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ABSTRACT

The attack phase of sound events plays an important role in
how sounds and music are perceived. Several approaches
have been suggested for locating salient time points and
critical time spans within the attack portion of a sound,
and some have been made widely accessible to the research
community in toolboxes for Matlab. While some work ex-
ists where proposed audio descriptors are grounded in lis-
tening tests, the approaches used in two of the most popular
toolboxes for musical analysis have not been thoroughly
compared against perceptual results. This article evaluates
the calculation of attack phase descriptors in the Timbre
toolbox and the MIRtoolbox by comparing their predic-
tions to empirical results from a listening test. The results
show that the default parameters in both toolboxes give in-
accurate predictions for the sound stimuli in our experi-
ment. We apply a grid search algorithm to obtain alterna-
tive parameter settings for these toolboxes that align their
estimations with our empirical results.

1. INTRODUCTION

Many music researchers rely on available toolboxes for
quantitative descriptions of the characteristics of sound files.
These descriptions are commonly referred to as descriptors
or features, and they may be used as variables in experi-
mental research or as input to a classification algorithm. In
this paper we investigate the descriptors that concern the
first part of sonic events, what we will refer to as attack
phase descriptors.1 Particularly, we are interested in the
detection of salient time points, such as the point when the
sound event is first perceived, the point when it reaches
its peak amplitude, and the perceptual attack of the sound
event, which will be introduced properly in Section 2. Ro-
bust detection of such points in time is essential to obtain
accurate values for the attack phase descriptors commonly
used in the music information retrieval community, such as
Log-attack time and attack slope. We compare the results
of two popular toolboxes for Matlab, the MIRtoolbox [1]

1 Note that phase in this context signifies that these descriptors concern
a certain temporal segment of the sound. This differs from the technical
meaning of phase in signal processing, such as in a phase spectrum.
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(version 1.6.2) and the Timbre Toolbox [2] (version 1.4),
in estimating these salient moments. Sound samples from
‘real’ music recordings are used to compare the toolbox
analysis results to a listening test. As such, our research
complements the work by Kazazis et al. [3], where the
toolbox results are compared to strictly controlled synthe-
sis parameters using additive synthesis.

In Section 2 we discuss previous work in auditory per-
ception concerned with the attack portion of sonic events.
In Section 3 we take a closer look at computational estima-
tion of attack phase descriptors. Further, in Section 4, we
show how the algorithms in the MIRtoolbox and Timbre
toolbox compare to our own experimental results, and then
we discuss these results and conclude in Section 5.

2. BACKGROUND

The attack of musical events has been studied from a range
of perspectives. Pierre Schaeffer experimented with tape
recordings of sounds in the 1960s [4]. By cutting off the
beginning of sound events he showed the importance of the
attack portion for the perception of sonic events.

A seminal paper in this field is John W. Gordon’s study
from 1987 of the perceptual attack time of musical tones [5].
Gordon manipulated synthesis parameters in a digital syn-
thesizer and observed how the perceived moment of met-
rical alignment was affected. A range of parameters were
found to be involved. Gordon introduced the term percep-
tual attack time, to describe the moment in time perceived
as the rhythmic emphasis of a sound [5]. The term was fur-
ther explained by Wright, saying that the perceptual attack
time of a musical event is its “perceived moment of rhyth-
mic placement” [6]. This definition emphasises that the
perceptual attack time of a sound event acts as reference
when aligning it with other events to create a perceptually
isochronous sequence, as illustrated in Figure 1. Wright
further argues that the perceptual attack of a sound event is
best modelled not as a single point in time, but as a contin-
uous probability density function indicating the likelihood
as to where a listener would locate the maxima of rhyth-
mic emphasis. These definitions are strongly linked to the
concept of perceptual centres (P-centres) in speech timing,
defining the moment in time when a brief event is per-
ceived to occur [7]. In effect, when two sounds are per-
ceived as synchronous, it is their P-centres that are aligned.

