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Sufficient a-algebra's of events. 

There are several interesting ~Jay2; of intr1oduc ing the concept 

of sufficiency. The most w;ual one says, roughly, that a statistic 

S is sufficient if conditional probabilities given S are them­

selves statistics, i.e. does not depend on tl1e unknown parameter. 

That sufficient statistics really arie "sufficient" fori sta­

tistical decision problems may then be argued by saying that the 

original experiment may be recovered from S by using a known 

random mechanism, i.e. the conditional distribution given S. 

Another non-Bayesian way of considering sufficiency is in 

terms of operational characteristics. Thus we may say that S is 

sufficient provided there to each decision rule corresponds another 

depending on S only having the same operational characteristics. 

Closely related is the "risk definition" of sufficiency which 

says that S is sufficient provided every obtainable riskfunction 

is dominated by a riskfunction obtainable from S. 

According to Le Cam's theory on approximate sufficiency this 

amounts to say that the experiment defined by S is 0-deficient 

w.r.t. the given experiment. 

Finally we would also like to mention that sufficiency may be 

introduced within a Bayesian context by saying that S is suffici­

ent provided the unknown parameter and the set of observations are 

independent given S. 

Other and equivalent ways of defining conditional independence 

(i.e. ~the Markov property) leads to equivalent definition of Bayesian 

sufficiency. Thus we may say that S is sufficient if the posterior 

distribution depends on S only. 

An exposition of some results in this direction may be found 

in Torgersen (1976). 

We shall here restrict ourselves to give an exposition of some 

of the basic machinery related to the first definition. 

The reader who wants a deeper understanding of this theory can­

not avoid to study the fundamental treatise by Wald (1950) on deci­

sion theory and the original papers by Bahadur (1954, 1955), 

Burkholder (1961), Dynkin (1951), Halmos and Savage (1949). He might 

also consult Le Cam ( 19 6 Lf) , Heyer ( 19 7 3) and Torgersen ( 19 7 5) . 

We have completely avoided the problem of the relationship 

between the concepts of sufficiency of statistics and sufficiency 

of a-algebra's of events. 



'fhe theory presented here is adequate provided a sufficient 

statistic is defined as a statistic whose induced a-algebra is 

sufficient. Thus we do not consider all measurable inverse images 

of sets, only inverse images of measurable sets. The reader may 

consult the paper by Landers (1974) and the references there to get 

an impression of the difficulties which may occure. 

Let us finally comment that the "risk definition" of suffici­

ency as described in Le Cam (1964) is equivalent to pairwise con­

ditional expectation sufficiency. 

A most thorough treatment of pairwise sufficiency may be found 

in Siebert (1979). 

Definition 1 

Let (X,A,P) be a probability space and let B be a sub-a-algebra 

of A. If X is an extended real valued random variable (r.v.) 

such that EX exists, then there is a unique (a.e.(P)) 

function ECX!B) such that 

fECX!B)dP = fXdP for all BEB 
B B 

A few useful properties of conditional expectations: 

( i) 

(ii) 

(iii) 

X 2: 0 a.e. => E(XjB) ~ 0 

+ 
E[EX!Bl~ 

± 
;::; EX 

E (EX I B) = EX 

a.e. 

B-measurable 

(iv) If E!Xi!<oo Y. 
i 

i= 1, 2 ar'e B measurable and 

bounded then 

Definition 2 

Let t; = (X>A;P 8 : 8E8) be an experiment, i.e. (X,A) is a measure 

space and {P 8 ,8E8} is a family of probability measures on CX,A). 

Then a sub-a-algebra B of A is said to be sufficient for t; 

if corresponding to each AEA , there exists a B-measurable 
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fun ct ion Y f\ such that 

PGCAIB) = y A 
a.e. (PG) \18(0 

This condition is equivalent to the following: 

To each bounded or non-negative A-measurable real function Z on 

x ther•e coi>r•esponds a 

= y 
z 

B-measurable function Y z 

a.e. ·p ) V8EG l 8 . 

such that 

Thus the conditional probability of an event A (respectively con-

ditional expectation of a random variable Z) may be specified 

(almost) independent of the parameter BEG. 

