
STATISTICAL MEMOIRS 

Lnstitute of Mathematics 
University of Oslo 

SUPPLEMENTARY NOTES ON LDTEAR r10DELS 

by 

Erik N. Torgersen 

No 1 

January 1972 



Content. 

The Lehmann-Scheffe theorem on minimum variance 

unbiased estimation. ••••••••••••••••••••••••••••• 3 pages 

Linear models. £: . II 
• • • • • • • • • • • • • • • • • • • • • • 3 • • • • • • • • • • • 

Linear models with normally distributed variables. 
Sufficiency, minimal sufficiency and completeness. 4 ' " 

Stochastic ordering of probability distribution 
and monotonically increasing likelihood ratios. •• 6- 11 

A few univariate distributions which have appli
cations in the analysis of variance. • ••• , •••••••• 10 II 



MATEMATISK INSTITUTT 

Blindern, 22/10-71. 

Varians analyse 

H¢sten 19'71 

Torgersen 

I. The Lehmann - Scheffe theorem on minimum variance 

unbiased estimation. 

In their joint 1950 paper (Sankhya SerA Vol 10 p.324) 

Lehmann and Scheffe gave a criterion for "uniformly minimum 

variance unbiasedness" of estimators. The criterion has many simple 

generalizations, most of which may be found in Rao's book 

(Linear Statistical ... ) or in Zack's book (The theory of 

Statistical ... ) We shall here consider the obvious generalization 

to the situation where we choose to restrict ourselves to estimators 

belonging to some linear space L of everywhere square integrable 

random variables. 

Consider an experiment ( ( x,~f"\, P 8 : e~ @) a real valued 

function g on (~ and a linear space of everywhere square integra-

ble random variables. The property of beeing minimum variance 

* unbiased within L will be shortened UMVU(L). Formally a o in 

L will be called UMVU(L) if and only if it is unbiased and 

var8 6 ~ var8~ ; e~@ for any other unbiased estimor ~ in L. 

The Lehmann Scheffe theorem extends immediately to this 

situation. 

Theorem. Let oEL be an unbiased estimator of g. 

Then o is UMVU(L) if and only if o is uncorrelated with every 

unbiased estimator of zero which is in L. A UMVU(L) estimator 

for g is un1que up to equivalence. 

* If L is the space of all everywhere square integrable random 

variables then we write UMVU instead of U11VU(L). 
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Remark: The Lehmann Scheffe theorem is the particular case where 

L consists of all square integrable random variables. 

Proof of the theorem: The only difference between this proof and 

that of Lehmann Scheffe is that the restriction "EL" is inserted 

in the natural places. 

0 1 Suppose 8 is UMVU(L) for g and let ¢fL be an 

unbiased estimator of 0. Then 6 + \¢ is - for each A.E}-oo,oo{ + 

an unbiased estimator of g, and it belongs to L. It follows 

that-for each 8- the polynomial var 6 (o+A.¢) = 

2 cov 8 ( o -jP A. + var o has a minimum for A.= 0, and this implies 

cov 8 ( 6 .P> ~ = o • 

2° Suppose a is uncorrelated with any unbiased 

estimator of zero which is in L. Let ~eL be another unbiased 

estimator of g. Then -by assumption cov8 Co }'-cn9o so that 

var 15 :: var {6 + (~ - 8) }/ ~~ vareo + var8 <~- o) ~ vareo; e.:@ e ---
30 Finally let 8 ~ both be UMW (L) estimators of 

Then: E8 co<a-S')eo and E88' Co-6'>=o 8 

Hence 2 
E8i E8 o = E a'S' = s e e 

0 

Corollary: 
Let gl 'g2' · · · · gr be r real valued functions on 

UI1VU(L) 

UMVU(L) 

estimator of 

estimator of 

g. ; i=l,2, ... r. 
l 

r.:c.g .• 
l. l 

Suppose 

Then L: c.o. 
l l. 

o. is a 
l. 

is a 

g. 
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Proof: Let ~~L be an unbiased estimator of 0 with everywhere 

finite variance. 

Then: ~ cov8Crc.o. ,~) = rc.cov8 (o. ,e) = O; e~~ 
~ ~ ~ ~ . n 

Finally let us consider the problem of estimating vector 

valued functions. Let g = Cg1 , g2 , ... gr) be a function f~om 

@to Rr and let o = <o1 ,o 2 , ... ,or)tLr be an unbiased estimator 

of g. Then o will be called a UMVU(L) estimator of g if 

and only if *eo~ *e~, eE® for any other unbiased estimatorS 

in Lr. The case of vector valued estimands may be reduced to 

the case of real valued estimands by 

Proposition. 

of g where 

Let 0 = r <o, ... o )EL r 
' g = (gl' g2' • · · gr ) 

Then o is UMVU(L) for 0 

estimator of g.; i=l,2 ... r. 
1 

if 

is 

and 

be an unbiased estimator 

a functio~ !rom ® to 

only if lL is a UMVU(L) 
1 

Proof: "if": Suppose the condition is satisfied and let 

Rr. 

