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I. The Lehmann -~ Scheffé theorem on minimum variance

unbiased estimation.

In their joint 1950 paper (Sankhya Ser A Vol 10 p.324)
Lehmann and Scheffé gave a criterion for "uniformly minimum
variance unbiasedness" of estimators. The criterion has many simple
generalizations, most of which may be found in Rao's book
(Linear Statistical...) or in Zack's book (The theory of
Statistical...) We shall here consider the obvious generalization
to the situation where we choose to restrict ourselves to estimators
belonging to some linear space L of everywhere square integrable

random variables.

Consider an experiment ((%gﬂg Pe:eé@H a real valued
function g on (& and a linear space of everywhere square integra-
ble random variables. The property of beeing minimum variance
unbiased within L will be shortenedx UMVU(L). Formally a 6 in
L will be called UMVU(L) if and only if it is unbiased and

vareé s vareg ; 6@ for any other unbiased estimor ¥ in L.

The Lehmann Scheffé theorem extends immediately to this

situation.

Theorem. Let §&¢L be an unbiased estimator of g.
Then & is UMVU(L) if and only if & is uncorrelated with every
unbiased estimator of zero which is in L. A UMVU(L) estimator

for g 1is unique up to equivalence.

® . '
If L 1is the space of all everywhere square integrable random

variables then we write UMVU instead of UMVU(L).



Remark: The Lehmann Scheffé theorem is the particular case where
L consists of all square integrable random variables.
Proof of the theorem: The only difference between this proof and
that of Lehmann Scheffé is that the restriction "¢L" is inserted
in the natural places.

1° Suppose & 1s UMW (L) for g and let ¢¢L be an
unbiased estimator of 0. Then & + X¢ is - for each A€}-o,0f &
an unbiased estimator of g, and it belongs to L. It follows
that-for each 6- the polynomial var, (§+Ad) = (vare¢)l2 +
2 cove(ﬁiﬁ)k + var § has a minimum for A=0, and this implies
cove(6”pi = 0.

2° Suppose § is uncorrelated with any unbiased
estimator of zero which is in L. Let &¢L be another unbiased
estimator of g. Then -by assumption covy (653-6)60 so that
varbk = var {6 + (¥ - &)V < . var,s ¥ vare{g~ §) 2 var,§; pe &

3% Finally let & 3 b&%h be UMW (L) estimators of g.

Then: E6<5(a-3)50 and Ee% (a-%>§o

Hence Z_ _
EgS 5 365%’ = EGZ'Z

5
So that
2_ 2 2-
Ey(8-8)%5 B 6°-2E,68 + E 3750
fHence p (s=%) = 1; 6¢® I
CARA A L
Corollary:
Let B128g0+ B be r real valued functions on

(' and ‘let Cq5Cos.-eCh be 1r constants. Suppose di is a

UMVU(L) estimator of g; i=1,2,...r. Then I ciGi is a

UMVU(L) estimator of Zc;g..



Proof: Let ¢:L be an unbiased estimator of 0 with everywhere
finite variance.

Then:

cov,(Ic,6.,¢) = Le;covy(8.,8) = 03 6eln) [j
Finally let us consider the problem of estimating vector

valued functions. Let g = (gl, g2,...gr) be a function from

) to R® and let & = (61,62,...,6r)6LP be an unbiased estimator

of g. Then ¢ will be called a UMVU(L) estimator of g 1if

and only if iea s ieg ; 0¢® for any other unbiased estimatorg;

in LY. The case of vector valued estimands may be reduced to

the case of real valued estimands by

Proposition. Let § = (6,...6r)6Lr be an unbiased estimator

of g where g = (gl, gz,...g;) is a function ‘rom ® to R'.

Then 6 is UMVU(L) for & if and only if 8y is a UMVU(L)

estimator of g.; i=1,2...r.

l,
Proof: "if": Suppose the condition is satisfied and let
¥eL” be another unbiased estimator of g. Let ¢ be a given

rxl matrix. By assumption: c' ieac = varg Zciéi E (by the corollary)

- ] q
var, £ cigi' e iegc.

"only if": Suppose § is UMVU(L). Let %&ﬁL be an unbiased

estimator of g5 Extend %i to an unbiased estimator &€ LY of

2 {g8 implies vare% 2 var,s. i

A function g with domain Gﬂ (and any range space)

g. The inequality $e%

will be called identifiable if g is a function of 6 via Pge
Equivalently; g is identifiable if and only if g (61) =

g (62) when P = P Let g be R® valued. Trivially

9 6

1 5
any g having an unbiased estimator is identifiable. On the
other hand, any function of © is identifiable whene¢qP6 is 1-1,
and this does positively not exclude the possibility that only

the constants have  UMVU . estimators.
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Linear models

We shall in this section consider the situation where our
vector® y' = (Yl,...,Yn)' of real valued random variables satis-

fies the following requirements

Clin: (The linearily condition) There is a sub space V
of R" so that EY 4 priori is, and may be any
vector in V.

