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Chapter 1

Introduction

As a devoted physicist, I believe that the universe we live in is governed by only a few fundamental
principles. Without a doubt, optimization and wave propagation are two of them. The impact of wave
propagation as a principle is difficult to comprehend. We encounter wave phenomena everywhere, and
in all scales imaginable, ranging from the vibration of sub-atomic strings of the unverified string theory
and the probability waves of quantum mechanics, all the way up to the recently discovered gravity waves
predicted by Einstein as part of his general theory of relativity. The fundamentality of wave propagation is
only superseded by optimization. In fact, wave propagation is a consequence of nature trying to optimize
energy flow. Virtually everything in physics can be traced back to optimization. Both principles cannot
only give us a tremendous amount of information about the very basic fabric of our universe, they can
also shape our everyday lives in a fundamental way. This thesis attempts to outline and describe the
importance of understanding how wave propagation and optimization play a role in our everyday lives
and ways in which we can utilize these concepts to improve upon them.

In 1909, a Croatian scientist observed two distinct signals from a regional earthquake. He noticed
a travel-time difference in the signals and discovered a discontinuity in the elastic properties between
the Earth’s crust and mantle, today commonly referred to as Mohoviĉić discontinuity. This was one of
the first times wave phenomena were used to obtain information about the interior structure of a body
[37]. Since this first use of a wave signal to image the sub-surface, a vast number of methods have been
developed to image interiors of bodies. Commonly referred to as wave imaging, this field comprises a
multiplicity of different methods and requires a high degree of knowledge and expertise. Wave imaging
is composed of two main steps: the forward modeling of a wave and the inverse or optimization step.
Different components of the wave field, such as travel times, amplitudes or wave-form spectra can be
used for wave imaging depending on required computing times and resolution of the output image. In
the forward step, the chosen components are modeled with respect to a deliberately or randomly defined
parameter model of the interior of the body. The parameters of the model are adapted during the inverse
step to minimize the misfit between observed and calculated data. The two main steps of wave imaging,
wave modeling and inversion, play important roles in a vast array of applications.

Wave-motion modeling is the basis for earthquake modeling. In fact, some of the fastest and most
sophisticated wave-motion simulation tools arose from this field [14]. Wave-motion modeling had a large
impact on acoustics [9], where the short wavelengths of waves result in large computational domains. The
medical field is one of the biggest beneficiaries of wave-motion modeling. Electrophysiological modeling
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[41] and ultrasound [40] are only a small subset of applications. In short, every field that uses waves, such
as electro-magnetic (communication), water (tsunami), air (acoustics, atmospheric), elastic (earthquake,
exploration, material), gravity or any other kind of wave can benefit from advancements achieved in this
field.

The number of applications of methods for wave-motion computations, though vast, is dwarfed by
the number of applications of methods for function optimization. In fact, wave propagation itself is an
application of optimization since a wave travels the path of minimal time. But, wave propagation is no
exception. All physical phenomena can be formulated as an optimization problem, which is the motivation
of Hamiltonian mechanics, which in turn, builds the basis for many principles in quantum mechanics.
In the theory of relativity, masses move in space-time along shortest paths, the so-called “geodesics”.
Besides being woven into the deep fabric of our universe, optimization has many technical applications.
Optimization is indispensable in engineering, finance, the medical field and power plant design. Every
plane and car we use on a daily basis has parts designed with the help of optimization methods.

We have seen the vast importance of wave-motion computations and optimization. However, both
fields pose challenging problems. Modeling of wave motion can be a complex and time-consuming process.
The simulation can involve the computation of more than 10e12 nodes. To build efficient solvers, analytical
and numerical methods must be tailored to take full advantage of novel parallel computer architectures.
In the inverse step, we are facing high-dimensional parameter spaces and frequent occurrences of local
optima. Given the number of dimensions, the employment of purely stochastic optimization procedures is
unfeasible. Local optimization procedures, on the other hand, struggle to find the global optimum.

The presented work demonstrates how newly developed theoretical and numerical methods help save
computing time and resources when performing wave-motion modeling and optimization. I will show
how the saved computing power can be combined with novel optimization methods to increase the quality
of wave-data inversions. The perfect cooperation of methods for wave modeling and inversion leads
to a more efficient imaging of the interior of objects and sub-surfaces, and can have other far reaching
implications. For the reader to fully understand this thesis, it is necessary to introduce some rudimentary
knowledge about wave-motion modeling and optimization, which will be taken care of in the following
sections.

1.1 Motivation of the Work

As seen in the last section, the list of fields that use wave-motion computation is long and includes radiol-
ogy, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials
science, astrophysics and quantum physics, along with many others. Therefore, improving the methods
used in wave imaging would potentially have a great impact on many fields. In cardiac modeling, a wave
can be propagated through the heart tissue to model an electrical signal [50]. Water-wave simulations are
used to model tsunamis for hazard assessment [20]. Sound waves are modeled to assess the perfect geom-
etry for an entertainment center, opera house or concert hall [32]. Other applications include earthquake
hazard assessment [35], oil and gas exploration, and vibration modeling in architechtural or machine
elements [1]. In short, efficient and accurate wave-motion modeling can save lives and help supply energy
to Earth’s growing population.

The inversion or optimization step is a basic step for wave imaging [7, 17], but is also indispensable
in many other applications in engineering and economics. In fact, optimization is one of the most
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fundamental principles of our universe, and a list of examples and applications in influential fields could
fill an entire library.

As outlined above, wave imaging is only one application of wave-motion modeling and optimization,
among many others. The work was funded by Kalkulo AS and the Research Council of Norway as part
of the Industrial PhD scheme. The work conducted at Kalkulo AS aims to improve seismic imaging for
oil and gas exploration, but also the numerous other applications and the tremendous positive impact on
many other fields motivated this work.

1.2 Modeling Wave Motion

A large part of the thesis will focus on the wave equation

@2u(x, t)

@t2
� c(x)2r2u(x, t) = f(x, t)

u(x, 0) = 0

@u(x, 0)

@t
= 0 (1.1)

and its variations and approximations. Here u(x, t) is commonly interpreted as pressure or amplitude,
c(x) is the spatially dependent wave speed, f(x, t) is the source function and r is the nabla symbol.
Plane waves are the simplest solution of the wave equation [47]. By substituting the plane wave solution
for high frequencies into the wave equation, we can derive a frequency-dependent form of the acoustic
wave equation

�!2A(x)

✓
|rT (x)|� 1

c(x)

◆
+ i!

�
2hrA(x),rT (x)i+A(x)r2T (x)

�
+r2A(x) = 0, (1.2)

where A(x) is an amplitude field, T (x) is a time field and ! is the wave frequency. Equation (1.2)
must be satisfied for any frequency ! [47]. Therefore, all sub-expressions in equation (1.2) must vanish
independently, which results in three equations. The equation

|rT (x)| = 1

c(x)
(1.3)

is called the “eikonal equation”. The solution of equation (1.3) gives first-arrival travel times of a
propagating wave and equals the solution of the wave equation for infinitely high frequencies. The eikonal
equation has a large variety of applications and will be discussed in the following. The equation

2hrA(x),rT (x)i+A(x)r2T (x) = 0, (1.4)

where h·, ·i denotes the inner product, is called the “transport equation” and describes the amplitude of a
wave. The equation

r2A(x) = 0 (1.5)

is commonly neglected if the aim is to model high frequencies of the propagating wave.
Another approach to obtain an approximation to the wave equation is to ignore its time-dependent

part. The result is the “Helmholtz equation”. The Helmholtz equation in the frequency domain

A(x,!)(r2

+

!

c(x)2
) = 0 (1.6)
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describes the solution of the wave equation for a certain frequency and is obtained by applying separation
of variables to the wave equation. For a point source we can define the Helmholtz Green’s function as the
solution of

r2G(x,!) +
!2

c(x)2
G(x,!) = ��(x� x

0

), (1.7)

[31], where �(x� x

0

) is the Dirac delta function at the position x

0

. The solution in three dimensions is
given by

G(x,!) = A(x)ei!T (x), (1.8)

where A(x) is the amplitude field and T (x) is the travel-time field [27]. Given a travel-time field and an
amplitude field, we can assemble the Helmholtz Green’s function.

The eikonal equation plays an important role in seismic imaging since it is the backbone of travel-time
inversion, which is still one of the most popular techniques to image the sub-surface. Furthermore,
travel-time inversions can be performed prior to wave-form inversions to yield an accurate initial model.
An advanced initial model for the wave-form inversion can render the parameter space of the inversion
quasi-linear, which increases the probability to converge into the global optimum significantly. The result
of the travel-time inversion can be improved by including amplitude information in the computation.
The eikonal equation influences many fields. In fact, whenever a front has to be tracked based on an
underlying velocity model, the eikonal equation has to be solved. This problem is common in computer
vision, navigation, path optimization and many more applications. A large number of eikonal solvers
have been developed over the last decades. The expanding-square or expanding-box methods [48, 49]
compute the solution in a box shape around the source. The method suffers in accuracy for complex
velocity models. The fast-marching method [42, 37] represents an improvement but is sequential by
nature. The fast-sweeping method [52] computes the solution of the eikonal equation iteratively and can
be parallelized to some extent. A very efficient and highly parallelized way to compute travel times and
amplitudes is presented in Research Paper 1: “Fast Computation of Eikonal and Transport Equations
on GPU Computer Architectures”. The computed amplitudes and travel times can directly be used to
assemble the Helmholtz Green’s function (1.8). Despite the success of the eikonal equation, its solution is
a harsh approximation and valid only for specific assumptions.

To avoid the drawbacks of the solution of the eikonal equation, the wave equation (1.1) can be solved
directly. Wave propagation is subject to causality. Therefore, active regions of wave propagation are
traveling through space and are not randomly appearing. This fundamental physical characteristic gives
rise to a computational method which separates active from inactive regions of the wave propagation.
Active in this context means that the wave exhibits amplitudes greater than a certain threshold. Only
active regions need to be computed, which can save computing resources and time. The Research Paper
2, “A Two-Scale Method using a List of Active Sub-Domains for a Fully Parallelized Solution of Wave
Equations”, proposes an algorithm that carefully selects active sub-domains and assigns processing units
accordingly. The method was patented in the USA.

Including anisotropy was proven to be a crucial step of wave-motion modeling in the 1960s [29].
One interesting way to start the theoretical treatment of anisotropy is to look at velocity surfaces and the
corresponding dispersion relations. The dispersion relations can be transformed to different metric spaces
to derive different wave, eikonal and transport equations governing wave motion in different kinds of
anisotropic media. A description of this exclusively analytical method is given in the Research Paper 3,
“An Acoustic Wave Equation in a Transformed Metric Space for Various Types of Anisotropy”.
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Figure 1.1: An example of a misfit functional. The optimization is a challenging task because of the
plurality of local optima. Image courtesy of Alkhalifah and Choi [5].

1.3 Function Optimization and Selected Applications

Inversion is the adaption of a model to be able to explain some observation. It is a main building
block of partial-differential-equation(PDE)-constrained optimization. During the inverse step, the model
parameters need to be adapted in order to optimize the misfit or objective functional

 (m) = ||L(m)� d

0

||, (1.9)

where m represents the model parameters, d
0

is the data set, L is the modeling operator and || · || is
a norm. The operator L can, for instance, represent a partial differential equation (PDE), such as the
wave equation. The optimization of the objective functional defined in equation (1.9) can be extremely
challenging because of the high degree of non-linearity (Figure 1.1). In case the operator L represents the
wave equation, there are two main reasons for the non-linearity of the objective functional: firstly, the
oscillatory nature of the wave field, and secondly, the possible complex reflectivity of the medium. In the
past, astonishing progress has been made in the field of optimization [7, 17, 3]; however, complex misfit
functions still pose complex challenges. The new forward modeling techniques mentioned in the last
section are tailored to model the wave field in an efficient way. The saved computing time and resources
can be used to employ a more involved inversion scheme. The idea is to use benefits of global and local

9



optimization methods to explore the search space and to increase the probability of finding the global
optimum. The Research Paper 3, “Hybrid Genetic Deflated Newton Method for Global Optimisation”,
gives insight into how to find the global optimum in complex and high-dimensional search spaces. The
method was patented in the United States.

An important application of optimization schemes is the investigation of source parameters of a
wave source. To accomplish that, a data misfit between measured and computed wave-motion data is
minimized. Discrete applications include earthquake source inversion, acoustic and atmospheric sciences,
and electro-dynamics. Wave-source optimization is an extremely challenging task because of the potential
of many parameters and non-convex, non-linear misfit functions. The Research Paper 5, “Hybrid Genetic
Deflated Newton Method for Distributed Wave-Source Optimization”, investigates the possibility to
employ the new optimization scheme to invert for parameters of wave sources.

The methods described, thus far, open up new possibilities for a more efficient imaging of the sub-
surface. The proposed solver for eikonal and transport equations offers an efficient travel-time inversion
considering amplitude information. The result can serve as an initial model for wave-form inversion. At
first, the acoustic wave field can be modeled to achieve a more accurate initial model for the full-elastic
wave-form inversion. The three mentioned kinds of inversion use the proposed hybrid inversion scheme.
The Research Paper 6, “Combining new Methods for Wave-Motion Modeling and Function Optimization
to Improve upon Exiting Wave-Imaging Methods”, discusses how to use the developed methods to make
the most of the data and obtain accurate information about the sub-surface in minimal time.

1.4 An Overview of the Research Papers

As outlined above, the full wave-form inversion suffers from several problems, mainly connected to
computational costs and accuracy of the output image. All research papers try to address and solve
contemporary problems in wave-motion modeling, optimization, wave imaging and in related fields.
Partly, this is achieved by parallelization as presented in Research Papers 1 and 2. Research Paper 3 shows
how a purely theoretical reformulation of a problem can lead to advancement of wave-motion modeling.
In Research Paper 4, parallelization works in cooperation with a new optimization method to achieve
a fast convergence into the global optimum of a function. Research Paper 5 investigates the ability of
the new optimization method to invert for parameters of a distributed wave source. Research Paper 6
shows how the developed methods, presented in this thesis, can be combined to build an efficient tool
for wave-form imaging. All developed numerical and analytical methods are tailored to improve upon
wave-form imaging, not only in a seismic application, but in all fields where wave propagation and/or
inversion poses complex challenges.

Research Paper 1: Fast Computation of Eikonal and Transport Equations on
GPU Computer Architectures

Eikonal models have been widely criticized for the low resolution and accuracy of the output image.
However, they are still often favored because of the relatively simple implementation and the associated
low computational costs. In Research Paper 1, a method is introduced to compute solutions of eikonal
and transport equations simultaneously, and highly parallelized, on GPU computer architectures. The
high level of parallelization and also accuracy is due to the employment of novel pyramid-shaped stencils,
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Figure 1.2: The time field (left) and the Helmholtz Green’s function (right) of a wave. Ray directions are
indicated as lines in the time field. Time and amplitude fields are computed simultaneously to yield the
Helmholtz Green’s function.

which take diagonal nodes into account. The computed amplitudes can be used to assemble the Helmholtz
Green’s function. The proposed method also computes all ray directions in the computational domain (see
Figure 1.2). The ray directions can be used, among others, for illumination studies. This novel approach
can work as a feasible alternative to full wave-form inversion or as the first step to obtain accurate initial
models for more advanced computations.

Research Paper 2: A Two-Scale Method using a List of Active Sub-Domains for
a Fully Parallelized Solution of Wave Equations

Wave-motion modeling is perfectly suited for parallel computer architectures. The computation of the
four-dimensional wave field at a certain time step only uses values already computed from the last two
time steps. Therefore, in some sense, the same principle as in Research Paper 1 is commonly used to
solve the wave equation on parallel computer architectures.

The grid sizes when modeling wave motion are commonly large. They are imposed by velocities in
the physical domain and frequency requirements of the solution. The size of the grid greatly exceeds the
global memory of the commonly used processing units. The solution is to use a plurality of processing
units and distribute the workload and data between them. This is normally done by dividing the domain
into many sub-domains and allocating each sub-domain to one processing unit in a static way; static in the
sense that the allocation is stable during the whole computing time.

Research Paper 2 introduces a method to dynamically allocate processing units (especially GPUs) to
active sub-domains as shown in Figure 1.3. In each time step, processing units are re-assigned to active
sub-domains, where active means that the sub-domain contains waves with an amplitude greater than
a given threshold. A host processor decides which sub-domains need to be active in the initialization
process. During the computation, the processing units decide by themselves if the assigned sub-domain
contains amplitudes greater than the given threshold and consequently needs to be active. If not, the
sub-domain is deactivated and the processing unit is ready to receive the next task from the host processor.
The result is a method that greatly reduces the required computing resources and computing time. The
method was evaluated and found to be worth protecting by a US patent.
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Figure 1.3: Effective problem size compared to actual problem size for two different examples. The

domain is divided into 36 (labeled dark) sub-domains on the left side. The ratio of sub-domains to active

sub-domains is 1.44. The right side shows the same problem with a division in 576 sub-domains. The

ratio of sub-domains to active sub-domains in this case is 3.81. The example shows that the computational

costs benefit from more sub-domains since active regions can be separated from non-active regions more

accurately. This principle has a limit: the sub-domains need to be large enough to fully utilize the chosen

processing units. Therefore, in the case of an abundant number of processing units, the number of nodes

in a sub-domain, and hence, the resolution can and should be enlarged to optimally utilize all available

processing units.

Research Paper 3: An Acoustic Wave Equation in a Transformed Metric Space
for Various Types of Anisotropy

Acoustic wave propagation does not describe a physical phenomenon in natural anisotropic media [4].

Nevertheless, approximations of wave fields can be computed by using the acoustic assumption. For

instance, to model an electric signal through heart tissue, the acoustic wave equation can be solved. The

fibers in the heart show a preferred direction, thus the medium is anisotropic. The acoustic assumption is

also used to approximate the elastic wave equation since the computation of the acoustic wave equation

is computationally cheaper. To model the physically impossible acoustic wave propagating through

anisotropic media, we have to apply some advanced strategies. When approximating elastic wave

propagation, we can set the shear wave velocity to zero to model only p-waves [4, 51]. However, this

method produces artifacts and only works if we are actually dealing with elastic wave propagation. In

other cases, we can make use of another method.

Instead of actually using different wave speeds in different directions, we can assume that space is

stretched or contracted in certain directions. Hence, we can define a dispersion relation and transform it

into another metric space. From the new dispersion relation, new wave equations follow directly to model

various types of anisotropy. Research Paper 3 shows how to apply the theory to a variety of anisotropies

(see Figure 1.4), which can directly be used for electrical signal propagation in the heart tissue, seismic

waves and many other applications.
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Figure 1.4: An acoustic wave propagating through an anisotropic medium. The wave is following a
spatially-changing, preferred direction which is indicated by green arrows.

Research Paper 4: Hybrid Genetic Deflated Newton Method for Global
Optimisation

The highly non-linear parameter spaces (see Figure 1.1) linked to wave-form inversion pose a, so far,
unsolved problem. Due to many local optima, finding the global optimum turns out to be a complex
challenge. The costly forward modeling of a wave makes the employment of a purely global search
algorithm unfeasible since it needs many function evaluations to converge. Local optimization methods,
on the other hand, struggle to find the global optimum.

The previously proposed methods to model wave phenomena are able to speed up wave-motion
modeling significantly and save computing resources. The saved computing time and resources can be
used to employ more sophisticated inversion methods. Global and local optimization procedures can be
combined to make the most of the method’s benefits.

Research Paper 4 introduces a tailored method for optimization in non-convex, non-linear parameter
spaces. The main idea is to use a hybrid of global and local optimization methods combined with deflation.
In the first step, several individuals are placed in the parameter space. The notion of using individuals
is inherited from the genetic algorithm, where individuals are entities that are subject to rules motivated
by actual biological processes. In this case, an individual is a living organism that adapts and procreates.
The number of used individuals depends on the demand for accuracy and available computing resources
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Figure 1.5: The figure shows a typical objective function as encountered in many applications. Especially
in the field of seismic imaging, the objective function can be non-linear, non-convex and periodic due to
the oscillatory nature of the wave field and the complex reflectivity of the medium.

and time. The placed individuals all perform a local search algorithm in parallel. Subsequently, the
locations of the identified optima are stored, and the local search algorithm starts again from the initial
position. To avoid that individuals propagate into the same optimum, deflations are added to the objective
function where local optima were found. When the individuals struggle to find a new optimum, they can
procreate. The new generation can then search for more optima in other regions of the search space. The
proposed method (referred to as HGDN) makes it possible to get a notion of the complexity and shape of
a function. It is therefore possible to get an understanding of the accuracy and resolution of the solution of
the inversion. The proposed method was successfully tested on functions like the one shown in Figure 1.5.
The HGDN method was found to be worth protecting by a US patent.

