final goal of this thesis was to investigate suggested environmental
variables relationship with daily soiling, by evaluating with machine
learning. Although no conclusive relationship between the features and
the defined soiling rate could be established, there are strong indications
humidity is an important feature for the daily change yield ratio.

Applying more features together with humidity did not directly improve
this indication. However, it did establish some more confidence to the
indication of humidity having an influence on the defined Srate. Nearly
all models for every top 10 scores had humidity as a part of the feature
inputs. Usually the models with the best scores on the table also had either
humidity alone, or with few other features like average or maximum wind
speed. Among the deep learning scores, humidity still played an important
role with the larger models, even when only humidity was input. However,
with deep learning more complex and non-linear relationships indicated
maximum wind speed also has somewhat influence. Even more so with
more (and shorter) intervals. This proved especially true using sorted input
features, where average humidity and wind speed seemed like the best
candidate of the presented predictions.

In addition, these results comply with what was expected from other
studies in soiling. Together with the fact that several predicted values
were spot on their target values. If more confidence were established that
the defined Srate are related to soiling, those targets would be stronger
indications. As of now, the defined Srate are likely affected by other factors,
making it uncertain if the predicted targets are a result of soiling – or
something else.

A conclusion that can be done with the achieved scores are wind
directions seem to cause more noise as than valuable data. This is because
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none of the top ten models in any score table had wind directions as its
input features.

Some possible reasons the results are as they are:

• Preprocessing of data to feed a neural network is essential. Nearly
half of the available input data were removed due to inconsistencies
or clearly not target values because of soiling. In the early stages of
predictions, R2 scores with negative scores in the scale of 1000 were
achieved. By removing the erronous values, the end results showed
much more consistent outputs.

• Normalization of the output values may have improved performance.
Both larger and lower values were used earlier in the process with
worse results. Although this could be due to other factors like
update function, layer setup or valid dates or other, because none
of the mentioned could be confirmed constant during the change to
normalized targets.

• Neural network parameters are important. Another early discovery
were the use of correct update function. Using regular SGD as update
required several thousand epochs of training to achieve decent R2

values. With research and discovery of RMSProp and ADAM, the
required epochs and time were severely reduced. The change in
update function also gave better results.

• The results seems to comply with the neural networks ability to detect
non-linear relationships, only when hidden layers are more than one.
This is what has been suggested by studies into ANN, and thus why it
was included. With a single hidden layer, the lower input and interval
models scored better, as was expected. With 2 and 3 hidden layers,
more complex models achieved better scores, as expected. Deep
learning is thus recommended when trying to investigate several input
features or interval relationships.

It is planned to make all code public, if this is not possible or has not
happened at the time of reading, but are desired -– contact author to ask for
access to the private Git repository.

7.2 Recommendations for future work

Although the results of this thesis cannot conclude a relationship, the
indications do provide some direction on where to go next.

7.2.1 Secure more reliable data

The data used in this project were quite unreliable. There were several
dates were data was missing, and even wrong in the way it does not make
sense. As an example, ambient temperatures above 170°C is not a reliable
value to process. The need to assure such values are not part of datasets are
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important, but time consuming and in worst case renders input or output
values erronous and useless. It may also be somewhat more accurate to use
a two-diode-model instead of single-diode model for calculating maximum
power point of the modules. However, given the uncertainties mentioned
this is not expected to impact much.

7.2.2 Include data/measurement of airborne particles

A recent study indicated the particle composition of the air could predict
soiling levels by around 80% (Micheli and Muller, 2017). Including these
features as inputs would be expected to increase prediction accuracy. With
better accuracy it could also indicate how well this model performed by
comparing with and without the particle composition.

7.2.3 Daily cleaning of a reference module

This is likely the single most important recommendation for next step in the
investigation of soiling. The uncertainties in this thesis output values could
be the reason higher predictions were not achieved. With higher degree of
certainty the target values are only because of soiling, a relationship may be
discovered. The other studies within the same project showed module yield
ratio is highly dependent on the magnitude of irradiance, using the defined
Srate based upon this irradiance are suspected to be the main source of error
in target values. Having the possibility of comparing a dirty module against
a clean module on a daily basis would remove this dependency.

7.2.4 Expanding the neural network

As each model only had 11 different setups based upon their input nodes,
considering using other update functions, learning rates, momentum values
and other machine learning parameters could improve performance of the
neural network. Learning rates of 0.015 and 0.01 were done earlier in the
thesis. However, they did not improve the performance at that point. With
better datasets as mentioned previously, this might change.