Definition 3 

Twc:-i measures µ and v on a measurable space CX,A) are said to 

be equiva}~nt if v<<µ and µ<<v (i.e. v is absolutely conti-

nuous w.r.t. µ and vice versa). We then write µ ~ \!· • 

The relation is an equivalence relation on the set of measures 

on (X,A), and the equivalence classes consist of measures having 

the same null-sets. 

Lemma 4 

Let µ be a a-finite measure on the measurable space 

µ $ 0 Then there is a probability measure P on C X, A) such 

that lJ ~ P . 

Proof 

If µ f .. t th d r· P(A) -_ lJ(A) is ini e, en e ine for each AEA . 
µCx) 

P is easily seen to have the required properties. Assume µ lS 

<» 
X =. U X:i where X. EA 

l=1 l 
a-finite but not finite. Then we may write 

and o<µ(X.)<oo 
l 

Replacing ... ) with CX 1 ,x 2-x 1 ,x 3 -

cx 1 uX 2 ), ... ) we see that we may assume that the sets x1 ,x 2 , 

are disjoint. 



Fol'.' each AEA define 

00 

a > 0 
n 

Vn and I: a = 1 
n=1 n 

00 
J1 (An X ) 

n a----- where P(A) = Z: 
n=1 n ( X ) µ n 

Clearly P is a probability measure on (X,A) since µ is 
00 

a measure on C X , A) and P ( X) = I a = 1 
n=1 n 

00 

Now p (A) = µ (An X ) = 0 
n 

v n *'* µ (A) = L µ (An x ) = 0 
n=1 n 

Thus P""' µ . 

Lemma 5 

Let Cx,A,µ) be a o-finite measure space and X and X'' A-measur-

able functions on X 

Assume f Xdp 
A 

= JX'dµ 
A 

Then X=X' a.e. (µ) 

Proof 

for all A EA. 

Since µ lS o-finite, we may write 

x.EA, x.nx. = 0 
l l J 

and µ ( X. ) < = 
l 

00 

x = u x. 
i=1 l 

where 

Let A = { x E XIX ( x) > X 1 ( x)} for all i. 

Now we mus t have µ ( A n X. ) = O Vi . For if µ ( A n X. ) > O , then 
l l 

J Xd µ > f X 1 d J1 
An x. An x. 

J_ l 

Thus 

By symmetry µ{X 1 > X} = 0 and hence µ{X * X'} .. 0 
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Theor>em 6 

Let (X,A,µ) be a CT-finite measure space and B a sub-CT-algebra 

of A t'uFthennore let Z be a A-measurable, non-negative real 

function on X • Then there exists a unique (a,e.(µ)) 

B-measurable, non-negative function J.J(Z/B) such that 

( 1. 1) 

Proof 

I µ(Z I B)ci]J = 
B 

f Zdp 
B 

for' all BE B • 

By Lemma Lf thet•e exists a probability measur·e P defined on ( X, A) 

such that P ·~ JJ , and by Rauon-Nikodym there is a non-negative 

A-measurable function 

A Ul A • 

d ]J 
h = dP 

Thus (1.1) is equivalent to 

fµ(Z I B)hdP = fZhdP 
B B 

such that JJ(A) = fhdP 
A 

for all B E: B 

for each 

(see the proof of Lemma 8) which, in its turn, is equivalent to 

fI:[JJCZ/B)h/B]dP = fECZh/B)dP for all BE B 
B B 

by definition 1. Since µ(Z/B) is required to be B-measurable 

the left side equals JµCZ/B)E(h/B)dP 
B 

Note that E(Zh/B) and ECh/B) are B-measurable and non-negative. 