In addition to the perceptual attack time, Gordon [5] ar-
gues that it makes sense to talk about both physical onset
time and perceptual onset time for a given sound event.
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Figure 1. The top plot shows a sequence of sounds ar-
ranged isochronously by physical onset. The bottom plot
shows the sounds arranged isochronously by perceptual at-
tack. The latter will be perceptually isochronous.

The former refers to the moment in time when the sound
event begins (before it is perceived), and the latter to the
moment in time when the sound event is first perceived.

Attack phase descriptors may represent physical features
of the sound signal, or be estimations of perceptual fea-
tures. However, the distinction between the two types is
rarely made clear. This may be due to the wide applica-
tion of audio descriptors in various machine learning tasks,
where physical features are sufficient to obtain the required
result (e.g. in automatic classification of instrument type
[8]). Another related machine learning task is the annual
MIREX2 competition, where the term onset time is used to
denote the (approximate) time points in an audio file where
new sound events occur, without addressing the distinction
between physical and perceptual onset.3 In studies of au-
ditory perception, we argue that it is imperative to be aware
of the distinction between the two and the inherent diffi-
culty of estimating perceptual features [9].

2.1 Terminology

Table 1 and Figure 2 show a compilation of attack phase
descriptors, most of them found in the Timbre Toolbox and
MIRtoolbox. In our use of the term, attack phase descrip-
tors include salient time points within or close to the attack
portion of a sound event, in addition to relative measures,
such as the time difference between two salient time points.

Perceptual

Onset

Perceptual

Attack 

Attack time Log-Attack Time = log(Attack time)

Energy peak

Temporal centroid

Attack

Slope Attack

Leap

Physical

Onset Rise time

Figure 2. Illustration of various attack phase descriptors.

2 http://www.music-ir.org/mirex
3 The goal in the MIREX audio onset competitions is to detect dis-

crete sound events in an audio file that has been annotated by a group
of music experts. False positives (indicating a new sound event where
an expert annotator did not) and false negatives (missing a sound event
where an expert annotator indicated one) are penalised. In other words,
high temporal precision for the extracted events is not a primary goal in
the MIREX audio onset competition, which explains why the distinction
between physical and perceptual onset is not addressed.

Name Type Description
Physical
onset

phTP Time point where the sound energy first
rises from 0.

Perceptual
onset

peTP Time point when the sound event
becomes audible.

Perceptual
attack

peTP Time point perceived as the rhythmic
emphasis of the sound — what Gordon
calls perceptual attack time [5].

Energy
peak

phTP Time point when the energy envelope
reaches its maximum value.

Rise time phTS Time span between physical onset
and energy peak.

Attack time peTS Time span between perceptual onset
and perceptual attack.

Log-Attack
Time

phTS The base 10 logarithm of attack time.

Attack
slope

peES Weighted average of the energy envelope
slope in the attack region [2].

Attack leap peES The difference between energy level at
perceptual attack and perceptual onset [10].

Temporal
centroid

phTP The temporal barycentre of the sound
event’s energy envelope.

Table 1. Table of attack phase descriptors. ph: physical,
pe: perceptual, T: time, E: energy, S: span, P: point.

The “Type”-column in Table 1 refers to particular char-
acteristics of the descriptor. A descriptor marked ‘ph’ de-
scribes a physical aspect of the audio signal, and ‘pe’ de-
scribes perceptual aspects of the sound event. What we re-
fer to as time point descriptors (TP) indicate a single point
in time. Note that we choose not to use the word ‘time’
in TP descriptors, to emphasise that these are conceptu-
ally different from descriptors representing a time span. As
noted by Wright [6] the reference of such time points may
be a fixed point in the sound file (e.g., beginning), or an ex-
ternal time reference (e.g., a SMPTE clock). Further, the
time points may be understood in reference to some other
calculated time point, for instance the perceptual attack in
relation to the physical onset. Gordon [5] used this mea-
sure, naming it relative perceptual attack time. It is worth
mentioning that detection of physical onset may be unreli-
able. For natural sounds and recordings, the estimation of
physical onset will depend on algorithmic variables; typi-
cally, a noise threshold to eliminate background noise, and
some parameters as input to the envelope extraction algo-
rithm. For digitally synthesized audio signals, however, the
first nonzero signal value can be detected and the physical
onset can confidently be used as a reference.