7.2.5 Other machine learning techniques

Artificial neural network are good predictors, the one used in this thesis are
not the only way to use it. Two other neural network approaches considered
were:

• Recurrent neural network (RNN) discussed in Chapter 3 are indicated
to be the best regression-predicting machine learning algorithm there
is. However, it is harder to implement than regular ANN and with this
thesis varying date of input, having a recurring loop from previous
values would not be as beneficial. If data were more reliable and
better with higher resolution – a daily footprint could be captured
by the RNN instead of feeded as daily value. RNN would then be
recommended.



98 CHAPTER 7. CONCLUSION & RECOMMENDATIONS

• Convolutional neural network (CNN) were considered. Although CNNs
are best at classification tasks, the reason it was considered was by
picturing the daily footprint as an image, ie. For an hourly model, all
input features would be on the Y-axis, and the hours would be the X-
axis, creating a 2-dimensional grid of the footprint. This would enable
a more concise footprint of the daily values than the densely connected
ANN used in this thesis.

Other machine learning algorithms unrelated to neural networks are
available to be used with regression. Some suggestions are Support Vector
Machines (SVM) and k-Nearest-Neighbours (kNN).

7.2.6 Increase the dataset

A longer period of study for more data points usually increases machine
learning performance on both unique/special conditions and core values.
Because the core values would likely be trained more often, and the
unique/special conditions are thus observerd at least once, influencing the
model training.
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Table A.1: First the interpolated dates and their row counts, and then
the invalid dates and their row counts. The date with 1441 values had a
duplicate that was removed.

Interpolated dates

Date 19/05 06/06 19/06 12/08 14/09 11/10 24/11

rows 1438 1397 1441 1436 1437 1439 1435

Invalid dates

Date 08/06 21/06 22/06 24/06 25/06 26/06 27/06 29/06 30/06

rows 866 545 0 0 371 338 516 0 99

Date 01/07 02/07 03/07 04/07 06/07 07/07 09/07 11/07 12/07

rows 377 161 408 293 0 520 679 0 272

Date 13/07 13/08 02/09 13/09

rows 706 1167 0 0
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UML diagrams

B.1 Data collection
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Table B.1: An UML diagram of the ’ProductionData’ class and the relevant
variables and functions.

productiondata

*

ProductionData

+ db: Database

+ dates: list

+ wash_dates: list

+ rain_dates: list

+ modules: OrderedDict

+ module_indexes: list

+ module_names: list

+ failed_dates: list

+ __init__(db, modules)

+ fetch_raw_output(dates): void

+ prepare_temperatures(): void

+ prepare_output(): void

+ gather_data(date_keys, module, type): numpy.array

+ get_all_module_temperatures(): OrderedDict

Module

+ name: str

+ data: dict

+ add_data(yield_rates, soil_rates, soil_ratios): void

+ add_temperatures(temperatures): void
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B.2 Models

Table B.2: An UML diagram of the ’Model’ class and its variables and
functions.

learning

Model

+ input_keys: list

+ X: numpy.array

+ layers: list

+ nets: OrderedDict

+ module_inputs: OrderedDict

+ label: str

+ __init__(keys, input_values, productiondata, input_keys, interval, label)

+ create_net(module, ...): void

+ create_nets(modules, ...): void

+ fit(module, train_percent=0.66): void

+ fit_all(train_percent=0.66): void

+ predict(module, X=None): numpy.array

+ training_inputs(start_index, end_index, module): numpy.array

+ test_inputs(pivot, module): numpy.array

+ prepare_targets(module, y_type=’soil_rates’): None
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Table B.3: An UML diagram of the subclasses of ’Model’.

learning

Model

Model_Verification

+ targets: OrderedDict

+ dates: list

+ layers: list

ANN

+ productiondata: ProductionData

+ keys: list

+ module_temperatures: OrderedDictionary

+ __init__(keys, input_values, productiondata, input_keys, interval, label)

+ prepare_module_temperatures(interval): void

+ prepare_inputs(module=None): numpy.array

+ increment_nodes(incr): void

+ decrement_nodes(decr): void

+ get_num_nodes(layer): int
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Table B.4: An UML diagram of the two subclasses for ’ANN’. They specify
different layer setups with regards to their initialization.

