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Sufficient o=-algebra's of events.

There are several interesting ways of introducing the concept
of sufficiency. The most usual one says, roughly, that a statistic
S 1s sufficient if conditional probabilities given S are them-
selves statistics, 1.e. does not depend on the unknown parameter.

That sufficient statistics really are "sufficient'" for sta-
tistical decision problems may then be argued by saying that the
original experiment may be recovered from S Dby using a known
random mechanism, i.e. the conditional distribution given S.

Another non-Bayesian way of considering sufficiency 1is in
terms of operational characteristics. Thus we may say that S 1is
sufficient provided there to each decision rule corresponds another
depending on S only having the same operational characteristics.

Closely related is the "risk definition" of sufficiency which
says that S 1s sufficient provided every obtainable riskfunction
1s dominated by a riskfunction obtainable from S.

According to Le Cam's theory on approximate sufficiency this
amounts to say that the experiment defined by S 1is 0-deficient
w.r.t. the given experiment.

Finally we would also like to mention that sufficiency may be
introduced within a Bayesian context by saying that S 1is suffici-
ent provided the unknown parameter and the set of observations are
independent given S.

Other and equivalent ways of defining conditional independence
(1.e. the Markov property) leads to equivalent definition of Bayesian
sufficiency. Thus we may say that S 1is sufficient if the posterior
distribution depends on S only.

An exposition of some results in this direction may be found
in Torgersen (1976).

We shall here restrict ourselves to give an exposition of some
of the basic machinery related to the first definition.

The reader who wants a deeper understanding of this theory can-
not avoid to study the fundamental treatise by Wald (1950) on deci-
sion theory and the original papers by Bahadur (1954, 1955),
Burkholder (1961), Dynkin (1951), Halmos and Savage (1949). He might
also consult Le Cam (1964), Heyer (1973) and Torgersen (1975).

We have completely avoided the problem of the relationship
between the concepts of sufficiency of statistics and sufficiency

of o-algebra's of events.



The theory presented here is adequate provided a sufficient
statistic 1s defined as a statistic whose induced o¢-algebra is
sufficient. Thus we do not consider all measurable inverse 1images
of sets, only inverse images of measurable sets. The reader may
consult the paper by Landers (1974) and the references there to get
an impression of the difficulties which may occure.

Let us finally comment that the "risk definition'" of suffici-
ency as described in Le Cam (1964%) is equivalent to pairwise con-
ditional expectation sufficiency.

A most thorough treatment of pairwise sufficiency may be found

in Siebert (1979).

Definition 1

Let (X,A,P) be a probability space and let B be a sub-o-algebra

of A. If X 1is an extended real valued random variable (r.v.)

such that EX exists, then there is a unique (a.e.(P)) B-measurable
function E(X|B) such that

[E(X|B)dP = [XdP for all BEB
B B

A few useful properties of conditional expectations:

(1) X 20 a.e. = E(X|B)z0 a.e.
x s
(ii) E[EX|B] < EX
(iii) E(EX|B) = EX
(iv) If E[Xi[<oo 1=1,2 and Y. 1=1,2 are B measurable and

bounded then
E(Y, X, +Y, X, [B) = Y, E(X [B) + Y,E(X,[B) a.e.

Definition 2

Let & = (X)A;P6 : BEO) Dbe an experiment, i.e. (X,A) 1s a measure

space and {P,,0€0} is a family of probability measures on (X,A).

6)

Then a sub-o-algebra B of A 1is said to be sufficient for ¢

if corresponding to each A€A , +there exists a B-measurable



function YA such that

Pe(A|b) =Y, a.e. (Pg) VOEO

This condition is equivalent to the following:
To each bounded or non-negative A-measurable real function Z on

X there corresponds a B-measurable function YZ such that

E (Z]|B) = Y a.e. (Pg) V€O
9 Z

Thus the conditional probability of an event A (respectively con-
ditional expectation of a random variable 7) may be specified

(almost) independent of the parameter 6€0,

Definition 3

Two measures p and v on a measurable space (X,A) are said to

be equivalent i1f wv<<p and p<<v (i.e. v 1s absolutely conti-

nuous w.r.t. p and vice versa). We then write U~V o,
The relation ~ 1s an equivalence relation on the set of measures
on (X,A) , and the equivalence classes consist of measures having

the same null-sets.