Time span descriptors (TS) describe the temporal relation
between two time point descriptors. In effect, this category
is not mutually exclusive to the TP category: a TP descrip-
tor with a local time reference (e.g. the time of the physical
onset of the sound event) can also be seen as a TS descrip-
tor, such as Gordon’s relative perceptual attack time.

We use the term energy span descriptors (ES) to denote
descriptors that describe how the energy envelope develops
between two time points. Finally, although not shown in
Table 1, one could easily include EP descriptors to denote
the energy level at salient time points.

http://www.music-ir.org/mirex


3. COMPUTING ATTACK PHASE DESCRIPTORS

In this section we look more closely at how various at-
tack phase descriptors are computed in the Timbre Tool-
box and MIRtoolbox. With reference to the list of descrip-
tors in Table 1, the computational estimation of ph-type
descriptors is conceptually quite different from that of pe-
type descriptors. While a physical feature of the signal can
be calculated accurately, and only depends on algorithmic
parameters like filter cutoff frequency or window length,
any perceptual feature can only be an estimate of how the
particular sound event would be perceived. Neither of the
toolboxes state clearly whether the computed descriptors
are estimates of perceptual or physical features. Both em-
ploy algorithms where the end of the attack range does not
necessarily coincide with the peak of the energy envelope.
This suggests that the toolboxes take into account the fact
that the perceived attack of a sound event might end before
the energy peak.

Below, we take a closer look at the attack phase descrip-
tors as they are provided by the toolboxes, and in Section 4
we compare their output to perceptual results from our own
listening experiment. Conceptually, the two toolboxes take
similar approaches to computing attack phase descriptors.
However, on an algorithmic level, the two are quite differ-
ent. For now, we consider the default strategies and param-
eters in each toolbox and look at how the energy envelope
and attack phase descriptors are calculated.

3.1 Energy envelope

The common basis of most algorithms for calculating at-
tack phase descriptors is some function describing the en-
ergy envelope of the sound signal. Attack phase descrip-
tors are calculated based on various thresholds applied to
this envelope and its derivatives. The method and the pa-
rameters specified in the calculation of the energy envelope
strongly influence the estimated attack phase descriptors.

The default strategy in the Timbre Toolbox is to apply a
Hilbert transform to the audio signal, followed by a 3rd-
order Butterworth lowpass filter with cutoff frequency at
5 Hz [2]. The Timbre Toolbox does not compensate for
group delay in the filter when extracting the energy en-
velope. This is not crucial to the extraction of TS attack
phase descriptors such as Log-Attack Time, but delays all
TP descriptors by the group delay time of the filter.4

The MIRtoolbox implements a range of strategies, and
the default strategy in onset detection with attack estima-
tion5 is to calculate the envelope as the sum of columns in
a spectrogram using a hanning window of 100 ms with hop
factor at 10%.

3.2 Extracting attack phase descriptors

The two toolboxes we explore in this paper use different
terminology. In the MIRtoolbox the term ‘onset’ is used
to describe the sound events extracted by peak detection of

4 Examples of delayed envelopes are shown Figure 4 in Section 4.2.
5 This is the default strategy for MIRtoolbox onset detection, other

functions in the toolbox rely on different calculations of the energy enve-
lope.

the energy envelope. This makes sense when seen in rela-
tion to the previously mentioned MIREX audio onset com-
petition, but is distinctly different to the meaning of onset
in our paper. Both toolboxes provide estimates of when the
attack of a sound event begins and ends.6 Both also pro-
vide several directly or indirectly related descriptors (such
as attack slope and temporal centroid).

Peeters et al. [2] argue that while a common approach
in estimating the beginning and end of an attack range is
to apply fixed thresholds to the energy envelope, more ro-
bust results may be obtained by looking at the slope of the
energy envelope before it reaches its peak value. Trum-
pet sounds are mentioned as a particular reason for this, as
their energy envelopes may increase after the attack. Both
of the toolboxes we discuss take such an approach, how-
ever with different strategies. The two strategies are illus-
trated in Figure 3, and explained further below.
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Figure 3. Attack estimation in the Timbre Toolbox and
MIRtoolbox. The figure shows the process of estimating
the attack start and attack end. The Timbre Toolbox uses an
approach that examines the time interval between succes-
sive energy thresholds. The MIRtoolbox puts a threshold
on the first derivative of the energy envelope. For compa-
rability, this figure uses an identical energy envelope (from
a clarinet sound) for both algorithms.

