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Abstract

Acoustic waves propagating in anisotropic media are important for various

applications. Even though these wave phenomena do not generally occur in nature, 

they can be used to approximate wave motion in various physical settings. We 

propose a method to derive wave equations for anisotropic wave propagation by 

adjusting the dispersion relation according to a selected type of anisotropy and 

transforming it into another metric space. The proposed method allows for the 

derivation of acoustic wave and eikonal equations for various types of anisotropy, and 

generalizes anisotropy by interpreting it as a change of the metric instead of a change 

of velocity with direction. The presented method reduces the scope of acoustic 

anisotropy to a selection of a velocity or slowness surface and a tensor that describes 

the transformation into a new metric space. Experiments are shown for spatially 

dependent ellipsoidal anisotropy in homogeneous and inhomogeneous media and 

sandstone, which shows vertical transverse isotropy. The results demonstrate the 

stability and simplicity of the solution process for certain types of anisotropy and 

the equivalency of the solutions.
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1. Introduction

Anisotropic wave propagation has a variety of different applications because, 

compared with isotropic wave propagation, it is a more general representation 

of wave propagation and is valid in a wider range of materials. For instance, 

recent scientific attention has been focused on the development of devices that 

can appear to cloak objects. Prototypes of such devices have been constructed 

that bend certain wavelengths of light using metamaterials [1, 2]. In the case of 

acoustic waves, a device for preferential propagation of the sound through one of 

two possible and symmetrically aligned channels has been constructed, leading 

to effective anisotropic propagation of the wave [3]. Other metamaterials enhance 

the amplitude of sound waves before entering a microphone to enhance sensors 

[4]. These metamaterials are composed of sub-wavelength meta-atoms that lead 

to wavelength-scale effects such as non-reciprocal propagation of waves, negative 

refraction and wave isolation [5, 6]. Current cloaking technology is based on the 

concept of bending the wave around an object such that properties of the wave do 

not change, rendering the object in between the source and the sensor undetectable. 

As such, coordinate transformations that maintained the invariance of the wave 

properties have been defined, for electromagnetic waves [7], elasto-dynamic waves 

[8] and for acoustic waves in 2D [9] and 3D [10]. In addition, there exists a 

mathematical similarity between acoustic waves (longitudinal, compressional or 

P-waves) and transverse or s-waves through mapping the material properties [11]. 

Therefore, the modeling of anisotropic acoustic waves can be used to study several 

types of wave propagation. In this paper, we present a new and generic approach to 

model anisotropic acoustic wave propagation based on metric space transformations.

Metric space transformations have been proposed to handle anisotropy before. 

Dellinger [12] proposed to stretch a circle to model elliptical anisotropy, while 

Joets and Ribotta [13] applied the idea for the propagation of light in anisotropic 

media where the ray trajectories are the geodesics of an anisotropic metric space. 

Borovskikh [14] used the duality of anisotropy and metric space for a theoretical 

treatment of various eikonal equations for anisotropic media.

The first advancements in anisotropic wave propagation were made by physicists in 

the 19th century to investigate the propagation of light; however the major advances 

in anisotropic wave propagation were in the field of seismology [15]. The full 

anisotropic behavior is defined by a fourth-order tensor 𝑐𝑖𝑗𝑘𝑙 to relate stress and 

strain. Due to the inherent complexity of this tensor, Voigt [16] noticed symmetries 

that allowed the 3 × 3 × 3 × 3 tensor to be reduced to a 6 × 6 symmetric matrix 

𝐶𝛼𝛽 . For particular anisotropic materials, the number of potential coefficients is 

further reduced; to 5, for example, for transversely isotropic materials, or to 9 

for orthorhombic media [17]. For three-dimensional metric space transformations, 
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9 coefficients must be defined, as we will show below. In the next section, a method 

is presented that generalizes the procedure of deriving wave and eikonal equations 

for different kinds of anisotropy.

In nature, acoustic media does not physically admit body waves with anisotropic 

behavior; only a wave traveling along a curved manifold or through a moving 

medium can exhibit anisotropic behavior. However, it is possible to construct wave 

and eikonal equations for acoustic, anisotropic wave propagation by using the 

dispersion relation of the wave equation [18, 19]. The idea is to design a metric 

space for which the media properties are isotropic [14]. Hence, using the duality 

of anisotropic media and metric space, the anisotropic case can be treated like the 

isotropic one. Therefore, the benefits of the solution of the acoustic wave equation in 

isotropic media, like the simplicity of the mathematical treatment and the stability 

of the numerical solution, are inherited by the resulting equations for anisotropy. For 

elastic media, the acoustic wave equation is used as an approximation of the plane 

wave (P-wave) motion [18], while ignoring shear waves [18, 19]. Other situations in 

which anisotropic, acoustic wave propagation can be encountered are electric waves 

in muscle tissue [20, 21] and acoustic waves in moving media.