Thus Lemma 5, (1.1) is equivalent to 

Since 

p(Z/B)E(h/B) = E(Zh/B) 

µ{E(h/B) = 0} = f hdP = 
{ECh/B)=O} 

we can define 

CZ/B)=ECZhj~ 
JJ E(h/B) a . e . 

a. e. (P) 

f ECh/B)dP = 0 
{ECh/B)=O} 

( JJ ) 

The above arguments also show that p(Z/B) is unique (a.e. (µ)). 



Let ( X "A,µ) be::: d o--f ULLte measure space and B a sut>--CT--algebra 

of A . 

Then there exists a unique (a.e. (µ)) B-measurable, non-ne 

function JJ (/\j B) such that 

Proof 

Let Z - I 
A 

Lemma 8 

JµCAjBh1µ 
B 

= J l Adµ = 11 (An B) 
B 

in Theorem 6 and write 

for all BE B • 

( ··.-in' (AjB) jJ J.AI OJ= ]J l'i 

Let 1',y,\J be o -finite measures on ( x,A) such that 

\) << y << 1' 

Then 
d \) d \) cl 

(A) d ,\ = dy 
a~e~ 

Proof 
·-·--

Since y << A 
' 

we must have 

( 1. 2) r fdy = Jf9Y en d ,\ 

When f is indicator function. Hence it follows by standard 

extension to simple functions and monotone limits of simple 

functions that (1.2) holds for every non-negative measurable 

function f 

Letting 

r dv 
F cty 

A y 

we get 

. dv dy 
= J dv ~dT d\ 

A I 

v(A) 
dv = J -- dy = 

Ady 
dv 

J---d\ 
A di-

AEA 

AE A it follows 

ive 
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f pom Lemma s that 

d \) dV dy 
d_"X = dy Ci-X a.e. (A) 

Theorem 9 

Let E = (X 1 A;P 8 : 8EG) be an experiment and assume \l lS a 

a-finite measul'e such that w>>P V8EG 
8 

Then a sub-a-algebra B of A is sufficient if there exists 

a non-negative A measurable function s and a set { g 8 > 8 E 8} 

of non-·negative B measurable functions such that 

ve EG 

Proof 

Assume the condition of the theorem holds. First we note that we 

may without loss of generality assume s.;.; 1. 

To see this, introduce the measure µ 

is o~finite. 

by µ'(A)=fsdµ 
A 

. Then µ 

For by decomposing X into sets A of finite measure , ( µ) we 
n 

have 

f sdµ = 
x 

r'. ~ f sdµ 
m = 0 n = 1 A n { m:Ss <m+ 1 } 

n 

and every term of the double sum is finite. 

Furthermore V8 E 8 since 'iJCA) = f sdµ = f sdµ = 0 

µ ( An { s > 0 } ) = 0 and hence 

It follows by Lemma 8 that 

P 8 (A) = Jg 8 sdµ = 
A 

A M{s>O} 

I g 8 sdµ = o 
An{s>O} 

V8E 8 

implies 
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We must show that ( P 8 ) V 8 E 8 whe1"e YA 

is a B-measurable function for every A E A 

By Corollary 7 there exists a B measurable, non-negative function 

µCAIB) such that 

fµ(AIB)dµ 
B 

We will prove that 

BE B • 

(P) V8E8 e 
By the extension procedure from indicator functions to monotone 

limits of simple functions, 

for every non-negative B-measurable function g , 

. Then 

I g8 dµ = P8 CAnB) 
AnB 

a.e. 

for every BE B • 

CP8 ) and the theorem is proved. 

Consider now a fixed probability space (X,A,P) 

Definition 10 

Let {Xt;tET} be a family of r.~~s. The r.v.Y is called 

essential supremum for the family if 

( i ) a.e. for all tET 

(ii) a.e. for all t ET implies Y ;S Z a.e. 