Cerr: (This is a condition on the "error" Y - EY)
Iy = o°I -where I is the nxn identity matrix
and ¢ > 0 is more or less unknown.

Let ﬂa(l), a(z),... ’a(p)J be a basis for V i.e. fhe

vectors a(l), a(Z)g...a(p) spans V. Denote by A' the nxp

matrix whose i - th column is a(l) ie A' = (a(1>, a(Z)

a(p)).

g0 o

We will express the projection 7w on V by A. Note

first since ﬂ(y)la(l),i = 1l,.0..,p - that A(m(y)-y) = 0,ie

Am(y) Ay. Hence w(y) may be written m(y) = A'b(y) where

the px1l matrix b(y) satisfy:
AA'B(y) = Ay

¥ We use, throughout, the convention that a vector in some space

m . . . . . .
R is - when it 1s considered as a matrix - a column matrix.



These equations are called the normal equations.

Conversely - let b(y) be a solution of the normal equations.
Decomposing y = A'p(y) + (y-A'b(y)) we see that A'b(y)eV while
y-A'b(y)]V. Hence w(y) = A'b(y). We have proved:

Proposition.

The prejection m(y) of a vector y€R” on V may be
written A'b(y) where the p x 1 matrix b(y) 1is and may be any

solution of the normal equations AA'b(y) = Ay.

Let L Dbe the space of linear functions of Yl’YZ""Yn ie

§¢L. if and only if there are real constants dy,dy,...d, SO that

n

6 = L d;Y;. L is - for any fixed distribution of Y - EY satis-
i=1

fying Cerr - an inner product space if we consider Cov(ZbiYi,

= 2 .
ZdiYi) = (Zbidi)g as the inner product of Ib;Y, and 2d,Y;.
The sub space L, of L censisting of all £d;Y, where a's=

(dl...,dn)'ev will be called the estimation space, and the sub

space Lyl ©of all '} 4.y ynere v will be called the error

space.

Clearly:
L = Ly®Ly]

1
The projection on L, maps a'Yy onto w(d) Y.
The justifications fer the terms estimation space and error
space are:

Propssition

L, 1is the space of UMVU(L) estimators and Lvl is the

space ef unbiased estimators of (0 which belong to L.

preof: 10 E < d,Y > = 0 <=> dévV+
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2° <d,¥> 1is a UMVU(L) estimator (of its expectation)

2

<=> Cov (<d,Y¥>,<b,¥>) = <b.,d> 0 ° = 0 when beV

<=> d € (vhl = v,

Here 1s the basic result on UMVU(L) estimation under Clin

and Cerr:
Theoremx Consider the representation EY = Abﬁ of EY and let
c € RP. The following conditions on the estimand ¢: B~— c'B
are equivalent.
(1) Y 1s identifiable
(ii) Y has an unbiased estimator in L.
(iii) ¢ has a UMVU(L) estimator.
(iv) c € A"l row

If ¥ is a UMVU(L) estimator of ¢, then it is unique

and:
1) P (Y) = m(d)'Y for any unbiased estimator d'Y of ¥
2) D (Y) = ¢'b(Y) where b(Y) is any solution of the normal
equations AA'b(Y) = AY.
Proof:

(1) <=> (iv): ¢ 1is identifiable <=> w(Bl) = w(Bz) when

By = A B2 <=> Y(B) = 0 when A[B = 0 <=> B]c when

Bl/A'] row <=>cea'  row.

(ii) <=> (iv): 3d so that Ed'Y z c'B <=> 3d so that d'A'B

z ¢''g <=> 3d so that d'A' = ¢' <=>c € &Vj TOowW.

x: If M 1is any matrix, then Mrow and Mc denotes, respectively

ol

the space spanned by the row vectors of M and the space span-

ned by the column vectors of WM.
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1

T
(ii) <=> (diii): 3d so that Ed y = ¢(g) <=> (by the pre-

A

vious proposition) 3JdeV so that Ed[y Y(B) <=> (by the pre-
vious proposition) (iii).

Let <d,y> and <b,y> both be UMVU(L) estimators of ¢
then <d-b,y> is a UMVU(L) estimator of 0 ie: d—béV{Vi~= 0.
Suppose ¢ is identifiable and let 1§ be the UMVU(L) estimator.
Let <d,y> be any unbiased estimator of (. It follows directly
from the previous proposition that 7(d)'Y is the UMVU(L)
estimator of Y so that: @(y) = n(d)'Y. Let yeRn and suppose

AA'b(y) = Ay. Then - as we have seen - w(y) = A'b(y) and ©O(y) =

1

m(@)' {n(y) +y - 1yl = @yt = 7@ AD(y) = ¢'b(y) since—

by unbiasedness-s(d) A" = ot

The matrix A 1s -in general- not ©of maximal rank. If
rank A < p then the solutions B of the equation EY = A'g -
for given EY - fill up a infinite . affine space. Uniqueness

can only be obtained by imposing cenditions on the solutions. A

result in this direction is:

Theoremn.
Let W Dbe a sub space of Rp, having the property that to

each BERP there is at least one B¢W so that A'p = A'B.
Then the normal equations
AA'D = Ay
has - for given yeRn - at least one solution Dbe¢W.
If - in addition - the correspondence B -5 is single
valued - then : is a linear identifiable (and consequently

has a unique UMVU(L) estimator) function of B.