Lemma 4
Let u be a o-finite measure on the measurable space (X,A),
pt0 . Then there is a probability measure P on (X,A) such

that MW~P

Proof

If u is finite, then define P(A) = HiA) for each A€A

pix)
P 1is easily seen to have the required properties. Assume u is

oc-finite but not finite. Then we may write X=U X; where XiGA

1=1
< 7 7 - -
and 0 U(Xi)<°=. Replacing (Xi’XQ’XS’ «..) with (Xl’X2 Xq5X5
(X1UX2)’ ...) we see that we may assume that the sets Xq5X55

are disjoint.



- u(AﬂXn)
For each A€A define P(A) = ¥ a ————— where
n
n=1 u(Xn)

a >0 VvVn and c.)Zoazl

n h=q D
Clearly P 1s a probability measure on (X,A) since W is
a measure on (X,A) and P(X) = ? an=1

n=1

Now P(A) =0 e u(ANX ) =0 Vne u(A)= % u(ANX_) = 0
n=1

Thus P~ U

Lemma 5
Let (x,A,u) be a o-finite measure space and X and X" A-measur-
able functions on X .

Assume [Xdp = [X'dy for all AE€A.
A A

Then X =X' a.e. ()

Proof
Since p is o-finite, we may write X = i} Xi where
i=1
LEA . .= 1% . )<
Xl€ ,Xlnxj @ 1#] and ”(Xl) o
Let A= {x€X|X(x)>X"(x)} . Then ANX;€A for all 1.
Now we must have U(AnXi): 0 vi . For if U(AFU%)> 0 , then

[ Xdu> [ X'dy

ANX ANX
1 1

Thus p(A) = % p(ANX) =0
U i:1u Xl

By symmetry p{X'>X}=0 and hence u{X#X'}=0



(@]
.

Theorem 6

Let (X,A,H) be a 0O-finite measure space and B a sub-0-algebra
of A . Furthermore let Z be a A-measurable, non-negative real
function on X . Then there exists a unique (a.e.(p))

B-measurable, non-negative function uW(Z|B) such that

B)du = [Zdu for all BE€ B

(1.1) fucz
B B

Proof

By Lemma 4 there exists a probability measure P defined on (X,A)

such that P~u , and by Radon-Nikodym there is a non-negative

A-measurable function ::%% such that u(A)rzﬁth for each
A in A
Thus (1.1) is equivalent to

Bfu(zls)hdpz E{Zth for all BE€ B

(see the proof of Lemma 8) which, in its turn, is equivalent to

[E[u(Z|B)h|BIdP = [E(Zh]|B)AP for all BE B
B B

by definition 1. Since M(Z|B) 1is required to be B-measurable

the left side equals IU(ZIB)E(hIB)dP
B
Note that E(Zh|B) and E(h|B) are B-measurable and non-negative.
Thus by Lemma 5, (1.1) is equivalent to
L(Z|B)E(h|B) = E(Zh|B) a.e. (P)

Since

p{E(h|B) =0} = [ hdP-= J E(h|B)dP =0
{E(h|B)=0} {E(h|B)=0}
we can define

u(Z}B)rEE((Z]'qhBB)) a.e. ()

The above arguments also show that u(Z|B) is unique (a.e. (u)).



Corollary 7

Let (X,A,1) Dbe a o-finite measure space and B a sub-o-algebra
of A
Then there exists a unique (a.e. (u)) B-measurable, non-negative

function H(A|B) such that

JuCAlBydu = [1,du = n(AnB) for all BEB
B B

Let Z=1 in Theorem 6 and write u(I, [B) =u(AlB)

A

Lemma 8

Let A,y,v be o-finite measures on (X,A) such that
Vo< y <<

Then 4V o dvdy

I'hen a—*—x = d\( ax a.e. ()\)

Proof

Since Y << A , we musl have

: Fay = (FOY .
(1.2) [ fdy —jfdAdA

when f 1s indicator function. Hence it follows by standard
extension to simple functions and monotone limits of simple
functions that (1.2) holds for every non-negative measurable

function f

- _ dv
Letting f-IA Ty we get
d\) = d\) dY + SRl [y Y YN A
A{a‘?dY = g;a? a—k—d/\ IO every A€ A

Since

d d A for 2. A€EA , it follows

|

v(A) = |
A

j2

AV
dy = |
Y A

(@R



from Lemma 5 that

dv _ dv dy :
ETX —a—'f a“;\- ad.e. <)\)

Theorem 9
Let E :(X,A;Pez 0 €0) be an experiment and assume U is a

o-finite measure such that u >>Pe VO €0
Then a sub-o-algebra B of A is sufficient if there exists

a non-negative A measurable function s and a set {ge,GGG}
of non-negative B measurable functions such that

dP@
_&_}_l—- = Sg6 VO €0

Proof

Assume the condition of the theorem holds. First we note that we

may without loss of generality assume sz 1.