Research Paper 5: Hybrid Genetic Deflated Newton Method for Distributed
Wave-Source Optimization

The hybrid genetic deflated Newton method (HGDN) has shown to be designed to optimize complex
functions efficiently. A problem that needs optimization of very complex misfit functionals is wave-source
optimization. Research Paper 5 investigates wave-source optimization for the acoustic wave equation.
Since the HGDN method has a local component, the adjoint equations had to be derived to obtain first
and second derivatives. As commonly known, the first derivatives equal the adjoint field evaluated
backwards in time as illustrated in Figure 1.6. The results showed that the proposed method was able to
find many optima, which almost equally well explained the measured data. Therefore, it is shown that a
common Newton scheme for wave-form inversions cannot lead to success. The proposed method can
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Figure 1.6: The adjoint field along a two-dimensional distributed wave source. The figure clearly shows
where the magnitude of the initial source was over or under estimated. Large function values of the adjoint
field mean large gradients for the respective region.

be game-changing in acoustic or atmospheric sciences and can be extended for elastic wave propagation
and dynamic faults. The results can lead to a comprehensive understanding of geological fault lines as
earthquake sources.

Research Paper 6: Combining new Methods for Wave-Motion Modeling and
Function Optimization to Improve upon Exiting Wave-Imaging Methods

Research Paper 6 presents an attempt to combine all methods introduced in the previous research papers
to build a new tool for efficient wave-imaging in a seismic context. Firstly, a travel-time inversion is
proposed using the method introduced in Research Paper 1 to limit the search space and to obtain an
accurate initial model for the wave-form imaging step. The method of Research Paper 3 can be used to
include anisotropy. The method of Research Paper 4 (HGDN) is proposed to perform the inversion step.
Next, the new algorithms for wave propagation introduced in Research Paper 2 are used together with the
HGDN method to perform an acoustic and/or elastic wave-form inversion to further limit the parameter
space or find the final solution.

The proposed approach could lead to more accurate images of the sub-surface. An improvement in the
field of wave imaging could have great benefits in research and industry. Especially in the medical field
and in seismic exploration, the gained information that stems from using an advanced optimization scheme
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could potentially result in influential knowledge. It is, for instance, imaginable that a misfit function in
the medical field does not depend on the exact location, in one or more directions, of the detected object.
Or, several images explain the data equally well. The same holds for oil and gas exploration, where
it is not unlikely that many models explain the measured data. It is, without a doubt, an advantage to
obtain comprehensive knowledge of the misfit function before spending millions of dollars for drilling or
performing surgery on a high-risk patient.

Organization of the Thesis

The research papers are discussed in logical order, which roughly coincides with the chronological order
of my projects. Every chapter contains an introduction explaining the transition between research papers.
In order to improve the quality of the thesis, some minor typographical errors, present in the published
versions of the papers, were corrected.

1.5 Other Contributions

In addition to the research papers, several other contributions have been made to the current state of
research based on the expertise acquired during the PhD period. To limit the extent of this thesis, the
documents are not included here, but are referred to in this section.

1.5.1 Talks

• EAGE Conference and Exhibition, 2014, Amsterdam: M. Noack, and S. Clark. “Parallel and
simultaneous computation of eikonal and transport equations by taking full advantage of GPU
computer architecture”

• Workshop Programming of Heterogeneous Systems in Physics 2014, 2014, Jena: M. Noack, and S.
Clark “Fast and accurate solutions of the eikonal and transport equations”

1.5.2 Posters

• Cardiac Physiome Workshop, 2015, Auckland: K. S. McLeod, S. Wall and M. Noack “Fast Sweep-
ing vs. Fast Marching for Eikonal Methods of Electrophysiology – A Potential for Significantly
More Efficient Computation?”

• SCEC Meeting, 2016, Palms Springs: M. Noack and S. Day “Hybrid Genetic Deflated Newton
Method for Distributed-Source Optimization”

1.5.3 Book Chapter

• K. McLeod , M. Noack, J.Saberniak, K. Haugaa, 2015, “Structural Abnormality Detection of ARVC
Patients via Localised Distance-to-Average Mapping” in
“Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges”
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1.5.4 Patents

• Marcus M. Noack, “A Two-Scale Method using a List of Active Sub-Domains for a Fully Paral-
lelized Solution of Wave Equations”, Number: 471229US124, Year: 2016

• Marcus M. Noack and Simon W. Funke, “Apparatus and Method for Global Optimization”, Number:
473385US124, Year: 2016
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Chapter 2

Eikonal and Transport Equations

Article published in Geophysics, September 2015
DOI: 10.1190/geo2014-0556.1

The solution of the wave equation for planar waves can be inserted into the wave equation to obtain
an approximation by three terms. Because of the exponents of the frequency terms, all three terms have
to equal zero for high frequencies. From this approach, the eikonal equation, the transport equation
and a rest term, which is commonly neglected, can be derived. The eikonal equation should not only
be seen as an approximation of the wave equation, but as a construct, which connects two fundamental
principles, namely the Fermat’s and the Huygen’s principles. In 1678, Huygens proposed that each point
a wave reaches serves as a secondary source; a principle that would later be improved upon by Fresnel to
incorporate diffraction effects. The Fermat’s principle, discovered by the French mathematician Pierre de
Fermat, states that a ray of a wave will choose the path of minimal time; a formulation, which casts light
on the impact of optimization on natural processes. The eikonal equation can be used to describe many
processes in nature that resemble a moving front. If this front carries some sort of energy or quantity, the
transport equation can be used to model and predict the amount of this energy or quantity at a certain
point. The eikonal and transport equations have a wide variety of applications like exploration seismology
[21, 22], electrophysiology [41], computer vision [10], wildfire modeling [30] and particle physics [11].
It is therefore essential to develop efficient solvers for eikonal and transport equations.

Both equations are well suited for highly parallelized finite-difference computations as shown in the
next research paper.
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Abstract

Eikonal models have been widely used for travel-time computations in the field of seismic
imaging, but are often criticized for having low accuracy and poor resolution of the output image.
Including amplitude information can provide higher model resolution and accuracy of the images.
A new approach for computing eikonal travel times and amplitudes is presented, and implemented,
for multi-core CPU and GPU computer architectures. Travel times and amplitudes are computed
simultaneously in iterations of the three-dimensional velocity model. This is achieved by using upwind
travel-time information in a recently introduced fast-sweeping method, and computing amplitudes
directly after the travel times. By performing the extra computations simultaneously with the travel
times, the additional cost for the amplitude and ray paths is low. The proposed method was tested on
synthetic 3D data sets to compute travel times, amplitudes and ray paths, from which the Helmholtz
Green’s function was assembled. Using a grid of 1243 nodes, the computations were performed in
less than one second. The proposed method could work as a feasible alternative to full wave-form
modeling in seismic applications, which suffer from demanding computations, since it requires several
order of magnitudes shorter computing times.

1 Introduction

Wave propagation phenomena play a central role in many fields of physics, environmental research
and medical imaging. Therefore, the fast and accurate numerical modeling of these phenomena is an
important task. In the field of geophysics, the ability of an accurate and fast wave modeling method
can result in higher resolved images of the subsurface in a shorter computing time. Therefore, allowing
for lower costs and higher confidence for oil and gas exploration, and new possibilities in geological
research. Furthermore, a faster and more accurate wave modeling method can improve risk assessment
methodologies for earthquakes and volcanoes.

Computing the direct solution of the wave equation is a difficult and time consuming process [12]. Non-
reflecting boundary conditions and imposed time stepping further increase the required computational time.
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Taking the Helmholtz equation as the static part of the wave equation is a frequently used simplification
[6]. However, using the Helmholtz equation does not sufficiently decrease the computational time and the
solution process remains complicated [6]. A widely used approach to avoid these drawbacks is to use
the Helmholtz Green’s function for a point source [11]. First arrival travel times and their amplitudes
are needed in order to estimate the Helmholtz Green’s function. These travel times and amplitudes are
computed as solutions of the eikonal and transport equations, respectively. In this paper, we introduce
methods that solve both equations fast and accurately.

2 Background

Several finite difference schemes have been introduced in the past years to solve the eikonal equation.
Vidale [19] proposed the expanding square method in two dimensions and extended it later for applications
in three dimensions with the expanding box method [20]. In this method, travel times are updated on
the surface of a box around the source. When all nodes in this structure are updated the adjacent nodes
are used to build a larger box. The expanding box method is still widely used but sometimes suffers in
accuracy for complex velocity models due to the fact that the box shape does not in general resemble a
wave front [14].

The fast marching method [16] tracks a general wave front as it moves through the domain. The fast
marching method is more stable, accurate and faster than the expanding box method. To track a general
wave shape, nodes are divided into three groups: alive, close and far [14]. All nodes in the wave front,
called close nodes, are sorted depending on their travel times. The close node with the smallest travel time
is re-labeled as alive, and thereby evolving the position of the front. Travel times of nodes in the vicinity
of the re-labeled node that are not alive are recomputed and labeled as close. The procedure continues
until all nodes are alive. The method handles sharp velocity contrasts well and the accuracy is sufficient
for most applications [16]. The computational costs are of order N logN , where the logN term is due
to the ordering. Therefore, the feasibility of on-the-fly modeling decreases with data sets of increasing
size. Even though there have been some attempts of parallelization [7], the method remains sequential by
nature since the front passes only one node at a time. This is a drawback because processing units are
becoming cheaper rather than faster [17].

The fast-sweeping method [24] sweeps through the three dimensional domain in eight alternating
directions. When sweeping through the grid in one direction, travel times are computed for wave fronts
traveling through the grid in that direction. The fast-sweeping method is an iterative method that sweeps
through the domain until the solution converges. The method has a computational cost of order O(N)

and can be parallelized to some degree, which makes it appropriate for large data sets [25]. Using
the fast-sweeping method for the amplitudes amounts to sweeping separately for the travel times and
amplitudes until convergence [11].

A recently developed method, called the three dimensional parallel marching method (3DPMM) [4] is
a parallel sweeping method, extending the parallel marching method to three dimensions [22]. In 3DPMM,
a stencil shaped like a tetrahedron is used instead of the standard Godunov “box” stencil. The sweeps in
3DPMM are in different directions compared with traditional FSM sweeps. The result is a significant gain
in parallelization opportunity compared with the traditional fast-sweeping method. On a grid with N3

nodes, N2 nodes can be computed in parallel. If the parallel computing opportunities are employed, the
computational time can be decreased by several orders of magnitude. By making use of diagonal stencils,
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the accuracy increases compared to the “box-stencils” [3], independent of the used algorithm. Therefore,
the 3DPMM method offers a very fast and accurate solution of the eikonal equation.

Some methods try to combine aspects of both, sweeping and front tracking algorithms. This marriage
of algorithms creates very efficient, but also more complicated algorithms. These algorithms allow for
parallel implementations. The fast iterative method by Jeong and Whitaker [8] computes nodes in a list in
parallel. The SOLAS method by Gillberg et al. [5] uses the 3DPMM method on selected parts of the full
domain. Both methods are very efficient solvers, but the implementations are also more involved. We
expect the methodology introduced in this paper to be applicable to algorithms other than pure 3DPMM.

3 A New Method for Travel-Time and Amplitude Computations

We propose a solver for the Helmholtz Green’s function that takes full advantage of parallel computer
architectures by extending the 3DPMM method. The main idea is to solve the transport equation
simultaneously with the eikonal equation. Our key observation is that for any given node, the upwind
amplitude data is in the vicinity of the upwind travel-time data. The data used to compute new travel
times can be re-used immediately to compute amplitudes. In our novel approach, when the travel time of
one node is updated we immediately estimate the amplitude for the same node. Therefore, the amplitude
and the time planes sweep simultaneously through the domain. Since we only use data from the last
update planes, the computations of all nodes in the current update plane are independent. In this way,
entire planes can be updated in parallel. In order to estimate new travel times, the entry location of the ray
yielding the new travel time is computed directly. The result is a method that calculates first-arrival travel
times, amplitudes and all rays simultaneously and efficiently on multiprocessor architectures.

The remainder of the paper is organized as follows. The theory section gives an overview of the
basic methods and the main principles of the algorithm, including a summary of the 3DPMM method
and a section detailing the computation of ray paths and entrance locations. This is followed by a section
describing two stencils for the amplitude estimation. The proposed method was applied to three synthetic
examples to show the functionality of the novel solver for the Helmholtz Green’s function as described in
the results section.

4 Theory

The three-dimensional parallel marching method (3DPMM) was proposed by Gillberg et al. [4] and used
to model geological folds. A folded layer is modeled as iso-surface of the solution T (x) to the following
static Hamilton-Jacobi equation

FkrT (x)k+  ha,rT (x)i = 1

T (x) = 0 on �.
(2.1)

In the above equation � is a reference horizon, k · k is the Euclidean norm, h·, ·i is the inner product of the
Euclidean space, F and  are scalars and a is a unit vector pointing in the direction of the symmetry line
of the fold. The eikonal equation, commonly used to estimate first-arrival travel times of seismic waves
[1] is, formulated as

krT (x)k = s(x),

T (x) =  (x) 8 x 2 ⌦,
(2.2)
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Figure 2.1: a) The pyramid shaped stencil used in 3DPMM. Notice the inclusion of the diagonal nodes.
The node represented as an empty circle shows the position of a neighbor of the update node and is not
used for the computation of T

ijk

. b) A layer of independent, pyramid shaped stencils. The entire layer of
stencils can be computed in parallel. Image modified from Gillberg et al. [4].

where s(x) is the slowness field and  (x) are initial values given on the set ⌦. The isotropic eikonal
equation is a special case of the static Hamilton-Jacobi equation. The 3DPMM method can therefore be
used unmodified to estimate solutions to the eikonal equation. For the description of 3DPMM, consider
a regular box grid with nodal values T

ijk

being approximations of first-arrival travel times. We assume
that some nodes are given initially, and all other nodes are set to infinity. Since we are solving for first
arrivals, we solve for the minimum obtained value of T . Nodes are updated with a “pyramid” shaped
stencil [4], as illustrated in Figure 2.1a, in which the top node T

ijk

is the one being updated. The stencil
contains eight tetrahedron three-point stencils, 16 two-node stencils, and nine one-node stencils, as further
detailed in Gillberg [2]. The smallest estimation for the update node of these 33 stencils is used according
to Huygen’s principle (for an explanation of the systematic application of Huygen’s principle in the finite
difference approximation see [13]). Appropriate upwind conditions can be used to decrease this number
and increase performance. Entire planar surfaces of nodes can be computed in parallel since nodes on the
same surface do not depend on each other, as shown in Figure 2.1b. The 3DPMM sweeps through the
domain in axial directions, by shifting the planar surface of nodes in the direction of the “pyramid” tops.
If a new estimate t

new

is smaller than the previous estimate t
old

, the node will receive a new estimate. In
our novel method, amplitude estimates are computed for a node after the travel times only if t

new

 t
old

.
This condition ensures that amplitude and time data in the upwind direction are used for the amplitude
computation. The transport equation for computing the amplitude A(x) is as follows [18]

hrT (x),rA(x)i+ 1

2

A(x)r2T (x) = 0. (2.3)

The gradient of the wave front, rT (x), is estimated during the travel-time computation. Given the
gradient, the entrance location x

E

= (x
E

, y
E

) of the ray into the stencil bottom layer can be calculated.
Knowing the location where the ray enters the stencil, we can interpolate for the travel-time [23] and the
amplitude values at this point. Let A

E

, T
E

be the amplitude and travel-time values at the location where
the ray enters the stencil element, and A

N

, T
N

the corresponding new values of the node being updated.
Using the transformed transport equation we can approximate A

N

by

A
N

=

A
E

(T
N

� T
E

)

T
N

� T
E

+

1

2

||x||2r2T
, (2.4)
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where ||x|| is the Euclidean distance between node N and the location E. The additional work required to
compute these values is small since most travel-time data has recently been used in computations and
the gradient of the wave front is estimated in the travel-time computation. The accuracy of the method
highly depends on the accuracy of the upwind travel-time field. It is necessary to avoid inaccurate travel
times around the source by using special, very accurate techniques such as refined meshes, wave front
construction methods [21, 15] or ray tracing methods [9, 15] to compute the travel times around the
source. The estimation of the Laplacian of the travel-time field is the crucial and most difficult part of the
calculation. Using a traditional three-point stencil for the second derivatives is often not possible since not
all needed values are necessarily already assigned values. Two different ways to solve this problem are
described in the following sections after characteristic curves for the eikonal equation are discussed. After
obtaining the travel-time and the amplitude field we want to estimate the Green’s function G(x,!) for the
Helmholtz equation. The Helmholtz Green’s function as presented in [11], is formulated as

r2G(x,!) +
!2

v(x)2
G(x,!) = ��(x� x

0

), (2.5)

where �(x� x

0

) is the Dirac delta function at the position x

0

, ! is the frequency and v(x) is the wave
velocity at x. The solution in three dimensions is given by [10]

G(x,!) = A(x)ei!T (x), (2.6)

where A(x) is the amplitude field and T (x) is the travel-time field. The Helmholtz Green’s function can
be used directly for estimating the amplitude field for different frequencies.

5 Computing Ray Paths and Entrance Locations

The characteristic curves of the eikonal equation are often referred to as rays in seismology. Characteristic
curves of the isotropic eikonal equation show the fastest path between two points given the velocity [18].
Characteristic curves are often defined in terms of the Hamiltonian, H , of the equation. For the eikonal
equation (2.2), the Hamiltonian is defined as H(x,p) = 1

s(x)

|p|� 1, where p = rT (x). Let x(s) be a
parameterization of a characteristic curve, x(s) = (x(s), y(s), z(s))T , where s is the parameterization
parameter. If the Hamiltonian H is convex in p, the ray path can be found from the following relation,

dx

ds
=r

p

H(x,p), (2.7)

as defined in [18]. After differentiating H with respect to p and integration with respect to s we obtain
the characteristic curve for the eikonal equation as

x(s) = s v(x)
rT (x)

||rT (x)|| , (2.8)

x(0) = x

0

, (2.9)
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Figure 2.2: Illustration of the entrance location (x
E

, y
E

) at the bottom of the tetrahedron stencil.

where ||rT (x)|| =
r⇣

@T (x)

@x

⌘
2

+

⇣
@T (x)

@y

⌘
2

+

⇣
@T (x)

@z

⌘
2

, and x

0

is the starting point of the curve. Since

the pyramid base is a distance dz from the node being updated, the entrance location of the ray follows as

x
E

= �dz
@T (x)

@x

@T (x)

@z

(2.10)

y
E

= �dz

@T (x)

@y

@T (x)

@z

. (2.11)

The entrance location (see Figure 2.2) ensures that only rays traveling through the bottom of the stencil
are used to estimate a new time value. If the entrance locations are outside the stencil boundaries, the
shortest path along the boundary is used to compute the new amplitude estimate. In order to compute the
time and amplitude values at the entrance point of the ray into the stencil, we use linear interpolation in
case of a two-node stencil and bilinear interpolation in case of a three-node stencil.

5.1 Estimating the Laplacian for Slowly Changing Velocity Fields

The first method of estimating the Laplacian uses a wide area upwind of the stencil and is therefore
applicable only to slowly changing velocity fields. Only one assigned node in the stencil configuration
in Figure 2.1a is sufficient for creating a new time estimation. The amplitude calculation needs at least
seven nodes with travel-time values to estimate the Laplacian. We therefore propose to use two more
stencil planes in the upwind direction, as shown in Figure 2.3a. Already estimated nodes in a 147-point
cuboid behind the stencil are used to approximate the necessary second derivatives for the Laplacian. The
pseudo code for the algorithm using this stencil extension for the estimation of the Laplacian can be found
in Algorithm 1. Provided a sufficiently large source with respect to the spatial dimensions, this stencil
extension manages to create an amplitude estimate even during the first sub sweep, when most of the
nodes within the stencil do not yet have a non-infinity time estimate (see Figure 2.3b). The method lacks
in accuracy since the estimation of the Laplacian is not sufficiently local when a large set of nodes is used.
The fraction of nodes not being upwind of the update node can be high, especially for fast varying velocity
fields, which leads to poor accuracy.
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Figure 2.3: The nine-point pyramid stencil from Figure 2.1a and the 147 points used to estimate the
second derivatives of the time field. T

ijk

and A
ijk

are the values of the node being updated.