A metric space is in general defined by a set for which distances between all elements 

are defined. The definition of the distance between elements of the set is called a 

metric. The metric induces a topology on the set which leads to our definition of 

anisotropy. The duality of a metric space and anisotropy shall in this paper be used to 

generalize various types of anisotropy into one theory. The proposed unified theory 

can be used to derive simple, stable and efficient numerical solvers for wave and 

eikonal equations, and for a better theoretical understanding of anisotropy. A form of 

stretching the elliptical anisotropy iteratively to obtain a solution to the transversely 

isotropic eikonal equation can be found in Waheed et al. [22].

In homogeneous media, a sphere describes the velocity surface for the isotropic 

case. For ellipsoidal anisotropy, the sphere can directly be transformed into the new 

metric space by using the corresponding basis (Figure 1). Another version of this 

transformation was also used in Stovas and Alkhalifah [23]. This principle can be 

adapted for other types of anisotropy by using different 𝐿𝑝 norms for the computation 

of distances. At first, a surface must be chosen to describe the wave front, which can 

then be stretched and tilted by transforming it into another basis for the velocity. 

From the resulting surface, a dispersion relation can be derived which leads to the 

corresponding wave equation. From the wave equation, the corresponding eikonal 

equation can be obtained. The eikonal approximation provides information about 

first arrivals [24], does not account for caustics [25] and requires a sufficiently well 

defined source [26] if amplitudes are of interest. Even so, eikonal models are widely 

used in many fields as approximation due to their simplicity [27, 28]. Additional 
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Figure 1. A comparison of a circle in different metric spaces. The circle on both sides of the figure is the 
set of all points satisfying 𝑥2 +𝑦2 = 1. The underlying metric on the left side is the euclidean metric. The 
underlying metric on the right side is obtained by compressing and rotating the corresponding basis by 
45 degrees with respect to the standard basis.

to the approximation of wave propagation, the solution of the eikonal equation has 

many other applications in a large variety of fields [14, 21, 26, 29, 30, 31, 32, 33].

The proposed theory can be derived by using a new basis for the slowness or the 

velocity; however, the chosen basis for the velocity in this work is more illustrative. 

The proposed method generalizes various types of anisotropy and offers a simple 

derivation, implementation and application since the given tensor field at each 

model point is illustrative, and dealing with angles between semi-principal axes 

and coordinate system axes [19] can be avoided. There is a natural limitation of the 

method due to the definition of a metric space. All elements of the set have to have 

a well (uniquely) defined distance between them. Therefore, triplications can not 

be accounted for. However, triplications only occur in very rare cases under certain 

circumstances and are therefore seldom considered in practice [34].

The remainder of the paper is organized as follows. Firstly, the theory section gives 

an overview of the idea and the physical background. Starting with the dispersion 

relation of the acoustic wave equation, a new wave equation for tilted ellipsoidal 

anisotropy is derived and generalized for other types of anisotropy. The results 

section shows five examples to illustrate the functionality of the method, including 

solutions for homogeneous and inhomogeneous anisotropic velocity fields and field 

specific examples.

2. Theory

The theoretical treatment starts with the dispersion relation

𝜔2 = 𝑘21 + 𝑘22 + 𝑘23, (1)

of the acoustic wave equation in three dimensions

𝜕2𝑢(𝐱, 𝑡)
2 = 𝑐2∇2𝑢(𝐱, 𝑡), (2)
𝜕𝑡
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Figure 2. The figure shows different shapes of super-ellipses in the form 1 = 𝑥𝑛 + 𝑦𝑚. Super-ellipses 
can be used to describe slowness or velocity surfaces in the phase space with coordinates 𝑝1 , 𝑝2, 𝑝3 or 
𝑣1, 𝑣2, 𝑣3 respectively. Shape of the super-ellipse with a) 𝑛 = 𝑚 = 1

2 , b) 𝑛 = 𝑚 = 2, c) 𝑛 = 𝑚 = 4. Note 
that for non-integer exponents the procedure would lead to fractional derivatives in the wave equation 
which are numerically more difficult to handle. Super-ellipse surfaces are shown here as simple examples 
for possible velocity or slowness surfaces. However, the method is applicable to various surface shapes.

where 𝜔 is the angular frequency, 𝑐 is the wave velocity, 𝑘𝑖 is the wave number in the 

direction 𝑖, ∇2 is the Laplacian operator and 𝑢(𝐱, 𝑡) is a scalar function. Equation (1)

can be divided by 𝜔2 and represents a slowness surface

1 = |𝑝1|2 + |𝑝2|2 + |𝑝3|2, (3)

where 𝑝𝑖 = 𝑘𝑖∕𝜔. The slowness surface in the form (3) represents a spherical wave 

front in the phase space with coordinates 𝑝1, 𝑝2, 𝑝3 of an acoustic wave, traveling 

in homogeneous media with the wave velocity 𝑣 = 1 m∕s for a travel time of 𝑇 =
1 s [35]. From this idea, various slowness surfaces can be constructed depending 

on the anisotropy one wants to model. The surfaces are in general not restricted to 

sixth-order polynomials like surfaces for waves in an elastic medium. Even though 

the method can be applied to a large number of surfaces, the focus in this work will 

be on velocity surfaces that can be described as a super-ellipsoid (Figure 2) in the 

form

1 =
||||𝑥1𝑎 ||||𝑛 + ||||𝑥2𝑏 ||||𝑛 + ||||𝑥3𝑐 ||||𝑛 , (4)

since the resulting derivation of the corresponding wave equations are mathemat-

ically simpler and the numerical treatment is less complicated. In Equation (4), 𝑎,𝑏

and 𝑐 represent the lengths of the semi-principal axes, which equal one in our case 

since the stretching is performed by the transformation into a new metric space. For 