We write Y = ess sup Xt . Note that provided the essential supremum 
tET 

exsists, it is uniquely determined (a.e.(P)) . 

If the index set T is countable, then Y = sup Xt is measurable 
tET 

and the v~rification of (i) and (ii) is trivial. Thus an essen-
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tial supremum always exists if our family of r.v's is countable. 

If T is not countable, the function Y = sup 
tET 

may not be 

measurable and thus not a r.v 

For ex amp 1 e , 1 et X = [ 0 , 1 ] , A the c 1 as s o f Le be s g u e meas u r ab 1 e 

sets ,)n [0,1] and P Lebesgue measure. Furthermore let A be a 

subset of [0,1] such that A is not Lebesgue measurable. 

Define t = x 

t 7 x 

Then for each t EA , Xt is a random variable but 

IA(x) =sup X. 
tEA L 

is certainly not measurable. 

The following theorem states, however, that an essential supremum 

still exists. 

Theorem 11 

To each family {Xt,tET} of r.v's there exists an essential 

supremum, 

Proof 

We can without loss of generality assume 0 ;S Xt ;'; 1 

To see this let lP be a 1 ·- 1 mapping of [ -= ,=] 

z2 
_l x --

(<.p may be taken as l!J(x) = (2n) 2 f e 2 dz) 
-oo 

onto [ 0 '1 ] 

Assume we have shown the theorem for 0 ;SXt;S 1 . 

,...., -1 ,...., 
Then if Y = ess sup Xt , Y = lP (Y) = ess sup Xt , 

Let 

where 

m ( S) = E sup Xt 
tES 

S Si T and S countable and 

m = sup m(S) 
S: SST·, S countable 
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Fur1 thermo1•e let {S} be a sequence of sets such that S ~T, 
n n 

co 
S countable and m( ) t m as n -. oo • If we define s0 = U S 

n=1 n 

then s0 ~ T and s0 is countable, and it follows that 

mCS 0 ) ;;; m( S ) Vn Letting n-;oo 
n 

mCS 0 ) ;;; m 

Hence mCS 0 ) =m since we by definition of m have m2'.mCS 0 ) 

Let Y = sup Xt 
tES 

0 

We shall prove that Y = ess sup Xt . 
tET 

( i ) Let 

On the other hand 

then obviously Y ;<;;sup x 
tES U{t }t 

0 1 

Thus E(sup Xt - Y) - 0 . Since the expression in the brackets is 
tES0U{t 1} 

always non-negative, we have sup Xt = Y a.e. which implies 
tt:s0u{t1 } 

Xt SY a.e. and (i) is proved. 
1 

(ii) 
Assume 

Remark 

Z ;;; Xt a. e " v t . Then obviously Z ~ sup Xt = Y a. e. 
tE s0 

It follows from the proof that there always exists a s0s;;; T 

s 0 countable such that ess sup Xt = sup Xt 
tET tES0 
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Thl::'ur'em 1 2 

l~et (X,A,P 8 ,EJ E 0) be an exper·iment. Assume there exists 

a a-finite measure µ on A such that Pf:J<<µ for• all 8 E G. 

Then we can find a countable subset Ol) of O such that 

P 8 CA) = o ve E o0 "'*' P 8 CA) = o ve E o 

Proof 

By Lemma 4, µ may be assumed to be a prob. measure. 

Let 
dP 8 

f = -
8 dµ 

and 0 
8 

a countable subset of 0 such that 

ess sup f 8 =sup f 8 (this is possible by the remark to Theorem 11). 
0 8E0 0 

Assume P 8 (A) = 0 V 8 EO 

and hence P8 CA)=O V8EO. Q.E.D. 