Algorithm 1: Pseudo code for a sub sweep in the positive x-direction (index i) for a slowly changing
velocity field. The indexing is adapted to the size of the stencil and to ensure that all nodes in the
stencil are inside the domain.

for i=4,. . . ,n
x

do
for j=4,. . . ,n

y

-3 do
for k=4,. . . ,n

z

-3 do
for all of the eight tetrahedron stencils do

Compute rT (x);
Estimate entrance location x

E

= (x
E

, y
E

);
Compute t

new

using values on the tetrahedron base;
T
ijk

= min(8 time estimates);
if T

ijk

<= t
old

then
T
ijk

= t
new

;
estimate r2T (x) using
T
i�a,j±b,k

, a 2 {0, 1, 2, 3}, b 2 {0, 1, 2, 3}, c 2 {0, 1, 2, 3};
Create new amplitude estimate, a

new

;
A

ijk

= a
new

;
Select angle of incidence;
Update the previous estimates;

5.2 A Local Approach for the Estimation of the Laplacian

Provided a sufficiently large source, the method introduced in the previous section results in a new
amplitude estimate for all numerical experiments we tested. This reduces the number of iterations needed
for convergence, but the computational cost of performing an update is high. Two key points must be
addressed: firstly, the number of sweeps can only be reduced by one with the stencil described in the
previous section. Since the fast-sweeping approach is an iterative method and therefore needs many
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sweeps to converge, a reduction of the needed sweeps by one is only a minor improvement. Secondly, the
computational cost of finding the Laplacian in a 147-point cuboid is high considering that it has to be
done for every node in the grid.

With these considerations in mind, we design a method that uses data from a smaller area behind the
stencil. The Laplacian is estimated faster and more accurately at the expense of an increased number of
sweeps needed for convergence. The idea is to create a method that does not always create an amplitude
estimate to nodes where the time value has been updated. Rather, the algorithm assigns an amplitude
value if it is possible to calculate a Laplacian using local data. Different ways of estimating the Laplacian
are possible. It may be tempting to directly use the seven-point stencil (see Figure 2.4) behind the pyramid
stencil for the calculation of the Laplacian; however the accuracy is poor in this case. The key to higher
accuracy is to vary the position of three-point stencils for the second derivatives, depending on the entry
of the ray into the pyramid base. The three-point stencils for the second derivatives that are closest to the
ray path are used for the estimation of the Laplacian. In cases where the rays are outside the stencils, the
shortest path along the stencil boundary is used (see Figure 2.4). Amplitudes and travel times have to
converge independently, therefore at least three sweeps are necessary. This is a drawback that is rendered
obsolete for non-homogeneous velocity fields. The algorithm using the local estimation of the Laplacian
is presented in Algorithm 2.

Due to the special stencil shape, entire 2-D planes can be updated in parallel. The simultaneous
computation of amplitudes and travel times and the abundant parallelization make the method very
efficient.

Algorithm 2: Pseudo code for a sub sweep in the positive x-direction (index i) for the local approach.
The indexing is adapted to the size of the stencil and to ensure that all nodes in the stencil are inside
the domain.

for i=3,. . . ,n
x

do
for j=3,. . . ,n

y

-2 do
for k=3,. . . ,n

z

-2 do
for all of the eight tetrahedron stencils do

calculate rT (x);
compute T

ijk

using T
i�1,j±a,k±b

, a 2 {0, 1}, b 2 {0, 1};
select t

new

= min(8 time estimates), update T
ijk

;
calculate corresponding entrance location x

E

= (x
E

, y
E

);
calculate r2T (x) using T

i�a,j±b,k±c

, a 2 {0, 1, 2}, b 2 {0, 1, 2}, c 2 {0, 1, 2};
compute A

ijk

using A
i�1,j±a,k±b

, a 2 {0, 1}, b 2 {0, 1};
if Amplitude computation possible and t

new

<= t
old

then
select a

new

;
else if Amplitude computation possible and t

new

> t
old

and amplitude is unassigned
then

select a
new

;
select the corresponding angle of incidence angle, rT (x);

6 Implementation Details

The current implementation, using the local approach for the estimation of the Laplacian was written in
C++ and was compiled with the CUDA code compiler nvcc. Because of the special stencil shape, some
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Figure 2.4: A local stencil for the simultaneous computation of travel times and amplitudes. The
computation of the Laplacian is only possible when enough nodes are already assigned. The positions
of the three-point stencils for the second derivatives depend on the ray direction (blue and green). This
is more accurate than the use of the seven-point stencil behind the pyramid stencil (dashed). For rays
A, B and C, the shortest path along the boundary of the stencil element, and linear interpolation is used
to obtain the travel time and amplitude at the entrance location of the ray into the tetrahedron. For ray
direction D, bi-linear interpolation is used to obtain the travel time and amplitude at the entrance location
of the ray.

of the T -nodes were placed in the shared memory. Shared memory is a user-defined cache memory on
GPUs. Since the computation of one node is quite demanding, the use of CUDA shared memory only
leads to a speed up of around 10% compared to the use of global memory. Our code was also parallelized
for multi-core CPU structures using OpenMP. The code was optimized with full optimization instructions
using the -O3 flag. The numerical experiments were performed on two different machines.

The first machine is equipped with 32GB of DDR3 ram, a four core Intel Core i7-4800MQ CPU @
2.70GHz CPU and a GeForce GTX 770M GPU. The second machine is a Linux server with 64 GB of
DDR3 ram, an eight core dual Intel E5-2670 (2.6 GHz) with a total of 16 physical compute cores, and a
Tesla K20x GPU. When computing times are presented, they are averages from 4 repeated measurements.
However, the variation in computing time is negligible between different runs.
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Grid i7,1 i7,4 E5,1 E5,4 E5,8 E5,16 770M K20x
124

3 11.18 3.84 14.39 8.40 7.20 5.91 0.90 0.71
248

3 94.49 30.83 147.42 75.44 57.09 53.13 6.21 4.49

Table 2.1: Computing time until convergence in seconds for different grid sizes and computer architectures
for the first experiment. The type of processing unit and the number of used cores is indicated (processor,
number of cores).

7 Results

In this section, we present computational times needed for three different velocity models. All results
were computed with a spherical source of 1% of the volume of the domain, which was computed by a first
order ray tracing. Different source sizes can be used depending on demanded accuracy and complexity
of the velocity model. For every experiment computing times for all required sweeps until convergence
are presented. Convergence was reached when no amplitude or travel-time estimate changed by more
than 0.1% compared to the value after the previous sweep. For each experiment, CPU computing times
for a sequential computation, as well as using multiple cores, are presented. The computational times
needed when using the mentioned GPUs are also presented. Both, the CPU and GPU measurements use
data stored with float accuracy.

The runs were performed on two different grid sizes, consisting of 1243 or 2483 nodes respectively.
The grid size was chosen to satisfy the constraints of the specific GPU that was used for the experiments.
Other grid sizes are possible as long as they do not exceed the GPU’s bounded memory limitations.

7.1 Homogeneous Velocity Field

The simplest case, using a homogeneous velocity field is a special challenge for the method. This is due
to straight rays traveling along the stencil boundaries. Our estimation of the Laplacian suffers slightly
in accuracy in these regions, as seen in Figure 2.5. This error does not emerge when rays are bent.
Convergence was reached after three iterations. Computing times are presented in Table 2.1.

7.2 Two Homogeneous Half Spaces

The method was also applied to two homogeneous half spaces with a smooth transition zone (see Figure
2.6). Once again, we see the inaccuracies in the 45 degree regions that are present due to the inaccuracy
of the stencils along boundaries of the tetrahedrons. We can see a rise of the amplitude where rays
collide (Figure 2.6); a natural behavior of linear systems known as superposition or, in the case of wave
phenomena, interference. By reducing the width of the transition zone we can model interfaces in the
domain. The algorithm also works in the case of non-continuous interfaces; however the accuracy is
improved if treated as such by creating new wave fronts along an interface. Convergence was reached
after three iterations. The computing times are presented in Table 2.2.

7.3 The Random Velocity Field

The third example is a random velocity field (see Figure 2.7) containing velocities in the range of 1000 to
1500 m/s. It was created by assigning uniformly distributed nodes random values in the range of 1000 to
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Figure 2.5: a) A homogeneous velocity model. b) The travel-time field, where isochrones are spheres
and the rays are radial lines. c) The amplitude field, where amplitudes are decreasing with distance. Note
that amplitudes are under-estimated in areas close to 45 degrees from the source. d) The corresponding
Green’s function.

Grid i7,1 i7,4 E5,1 E5,4 E5,8 E5,16 770M K20x
124

3 10.58 4.06 14.75 8.33 7.01 5.48 0.92 0.80
248

3 94.37 29.90 144.81 62.79 56.09 50.57 6.23 4.08

Table 2.2: Computing time until convergence in seconds for different grid sizes and computer architectures
for the second experiment. The type of processing unit and the number of used cores is indicated
(processor, number of cores).

1500 m/s and subsequent linear interpolation. The highest velocity gradients are 50 s�1. Once again, we
can see the superposition principle of waves as amplitudes rise where rays collide. In this example we see
that rays avoid slow velocity areas. Notice that we have full ray coverage also in the slow velocity areas,
and any “shadow zone” problems are avoided using the suggested method [18]. Convergence was reached
after four iterations. The computing times are presented in Table 2.3.

7.4 Comments on Performance

The GPUs consistently outperforms the tested CPUs. This is expected since the 3DPMM allows for so
many nodes1 to be updated in parallel at any time. The CPU implementation scales well up to 4 cores, but

1A minimum of 1242 = 15376 nodes in the presented examples.
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Figure 2.6: a) Two velocity half spaces with a smooth transition. b) The computed travel-time field. The
wave front in the faster medium overtakes the wave front in the slower medium. The wave front builds a
concave shape and eventually rays collide (black circle). c) Computed amplitude field. The area where
rays collide shows an increasing amplitude as energy is rising in the same area indicated by the black
circle. d) The corresponding Green’s function.

Grid i7,1 i7,4 E5,1 E5,4 E5,8 E5,16 770M K20x
124

3 14.56 5.95 20.14 11.22 9.22 7.68 1.21 1.01
248

3 116.17 39.25 179.91 71.8 64.72 53.60 8.25 7.94

Table 2.3: Computing time until convergence in seconds for different grid sizes and computer architectures
for the third experiment. The type of processing unit and the number of used cores is indicated (processor,
number of cores).

flattens out thereafter. A significant amount of data is needed to update a node, which seem to decrease
performance on the multi-core implementation.

8 Discussion and Perspectives

The introduced method is able to compute the Helmholtz Green’s function in a stable, fast and accurate
manner; however, it suffers from some restrictions. As mentioned earlier, the current implementation is
built for acoustic waves in isotropic media. The adjustment for elastic waves is straightforward, though
requires some modifications. Since the entrance location of the ray into the stencil is already used, the
algorithm exhibits a natural ability for anisotropy. Adapting the algorithm to anisotropic problems is
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Figure 2.7: a) A random velocity field created by linear interpolation. b) In the travel-time field, rays avoid
slow velocity zones and try to reach high velocity zones. c) The amplitude field shows where the linear
interpolation causes roofs or valleys, and amplitudes are accordingly higher or lower. Sudden appearance
of a slow velocity zone forces the wave front to a concave bending which leads to a superposition of
amplitudes. d) The corresponding Green’s function.

possible but not trivial since the gradient of the wave front no longer coincides with the ray path. However,
ray paths can be found in the time estimation process [4] and our approach of estimating the Laplacian of
the time field close to the ray origin can be used. The associated computational costs are expected to be
higher in such an extension. In our current implementation, we have used first-order time stencils. An
extension to second order stencils is straight-forward. In a second-order framework, the estimation of
the Laplacian would be more natural. Future work will include a special treatment of interfaces in the
sub-domain and a multi-GPU implementation for larger velocity models. When solving for travel times,
the direction of the ray (angle of incidence) and the ray entrance into the stencil element is implicitly
computed. Given the entrance location, rays can be computed by additionally solving for the shootout
angle that is constant along rays. Rays allow for illumination studies and an analytical inverse step during
tomography.

9 Conclusion

We introduced a methodology to compute first-arrival travel times and amplitudes simultaneously by
extending the 3DPMM method. The method was implemented for multi-core CPUs and for GPUs,
resulting in a fast and efficient solver for the Green’s functions of the Helmholtz equation. When solving
for travel times, the direction of the ray is implicitly computed giving us the angle of incidence and
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ray paths. The proposed method was presented for first arrivals of acoustic waves, but extensions to
anisotropic velocity fields are possible. The numerical experiments showed that the accuracy of the
proposed method is highly dependent on the initialization step, and the estimation of the Laplacian of
the time field. The method may potentially perform optimally in conjunction with accurate ray tracing
methods in the vicinity of the source. The presented algorithm takes only first arrivals into account and
is therefore a high-frequency approximation. As shown in our paper, it is possible to estimate several
wave phenomena components in conjunction with first-arrival travel-time solvers. In fact, computing
the amplitudes together with travel times increases the accuracy of the computed amplitude field when
compared with post processing of the time field. Accurate amplitudes give rise to an additional source of
information when imaging the subsurface. The methodology is well suited for parallel implementations,
resulting in fast solvers for the Helmholtz Green’s functions. The proposed method can be applied to
different components of a wave and presents the first step to a faster tool to model wave motion. An
accurate and fast tool for forward modeling of wave phenomena could work as a viable alternative to full
wave-form modeling in several seismic applications. Our methodology is especially appealing when taken
into consideration that the computational time is in the order of seconds.
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Chapter 3

Wave-Motion Modeling on Parallel
Computer Architectures

Article published in Elsevier’s Journal of Computational Science, November 2015
DOI: 10.1016/j.jocs.2015.10.008

Research Paper 1 showed that the solution to the eikonal and transport equations can be obtained
efficiently. Both equations are results of the high-frequency approximation of the wave equation as
outlined in Chapter 1. Both discussed equations represent a broader principle of nature than pure wave
propagation. Any front that moves depending on some kind of underlying velocity structure, can be
described by the eikonal equation. The corresponding energy can be described by the transport equation.
That makes a good solution strategy for these equations so abundantly applicable. However, in the context
of wave imaging the strategy runs into problems. As described, eikonal and transport equations are results
of a high-frequency approximation in which the signal at a point only depends on parameters along a
one-dimensional curve, the so-called ray path. Since we are solving for first arrivals, rays of later arrivals
are automatically lost, and with them, valuable information. Caustics in the wave front are areas where the
time field is not differentiable and therefore the amplitude computation is, strictly speaking, not possible.
Also, dispersion of a wave cannot be accounted for in the ray approximation, and interference will always
be constructive since only wave fronts are considered.

The described drawbacks are commonly tolerated because of the inexpensive solution process of
eikonal and transport equations in comparison to full wave-form modeling which does not suffer from
these issues. However, the combination of the newest parallel computer architectures and the nature of
wave propagation gives rise to an interesting phenomenon. The nature of wave propagation will always
have the sequential time component. Therefore, neither the solution process of the eikonal nor the one of
the wave equation can be parallelized entirely. However, all space dimensions can be computed in parallel.
Despite the fact that the eikonal solution does not have a time dimension, physically we are propagating a
wave front in time, which is represented by the sweeps in axial directions in the fast-sweeping method
and the one-node-at-a-time restriction in a front-tracking approach. Regardless of the solution method,
we cannot overcome the natural, sequential flow of time. The solution process for eikonal and transport
equations as described in Chapter 2 takes advantage of two parallel dimensions, which is the maximum
number considering one time dimension in the three-dimensional solution. The four-dimensional solution
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of the wave equation, on the other hand, exhibits three spatially parallel dimensions and the sequential
time dimension.Therefore, considering a perfect parallelization process, the first arrival computation using
the eikonal or the wave equation is equally expensive (or rather inexpensive). Furthermore, the solution of
the wave equation is not a high-frequency approximation and contains much more information.

These findings motivate the shift in focus from eikonal and transport equations to the investigation of
the wave equation. Many different methods have been proposed in the past to solve the wave equation;
some of them achieved great success [3, 35, 14]. When observing a wave in nature, we cannot help but
notice that a wave is subject to causality. There are active and inactive regions, and activity has to be
transported and cannot occur randomly.

These observations give rise to a new method for wave-motion modeling as presented in the next
research paper. The method was found to be worth protecting by a US patent.
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Abstract

Wave-form modeling is used in a vast number of applications. Therefore, different methods have
been developed that exhibit different strengths and weaknesses in accuracy, stability and computational
cost. The latter remains a problem for most applications. Parallel programming has had a large impact
on wave-field modeling since the solution of the wave equation can be divided into independent
steps. The finite-difference solution of the wave equation is particularly suitable for GPU acceleration;
however, one problem is the rather limited global memory current GPUs are equipped with. For this
reason, most large-scale applications require multiple GPUs to be employed. This paper proposes a
method to distribute the workload on different GPUs by avoiding devices that are running idle. This
distribution is done by using a list of active sub-domains so that a certain sub-domain is activated
only if the amplitude inside the sub-domain exceeds a given threshold. During the computation,
every GPU checks if the sub-domain needs to be active. If not, the GPU can be assigned to another
sub-domain. The method was applied to synthetic examples to test the accuracy and the efficiency
of the method. The results show that the method offers a more efficient utilization of multi-GPU
computer architectures.

1 Introduction

Wave propagation plays a central role in many fields such as physics, environmental research and medical
imaging to model acoustics, solid state physics, seismic imaging and cardiac modeling [14, 1, 17, 2, 11].
Different methods have been proposed for stable and accurate solutions of the wave equation, but the
computational costs remain a problem for most applications [14].

The most commonly used methods to solve the wave equation can coarsely be divided into finite-
element methods [13, 20], including spectral element methods [18], and explicit and implicit finite
difference methods [10, 5]. The finite difference method is especially suitable for GPU acceleration
because of the simple division into independent operations [15]. The solution in the current time step
depends only on solutions of the previous time steps; hence, all nodes can be computed in parallel. The
numerical solution of the wave equation is a memory demanding process since desired frequencies, model
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sizes and wave velocities lead to a large number of wavelengths in the domain which imposes large grid
sizes.

Two examples should be mentioned here. The first example is in the field of acoustics [14, 1], where
the model size rarely exceeds 100 meters. Mehra et al. [14] presented the problem of a cathedral, where
the sound velocity and the desire for a large range of frequencies requires a grid size of 22 · 106 nodes.
Seismic imaging represents the second example, where the model dimensions are often in the order of a
few hundred kilometers [9, 6, 12, 16] in lateral and vertical extension. For minimal wave velocities of
300 m/s and frequencies of 10 Hz, the final grid size is around 16 · 109 nodes. For stability reasons it is
not possible to choose the step size freely, which increases the computational cost further. Current GPUs
have a maximum global memory of 24 gigabytes (K80 Tesla GPU); therefore, they can store around
6.4 · 109 single precision floating point numbers.

Since the resulting array is not the only data that has to be stored in the global memory of the GPU,
the actual possible problem size is much smaller. Additionally, demands for accuracy and domain size
are growing constantly and will always exceed the available resources. A solution to the problem is
distributing the workload and data to different GPUs. The traditional approach is to assign one GPU to
one specific sub-domain. For the entire computation, this assignment is static; therefore, most GPUs
remain idle during the largest period of the computing time (see Figure 3.1) [15, 12, 16]. To address this
issue, a list of active sub-domains can be used, as described in the following section.

The idea of considering exclusively the active part of a computation to save computing resources
is not new. Di Gregorio et al. [4] employed the concept of active and inactive regions for wildfire
susceptibility mapping (see also [3]). A rectangular bounding box distinguishes active from non-active
regions and only active regions are computed. The bounding box method is also used by Zheng et al.
[22] for flow simulation on GPU computer architectures. Teodoro et al. [19] proposed a method for an
efficient wavefront tracking that only uses active elements which form the wavefront. The advancements
in this case enable an efficient image processing. Zhao et al. [21] used local grid refinement to restrict the
computation to active regions of interest.

2 A List of Active Sub-Domains

Gillberg et al. [8] introduced a list of active sub-domains for the simulation of geological folds by solving a
static Hamilton-Jacobi equation. In the proposed method, the idea of Gillberg et al. [8] is adapted and used
for the solution of the wave equation on multiple GPUs. The solution process for static Hamilton-Jacobi
equations is very different from the solution process of the wave equation, and the application of the idea
in Gillberg et al. [8] is therefore neither on domain nor on sub-domain level straightforward. The main
differences are the dimensionality of the problem, the solution process on sub-domain level, e.g., the
required stencil shapes, and the desired employment of multi-GPU computer architecture.