To see this, introduce the measure ﬁ by ﬁ(A):=fsdu . Then VY
A
is o-finite.
For by decomposing X into sets An of finite measure - (u) we
have
oo o0
fsdu = £ % J sdu
X m2011:1Ahﬂhm$<m+1}

and every term of the double sum is finite.

Furthermore ﬁ:ﬁ>Pe VBEO since [(A) =fsdu= [ sdpu=0 dimplies
A An{s>0}

u(AN{s>0}) = 0 and hence PG(A) :fgesdu = gosdu=0 V6€EO
A An{s>0}

dP@

It follows by Lemma 8 that
dyg

= ge



We must show that Py(A[B) =Y, a.e. (P)) VO€EO where Y,

is a B-measurable function for every A € A
By Corollary 7 there exists a B measurable, non-negative function

pu(A|B) such that

Ju(A|B)dy = [T,dy for all BE€EB
B B

We will prove that Pe(A]B) =u(A|B) a.e. (Pe) Vo €0
By the extension procedure from indicator functions to monotone

limits of simple functions,

jgu(A|B)du_:ngAdp
for every non-negative B-measurable function g

Let g :IBge . Then

éu(A|B)gedu :{BIJ(A]B)dPe = IIBgSIAdp =

| ggdn = Pg (ANB) for every BEB.
ANB

Thus M (A|B) :PS(AIB) a.e. (Py) and the theorem is proved.

Consider now a fixed probability space (X ,A,P). .

Definition 10

Let {Xt;teT} be a family of r.v's. The r.v.Y 1is called

essential supremum for the family if

IIA

(1) Xt Y a.e. for all tEe€T

(ii) X a.e. for all t€T dimplies Y<7Z a.e.

IA
N

t

We write Y =ess supX Note that provided the essential supremum

ter °©
exsists, it is uniquely determined (a.e.(P))

If the index set T 1is countable, then Y :supXt 1s measurable
teT

and the verification of (1) and (ii) 1is trivial. Thus an essen-



tial supremum always exists if our family of 1r.v's 1is countable.

If T 1is not countable, the function Y =sup X_ may not be

teT ©

measurable and thus not a r.v

For example, let X =1[0,1] , A the class of Lebesgue measurable

sets on [0,1] and P Lebesgue measure. Furthermore let A be a

subset of [0,1] such that A 1is not Lebesgue measurable.
Define 1 t=x

X, (x) =

t 0 t#x
Then for each teA , Xt is a random variable but

I,(x) =supX is certainly not measurable.

A teA T

The following theorem states, however, that an essential supremum

still exists.

Theorem 11

To each family {Xt,tET} of r.v's there exists an essential

supremum.

Proof

We can without loss of generality assume OéXtél

To see this let ¢ be a 1 -1 mapping of [-w,o] onto [0,1]

2
_1 X _2Z
(¢ may be taken as @(x) =(2n) ® [e 2 dz)
-0
Let %tr:w(Xt) . Assume we have shown the theorem for OéXtél
Then if Y = ess Sup;(:E s Y=£D_1(§) = ess sup X
Let
m(S) =EsupXt
t€Ss
where ST and S countable and
m = sup m(S)

S:5¢T,5 countable
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Furthermore let {Sn} be a sequence of sets such that Sng;T’

S countable and m(S_)4m as n-oew . If we define S, = ﬁ S ,
n 0 n=1 n

then SOEZT and SO is countable, and it follows that

m(SO)zln(Sn) vn . Letting n-ow

I

m(SO) m

Hence m(SO) =m since we by definition of m have nlzm(SO)

We shall prove that Y =ess supX

Let Y = sup XJE
teT

tESO

t

(1) Let t,€T , then obviously Y £sup X

1 t
tesyuit,}
On the other hand EY::m(SO) =m = E sup X,
tesyuit,
Thus E(sup X, -Y) =0 . Since the expression in the brackets is
4 C
t€SOU{i }
1
always non-negative, we have sup X_ =Y a.e. which implies
t
tesyuity}
Xt <Y a.e. and (1) 1is proved.
1
(ii) Assume 2 th a.e. vt . Then obviously Z 2 sup Xt =Y a.e.
tes
0
Remark

It follows from the proof that there always exists a SOQTF .