learning

ANN

Basic

+ layers: list

+ __init__(date_keys, input_values, productiondata, input_keys, interval, label)

Advanced

layers: list

+ __init__(date_keys, input_values, productiondata, input_keys, interval, label)
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Table B.5: An UML diagram of all subclasses for both ’Basic’ and ’Advanced’.
These are the model classes that are initialized, and have predefined
’input_keys’ as shown in notes for most classes.

learning

Basic

Advanced

Model_A

+ __init__(date_keys, input_values, productiondata, interval, advanced)

input_keys = [’Avg_WS’]input_keys = [’Avg_WS’]

Model_B

input_keys = [’Avg_WS’, ’Max_WS’]input_keys = [’Avg_WS’, ’Max_WS’]

Model_C

input_keys = [’Avg_WS’, ’Max_WS’, wind_dirs]input_keys = [’Avg_WS’, ’Max_WS’, wind_dirs]

Model_D

input_keys = [’Avg_RH’]input_keys = [’Avg_RH’]

Model_E

input_keys = [’Avg_RH’, ’Avg_Tamb’, ’Avg_Tmod’]input_keys = [’Avg_RH’, ’Avg_Tamb’, ’Avg_Tmod’]

Model_F

input_keys = [’Avg_RH’, ’Avg_WS’]input_keys = [’Avg_RH’, ’Avg_WS’]

Model_G

input_keys = [’Avg_RH’, ’Avg_WS’, ’Max_WS’]input_keys = [’Avg_RH’, ’Avg_WS’, ’Max_WS’]

Model_H

input_keys = [’Avg_RH’, ’Avg_WS’, wind_dirs]input_keys = [’Avg_RH’, ’Avg_WS’, wind_dirs]

Model_I

(...)(...)

Model_J

(...)(...)

Model_K

(...)(...)

Model_L

(...)(...)



Appendix C

Additonal result tables and
plots

C.1 Unsorted inputs SHL second run and plots

First are the R2
train and R2 scores for SHL unsorted input features on

Table C.1
Because results were lost, a second run with SHL on unsorted input

features were run. The scores are presented on Table C.3. The scores
comply almost directly with the previous achieved scores. This gives further
confidence on the models that gives the best scores, as once again Model D
achieves new highscore, with R2

test = 0.286.
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Table C.1: The top 10 best R2 values encountered with SHL on whole data
for unsorted input features.

# Model Hidden
nodes

epoch R2
train R2

test R2 RMSE MAPE

1 ModelE3 14(+1) 0 0.059 0.024 0.059 0.121 21.188

2 ModelE5 11(-2) 0 0.077 -0.035 0.052 0.085 13.380

3 ModelD3 7(-5) 5 0.039 0.040 0.039 0.122 20.711

4 ModelF4 9(-4) 0 0.033 0.067 0.035 0.104 18.048

5 ModelD5 7(-5) 21 0.005 0.165 0.035 0.067 10.341

6 ModelD4 7(-5) 0 0.042 0.034 0.033 0.153 27.680

7 ModelI3 14 0 0.010 0.001 0.027 0.048 7.859

8 ModelG3 17(+4) 3 -0.021 0.055 0.026 0.181 27.986

9 ModelF2 11(-2) 4 0.012 0.084 0.025 0.054 9.014

10 ModelF3 11(-2) 0 0.044 -0.028 0.024 0.050 7.640

Table C.2: The top 10 best R2 values encountered with SHL on the training
data for unsorted input features.

# Model Hidden
nodes

epoch R2
train R2

test R2 RMSE MAPE

1 ModelE3 13 2 0.082 -0.017 0.036 0.162 27.662

2 ModelE5 11(-2) 0 0.077 -0.035 0.052 0.085 13.380

3 ModelD4 7(-5) 11 0.065 0.010 0.030 0.122 21.741

4 ModelD5 15(+3) 0 0.050 0.021 0.034 0.161 26.538

5 ModelD3 10(-2) 68 0.049 -0.147 -0.014 0.056 9.135

6 ModelE2 11(-2) 6 0.047 -0.191 0.016 0.052 8.391

7 ModelF3 11(-2) 0 0.044 -0.028 0.024 0.050 7.640

8 ModelF4 9(-4) 0 0.033 0.067 0.035 0.104 18.048

9 ModelF5 13 20 0.022 -0.087 0.001 0.095 15.951

10 ModelD2 17(+5) 10 0.021 -0.026 -0.022 0.113 22.094
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Figure C.1: The test predictions values against their target values for Model
D3, #1 from last runs R2

test with SHL and unsorted inputs.