Let E = (X,A,P 8 ;8 E 0) be an experiment. E is said to be dominated 

if there is a a-finite measure µ on A such that 

for all 8 E 0 E is said to be homogeneous if 

Theorem 13 

Let E = CX,A,P 8 ,e EO) be an experiment. Assume there exists 

a a-finite measure µ on A such that P8<<µ for all 8 E 0 ~ 

Then E is dominated by a probability measure n given by 

,\ 8 ;;: 0 for all 8 E 0 the set of S's for which 

is countable and = 1 
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Proof 

Choose a countable subset G0<;;G with the property given in 

Theorem 12. Let ,\8 > 0 for 8 F G 
"<• 0 

such that I:\ = 1 ., Define 
e e 

bability measure and clearly 

11 by 

n (A) = = 

Then l1 

0 for all 

which again by the choice of Go implies Pe (A) = 0 Ve E G 

Hence Pe<< n for all e E G. 

Remark 

is a 

8 E 

If E is homogeneous, then we may take n to be one of the 

P 1 s 
8 

say 

Theorem 14 

Let E = ( X, A, Pe, 8 E G) be a dominated experiment. Then 

a sub-a-algebra B of A is sufficient if and only if 

may for each e E G be specified B-measurable Cn . . . 
is given in 

Theorem 13). 

Proof ---

Assume 
dPe 

d 1l 
may be specified B-measurable for each e E G 

pro-

Go 

Then by Theorem 9, B is sufficient. Assume B is sufficient. 

Let A EA , Pe CAI B) = ZA where CJ;; ZA;; 1 . 

It follows that 

thus ZA=n(AjB) 

dPe 
-- = f 
dn e Let 

Then 

EnCfe I B) = f e 

and hence 
dPe 
-dn -

since fe is B-measur2ble. 

may be specified B-measurable 
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The assertion holds since by definition l and the properties of 

conditional expectations: 

= fn(AjB)Err(f 8 jB)dn = frr(AjB)f 8dn 

= fPe(AjB)dPe= P8(A) 

Factorization Theorem 15 

Let E = (X,A,P 8 ;e E8) be an experiment and assume µ is 

a a-finite measure such that µ~>PB for' all BE 8 

Then a sub-a-algebra B of A is sufficient if and only if there 

exists a non-negative A-measurable function s and a set 

{gB,BEG} of non-negative B-measurable functions such that 

dPB = -aµ sgB for all B E 8 

Proof 

The if statement is just Theorem 9. Suppose B is sufficient. 

Clearly )J>> TT where n is given in Theorem 13. Thus by the 

chain rule of Radon Nikodym derivates (Lemma 8), 

dP 1.1 = 
dµ for all B E 8 

The theorem follows now since by Theorem 1 Lf, dP B /dn ; 8 E 8 

may all be specified B-measurable. 

Definition 16 

Let E= (X,A,P8 ;8E8) be an experiment and let and be 

~ub-o-algebras.of A We define an ordering by B < B # 
1 = 2 

For all 8 1 E B1 there exists a 8 2 E B 2 such that 

E8 I r 8 - r 8 I = EB r 8 D. 8 = P 8 c B 1 fl B 2 > = o 
1 2 1 2 

for all BE 8 

( /J. means symmetric difference) or equivalently: 



For each B 1 ~measurable bounded (or' non-negative) function f 1 

there is a 6 2-measurable bounded (or non-negative) function £ 2 

such that E If f I - 0 ~8 1 - 2 - for all 8 E 8 

J_ • e. f 1 = f 2 a ., e . ( P 8 ) for all 8 E 8. 

Note that if Bl c 82 then Bl ;;, B2 

If B1 ;;; B2 and B2 ~ B 1 
we say that Bl and B2 are equivalent 

and write Bl~ B2 

A a ·-algeb1•a B 
0 

is said to be minimal sufficient for 

B0 is sufficient for E and B0 ;:;; B 

a-algebras B • 

Theorem 17 

for all sufficient 

E if 

Assume E is dominated and let B 0 
be the smallest a-algebra 

such that the functions are measurable for all 8 E 8 

[n is given in Theorem 13] 

Then B 0 is minimal sufficient for E • 

Proof 

B 0 is sufficient by Theorem 14. 