~ELr be another unbiased estimator of g. Let c be a given 

r~l matrix. By assumption: c' ieee = var6 Ecioi ~ (by the corollary) 

var8r ci~i= c'i 6~c. 
"only if": Suppose 

estimator of g-. 
l. 

g. The inequality 

o is 

Extend 

UMVU(L). Let ~iE L be an unbiased 

~. to an unbiased estimator ~ ~ L r of 
l. 

teo implies var 6~ ~ var8o. [] 
A function g with domain ~ (and any range space) 

will be called identifiable if g is a function of 6 via Pe. 

Equivalently; g is identifiable if and only if g <e1 > = 

g ce 2 > when P81 = Pe~ Let g be Rr valued. Trivially 

any g having an unbiased estimator is identifiable. On the 

other hand, any function of e is identifiable whene~P8 is 1-1, 

and this does positively not exclude the possibility that only 

the constants have . UMVU . estimators. 
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Linear models 

We shall in this section consider the situation where our 

il{ I I 
vector Y" :: CY1 , ... ,Yn) of real valued random variables satis-

fies the following requirements 

cl. : 
J.n 

(The linearily condition) There is a sub space V 

of Rn so that EY a priori is, and may be any 

vector 1n V. 

c 
err (This is a condition on the 11 error 11 Y - EY) 

tY = cr 2I -where I is the nxn identity matrix 

and cr > 0 is more or less unknown. 

Let 
(1) (2) [a , a , ... be a basis for V i.e. the 

vectors a(l), a( 2) , ... a(p) spans V. 

matrix whose i - th column J.S a(i) 

a(p)). 

We vJill express the projection 

first - SJ.nce rr ( y) la 
(i) 

,l ::: l ' .... 'p 

1T 

-

Denote by A 1 

ie A'= (a(l) 

on v by A. 

that A(rr(y)-y) 

A?T(y) :: Ay. Hence ?T(y) may be v.:rri tten TI(y) = A'-b(y) 

the pxl matrix b(y) satisfy: 

AA:1.b (y) = Ay 

the 

(2) 
a 

.nxp 

' a • &I 

Note 

:: O,ie 

where 

* We use~throughou~ the convention that a vector 1n some space 

Rm is - when it is considered as a matrix - a column matrix. 
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These equations are called the normal equations. 

Conversely - let b(y) be a solution of the normal equations. 

Decomposing 

y-A'b(y)lV. 

y = A 1 b(y) + (y-A 1 b(y)) we see that A 1 b(y)EV 

I 
Hence rr(y) ~A b(y). We have proved: 

while 

Proposition. 

The prejection rr(y) of a vector n yfR on V may be 
I 

vwitten A b(y) where the p x 1 matrix b(y} is and may be any 

solution of the normal equations AA 1 b(y) = Ay. 

Let L be the space of linear functions of Y1 ,Y2 , ... Yn i e 

ofL if and only if there are real constants d 1 ,d 2 , ... dn so that 
n 

o = E d·Y·. L is- for any fixed distribution of 
. 1 l. l. l.= 

fying Cerr - an inner product space if we consider 

Ed.Y.) = {Eb.d. )cr 2 as the inner product of Eb·Y· 
l. l. l. l. l. l. 

Y - EY satis-

and Ed. Y .• 
l. l. 

The sub space Lv of L c•nsisting of all 
I 

Ed.Y. where d = 
l. l. 

(dl·•· ,dn)'~V will be called the estimation space, and the sub 

space Lvl of all E 1 · i d.Y where d V w1.ll be called the error 
l. 

space. 

Clearly: 

The projection on Lv maps 
I 

d Y onto 
1 

rr(d) Y. 

The justifications fer the terms estimation space and error 

space are: 

Prop•sition 

LV is the space of UMVU(L) estimators and Lvl is the 

space ef unbiased estimators of 0 which belong to L. 

Pr~of: 1° E < d,Y > = o <=> d~v+ 
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2° <d,Y> is a UHVU(L) estimator (of its expectation) 

<=> Cov (<d,Y>,<b,Y>) = <b,d> cr 2 = 0 when bt:VJ.. 

< = > d E < v.+. )1 = v • 

Here is the basic result on UMVU(L) estimation under cl. l.n 

and Cerr 

Theorem* Consider the representation EY = A 1'?; of EY and let 

c € Rp. The following conditions on the estimand \jJ: S ~ c' B 

are equivalent. 

and: 

Proof: 

(i) 1/J is identifiable 

(ii) \jJ has an unbiased estimator in L. 

(iii) 1/J has a UMVU(L) estimator. 

(iv) c t: [A'j row 

If '$ is a UMVU(L) estimator of ljJ, then it is un1.que 

1) ¢ (Y) 
T = -rr(d) ·y for any unbiased estimator d 1 Y of \jJ 

2) ¢ (Y) = c'b(Y) where b(Y) is any solution of the normal 

equations AA1 b(Y) = AY. 

(i) <=> (iv): \jJ lS identifiable <=> ljJ(l31) = 1/J(S2) when 
I 

A 1 S A ·s = I 

1 2 <=> tiJ(S) = 0 when A. S = 0 <=> Blc when 

sl ~~J row <~> c· € A'· row. 