6 In the MIRtoolbox, the attack range is estimated by passing an op-
tional ‘Attacks’-argument to the mironset() function. As per version
1.6.2 of the toolbox, the mirgetdata() function will return the energy
peak rather than the extracted attack region. For an object A containing
the analysis of an audio file, the required code to obtain the attack start
is uncell(get(A,’AttackPosUnit’)) and to obtain the attack
end, the code uncell(get(A,’PeakPosUnit’)) may be used.



Peeters [11] suggested the weakest effort method, which
is implemented in the Timbre Toolbox for estimating the
beginning and end of the attack. In this method, a set of
i equidistant thresholds θi is specified between zero and a
peak value for the energy envelope. For each θi, a corre-
sponding ti denotes the first time when the energy envelope
crosses the corresponding threshold. Then a set of ‘effort’
parameters ωi,i+1 is calculated as the time between each t.
With the mean effort notated as ω, the beginning of the at-
tack is calculated as the first ωi,i+1 that falls below ω × α,
and the end as the first sucessive ωi that exceeds ω × α.
Both are also adjusted to the local maximum/minimum
within the ωi,i+1 interval. The default value for α is 3.

The MIRtoolbox uses the first time derivative of the en-
ergy envelope (e′) as basis for estimating attack phase de-
scriptors. A peak in e′ necessarily occurs before the en-
ergy peak itself, and the attack is predicted to begin when
e′ goes above 20% of its peak value, and end when it falls
below 20% of its peak value.

4. ANALYSIS

After the previous look at the toolbox algorithms, we will
now compare their calculations to results from a perceptual
experiment. First, we describe the experiment, followed by
an analysis of attack estimation by the two toolboxes us-
ing their default parameter settings. Subsequently, we per-
form a parameter optimisation on the toolbox algorithms to
improve the alignment between the calculated estimations
and our perceptual results.

4.1 Experiment

In our experiment 17 participants were asked to align a
click track to a set of 9 sound stimuli. Each stimulus was
presented repeatedly at an interval of 600 ms, along with a
sequence of clicks every 600 ms. For each trial, the click
track and stimuli started with a random offset. Participants
adjusted the alignment of the clicks to the stimuli using a
keyboard and/or a slider on the screen, until they perceived
the two streams as synchronous. The task was repeated
four times per stimulus. All were given a gift certificate
worth NOK 200 (≈ 22e) for their participation.

Eight isolated instrumental sounds were chosen as stim-
uli. These were selected with an aim to obtain stimuli with
different perceptual characteristics and musical function.
The click-sound from the click track was also included as
a stimulus. The physical onset of each stimulus was an-
notated manually through inspection of the waveform and
used as reference in the results presented below.

The results from the experiment show that our partici-
pants did not agree on an exact point in time where the
stimulus and click tracks were aligned. Alignment of the
click sound to itself was an exception, with a standard de-
viation of only 1 ms. The agreement on the location of
the perceptual attack varied with the characteristics of the
sound stimuli. Not counting the task of aligning the click
track to itself, the standard deviations of the time delay be-
tween click track and stimulus track ranged between 7 ms
(for bright sounds with fast attack and short duration) and

18 ms (dark sounds with slow attack and long duration).
This verifies previous research, which suggests that per-
ceived attack may best be modelled as a range (i.e. a ‘beat
bin’ [12]) or probability distribution [6], rather than a sin-
gle point in time. Consequently, we cannot evaluate the
toolboxes based on a single value (e.g., their estimation of
the beginning of the attack), but rather need to determine
the amount of overlap between the calculated attack range
and the distribution of perceptual responses.