Assume B is sufficient for E and let {18 ,8E8} be 

B-measurable versions of 

We shall prove that B 0 ;:;; B • 

It follows from Radon Nikodym's Theorem that 

a. e. ( n ) 

By definition, n0 is the smallest a-algebra containing all sets 

of the form A8 (r) = {x:f8 (x)<r} for some r E R and 8 E 8. 

Define B8 Cr) ={x:f8 (x)<r} for rER , 8E8 

Then B8 (r) EB and by (1.3) nCA8 (r)l\B8 (r)) = O for all r, 8 
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It is easy to ver1 ify that the family of sets B0 E B0 such that 

there exist BE B with n(B 0 L:;B) = 0 is a a-algebra, J .• e. 

B' = {B EB : rr(B L".IB) = E II ·-I I= 0 for some BEB} is a a~algebra. o o o n B 0 B 

Since this a-algebra contains the sets A8(r) , it is equal to B0 • 

Hence 80 ;; B • 

Definition 18 

Let E be an experiment. 

A sub-a-algebra B of A is said to be boundedly complete if for 

all bounded B-measurable functions g : 

E g = 0 e for all 8E8 ~g=O a.e. CP 8 ) for all 8E8. 

Theorem 19 

Let E be an experiment. 

Assume that B is sufficient and boundedly complete. 

If C is sufficient and C ;; B , then B ~ C - • 

Remark 

Any sufficient a-algebra B such that C,~B whenever C is 

a sufficient sub-a-algebra of B is actually minimal sufficient. 

See Burkholder (1961). We will prove this here (Corollary 20) only 

when B is boundedly complete. 

Proof 

It sufficies to prove that B ;; C • 

Let BE B • By definition 2 there exists a C-measurable Y 

such that 

p e (BI c) = y a. e. ( p e) for all e E 8. 

Let 

C = {x:Y(x)=1} . Clearly CE C . 
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Since C ;; B there J.s a B--measur•able function Z such that Z = Y 

a.e. 8 E 8 . Z is bounded (a.e.) since Y is 

Furthermor•e, for any 8 E 8 

for all 8 

Since B is boundedly complete it follows that 

IB = z a.e. (Pe) for all 8 

Hence y = I B a.e. (Pe) for all 8 so that 

P8 (B6C) = 0 for all 8 . 

Corollary 20 

Let E be a dominated experiment. 

If B is sufficient and boundedly complete, then B is minimal 

sufficient. 

Proof 

Let B0 be given as in Theorem 17. Then B0 ;; B • The corollary 

follows from Theorem 19. 

We will now consider sufficiency in terms of operational character­

istics. First we give some basic definitions (see Torgersen & 

Lindquist (1975)). 
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Definition 21 

Let CX,A) , CY,B) be measurable spaces. A Markov-kernel from 

(X,A) to (Y,B) J_s a function p from BxX to R such that 

( i ) for each xfX, pC•lx) is a probability measure on B 

(ii) for• each B E B , P (BI• ) is a (bounded) measurable function 

on (X,A) 

Definition 22 

A decision space is a measurable space (T,S). The elements of T 

are called decisions. 

Definition 23 

Let E = (X,A,P 8 :eEG) be an experiment. A decision rule P lS 

a Markov-kernel from E to (T ,S) . 

The operational characteristic 9f P is the function 

given by 

Definition 24 

Let (X,A,P) be a probability space and B a sub-a-algebra of A . 