(ii) <=> (iv): Jd so that Ed1 Y - c' S 
I 

<•> Ja so that d 1 A 'i3 
I 

3:d that d' A' c' c € [At] - c"S <=> so = <=> row. 

H: If M is any matrix, then Mrow and Mcol denotes,respectively 

the space spanned by the row vectors of M and the space span-

ned by the column vectors of M. 
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(ii) <~> (iii): 3d so that Ed y = ~(S) <=> (by the pre-
f 

vious proposition) 3dEV so that Ed ·y = ~(f3) <=> (by the pre-

vious proposition) (iii). 

Let <d,y> and <b,y> both be UMVU(L) estimators of ~ 

then <d-b,y> is a UMVU(L) estimator of 0 ie: d-bEV;(Vj_ = 0. 

Suppose ~ is identifiable and let $ be the UMVU(L) estimator. 

Let <d,y> be any unbiased estimator of ~- It follows directly 

from the previous proposition that rr(d) 1 Y is the UMVU(L) 

estimator of ~ so that: $(y) = rr(d) 1 Y. Let yGRn and suppose 

AA'b(y) = Ay. Then - as we have seen - rr(y) = A'b(y) and $(y) = 

rr(d)"' lrr(y) + Y- rr(y~ = rr(d)'rr(y)! = n(d) 1 A1-b(y) = crb(y) since-

5~ unbiasedness-~(d)LAL = ~1 

The matrix A is -in general-·not of maximal rank. If 

rank A< p then the solutions B of the equation EY =A'S -

for given EY - fill up a infinite - affine space. Uniqueness 

can only be obtained by imposing cenditions on the solutions. A 

result in this direction is: 

Theorem. 
Let W be a sub space of having the property that to 

each BfRP there is at least one ~EW so that A'~ = A'e. 

Then the normal equations 

AA'b = Ay 

has - for given n yER - at least one solution bEW. 

If - in addition - the correspondence B· ~; is single 

valued - then is a linear identifiable (and consequently 

has a unique Ut1VU(L) estimator) function of f3. 

Proof: 

1° if AA 1 b = Ay then - since A 1 b = A'B- AA 1 D = Ay. 

2° Suppose S r-> B is single valued. Let f3 ( 1 ), 



S( 2 )€ Rp be such that 

By uniqueness: at2 ) = 

A's< 1 > 
..., 

13(1). 
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Then 

It follows that f3 is identifiable. 

k s< 2 >> = 
2 

k 2 ~R and let S(l), S( 2)tRP. Then A1 (k 1 B(l) + 

+ k 2A's( 2 ) = k1A's(l) + k2A's\2 ) = A1 (k1f3Cl) + 

B • • .k..--1-:-(13 1)-·+-.__k 2 a i2}- kl o ( 1 ) + k t) 2 ) y un1queness aga1n: ~ - ~ 2~ 

i e the map f3 A--> 13 is linear. The remark in the parantheses 

follows from the previous theorem. 
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Linear models witt normally distributed variables. 

Sufficiency, minimal sufficiency and completeness. 

In addition to our assumptions cl. and c " ln err· 

this sectien assume: 

c norm Y is multinermally distributed. 

vJe will ln 

An immediate and fundamental consequence of C is: norm 

Theorem. Y1 , ... ,Yn are independently and normally distributed. 

Any finite dimensional random vPctor with coordinates in 

L is multinormally distributed. 

This theorem and the fact that uncorrelated coordinates of 

multinormally distributed rand~m variables are stochastically 

independent yield: 

Theorem. The estimation space and the error space are st~chastical-

ly independent. In particular rr(Y) and Y-rr(Y) are 

independent random vectors. 

The main concern, in this section, will be with sufficiency, 

minimal sufficiency and cempleteness. In this section - as in the 

previous section - the condition c 1 . may, occasionally, be ln 

weakened. Some weakenings of c 1 . will here be explicitly ln 

stated. The reader should, however 5 go over the results in the 

previous section with this point in view. 
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It will be necessary te distinguish two dimension concepts. 

Let A be any nen empty sub set of a finite dimensional vector 

space. The largest number k with the property that there are k 

linearily independent vectors 1n A will be denoted by dim A. 

This is, of ceurse, nothing but the dimension of the vector space 

spanned by A. The affine (or geometrical) dimension of A -

written dimg A - is the dimension of the affine space generated 

by A. For any a~A, the set A-a generates the same vector 

space as as A-A. This vector space is the vector space part of 

the affine space generated by A. dimgA is the dimension of this 

vector space. dimg A ::: dim A or dim A-1 as of the affine space 

generated by A or not. 

The basic result on sufficiency is: 

Theorem: (n(Y),IY-n(Y)~) is sufficient. It is minimal sufficient 

if and only if dimg {<EY/0 2 ,1/c/)-1:::: dim V+L 

Let 
2 

0 be fixed. Then n(Y) is sufficient. It lS minimal 

sufficient if and only if the affine dimension of the set of vectors 

EY which are d priori c~mpatible with the chosen 0 2 , is dim V. 

If EY is fixed, then IIY -EY II is sufficient and it is 

minimal sufficient if and ~nly if there is at least twe possible 

values of 
2 

a for the chosen EY. 