Proof:
1° if AA'b = Ay then - since A'b = A'B- AA'B = Ay.

2° Suppose B r~—> B is single valued. Let B(l),

o



8 2%RP be such that Als(l) = 482 Then A'g@) = a'g(D),
By uniqueness: BTZ) = B(l). It follows that 5 is identifiable.
Let ki, kyeR and let B8, 2% RP. Then a'(k,8') + k8020 =
ka8 ¢ ka6 - klA'821> N sz'BT2> _ A'(k18?1> .

2 e I YO I ¢ B (2)

2y : .
k,8"“") By uniqueness again: k8 * kB 7= kB T k,8
i e the map B n~—> B 1is linear. The remark in the parantheses

follows from the previous theorem.
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Linear models with normally distributed variables.

Sufficiency, minimal sufficiency and completeness.

In addition to our assumptions C and Cer we will in

lin v’
this sectien assume:

C Y 1is multinermally distributed.

norm’

An immediate and fundamental consequence of Cnorm is:
Theorem. Y.,...,Y are independently and normally distributed.
D 1 n

Any finite dimensional random vector with coordinates in

L is multinormally distributed.

This theorem and the fact that uncorrelated coordinates of
multinormally distributed randem variables are stochastically

independent yield:

Theorem. The estimation space and the error space are stechastical-
ly independent. In particular =(Y) and Y-m(Y) are
independent random vectors.

The main concern, in this section, will be with sufficiency,
minimal sufficiency and cempleteness. In this section - as in the
previous section - the condition Clin may, occasionally, be

weakened. Some weakenings of Cl will here be explicitly

in
stated. The reader should, however, go over the results in the

previous section with this point in view.



It will be necessary te distinguish two dimension concepts.
Let A be any nen empty sub set of a finite dimensional vector
space. The largest number k with the property that there are k
linearily independent vectors in A will be denoted by dim A.
This is, of ceurse, nothing but the dimension of the vector space
spanned by A. The affine (or geometrical) dimension ef A -
written dimg A - is the dimension of the affine space generated
by A. For any atA, the set A-a generates the same vector
space as as A-A. This vector space is the vector space part ef
the affine space generated by A. dimgA 1is the dimension of this
vector space. dimgA = dim A or dim A-1 as o¢é the affine space
generated by A or not.

The basic result on sufficiency is:

Theorem: (g (Y),|Y-n(Y)]) is sufficient. It is minimal sufficient

if and only if dimg {(EY/oz,l/oz)k = dim V+1.

Let o° be fixed. Then =(Y) is sufficient. It is minimal
sufficient if and only if the affine dimension of the set of vectors
EY which are 3 priori cempatible with the chosen 0%, is dim V.

If EY is fixed, then ||[Y-EY|| is sufficient and it is
minimal sufficient if and enly if there is at least twe possible
values of o~ for the chosen LY.

-n/,

Proof: The joint density ef Yy5...,Y ~may be written (270>)

exp (-|y-EY||*/20%) = (2mg?) "/2 lexp (-ln(y) - EY|[2/202)]
lexp (-|Fy -m(y)|[*/202). The statements on sufficiency follows

directly frem the facterization criterien for sufficiency.

Denote EY by n and let Pn g2 Dbe the probability
2
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distribution of Y. We use the sign :: for "induce the same set
of events as"  Let (n°,03) be a pessible pair, 1
2
Then |dP_ _,/dP 1o y-"‘~——»><n/oz-n°/02,ﬂ(y)>+(0—2—0—2)“)'u/2§
TN, 0 nO‘Ocz)B ] C

At this point we may apply a theorem of Halmos and Savage
which states that pairwise sufficiency and sufficiency is the same
for dominated experiments. Moreover - since %;Pn,02§ is homogeneceus-
we may in this case restrict our attention to the set of all pos-
sible pairs (Pn,oz’Pnoaog)'

It follews that

g ‘dPT],UZ/dPnOW:.O'(Z)%‘ H (L v :’“»——--)TT(y)syf“\..—} "y”g:{ yr"..._->1T(Y):y..__>
n - ' .
ﬂy—ﬂ(y)Hg when dimg i,(n/az,l/cz)_g= dim V+1. If dimg
{J(n/cz, 1/62). % $ dim V, then - by the same result - w(Y) and
Jy-n(¥)|| is no longer minimal sufficient.