𝑛 = 2 equation (4) represents a sphere and will build the basis for tilted ellipsoidal 

anisotropy. From the slowness surface the corresponding dispersion relation can be 

derived.

The procedure to derive an acoustic wave equation in anisotropic media will be 

described using the example of tilted ellipsoidal anisotropy. The starting point is 

the dispersion relation for an isotropic medium (1) which must be transformed into a 

new metric space for the velocity. The corresponding tensor describing a new basis 

is given as
liyon.2017.e00260
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𝑉 (𝐱) =
⎛⎜⎜⎜⎝
𝑉11(𝐱) 𝑉12(𝐱) 𝑉13(𝐱)

𝑉21(𝐱) 𝑉22(𝐱) 𝑉23(𝐱)

𝑉31(𝐱) 𝑉32(𝐱) 𝑉33(𝐱)

⎞⎟⎟⎟⎠ , (5)

where 𝑉𝑖1, 𝑉𝑖2, 𝑉𝑖3 are orthogonal vectors of the new basis. The tensor 𝑉 describes 

a possibly spatially dependent basis and leads to a new group velocity surface at 

each point in space, like the standard basis for the Euclidean space gives the group 

(and phase) velocity surface for isotropic wave propagation; therefore, it will be 

referred to as velocity tensor in the course of the paper. The velocity tensor defines 

a metric space at each model point. The corresponding metric space shall be called 

the velocity space. The velocity tensor must not be confused with the velocity itself 

which can be set to 1 m∕s everywhere. The dispersion relation (1) can also be 

transformed to a new basis 𝑆 by applying

𝑆−1𝐤 =
⎛⎜⎜⎜⎝
𝑆−1
11 𝑘1 + 𝑆−1

12 𝑘2 + 𝑆−1
13 𝑘3

𝑆−1
21 𝑘1 + 𝑆−1

22 𝑘2 + 𝑆−1
23 𝑘3

𝑆−1
31 𝑘1 + 𝑆−1

32 𝑘2 + 𝑆−1
33 𝑘3

⎞⎟⎟⎟⎠ , (6)

where 𝑆 is a tensor for the new basis that yields the slowness surface and will 

be referred to as slowness tensor in the course of the paper. The slowness tensor 

describes a corresponding metric space that shall be called the slowness space. 

The translation of the velocity space into the slowness space can, for ellipsoidal 

anisotropy, be approximated by preserving the direction of each basis vector and 

inverting its length and is given by

𝑆𝑖𝑗 =
𝑉𝑖𝑗

𝑉 2
1𝑗 + 𝑉 2

2𝑗 + 𝑉 2
3𝑗

. (7)

The slowness space can tilt and stretch the slowness surface just like the velocity 

space 𝑉 can stretch and tilt the velocity surface. The components of the vector of 

equation (6) are the 𝑘𝑖s in the new metric space. Therefore, inserting the vector 

components (6) in the dispersion relation (1) yields

𝜔2 = (𝑆−1
11 𝑘1 + 𝑆−1

12 𝑘2 + 𝑆−1
13 𝑘3)

2 +

(𝑆−1
21 𝑘1 + 𝑆−1

22 𝑘2 + 𝑆−1
23 𝑘3)

2 +

(𝑆−1
31 𝑘1 + 𝑆−1

32 𝑘2 + 𝑆−1
33 𝑘3)

2. (8)