Proof: The joint density f'f Y1 , ... ,Yn may be written (2·rrcr 2 )-n/ 2 

exp (-jjy-EY!I 2 /2cr 2 ) = (21Tcr 2 )-n/ 2 [~xp (-(jn(y)- EYW/2cr 2 )] 

[exp <-WY -1T(y) W!2a 2 ). The statements on sufficiency follows 

directly fr~m the facterization criterien for sufficiency. 

Denote EY by n and let be the probability 
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distribution of Y. vJe use the sign :: for ninduce the same set 

be a pessible pair. 2 l 

---> < n I a 2 - n ° I a~ , rr < y ) > + ( a- 2 - a0- 2 ) II!~ /z 5 

At this point we may apply a theorem of Halmos and Savage 

which states that pairwise sufficiency and sufficiency is the same 

for dominated experiments. Moreover ~ since r P 2l lS homogeneeus
L n ,a J 

we may in this case restrict our attention to the set of all pos-

sible pairs (Pfl 0 z,Pno 0 2), 
' I ' 0 

It foll~ws that 

~ .dPn crz/dPn~·-cr;~ :: f y<~-->rr(y),y"--;.IIYI!.J: :[ yn~->rr(y),y -~ 
- '. 'o l . 

ly-rr(y) 111 when dimg {. (n/cr 2 ,l/cr 2 ).l = dim V+l. If dimg 

J .<nla 2 , 1 /cr 2 ). ·~ f dim V, then-· by the same result - rr(Y) and 
I.. 

~Y-n(Y)~ is no longer minimal sufficient. 

The proefs of the ether statements on minimal sufficiency 

are similar but simpler - and is therefore omitted. 

Finally we have the following result on completeness. 

Theorem. ( 1r (Y), IIY -n ( Y) II) is complete provided the interior of 

f.<EY~o 2 ) ~ relative to VxR J.S non empty. 
'-

Let o 2 be fixed. Then rr(Y) is complete provided the 

1-1 

interior relative to V of the set ef vectors which are compatible 

with the chosen a 2 is non empty. 

If EY is fixed then ~Y-EY~ is complete provided the set 

of numbers o 2 which are compatible with the chosen EY contains 

a right sided accumulation point. 

Remark. If D is a set of real numbers then a right sided accumu-

lation peint x for D is a real real number x such that 



Proof: Write n = EY. The joint density of y may be written: 

where the first ( ) is 

a function of Cn ,o 2 ) and the last· c ) is a function of Y 

only. If (p1 ,p 2 , ••• pr) is a linearily independent basis for V 
r 

then <n/o 2 , y> = E ~.<p./o 2 ,y> where ~ 1 ... '~r are the 
. l l l l= 

(p1 , ... ,pr) coerdinates of n. It is easily seen that 

{ (~ 1 /o 2 , ••• ,~r/o 2 , 1 1o 2 )} has interior points- relative to 

Rr+l_ if and only if { (n,o 2 ) i has interior points relative to 

VxR. Completeness follows now from the basic completeness 

theorem for exponential experiments. 

The proof ef the secend statement is similar but simpler 

and is therefore omitted. 

with 

Write Z = ~Y-EY~ 2 • Then 21a 2 has a x2 distribution 
written 

n degrees of freedem. It follows that the density of Z may 

c•nstant (a 2 )-n; 2 in/:2.-l exp (-z/2a 2 ) 

Suppose E0 zh(z.) = 0 for all a priori possible values on 

o 2 • h is integrable w.r.t. the density (N) - for any o 2 >0-

if and only if I(o 2 ) = I:jh(~)lzn/z-l exp (-z/2o 2 ) dz·<oo, 

Hence - since I(o 2 ) is a nen decreasing function of 

o 2 - the set of numbers a 2 >0 so that I(a 2 )<oo is an interval of 

the form ]O,t) Moreover the map 

to R is analytic. It fellews from indentity theorem fer analytic 

functions that I(a 2 ) = 0 for all a 2~]o,tC. Hence- by the 

basic completeness theorem fer exponential experiments - h = 
0 a.e. 0 
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Stochastic ordering of probability distribution and 

monotonically increasing likelihood ratios. 

A probability distribution F on R is called stochastically 

larger then the probability distribution G on R if and only if 

f([x,oo[) ~ g([x,oo[) for all xfR. 

Let the real random variables X and Y be, respectively, 

normal (E,l) and normal (n,l). Then the distribution of X2 is 

stochastically larger then the distribution of Y2 provided 

2 > . 2 
~ = n .. Demonstration: Let a = 0 We must show that 

> or - equivalently that P(IYI ~a) 

If ~ denotes the normal (~) distribution then this inequality 

may be written: 

or -- using the symmetry of 0 : 

9 [I I; 1-a, I ~I +a] ~ ¢ [ In 1-a? In I +a} 
It suffices therefore to show that ~f~-a.x+a] 1s a decreasing 

function of X E (b ~ oo[ . 