The proefs of the ether statements on minimal sufficiency

are similar but simpler - and is therefore omitted. L—‘

Finally we have the following result on completeness.

Theorem. (m(Y),|[[Y-m(Y)|) is complete provided the interior of
z_(EYﬁoz) g relative to VxR is non empty.

Let o2 be fixed. Then =(Y) is complete provided the
interior relative to V of the set ef vectors which are compatible
with the chosen % is non empty.

If EY is fixed then ||Y-EY| is complete provided the set

of numbers o¢? which are compatible with the chosen EY contains

a right sided accumulation point.

Remark. If D 1is a set of real numbers then a right sided accumu-

lation peint x for D is a real real number x such that



ST

,SX,X+€E%D #¢‘ when e>0.

Proof: Write n = EY. The joint density of Yy may be written:
( Ylexp (|ly||2/02~2<n/o?,y>i( ) where the first ( ) is

a function of (n,02?) and the last’ ¢ ) is a function of ¥y

only. If (pl,pz,...pr) is a linearily independent basis for V

r
then <n/c?, y> = % ci<pi/02,y> where ;...,C, are the

i=1
(pl,...,pr) coerdinates of n. It is easily seen that
{ (Cl/cz,...,cr/cz,l/GZ) E has interior points - relative to
r+l

R - if and only if {_(n,cz) g has interior points relative to

VxR. Completeness follows now from the basic completeness
theorem for exponential experiments.

The proof ef the secend statement is similar but simpler
and is therefore omitted.

Write 2 = |Y-EY|?. Then %/¢? has a x? distribution

written
with n degrees of freedem. It follows that the density of Z may'

(g2)~D/2 z:n/z-l

(%) ' -~ censtant exp (-z/2¢?)

Suppese E_,h(z) = 0 for all a priori possible values on

g%, h is integrable w.r.t. the density (x) - for any o2>0-

-1 exp (-z2/20%) dg. <o,

if and only if I(og?) = I:[h(z)lzn/2
Hence - since 1I(g?) is a nen decreasing function of

o?- the set of numbers o¢2>0 so that I(o?)<e is an interval of

the form (0,t) Moreever the map 02——>E62h(Z) from 0,tl

to R 1s analytic. It fellews from indentity theorem fer analytic

functions that I(o2) = 0 for all o%J0,tL. Hence - by the

basic completeness theorem fer exponential experiments - h =

0 a.e. C]
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Stochastic ordering of probability distribution and

monotonically increasing likelihood ratios.

A probability distribution F on R is called stochastically
larger then the probability distribution ¢ on R if and only if
F({ %, () z g(ix,»f) for all =x¢R.

Example.

Let the real random variables X and Y be, respectively,
normal (£,1) and normal (n.l1). Then the distribution of x? is
stochastically larger then the distribution of Y? provided
2 2 2

2. Demonstration: Let a = 0 We must show that P(X2 2 a?)

L EAVARERYs o1

2 a?) or - equivalently - that P(|X| £ a) £ P(|Y] ¢ a)

P(Y?
If 9 denotes the normal (Ql) distribution then this inequality
may be written:

»{-g-a,-g+al = @[-n-a,-n+a
or - using the symmetry of @:

oflg]-a,]gl+al = o [In|-a,|n|+a]

It suffices therefore to show that @&[x-a,x+a] is a decreasing
function of x ¢[D,»l.
The derivative of this function, however, is ¢'(x+ta)-¢'(x-a)

= 9'(x*+a) -9'(|x-al) £ 0 since x+a 2 |%-al.



The only properties of the normal (0,1) distribution we
used was unimodality and symmetry Let ¢ Dbe any symmetrid uni-
nodal -ie xr—=—>Gl-»,xl is conve®ion J-»,0l and-ceficave on
J0,«[ - distribution. Suppose I} is a real random variable having
the distribution G. Then the distribution of (£+V)? 1is stochas-
tically larger than the distribution of (n+tV)? provided ¢? 2 n2,
Let F ©be any probability distribution on R. Then the

.

(lower) fpaétile function of F - notation F ~ - is the function

frem J0,1[ to R which maps p into F“l(p) = inf {?: Fl-=,x[ 2 P}

The following result is often useful:

Proposition

1f i is uniformly distributed on 10,1[ then r (1)) has

distribution F.
Proof:

e
{

FJo,xl = P(UEF]-o,x[) ?‘

[17aN
HA

P (f_l(Uj x)

iV

P (F~1(U) < x)

Stochastic ordering of probability distributions is related to

the ordering cof random variables through:

Proposition.

If X and Y are real random variables such that X = Y
a.s. then the distribution of X is stochastically larger than the
distribution of Y.