Multiplying both sides of equation (8) with the wave field in the Fourier domain 

𝑢(𝐤, 𝜔) and performing an inverse Fourier transformation (𝑘𝑖 → −𝑗 𝜕

𝜕𝑥𝑖
, 𝜔 →

𝑗
𝜕

𝜕𝑡
), where 𝑗 =

√
−1, leads to the acoustic wave equation for tilted ellipsoidal 

anisotropy
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𝜕2𝑢(𝐱, 𝑡)
𝜕𝑡2

=

𝜕2𝑢(𝐱, 𝑡)
𝜕𝑥21

(𝑆−1
11 + 𝑆−1

21 + 𝑆−1
31 ) +

𝜕2𝑢(𝐱, 𝑡)
𝜕𝑥22

(𝑆−1
12 + 𝑆−1

22 + 𝑆−1
32 ) +

𝜕2𝑢(𝐱, 𝑡)
𝜕𝑥23

(𝑆−1
13 + 𝑆−1

23 + 𝑆−1
33 ) +

2𝜕
2𝑢(𝐱, 𝑡)
𝜕𝑥1𝜕𝑥2

(𝑆−1
11 𝑆

−1
12 + 𝑆−1

21 𝑆
−1
22 + 𝑆−1

31 𝑆
−1
32 ) +

2𝜕
2𝑢(𝐱, 𝑡)
𝜕𝑥1𝜕𝑥3

(𝑆−1
11 𝑆

−1
13 + 𝑆−1

21 𝑆
−1
23 + 𝑆−1

31 𝑆
−1
33 ) +

2𝜕
2𝑢(𝐱, 𝑡)
𝜕𝑥2𝜕𝑥3

(𝑆−1
12 𝑆

−1
13 + 𝑆−1

22 𝑆
−1
23 + 𝑆−1

32 𝑆
−1
33 ). (9)

Since this derivation leads to a wave equation that is only valid at one model point 𝐱, 

𝑆 in equation (8) can be treated as a spatial constant. Equation (9) represents the 

acoustic wave equation for tilted ellipsoidal anisotropy. It can also be seen as an 

acoustic wave equation describing a wave traveling in isotropic media in a given 

metric space. The two formulations illustrate the duality of anisotropy and metric 

spaces. The presented procedure is similar for any other chosen velocity or slowness 

surface and therefore for many types of anisotropy.

For illustrative reasons, an alternative approach is shown to derive equation (9). The 

same result can be obtained by using the acoustic wave equation (2) directly and 

transforming the differential operator (𝜕∕𝜕𝑥𝑖) into the slowness space. This approach 

leads to

𝑆−1

⎛⎜⎜⎜⎜⎝
𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑧

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
𝑆−1
11

𝜕

𝜕𝑥
+ 𝑆−1

12
𝜕

𝜕𝑦
+ 𝑆−1

13
𝜕

𝜕𝑧

𝑆−1
21

𝜕

𝜕𝑥
+ 𝑆−1

22
𝜕

𝜕𝑦
+ 𝑆−1

23
𝜕

𝜕𝑧

𝑆−1
31

𝜕

𝜕𝑥
+ 𝑆−1

32
𝜕

𝜕𝑦
+ 𝑆−1

33
𝜕

𝜕𝑧

⎞⎟⎟⎟⎟⎠
. (10)

Inserting the new differential operators (10) in the acoustic wave equation (2) leads 

to the same result as equation (9). This equivalent approach shows that the only 

difference between the isotropic and the tilted ellipsoidal anisotropic case is the 

underlying metric space.

From equation (9) the eikonal equation

1 = (𝜕𝑇 (𝐱)
𝜕𝑥1

)2(𝑆−1
11 + 𝑆−1

21 + 𝑆−1
31 ) +

(𝜕𝑇 (𝐱)
𝜕𝑥2

)2(𝑆−1
12 + 𝑆−1

22 + 𝑆−1
32 ) +
liyon.2017.e00260
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(𝜕𝑇 (𝐱)
𝜕𝑥1

)2(𝑆−1
13 + 𝑆−1

23 + 𝑆−1
33 ) +

2𝜕𝑇 (𝐱)
𝜕𝑥1

𝜕𝑇 (𝐱)
𝜕𝑥2

(𝑆−1
11 𝑆

−1
12 + 𝑆−1

21 𝑆
−1
22 + 𝑆−1

31 𝑆
−1
32 ) +

2𝜕𝑇 (𝐱)
𝜕𝑥1

𝜕𝑇 (𝐱)
𝜕𝑥3

(𝑆−1
11 𝑆

−1
13 + 𝑆−1

21 𝑆
−1
23 + 𝑆−1

31 𝑆
−1
33 ) +

2𝜕𝑇 (𝐱)
𝜕𝑥2

𝜕𝑇 (𝐱)
𝜕𝑥3

(𝑆−1
12 𝑆

−1
13 + 𝑆−1

22 𝑆
−1
23 + 𝑆−1

32 𝑆
−1
33 ) (11)

can be derived. Equation (11) can be used to compute the travel times of a wave front 

propagating in media with tilted ellipsoidal anisotropy.

The translation of a velocity surface into the corresponding slowness surface is a non-

trivial problem since the actual slowness surface is created by inverting the radii in 

all directions and can no longer be described by taking the polynomial surface for 

the velocity and transforming it into the slowness space. For better understanding, 

we can have a look at ellipsoidal anisotropy. In the case of ellipsoidal anisotropy, the 

ellipsoid with semi-principal axes 𝑎, 𝑏, 𝑐 describing the velocity surface leads to an 

ellipsoid with semi-principal axes 1∕𝑎, 1∕𝑏, 1∕𝑐 describing the slowness surface 

even though this is only correct along the axes. It is in general not the case that 

the actual slowness surface which is obtained by inverting the radii of the velocity 

surface in all directions, resembles the slowness surface that is obtained by inverting 

the length of the axes. This approximation was used to preserve the simplicity of 

the method and leads to inaccuracies in the space between the axes. The issue 

seems less problematic if the velocity and slowness surfaces are considered to be 

approximations in practice and the real surfaces are unknown. Therefore, in the 

case of ellipsoidal anisotropy, the errors made by inverting only the radii in axes 

direction is smaller than the error made by approximating anisotropy as a known 

surface. For other surfaces the induced error can be larger. Another way to work 

around the problem is to give the slowness surface and the slowness tensor in the 

first step of the solution process, thereby omitting the need to translate between 

velocity and slowness. In this work, the velocity is chosen as a starting point for 

illustrative reasons. The issue of translating between velocity and slowness surfaces 

will be addressed in a more descriptive way in the next sections.