The solution of a static Hamilton-Jacobi equation, in Gillberg et al. [8], is found by a fast-sweeping
method on sub-domain level which sweeps until convergence to find the viscosity solution. In order to
parallelize the solution process, a pyramid-shaped stencil is used to compute nodes of an entire plane
independently. Different stencil shapes require different ghost-node configurations and, therefore, different
communication schemes. Since the solution of the wave equation is not an iterative process that needs to
converge to a minimum, the activation patterns for sub-domains and the solution process on sub-domain
level are very different in Gillberg et al. [8] from the method proposed herein. Furthermore, the method
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by Gillberg et al. [8] is not developed to be used on a multi-GPU computer architecture; it is rather made
to solve problems where strongly bent characteristic curves of the static Hamilton-Jacobi equation occur.

The adaption of the method in Gillberg et al. [8] includes, among others, the following: the establish-
ment of an efficient communication between multiple GPUs, the adjustment of the activation pattern for
sub-domains to the wave equation, implementing a different synchronization process, handling the fourth
dimension and the employment of a different ghost-node configuration. However, the nomenclature is
based on the one in Gillberg et al. [8] to simplify the comprehension for the reader.

The proposed method distributes the workload and data efficiently on different GPUs by activating
sub-domains in which the wave exhibits amplitudes larger than a given threshold and adding these sub-
domains to a list. Only the sub-domains on this list are distributed over available GPUs. During the
computation on the sub-domain level, each GPU checks if the computed sub-domain needs to be active
and, therefore, locks the domain for computation if the wave has traveled out of the domain boundaries.
Therefore, the effective problem size can be decreased by orders of magnitude depending on the problem
itself and the computing capacities.

The proposed approach is able to decrease the demands of computing resources for a given desired
computational performance since it avoids idle GPUs. In the case of an abundant number of GPUs, the
method allows increasing the number of sub-domains, and hence, improves upon the accuracy of the
solution. More sub-domains also offer a more accurate isolation of active from inactive regions and,
therefore, increase the performance (see Figure 3.2).

The method was implemented for the acoustic wave equation but can simply be adapted to more
complicated scenarios. It should also be mentioned that the main scope of the proposed method is on
multi-GPU computer architectures. However, every single GPU can be divided into independent parts to
simulate a GPU cluster. This duality makes the method applicable on every parallel computer architecture
and was used for all presented experiments. Furthermore, the method was developed for GPU computer
architectures but the used principle leads to a speedup on all kinds of parallel computer architectures.

The remainder of the paper is organized as follows. The theory section gives an overview of the basic
methods and the main principles of the algorithm, beginning with a summary of the mathematics and
physics of the wave equation, followed by the description of the implementation. The method was applied
to synthetic examples with different grid sizes.

3 Theory

The goal of the proposed method is to solve the wave equation, given by

@2u(x, t)

@t2
= v(x)2r2u(x, t)

u(x, 0) = f(x)

@u(x, 0)

@t
= 0, (3.1)

on large grid sizes as efficiently as possible. Here, u(x, t) is a scalar function, v(x) is the wave velocity,
r is the nabla symbol and f(x) is a scalar function describing the initial wave field. It has to be said that
the proposed method is designed to solve all kinds of wave equations as efficient as possible. The acoustic
wave equation is chosen here as an example for simplicity. To solve Equation (3.1) with the help of an
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Figure 3.1: A snapshot of a propagating wave. The domain is divided into 196 sub-domains. Only 21
(labeled dark) of 196 sub-domains need to be active to compute the next time step. Therefore, in the
traditional approach 89 percent of the GPU devices are running idle in the computation of the current time
step.

Figure 3.2: Effective problem size compared to actual problem size for two different examples. The
domain is divided into 36 sub-domains on the left side. The ratio of sub-domains to active sub-domains
(labeled dark) is 1.44. The right side shows the same problem with a division in 576 sub-domains. The
ratio of sub-domains to active sub-domains in this case is 3.81. The example shows that the computational
costs benefit from more sub-domains since active regions can be separated from non-active regions more
accurately. This principle has a limit: the sub-domains need to be large enough to fully utilize the GPU
device. Therefore, in the case of an abundant number of GPUs, the number of nodes in a sub-domain, and
hence, the resolution can and should be enlarged to optimally utilize all available GPUs.

explicit finite difference scheme, it is mandatory to derive the finite difference approximation for the wave
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Algorithm 1: Pseudo code for the top-level structure of the proposed algorithm. The first two time
steps (0 and 1) must be given, therefore the loop starts with i = 2.

Initialization;
BuildSchedule(List,CL);
for i=2,. . . ,TimeSteps do

ComputeSchedule(CL,List,NumbSched);
SyncSd(CL);
BuildSchedule(List,CL);

equation, given by

ut+1

ijk

= v2
ijk

dt2r2u+ 2ut
ijk

� ut�1

ijk

, (3.2)

where r2u has not yet been discretized. Note that all nodes in the time step t + 1 are independent of
all other nodes in the same time step. All values depend only on the values of past time steps, thus the
solution process exhibits abundant parallelization. The computed wave field u(x)t+1 in a certain time
step will be the needed wave field u(x)t in the next time step and u(x)t will be the required u(x)t�1 in
the subsequent time step. Therefore, provided that the computation takes place only on one GPU, only
data has to be copied to the device in the initialization step. This advantage is preserved in the case of
multi-GPU computation. The algorithm checks if GPU devices and the data set on their global memory
can be reused. If so, pointers are redirected one time step backward; therefore, no copying of new data is
necessary as long as no new sub-domain is activated.

To guarantee the possibility for a correctly working communication between the sub-domains and to
eliminate the need for communication during the computation, the incorporation of a sufficient amount of
ghost-nodes around each sub-domain is necessary. Ghost-nodes are copies of nodes in adjacent domains
(see Figure 3.4) [8, 7]. For accuracy reasons, in the proposed approach, a central finite difference scheme
of fourth order was used for the second derivatives of the Laplacian
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⇡ �u
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+ 16u
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� 30u
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+ 16u
i�1

+ u
i�2

12�x
i

. (3.3)

Computing on the CPU or on one GPU, Equation (3.3) requires the domain setting illustrated in Figure 3.3.
Two layers of nodes cannot be computed because of the spatial extent of the Laplacian. The communication
between the sub-domains works with the same (sub-)domain setting. Therefore, the sub-domains for the
multi-GPU computation are padded by two ghost-node layers at each side as illustrated in Figure 3.4
[16]. The use of different stencil shapes for the computation of the Laplacian requires the adjustment of
the ghost-node configuration. Algorithm 1 shows the top-level structure of the implementation of the
method. It consists of a loop over all time steps. In every time step, the algorithm computes all tasks
of the current schedule, synchronizes the sub-domains and builds a new schedule. In the pseudo-code
presented in this paper, the number of sub-domains is denoted by s

x

,s
y

and s
z

, respectively. The size of
a sub-domain is denoted by b

x

, b
y

and b
z

, respectively. The wave field array and the velocity array are
stored by sub-domain. Therefore, the velocity array is a four-dimensional array. The first three dimensions
describe the sub-domain (ii, jj, kk), and the last dimension represents a flattened array that describes the
position in the sub-domain ((i ⇤ (b

y

+ 4) ⇤ (b
z

+ 4)) + (j ⇤ (b
z

+ 4)) + (k)), where the 4 originates from
the ghost-node layers. The wave array is handled in a similar way with an additional time dimension.
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Figure 3.3: The domain for the computation on one GPU or the CPU. The extent of the stencil for the
Laplacian is shown in red. Two layers of nodes on each side cannot be computed.

Thus, the wave array is five-dimensional (u(timestep, ii, jj, kk, pos. in sub domain)). Since the last
dimension for the sub-domain array is flattened, the treatment with CUDA is very straightforward.

3.1 Building the List of Active Sub-Domains

In the initialization step, the wave field is defined for the first two time steps in accordance to Equation
(3.1). If a node gets a value assigned larger than a given threshold, the corresponding sub-domain is
activated. Activation means that the corresponding value in a boolean array (CL in the pseudo-code)
gets the value “true” assigned. The coordinates of the sub-domains (denoted by ii, jj, kk) are written
into a list. This list gives the method its name and can be seen as a schedule for the next computation.
The sub-domains in the list are referred to as tasks. In each time step, the available GPUs are optimally
assigned to the tasks in the schedule, considering the least necessary data transfer (for more explanation
see Figure 3.5). Computing on the sub-domain level and synchronizing can change the activation of
sub-domains; hence, it is important to build a new schedule after computation and synchronization.

3.2 Computation of the Schedule

After a list containing the schedule is built, every available GPU is assigned a task from the schedule,
where one task equals one sub-domain. The corresponding sub-domains are copied to the different devices,
where the next time step is computed in parallel. If a GPU is active a second time step in a row, data is not
transferred again but reused to save computing time. During computation each GPU checks if at least
one node in the sub-domain gets assigned an amplitude which is larger than a given threshold. If not, the
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Figure 3.4: For a correctly working communication, the sub-domains (top) are surrounded by two layers of
ghost-nodes in our computation in accordance with the extent of the stencil for the Laplacian. Ghost-nodes
(X’) are copies of the corresponding node (X). During synchronization, the values of the nodes 1 and
2 are first copied to the corresponding nodes in case their values are bigger than the given threshold.
Afterwards, the values of the nodes 3 and 4 are copied to the corresponding location in case of sufficiently
large amplitudes. The sub-domain is activated if at least one node in the sub-domain gets a new value
assigned.

corresponding GPU tells the host that the sub-domain may be deactivated. Since several sub-domains
are computed simultaneously and the computation on the sub-domain level is in parallel, the algorithm
exhibits a two-level parallelization.
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Figure 3.5: The figure shows two time steps of a propagating wave. For simplicity, the wave is represented
as a wave front. Active sub-domains are written in the list. At time step t seven sub-domains are active,
hence the work is distributed on seven GPUs. In the time step (t+ 1), the wave front moved out of some
sub-domains into others. Hence, different sub-domains are active (in gray). Note that sub-domain (2,5) is
active in both time steps (dark gray). Therefore, data can be reused and does not need to be copied. If the
number of available GPUs is smaller than seven, in this example, the number of active sub-domains can
be divided into groups of the number of GPUs.

Algorithm 2: BuildSchedule(LIST,CL)
NumbSched=0;
for ii = 0; ii < s

x

; + + ii do
for jj = 0; jj < s

y

; + + jj do
for kk = 0; kk < s

z

; + + kk do
if CL[ii][jj][kk]== “true” then

NumbSched=NumbSched++;
LIST[NumbSched][0]=ii;
LIST[NumbSched][1]=jj;
LIST[NumbSched][2]=kk;

return (NumbSched);

Algorithm 3: ComputeSchedule(CL,List,NumbSched)
in parallel
for all tasks in schedule do

select GPU device;
Solve(CL,List,TaskInSchedule);

Algorithm 4: Solve(CL,List,TaskInSchedule)
allocation of memory;
cuda copy host to device;
DeviceFunction<<< blocks, threads >>>();
cuda copy device to host;
if device function discovers no amplitude > Threshold then

CL[ii][jj][kk]=“false”
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Algorithm 5: SyncSd(CL)
/*Synchronization in positive x-direction*/
in parallel
for ii = 0; ii < sx� 1;+ + ii do

for jj = 0; jj < sy; + + jj do
for kk = 0; kk < sz; + + kk do

if CL[ii][jj][kk] == “true” then
for i = bx; i < bx+ 4;+ + i do

for j = 0; j < by + 4;+ + j do
for k = 0; k < bz + 4;+ + k do

if |u[timestep][ii][jj][kk][i, j, k]| >= Threshold then
u[timestep][ii+ 1][jj][kk][i� bx, j, k] =
u[timestep][ii][jj][kk][i, j, k];

CL[ii+1][jj][kk] = “true”;

3.3 Synchronization and Activation of Sub-Domains

After the computation of one time step, all sub-domains must be synchronized. For that, all ghost-nodes
have to be copied to their corresponding position in the adjacent sub-domain. This process is taken care of
by sweeps in positive and negative axial directions, one direction at a time, to avoid memory interference.
A ghost-node is only copied to its corresponding position in the adjacent sub-domain if its value is larger
than a given threshold. If a value of a node is copied to the adjacent sub-domain, this sub-domain is
activated for the computation of the next time step. An if-condition makes sure that only sub-domains
which were active in the last time step are synchronized to save computational costs.

4 Results

To prove the functionality of the proposed method, four key features were investigated. Firstly, to ensure
that the accuracy of the traditional finite difference computation is preserved when applying the proposed
method, resulting wave fields were compared. Secondly, computing times were measured to show that the
list building step, which is additional work compared to the traditional method, only contributes a small
amount to the overall computing time. Thirdly, overall computing times were compared. Finally, the
ability of the new method to decrease the effective problem size is shown by means of a real-life situation.
The first three key features were investigated on the basis of two different experiments that are introduced
in the following sections. The fourth key feature was investigated on the basis of one experiment which
was created to resemble a real-life seismological problem. The available computer architecture consists
of two GeForce GTX 770 M GPUs. All experiments were designed to simulate a GPU cluster when
necessary to obtain informative results by dividing one of the available GPUs into many processing units.

4.1 Experiment 1

Experiment 1 was designed to offer comprehensibility and clarity of the presented results. For Experiment
1 a domain of 248⇥ 248⇥ 248 nodes was divided into 2⇥ 2⇥ 2 sub-domains of 124⇥ 124⇥ 124 nodes.
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Figure 3.6: The velocity used to assess the accuracy of the proposed method.

The velocity was chosen to be homogeneous in the entire domain. Accounting for the ghost-nodes the
resulting problem size was 256 ⇥ 256 ⇥ 256 nodes. The initial condition was chosen to be a narrow
Gaussian function. Due to the small problem size, it is possible to map the entire domain on one of the
available GPUs.

4.2 Experiment 2

Experiment 2 was designed to investigate the performance of the method based on a real-life example.
For Experiment 2, a domain of 308⇥ 308⇥ 308 nodes was divided into 11⇥ 11⇥ 11 sub-domains of
28⇥ 28⇥ 28 nodes. The small sub-domain size makes it possible to simulate a computer architecture
with 1331 GPUs on one of the available GPUs (not accounting for MPI communication). The velocity
field was given by

v(x) = 400 + (50⇥ sin(|x|⇥ 38)) (3.4)

and is illustrated in Figure 3.6. The chosen velocity field exhibits high frequencies and gradients of
the velocity. It therefore represents a proper challenge for the proposed method. Accounting for the
ghost-nodes, the resulting problem size was 352⇥ 352⇥ 352 nodes. The initial condition was chosen to
be a narrow Gaussian function.

4.3 Experiment 3

Experiment 3 was designed to prove the validity of the main essence of the proposed method: saving
effective problem size. For the Experiment 3, a domain of 924 ⇥ 924 ⇥ 924 nodes was divided into
33⇥ 33⇥ 33 sub-domains of 28⇥ 28⇥ 28 nodes. Accounting for the ghost-nodes the resulting problem
size was 1056⇥ 1056⇥ 1056 nodes. To make the result relevant for a real life application, the velocity
field was chosen to represent a geological setting. The velocity model is shown in Figure 3.7.
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Figure 3.7: The velocity model chosen for Experiment 3. It is based on a real-life geological setting.

4.4 Comparison of Solutions

Since sub-domains are activated only if the amplitude of an approaching wave is larger than a certain
threshold, one has to make sure that the lost information does not degrade the final solution. Therefore, the
solution of the acoustic wave equation computed on the CPU using the traditional method was compared
to the solution obtained with the new proposed method. For an elaborated analysis of the numerical
accuracy, the L

1

and the L
2

norm, defined by

||u(x, t)||
L1 =

P
ijk

|ut
ijk

� ût
ijk

|
N
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and

||u(x, t)||
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ijk
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ijk

� ût
ijk

)

2

N
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respectively, are presented. ut
ijk

in Equations (3.5) and (3.6) represents the solution of the proposed
method and ût

ijk

represents the solution computed on the CPU without division into sub-domains. At
first, the solution of Experiment 1 was compared with the solution on the CPU along a one-dimensional
cross section (see Figures 3.8 and 3.9). For this example, the threshold was chosen to be 0.001% of the
amplitude of the initial condition. The L

1

and L
2

error norms for different thresholds are presented in
Figure 3.10. Next, Experiment 2 was conducted and compared to the corresponding computation on
the CPU using the traditional method. The L

1

and L
2

error norms of the solution of Experiment 2 are
presented for different thresholds in Figure 3.11. In order to determine the threshold, estimated amplitudes
in the area of interest and numerical errors must be considered. For example, in a seismic scenario, the
amplitude in the area of interest is important; there is no point in considering waves with an amplitude of
0.1mm if the computation is used to assess the risk of earthquake damage to buildings. However, for a
computation of many time steps in a domain which is divided into many sub-domains, smaller thresholds
should be considered for accuracy reasons.
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Figure 3.8: The figure shows the position and orientation of the cross section shown in Figure 3.9. The
solution is shown in the domain that includes ghost-nodes, hence an offset is visible. This offset is not a
numerical error and does not affect the final solution.

4.5 Time Measurement

In the current implementation, the computation of one time step consists of the solution of the acoustic
wave equation, a synchronization of all active sub-domains and the building of a new schedule. To
establish the proposed method as a standard way to solve the wave equation on multi-GPU computer
architectures, it must be proven that the additional list building step does not take the majority of the
overall computing time. In the synchronization step, the values of the ghost-nodes are copied to adjacent
sub-domains and hence to other GPUs. The synchronization step is a necessary step in the traditional
approach too and does therefore not need to be justified. However, in the current implementation, this
step is not simultaneous to the solution process on the GPU. It is therefore included in the following
measurements. For Experiment 1, the costs of synchronizing the sub-domains and building the new
list amouts to 2% of the overall computational costs in the case of sequential synchronization. The
synchronization in one direction can be a parallelized loop; thus, the synchronization and list building
only takes about 0.5% of the overall computing time on a 4-core CPU machine (Intel Core i7-4800MQ
CPU @ 2.70GHz). The percentage of the computational costs of the list building and synchronization
step compared to the computation mainly depends on the ratio between the ghost-nodes and the overall
number of nodes. The current implementation includes a condition to ensure that only active sub-domains
are synchronized, which lowers the computational costs and represents an advantage compared to the
traditional approach where all sub-domains, and hence all GPUs, have to communicate during the entire
computing time, independent whether there is information to exchange or not. As a worst case scenario
for the proposed method, Experiment 2 was conducted and the computing time of the list building and
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Figure 3.9: The illustration shows the comparison of the solution of the acoustic wave equation on one
GPU (solid line) with the solution with the proposed method (dashed line) along a cross section (Figure
3.8). The wave form is similar. Note the occurrence of the phase shift because of the ghost-node layer
which is purposely included. The phase shift is no numerical error and does not affect the final solution.
The threshold for this example was chosen to be 0.001% of the amplitude of the initial condition.

synchronization steps was measured. The small sub-domains result in a low ratio of overall nodes to ghost-
nodes which maximizes the synchronization time. For Experiment 2, the list building and synchronization
steps needed 3.56% of the overall computing time using a sequential synchronization. In the case of a
parallelized synchronization on a 4-core CPU machine, the list building and synchronization steps need
below 1% of the overall computing time.

4.6 Computing Time

The new proposed method reaches full potential on multi-GPU clusters when the number of GPUs equals
the maximum number of active sub-domains during the computation. Here, since the mentioned GPU
cluster was not available, the problem size of Experiment 1 and 2 was chosen to simulate a GPU cluster
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Figure 3.10: Representation of error norms L
1

and L
2

of the solution for the homogeneous velocity field
for different time steps. The first deflection marks the first transition of the wave front into an adjacent
sub-domain. Note that the error reacts strongly to the reduction of the threshold.

Figure 3.11: Representation of error norms L
1

and L
2

of the solution for the velocity field shown in
Figure 3.6 for different time steps. Note once again that the error reacts strongly to the reduction of the
threshold. The wave source in this experiment was located close to a sub-domain border, hence the first
deflection is close to the origin.

which is able to communicate between GPUs in an instant.