SO countable such that ess supX& = sup Xt
teT tESO
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Theorem 12

Let (X,A,Pe,eé(D) be an experiment. Assume there exists
a o-finite measure p on A such that P6<<u for all 6€0 .

Then we can find a countable subset @U of 06 such that

PG(A) =0 VSEOU=>P6(A) =0 VoEeo

Proof

By Lemma 4, u may be assumed to be a prob. measure.

dp
Let fe = Tﬂ% and 68 a countable subset of © such that
ess Supfb = sup fe (this is possible by the remark to Theorem 11).
0 BED
0
Assume P (A) =0 V6€O . Now since 0 =P, (A) =[f du=[f I,dp
S 8 a6 6 A
it follows that IGIA::O a.e. (u) VGEOO . Hence 0 =1, sup fe:
gED
0
= IA<esssup fez IAfe a.e. (p) Vo eo . This implies that
IAfe =0 a.e. (pg) and hence PG(A) =0 Vo EO . Q.E.D.
Let E :(X,A,PS;GEI@) be an experiment. E 1is said to be dominated
if there is a o¢-finite measure py on A such that
Pe<< u for all 6€0 . E 1is saild to be homogeneous if
P ~P Ve, ,0..
61 62 1272

Theorem 13

Let E :(X,A,Pe,e € 0) be an experiment. Assume there exists
a o-finite measure p on A such that P6<<u for all 6€0 <
Then E 1s dominated by a probability measure given by

nzziAS%) where AGZO for all 6€60 , the set of 6's for which
3]

A. >0 1s countable and A, =1
0 g ©
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Proof

Choose a countable subset OOQC) with the property given in

Theorem 12. Let XO =0 for O6EO-0 and A. >0 for B8 €0

0 S 0
such that I\, = 1 . Define w by mw=2xx_P, . Then w 1is a pro-
5 O 5 68
bability measure and clearly muw(A) =0 = Pe(A) =0 for all ope€ 0

which again by the choice of 0 implies Pe(A)IZO V0 € O

Hence P6<< ™ for all 6 €0.

Remark

If F 1s homogeneous, then we may take w to be one of the

T o —
P's , say Peo and 04 ={64}

Theorem 1U4

Let E :(X,A,Pe,e € ) be a dominated experiment. Then

‘ . ap
a sub-g-algebra B of A 1s sufficient if and only if 75?
may for each 0 €0 be specified pB-measurable (w 1s given 1in

Theorem 13).

Proof

dp .
Assume aIn may be specified B-measurable for each 6 €06

Then by Theorem 9, B 1is sufficient. Assume B 1is sufficient.

[I7AN

Let A€A , Pe(A[B) =7, where 05£%7,<1

A A
It follows that

jzAdn = jzAd(zx

P.)=xsx, [7,dP_=3xx_P_(ANB) = w(ANB)
B B 070 p 6 A 6 5 60 >
thus Z, =m(A[B)
dPg ~
Let 'HT—fe 5 E"(fe|8) —fe
Then —7?::f6 and hence e may be specifiled B-measurable
since T, is B-measuraeble.



The assertion holds since by definition 1 and the properties of

conditional expectations:

£f6dn = £E“(fe|8)dn = fIAEn(felB)dn

1]

fn(A|B)E"(f6]B)dn = jn(A]B)den

[Py (A|B)dP = P,(A)

Factorization Theorem 15

Let E :(X,A,Pe;e €0) be an experiment and assume pu 1is

a o~-finite measure such that ux>Pe for all ©6E€O0O

Then a sub-o-algebra B of A 1s sufficient if and only if there

exists a non-negative A-measurable function s and a set
{ge,eé@} of non-negative B-measurable functions such that
dPy
T - S8 for all 6€0
Proof

The if statement is Jjust Theorem 9. Suppose B 1is sufficient.
Clearly u>>mn , where =w 1s given in Theorem 13. Thus by the

chain rule of Radon Nikodym derivates (Lemma 8),

dPy  an dPg

du a—i —(_j?_ for all B €0

The theorem follows now since by Theorem 14, dPe/mT;SE 0

may all be specified B-measurable.