Conversely; let the distribution F be stochastically larger
than the distribution G. Then there are real random variables X
and Y on some probability space having, respectively, distributions

F and G such that X 2 Y.



Proof:

Only the last statement needs a proof. Suppose F 1is sto-

chastically larger than ¢. Then Fl 2 gl pet [} be uniformly
distributed on ]0,1[ . Then X = F () and Y = G Y(U) have the
desired properties. L

Many properties of the stochastic ordering of distribution
functions are simple consequences of the last proposition. We
restrict ourselves to the following two propositions.

Proposition.

Let F Dbe stochastically larger then F. Then

\%

fhdF = shdF for any monotonically increasing function h such that

both integrals exists.

Remark.

A converse may be obtained by considering the indicator
functions h of intervals of the form [ x,»[.

Proposition.

If Pi is stochastically larger than G i=1,2,...10,
then le...an is stochastically larger than G1¥ -..¥G -
A much stronger property that "beeing stochastically larger"
is the property of having monotonically increasing likelihood ratio.
Suppose F and G are given by densities f and g respectively
w.r.t. some measure M on R (ie on the class of Borel sub sets of R)
R). Then we shall say that ¢ has monotonically increasing likeli-
hood ratio w.r.t. F 4if it is possible to specify u,f and g so
that g/f is monotonically increasing (n its domain which is
Lf>olulg >0}y . . It is easily seen that if G has monotonically
increasing likelihood ratio w.r.t. F, and v 1is any measure such

that F and G have densities f and g, respectively, w.r.t. v,

o9
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then f and g may be specified so that g/f is monotonically
increasing. In particular we may use v=F+ and choose f and g
so that, f 2 0, g 2o , T + g =1 and g is monotonically

increasing.

Proposition

Let ¢ have monotonically increasing likelihcod ratio w.r.t.
F. Then any test § of the form
y = yIl. o +
$ YI@C? I}c,w[

is a most powerful level o = f8dF test for testing F against

& provided a>0.

Let £ = dF/d(F+G), g = do/d(F+G) = 1-f We may choose g
so that it is monotonically increasing and O s g R Theﬁ f{c)>0
(if otherwise, then o = 0). Let ¢ Dbe another level a test.
Then: [f8dG - [f¢dG = J{s-¢) (g-(g(c)/f(c))E)d(F+G)+(g(c)/f(c))/(84)TA(F+G).
The first term on the right is 2 0 since the
integrand is z 0, and the last term is 2 9 since J¢df : a.
Hence [8dG 2 [¢dG.
Problem
Does this proposition have a converse?

Proposition.

Let G have monotonically increasing likelihood ration w.r.t.

F. Then 6 1is sgtochastically larger than F.

Proof:

We must show that Fle,»f £ Glc,®} for any real number c.
It suffices to consider the case where o = Flc,»[> 0. Then
IEC,WE is a most powerful o test for testing F against G.
Hence - since a most powerful test is unbiased -~ o = Flc,»l g



lecpé[de £ Gle,of

Example

Let F and G have, respectively, densities xn—>|n(1+x2) -1
and xr—> !:n(l+(x—l))21—l w.r.t. Lebesque measure. Then G
is stochastically larger than F. G does not, however, have

monotonically increasing likelihood ratio w.r.t. F.

If F and G have densities f and g w.r.t. some measure
#  such that g/f is monotonically decreasing in x then we
shall say that € has monotonically decreasing likelihood ratio
w.r.t. F. If so, then dF/dv and dG/dv may - for any
o finite measure v dominating F and G - be specified so that
(dG/dv)/(drMdv) is monotonically decreasing. In particular we
may specify dG/d(F+G) so that it is monotonically decreasing.

To any measure [ onj-«,® we may constru%fggﬁg%%g%gﬁf(B)=F(-B)
for each Borel set B. It is easily seen that G has monotonical-
ly decreasing likelihood ratio w.r.t. F if and only if éﬂ has
monotonically increasing likelihood ratio w.r.t. F and this holds

if and only if F has monotonically increasing likelihood ratio

w.r.t. G. The last two propositions yields therefore:

eerollary
Let G have monotonically decreasing likelihood ratio.. w.r.t.
F. Then any test of the form
5 = yI{C} + Ij-—w,c[_

is a most powerful level o = f6dF test for testing F against G

provided o > 0.

Let G have monotonically deereasing likelihood ratio w.r.t.

F. Then 6 is stochastically smaller that F.



References on monoton likelihood ratio are:

Rubin, Karlin.

Karlin, 1956

Karlin, 1957

Karlin, 1958

1956

The theory of decision procedures for
distributions with monotone likelihood
ratio, A.M.S, 27:272-300

Decision theory for Pélya type distributions
Case of two actions I. Proc. Third Berkeley
Symp. Math. Statist. Prod.,1:115-128

Pdlya type distributions II A.M.S. 28:281.