Firstly, the computing time of Experiment 1 is presented. The computation was firstly performed in
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Figure 3.12: A slice of the resulting wave field computed with the new proposed method. Note that
reflections make it impossible to deactivate sub-domains downwind of the wave front for the given
configuration.

the traditional way, meaning that the entire domain was mapped on one GPU without using sub-domains.
This result was compared to the same computation on one GPU and two GPUs using the proposed method.
As soon as the number of active sub-domains exceeds the number of available GPUs, the computations
becomes partly sequential. One GPU computed 100 time steps in 14.7 seconds using the traditional
method. The new proposed method employed on one GPU only needed 4.84 seconds, which makes the
computation 3.02 times faster. The proposed method needed 4.61 seconds for the same computation
when two GPUs were used, resulting in a speedup of 3.19. The speedup in this example is due to the fact
that the effective problem size was reduced to 124⇥ 124⇥ 124 nodes for the first 80 time steps before
the wave front propagated into adjacent sub-domains. Experiment 1 showed the functionality for small
numbers of sub-domains. For a more elaborated investigation of the computing times, Experiment 2 was
conducted and compared to the traditional method. For Experiment 2, one of the GPUs was divided into
1331 processing units to simulate a cluster of GPUs. To make the statement clear, the conditions for the
traditional method were optimized. As described, since the traditional computation takes place on one
GPU there is no communication step. Even for these optimized conditions for the traditional method, the
speedup is significant compared to the proposed method. One GPU computed 150 time steps in 36.62
seconds on the mentioned grid. The new proposed method used only maximal 120 active sub-domains
and needed 7.88 seconds, which makes the computation 4.64 times faster. For 300 time steps, the same
computation takes 58 seconds using the proposed method and 73 seconds using the traditional approach.
The speedup in this case amounts to 1.26 times. A slice of the wave field is shown in Figure 3.12. The
computing times are summarized in Table 3.1.
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Exp. Trad. M. No. Sub-d. Architecture Comp. Time Speedup
1 14.7 s 8 1/2 GTX 770M 4.84s /4.61 s 3.02/3.19
2 36.52 s 113 1 GTX 770M 7.88 s 4.64

Table 3.1: Computing time in seconds for different experiments and computer architectures.

Figure 3.13: The number of active sub-domains as a function of the time steps is shown for two different
thresholds and the traditional approach. The maximum number of active sub-domains is 13700 for a
threshold of 10�4 and 25086 for a threshold of 10�5. The traditional method employs 35937 sub-domains
for the entire computing time. Note that the green graph approaches the maximum number of active
sub-domains and the gradient approaches zero. Therefore, the number of new activated sub-domains per
time step is close to the number of deactivated sub-domains in the same time step.

4.7 Saving Computing Resources

Experiment 3 was conducted to show how efficient the algorithm is in saving computing resources in a real-
life situation. 2000 time steps were computed enabling the wave front to travel through all sub-domains.
The number of active sub-domains in each time step for two different thresholds is shown in Figure
3.13. The maximum number of active sub-domains was 13700 or 25086, and on average 6563 or 11232
sub-domains were active for the thresholds 10�4 or 10�5, respectively. To obtain a meaningful measure
to compare the efficiency of the traditional and the proposed method, the number of overall computed
nodes can be considered. Using the traditional approach, 229.76 · 1010 nodes were computed. Using the
new proposed method, 58.88 · 1010 nodes were computed for a threshold of 10�4 and 106.24 · 1010 nodes
for a threshold of 10�5. These results indicate that, using the novel approach in experiment 3, 74.4% (for
a threshold of 10�4) or 53.7% (for a threshold of 10�5) of computing resources can be saved. The results
are summarized in Table 3.2.
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Threshold Nodes Trad. Method Nodes Prop. Method Saving
10

�4

229 · 1010 58.88 · 1010 74.3 %
10

�5

229 · 1010 106.24 · 1010 53.7 %

Table 3.2: Number of computed nodes for the traditional method and two different thresholds, and the
percentage of saved resources.

5 Discussion and Perspective

The results section showed that the new proposed method computes the same result as the computation
on one single GPU with a significant improvement of computational efficiency. Figure 3.9 shows that
there is only a negligible difference in amplitude. The phase shift is included intentionally to show the
effect of the ghost layers and can easily be removed. The L

1

and L
2

error norms show how the error
introduced by ignoring small values developed over time. The error increases strongly in the beginning
but reaches a stable value after some time. It was shown that the error strongly reacts to the reduction of
the threshold size. Therefore, for large problems smaller thresholds should be chosen. In these scenarios,
the proposed method maintains its superiority over the traditional method since more sub-domains mean a
more accurate separation of inactive from active zones. Larger problem sizes also allow for a bigger ratio
of inactive to active zones since commonly emerging wavelength are smaller compared to the problem
size. In other words: the larger the model size compared to the emerging wave lengths, the higher the
possibility for inactivating most of the model space, especially when using a very time limited source
term. This fact allows smaller thresholds when computing larger problems without loss of benefit. The
comparison of the error norms of Experiment 1 and Experiment 2 also showed that the error increases
only slightly for complex problems.

The beneficial effect of the method is obvious: regions where the amplitude of the wave is smaller than
a certain threshold are not part of the computation and do not waste computing resources. This principle
leads to a significant speedup, even for an example that is not perfectly suited for the method. Instead
of one GPU dealing with 256 ⇥ 256 ⇥ 256 nodes the algorithm activates only one sub-domain in the
beginning, leading to a much smaller effective problem size. In later time steps, the adjacent sub-domains
are activated. Since the number of sub-domains exceeds the number of GPUs the computation is partly
sequential; however, the speedups of 3.02 times using one GPU and 3.19 times using two GPUs are still
promising and in the expected range. For this example, a bounding box method would have yielded the
same speedup because of the limited problem size and sub-domain number, which make it impossible
to deactivate sub-domains behind the traveling wave. For more complex problems, sub-domains are
deactivated as soon as the wave has traveled outside and the proposed method outperforms the bounding
box method. In Experiment 1, eight GPUs would not have been much faster since the activation of most
sub-domains happens in the last 20 time steps. Hence, most of the time the GPUs would have been idle.
Furthermore, the proposed method makes the division into eight sub-domains using one or two GPUs
possible in the first place. The speedup is mainly due to the fact that the effective problem size is reduced
by a factor of eight for a large part of the computation. The rest of the computation is subject to a partly
sequential computation due to the chosen problem size and hardware. Therefore, the measured speedups
are in a reasonable range.

Experiment 2 simulates a real-life example computed on a GPU cluster equipped with 1331 GPUs.
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Each GPU can compute the solution of the wave equation on a grid of 28 ⇥ 28 ⇥ 28 nodes. Since the
problem size is manageable by one GPU, the simulated cluster does not need to communicate when
performing the traditional approach, therefore giving it an unrealistic advantage. During the computation
using the traditional method, most of the simulated 1331 GPUs are waiting most of the time for their
turn. On the other hand, the proposed method checks for active sub-domains and reduces the efficient
problem size significantly to a maximum of 120 sub-domains in the first 150 time steps. The result is
a 4.64 times faster computation. It has to be said, that the conducted experiment shows the traditional
method at its best, and the new proposed method at its worst, since the high ratio of ghost-nodes to overall
nodes maximizes the time for synchronization and list building steps. Even in this worst case scenario, the
computing time for the list building and synchronization steps are small because only active sub-domains
are synchronized with their neighbors and the synchronization can be performed in parallel. The same
experiment conducted for 300 time steps showed a 1.26 times faster computation using the proposed
method. The smaller speedup for 300 time steps is due to the special character of the velocity field. The
high-frequency, periodic velocity field causes many reflections which make it impossible to inactivate
sub-domains when using the given setting (see Figure 3.12). In this case, a larger grid and more time
steps would be beneficial since the amplitude of the reflected waves would decay below the threshold at
some point. Experiment 3 proved the ability of the new method to save computing resources on the basis
of a real-life application. Instead of 35947 active sub-domains used by the traditional method, the new
algorithm only activated a maximum number of 13700 or 25086 sub-domains depending on the size of the
threshold. On average, 6563 or 11232 sub-domains were active. The overall number of computed nodes
showed that the saving of computer resources is significant for the chosen experiment for both thresholds.

The success of the method highly depends on problem specific parameters, like source definition,
velocity model and problem size, and on the used computer architecture. However, all wave propagation
algorithms can benefit from the proposed algorithm in the beginning of the wave propagation. When the
active wave field is only small, all GPUs can be used for a higher resolution, and hence, a higher accuracy
of finite different approximations around the source. The proposed algorithm loses all its benefits as soon
as a wave is active in all sub-domains. In this case the consumption of computing resources is the same as
with the traditional method excluding the list building step. However, this scenario is rare in practice.

In the future, the sub-domains could be irregularly shaped and thus, better at isolating active from
inactive zones. Furthermore, automatic tools that define sub-domains depending on wave activity and the
number of available GPU devices could be very beneficial. Such a tool could divide the active regions
into as many sub-domains as possible, resulting in higher resolution and/or computational performance.
The goal is to optimally distribute computing resources only on active regions and not wasting them on
regions in the domain where the wave exhibits negligible amplitudes.

6 Conclusion

This paper has proposed a method for distributing the workload of solving the wave equation on a
multi-GPU computer architecture. The proposed algorithm can save computing resources by deactivating
areas where the amplitude of the wave undergoes a defined threshold. The available computing resources
are entirely utilized for regions where the wave is active; hence, no GPUs are running idle. Therefore,
smaller clusters can perform equally well as larger ones. Using the proposed algorithm, one can divide the
domain in more sub-domains than available GPU devices and still obtain a good performance. In cases
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when enough GPUs are available, increasing the number of nodes, and thus the resolution of the solution,
without losing computing time is possible. The proposed algorithm offers more efficient and accurate
wave form modeling by optimizing the workload distribution on GPU clusters and therefore, has a large
potential impact on industry and research.
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Chapter 4

The Duality of Anisotropy and Metric
Space

Article published in Elsevier’s Heliyon Journal, March 2017
DOI: 10.1016/j.heliyon.2017.e00260

Over the last decades, the focus of wave-motion modeling has broadened beyond geophysics and
optics. More and more fields in research and industry adopt the description and modeling of wave motion,
and particularly of wave motion in anisotropic media. A famous example is cardiac modeling, where
an electrical wave excites the heart-muscle fibers to contract [41, 50]. In fact, most fields that deal with
wave propagation need to consider anisotropy as soon as the underlying velocity cannot be described by a
simple scalar [32, 9, 40, 13, 25, 24, 44, 39, 8, 23, 28, 6, 36, 33].

In this case, wave and eikonal equations have to be derived to fit certain conditions, like tensor valued
velocity fields. It can be found, that many fields struggle to find the correct formulations of the governing
equations. This motivates the work on a unified theory that allows for a simple and straight-forward
derivations of equations describing wave propagation through certain kind of anisotropic materials. The
theory exploits the duality of a transformed space and velocity. Research Paper 31 presents the results of
the corresponding work.

1Research Paper 3 was written in British English due to author preference
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Abstract

Acoustic waves propagating in anisotropic media are important for various applications. Even
though these wave phenomena do not generally occur in nature, they can be used to approximate wave
motion in various physical settings. We propose a method to derive wave equations for anisotropic
wave propagation by adjusting the dispersion relation according to a selected type of anisotropy
and transforming it into another metric space. The proposed method allows for the derivation of
acoustic wave and eikonal equations for various types of anisotropy, and generalizes anisotropy by
interpreting it as a change of the metric instead of a change of velocity with direction. The presented
method reduces the scope of acoustic anisotropy to a selection of a velocity or slowness surface and a
tensor that describes the transformation into a new metric space. Experiments are shown for spatially
dependent ellipsoidal anisotropy in homogeneous and inhomogeneous media and sandstone, which
shows vertical transverse isotropy. The results demonstrate the stability and simplicity of the solution
process for certain types of anisotropy and the equivalency of the solutions.

1 Introduction

Anisotropic wave propagation has a variety of different applications because, compared with isotropic
wave propagation, it is a more general representation of wave propagation and is valid in a wider range of
materials. For instance, recent scientific attention has been focused on the development of devices that can
appear to cloak objects. Prototypes of such devices have been constructed that bend certain wavelengths of
light using metamaterials [30, 25]. In the case of acoustic waves, a device for preferential propagation of
the sound through one of two possible and symmetrically aligned channels has been constructed, leading
to effective anisotropic propagation of the wave [12]. Other metamaterials enhance the amplitude of
sound waves before entering a microphone to enhance sensors [9]. These metamaterials are composed
of sub-wavelength meta-atoms that lead to wavelength-scale effects such as non-reciprocal propagation
of waves, negative refraction and wave isolation [23, 13]. Current cloaking technology is based on the
concept of bending the wave around an object such that properties of the wave do not change, rendering
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the object in between the source and the sensor undetectable. As such, coordinate transformations that
maintained the invariance of the wave properties have been defined, for electromagnetic waves [27],
elasto-dynamic waves [24] and for acoustic waves in 2D [10] and 3D [8]. In addition, there exists a
mathematical similarity between acoustic waves (longitudinal, compressional or P-waves) and transverse
or s-waves through mapping the material properties [22]. Therefore, the modeling of anisotropic acoustic
waves can be used to study several types of wave propagation. In this paper, we present a new and generic
approach to model anisotropic acoustic wave propagation based on metric space transformations.

Metric space transformations have been proposed to handle anisotropy before. Dellinger [11] proposed
to stretch a circle to model elliptical anisotropy, while Joets and Ribotta [19] applied the idea for the
propagation of light in anisotropic media where the ray trajectories are the geodesics of an anisotropic
metric space. Borovskikh [4] used the duality of anisotropy and metric space for a theoretical treatment of
various eikonal equations for anisotropic media.

The first advancements in anisotropic wave propagation were made by physicists in the 19th century
to investigate the propagation of light; however the major advances in anisotropic wave propagation were
in the field of seismology [17]. The full anisotropic behavior is defined by a fourth-order tensor c

ijkl

to relate stress and strain. Due to the inherent complexity of this tensor, Voigt [35] noticed symmetries
that allowed the 3 ⇥ 3 ⇥ 3 ⇥ 3 tensor to be reduced to a 6 ⇥ 6 symmetric matrix C

↵�

. For particular
anisotropic materials, the number of potential coefficients is further reduced; to 5, for example, for
transversely isotropic materials, or to 9 for orthorhombic media [34]. For three-dimensional metric space
transformations, 9 coefficients must be defined, as we will show below. In the next section, a method is
presented that generalizes the procedure of deriving wave and eikonal equations for different kinds of
anisotropy.

In nature, acoustic media does not physically admit body waves with anisotropic behavior; only a
wave traveling along a curved manifold or through a moving medium can exhibit anisotropic behavior.
However, it is possible to construct wave and eikonal equations for acoustic, anisotropic wave propagation
by using the dispersion relation of the wave equation [1, 38]. The idea is to design a metric space for
which the media properties are isotropic. [4]. Hence, using the duality of anisotropic media and metric
space, the anisotropic case can be treated like the isotropic one. Therefore, the benefits of the solution
of the acoustic wave equation in isotropic media, like the simplicity of the mathematical treatment and
the stability of the numerical solution, are inherited by the resulting equations for anisotropy. For elastic
media, the acoustic wave equation is used as an approximation of the plane wave (P-wave) motion [1],
while ignoring shear waves [38, 1]. Other situations in which anisotropic, acoustic wave propagation can
be encountered are electric waves in muscle tissue [37, 31] and acoustic waves in moving media.

A metric space is in general defined by a set for which distances between all elements are defined. The
definition of the distance between elements of the set is called a metric. The metric induces a topology on
the set which leads to our definition of anisotropy. The duality of a metric space and anisotropy shall in
this paper be used to generalize various types of anisotropy into one theory. The proposed unified theory
can be used to derive simple, stable and efficient numerical solvers for wave and eikonal equations, and for
a better theoretical understanding of anisotropy. A form of stretching the elliptical anisotropy iteratively
to obtain a solution to the transversely isotropic eikonal equation can be found in bin Waheed et al. [3].

In homogeneous media, a sphere describes the velocity surface for the isotropic case. For ellipsoidal
anisotropy, the sphere can directly be transformed into the new metric space by using the corresponding
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Figure 4.1: A comparison of a circle in different metric spaces. The circle on both sides of the figure is
the set of all points satisfying x2 + y2 = 1. The underlying metric on the left side is the euclidean metric.
The underlying metric on the right side is obtained by compressing and rotating the corresponding basis
by 45 degrees with respect to the standard basis.

basis (Figure 4.1). Another version of this transformation was also used in Stovas and Alkhalifah [32].
This principle can be adapted for other types of anisotropy by using different Lp norms for the computation
of distances. At first, a surface must be chosen to describe the wave front, which can then be stretched
and tilted by transforming it into another basis for the velocity. From the resulting surface, a dispersion
relation can be derived which leads to the corresponding wave equation. From the wave equation, the
corresponding eikonal equation can be obtained. The eikonal approximation provides information about
first arrivals [29], does not account for caustics [20] and requires a sufficiently well defined source [26]
if amplitudes are of interest. Even so, eikonal models are widely used in many fields as approximation
due to their simplicity [16, 15]. Additional to the approximation of wave propagation, the solution of the
eikonal equation has many other applications in a large variety of fields [5, 26, 6, 4, 14, 36, 21, 31].

The proposed theory can be derived by using a new basis for the slowness or the velocity; however,
the chosen basis for the velocity in this work is more illustrative. The proposed method generalizes
various types of anisotropy and offers a simple derivation, implementation and application since the
given tensor field at each model point is illustrative, and dealing with angles between semi-principal
axes and coordinate system axes [38] can be avoided. There is a natural limitation of the method due to
the definition of a metric space. All elements of the set have to have a well (uniquely) defined distance
between them. Therefore, triplications can not be accounted for. However, triplications only occur in very
rare cases under certain circumstances and are therefore seldom considered in practice [33].

The remainder of the paper is organized as follows. Firstly, the theory section gives an overview of the
idea and the physical background. Starting with the dispersion relation of the acoustic wave equation, a
new wave equation for tilted ellipsoidal anisotropy is derived and generalized for other types of anisotropy.
The results section shows five examples to illustrate the functionality of the method, including solutions
for homogeneous and inhomogeneous anisotropic velocity fields and field specific examples.
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2 Theory

The theoretical treatment starts with the dispersion relation

!2

= k2
1

+ k2
2

+ k2
3

, (4.1)

of the acoustic wave equation in three dimensions

@2u(x, t)

@t2
= c2r2u(x, t), (4.2)

where ! is the angular frequency, c is the wave velocity, k
i

is the wave number in the direction i, r2 is the
Laplacian operator and u(x, t) is a scalar function. Equation (4.1) can be divided by !2 and represents a
slowness surface

1 = |p
1

|2 + |p
2

|2 + |p
3

|2, (4.3)

where p
i

= k
i

/!. The slowness surface in the form (4.3) represents a spherical wave front in the phase
space with coordinates p

1

, p
2

, p
3

of an acoustic wave, traveling in homogeneous media with the wave
velocity v = 1 m/s for a travel time of T = 1 s [7]. From this idea, various slowness surfaces can be
constructed depending on the anisotropy one wants to model. The surfaces are in general not restricted
to sixth-order polynomials like surfaces for waves in an elastic medium. Even though the method can
be applied to a large number of surfaces, the focus in this work will be on velocity surfaces that can be
described as a super-ellipsoid (Figure 4.2) in the form
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, (4.4)

since the resulting derivation of the corresponding wave equations are mathematically simpler and the
numerical treatment is less complicated. In Equation (4.4), a,b and c represent the lengths of the semi-
principal axes, which equal one in our case since the stretching is performed by the transformation into
a new metric space. For n = 2 equation (4.4) represents a sphere and will build the basis for tilted
ellipsoidal anisotropy. From the slowness surface the corresponding dispersion relation can be derived.