Using the procedure described above, a wave equation can be given for any super-

ellipsoidal slowness surface

𝜕𝜙𝑢(𝐱, 𝑡)
𝜕𝑡𝜙

= 
−1
[( |𝑆−1

11 𝑘1 + 𝑆−1
12 𝑘2 + 𝑆−1

13 𝑘3|𝜙
+ |𝑆−1

21 𝑘1 + 𝑆−1
22 𝑘2 + 𝑆−1

23 𝑘3|𝜙
+ |𝑆−1

31 𝑘1 + 𝑆−1
32 𝑘2 + 𝑆−1

33 𝑘3|𝜙)]𝑢(𝐱, 𝑡), (12)

with the associated eikonal equation
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( |𝑆−1
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𝜕𝑇

𝜕𝑥3
|𝜙

+ |𝑆−1
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𝜕𝑥1
+ 𝑆−1
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𝜕𝑇

𝜕𝑥2
+ 𝑆−1

33
𝜕𝑇

𝜕𝑥3
|𝜙) 1

𝜙
, (13)

where 𝜙 is the exponent describing the shape of the super-ellipsoid. Equation (12)

has a simple solution for all 𝜙 ∈ ℕ. The general form of the eikonal equation (13) is 

used later to compute the wave fronts in sandstone.

The procedure described in this section could also be reformulated to extract the 

metric tensor 𝑔𝑖𝑗 on a Riemannian manifold. For that, the metric tensor 𝑔𝑖𝑗 in the 

basis formed by normalizing the vectors in the slowness tensor is given by filling its 

diagonal with the slowness values in axes direction.

3. Results

Five experiments are presented in this section. If not mentioned explicitly, the 

experiments were executed using a grid of size 192 × 192 × 192 and a spacing 

of 𝑑𝑥 = 𝑑𝑦 = 𝑑𝑧 = 0.7 meter. The first experiment shows the solution of the 

wave equation (9) for an isotropic velocity field. The solution was compared to an 

analytical solution of the eikonal equation to verify the validity of the proposed 

method. Next, a solution for a homogeneous velocity field with anisotropy is 

presented. This example can be motivated by the desire to approximate wave 

propagation through a homogeneously moving medium. The following example 

shows the result for an anisotropic and inhomogeneous velocity field as it could 

appear in simple real-life applications, motivated by an electric wave propagating 

through the heart muscles. The anisotropy is induced by the muscle fiber direction. 

For Experiment 4, we chose a velocity model that approaches real-life complexity 

as it comprises sharp velocity contrasts as found in many applications, especially in 

seismology. The last example shows the functionality of the method in media that 

shows a vertical transverse isotropy. This experiment is motivated by wave-motion 

modeling, executed in the scope of seismology.

For the first experiment, we are assuming the case of an isotropic homogeneous 

velocity field. The first velocity tensor is given at every point in the model space by

𝑉 = 𝑆 =
⎛⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎠ . (14)

Equation (14) represents the standard basis of the Euclidean space. Therefore, the 

velocity and slowness surfaces are spheres and the modeled velocity field is isotropic 
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Figure 3. A two-dimensional slice of the three-dimensional wave field for the homogeneous velocity field. 
The wave front of the solution is compared to the analytical solution of the eikonal equation (black). The 
analytic solution of the isotropic eikonal equation aligns with the wave front of the solution of the wave 
equation (9).

and homogeneous. Figure 3 shows the solution of the computation of equation (9). 

For proof of accuracy and correctness of equation (9), the analytic solution of the 

eikonal equation for isotropic media is included in Figure 3. For the given metric, the 

derived wave and eikonal equations could also be directly simplified to the equations 

for the isotropic and homogeneous case.

For Experiment 2, we are investigating a homogeneous, anisotropic velocity field. 