Tl1e deri va ti ve of this function, hovJever, is qi' ( x+a) -v 1 ( x-a) 

< = ~'(x+a) -~'(~x-al) = 0 since x+a ~ I x-a.l . 
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The only properties of the normal (0,1) distribution we 

used was unimodali ty and symmetry Let G be any s;.yT:lmetrid unl·-

lllodal -ie x rc.-->G l- 00 ? x[ is con vel£!:.: on J - 00 , 0 [ and -cencave on 

JO,w[_ distribution. Suppose U is a real random variable having 

the distribution G· Then the distribution of (~+V) 2 lS stochas

tically larger than the distribution of (n+V) 2 provided ~ 2 ~ n 2 • 

Let F be any probability distribution on R. Then the 

(lower) fra6tile function of F - notation F-l - is the function 

frcnn ]0,1[ to R which maps p into F-l(p) = inf fx: F]-oo,x[ ~ pj 

The following result lS often useful: 

Proposition 

If LJ 1s uniformly distributed on ]o,l[ then F- 1 CU> has 

distribution F. 

Proof: 

,f'· < 
p (F- 1 (U) < x) 

P(LI~F]-oo,x[) 
( = 

F J-oo, x[ = ) ~ _l 
p CF -'-CU) < x) ,_ 

Stochastic ordering of probability distributions 1s related to 

the ordering of random variables through: 

Proposition. 

If X and Y are real random variables such that X ~ Y 

then the distribution of 

distribution of Y. 

v 
~~ lS stochastically larger than the 

Conversely; let the distribution F be stochastically larger 

than the distribution G. Then there are real random variables X 

and Y on some probability space having, respectively, distributions 

F and G such that X~ Y. 
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Proof: 

Only the last statement needs a proof. 

chastically larger than G· Then F-l ~ G-l 

Suppose F is sto

Let U be uniformly 

distributed on ]0,1[ Then X = r-1 CU) and Y = G- 1 <U) have the 

desired properties. 

Many properties of the stochastic ordering of distribution 

functions are simple consequences of the last proposition. We 

restrict ourselves to the following two propositions. 

Proposition. 

Let F be stochastically larger then F. Then 

[J 

> fhdF fhdF for any monotonically increasing function h such that 

both integrals exists. 

Remark. 

A converse may be obtained by considering the indicator 

functions h of intervals of the form [ x, c.:o[. 

Proposition. 

If F. 
l 

is stochastically larger than G . , i = 1, 2, ... n, 
l 

then F1 H •• ·*Fn is stochastically larger than Gl* ···*Gn· 

A much stronger property that 11 beeing stochastically larger" 

is the property of having monotonically increasing likelihood ratio. 

Suppose F and G are glven by densities f and g respectively 

w.r.t. some measure ~ on R (ie on the class of Borel sub sets of R) 

R). Then we shall say that G has monotonically increasing likeli-

hood ratio w.r.t. F if it is possible to specify ~,f and g so 

that g/f is monotonically increasing bn its domain which is 

[ f >0] u fg >OJ) I·t is easily seen that if G has monotonically 

increasing likelihood ratio w. r. t. F, and v is any measure such 

that F and G have densities f and g, respectively, w.r.t. · v, 
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then f and g may be specified so that g/f is monotonically 

increasing. In particular we may use v =f+G and choose f and g 

so that, > > 
f = 0, g = o , f + g = 1 and 

increasing. 

Propos~tion 

p 
0 

is monotonically 

Let G have monotonically increasing likelihood ratio w.r.t. 

F. Then any test 8 of the form 

,, -
\j - 'y' I .- , + 

i:::! ·~ 
\,. .-6 

I] C>:'r 
c' -

is a most powerful level a = fodF test for testing F against 

G provided a>O. 

Proof: 

Let f = dF/d(F+G), g = da/d(F+G) = 1-f We may choose 

so that it lS monotonically increasing and < g :: l. Then f(c)>O 

(if otherwise, then a = 0). Let ¢ be another level a test. 

Then: fodG - ftPdG = J(o-tP) (g-(g(c)/f(c))f)d(F+G)+(g(c)/f(c))f(CH)>)fd(F+G). 

The first term on the right is > :: 0 Slnce the 

integrand is > 
0, and the last term is > ~ < = 0 Slnce ftPdf = a. 

Hence J6dG ~ f¢dG. 

Problem 

Does this proposition have a converse? 

Proposition. 

Let G have monotonically increasing likelihood ration w.r.t. 

F. Then G lS ~tochastically larger than F. 

Proof: 

We must show that F[c,oo[ ~ G[c 5 ~ for any real ~umber c. 

It suffices to consider the case where a = F[c,oo[> 0. Then 

I is a most powerful a test for testing F against G. 
( C, oot 

Hence - since a most powerful test is unbiased - < a = F[c,oo( 
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Let F and G have, respectively, densities xA--~[n(l+x 2 il -l 

and x~ [ir(l+(x-1)) 2 ] -l w.r. t. Lebesque measure. Then G 

is stochastically larger than F. G does not, however, have 

monotonically increasing likelihood ratio w.r.t. F. 

If F and G have densities f and g v.1. r. t. some measure 

~ such that g/f is monotonically decreasing in x then we 

shall say that G has monotonically decreasing likelihood ratio 

w.r.t. F. If so, then dF/dv and dG/dv may - for any 

a finite measure v dominating F and G - be specified so that 

(dG/dv)/(dF~V) is monotonically decreasing. In particular we 

may specify dG/d(F+G) so that it is monotonically decreasing. 
Jtb): J?.Utti_l)g,. 