The procedure to derive an acoustic wave equation in anisotropic media will be described using the
example of tilted ellipsoidal anisotropy. The starting point is the dispersion relation for an isotropic
medium (4.1) which must be transformed into a new metric space for the velocity. The corresponding
tensor describing a new basis is given as
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0

B@

bV
11

(x)

bV
12

(x)

bV
13

(x)

bV
21

(x)

bV
22

(x)

bV
23

(x)

bV
31

(x)

bV
32

(x)

bV
33

(x)

1

CA , (4.5)

where bV
i1

, bV
i2

, bV
i3

are orthogonal vectors of the new basis. The tensor bV describes a possibly spatially
dependent basis and leads to a new group velocity surface at each point in space, like the standard basis for
the Euclidean space gives the group (and phase) velocity surface for isotropic wave propagation; therefore,
it will be referred to as velocity tensor in the course of the paper. The velocity tensor defines a metric
space at each model point. The corresponding metric space shall be called the velocity space. The velocity
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Figure 4.2: The figure shows different shapes of super-ellipses in the form 1 = xn + ym. Super-ellipses
can be used to describe slowness or velocity surfaces in the phase space with coordinates p

1

, p
2

, p
3

or
v
1

, v
2

, v
3

respectively. Shape of the super-ellipse with a) n = m =

1

2

, b) n = m = 2, c) n = m = 4.
Note that for non-integer exponents the procedure would lead to fractional derivatives in the wave equation
which are numerically more difficult to handle. Super-ellipse surfaces are shown here as simple examples
for possible velocity or slowness surfaces. However, the method is applicable to various surface shapes.

tensor must not be confused with the velocity itself which can be set to 1m/s everywhere. The dispersion
relation (4.1) can also be transformed to a new basis bS by applying
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where bS is a tensor for the new basis that yields the slowness surface and will be referred to as slowness
tensor in the course of the paper. The slowness tensor describes a corresponding metric space that shall be
called the slowness space. The translation of the velocity space into the slowness space can, for ellipsoidal
anisotropy, be approximated by preserving the direction of each basis vector and inverting its length and
is given by

bS
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=

bV
ij

bV 2
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+
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2j

+
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3j

. (4.7)

The slowness space can tilt and stretch the slowness surface just like the velocity space bV can stretch and
tilt the velocity surface. The components of the vector of equation (4.6) are the k

i

s in the new metric
space. Therefore, inserting the vector components (4.6) in the dispersion relation (4.1) yields
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Multiplying both sides of equation (4.8) with the wave field in the Fourier domain u(k,!) and performing
an inverse Fourier transformation (k

i

! �j @

@x

i

, ! ! j @

@t

), where j =
p
�1, leads to the acoustic wave

66



equation for tilted ellipsoidal anisotropy
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Since this derivation leads to a wave equation that is only valid at one model point x, bS in equation
(4.8) can be treated as a spatial constant. Equation (4.9) represents the acoustic wave equation for tilted
ellipsoidal anisotropy. It can also be seen as an acoustic wave equation describing a wave traveling in
isotropic media in a given metric space. The two formulations illustrate the duality of anisotropy and
metric spaces. The presented procedure is similar for any other chosen velocity or slowness surface and
therefore for many types of anisotropy.

For illustrative reasons, an alternative approach is shown to derive equation (4.9). The same result can
be obtained by using the acoustic wave equation (4.2) directly and transforming the differential operator
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Inserting the new differential operators (4.10) in the acoustic wave equation (4.2) leads to the same result
as equation (4.9). This equivalent approach shows that the only difference between the isotropic and the
tilted ellipsoidal anisotropic case is the underlying metric space.

From equation (4.9) the eikonal equation
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can be derived. Equation (4.11) can be used to compute the travel times of a wave front propagating in
media with tilted ellipsoidal anisotropy.

The translation of a velocity surface into the corresponding slowness surface is a non-trivial problem
since the actual slowness surface is created by inverting the radii in all directions and can no longer be
described by taking the polynomial surface for the velocity and transforming it into the slowness space.
For better understanding, we can have a look at ellipsoidal anisotropy. In the case of ellipsoidal anisotropy,
the ellipsoid with semi-principal axes a, b, c describing the velocity surface leads to an ellipsoid with
semi-principal axes 1/a, 1/b, 1/c describing the slowness surface even though this is only correct along
the axes. It is in general not the case that the actual slowness surface which is obtained by inverting the
radii of the velocity surface in all directions, resembles the slowness surface that is obtained by inverting
the length of the axes. This approximation was used to preserve the simplicity of the method and leads to
inaccuracies in the space between the axes. The issue seems less problematic if the velocity and slowness
surfaces are considered to be approximations in practice and the real surfaces are unknown. Therefore, in
the case of ellipsoidal anisotropy, the errors made by inverting only the radii in axes direction is smaller
than the error made by approximating anisotropy as a known surface. For other surfaces the induced error
can be larger. Another way to work around the problem is to give the slowness surface and the slowness
tensor in the first step of the solution process, thereby omitting the need to translate between velocity
and slowness. In this work, the velocity is chosen as a starting point for illustrative reasons. The issue of
translating between velocity and slowness surfaces will be addressed in a more descriptive way in the next
sections.

Using the procedure described above, a wave equation can be given for any super-ellipsoidal slowness
surface
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with the associated eikonal equation
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where � is the exponent describing the shape of the super-ellipsoid. Equation (4.12) has a simple solution
for all � 2 N. The general form of the eikonal equation (4.13) is used later to compute the wave fronts in
sandstone.

The procedure described in this section could also be reformulated to extract the metric tensor g
ij

on
a Riemannian manifold. For that, the metric tensor g

ij

in the basis formed by normalizing the vectors in
the slowness tensor is given by filling its diagonal with the slowness values in axes direction.
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3 Numerical Experiments and Results

Five experiments are presented in this section. If not mentioned explicitly, the experiments were executed
using a grid of size 192⇥ 192⇥ 192 and a spacing of dx = dy = dz = 0.7 meter. The first experiment
shows the solution of the wave equation (4.9) for an isotropic velocity field. The solution was compared
to an analytical solution of the eikonal equation to verify the validity of the proposed method. Next, a
solution for a homogeneous velocity field with anisotropy is presented. This example can be motivated by
the desire to approximate wave propagation through a homogeneously moving medium. The following
example shows the result for an anisotropic and inhomogeneous velocity field as it could appear in simple
real-life applications, motivated by an electric wave propagating through the heart muscles. The anisotropy
is induced by the muscle fiber direction. For Experiment 4, we chose a velocity model that approaches
real-life complexity as it comprises sharp velocity contrasts as found in many applications, especially
in seismology. The last example shows the functionality of the method in media that shows a vertical
transverse isotropy. This experiment is motivated by wave-motion modeling, executed in the scope of
seismology.

3.1 The Isotropic Homogeneous Velocity Field

For the first experiment, we are assuming the case of an isotropic homogeneous velocity field. The first
velocity tensor is given at every point in the model space by

bV =

bS =

0

B@
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0 1 0

0 0 1

1

CA . (4.14)

Equation (4.14) represents the standard basis of the Euclidean space. Therefore, the velocity and slowness
surfaces are spheres and the modeled velocity field is isotropic and homogeneous. Figure 4.3 shows the
solution of the computation of equation (4.9). For proof of accuracy and correctness of equation (4.9),
the analytic solution of the eikonal equation for isotropic media is included in Figure 4.3. For the given
metric, the derived wave and eikonal equations could also be directly simplified to the equations for the
isotropic and homogeneous case.

3.2 A Homogeneous Anisotropic Velocity Field

For Experiment 2, we are investigating a homogeneous, anisotropic velocity field. Now, the metric space
is constant in the entire model and is given by the tensor
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For illustrative purposes, the basis is shown with respect to the standard basis in Figure 4.4. The
corresponding velocity surface can be obtained by applying
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Figure 4.3: A two-dimensional slice of the three-dimensional wave field for the homogeneous velocity
field. The wave front of the solution is compared to the analytical solution of the eikonal equation (black).
The analytic solution of the isotropic eikonal equation aligns with the wave front of the solution of the
wave equation (4.9).

where the v
i

s are the velocity components with respect to the original basis. Inserting the vector compo-
nents of equation (4.16) in the velocity surface for isotropic wave propagation leads to
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An approximation of the basis describing the slowness space can be obtained, as described in the theory
section, by inverting the length of the basis vectors of the velocity tensor while maintaining their directions.
The slowness surface can then be obtained by multiplying the inverse of the slowness tensor by the wave
number k. For other forms of velocity surfaces the slowness surface is potentially much more difficult
to find. This issue can be avoided by using the slowness surface in the solution process instead of the
velocity surface. For this example, the velocity surface is chosen for illustrative reasons. However, the
resulting slowness surface in this case is given by
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Figure 4.4: The basis of the new metric space (4.15) (in red) is shown with respect to the standard
basis (black), for illustrative purposes. Note that the longest axis of the new metric is also the longest
semi-principal axis of the ellipsoidal-shaped wave field shown in Figure 4.5.

In the case of ellipsoidal anisotropy, the required inverse of the slowness tensor is the transpose of the
velocity tensor used to describe the basis for the velocity. This circumstance leads to faster computations
since the creation of the slowness space and the inversion of the tensor can be omitted. After inserting
p
i

= k
i

/!, multiplying by a function in the Fourier domain and an inverse Fourier transformation, as
described in the theory section, equation (4.18) leads to the wave equation (4.9) for the given metric
(4.15). A snapshot of the moving wave is shown in Figure 4.5. The results of this experiment could, for
example, be applied to approximate wave propagation in a homogeneously moving medium.

3.3 A Wave in Inhomogeneous Anisotropic Media

Wave propagation in inhomogeneous anisotropic media is the most important example for real-life
applications and is investigated in Experiment 3. The given tensor depends on the position in the modeled
space. The tensor field representing the basis and defining the metric, and therefore, the velocity anisotropy,
is represented by its respective longest vector bV

i1

in Figure 4.6 together with the corresponding wave field.
The velocity tensor is given by
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The axes bV
i2

and bV
i3

of the given basis are pairwise perpendicular to bV
i1

, and one third of the length of
bV
i1

. A wave of this kind can be found in inhomogeneously moving media or in organs like the muscle
tissue of the heart. In this case, the muscle fiber direction is responsible for the anisotropy.
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Figure 4.5: Three two-dimensional slices of the three-dimensional wave field of a homogeneous velocity
field in the metric shown in Figure 4.4. The arrows show the longest axis bV

i2

of the velocity metric.
The wave front represents a circle in the metric given by (4.15). Note, that the wave front resembles an
ellipsoid in the Euclidean metric with the semi-principal axes given by the tensor (4.15).

3.4 Wave Propagation Through a Geological Subsurface

Most real-life applications of the proposed method will involve wave propagation through complex media.
It is therefore important to test the method regarding its behavior when dealing with sharp velocity
contrasts. One particular complex example of this kind is wave propagation through the geological
subsurface and is the focus of Experiment 4. The velocity field in Figure 4.7 is defined on a grid of 1283

nodes and is given by
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Figure 4.6: Three two-dimensional slices of the three-dimensional tensor field describing the velocity
space and the corresponding wave field. The vectors are showing the longest axis bV

i1

of the given basis
(4.19). bV

i2

and bV
i3

are perpendicular to the shown vector in each point and one third in length. Note, that
the wave seems to follow a preferred direction given in each point in space by the tensor (4.19).

The velocity model in Figure 4.7 comprises two layers with different preferred propagation directions and
a body whose preferred propagation direction is perpendicular to the ones of the two layers. The model
contains sharp interfaces and strong velocity variations. Snapshots of the three-dimensional wave field are
shown in Figure 4.8.

3.5 An Eikonal Equation for S-Wave Propagation in Sandstone

Slowness or velocity surfaces in real materials are often not elliptical. To verify the functionality of the
method for wave propagation in materials showing other velocity-surface shapes, Experiment 5 presents a
result for sandstone. Sandstone is typically considered to have vertical transverse isotropy (VTI). This
name describes a medium whose parameters are invariant regarding a rotation around the z-axis [28]. As
represented in Figure 4.9, the super-ellipsoid |x
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the s-wave with reasonable accuracy considering a certain simplicity which shall be maintained. From
Figure 4.9, the following slowness surface can be derived
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Figure 4.7: Velocity field comprising sharp velocity contrasts. The colors indicate the magnitude of the
longest vector in the tensor describing the underlying metric space. Note, that the color, in this illustration,
gives no information about the direction of the longest vector of the tensor. The directions are given in
equation (4.20).
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Figure 4.8: Snapshot of the wave field after indicated times. Note the behavior of the solution at interfaces
between materials with different preferred directions of wave propagation. Note, that no artifacts emerge
in the solution.
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Figure 4.9: The velocity and slowness surfaces of different wave modes in sandstone. The super-ellipsoid
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= 1 (in blue) corresponds to the s-wave slowness surface. The solution resembles the
shape marked in red. Figure modified from Piedrahita et al. [28].

Using the proposed method, the following eikonal equation can be derived
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The solution of equation (4.22) is presented in Figure 4.10. For simplicity, the slowness tensor is spatially
independent and not tilted. The eikonal equation (4.22) and the associated wave equation are valid for
tilted and inhomogeneous sandstone.

4 Discussion

The results showed the accuracy and the functionality of the method for anisotropic, homogeneous and
inhomogeneous velocity fields. The comparison with an analytical solution of the eikonal equation proved
that the wave front of the solution resembled the analytical wave front. Figure 4.3 showed that the
analytical solution of the eikonal equation aligns with the solution of the derived wave equation (4.9).

The result of the second experiment (Figure 4.5) showed the solution of equation (4.9) for a homoge-
neous anisotropic velocity field, approximating, for example, a moving medium. The wave front of the
resulting wave has the expected shape of an ellipsoid given by a transformed sphere into the new metric
space (4.15).
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Figure 4.10: The solution of equation (4.22). Note that there is a high level of resemblance between the
solution and the shape shown in Figure 4.9.

The result of the third experiment (Figure 4.6) showed the solution of equation (4.9) for an inhomoge-
neous anisotropic velocity. Such a velocity field can occur in nature, for instance, in muscle tissue or in
inhomogeneously moving media. The resulting wave field showed that the wave follows the preferred
propagation direction given in every point in space by the tensor (4.19).

Experiment 4 tested the method regarding the wave propagation through a synthetic, geological
subsurface. It turned out, that the method handles sharp velocity contrasts in a stable manner. No artifacts
appear in the solution as in Alkhalifah [1, 2]. This is due to the fact that, from a physical perspective, the
method propagates acoustic waves in a homogeneous, isotropic medium; what changes is the underlying
space. The last experiment showed the solution of an eikonal equation derived by the proposed method of
a s-wave propagating through sandstone. In this case, sandstone exhibits vertical transverse isotropy. The
resulting wave front (see Figure 4.10) resembles the expected wave front depicted in Figure 4.9. Again,
artifacts do not appear in the solution as in Alkhalifah [2]. This result demonstrates the ability of the
method to be applied to other slowness surfaces and therefore types of anisotropy apart from elliptical
ones. However, the equations can become complex for non-integer exponents in the dispersion relation.

The problem of transforming the velocity surface into a slowness surface is not method-specific
and can be avoided by dealing with slowness surfaces in the solution process in the first place, or by
acknowledging that the accurate velocity and slowness surfaces are unknown in practice. The proposed
derivation method for acoustic wave propagation problems offers a straight-forward derivation and
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implementation. In cases where only travel times are important, the proposed method can be used to
derive eikonal equations for various types of anisotropy. The proposed method can also be used to derive
wave equations for any kind of velocity or slowness surface. Here, velocity surfaces in the form of a
super-ellipsoid were discussed for simplicity. The corresponding wave and eikonal equations are simple
to implement and the computation proved to be stable. The solution does not show any artifacts. The
method therefore, has a large potential benefit for research and industry fields in which wave propagation
in anisotropic media plays a significant role. Especially the fields of bio-computing, and seismology could
benefit from the method. Wave propagation through metamaterials can be described and modeled in an
efficient and simple manner. Also, acoustic wave propagation through moving media like waves traveling
through water or air can be approximated in a straight-forward way.

We are claiming that the proposed method leads to a simpler derivation of the governing equations,
a simple implementation and an efficient and stable computation. These assertions will be challenged
in this paragraph. The simple derivation mainly stems from the fact, that we are interpreting changes of
material parameters in certain directions as a change of the underlying metric space. The benefits are
two fold. Firstly, we are only dealing with velocity surfaces instead of elastic parameters, which is very
comprehensible. Secondly, we can use a clean description of velocity by using bases and norms, which
allows for a simple derivation of the governing equations. A drawback is that we have to calculate a tensor
representation of the velocity, in case we are dealing with elastic parameters only. The methods works best
if the starting points are velocity surfaces. In this case, we can challenge the simplicity statement. We can
compare the derivation of the eikonal equation by Alkhalifah [1] to the derivation of the eikonal equation
(4.22) for sandstone in this paper. Equation (4.22) has a simpler structure. However, the complexity of
an equation remains subject to personal preference. Another great example for the computation of wave
phenomena in anisotropic media is the work of Joets and Ribotta [18]. The computation of the eikonal
equation obtained by using the proposed method includes the computation of all ray directions and has a
simpler form. However, the method described by Joets and Ribotta [18] is more general. An advantage
of the proposed method is, that the equations will only change slightly for different kinds of anisotropy
within certain limits, which are discussed in more depth later on. Again, if the starting point are elastic
parameters, the derivation by Alkhalifah [1] is about as simple as the proposed approach. For a further
evaluation of simplicity, we can have a look at Cervený et al. [7]. The eikonal equation for anisotropy
is derived by using the eigenvalues of the Christoffel matrix, which is not a simple concept compared
with dealing with changes in the metric and basis transformation. The simple implementation comes
from the fact that the algorithm is basically a solver of the acoustic, isotropic wave or eikonal equation
in homogeneous media. The only additional work goes into changing exponents and inverting simple
matrices. The close relation to an acoustic solver for homogeneous, isotropic media is also the reason for
the stability and efficiency of the computation. Here, we have to address another limitation. The proposed
method can lead to fractal derivatives in the wave equation which can compromise the computational
efficiency. The inclusion of boundary conditions, using the proposed approach, is simple and follows the
procedure for the derivation of wave equations. The computational efficiency stems mainly from the fact
that the additional computations, namely an inversion of a 3 matrix can be done efficiently on GPU cores,
which is the preferred architecture for wave-motion simulations. Therefore, the computational efficiency
of the solution of the eikonal equation does not depend on the kind of anisotropy within our defined set
of anisotropies. In general, it can be said, that the method’s strength is repeatability of derivations and
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implementations.
The limitations of the method can be clearly formulated. The method is, by construction an approxi-

mation. However, depending on the allowed complexity, this approximation can induce smaller errors
than, for example, the approximation of the real medium as a model given some information. Also, the
method breaks down as soon as triplications occur in the slowness surface. In this work, the slowness
surface had to be in the form of a super-ellipsoid. However, this is just a limitation of derivation, not a
basis limitation of the method, since it is, in theory, possible to extend the derivation to more general
surfaces.

In this paper, the focus was on super-ellipsoidal surfaces and, in particular, ellipsoidal and vertical
transverse isotropy, which was approximated by the proposed method. In future work, other kinds of
surfaces could be investigated with respect to complexity and computational feasibility. Special interest
lies on velocity surfaces described by super-ellipsoids with exponents that are not elements of the natural
numbers and higher order surfaces. Also, more general shapes, like spherical harmonics, could be
used to derive wave equations for complex types of anisotropy. The proposed theory could, because
of its simplicity of derivation and application, build a new basis for the investigation of acoustic wave
propagation in anisotropic media.

5 Conclusion

A new method for deriving wave and eikonal equations for acoustic wave propagation in anisotropic
media was presented and validated by experiments. The proposed theory generalizes various types of
anisotropy by narrowing the procedure down to the selection of a slowness or velocity surface, and a
tensor field defining a new metric space at each spatial model point, thereby simplifying the derivation
of the governing equation. Since all the changes are with regard to the underlying space, the numerical
computations are as stable as the computations in isotropic media. No artifacts can be seen in the solutions
as in Alkhalifah [1, 2]. In this work, we covered surfaces which can be described as a super-ellipsoid. A
greater variety of slowness surfaces will be addressed in future work.
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Chapter 5

A Proposed Hybrid Method for
Function Optimization

Article published in Elsevier’s Journal of Computational and Applied Mathematics, May 2017
DOI: 10.1016/j.cam.2017.04.047

Optimization, as a principle, is one of the best tools we have to explain natural processes. Furthermore,
it is at the basis of countless processes and algorithms in various fields in research and industry such as
artificial intelligence, biology, medicine, finance, engineering, fossil and renewable energy, and image
processing [2, 12, 16, 18, 26, 45, 46, 53]. Therefore, it is highly desirable to be able to optimize functions
efficiently and reliably. Unfortunately, most optimization problems suffer from non-convexity of the
objective function and non-uniqueness of the optima, which complicates the computational challenge
drastically.

Optimization methods can be divided into two main categories: global and local optimization schemes.
Global optimization methods are successful in finding the global optimum eventually [38] but are
inefficient or even useless in high-dimensional spaces. Additionally, they cannot assess the uniqueness of
a solution since the curvature of the objective function is not used. Local methods, on the other hand, are
computationally inexpensive but can reliably find the global optimum of convex functions only. They
can assess whether an optimum accommodates many solutions because the Hessian of the function is
available. However, the probability to converge in a local optimum is high for local optimization schemes
acting on non-convex functions.

The trade-off between reliability and efficiency of current optimization methods and the linked
challenges in many fields in research and industry motivate the work that follows1. The proposed method
was found to be worth protecting by a US patent.