Table C.3: The top 10 best R2 values encountered on the test dataset after a
second run with unsorted inputs on SHL.

# Model Hidden
nodes

epoch R2
train R2

test R2 RMSE MAPE

1 ModelD3 7(-5) 2 -0.008 0.286 0.006 0.055 7.932

2 ModelD2 11(-1) 11 0.002 0.245 -0.004 0.041 6.802

3 ModelD5 7(-5) 10 0.006 0.216 0.003 0.064 9.856

4 ModelG5 18(+5) 9 0.002 0.199 -0.004 0.055 9.985

5 ModelG2 16(+3) 27 -0.053 0.170 0.016 0.069 11.609

6 ModelD4 15(+3) 17 0.006 0.144 0.004 0.102 15.723

7 ModelF3 8(-5) 3 -0.077 0.138 -0.025 0.055 9.418

8 ModelK1 12(-2) 14 -0.062 0.123 0.031 0.065 10.996

9 ModelE2 14(+1) 2 0.007 0.095 -0.002 0.061 10.353

10 ModelG3 11(-2) 30 -0.182 0.086 -0.063 0.045 7.212
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Figure C.2: The test predictions values against their target values for Model
D2, #2 from last runs R2

test with SHL and unsorted inputs.

11/1
0

18/1
0

25/1
0

01/1
1

08/1
1

15/1
1

22/1
1

29/1
1

target dates

0.30

0.35

0.40

0.45

0.50

0.55

0.60

no
rm

al
ize

d 
so
il_
ra
te

ModelD5

e10: predicted test, R2: 0.215, RMSE: 0.063, MAPE: 9.654
measured targets

Figure C.3: The test predictions values against their target values for Model
D5, #3 from last runs R2

test with SHL and unsorted inputs.
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Figure C.4: The test predictions values against their target values for Model
G5., #4 from last runs R2

test with SHL and unsorted inputs.
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Figure C.5: The test predictions values against their target values for Model
G2, #5 from last runs R2

test with SHL and unsorted inputs.



114 APPENDIX C. ADDITONAL RESULT TABLES AND PLOTS

11/1
0

18/1
0

25/1
0

01/1
1

08/1
1

15/1
1

22/1
1

29/1
1

target dates

0.2

0.3

0.4

0.5

0.6

0.7
no

rm
al
ize

d 
so
il_
ra
te

ModelD4

e17: predicted test, R2: 0.143, RMSE: 0.101, MAPE: 15.459
measured targets

Figure C.6: The test predictions values against their target values for Model
D4, #6 from last runs R2

test with SHL and unsorted inputs.
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Figure C.7: The test predictions values against their target values for Model
F3, #7 from last runs R2

test with SHL and unsorted inputs.
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Figure C.8: The test predictions values against their target values for Model
K1, #8 from last runs R2

test with SHL and unsorted inputs.

11/1
0

18/1
0

25/1
0

01/1
1

08/1
1

15/1
1

22/1
1

29/1
1

target dates

0.35

0.40

0.45

0.50

0.55

0.60

no
rm

al
ize

d 
so

il_
ra

te

ModelE2

e2: predicted test, R2: 0.094, RMSE: 0.061, MAPE: 10.139
measured targets

Figure C.9: The test predictions values against their target values for Model
E2, #9 from last runs R2

test with SHL and unsorted inputs.
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Figure C.10: The test predictions values against their target values for Model
G3, #10 from last runs R2

test with SHL and unsorted inputs.
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C.2 Sorted inputs SHL plots
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Table C.4: The top 10 best R2 values encountered on the whole dataset for
sorted inputs and SHL.

# Model Hidden
nodes

epoch R2
train R2

test R2 RMSE MAPE

1 ModelG3 13 8 -0.024 0.132 0.032 0.070 11.207

2 ModelI2 9(-5) 6 -0.002 -0.012 0.021 0.139 24.985

3 ModelE3 15(+2) 2 0.017 -0.008 0.018 0.150 26.133

4 ModelD4 7(-5) 3 0.022 0.005 0.015 0.218 38.840

5 ModelD5 11(-1) 1 0.023 0.005 0.015 0.202 35.645

6 ModelF3 9(-4) 3 0.005 0.037 0.009 0.180 34.157

7 ModelD3 15(+3) 18 0.028 0.002 0.009 0.144 23.091

8 ModelI3 17(+3) 2 -0.034 -0.008 0.009 0.200 38.411

9 ModelE5 8(-5) 7 0.022 -0.057 0.009 0.151 23.384

10 ModelG5 13 3 0.016 0.009 0.007 0.215 42.610

Table C.5: The top 10 best R2 values encountered on the train data with
sorted inputs and SHL.