Definition 16

Let E=(X,A,Py;0€0) Dbe an experiment and let B and 82 be

1
gub~o-algebras.of A . We define an ordering < Dby Blé 32 ®
For all B1€ %» there exists a B2€ 82 such that

EelIBi—IBql: EeIBlAB2 =Py (B AB,) =0 for all peo

(A means symmetric difference) or equivalently:
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For each Bl—measupable bounded (or non-negative) function f1

there is a B, -measurable bounded (or non-negative) function f2

such that E_|f, -f

1 2| =0 for all g €0

0
i.e, f1 :f2 a.e. (Pe) for all 6 €0.
Note that if 81‘382 , Then B1 < 82
If Blg 82 and B, < B, we say that B, and B, are equivalent
and write B vaz

A g-algebra BO is said to be minimal sufficient for E 1f

BO is sufficient for E and BO <B for all sufficient

o-algebras B

Theorem 17

Assume E 1s dominated and let BO be the smallest o-algebra

such that the functions f6: %;? are measurable for all 6 €0
[ 1is given in Theorem 13] , i.e. B, :o(fe,GEO)
Then B 1s minimal sufficient for E

0
Proof
BD is sufficient by Theorem 14.
Assume B 1s sufficient for E and let {?e,eé@} be

dp
B-measurable versions of 759
We shall prove that B, =B

It follows from Radon Nikodym's Theorem that

(1.3) fy = Fe a.e. (1)

By definition, BO is the smallest o-algebra containing all sets
of the form Ay (r) ={x:fe(x)<r} for some re€eR and 6€0.
Define By (r) :{xzfé(x)<r} for r¢R , BEO

Then Be(r)€B and by (@.3) n(Ae(r)ABe(P)) =0 for all r, 6
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It is easy to verify that the family of sets BO EBO such that
there exist BE€B with n(BOAB) =0 1s a og-algebra, 1i.e.

[ . - - - o : -
B' = {BoeBO : n(BOAB) —EHIIBO IB| 0 for some BEB} 1s a o-algebra.

Since this o¢-algebra contains the sets Ae(r) , 1t 1s equal to BO'

Hence BO <B

Definition 18

Let E Dbe an experiment.

A sub-g-algebra B of A 1is said to be boundedly complete if for

all bounded B-measurable functions g

EGg =0 for all 6€0=g=0 a.e. (P ) for all pE€EO

Theorem 19

Let E Dbe an experiment.
Assume that B 1s sufficient and boundedly complete.

If C is sufficient and C <B , then B~C..

Remark

Any sufficient g¢-algebra B such that C~B whenever C is

a sufficient sub-o-algebra of B 1is actually minimal sufficient.
See Burkholder (1961). We will prove this here (Corollary 20) only

when B 1is boundedly complete.

Proof

It sufficies to prove that B <C

Let B€EB . By definition 2 there exists a C(C-measurable Y

such that

P@(BIC) =Y a.e. (Pe) for all 6 €0.

Let

C={x:Y(x)=1} . Clearly CEeC
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Since C<B +there is a B-measurable function 72 such that 2 =Y
a.e. (Pe) ; B EO . 72 is bounded (a.e.) since Y 1is

Furthermore, for any 0 €0
fzdpy = [YdP, = [P, (B|C)AP, =P, (B)
Hence [(I,-Z)dP, = 0  for all 8
Since B 1is boundedly complete 1t follows that
IB =7 a.e. (Pe) for all 6
Hence Y :IB a.e. (Pe) for all 6 so that

Pe(BAC) =0 for all 6

Corollary 20

Let E Dbe a dominated experiment.
If B 1s sufficient and boundedly complete, then B 1is minimal

sufficient.

Proof

Let BO be given as in Theorem 17. Then BO <B . The corollary

follows from Theorem 19.

We will now consider sufficiency in terms of operational character-
istics. First we give some basic definitions (see Torgersen &

Lindquist (1975)).
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Definition 21

Let (X,A) , (Y,B) Dbe measurable spaces. A Markov-kernel from

(X,A) to (Y,B) 1s a function p from BxX to R such that

(1) for each xex , p(¥|x) 1is a probability measure on B

(ii) for each B€B , P(B|+) 1is a (bounded) measurable function

on (X,A)

Definition 22

A decision space 1s a measurable space (T,S). The elements of T

are called decisions.