Now, the metric space is constant in the entire model and is given by the tensor

𝑉 =
⎛⎜⎜⎜⎝
1 −2.0 0
1 2.0 0
0 0 1

⎞⎟⎟⎟⎠ . (15)

For illustrative purposes, the basis is shown with respect to the standard basis in 

Figure 4. The corresponding velocity surface can be obtained by applying

𝑉 −1𝐯 =
⎛⎜⎜⎜⎝

0.5𝑣1 + 0.5𝑣2
−0.25𝑣1 + 0.25𝑣2

𝑣3

⎞⎟⎟⎟⎠ , (16)

where the 𝑣𝑖s are the velocity components with respect to the original basis. Inserting 

the vector components of equation (16) in the velocity surface for isotropic wave 

propagation leads to

1 = (0.5𝑣1 + 0.5𝑣2)2 + (−0.25𝑣1 + 0.25𝑣2)2 + 𝑣23. (17)

An approximation of the basis describing the slowness space can be obtained, as 

described in the theory section, by inverting the length of the basis vectors of the 
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Figure 4. The basis of the new metric space (15) (in red) is shown with respect to the standard basis 
(black), for illustrative purposes. Note that the longest axis of the new metric is also the longest semi-

principal axis of the ellipsoidal-shaped wave field shown in Figure 5.

velocity tensor while maintaining their directions. The slowness surface can then be 

obtained by multiplying the inverse of the slowness tensor by the wave number 𝐤. 

For other forms of velocity surfaces the slowness surface is potentially much more 

difficult to find. This issue can be avoided by using the slowness surface in the 

solution process instead of the velocity surface. For this example, the velocity surface 

is chosen for illustrative reasons. However, the resulting slowness surface in this case 

is given by

1 = (𝑝1 + 𝑝2)2 + (−2𝑝1 + 2𝑝2)2 + 𝑝23. (18)

In the case of ellipsoidal anisotropy, the required inverse of the slowness tensor is 

the transpose of the velocity tensor used to describe the basis for the velocity. This 

circumstance leads to faster computations since the creation of the slowness space 

and the inversion of the tensor can be omitted. After inserting 𝑝𝑖 = 𝑘𝑖∕𝜔, multiplying 

by a function in the Fourier domain and an inverse Fourier transformation, as 

described in the theory section, equation (18) leads to the wave equation (9) for the 

given metric (15). A snapshot of the moving wave is shown in Figure 5. The results 

of this experiment could, for example, be applied to approximate wave propagation 

in a homogeneously moving medium.

Wave propagation in inhomogeneous anisotropic media is the most important 

example for real-life applications and is investigated in Experiment 3. The given 

tensor depends on the position in the modeled space. The tensor field representing the 

basis and defining the metric, and therefore, the velocity anisotropy, is represented 

by its respective longest vector 𝑉𝑖1 in Figure 6 together with the corresponding wave 

field. The velocity tensor is given by

𝑉 =

⎛⎜⎜⎜⎜⎜⎝

−3𝑥1√
𝑥21+𝑥

2
2

𝑥2√
𝑥21+𝑥

2
2

0

3𝑥2√
𝑥21+𝑥

2
2

𝑥1√
𝑥21+𝑥

2
2

0

0 0 −1

⎞⎟⎟⎟⎟⎟⎠
. (19)
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Figure 5. Three two-dimensional slices of the three-dimensional wave field of a homogeneous velocity 
field in the metric shown in Figure 4. The arrows show the longest axis 𝑉𝑖2 of the velocity metric. The 
wave front represents a circle in the metric given by (15). Note, that the wave front resembles an ellipsoid 
in the Euclidean metric with the semi-principal axes given by the tensor (15).

Figure 6. Three two-dimensional slices of the three-dimensional tensor field describing the velocity space 
and the corresponding wave field. The vectors are showing the longest axis 𝑉𝑖1 of the given basis (19). 
𝑉𝑖2 and 𝑉𝑖3 are perpendicular to the shown vector in each point and one third in length. Note, that the 
wave seems to follow a preferred direction given in each point in space by the tensor (19).

The axes 𝑉𝑖2 and 𝑉𝑖3 of the given basis are pairwise perpendicular to 𝑉𝑖1, and one 

third of the length of 𝑉𝑖1. A wave of this kind can be found in inhomogeneously 

moving media or in organs like the muscle tissue of the heart. In this case, the muscle 

fiber direction is responsible for the anisotropy.

Most real-life applications of the proposed method will involve wave propagation 

through complex media. It is therefore important to test the method regarding 

its behavior when dealing with sharp velocity contrasts. One particular complex 

example of this kind is wave propagation through the geological subsurface and is 
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Figure 7. Velocity field comprising sharp velocity contrasts. The colors indicate the magnitude of the 
longest vector in the tensor describing the underlying metric space. Note, that the color, in this illustration, 
gives no information about the direction of the longest vector of the tensor. The directions are given in 
equation (20).

the focus of Experiment 4. The velocity field in Figure 7 is defined on a grid of 1283

nodes and is given by

𝑉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
0 0 1

0 20 0

50 0 0
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2
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1
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1

1
𝑥1

𝑥3√
𝑥21+𝑥

2
2

0 30

⎞⎟⎟⎟⎟⎟⎟⎠
else.

(20)

The velocity model in Figure 7 comprises two layers with different preferred 

propagation directions and a body whose preferred propagation direction is perpen-

dicular to the ones of the two layers. The model contains sharp interfaces and strong 

velocity variations. Snapshots of the three-dimensional wave field are shown in 

Figure 8.