The use of a simultaneous click track and stimulus track
may provide fusion cues that are not inherent to the per-
ceptual attack of the stimulus. Several scholars have ar-
gued that an alternating sequence between stimulus and
click might be more reliable [9, 13]. We controlled for
the effects of event fusion by a corresponding anti-phase
alignment task, alternating click and stimulus. The results
showed no significant difference between the two response
modes [14], which is also in accordance with Villing’s re-
ported concistency across these measurement methods [7].

4.2 Energy envelope of the stimuli

In our analysis, we found that the toolboxes’ default set-
tings extract imprecise energy envelopes for certain types
of sound. In particular, we observe that too long energy
envelopes are calculated for short sounds, and that the en-
ergy envelopes fail to identify fast attacks in low-frequency
sounds with brief high-frequency onsets (e.g. a bass drum
sound). This confirms the finding of Kazazis et al. [3], that
attack times for fast attack envelopes are largely overes-
timated in both toolboxes. As previously mentioned, the
Timbre toolbox does not compensate for group delay in
the lowpass filter. Consequently, the energy envelopes are
not in sync with the waveform, and in the most extreme
cases hardly overlap at all. The effect of the group delay
can be seen in Figure 4, which shows estimated energy en-
velopes of a kick drum sound. The figure also shows the
smearing that occurs with default parameters (D), and how
a tighter fit to the waveform may be obtained with an alter-
nate parameter setting (A) for each toolbox. The alternate
settings in this figure correspond to a cutoff frequency of
40 Hz for the lowpass filter in the Timbre toolbox, and for
the MIRtoolbox a frame size of 50 ms with 2% hop factor.

For the results presented in the following section, we used
Matlab’s filtfilt function to compensate for the group
delay in the Timbre toolbox. These results were marginally
better when compared to the version with group delay.
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Figure 4. Normalised energy envelopes extracted by the
toolboxes. D = default settings, A = alternate settings.



4.3 Attack detection

The toolboxes estimate the attack range using the algo-
rithms presented in Section 3.2. In addition to envelope
extraction parameters, each toolbox relies on a predefined
threshold, the default values being α = 3 for the Timbre
Toolbox and 0.2 times e′peak for MIRtoolbox.

We have compared the attack range estimated by the two
toolboxes to the time span covered by mean±SD in our
perceptual experiment. We acknowledge the problem of
comparing two such different measures (one denoting a
time range, and the other a distribution of single time points).
However, we argue that a good computational estimate of
a perceptual attack range should overlap with the majority
of responses in the perceptual data.

The results of attack detection in both toolboxes are illus-
trated in Figure 5. The figure shows results from default
parameters and an optimised set of parameters as will be
explained in Section 4.4. For each stimulus, the four verti-
cal lines indicate the four different approaches. The boxes
and black horizontal lines indicate the results (mean±SD)
from our perceptual test. In summary, the default settings
for both toolboxes result in quite long onset periods, com-
pared to the range indicated by the results from the percep-
tual experiment. The mean estimated attack time (dura-
tion of attack) for all the sounds were 48 ms (MIRtoolbox)
and 96 ms (Timbre toolbox), while the mean interval cor-
responding to two standard deviations from our perceptual
results was 22 ms.

4.4 Optimisation

Although several of the algorithmic parameters are hard-
coded (i.e. not intended for user adjustment), one may mod-
ify the code in order to run an optimisation algorithm on
the parameters. We have used a two-dimensional grid search
optimisation on two parameters for each toolbox: one en-
velope parameter and one threshold parameter, to minimise
the difference between the toolbox results and our percep-
tual data. For each parameter setting, we computed the Jac-
card Index [15] between the estimated attack range and the
time span covered by our experimental results (mean±SD).
This is a measure of the amount of overlap between the
two, and takes a value of 1 if the two ranges are identical,
and 0 if there is no overlap. For the default parameter set-
tings, the mean Jaccard Index across all sounds were 0.41
(MIRtoolbox) and 0.25 (Timbre toolbox).