To any measure F onJ-oo,oof we may constru ano1:1leFVF(B)=F(-B) 

for aach Borel set B. It is easily seen that G has monotonical-

ly decreasing likelihood ratio w.r.t. F if and only if 
....... 
G has 

monotonically increasing likelihood ratio w.r.t. F and this holds 

if and only if F has monotonically increasing likelihood ratio 

w.r.t. G. The last two propositions yields therefore: 

~erollary 

Let G have monotonically decreasing likelihood ratio.\ w.r.t. 

F. Then any test of the form 

8 = 
is a most powerful level ~ = !odF test for testing F against G 

provided ~ > 0 . 

. corollarv 

Let G have monotonically decreasing likelihood ratio w.r.t. 

F. Then G is stochastically smaller that F. 
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References on moncton likelihood ratio are: 

Rubin, Karlin. 1956 

Karlin, 1956 

Karlin, 1957 

Karlin, 1958 

The theory of decision procedures for 

distributions with monotone likelihood 

ratio, A.M.S, 27:272-300 
/ 

Decision theory for Polya type distributions 

Case of two actions I. Proc. Third Berkeley 

Symp. Math. Statist. Prod. ,1;115-128 

Polya type distributions II A.M.S. 28:281. 

P61ya type distributions III A.M.S. 29:406. 



MATEHATISK INSTITUTT 

Varians analyse 
H¢sten 1971 
Torgersen, 

Blindex'n, 

A few univariate distributions which have - -
~ications in the analysis of varians. 

Definition Let > 
l/J = 0 and r = l, 2 , .... The non central 

x2 distribution with r degrees of freedom and non centrality 

parameter $ 2 lS the distribution of (U1 +t~J) 2 + u:+ U~ + ... +u; 

where u1 , ... ,U are independently and normally (o,l) distributed. 
r 

We shall denote this distribution by 

instead of 

N . If ' ~ 0 d 0 1 otat1on ~ an n= , )''" 
I 

and we will w~ite 

then we will write 

K r 

le b~(n) is the probability that X = n 

when X has the Poisson distribution with parameter ~- Note that 

the possibility A = 0 is not excluded. 

Proposition The following random variables have the distribu

tion K 2 r,!p . 

(i) X~+ ... +x; where 

distributed such that 

i=l, ... ,r . 
. 

( .. , X 2 xz 
111 1+ ... + 2N+r where 

random variables such that 

are independently and normally 

v X ' t\l' , 2 , ••• ana 

X. 
l 

is normal 

N 

and var X. ::.: 1 ; 
l 

are independent 

(0,1); i = l, ... 

and N has the Poisson distribution with expectation $ 2 /2 

(iii) Z where the conditional distribution of Z g1ven N lS 

K2N+r and N has the Poisson distribution with expectation ~ 2 /2 
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We will prove this proposition by first ng part i) and 

- using that result - prove: 

Proposij:ion 

K ,, " 
r+s,~r+¢'" 

Finally this proposition will be used to prove parts (ii) 

and (iii) of the first proposition. 

Proof of part (i) of the first proposition: Let C 

be a r x r orthonormal matrix such that: 

< v (}j(~)T+~~-~-+T Ex;5 2', o , ... , o ) ' = c c Ex1, ... ~ EXr) , 

Introduce new random variables Y1 , .. ~Yr by: 

(Y1 , •.. ,Yr)' = C(X1 .,.\)'. Then Y1 , ... ,Yr are independently 

and normally distributed, each 

distribution of 

y, 
l 

Proof of the second proposition: 

having variance 1 and 

lS K ,~o2 
r,'~' . 

be independently and normally (0,1) distributed. By the definition 

of the non central x2 distribution 

(V1 +¢) 2 + v:+ ... + Vr2 has the distribution K ,1,2 H K ~2· Part (i) r,'+' s~,p 

of the first proposition, however, imply that this distribution is 

Kr+s,lj;2+¢z. 

Proof of parts (ii) and (iii) of the first proposition. Simple 

calculations show that 

K' z(x) =constant X-~ (exp- x/2) (exp- 1JJ 2 /,2 cosh vx\jJ x>O 
blj; 

In particular 

K• 0 (x) = constant 
1' 

x>O· 
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By induction - using the convolution formula -

-· constant :drl _ 
x exp (- \ n 2JS X > U. 

Using the power set>ies expansion of cosh we get: 

Hence 
1 

co 

= z n=O 

co 

constant 

= Z constant b,,,~ 1 (n) n=O n o/~ 2 

co 

=n~O constant n b~ 212 (n) 

It follows - since constant does not depend on $ -by the 
n 

completeness of the family of Poisson distributions that 

constant n = l,n=l,2, ... 