# Model Hidden
nodes

epoch R2
train R2

test R2 RMSE MAPE

1 ModelI5 19(+5) 25 0.062 -0.170 -0.014 0.083 15.190

2 ModelE4 15(+2) 40 0.050 -0.043 0.006 0.161 25.268

3 ModelG4 16(+3) 26 0.037 -0.207 -0.051 0.065 12.405

4 ModelE5 8(-5) 8 0.036 -0.150 0.007 0.118 21.361

5 ModelD5 14(+2) 34 0.034 -0.191 -0.015 0.061 10.357

6 ModelF4 12(-1) 47 0.031 -0.430 -0.032 0.062 10.207

7 ModelD3 15(+3) 18 0.028 0.002 0.009 0.144 23.091

8 ModelF5 13 56 0.025 -1.306 -0.100 0.038 5.394

9 ModelD4 7(-5) 3 0.022 0.005 0.015 0.218 38.840

10 ModelE3 15(+2) 2 0.017 -0.008 0.018 0.150 26.133
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Figure C.11: The predictions on test data against their targets for Model F2
ranked #3 on SHL with sorted input features.
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Figure C.12: The predictions on test data against their targets for Model G3
ranked #4 on SHL with sorted input features.



120 APPENDIX C. ADDITONAL RESULT TABLES AND PLOTS

11/1
0

18/1
0

25/1
0

01/1
1

08/1
1

15/1
1

22/1
1

29/1
1

target dates

0.35

0.40

0.45

0.50

0.55
no

rm
al

ize
d 

so
il_

ra
te

ModelE4

e18: predicted test, R2: 0.130, RMSE: 0.065, MAPE: 11.586
measured targets

Figure C.13: The predictions on test data against their targets for Model E4
ranked #5 on SHL with sorted input features.
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Figure C.14: The predictions on test data against their targets for Model D4
ranked #6 on SHL with sorted input features.
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Figure C.15: The predictions on test data against their targets for Model G4
ranked #7 on SHL with sorted input features.
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Figure C.16: The predictions on test data against their targets for Model I5
ranked #8 on SHL with sorted input features.



122 APPENDIX C. ADDITONAL RESULT TABLES AND PLOTS

11/1
0

18/1
0

25/1
0

01/1
1

08/1
1

15/1
1

22/1
1

29/1
1

target dates

0.40

0.45

0.50

0.55

0.60

no
rm

al
ize

d 
so
il_
ra
te

ModelF5
e16: predicted test, R2: 0.115, RMSE: 0.064, MAPE: 10.963
measured targets

Figure C.17: The predictions on test data against their targets for Model F5
ranked #9 on SHL with sorted input features.
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Figure C.18: The predictions on test data against their targets for Model I2
ranked #10 on SHL with sorted input features.
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C.3 Unsorted inputs deep learning scores
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Table C.6: The top 10 best R2 values encountered on all data of the deep
learning models with unsorted input features.

# Model Hidden
nodes

epoch R2
train R2

test R2 RMSE MAPE

1 ModelE5 16(+3) 32 0.071 0.019 0.060 0.080 11.837

2 ModelE3 16(+3) 2 0.042 0.009 0.042 0.131 22.301

3 ModelE4 8(-5) 19 0.055 -0.024 0.037 0.127 22.405

4 ModelG4 13 30 0.024 0.069 0.028 0.062 10.276

5 ModelG5 12(-1) 7 0.007 0.080 0.026 0.136 20.752

6 ModelI5 15(+1) 0 0.014 0.009 0.024 0.142 26.228

7 ModelD5 16(+4) 143 0.114 -0.555 0.023 0.051 8.176

8 ModelK4 11(-3) 59 -0.006 0.006 0.022 0.093 15.635

9 ModelK5 12(-2) 26 -0.028 0.030 0.021 0.102 14.576

10 ModelD4 12 7 0.002 0.081 0.019 0.126 23.913
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