1Research Paper 4 was written in British English due to author preference
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Abstract

Optimisation is a basic principle of nature and has a vast variety of applications in research and
industry. There is a plurality of different optimisation procedures which exhibit different strengths
and weaknesses in computational efficiency and probability of finding the global optimum. Most
methods offer a trade-off between these two aspects. This paper proposes a hybrid genetic deflated
Newton (HGDN) method to find local and global optima more efficiently than competing methods.
The proposed method is a hybrid algorithm which uses a genetic algorithm to explore the parameter
domain for regions containing local minima, and a deflated Newton algorithm to efficiently find their
exact locations. In each iteration, identified minima are removed using deflation, so that they cannot
be found again. The genetic algorithm is adapted as follows: every individual of every generation of
offspring searches its adjacent space for optima using Newton’s method; when found, the optimum is
removed by deflation, and the individual returns to its starting position. This procedure is repeated
until no more optima can be found. The deflation step ensures that the same optimum is not found
twice. In the subsequent genetic step, a new generation of offspring is created, using procreation of
the fittest. We demonstrate that the proposed method converges to the global optimum, even for small
populations. Furthermore, the numerical results show that the HGDN method can improve the number
of necessary function and derivative evaluations by orders of magnitude.

1 Introduction

Optimisation is one of the most fundamental principles of nature. Most physical principles can be
formulated in the structure of an optimisation problem. Additionally, inversions, like seismic tomography
and weather predictions, are typical optimisation problems. It is therefore important to develop efficient
methods to optimise functions. This paper is concerned with the problem of finding the local and global
minimisers {x⇤} of a real-valued function f : Rn ! R. More precisely, we are seeking points x⇤ 2 Rn

for which the optimality condition

f(x⇤
)  f(x) 8x 2 Rn

: ||x� x

⇤|| < r (5.1)

holds for a sufficiently small r > 0. The search for maxima is analogous and will be treated accordingly.
The objective function f can be highly non-linear, but we assume that it is continuous and at least twice
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differentiable. In many practical applications, evaluating f or its derivatives involves computationally
expensive operations, such as the solution of a discretised partial differential equation. Therefore, it is
crucial to solve the problem with as few functional and derivative evaluations as possible.

Solving problem (5.1) is numerically challenging, because f can have multiple local and global
optima. Local knowledge about the function, such as evaluations and derivatives, is therefore not sufficient
to find the global solution or to identify whether an optimum is a local or a global optimum [7]. Hence,
existing local optimisation methods can not be applied directly. Instead, a solution strategy must explore
the global parameter space. Genetic algorithms and simulated annealing are popular methods that use
randomised search strategies motivated from natural processes. They are robust, find the proximity of
the optimal solutions in a reasonable time for a small number of dimensions, are parallelisable and easy
to implement [9, 6]. Furthermore, they have little assumptions on the objective function f . However,
they require many function evaluations, especially in high dimensional spaces. To improve the efficiency,
hybrid schemes have been proposed which combine the efficiency of local optimisation methods with the
generality of global methods [15, 17, 1, 14]. Renders and Flasse [14] in particular showed that hybrid
methods can offer a significant improvement compared to genetic algorithms. We are referring to these
hybrid methods as traditional hybrid methods in the course of the paper.

This paper presents a new hybrid optimisation method that combines a genetic algorithm with a fast,
local optimisation method. The algorithm is based on two basic components: a global search method
based on the genetic algorithm, and a local search method. For the local search, we employ a deflated
Newton scheme [2]. The deflated Newton method efficiently identifies multiple local minima or maxima
in proximity of the starting point, and deflates the function accordingly. As a result, a smaller population
size is sufficient to efficiently map the local and global optima of f , which we show, can result in a
significant performance increase of the overall algorithm. The key to the success of the deflated Newton
method is that the found optima are “removed”, meaning that a deflation is placed where the optimum
was located. A subsequent Newton search will not converge to the same point, but will find another
optimum or diverge, meaning that there are no optima in the vicinity of the individual. This leads to a
performance gain of the overall algorithm compared to traditional hybrid methods. The following genetic
algorithm will relocate the individuals by using procreation of the fittest. In the new locations, all offspring
individuals will again start the search for optima. The proposed method is easy to implement because
existing implementations of genetic and local optimisation methods can be reused. The overall goal is to
minimise the required function and derivative evaluations to find local and global optima of a function.

The remainder of the paper is organised as follows. In Section 2, the ingredients of the proposed
method are mentioned and explained briefly. The following sections will give some information about
global and local optimisation schemes. Next, it is explained how these methods work together to form
the basis of the proposed hybrid method. Afterwards, the method of deflation is described and used to
improve the existing hybrid methods. The proposed method was applied in several standard problems
and benchmarked against genetic and traditional hybrid optimisation methods. The numerical results are
shown in Section 3.

2 Methodology and Theory

Two classes of methods exist when it comes to optimising functions: local methods and global methods.
In most fields, the use of either local or global methods means a trade-off between computing time and
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Algorithm 1: Recombination(Population)
select fittest individuals;
perform crossover;
perform mutation;
return Population

probability of finding the global optimum. This section will give an introduction to local and global
optimisation schemes and will use them to draw the path to the proposed method.

2.1 Global Methods

Global methods, like the Monte-Carlo method or the genetic algorithm are randomised algorithms and
can guarantee to find the global optimum [11]. For our purposes the genetic algorithm is particularly
interesting. This algorithm is inspired by the natural selection in biological evolution and works as
follows. The core of a genetic algorithm is called recombination and is shown in Algorithm 1. A random
population is created and placed in the search space. We refer to a population as a plurality of chosen
points (individuals) in the search space. The fittest individuals have the best chance to procreate and
produce offspring. The fitness in this context is the function value at the point that is associated with a
certain individual. The offspring is built by crossover of the genome (the location in the search space) of
the parent individuals. There are many different types of crossover, ranging from one-point crossover to
completely random methods [8]. After the crossover, mutation can happen randomly, which gives the
genetic algorithm the ability to find the global optimum eventually. Mutation means a random change of
the genome (the location) of an affected individual. Mutation, and the chance for individuals that are not
among the fittest to procreate, give the genetic algorithm an unbiased behaviour. However, for real life
applications, global optimisation methods are often not feasible because the number of necessary function
evaluations exceeds feasibility for a high number of dimensions of the search space. It is potentially useful
to consider other global methods besides the genetic algorithm. The Monte-Carlo [3] method and particle
swarm optimisation [10] could, among others, also lead to satisfying results.

2.2 Local Methods

Local methods are mostly derivative-based methods, like the steepest decent and the Newton method.
Local methods are computationally cheap compared to global methods, but they have a high risk of
converging to a local optimum. The Newton method is of particular interest for our purpose for reasons
that will become apparent later on. The Newton method computes the gradient and the Hessian at a certain
point of the function and uses this information to predict a new location for the individual by solving

H(x)� = �rf(x), (5.2)

where H is the Hessian matrix, H(x)

ij

=

@f(x)

@x

i

@x

j

, x is the current position and � is the improvement from
the current to the next position. For strictly convex functions, the Newton method is successful in finding
the global optimum. The pseudo code of the Newton method is shown in Algorithm 2. In practice, most
functions we seek to optimise show more complicated properties. If a function is not convex, the Newton
method can converge in a local optimum or a saddle point. It is possible to find several stationary points
using the Newton method repeatedly. The deflated Newton method is an extension to the Newton method
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Algorithm 2: Function: Newton(Position x)
while change in position > ✏ do

compute gradient and Hessian of function at position x;
Solve H(x)� = �rf(x) for example with CG or MINRES method
update position x = x+ �;

that allows to identify multiple local minima [16, 2, 5]. The deflation process removes an identified root
from a function to make sure that in a subsequent Newton step individuals can not find the same optimum
again. The deflated Newton method works as follows: The Newton optimisation method searches for
stationary points of f , i.e. points x

⇤ where f 0
(x

⇤
) = 0. Let x

1

, ..,x
N

be stationary points that have
already been identified. Then, further stationary points of f can be found by considering the deflated
gradient of the function f by using

rf
x0(x) =

rf(x)
Q

N

i=1

kx� x

i

k2
, (5.3)

where N is the number of deflated points. The deflated function has no roots at the known optima x
i

, and
hence the local search method will not converge to these roots again (see Figure 5.1d). We will implement
the method of deflation, using a genetic algorithm for many individuals, which presents the main novelty
of the proposed method.

2.3 Traditional Hybrid Methods

To combine the strengths of global and local optimisation, hybrid methods have been developed in the past
[14]. Hybrid methods are using a global search algorithm to explore the search space on a global level.
At this stage, we will focus on hybrid schemes that use the genetic algorithm as a global search scheme
and the Newton method as a local scheme. After each iteration of the genetic algorithm, all individuals
perform a Newton search to find a stationary point of the function. When all individuals have converged,
the genetic algorithm chooses the fittest individuals and creates offspring. The next generation is, in
general, fitter than the last one which leads to the convergence of the algorithm. After a new generation is
created, all individuals start again the search using the Newton scheme.

2.4 The New Hybrid Scheme

How can the existing hybrid methods further be accelerated? Consider one genetic iteration of such a
hybrid scheme as visualised in Figure 5.1a. An obvious drawback is that the local search method might
compute the same optima for different individuals; also, these optima might be re-identified over and
over again in each genetic iteration. Therefore, a significant amount of computational effort is potentially
utilised identifying already known optima. Only if an individual is positioned sufficiently close to a new
optimum, then the local search will converge to this new optimum. At this point, the key idea comes into
play. Combining hybrid schemes with the knowledge about deflations, a new scheme can be created. The
new scheme places a plurality of individuals randomly in the search space. Subsequently, every individual
uses a Newton method to find a stationary point of the function. Once at the stationary point, the gradient
of the function is deflated (see Figure 5.1b and 5.1c) at this location and the point and its function value are
stored in a list of stationary points. When a certain amount of individuals have converged, all individuals
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(a) The hybrid method applies local optimisation to each
individual. In the next iteration, the same optima can be
identified again.
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(b) The Euclidean norm of the gradient of the function.
Optima in the original function are roots in the gradient.
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(c) The gradient of the function is deflated at the optima
of the function. The roots are removed.
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(d) The hybrid genetic deflated Newton method removes
any identified optima after each iteration. Therefore, al-
ready found optima cannot be identified again. Every
individual can find new optima.

Figure 5.1: Illustration of the key idea of deflation. Traditional hybrid methods can find already identified
optima. Deflation, on the other hand, prevents the algorithm from identifying the same optima again.

are set back to their original locations to start a new local search. The individuals can not converge to
the same points thanks to the deflations (see Figure 5.1d). This procedure is repeated until a user defined
percentage of individuals can not find a stationary point anymore. When this happens, a genetic iteration
relocates the population by creating offspring using procreation of the fittest and the local search is started
again. This way, progressively more stationary points are found. The search can be terminated when no
new stationary points can be found or when a certain amount of new found optima show a similar function
value.

The modified algorithm for the hybrid genetic deflated Newton method is given in Algorithms 3 and
4. If a hybrid method is already implemented, the required changes are minimal: the only change is to
replace the Newton method with the deflated Newton method, and to keep a list of all identified minima.

2.5 Deflation Operators

When coping with challenging optimisation problems, the simple deflation strategy given in equation
(5.3) is often numerically not robust and alternative deflation operators need to be investigated. A more
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Algorithm 3: Top-level structure of the new hybrid algorithm.
initialise Population of individuals of length n;
initialise OptiList = []
Population = DNewton(Population, OptiList);
while Change in population fitness > ✏ do

Population = Recombination(Population);
Population = DNewton(Population, OptiList);

Algorithm 4: Function: DNewton(Population, OptiList)
while Convergence criterion not fulfilled do

for all individuals in parallel do
while Change in fitness of the individual > ✏ do

deflate gradient of function based on OptiList
compute deflated gradient and Hessian of function at position x;
Solve H(x)� = �rf(x) for example with CG or MINRES method
update position x = x+ �;

append x to OptiList;
set Population back to initial position;

return fittest N components of OptiList

general version of the basic deflation operator (5.3) for deflating a single root x
0

is

rf
x0(x) =

rf(x)

kx� x

0

kp , (5.4)

where p 2 N. The application of the deflation operator (5.4) is numerically problematic, because the
deflated function converges to 0 for x ! 1 if f is bounded. Subsequently, applying Newton to f

x0 might
diverge. This can be avoided by introducing a shifting of the deflation operator of the form

rf
x0(x) =

✓
1

kx� x

0

kp + 1

◆
rf(x), (5.5)

as shown by Farrell et al. [5]. Here, for x ! 1 the deflated function behaves as the original function.
A main drawback of the deflation operators (5.4) and (5.5) is that they alter the function globally,

which results in degeneration if the deflation is applied many times. This can be seen when applying the
deflation to two different roots x

0

and x

1

rf
x0,x1(x) =

✓
1

kx� x

0

kp + 1

◆
rf

x1(x)

=

✓
1

kx� x

0

kp + 1

◆✓
1

kx� x

1

kp + 1

◆
rf(x). (5.6)

The function is multiplied by a scalar coefficient > 1, which grows quickly if many deflations are applied.
Traditional deflation, as well as shifted deflation, lead to an altering of the function outside a vicinity of
the deflation and are therefore numerically problematic when many deflations occur. For many deflations,
the function values can fall below machine precision or grow beyond feasibility which leads to numerical
problems. The principle is illustrated in Figure 5.2a.

To solve this problem, we introduced the localised deflation operator. The localised deflation operation
uses a bump function (a smooth function with compact support) to affect an area close to the deflation
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only. The normalised bump function in n dimensions is given by

b
x0(x) =

8
><

>:

Q
n

i=1

exp(

�↵

r

2�(x
i

�x

i0)
2 )

exp(

�↵

r

2 )

if x
i0

� r < x
i

< x
i0

+ r

0 else
(5.7)

where x

0

is the location of the center of the deflation, r is the radius of the deflation and ↵ is a coefficient
to adjust the shape of the bump function as can be seen in Figure 5.3. An adapted shape of the bump
function leads to a more efficient prevention of individuals converging into the deflated optimum. The
deflated function is then given by

rf
x0(x) =

rf(x)

1� b
x0(x)

. (5.8)

The employment of the localised deflation with coefficient ↵ allows for highly shapeable deflations at the
right locations, without altering the function anywhere else. Highly shapeable bump functions mean a
better avoidance of the convergence of an individual in the Newton step. The effect of different deflation
operators can be seen in Figure 5.2.

3 Experiments and Results

To prove the functionality of the proposed hybrid method, four experiments were conducted. The
experiments are standard benchmark examples for genetic algorithms [4] and introduced hereafter. The
proposed method, referred to as hybrid genetic-deflated Newton method (HGDN), was challenged to find
the global maximum of the example functions using less function and derivative evaluations than a genetic
algorithm and a traditional hybrid genetic/Newton algorithm [14], referred to as Genetic-Newton method.
The number of function and derivative evaluations is, as a measure, more meaningful than the overall
computing time, which highly depends on the implementation, the forward problem and the computer
architecture.

The genetic algorithm uses a crossover which creates a child individual by using alternate genes from
the mother and the father individual. In all our experiments, mutation of one percent of the genome value
could occur with a probability of 80 percent. To improve the unbiased behaviour of the algorithm, a
second stage of mutation could occur with a probability of ten percent. This kind of mutation changed
the value of the genome randomly in the limits of the search space. The Newton algorithm is terminated
when the change in location from one iteration to the next falls below a certain user-defined threshold
(10�6 for our experiments).

3.1 Ackley’s Function

The Ackley’s function in n dimensions is defined as

f(x) = 20 exp

 
� 0.2

vuut 1

n

nX

i=1

x2
i

!
+ exp

 
1

n

nX

i=1

cos(2⇡x
i

)

!
� 20� exp(1) (5.9)

and is shown in Figure 5.4. It is considered to be relatively easy to optimise for a genetic algorithm [4]
due to the guiding slope giving a preferred search direction. We included Ackley’s function because of its
potential relevance in real world applications [4]. For the first experiment, we want to optimise Ackley’s
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(a) An original sine function, and deflated sine functions, obtained by using the basic deflation
operator (5.3). Note that the function is altered everywhere when deflation is applied. The
single deflated sine function exhibits much smaller amplitudes and presents a phase shift.
The multiple deflated sine function shows nearly no visible amplitude.

(b) A sine function, and the deflated sine functions, obtained by using shifted and localised
deflation. Note, that applying the shifted deflation operator (5.5) multiple times yields to
changed amplitudes and a phase shift in the adjacent areas of the deflation points. The
localised deflation, on the other hand, leaves the function unaffected outside a certain radius.

Figure 5.2: The effect of different deflation operators applied to a sine function. Note, that only the
localised deflation leaves the global shape of the function uncompromised.

function in the limits �10  x
i

 10 (see Figure 5.4). The search space gives the limits of the random
placement of the first generation of individuals. Ackley’s function comprises many local optima but shows
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(a) A bump function with ↵ = 1. (b) A bump function with ↵ = 0.1.

(c) The resulting change in the deflated function. The dashed curve shows the new deflation using the bump function
with ↵ = 0.1.

Figure 5.3: Two different bump functions and their effect on the deflated function. Note that the boundaries
of the deflation are much more distinct when using lower values for ↵.

a steep guiding slope towards the global optimum.
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Figure 5.4: Ackley’s function exhibits a steep guiding slope towards the global optimum, which is located
in the center. The function contains many local optima, which can mislead local gradient based methods.

3.2 Rastrigin’s Function

We define Rastrigin’s function in n dimensions as

f(x) = �10n�
nX

i

x2
i

� 10 cos(2⇡x
i

). (5.10)

Rastrigin’s function is illustrated in Figure 5.5. It has a less steep guiding slope than Ackley’s function
which complicates the optimisation process. On the other hand, there are less local optima in the search
space �5.12  x

i

 5.12.

3.3 Schwefel’s Function

The Schwefel’s function in n dimensions is defined as

f(x) = �418.9829n�
nX

i

8
<

:
�x

i

· sin(
p

|x
i

|) if � 500  x
i

 500

0.02 · x2
i

else
(5.11)

and is shown in Figure 5.6. The function does not exhibit a guiding slope which points in the direction
of the global optimum. In addition, the function is less symmetric than the previous functions and the
global optimum is located close to the border of the search space �500  x

i

 500, which complicates
the optimisation because the average distance of the randomly placed individuals of the first generation to
the optimum is greater than for a centered global optimum.
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Figure 5.5: Rastrigin’s function exhibits a less steep guiding slope towards the global optimum than
Ackley’s function. The function contains a plurality of optima in the search space, which can mislead
local gradient based methods.

Figure 5.6: Schwefel’s function exhibits no guiding slope towards the global optimum which is located
close to the border at x

i

= 420.97 for i = 1, . . . , n.
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Figure 5.7: The difficulty in optimising the Schaffer’s F6 function lies in the fact that the function value
of the local minima increases towards the global maximum. Furthermore, the local optima of an n
dimensional Schaffer’s F6 function are n� 1 dimensional, which complicates a successful deflation.

3.4 Schaffer’s F6 Function

The Schaffer’s F6 function in n dimensions is defined as

f(x) = �0.5�
sin

2

(

qP
n

i=1

x2
i

)� 0.5

(1 + 0.001(
P

n

i=1

x2
i

))

2

(5.12)

and is shown in Figure 5.7. The Schaffer’s F6 function represents a special challenge for the proposed
algorithm since it exhibits local optima that are n� 1 dimensional. More formally said, the null space of
the Hessian at the optimum is n� 1-dimensional. An infinite amount of deflations is necessary to deflate a
n� 1 dimensional optimum entirely, which poses a challenge for the HGDN method. Another challenge
lies in the increasing amplitude of the wave-like function towards the optimum. The search space was
chosen to be �20  x

i

 20.

3.5 Comparison of Number of Function and Derivative Evaluations

In most inversion problems, the forward modelling is the most costly step; therefore, it is desirable to
minimise the number of function evaluations of an optimisation procedure. Furthermore, the number
of gradient/Hessian computations has a large impact on the computational performance and therefore,
need to be minimised as well. The proposed method was up against a genetic algorithm and the hybrid
Genetic-Newton method. The three methods were supposed to find the global optimum of the above
introduced functions. All experiments were run 50 times with random starting populations and optimised
parameters, and sorted with respect to the number of function evaluations. The break condition was
reaching the global optimum. The number of starting individuals is given in Table 5.1. The number of
starting individuals was chosen in order to guarantee the convergence, in most cases, to allow for a fair
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Ackley Rastrigin Schwefel Schaffer F6
Genetic 2d 20 200 200 200
Genetic-Newton 2d 20 50 20 10
HGDN 2d 20 40 20 10
Genetic-Newton 10d 200 50 20 10
HGDN 10d 20 40 20 10

Table 5.1: Table showing the number of starting individuals. Note that the proposed method used the
same number or less starting individuals than the competing methods.