Polya type distributions IIT A.M.S. 29:406.
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A few univariate distributions which have
applications in the analysis of varians.
e — > .
Definition Let ¥ = 0 and r = 1,2,.... The non central

x? distribution with r degrecs of freedom and non centrality

parameter P? is the distribution of (Ul+w52+ U§+ u? +...+U;
where Ul""’Ur are independently and normally (o,1) distributed.
We shall denote this distribution by Kr p? and we will write Kr

b]

instead of K
r,J.

0 and n=0,1,... then we will write

nv

Notation If A
bk(n) = (A™/n!) exp-ir ; ie b}kn) is the probability that X = n
when X has the Poisson distribution with parameter A. Note that

the possibility A = 0 is not excluded.

Proposition The following random variables have the distribu-

tion K 2
Toy.

(i) X%+ ...+¥? where X, ....,X_ are independently and normally
1 T 1, (e

distributed such that ¢? = (EX1)2+...+(EXr)2, and var X; = 1 ;

i=1,...,r.

. 2y 2
(11) Rpfe.ot X2N+r where X;,X,, ... and N are independent

random variables such that Xi is normal (0,1); 1 = 1,...

and N has the Poisson distribution with expectation ¢?/2

(iii) 7 where the conditional distribution of Z given N is

 K2N+r and N has the Poisson distribution with expectation ©Y?/2



We will prove this proposition by first proving part (i) and
- using that result - prove:

Proposition

K : K = K
r,p? ¥ Us,¢2

rts,yi+e?
Finally this proposition will be used to prove parts (ii)
and (iii) of the first proposition.

Proof of part (i) of the first proposition: Let C

be a r» x r orthonormal matrix such that:

(V(EX )24, +(EX )%, 0,...,0)" = C(EXy,...,EX )T

Introduce new random variables Yl""Y by:

(Y .,,Yr‘)’f = C(Xl...XP)'. Then Yl”"’Yr are independently

10
and normally distributed, each Yi having variance 1 and

EY, = V(Exl>2+7..+(5xr)2; EY, = ...=EY_ = 0. It follows that the

I 1
H {

o . . <72 72 . w2 2 >
distribution of z(l+.,.+xr = Yl+...+YP is KP,wz- L

Proof of the second proposition: Let Ul""’Ur’ Vl,,..,VS
be independently and normally (0,1) distributed. By the definition
of the non central ¥? distribution (Ul+w)2+ U+ ...+U;+
7 2, 2 .2 . . . _ 5
(\l+¢) FVAEL Lt Vr has the distribution Kr)wz ® K85¢2. Part (i)

of the first proposition, however, imply that this distribution is

KP+Saw2+¢2-

Proof of parts (ii) and (iii) of the first proposition. Simple

calculations show that

=

Kiswz(k) = constant x (exp - x/2) (exp - Y?/2 cosh Vxp ; x>0

In particular
Ki o(¥) = constant x % (exp - x/5) ;3 x>0°
b

N



By induction - using the convolution formula -

Kgao(x) = constant anfl © exp (—X/Qz x > 0.

Using the power seriesexpansion of cosh we get:

H
Nj=

t f__"°21'13 o2 - n _X
Kl’wzkx) —ngow (exp v°/2) constant n X (exp /2)

. ?
=% constant bwz/q(n) K2n+l(x), so that

n=0 n
Ky 2 -9 - .
1,0 'n§0 constant _ bwz/z(n) K2n+l
Hence -
1 :n§0 constant N b¢2/2(n)

It follows - since constant N does not depend on Y -by the

completeness of the family of Poisson distributions that

constant - 1,n=1,2,...

Hence ®
K, .2 =2 b, (n)K when »r = 1
r,P n=g Y /2 2n+r
If v % 2 then the convolution formula yields:
K = K x K =B (n) K x K =3 b (n)K
v, 1,92 r-1 20 ¥%/9 2n+1 r-1 "nf0 wz/z 2n+p
This proves (iii) and (ii) is just & :articular form of (iii) l ]
Problem
(i) Work out the constant factor in Kg
(ii) Use (i) to find expectation and variance in K2

(iidi) Use (ii) and the convolution formula Kl x Kl = K2
to find expectation and variance in Kl

(iv) Use (iii) and the convolution formula to find expectation
and variance in Kr
{(v) Use (iv), part (iii) of the first proposition and the

formulas:
EZ = E(EZIN)

and



var 7

= E(varZIN) + var(EZIN)

to show that expectation and variance in ’Kr 2 are, respectively,
9

r+y?  and

2r + Y2

Probl

(i)
(1)
0 ’n

n§o x/

(iii)

(iii)

em
Work out the constant faetor in K;
Using (1) show that

x+1

(n!)? = 2e Ky (2%)

Define the non central x? distribution with O

degrees of freedom and non sentrality parameter y? by:

K def go b (n) K

0,92 T n v?/9 2n

where KD is the one point distribution in 0.