Slowness or velocity surfaces in real materials are often not elliptical. To verify 

the functionality of the method for wave propagation in materials showing other 

velocity-surface shapes, Experiment 5 presents a result for sandstone. Sandstone is 

typically considered to have vertical transverse isotropy (VTI). This name describes 
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Figure 8. Snapshot of the wave field after indicated times. Note the behavior of the solution at interfaces 
between materials with different preferred directions of wave propagation. Note, that no artifacts emerge 
in the solution.

Figure 9. The velocity and slowness surfaces of different wave modes in sandstone. The super-ellipsoid 

𝑥
3
2
1 +𝑥

3
2
2 +𝑥

3
2
3 = 1 (in blue) corresponds to the s-wave slowness surface. The solution resembles the shape 

marked in red. Figure modified from Piedrahita et al. [36].

a medium whose parameters are invariant regarding a rotation around the z-axis [36]. 

As represented in Figure 9, the super-ellipsoid |𝑥1| 32 + |𝑥2| 32 + |𝑥3| 32 = 1 describes 

the velocity surface of the s-wave with reasonable accuracy considering a certain 

simplicity which shall be maintained. From Figure 9, the following slowness surface 

can be derived

𝜔
3
2 = 𝑘

3
2 + 𝑘

3
2 + 𝑘

3
2 . (21)
1 2 3
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Figure 10. The solution of equation (22). Note that there is a high level of resemblance between the 
solution and the shape shown in Figure 9.

Using the proposed method, the following eikonal equation can be derived

1 =

( |𝑆−1
11

𝜕𝑇

𝜕𝑥1
+ 𝑆−1

12
𝜕𝑇

𝜕𝑥2
+ 𝑆−1

13
𝜕𝑇

𝜕𝑥3
| 32

+ |𝑆−1
21

𝜕𝑇

𝜕𝑥1
+ 𝑆−1

22
𝜕𝑇

𝜕𝑥2
+ 𝑆−1

23
𝜕𝑇

𝜕𝑥3
| 32

+ |𝑆−1
31

𝜕𝑇

𝜕𝑥1
+ 𝑆−1

32
𝜕𝑇

𝜕𝑥2
+ 𝑆−1

33
𝜕𝑇

𝜕𝑥3
| 32) 2

3

. (22)

The solution of equation (22) is presented in Figure 10. For simplicity, the slowness 

tensor is spatially independent and not tilted. The eikonal equation (22) and the 

associated wave equation are valid for tilted and inhomogeneous sandstone.

4. Discussion

The results showed the accuracy and the functionality of the method for anisotropic, 

homogeneous and inhomogeneous velocity fields. The comparison with an analytical 

solution of the eikonal equation proved that the wave front of the solution resembled 

the analytical wave front. Figure 3 showed that the analytical solution of the eikonal 

equation aligns with the solution of the derived wave equation (9).

The result of the second experiment (Figure 5) showed the solution of equation (9)

for a homogeneous anisotropic velocity field, approximating, for example, a moving 

medium. The wave front of the resulting wave has the expected shape of an ellipsoid 

given by a transformed sphere into the new metric space (15).
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The result of the third experiment (Figure 6) showed the solution of equation (9) for 

an inhomogeneous anisotropic velocity. Such a velocity field can occur in nature, for 

instance, in muscle tissue or in inhomogeneously moving media. The resulting wave 

field showed that the wave follows the preferred propagation direction given in every 

point in space by the tensor (19).

Experiment 4 tested the method regarding the wave propagation through a synthetic, 

geological subsurface. It turned out, that the method handles sharp velocity contrasts 

in a stable manner. No artifacts appear in the solution as in Alkhalifah [18, 37]. 

This is due to the fact that, from a physical perspective, the method propagates 

acoustic waves in a homogeneous, isotropic medium; what changes is the underlying 

space. The last experiment showed the solution of an eikonal equation derived by the 

proposed method of a s-wave propagating through sandstone. In this case, sandstone 

exhibits vertical transverse isotropy. The resulting wave front (see Figure 10) 

resembles the expected wave front depicted in Figure 9. Again, artifacts do not 

appear in the solution as in Alkhalifah [37]. This result demonstrates the ability of the 

method to be applied to other slowness surfaces and therefore types of anisotropy 

apart from elliptical ones. However, the equations can become complex for non-

integer exponents in the dispersion relation.

The problem of transforming the velocity surface into a slowness surface is not 

method-specific and can be avoided by dealing with slowness surfaces in the solution 

process in the first place, or by acknowledging that the accurate velocity and slowness 

surfaces are unknown in practice. The proposed derivation method for acoustic wave 

propagation problems offers a straight-forward derivation and implementation. In 

cases where only travel times are important, the proposed method can be used to 

derive eikonal equations for various types of anisotropy. The proposed method can 

also be used to derive wave equations for any kind of velocity or slowness surface. 

Here, velocity surfaces in the form of a super-ellipsoid were discussed for simplicity. 