Then a Markov-kernel n from (X,B) to (X,A) is called 

a regular conditional probability for A given B provided nCAJ·) 

is a version of PCA I B) for each A EA 

Note that if n is a regular conditional probability for A 

given B, then JXCx')n(dx'j·) is a version of ECXjB) for 

each X such that EX exists. This may be seen by the standard 

extension procedure from indicator functions to simple functions 

and monotone limits of simple functions. 
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Theorem 25 

Let E = CX,A~P 8 ,8EG) be an experiment anci let B be a sufficient 

sub-a-algebra of A Suppose n is a regular conditional proba-

bili ty for A given B for all 8 E 8 • Let ( T, S) be any 

decision space and p any decision rule from E to (T,S) 

Then the B-measurable decision rule pon defined by 

( p on ) ( S J • ) = J p ( S J x 1 ) n ( dx' I • ) 

has the same operating characteristic as p • 

Remark 

By Theorem 26 there always exists a regular conditional probability 

TT for A given B fo1• all 8 E 8 if CX,A) is Euclidean and 

B is sufficient. (X,A) is called Euclidean if either X is 

enumerable, with A being the class of all subsets or (X,A) is 

ijorel -isomorphic to the real 1 ine (i.e. there exists a A-measurable 

function 1/J : X ~ R such that iµ is one-to-one and onto, 

and -1 
-lj! is measuriable) . 

It is known CParithasarathy) that C X, A) is Euclidean whenever X 

is a Borel-subset of a complete separable metric space and A is 

the class of Borel subsets of X (The Borel subsets of a metric 

space is the a-algebra of sets generated by the open sets). 

Proof 

Since Cpon)(Sj•) for all SE S , 

it follows that 
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Reffering to the set up in Theorem 25 we may conclude that there 

to any decision rule corresponds a B-measurable decision rule 

with tlH:? some L)per•dting cha1"acteristic and in particular w:i th the 

some risk functiu11 (provided a loss is defined). It follows that' 

the exper-iment E may be recovel'ed fpom the restriction E J B 

by performing a randomization according to the known chance 

mechanisrne n 

If we are primarily interested in a particula1" decision space 

CT,S) then we may avoid any assumption on the existence of 

regular conditional probabilities in E provided CT ,S) is 

Euclidean. 

Theorem 26 

Let the a-algebra B be sufficient in the experiment 

and consider a decision rule p from E to 

the Euclidean decision space CT,S) . Then the conditional 

expectations }: 8 C p (SJ· ) J B) may be regularized to a decision rule 

having the same operating characteristic 

as p • 

Proof 

We may without loss of generality assume that T= the real line 

ancl that S is the class of Borel subsets of T 

Choose, for each l'ational number' I' E Q = the set of rational 

number's a version P' c c -oo , r J I • ) o f E 8(p ( ( - oo, r ] I • ) I B) 

We may also, after a possible l'edefinitions of p on a null set, 

assume that the following hold for all x: 

( i) 

(ii) 

( 

(iv) 

0 :Sp( (-oo,r] Ix) :Sp( (-oo,s] J x) ;S 1 

rv 11 rv I p ( ( - =, r+- x) t- p ( ( -oo, I'] x) 
n 

p((~oo,l'] Jx) ~ l 

'Pc c ~= , I' J I x ) -7 o 

as r -+ oo 

as I' -7 -oo 

when r, s E Q and r ;;;, s 

as n--. oo 
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Put for each real number t :p((-w,t]j,.) ==inf{p((-oo,r]j•) r?;t} 

(There is clear•ly no confl_i_ct here when t E Q). 

Clearly p((-=,t]j•) is a version of E 8 (p((-=,t]/~)jB) 

for each t E T • 

Let finally for each fixed x p(Sjx) be the measure assigned to 

to S by the probability measure on S determined by the distri-

bution function t-> p( (-=,t] Ix) . As the class of sets S such 

that p(Sj•) is a version of E8 CpCSj·)jB) is clea1°ly a ;\-system 

and contains the n-system of intervals {(-=,t] ,tET} , we find 

that p(Sj is a version of E 8~ (SI ·) I B) for all S E S . • 

Hence 

OC,._,(Sj 8) = fpCSj • )dP 8 = f pCSj • )dP 8 :: OC CSj 8) for all SES 
p p 

and all 8 E 8 . 
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