Extend some of the previous results so that the extensions
permits 0 degrees of freedom. In particular show

= K ® K andfind - using (ii) -
N N £

a "closed" form for the density of the absolute con-

that K

tinuous part ngl Dwz/z(n) K2n of KO,wz

of the last problem tells us that a non central x? dis-
tribution with 1 degrees of freedom is a random
translation of the central x? distribution with r
degrees of freedom. If v is the non sentrality
parameter, then the random translation has the distri-
bution K which has expectation ¢? and variance

W,

0,y?

Another consequence is the inequality:

where

K. 2 - Kr,O“ s 2(1—(exp—w2/2))

T,y
|«ll denotes total variation.




Demonstration: ”Kr,wz - KP,OH = "Krso p (KO,wz - K| <

HA

“KO,wz - KD” = ZKo,wz(@gO%)=2(l—(exp~w2/2)),

We shall need the following result:

Propoeition

Let Zaka and ZkaK be two powerseries and let ZO be-

long to the interiors of both circles of convergence. Then:

k. [d K| k {d ga 2" |
7518 5 - |& 2a
(Eak/O)idZ Lka é ZkaO |3z k |
” Zq 2y
[ . j
— ! I(+n"l . S 4 o
= Zi(n—k)(akbn—anbk}zo : 0 = K<nE
Proof: . r -
ky td | ky td k.
(ZakZO) Ldz Ib, Z | - (ZkaO) az Za¥Z | =
_ K Zg
i i -
£ 1z {ac+1n b (k+1) @ Kk, = t% t
TR R I R O T S S S S S R DL L B I
S 1 2 2 71
o [t+1 t
o T g
= téOLiio (t+1-21) a,b . _ -1 Z,
- @ - z (t+l-n)+n-1 ‘
® phg N (omCerlondd ey Ppmapbeg )2 0 S t+l—n<(t+l)/2’lg
- -
_ ., ktn-1 -
Corollary
Let aO’al""bO’bl"" be real numbers. Suppose Zakxk and
k . .
Zbkx both converges in a neighbourhood of Xy > 0 and that:
(i) a, 20, k=1,2,...

with strict inequality for at least one k

s > <
(ii) akbn = anbk when 0 =2 k < n

with strict inequality for at least one pair (k,n)

Then xXMe—m—> (Zbkxk)/(Zakxk) is strictly increasing in a

a neighbourhood of. xg-



Proof: By the previous proposition:

‘—g_ koo okl Cxy-2 o ktn-1_ <, |
| dx (Zbkx )/\Zakx )Jx = (Zakxo ) Z*L(n—k).(akbn--anbk)xO .O-k<?§>0
o)
(]

Remark

If ak

then (ii) may be written (ii').the sequence bl/al’bz/aZ""‘

>0; k = 0,1,....

is non constant and monotonically increasing.

Corollary
r,¥? has monotonically increasing likelihood ration w.r.t.

2 2 .2
Kr,12’ when wz =z wl.

Proof: This is an immediate consequence of the correspon-

ding fact for pairs of Poisson distributions, the last propo-

X

L
n=

-sition and the formula Kr,wz = 2n+r.

0 be/Z(H)K

Problem

Let & Dbe the one point distribution in 0 and let u be
Leberquemeasure on [0,ol. Define e(x); %20
by e(x) = 0 or 1 as x =0 or x>0
(i) dé/d(u+é) = ¢ ) du/d(u+s) = 1l-¢
(ii) Find the density of Kong w.r.t. ut+s.
(iii) Show that KO;w: has monotonically increasing likelihood ratie
W.r.t. Koawf when 2 2 yf.

Def?nition

i

Let 8§ ¢ J~»,»f and r = 1,2,.... The non central t

distribution with non centrality parameter §é and r degrees of

freedom is the distribution of (U+8)/YZ/r where U and Z are



independent rendom variables - distributed as, respectively,
normal (0,1) and Kr‘ This distribution function will be denoted

by Tr,é and we shall write Tr instead of Tr,O

Proposition

The density - gg- of T/Yr where T has the non central
t-distribution with 1»r degrees of freedom and non centrality
parameter § 1is:

gs(x) = constant g,(x) 2" [exp - %(22—226X/Vi:;2+52)ld2;XQ}—w’m[.

O 38

where
gy(x) = constant (1+x2)~(T*1) /2

and where the constants does not depend on &.