Definition 23

Let E = (X,A,Pe:6€e) be an experiment. A decision rule P 1is

a Markov-kernel from E to (T,S)

The operational characteristic of P 1s the function

OCp: Sx0-R given by

)

0C,(5]8) = [p(S[x)Pg(dx) = E p(S

Definition 24

Let (X,A,P) be a probability space and B a sub-g-algebra of A

Then a Markov-kernel ©m from (X,B) to (X,A) 1is called
°)

a regular conditional probability for A given B provided wn(A

is a version of P(A|B) for each A€A

Note that if W™ is a regular conditional probability for A
given B , then [X(x')mn(dx'|+) 1is a version of E(X]|B) for
each X such that EX exists. This may be seen by the standard
extension procedure from indicator functions to simple functions

and monotone limits of simple functions.
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Theorem 25

Let E = (X,A,PS,BEO) be an experiment and let B be a sufficient
sub-c-algebra of A . Suppose w 1s a regular conditional proba-
bility for A given B for all ©6€0 . Let (T,S) be any
decision space and p any decision rule from E to (T,S)

Then the B-measurable decision rule pom defined by
(pom)(S]+) = [p(8|x"Inldx"]*)

has the same operating characteristic as p

Remark

By Theorem 26 there always exists a regular conditional probability
T for A given B for all 6€0 if (X,A) is Euclidean and

B 1s sufficient. (X,A) is called Euclidean if either X 1is
enumerable, with A Dbeing the class of all subsets or (X,A) 1is
Borel -isemorphic to the real line (i.e. there exists a A-measurable

function Y X >R such that ¢ 1s one-to-one and onto,

and vw—l 1s measurable).

It is known (Parthasarathy) that (X,A) 1is Euclidean whenever X
is 4@ Borel-subset of a complete separable metric space and A 1is
the class of Borel subsets of X . (TheBorel subsets of a metric

space 1s the o-algebra of sets generated by the open sets).

Proof

Since (pom)(S|e¢) 1is a version of Ee(p(8|')|8) for all Se S ,

it follows that

ocpon(s|e) = [Cpom) (S]+)dP, = fp(S[+)dP, =0C,(S|e)
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Reffering to the set up in Theorem 25 we may conclude that there
to any decision rule corresponds a B-measurable decision rule
with the some operating characteristic and in particular with the
some risk function (provided a loss is defined). It follows that'
the experiment E may be recovered from the restriction E| B
by performing a randomization according to the known chance
mechanisme W

If we are primarily interested in a particular decision space
(T,S) , then we may avoid any assumption on the existence of
regular conditional probabilities in E provided (T,S) is

Fuclidean.

Theorem 26

Let the oc-algebra B be sufficient in the experiment

E :(X,A,PB,QGG) and consider a decision rule p from E to

the Euclidean decision space (T7,8) . Then the conditional
expectations EB(Q(S *)|B) may be regularized to a decision rule
CIEIRD. :Ee(p(8|~)|8) having the same operating characteristic

as o

We may without loss of generality assume that T= the real line

and that S 1s the class of Borel subsets of T

Choose, for each rational number r €Q = the set of rational

numbers a version  p((-e,r]|+) of Ee@((—w,r]|0|8>
We may also, after a possible redefinitions of § on a null set,

assume that the following hold for all x:

(1) 0<P((=o,r]]x) £P((~e0,5]|x) =1 when r,s€Q and r <
(ii) 5((—w,r+%|x)~#5((—w,r]|x) as n-oow
(iii) P ((=o,r]|x)~»1 as 1 -

(iv) p((-,1]]|x) >0 as 1 - -
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) r =2t}

Put for each real number t :p((-e,t]]|*) =inf{P((-w,r]
(There is clearly no conflict here when t€Q).
Clearly p((-e,t]|*) 1is a version of Ee(p«—w,t]l’)|8)

for each teT

Let finally for each fixed x B(Slx) be the measure assigned to

to S by the probability measure on S determined by the distri-

bution function +t -p((-e=,t]|x) . As the class of sets S such
that p(S|+) 1is a version of Ee(p(8|‘)|8) is clearly a A-system
and contains the n-system of intervals {(-w,t],t€T} , we find
that p(sS|+) 1is a version of Ed@(S|‘)|B) for all SeS..
Hence
ocb,(sle):j"ﬁ(s ')dPe:jp(Sl')dPe:OCD(Sfe) for all Se€S
and all 6 €0
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