Hence co 
K /,2 = 1:: 

T',Ty n=Q 
b,1, 21 ( n) K2 + 

'+' 2 n r 
when r = 1 

If > 
r = 2 then the convolution formula yields: 

K 12 = Kl ,,,2 H K l = ro b.z 1 (n) K2 +l K K 1 = ! 0 b,z/ (n)K2 + r,lfJ ,y r- n=O \jJ . 2 n r-_ n= Vi 2 n +' 

This proves (iii) and (ii) is just~ :~rticular form of (iii) 

Problem 

(i) Work out the constant factor in K; 

(ii) Use (i) to find expectation and varlance in K2 

(iii) Use (ii) and the convolution formula K1 H K1 = K2 

to find expectation and variance in K1 

(iv) Use (iii) and the convolution formula to find expectation 

and variance in K 
r 

(v) Use (iv), part (iii) of the first proposition and the 

formulas: 

EZ = E(EZlN) 

and 

0 



var Z = E(varZIN) + var(EZIN) 

to show that expectation and variance 1n K lj;2 r ' ' 
are, respectively, 

Problem 

( i) Work out the constant factor in K' 
r 

(ii) Using (i) show that 

~ n/ ( ' I 2 2 x+ l ' ( 2 ) ~ 0 x n., = e K 2 ~ x 
n= ,L 

(iii) Define the non central x2 distribution with 0 

degrees of freedom and non sentrality parameter lj; 2 by: 

where K 
0 

is the one point distribution in 0' 

Extend some of the previous results so that the extensions 

(iii) 

permits 0 degrees of freedom. In particular show 

that K 12 = K * K 2 andfind -using (ii) -
r,~ r,o O~l/J 

a "closed 11 form for the density of the absolute con-

tinuous part of 

of the last problem tells us that a non central 

tribution with r degrees of freedom is a random 

translation of the central x2 distribution with r 

degrees of freedom. If ~ 2 lS the non sentrality 

dis-

parameter, then the random translation has the distri~ 

but ion which has expectation ~ 2 

Another consequence is the inequality: 

11Kr,1);2 - Kr,oll ~ 2(1-(exp-~ 2 / 2 )) 

where I •!I denotes total variation. 

and variance 
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Demonstration: II Kr '\jJ 2 - Kr ' 0 II = II Kr ' 0 * ( K 0 ' \jJ 2 ~ K 0 ) I < 

< 

We shall need the following result: 

!:££Poeition 

Let and be two powerseries and let be-

long to the interiors of both circles of convergence. Then: 

= 
r k+n-1 

I~(n-k)(akb -a bk)Z 0 l n n 
0 < k<n I' 

'-

= 

,.., 
= t+ 1-n<( t+ 1) I 2~' 

J 

( · z k+n-1 
=L; t(n--k)(a.kb -a b1r) . 0 ... n n J\. 

Corollary 

Let a 0 ,a1 , ... b 0 ,b1 , ... be real numbers. Suppose 

~bkxk both converges 1n a neighbourhood of x 0 > 0 

(i) > a = 0 k - 1 2 k ' -- ', ... 

with strict inequality for at least one k 

(ii) akbn ~ a b when 0 ~ k < n n k 

with strict inequality for at least one pair (k,n) 

k 
L:akx and 

and that: 

is strictly increasing 1n a 

a neighbourho6d of. x 0 . 
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Proof: By the prevlous proposition: 

-~ 

( ~b k) 1 t" k) I 
L; kx , t:..akx : ' . J 

Remark 

xo 

If ak > 0; k = 0,1, .... 

then (ii) may be ~t-7ritten (ii ):the sequence b1 /al,b 2/a 2 , .... 

is non constant and monotonically increasing. 

Corollary 

K ,,,2 r,'Y has monotonically increasing likelihood ration w.r.t. 
2 

when 

Proof: This is an immediate consequence of the correspon-

ding fact for pairs of Poisson distributions, the last propo

sition and the formula Kr,1/J2 =n~O b,~z 12 (n)K2n+r. 

Problem 

Let 8 be the one point distribution in 0 and let ll be 

Leberquemeasure on [O,oo[. Define > e:(x); x=O 

by ~(x) = 0 or 1 as x = 0 or x>O 

<i> do/d(lJ+o) = s ctv/d(lJ+o) = 1-s 
J 

(ii) Find the density of K0 ,~ 2 w.r.t. lJ+o. 

~--; 

LJ 

(iii) Sho~<v that K0 ,1, 2 has monotonically increasing likelihood rati• 
' 'tz 

w.r.t. when 1/J; ; 11]_2 • 

Definition 

Let ;;: ,-.c 1 __ o:l 00 [ ai1d r ~ 1 2 u - ... ~ - ' , •••• The non central t 

distribution with non centrality parameter o and r degrees of 

freedom is the distPibution of (U+ o) I Vz/r vJhere U and Z are 
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independent ra~dom variables -distributed as 5 respectively, 

normal ( 0 ,1) and K . 
r This distribution function will be denoted 

by and we shall write Tr instead of T r, 0 

Proposition 

The density - g 0- of T /Vr., whel"e T has the non central 

t-distribution with r degrees of freedom and non centrality 

parameter o is: 

g 0 (x) - constant g 0 (x) 

where 
g 0 (x) = constant (l+x 2 )-(r+l)/2 

and where the constants does not depend on c. 