Method Func. Eval. � Func. Eval Grad./H. Comp � Grad./H. Comp.
Genetic Alg. 1670.0 4451.5 0 0
Genetic-Newton 4354.5 11932.7 12695.3 34830.1
HGDN 845.8 2865.3 6308.0 21669.2

Table 5.2: Means and variances of 50 runs using Ackley’s function in two dimensions. Runs that did not
converge and the corresponding runs of the competing methods were excluded.

Method Func. Eval. � Func. Eval Grad./H. Comp � Grad./H. Comp.
Genetic-Newton 9820.0 2115.2 36163.1 7452.5
HGDN 1221.2 268.4 7962.3 1736.2

Table 5.3: Means and variances of 50 runs on Ackley’s function in ten dimensions. Runs that did not
converge and the corresponding runs of the competing methods were excluded.

comparison. The genetic algorithm was not applied to the ten-dimensional case because the superiority of
the Genetic-Newton and the HGDN method is already apparent in the two-dimensional example. Also,
the high number of individuals needed, renders the genetic algorithm uncompetitive in ten dimensions.

The number of function evaluations to optimise Ackley’s function (Figure 5.4) is presented in Figure
5.8 and Tables 5.2 and 5.3. The guiding slope leads to a fast convergence of the genetic algorithm into
the global optimum. Since the local gradient is not used in the genetic algorithm, the many local optima
cannot degrade the convergence rate. The guiding slope, on the other hand, is used implicitly, since fitter
individuals have a higher probability of procreating. The hybrid methods use the local gradient which
degenerates the convergence. The small wave length structure of the function misleads the methods that
use local gradient information, which leads to an increased number of function and derivative evaluations.
Nevertheless, the proposed HGDN method showed a fast convergence towards the global optimum as
shown in Figure 5.8. The superiority of the HGDN algorithm is more apparent in the ten dimensional
case. It has to be stated here that the Genetic-Newton algorithm needed more individuals to guarantee
the convergence in ten dimensions. Using the same number of individuals for all competing algorithms
leads to many runs of the Genetic-Newton algorithm not converging to the global optimum within a
given allowed maximum number of genetic steps. The HGDN method, on the other hand, needs fewer
individuals to converge.

Rastrigin’s function (Figure 5.5) does not show a steep guiding slope which leads to more function
evaluations for the genetic algorithm. The HGDN method outperforms its opponents when optimising
Rastrigin’s function (see Figure 5.9 and Tables 5.4 and 5.5). The tables not only show clearly that
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Figure 5.8: The number of function evaluations in two and ten dimensions for Ackley’s function of
50 optimisation runs. The genetic algorithm is outperformed by the Genetic-Newton and the HGDN
algorithm in 2 dimensions. In ten dimensions, the HGDN algorithm optimises Ackley’s function in fewer
function evaluations than the Genetic-Newton algorithm.

Method Func. Eval. � Func. Eval Grad./H. Comp � Grad./H. Comp.
Genetic Alg. 2908.0 8772.1 0 0
Genetic-Newton 1578.7 7353.0 4384.8 19954.1
HGDN 94.9 78.1 769.8 691.3

Table 5.4: Means and variances of 50 runs on Rastrigin’s function in two dimensions. Runs that did not
converge and the corresponding runs of the competing methods were excluded.

Method Func. Eval. � Func. Eval Grad./H. Comp � Grad./H. Comp.
Genetic-Newton 20856.5 12712.8 70892.2 43082.6
HGDN 4677.5 2609.0 27766.5 14085.6

Table 5.5: Means and variances of 50 runs on Rastrigin’s function in ten dimensions. Runs that did not
converge and the corresponding runs of the competing methods were excluded.

the HGDN method needed fewer function and derivative evaluations, the variances are also smaller.
Rastrigin’s function was optimised reliably and efficiently by both hybrid algorithms. The reason is the
quadratic shape which leads to a fast convergence of the local Newton method. However, the proposed
method outperformed its opponents, which becomes more apparent in ten dimensions than in two.
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Figure 5.9: The number of function evaluations of Rastrigin’s function in two and ten dimensions of 50
optimisation runs. Both hybrid methods perform well optimising Rastrigin’s function in two and ten
dimensions. The reason is the quadratic envelope of Rastrigin’s function which leads to a fast convergence
of the local Newton optimisation scheme. The HGDN method performs better because it avoids frequent
convergence in one of the many local optima.

Method Func. Eval. � Func. Eval Grad./H. Comp � Grad./H. Comp.
Genetic Alg. 53400.0 63925.8 0 0
Genetic-Newton 1636.0 5427.1 7049.1 22575.3
HGDN 232.0 860.2 6557.7 26279.9

Table 5.6: Means and variances of 50 runs on Schwefel’s function in two dimensions. Runs that did not
converge and the corresponding runs of the competing methods were excluded.

Schwefel’s function (Figure 5.6) is much more difficult to optimise due to the missing guiding slope,
the missing symmetry and the non-centered optimum. The performance of the proposed method was of
particular importance in this experiment because of its relevance for real life optimisation problems. The
HGDN method outperforms both opponents (see Figure 5.10 and Tables 5.6 and 5.7). Again, the tables
show a smaller and more stable number of function and derivative evaluations. The results also show that
the proposed method benefits from a higher number of dimensions.

Schaffer’s F6 function poses (Figure 5.7) the problem of n�1 dimensional local optima. Nevertheless,
the proposed approach outperforms its opponents, as seen in Figure 5.11 and Tables 5.8 and 5.9. The
results for Schaffer’s F6 function confirm earlier results. The proposed method optimises the function
more efficiently than the competing methods. The HGDN method does not benefit from higher dimensions
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Figure 5.10: The number of function evaluations of Schwefel’s function in two and ten dimensions of
50 optimisation runs. The HGDN method outperforms genetic and Genetic-Newton methods optimising
Schwefel’s function. In the two dimensional case, Genetic-Newton also converges fast towards the global
optimum. In ten dimensions the Genetic-Newton is clearly outperformed by the proposed method.

Method Func. Eval. � Func. Eval Grad./H. Comp � Grad./H. Comp.
Genetic-Newton 12254.7 5908.6 162648.1 76878.9
HGDN 1408.7 566.4 34540.1 14329.3

Table 5.7: Means and variances of 50 runs on Schwefel’s function in ten dimensions. Runs that did not
converge and the corresponding runs of the competing methods were excluded.

Method Func. Eval. � Func. Eval Grad./H. Comp � Grad./H. Comp.
Genetic Alg. 1336.0 1113.9 0 0
Genetic-Newton 1082.8 2803.6 3923.4 9956.5
HGDN 30.88 19.6 252.2 195.2

Table 5.8: Means and variances of 50 runs on Schaffer’s F6 function in two dimensions. Runs that did not
converge and the corresponding runs of the competing methods were excluded.

in this experiment. The reason is the n� 1-dimensional optima of the function, which can not be deflated
entirely by the deflation operators introduced in this paper.

It should be noted, that compared to the competing methods, the case of divergent runs never appears
when applying the proposed method.
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Figure 5.11: The number of function evaluations of Schaffer’s F6 function in two and ten dimensions
of 50 optimisation runs. Despite difficulties linked to the shape of the optima, the improvement in the
number of function evaluations used for optimising Schaffer’s function is significant compared with the
two competing methods.

Method Func. Eval. � Func. Eval Grad./H. Comp � Grad./H. Comp.
Genetic-Newton 1231.4 1028.1 4824.7 3954.7
HGDN 181.5 275.9 1109.2 1577.6

Table 5.9: Means and variances of 50 runs on Schaffer’s function in ten dimensions. Runs that did not
converge and the corresponding runs of the competing methods were excluded.

4 Selected Comparisons to State-Of-The-Art Hybrid Methods

The HGDN method showed in the preceding sections that it can optimise complex functions efficiently
compared to basic algorithms. To show that our method performs well compared to state-of-art optimisa-
tion procedures, we challenged the HGDN method against the published results of three hybrid methods.
All results of the HGDN runs are averages of 50 runs. For the reader to comprehend the comparisons, we
introduce two more test functions. The Rosenbrock function

f(x) =
n�1X

i=1

(100(x
i+1

� x2
i

)

2

+ (1� x
i

)

2

) (5.13)

(see Figure 5.12) has only one stationary point. In this case, the HGDN method becomes a hybrid
Newton/Genetic algorithm. However, the shown results still confirm the efficiency of the HGDN method.
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Figure 5.12: The Rosenbrock function depicted in equation (5.13). The function has one stationary point
which can be costly to find since it is located in a curved valley.

The Rosenbrock function is commonly regarded as easy to optimise because the function has only one
stationary point; however, the function is well suited to test the efficiency of algorithms since the optimum
is located in a curved valley.

The HGDN method is designed to optimise functions with many optima. To show that, the method is
challenged to optimise the test function

f(x, y) = � cos(x)� cos(y)� 1.5 sin(2⇡x) sin(2⇡y)� 3e�
x

2

400�
y

2

100 , (5.14)

illustrated in Figure 5.13, as efficient as possible. This test function has more than 162 billion optima in
the chosen interval [18].

4.1 Comparison to EPSO

Miranda and Fonseca [13] proposed a hybrid method of evolutionary and particle swarm algorithm. The
method was applied to several test functions i.e. the Schaffer’s F6 and the Rosenbrock function. Miranda
and Fonseca [13] reported the results presented in Table 5.10. The result of HGDN applied to the same
problems was added to Table 5.10. It has to be stated here that the HGDN method was applied to the test
functions as if we did not know which function we were optimising. Otherwise, the Rosenbrock function
could be optimised more efficiently using only one individual; in which case, the HGDN method would
fall back to a common Newton scheme.
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Figure 5.13: The test function depicted in equation (5.14). The function was chosen because of the vast
number of optima. In addition, the function only shows a guiding slope in proximity to the optimum.

Test Function Dimensions Interval F. Eval. EPSO F. Eval. HGDN
Schaffer’s F6 2 [�50, 50] 11862.1 1980.0
Rosenbrock 30 [0, 30] 27005.3 280.0 (15.0)

Table 5.10: Parameters and performance details reported by Miranda and Fonseca [13] for the EPSO
method and results of HGDN applied to the same problems as specified in the table. For the Rosenbrock
function the HGDN method can use only one individual in which case the method falls back to a common
Newton scheme. The number of function evaluations in this case is presented in brackets.

4.2 Comparison to a Local Optimiser/Feasible Point Finder

Xu [18] proposed a global optimiser which employs local optimisation and a feasible point finder. Results
are reported for several test functions. For the comparison we chose the test function (5.14) illustrated in
Figure 5.13. Xu [18] reported the CPU time until the global optimum is found. The average CPU time to
find the minimum of the chosen test function in 2 dimensions in the interval [�10

6, 107]⇥ [�10

6, 107] is
10.77 seconds on a Pentium II 400 MHz processor. We executed the experiment on a 2.7 GHz Intel i7
Processor. Our average run time was 0.2 seconds.

4.3 Comparison to a Hybrid Simulated Annealing/Downhill Simplex Method

Liu et al. [12] proposed a hybrid simulated annealing/downhill simplex method in the scope of geophysics.
The method was applied to the Rosenbrock function (5.13). Liu et al. [12] reported the results presented
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Dimensions Trials F. Eval. Reported F. Eval. HGDN Newton. Eval. HGDN
10 2 3.0e4 17.2 255.2
50 2 8.0e5 25.0 1250.3
100 3 5.0e6 100.1 954.2

Table 5.11: Performance details reported by Liu et al. [12] for the hybrid simulated annealing/downhill
simplex method and the performance details of HGDN applied to the same problems, as specified in the
table.

in Table 5.11. The interval is not explicitly reported, therefore, we chose the interval to be [�30, 30]n.
Experiments show that the interval does not have a large impact on the performance.

5 Parallelisation of the Method

In times where processing units become rather cheaper than faster, it is important for a method to take
advantage of parallel computer architectures. The presented approach offers an inherent possibility to
be parallelised, since every individual can search for a local optimum independently. In the current
implementation, this was achieved by using OpenMP to parallelise the loop over all individuals in
Algorithm 4. The downside of this strategy is that two individuals can converge to the same optimum in
one genetic step. However, since a small number of individuals can typically be chosen with the HGDN
approach, the probability for this to occur is relatively low.

6 Discussion and Conclusion

We proposed a novel hybrid genetic-deflated Newton (HGDN) optimisation scheme which combines the
benefits of local and global optimisation schemes, and a procedure called deflation, which can effectively
remove roots from functions. The implementation of the scheme is simple, since implementations of
genetic algorithms and the Newton algorithm can be reused. The proposed HGDN method leads to a
significant performance gain compared to the other tested methods, namely the genetic algorithm and the
Genetic-Newton algorithm, in most situations.

The HGDN method was challenged to optimise various test functions more efficiently than state-of-
the-art optimisation methods. For that, we did not implement the competing methods ourselves, but used
the published results to guarantee a fair comparison. The HGDN optimised the chosen test functions about
ten times more efficiently. It is important to point out, however, that, though the HGDN method drastically
improves on the necessary function evaluations, the method needs Newton steps (Gradient+Hessian)
which can be costly to compute, depending on the problem at hand. Alternatively, the HGDN method
could be executed using quasi-Newton or steepest-decent methods. In this case, Hessian computations
would not be necessary but the local optimisation might require more iterations to converge. If the Hessian
is computed, it can not only be used for a faster convergence, it also builds the basis for uncertainty and
resolution analysis.

The success of the method depends mainly on the number of local optima within the search space
and the null space at the optimum. However, even in the worst case, the proposed HGDN falls back to
a Genetic-Newton method without causing any disadvantages. The method performs best compared to
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other methods, when used for what it is designed for: search spaces which exhibit many local optima. It is
important to note, that the superiority of the proposed method seems to benefit from higher dimensions
of the search space which is linked to problems other search algorithms have in high dimensions, like
the possibility for a vast plurality of local optima, which can be identified many times if deflation is not
applied. An important observation is that the HGDN method performed better when the chosen number
of individuals was low. The reason for this behaviour is the effect of deflation. The fewer individuals used,
the faster optima can be removed from the function.

7 Acknowledgements

The work was partly funded by Kalkulo AS and the Research Council of Norway through grants 238346
and 251237, and a Centres of Excellence grant to the Center for Biomedical Computing at Simula
Research Laboratory, project number 179578. The work has been conducted at Kalkulo AS, a subsidiary
of Simula Research Laboratory. We want to thank Patrick Farrell for helpful comments and support.

104



Bibliography

[1] Efficient global optimization using hybrid genetic algorithms, 9th AIAA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, 2002.

[2] K. M. Brown and W. B. Gearhart. Deflation techniques for the calculation of further solutions of a
nonlinear system. Numerische Mathematik, 16(4):334–342, 1971. doi: 10.1007/BF02165004.

[3] ED Cashwell and CJ Everett. Monte carlo method. New York, 1959.

[4] Johannes M Dieterich and Bernd Hartke. Empirical review of standard benchmark functions using
evolutionary global optimization. arXiv preprint arXiv:1207.4318, 2012.

[5] P. E. Farrell, A. Birkisson, and S. W. Funke. Deflation techniques for finding distinct solutions of
nonlinear partial differential equations. SIAM Journal on Scientific Computing, 37:A2026–A2045,
2015. doi: 10.1137/140984798.

[6] Alex Fraser, Donald Burnell, et al. Computer models in genetics. Computer models in genetics.,
1970.

[7] Osman Güler. Foundations of optimization, volume 258. Springer Science & Business Media, 2010.

[8] Marek W Gutowski. Smooth genetic algorithm. Journal of Physics A: Mathematical and General,
27(23):7893, 1994.

[9] Chii-Ruey Hwang. Simulated annealing: theory and applications. Acta Applicandae Mathematicae,
12(1):108–111, 1988.

[10] James Kennedy. Particle swarm optimization. In Encyclopedia of machine learning, pages 760–766.
Springer, 2011.

[11] Leo Liberti and Nelson Maculan. Global optimization: from theory to implementation, volume 84.
Springer Science & Business Media, 2006.

[12] Pengcheng Liu, Stephen Hartzell, and William Stephenson. Non-linear multiparameter inversion
using a hybrid global search algorithm: applications in reflection seismology. Geophysical Journal
International, 122(3):991–1000, 1995.

105



[13] Vladimiro Miranda and Nuno Fonseca. New evolutionary particle swarm algorithm (epso) applied
to voltage/var control. In Proceedings of the 14th power systems computation conference (PSCC),
pages 1–6, 2002.

[14] J.-M. Renders and S.P. Flasse. Hybrid methods using genetic algorithms for global optimization.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 26(2):243–258, 1996.
doi: 10.1109/3477.485836.

[15] Wen Wan and Jeffrey B. Birch. An improved hybrid genetic algorithm with a new local search
procedure. Journal of Applied Mathematics, 2013, 2013. doi: 10.1155/2013/103591.

[16] J. H. Wilkinson. Rounding errors in algebraic processes, volume 32 of Notes on Applied Science.
H.M.S.O., 1963.

[17] Peiliang Xu. A hybrid global optimization method: The multi-dimensional case. Journal of
Computational and Applied Mathematics, 155(2):423–446, 2003. doi: 10.1016/S0377-0427(02)
00878-6.

[18] Peiliang Xu. A hybrid global optimization method: the multi-dimensional case. Journal of
computational and applied mathematics, 155(2):423–446, 2003.

106



Chapter 6

Distributed Wave-Source Optimization

Article submitted to Elsevier’s Wave Motion

The HGDN method has proven to be efficient when applied to non-trivial benchmark functions. Now,
the method is challenged to optimize a real-life functional in the frame of a Partial-Differential-Equation
(PDE)-constrained optimization. There are many applications to choose from that play import roles in
industry and research. One of the most complex and also useful optimization problem is to determine a
distributed wave source by using only measurements of the wave outside the source.

PDE-constrained optimizations commonly need the simulation of a physical entity like electric,
magnetic or gravitational fields, some temperature or material distribution or movement, or the probability
distribution of an observable. These physical entities need simulations which involve the solution of a
partial differential equation (PDE) of some sort. The characteristics of this solution shapes the search
space of the inversion. Therefore, the search space is highly nonlinear and periodical when we use
the wave equation to model the physical entity. The HGDN method was developed for problems with
many optima. It is therefore well suited for inversions involving wave propagation such as distributed
wave-source optimization. The idea is to find the distribution and characteristics of a wave-source just by
using measurements of the wave field. Applications can be found in acoustics [34], earthquake science
[15], tsunami research [19], electrodynamics [43] and even surveillance. The theory and the application is
depicted in Research Paper 5.
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Chapter 7

Summary and Conclusion

Article submitted to Elsevier’s Applied Geophysics

The presented work leaves us with the following main achievements and remarks. Simulating wave
fields, first arrivals, amplitudes and full wave forms, can now be done more efficiently on most computer
architectures making use of parallelism where available. The division into sub-domains and the parallel
solution process on sub-domain level make it possible to run large wave-motion computations in reasonable
time on almost all computer architectures. Insights have been given in understanding and modeling of
anisotropic wave propagation. Looking at anisotropy as a poorly chosen metric space instead of a change
of propagation velocity with direction leads to a theory applicable to many kinds of anisotropies.

Function optimization is no longer an inefficient black box but rather a highly comprehensible and
efficient procedure. This is achieved by carefully exploring the search space and delivering important
information about its shape. This is only possible by altering certain areas of the objective function to
avoid exploring the same area over and over gain. Deflation was used to achieve this goal. It was shown
that the improvements in wave-propagation modeling can be combined with the proposed optimization
methods to improve wave-source optimization methods.

The future of wave-propagation simulation methods will mostly be influenced by the advancements
of computer architectures. Some of the methods presented in this thesis are mainly limited by the
communication bandwidth between computing nodes. A faster communication could lead to a more
accurate distinction between active and inactive regions of wave propagation which in turn leads to more
efficient computations. Optimization methods could soon explore search spaces even more thoroughly. A
mapping could be applied to not only find null-spaces but also to compute their extend. The result could
help engineers to make decisions to significantly improve a design or to save costs.

A possibility how to utilize the advantages of the proposed methods can be found in the following
section.

7.1 The Dawn of a New Age in Wave Imaging

The work presented in the last chapters give rise to new possibilities in fields that use any kind of wave
imaging. Newest advances in wave-motion modeling allow for a never seen efficiency of wave-propagation
computation. The saved time could be used to employ more sophisticated optimization methods such as
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the one described in Chapter 5. Merging the new technologies would result in more comprehensive results
since several solutions can be found and analyzed. Not any longer is optimization a black box operation
with an uncertain outcome. How the proposed ideas can be merged to form a new generation of wave
imaging tool is outlined in the next research paper.
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