The corresponding wave and eikonal equations are simple to implement and the 

computation proved to be stable. The solution does not show any artifacts. The 

method therefore, has a large potential benefit for research and industry fields in 

which wave propagation in anisotropic media plays a significant role. Especially 

the fields of bio-computing, and seismology could benefit from the method. Wave 

propagation through metamaterials can be described and modeled in an efficient and 

simple manner. Also, acoustic wave propagation through moving media like waves 

traveling through water or air can be approximated in a straight-forward way.

We are claiming that the proposed method leads to a simpler derivation of the 

governing equations, a simple implementation and an efficient and stable comput-

ation. These assertions will be challenged in this paragraph. The simple derivation 

mainly stems from the fact, that we are interpreting changes of material parameters 

in certain directions as a change of the underlying metric space. The benefits are two 
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fold. Firstly, we are only dealing with velocity surfaces instead of elastic parameters, 

which is very comprehensible. Secondly, we can use a clean description of velocity 

by using bases and norms, which allows for a simple derivation of the governing 

equations. A drawback is that we have to calculate a tensor representation of the 

velocity, in case we are dealing with elastic parameters only. The methods works 

best if the starting points are velocity surfaces. In this case, we can challenge 

the simplicity statement. We can compare the derivation of the eikonal equation 

by Alkhalifah [18] to the derivation of the eikonal equation (22) for sandstone 

in this paper. Equation (22) has a simpler structure. However, the complexity of 

an equation remains subject to personal preference. Another great example for 

the computation of wave phenomena in anisotropic media is the work of Joets 

and Ribotta [38]. The computation of the eikonal equation obtained by using the 

proposed method includes the computation of all ray directions and has a simpler 

form. However, the method described by Joets and Ribotta [38] is more general. 

An advantage of the proposed method is, that the equations will only change 

slightly for different kinds of anisotropy within certain limits, which are discussed 

in more depth later on. Again, if the starting point are elastic parameters, the 

derivation by Alkhalifah [18] is about as simple as the proposed approach. For 

a further evaluation of simplicity, we can have a look at Cervený et al. [35]. 

The eikonal equation for anisotropy is derived by using the eigenvalues of the 

Christoffel matrix, which is not a simple concept compared with dealing with 

changes in the metric and basis transformation. The simple implementation comes 

from the fact that the algorithm is basically a solver of the acoustic, isotropic wave 

or eikonal equation in homogeneous media. The only additional work goes into 

changing exponents and inverting simple matrices. The close relation to an acoustic 

solver for homogeneous, isotropic media is also the reason for the stability and 

efficiency of the computation. Here, we have to address another limitation. The 

proposed method can lead to fractal derivatives in the wave equation which can 

compromise the computational efficiency. The inclusion of boundary conditions, 

using the proposed approach, is simple and follows the procedure for the derivation 

of wave equations. The computational efficiency stems mainly from the fact that the 

additional computations, namely an inversion of a 3 matrix can be done efficiently 

on GPU cores, which is the preferred architecture for wave-motion simulations. 

Therefore, the computational efficiency of the solution of the eikonal equation does 

not depend on the kind of anisotropy within our defined set of anisotropies. In 

general, it can be said, that the method’s strength is repeatability of derivations and 

implementations.

The limitations of the method can be clearly formulated. The method is, by 

construction an approximation. However, depending on the allowed complexity, this 

approximation can induce smaller errors than, for example, the approximation of 

the real medium as a model given some information. Also, the method breaks down 
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as soon as triplications occur in the slowness surface. In this work, the slowness 

surface had to be in the form of a super-ellipsoid. However, this is just a limitation 

of derivation, not a basis limitation of the method, since it is, in theory, possible to 

extend the derivation to more general surfaces.

In this paper, the focus was on super-ellipsoidal surfaces and, in particular, ellipsoidal 

and vertical transverse isotropy, which was approximated by the proposed method. In 

future work, other kinds of surfaces could be investigated with respect to complexity 

and computational feasibility. Special interest lies on velocity surfaces described by 

super-ellipsoids with exponents that are not elements of the natural numbers and 

higher order surfaces. Also, more general shapes, like spherical harmonics, could be 

used to derive wave equations for complex types of anisotropy. The proposed theory 

could, because of its simplicity of derivation and application, build a new basis for 

the investigation of acoustic wave propagation in anisotropic media.

5. Conclusion

A new method for deriving wave and eikonal equations for acoustic wave propagation 

in anisotropic media was presented and validated by experiments. The proposed 

theory generalizes various types of anisotropy by narrowing the procedure down 

to the selection of a slowness or velocity surface, and a tensor field defining a new 

metric space at each spatial model point, thereby simplifying the derivation of the 

governing equation. Since all the changes are with regard to the underlying space, 

the numerical computations are as stable as the computations in isotropic media. 

No artifacts can be seen in the solutions as in Alkhalifah [18, 37]. In this work, we 

covered surfaces which can be described as a super-ellipsoid. A greater variety of 

slowness surfaces will be addressed in future work.
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