Figure 6 shows the output of our grid search algorithm
for the MIRtoolbox. The mean Jaccard Index across the
nine sounds was used as fitness measure. 30 settings were
tested per parameter, in total 900 parameter settings per
toolbox. The results from the parameter optimisation pro-
cess are shown in Table 2, and the corresponding optimised
estimates of attack ranges are shown in Figure 5. The Jac-
card Index scores for the optimised parameters were 0.57
for the MIRtoolbox and 0.61 for the Timbre toolbox. The
main improvement is the reduced spread of the attack times
compared with the default attack estimates, as a result of
more detailed energy envelopes.
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Toolbox Envelope parameter Threshold parameter

Timbre
toolbox

LPfilter cutoff frequency
Default: 5 Hz
Optimised: 37 Hz

α

Default: 3
Optimised: 3.75

MIR-
toolbox

Frame size
Default: 0.1 s
Optimised: 0.03 s

fraction of e′peak
Default: 0.2
Optimised: 0.075

Table 2. Parameters for optimisation, default values and
optimised results



5. DISCUSSION

Estimating perceptual parameters computationally is diffi-
cult. Our results show that attack phase descriptors are no
exception. The common first stage in attack detection is
extraction of an energy envelope. Both of the toolboxes
we have investigated render slowly changing energy en-
velopes by default. In the MIRtoolbox this comes as result
of a large frame size, and in the Timbre toolbox a lowpass
filter cutoff frequency of 5 Hz. The default parameters
have the advantage of limiting the impact on the energy
envelope of rapidly oscillating amplitude modulations in
the audible range, in effect reducing the likelihood of false
positives in MIREX-style onset detection tasks. However,
the low cutoff frequency also hinders accurate representa-
tion of fast, non-oscillating amplitude changes (e.g. sounds
with a short rise time). Interestingly, the authors of the
Timbre toolbox acknowledge the need for a higher cutoff
frequency and also address the filter group delay problem
in a discussion of sound sample duration [2], but no solu-
tion is provided in the toolbox. Furthermore, only one of
the four parameters subjected to optimisation in our exper-
iment is easily accessible to the user. The MIRtoolbox al-
lows the user to specify frame size as an input parameter to
the mironsets() function. The Timbre toolbox cutoff
frequency, and the threshold parameters for each toolbox
(α and fraction of e′peak) are hard-coded, basically leaving
them inaccessible to less experienced users.

As noted by a number of scholars, the perceptual attack
of a sound event cannot be measured directly [5–7,9]. The
common approach is to estimate the perceptual attack of
a sound by comparing its alignment to some other sound
with short duration. This in itself induces some uncer-
tainty into perceptual attack experiments, as the perceptual
attack of the reference sound is also unknown. The latter
is, however, not a problem in our experiment, given the
very precise perceptual results for the test sound (the per-
ceived P-center of the click is 0 and the SD is less than
1 ms). Another complicating factor is that the perceptual
attack of most sounds might best be modelled as a range,
or a probability distribution, rather than as a single point in
time [6]. Consequently, the collection of measured single-
point indications of perceptual attack must be considered
to represent a time range. We have chosen to represent this
range by the by the mean±SD of our perceptual results.
Thus, the widths of all ranges depend on this purely sta-
tistical measure. Ranges of different widths, with different
corresponding sets of parameter optima, would have been
obtained if a dispersion measure other than the standard
deviation had been chosen. In future research we aim to
investigate if Wright’s distribution models for attack time
could provide better estimates for the perceived width of
the attack range [6].

The limited size of our experiment, with only 9 sound
stimuli and 17 participants, engenders a chance of overfit-
ting the parameters to our data. Before the results of pa-
rameter optimisation can be generalised, a larger corpus of
sound files and more perceptual data must be investigated.

Our results show that the attack estimates provided by
the two Matlab toolboxes are largely dependent on the in-

put parameters used. Both toolboxes seem by default not
to be oriented towards sounds with a fast rise time. With
appropriate parameters, however, both toolboxes may pro-
vide estimates closer to perceptual results for a wider range
of sounds. The toolboxes are in general excellent tools
for sonic research, and may also be used where accurate
timing of events is essential. However, we advise to take
caution against using the default parameters as perceptual
estimates and note that one must carefully select the pa-
rameters used in estimation of attack phase descriptors.
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