Proof: 

Let Y and Z be independent real random variables such 

that Y lS normal ( 6, l) and Z has a x 2 distribution vJi th 

r degrees of fr>eedom. Then T/{r' has the same distribution as 

Y/V-Z"'. The density of {Y,Z) is: constant 

It follows that the density of (X,Z) where 
2; ~, r/ 2-1 

- r /2. . 
[exp-(y-cS) 2 /~jz : (exp-Z/2) 

X = Y/VZ-.. is: 

constant [exp-(x>r:i- o) 2Jz (exp-z/2) 

Integrating over z we get: 

g 0(x) = constant 

Substituting y = 'v'z(T+-x~-) and then replacing y vJi th z we get: 

- ? --(r+l)/ 200 rr , 2 2 , --z z 1 g 8 Cx) = constant (l+x-) Jz lexp-~(z - ozx/Vl+x +o )Jdz 

In particular: 

go(x) 

Corolla..E_Y 

0 

Tr,o has monotonically increasing -- or decreasing likeli-

hood ratio w.r.t. Tr as 6 > 0 or 6 < 0. 

u 
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Proof: By the previous proposition: 

c:; rr -- ? 1\t--2 2 l 
g~(x)/g 0 (x) = constant f z 1 exp-~(z~-28zx ~l+x +6 )Jdz 

l) 0 -

and the integrand is increasing or decreasing in x as 

o > 0 or a < 0. 

Definition Let r = 1,2, ... ,s = 1,2, ... and ,,,z ~ 0 
't' • 

The non central F-distribution with r and s degrees of 

freedom and non centrality parameter l/) 2 lS the distribution 

of (V/r)/(W/s) where V and W are independent random variables 

having, respectively, distributions 
K '" 2 r,'+' 

and K s . This 

distribution will be denoted by and wr2 v1ill write 

F instead of 
r,s 

Definition Let a > 0, S > 0 and ~ 2 ~ 0. The non central 

a-distribution with parameters a and B and non centrality 

parameter l/) 2 is the distribution whose density is: 

write 

This distribution will be deneted by Ja,B,l/J 2 and we shall 

J Q instead of ~ a 0 It follows directly from the 
a,~-> a,~-',-. 

definition that 

= 'f b 2 (n'IJ n=ol/J/ 2 -'.n+a.,S 

Proposition Let the real random variables V,W and N 

be such that 

(i) (V,N) is independent ef w 

(ii) N has the Poisson distribution with expectation 1j;2/2 

(iii) \tJ has the distribution K s 

(iv) The conditional distribution of v given N is K 2N+r. 

Then (V/r)/(W/r) has the distribution F 2 
r,s~lj; 
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Proof: The distribution of V is - by a previous propo-

sition- K 1 2 and V and W are independent. r,1j! 

.:proposition 

If F has the d.:i3tribution K 2 r,s,tp then 

[<r/s)F]/ [<r/s)F+l] has the distribution J 2 r/2,s/2,1jJ . 

Proof: We may assume that F = (V/r)/(W/r) where V, 

W and N has the properties (i) - (iv) of the previous propo-

sition. It follows that 

[Cr/s)FJ ![(r/s)F+l] = V/(V+W). 

!.] 

The density of the conditional distribution of (V,W) given 

N is: 

constant vN+(r/ 2 )-l ~vs/2 -1 exp-(v+w)/2 ; v > O,w > 0. 

Put X = V/(V+W). It follows that the density of the 

conditional distribution of (V,X) given N is: 

constantx-&Q-l(i-x)s/2~1 6 vN+(r+s)/ 2-l (exp-v/2x) dv 

= constant i~N+r/2 -l ( 1-x) s/2 -l = J' (x) 
.N+rf2,s;2 

so that the distribution of X is: 

Prepe_~ition 

J 2 has monotonically increasing likelihood ratio w.r.t. 
a~S,\jJ 

2 

·1 when ''•2
2 > 1IL2 Ua,t3;tiJ.2 - 'V TJ_ 

Preof: By the definition: 

00 

L: L,1 2/ (n) 
n= 0 ~J2 2 

constant xn 
n 

= 
n 

constant x 
h 

and this ratio is - by the argument used to pr•ve the cor

respcnding statement for the non central x2 distributions -

a strictly increasing function in x. 0 



Coi'ollary 
has monotonically increasing likeli-

hood ratio w.r.t. 

Proof: 

F 2 when 1'• 2 > ·,11 2 
-r,s,~ ""2 rl 

Follows directly from the last two propositions. 

Let u1 u2 .... ,V1 V2 .... be independently and normally 
' ' ' ' 

(o,l) distributed. Then 

F fo x] = P ( ( u12 
r,s!. ' 

Hence: 

Proposition Let pe:)O,l[. Then 

< (r /s )x) 

-1 (r/s) F (p) 
r,s lS 

strictly increasing ln r and strictly decreasing in s. 

A few simple - but useful - facts are collected in: 

Proposition: 

(i) If T has the distribution T ~' then the dis-
r ~ u 

tribution of 
') 

T~ is F .1:'2 l,r,u . 

0 

(ii) If F has the distribution 

of F-l is F 

then the distribution 

s,r 

(iii) If V and W are independent and has, respectively) 

distributions K 0 r, then V/(V+W) has the 

distribution 