Proof:
Let Y and Z be independent real random variables such

that Y is normal (8,1) and 2Z has a x? distribution with
r degrees of freedom. Then T/¥r has the same distribution as

. . ) - T/ .
Y/VZ. The density of (Y,Z) 1is: constant [exp-(y-8)2/2]z /?(eXP‘Z/Z)

It follows that the density of (X,Z) where X = Y/VZ is:

P/Q—l

constant [exp—(xfi - 6)2/232 (exp-2/2)

Integrating over =z we get:

o . 2 P I‘/z
g5(x) = constant é [exp-(x¥Z-8)7/5 ]z (exp-z/9) dz
Substituting vy = Yz(1+x?) and then replacing y with =z we get:
co -
ga(x) = constant (1+x2)”(P+l)/zfzrrexp—%(22-262X/V1+x2+62)jdz

0
In particular:

gO(X) = constant (1+X2)-(r+1)/2
T has monotonically increasing - or decreasing likeli-

r,6

hood ratio w.r.t. T, as &§ >0 or & < 0.



Proof: By the previous proposition:

g5(x)/gy(x) = constant g zr{expw%(ZEMZGZX/V11§2+82)1dz

and the integrand is increasing or decreasing in x as

8

>0 or & < 0. rﬁ

-

Definition Let v = 1,2,...,8 = 1,2,... and 92 2 0.

The non central F-distribution with » and s degrees of

freedom and non centrality parameter 2 is the distribution

of

(V/r)/(W/s) where V and W are independent random variables

having, respectively, distributions K, 2 and K. This
2

distribution will be denoted by F

i3
r,s

.2 and we will write
r,s,y

instead of F .
9 r,35,0
Definition Let o > 0, B > 0 and 2 2

B-distribution with parameters o and B and non centrality

parameter Y2 is the distribution whose density is:

8—1/ fl >r:n+cl'_l(l—x)8—l

& n+ Q=1 . :
gobwz/z(n) X (1-x) 9 dx; xeJ-w,o[
This distribution will be dcneted by J0 RE and we shall
] bl
write ( instead of & It follows directly from the
a,B a,B,0.

definition that

T = i )
Ya,B,w? nzobwz/z(n'qn+a,e

Proposition Let the real random variables V,W and N

be such that

I'4

(1) (V,N) is independent ef W

(ii) N has the Poisson distribution with expectation 2/,

(iii) W has the distribution KS

(iv) The conditional distribution of V given N is K n..

Then (V/r)/{W/r) has the distribution Fr s, u?
3 5

0. The non central



Proof: The distribution of V is - by a previous propo-

sition - K and V and W are independent. LJ

2
Ty

Propesition

If F has the dstribution K then

r,s,?
[(r/s)F]/ [(r/s)F+1] has the distribution Ter2.s/2.02.

Proof: We may assume that F = (V/r)/(W/r) where V,
W and N has the properties (i) - (iv) of the previous propo-
sition. It follows that

(/)] 7 [(ersrE+] = v/ (vem).

The density of the conditional distribution of (V,W) given
N is:

constant y N+ (r/2)-1 w8/2‘~1 exp-(v+w)/2 3 v > 0,w > 0.

Put X = V/(V+W). It follows that the density of the

conditional distribution of (V,X) given N is:

constantx“sé'l(i—x)S/Q'l z yNtrts)/2-1 (exp-v/2x) dv

= NHr/z —l(l_x)s/g -1 _

constant J' (%)

'N+P/298/2

so that the distribution of X 1is:

E JN+P/2,S/2 = Jf/2 s/, Y2,
2 9

Prepesition
Iy B,y2 has monotonically increasing likelihood ratio w.r.t.
3 2
2
2 2
Jdaﬁsﬁf when wz > “i

e e . (x), (%)
P f: By the definition: , N =
il Jo! \Y e defin n da;ﬁhwi / G,B,Wf

"o
z

(n) constant % / ¥ b 2 ,,(n) constant X
- n - wl/Z n
n= n=0

b, o
0 1112/2
and this..ratio is - by the argument used to preve the cor-
respending statement for the non central x2? distributions -

a strictly increasing function in x. []



- 10 -

C llary F ,
orollar r,s, 02

has monotonically increasing likeli-

hood ratio w.r.t. F when 2 > 2
I‘,S,diz \Pz l}l

Proof:
Follows directly from the last two propositions. f‘j

Let U, U cee sV be independently and normally

1,Y2,° 1
(o,1) distributed. Then

V, ...
2 25

_ 2 2.2 2. <
FP,S[D,XI = P((U] + ... 4UD/(VTH. . 4VE) £ (2 /8)%)

Hence:

Proposition Let pel0,1[. Then (r/s) pol (p) is

r,s

strictly increasing in r and strictly decreasing in s.

A few simple - but useful - facts are collected in:

Proposition:

(i) If T has the distribution Tr 52 then the dis-
2

. . TQ .
tribution of 1is Fl,r,ﬁz.

(ii) If F has the distribution Fr < then the distribution

of F1 is F .
s,r

(iii) If V and W are independent and has, respectively,

distributions K and Kr then V/(V+W) has the

,0

r,p?
distributio J
n P/Q:S/Qa wz'



